
Artificial intelligence-enabled DDoS detection for
blockchain-based smart transport systems

TONG LUI ; FARIZA SABRINA ; JULIAN JANG-JACCARD ; WEN XU ;
YUANYUAN WEI

Citation

Liu, T., Sabrina, F., Jang-Jaccard, J., Xu, W., & Wei, Y. (2022). Artificial Intelligence-Enabled DDoS Detection for
Blockchain-Based Smart Transport Systems. Sensors, 22(1), Article 1. https://doi.org/10.3390/s22010032

Link to Published Version: https://www.mdpi.com/1424-8220/22/1/32

If you believe that this work infringes copyright, please provide details by email to acquire-staff@cqu.edu.au

aCQUIRe CQU repository

This is an open access article under Creative Commons license.

Downloaded on 25/01/23

Please do not remove this page

CQUNIVERSITY
RESEARCH

http://journal.sjdm.org/16/16222/jdm16222.pdf/)
http://journal.sjdm.org/16/16222/jdm16222.pdf/)
mailto:acquire-staff@cqu.edu.au
https://creativecommons.org.au/learn/licences/
https://www.mdpi.com/1424-8220/22/1/32

����������
�������

Citation: Liu, T.; Sabrina, F.;

Jang-Jaccard, J.; Xu, W.; Wei, Y.

Artificial Intelligence-Enabled DDoS

Detection for Blockchain-Based

Smart Transport Systems. Sensors

2022, 22, 32. https://doi.org/

10.3390/s22010032

Academic Editor: Kyandoghere

Kyamakya

Received: 18 November 2021

Accepted: 18 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Artificial Intelligence-Enabled DDoS Detection for
Blockchain-Based Smart Transport Systems

Tong Liu 1,* , Fariza Sabrina 2, Julian Jang-Jaccard 3 , Wen Xu 3 and Yuanyuan Wei 3

1 College of Sciences, Massey University, Auckland 0632, New Zealand
2 School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia;

f.sabrina@cqu.edu.au
3 Cybersecurity Lab, College of Sciences, Massey University, Auckland 0632, New Zealand;

j.jang-jaccard@massey.ac.nz (J.J.-J.); w.xu2@massey.ac.nz (W.Y.); y.wei1@massey.ac.nz (Y.W.)
* Correspondence: t.liu@massey.ac.nz; Tel.: +64-9-2136145

Abstract: A smart public transport system is expected to be an integral part of our human lives
to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing
maintenance of the smart public transport system from cyberattacks are vitally important. To provide
more comprehensive protection against potential cyberattacks, we propose a novel approach that
combines blockchain technology and a deep learning method that can better protect the smart
public transport system. By the creation of signed and verified blockchain blocks and chaining of
hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries
to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep
learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our
proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the
urgent and critical exchange of transport maintenance data across the stakeholders. The experimental
results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-
IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS
attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our
approach with other similar methods confirms that our approach covers a more comprehensive range
of security properties for the smart public transport system.

Keywords: smart transport system; blockchain; smart contract; artificial intelligence; deep learning;
autoencoder; multi-layer perceptron; DDoS

1. Introduction

The smart public transport system (e.g., buses, taxis, subways, community scooters) is
an important part of the development of reliable smart city initiatives as it contributes to
improving our mobility and significantly decreasing our carbon footprint. For example, the
Internet of Vehicles (IoV) is a distributed network of vehicles that allows vehicles to connect,
communicate, and exchange data/information with each other over the internet. The IoV
helps in the realization of the smart transportation system as it enables transportation vehi-
cles equipped with sensors, software, and computing nodes to connect and communicate
with each other.

The various networks involved in the maintenance of the smart public transport
system are vitally important to guarantee reliable operations without disruption from
unauthorized attacks [1]. The vulnerabilities from cyberattacks that can alter urgent and
critical maintenance data or halt underlying transport infrastructure can bring disastrous
consequences.

Technological advances in Artificial Intelligence (AI) (e.g., including both machine
learning and deep learning) and blockchain have proven capable to improve safety and
efficiency in the smart public transport network. There have been increasing proposals

Sensors 2022, 22, 32. https://doi.org/10.3390/s22010032 https://www.mdpi.com/journal/sensors

Sensors 2022, 22, 32 2 of 22

of utilizing blockchain technologies to support different aspects of transport facilities
and communication [2–10]. However, there is a lack of research on utilizing blockchain
technology on the public transport maintenance system to safeguard from integrity attacks
that can intercept and make unauthorized changes against sensitive transport maintenance
data. However, blockchain alone cannot protect the smart transport system.

The smart transport system is at risk of different categories of cyberattacks. Some
of the known types of cyberattacks in the smart transport systems include distributed
denial of service (DDoS) attack, ransomware attack, malware attack, Man in the Middle
attack, Replay attack, False information attack, wormhole, Phishing attack, Spoofing,
Routing attacks, Eavesdropping, etc. [11,12]. In the blockchain context, DDoS has been
identified as one of the common attacks often discussed [13]. For example, [14] discussed
a DDoS attack launched to block the exchange of smart contracts while [15] described
a case where DDoS attacks were attempted in different parts of the blockchain network
and blockchain nodes in the smart transport system. To provide ongoing availability of
critical infrastructure involved in the blockchain-enabled smart transport system, a more
comprehensive approach to detect different categories of cyberattacks is required.

We propose an AI-enabled DDoS Detection model for a blockchain-based public
transport system that can withstand various cybersecurity attacks. The blockchain part
of our proposed approach enables the protection of the smart transport system from any
integrity attacks that attempt to modify sensitive transport maintenance data. The deep
learning part of our proposed approach, which combines an autoencoder (AE) as a feature
extractor and multi-layer perceptron (MLP) as a classifier, can detect and classify a wide
range of DDoS attempts that can potentially block or halt the exchange of urgent and
critical maintenance data across the stakeholders of the smart public transport system. The
contribution of our proposed approach is following:

• Our proposed approach that combines blockchain and deep learning methods pro-
vides comprehensive protection for the smart public transport systems from various
cybersecurity attacks;

• The comparison of our proposed approach that effectively combines both blockchain
and deep learning methods illustrates that our approach covers a wider range of
security properties compared to other similar methods.

We organize the rest of the paper as follows. We examine the related work in Section 2.
We provide a smart transport use case in Section 3. We provide the details of the blockchain-
based mechanism that protects the integrity of the smart transport system in Section 4.
Section 5 provides the details of the hybrid deep learning methods that protect the avail-
ability of the smart transport system. In Section 6, the experimental results and comparison
with other similar methods are provided. Finally, we provide a conclusion of our work
including the future work directions in Section 7.

2. Related Work
2.1. Blockchain in Transport System

Blockchain technologies can support autonomous vehicles, such as improving security,
providing shared storage, optimizing vehicular functionalities. To secure sensitive informa-
tion of users, vehicles, and reliable data sources, a blockchain-based privacy-preserving
scheme for multimedia data sharing in vehicular social networks was proposed [3].

To secure sensitive user information, a blockchain-based privacy-preserving vehicle-
to-grid networks payment mechanism was proposed [4]. The smart vehicles may commu-
nicate with the stationary edge nodes that could offer blockchain computations and storage.
The blockchain can be used to manage self-sovereign identity which people can store and
control their own identity data [5].

A blockchain-based secure key management for ensuring communication security was
proposed [2]. Balasubramaniam et al. [6] proposed a blockchain-based intelligent trans-
portation system to store road accidents, congestion, delays related data in the blockchain.
To reduce the data dimensionality three different techniques, such as Principal Component

Sensors 2022, 22, 32 3 of 22

Analysis (PCA), Linear Discriminant Analysis (LDA), and Non-negative Matrix Factoriza-
tion (NMF) have been used in this work. This is to ensure that only relevant information
goes for the consensus.

Blockchain-based access control architecture for a large-scale IoT-based smart city sce-
nario has been investigated in [16,17]. The authors in [17] looked into the access control in
smart transport scenarios where data are shared among users across multiple organizations.
To promote seamless access control and maintain consistency of load distribution among
distributed roadside units, a blockchain-based vehicular data management framework was
proposed [7]. With an effective blockchain tracking system, the vehicles and their status can
be easily tracked without the need for a third party. On this count, it improves the payment
and dispute resolution of the transportation system [8]. A framework using blockchain
technologies to support privacy-oriented, certified and shared transportation information
management was proposed [9].

Blockchain technology integrated with AI and ML was explored in promoting safe
transport with a surveillance system in a smart city and reducing security issues in future
transportation systems [10].

2.2. Deep Learning against DDoS Attack

Applying different deep learning models to detect DDoS attacks using binary classi-
fication and to categorize DDoS attack types using multi-class classification has been an
active area of research in recent years. A bi-directional long short term memory (biLSTM)
and Gated Recurrent Units (GRU) were proposed by [18,19] to classify different types
of DDoS attacks using CICDDoS2019 achieving over 90% F1-score. Sanchez et al. [20]
and Samom and Taggu [21] proposed a multi-layer perceptron (MLP) model approach
for DDoS attack detection and demonstrated that deep learning approaches were more
effective compared to shallow machine learning approaches.

Combining two different AI techniques comprised of (shallow) machine learning and
deep learning models has been popular in the last few years. Elsayed et al. [22] proposed
an intrusion detection system that combines an autoencoder and recurrent neural network
(RNN) for DDoS attack detection achieving a 99% F1-score using binary classification. Javaid
et al. [23] proposed a model that combines an autoencoder with a softmax regression-
based classifier on an intrusion dataset. The authors in [24] proposed a hybrid approach
comprised of autoencoder and isolation forest to achieve 88.98% accuracy. Wei et al. [25]
propose a method combines AE and MLP on CICDDoS2019 with F1-score reaching 98%.
Most of these works are limited to evaluating the effectiveness of their proposal only using
a single dataset.

In the smart city context, Ferrag et al. [26] proposed an RNN-based deep learning
model to detect general intrusion attacks, including some aspects of DDoS attacks, in the
smart energy system and evaluates their proposal with three different datasets that include
CIC-IDS2017, a power system dataset, and a Bot-IoT dataset achieving as high as 98%
accuracy. Zhou et al. [27] proposed a stacked autoencoder model to protect DDoS attacks
on the smart grid. Instead of using public datasets, they collected 2 million records of DoS
attacks and tested their proposed model achieving 96% of classification accuracy.

3. A Smart Transport Use Case

The smart transport system requires many stakeholders to communicate with each
other in real-time for the smooth operation of the public transport system. Smooth opera-
tions in smart transport systems rely on a series of events. For example, regular maintenance
is an important aspect is reliable and timely communication among those who are involved.
The main functionalities of the smart transport systems are monitoring regular mainte-
nance of buses, monitoring real-time traffic conditions in specific areas, and locating traffic
emergencies (i.e., traffic accidents) in specific areas.

A maintenance scenario within a smart transport system may require the following steps:

• Local smart public transport authority delegates the task to the maintenance service provider;

Sensors 2022, 22, 32 4 of 22

• Service provider does the regular inspection and generates an event and logs a trans-
action in the blockchain;

• Maintenance team completes the regular maintenance as the agreement and logs a
message once it is completed;

• Maintenance team contacts the supplier if any part is required for the maintenance;
• Once the order is supplied then the maintenance team will make the payment to

the supplier;
• Local transport authority can check if the service has been provided as per the Service

Level Agreement (SLA);
• Local transport authority will make the payment after the service is provided, and the

event will be logged in the blockchain;
• Regular maintenance log will be helpful for other events such as break down, accident, etc.

For example, the maintenance of public transport starts according to the scheduled
date and time. During the maintenance, the maintenance team records the detailed activi-
ties, including the vehicle number, mechanic’s identification number, starting time, ending
time, parts replaced, all aspects of the maintenance or repair activity, and an invoice. The
parts replaced will trigger the inventory level updated. The order for the parts is made if
the inventory level is too low. The supplier will deliver the parts and issue the invoice to
the service provider.

4. Blockchain-Based Mechanism

In this section, we describe our system architecture for a blockchain-based smart
public transport maintenance system. The main components of the proposed architecture
(as shown in Figure 1) are described below:

Figure 1. Smart transport architecture.

Local Transport Authority (LTA): Local transport authority collects the local traffic
data from vehicles, roadside units (RSUs), and other entities. It also publishes important
data to a blockchain and sends aggregated important information to regional transport
authorities. The local transport authority aggregates the local maintenance data and sends
it to the regional transport authority.

Maintenance Team (MT): Maintenance team is the external body that has an agreement
with the local transport authority for the maintenance of the public transport. They are
responsible for regular maintenance. They communicate with supplied if any parts are
needed for the maintenance.

Supplier (SP): Supplier has the agreement with the maintenance team and supplies
the parts once ordered.

Regional Transport Authority (RTA) and State Transport Authority (STA) are the
policymakers and regulatory bodies and can access the maintenance report from blockchain

Sensors 2022, 22, 32 5 of 22

if needed. Regional transport authorities aggregate regional maintenance data and send it
to the State Transport Authority.

Blockchain: Each of the main entities (local transport authority, maintenance team,
supplier, regional transport authority, and state transport authority) in this system will have
a permission blockchain node to record various activities (such as creating a maintenance
agreement, job completion, supply order, payment completion, etc.). A smart contract
will be deployed within the blockchain which will have the required interface for creating
blockchain transactions and reading the necessary information.

As shown in Figure 1, attackers could launch DDoS attacks at different parts of the
blockchain network, such as in between the State Traffic Authority and the Regional Traffic
Authority, in between the Regional Traffic Authority and the Local Traffic Authority, in
between the Local Traffic Authority and the Supplier and Maintenance team, and also in
between the local traffic authority and the Central Sensors Controller.

4.1. Smart Contract and Algorithms

In this section, we describe the interfaces of the smart contract that is called to create
maintenance agreements between the local transport authority and the maintenance team,
to log the transaction for completion of the job, log the event of order placement to the
supplier, order delivery by the supplier, payment to the supplier, and also payment to the
maintenance team. The data are stored as key-value pairs in the Blockchain. We have used
JavaScript Object Notation (JSON) data structure for storing the values.

4.1.1. Creating Maintenance Agreement

Algorithm 1 shows how the transaction for agreement (between the local transport
authority and the maintenance team) is created in the blockchain. This transaction is
logged by the local transport authority. It takes the frequency of maintenance (Freq), Cost,
agreement ID (agrID), maintenance team ID (mtID), maintenance contract description
(mContractDesc), and service level agreement for the time frame for maintenance (tfSLA)
as input parameters and the algorithm returns success or error as the output. Here, the
agreement details are written in the blockchain using the putState API. We used PutState
API in our algorithm as it is used to write on the ledger in the Hyperledger Fabric network.
PutState API requires a key and a value for its operation. In this case, the agreement key
(argKey) and the agreement details (AgrDetails) are the respective key and values.

Algorithm 1: Creating Maintenance Agreement
Input: Freq, Cost, agrID, mtID, mContractDesc, tfSLA
Output: Success or Error
begin

agrKey← agrID
agrDetails← JSON (Freq, Cost, agrID, mtID, mContractDesc, tfSLA)
putState (agrKey, AgrDetails)

/* Agreement is now stored in the blockchain */
return Success

end

4.1.2. Completion of the Job

Algorithm 2 shows how the transaction for the completion of the maintenance job is
logged to the blockchain by the maintenance team. Here agreement ID (agrID), maintenance
team ID (mtID), maintenance details (mDetails), vehicle ID (vehicleID), a time when
the maintenance job came (timeIn), and completion time (timeCompld) is used as input
parameters, and the algorithm returns success as output after successfully creating the
transaction in the blockchain. We used getState API for reading information such as
agreement details (for a given agreement ID), as getState API is used to read states from the
ledger in the Hyperledger Fabric network. getState API returns the value for a given key

Sensors 2022, 22, 32 6 of 22

from the state. The job completion details (jcDetails) are written in the blockchain using the
putState API and the corresponding key for that is job completion key (jcKey).

Algorithm 2: Completion of the Job
Input: agrID, mtID, mDetails, vehicleID, Date, timeIn, timeCompleted
Output: Success or Error
begin

agrKey← agrID
agrDetails← getState(agrKey)
if (agrID == agrDetails.agrID) then

if ((timeCompleted – timeIn) < agrDetails.tfSLA) then
IsSlaMet == true

end
else

IsSlaMet == false
end
jcKey← SHA1 (agrID, mtID, vehicleID, Date)
jcDetails← JSON (agrID, mtID, mDetails, vehicleID , Date, timeCompleted,
timeSpent, IsSlaMet)
putState (jcKey, jcDetails)

/* Job completion message is added to the blockchain */
return Success

end
else

return Error
end

end

4.1.3. Order to the Supplier

Algorithm 3 shows how the transaction for the order placement to the supplier is
logged in the blockchain. This transaction is logged by the maintenance team once any
parts/tools need to be ordered. Here, order ID (ordID), supplier ID (sID), maintenance
team ID (mtID), order description (oDescptn), order date and time (ordDateTime), service
level agreement for delivery date/time (deliveryDTSLA), priority level (priorityLevel),
and order status (ordStatus) is taken as input parameters. For this function “Ordered” is
passed as the parameter for ordStatus. Upon successfully logging in the transaction on
blockchain this algorithm returns success as the output. The order details will be stored in
the blockchain using the putState API and the corresponding key and value are order key
(ordKey) and order details (ordDetails), respectively.

Algorithm 3: Order placement to the supplier
Input: ordID, sID, mtID, oDescptn, ordDateTime, deliveryDTSLA, priorityLevel,

ordStatus
Output: Success or Error
begin

ordKey← ordID
ordDetails← JSON (sID, mtID, oDescptn, ordDateTime, deliveryDTSLA,
priorityLevel, orderStatus)

putState (ordKey, ordDetails)
/* Order to the supplier is stored in the blockchain */

return Success
end

Sensors 2022, 22, 32 7 of 22

4.1.4. Order Delivered

Algorithm 4 shows how the transaction for order delivery is logged by the supplier
once the order is delivered. Here, order ID (ordID), delivery date and time (dDateTime),
order status (orderStatus), invoice amount (invoiceAmount) are used as input parameters.
For this function “delivered” is passed as the parameter for ordStatus. Upon successfully
logging in the transaction on blockchain this algorithm returns success as an output. The
order delivery details will be stored in the blockchain using the putState API and the corre-
sponding key and value are order key (ordKey) and order details (ordDetails), respectively.

Algorithm 4: Order delivered
Input: ordID, dDateTime, orderStatus, invoiceAmount
Output: Success or Error
begin

ordKey← ordID
IsSlaMet← true
ordDetails← getState (ordKey)
if (ordID == ordDetails.ordID) then

if dDateTime – ordDateTime) > deliveryDTSLA then
IsSlaMet == False

end
ordDetails. IsSlaMet = IsSlaMet
ordDetails. invoiceAmount = invoiceAmount
putState (ordKey, ordDetails)

/* Order Delivered message is stored in the blockchain */
return Success

end
else

return Error
end

end

4.1.5. Payment to the Supplier

Algorithm 5 shows how the payment completion transaction for the ordered parts
is logged in the blockchain. This transaction is logged by the maintenance service once
the payment to the supplier is completed. Here, order ID (ordID), payment date and time
(payDateTime), and paid amount (paidAmount) is used as input and the algorithm will
return success once the transaction is logged on the blockchain. The payment details will
be stored in the blockchain using the putState API and the corresponding key and value
are order key (ordKey) and order details (ordDetails), respectively.

4.1.6. Payment to the Maintenance Team

Algorithm 6 shows how the payment completion transaction for a maintenance service
is logged in the blockchain. This transaction is logged by the local transport authority
once the payment for the maintenance service is performed. Here, agreement ID (agrID),
payment date and time (payDateTime), and paid amount (paidAmount) is used as input
and the algorithm returns success once the transaction is logged on the blockchain. The pay-
ment details will be stored in the blockchain using the putState API and the corresponding
key and value are agrKey (agreement key) and agrDetails (agreement details), respectively.

Sensors 2022, 22, 32 8 of 22

Algorithm 5: Payment to the supplier
Input: ordID, payDateTime, paidAmount
Output: Success or Error
begin

ordKey← ordID
ordDetails← getState (ordKey)
if (ordID == ordDetails.ordID) then

if ordDetails. invoiceAmount == paidAmount then
ordDetails.sPaidInFull = true
ordDetails.remainingAmount = 0

end
else

ordDetails. sPaidInFull = false
ordDetails.remainingAmount = ordDetails. invoiceAmount −
paidAmount

end
putState (ordKey, ordDetails)

/* Payment completion for the maintenance team */
return Success

end
else

return Error
end

end

Algorithm 6: Payment to the Maintenance Team
Input: ordID, payDateTime, paidAmount
Output: Success or Error
begin

agrKey← agrID
agrDetails← getState (agrKey)
if agrID == agrDetails.agrID) then

if agrDetails. invoiceAmount == paidAmount then
agrDetails.mPaidInFull = true agrDetails.remainingAmount = 0

end
else

agrDetails. mPaidInFull= false agrDetails.remainingAmount=
agrDetails. invoiceAmount - paidAmount

end
putState (agrKey, agrDetails)

/* Payment completion for the maintenance team */
return Success

end
else

return Error
end

end

4.2. Integrity Protection

The smart contracts are digital versions of agreements among the local transport
authority (LTA), the maintenance team (MT), and the supplier (SP). Once the smart contracts
are deployed successfully to the blockchain network, they are available to the participants
in that network. The regional transport authority (RTA) and state transport authority (STA)
can access the network. A smart contract executes on a peer node in the blockchain network.
It takes a set of input parameters combines them with its program logic to read and write

Sensors 2022, 22, 32 9 of 22

the block. Once the block is signed and verified, it will be added to the blockchain. The
proposed smart contract and blockchain are shown in Figure 2.

The blockchain-based smart public transport maintenance system is composed of a set
of five types of nodes connected by a peer-to-peer network.

N = {LTAi, RTAi, NTAi, MTi, SPi}, where i = {1, . . . , n} (1)

The blockchain is maintained by LTAi, MTi, and SPi nodes while RTAi and NTAi
nodes do not participate in the consensus process.

G1, G2, GT are three groups of prime order q where |G1| = |G2| = GT = q. Given a
security parameter k, the private key generator (PKG) first chooses Groups G1 and G2 of
prime order q > 2k. PKG then chooses a generator P of G1 and a randomly master key
s ∈ Zq and computes the public key Ppub = sP. The cryptographic hash functions of domain
and range are

H1 : H2 : {0, 1}∗ → G1and H3 : {0, 1}∗ → Zq (2)

The PKG computes the private key for mtID as sPi for i ∈ {0, 1}, where [26]

Pi = H1(mtID, i) ∈ G1 (3)

Pw = H2(w) ∈ G1 (4)

c1 = H3(m1, mtID, w) ∈ Zq (5)

r1 ∈ Zq (6)

S1 = r1Pw + sP0 + c1sP1 (7)

T1 = r1P (8)

The signature on M1 is SigBlock(w, S1, T1). w is new string never used before.

Figure 2. Blockchain and Smart Contract.

As shown in Figure 2, the Key M1 and the data value of agrID: 01, mtID: 01, mDetails:
“Changed Tyres”, vehicleID: 123, timeIn: 2021-10-10 9:30, timeCompld: 2021-10-10 10:00
are checked to ensure that the update has complete, the current value of the world state

Sensors 2022, 22, 32 10 of 22

matches the read set of the data when it was signed by MTi and the peer nodes. Then, the
data are marked as valid once both these procedures have been completed successfully.
The block is added to the blockchain as a transaction.

Each block’s header includes a hash of the prior block’s header, a hash of the current
block’s transactions, timestamp, and block number, etc. Since each block contains a hash of
the prior block’s header, the blocks on the blockchain are linked together cryptographically.
This hashing and linking mechanism make the blockchain data secure. The blockchain
is distributed throughout a network. Different nodes store a copy of the blockchain. If
a node hosting the blockchain is tampered with, it would not match with all the other
nodes, and is almost impossible to convince all the other nodes that the hacked node has
the ‘correct’ blockchain.

In Figure 2, Block N-1 has block data which contain the data of completion of the
maintenance job stored as transaction 1. The block data were hashed and stored in the
header of Block N-1. The hash value of block N-1 header was stored in Block N.

5. Deep Learning-Based Mechanism

In this section, we describe the details of a hybrid deep learning model we use and the
details of data and data pre-processing methodologies we adapted.

5.1. A Hybrid Model

In this study, we use our hybrid approach that combines autoencoder (AE) and multi-
layer perceptron (MLP) we developed earlier [25]. We extend our earlier work to include
more diverse DDoS attack types that may be used as an attack tool on Smart Transport
Systems. In our hybrid approach, we use unsupervised training for the AE model without
labels to automate the feature extraction process without human intervention. In contrast,
we use supervised learning for the MLP model with labels to evaluate the classification
accuracy. We first use autoencoder (AE) as a feature extraction tool [28] to find the most
relevant features from the original dataset and then use multi-layer perceptron (MLP) as a
classifier that categorizes the attacks into different categories (i.e., classes). The overview of
the hybrid approach we use is depicted in Figure 3. A summary of the main components of
our model follows.

Figure 3. The overview of the hybrid model.

5.1.1. Feature Extraction

The AE model we use is a feed-forward neural network based on unsupervised
learning—that is, the input data does not need to be labeled according to the ground truth.

In an AE model, it tries to reconstruct an output that resembles an input as much as
possible. To achieve this goal, AE tries to find and extract the most relevant features from
the network traffic samples during training while ignoring the features not directly related
to detecting DDoS attacks.

Sensors 2022, 22, 32 11 of 22

Each time the model is trained, the number of features is reduced (to increase the effi-
ciency of the model) that represents more relevant features. Once the training is complete,
only the most relevant features critical for attack detection (and classification) remain in
the bottleneck layer (i.e., latent space). Whether the model has found the most relevant
features are typically evaluated at the decoding process where the output is reconstructed
and its resemblance to the input is evaluated. The model is trained if the difference between
the reconstructed output and its corresponding input by computing a reconstruction loss.
These can be summarized as follows.

During the encoding phase of an AE, the input x is represented as a vector (x ∈ Rm).
This vector is then plotted to the latent space (h). This is shown in Equation (9).

h = f1(wx + b) (9)

where f1 indicates an activation function for the encoder which outputs the results of
computing the weight w of each input sample with an additional bias b.

During the decoding phase of an AE, the latent space representation (h) is mapped
back to reconstruct x̂. This is shown in Equation (10):

x̂ = f2(w′h + b′) (10)

where f2 denotes the decoder’s activation which outputs the results of computing the w′

of each feature in the bottleneck layer with an additional bias b′. The w′ and b′ are not
unrelated to the w and b used by the encoder.

The reconstruction loss (L) that minimizes reconstruction error on x is computed. This
is shown in Equation (11).

L(x, x̂) =
1
n

n

∑
i=1

(xi − x̂i)
2 (11)

which n indicates the training samples.

5.1.2. Classification

Our MLP contains an input layer, multiple hidden layers, and an output layer. The
hidden layer that is trained and has the lowest number of neurons from the AE model is
used as an input, represented as the input vector hz, to the MLP. The MLP further trains the
input vector by producing the vector yz (i.e., latent space representation). The final latent
space representation is fed to the output layer to predict different DDoS attack classes. In
our model, we use the softmax function for class categorization, as shown in Equation (12).

ŷ = so f tmax(yzwy + by) (12)

where wy denotes weights while by denotes bias at the output layer.

5.1.3. Training

The training strategy of the hybrid model is described in Algorithm 7. In our model,
the AE is trained in an unsupervised way (i.e., without labeling) to find the most important
features while the features that are less important to predict DDoS attacks are discarded
(i.e., not represented in the following hidden layer). We divide the input data into several
mini-batch to update the weights/bias using Stochastic Gradient Descent (SGD) according
to the loss function of Mean Squared Error (MSE) calculation. This is seen in the first
for-loop of the Algorithm.

Our 5-layer AE model is designed to have 1 input layer, 2 hidden layers, a bottleneck
layer, and 1 output layer. The 2 hidden layers have 32 neurons each while the bottleneck
layer has 10 neurons. The feature representations of the input are extracted from the
bottleneck layer (i.e., latent space).

Sensors 2022, 22, 32 12 of 22

Algorithm 7: Training of the hybrid model

Input: Training dataset X = {x1, x2, x3, . . . , xn}
Training Label Y = {y1, y2, . . . , yn}
Encoder Eφ; Decoder Dθ ;
begin

/* Phase 1: AE feature extraction */
/* Training AE in mini-batch */

φ, θ ← Initialize parameters
for number of training iterations do

sample mini-batch of k samples {X1, X2, X3, . . . , Xk} from S
/* Calculating loss */

V(E, D) = 1
m ∑k

i=1(Xi − Dθ(Eφ(Xi)))
2

φ, θ ← Update parameters using Stochastic Gradient Descent of V
end

/* Phase 2: MLP Classification */
δ← Initialize parameters

/* Training MLP */
for each (x, y) ∈ (X, Y) do

/* get latent presentaions from trained AE */
a← Eφ(x)

/* trained MLP Mδ */
O(ŷ|y)← Mδ((a), y)
δ← Update parameters using Stochastic Gradient Descent

end
end

The 10 feature representations in the latent space from the AE model are used as the
input to the MLP model. This time MLP is trained using the supervised learning method
(i.e., using the label) represented in the training dataset. Every input feature is used for the
training for updating the weights/bias.

We use a 3-layer MLP model designed to contain: 1 input layer with 10 neurons (i.e.,
each representing a feature obtained from the latent space of the AE), 1 hidden layer with
the size of 32 neurons, and 1 output layer with the number of neurons representing a
benign class and other DDoS attack classes. All hidden layers in the hybrid model uses
“ReLU” as an activation function while the final output layer of the MLP uses “softmax” as
an activation function.

The detailed structures used in the hybrid model are list in the Table 1:

Table 1. detailed structure used in proposed hybrid model.

Model Structure Details Value

AE

Hidden Layer 1 neurons 32
Hidden Layer 1 Activation Function ReLU

Hidden Layer 2 neurons 10
Hidden Layer 2 Activation Function ReLU

Hidden Layer 3 neurons 32
Hidden Layer 3 Activation Function ReLU

Loss Function MSE

MLP

Hidden Layer 1 neurons 32
Hidden Layer 1 Activation Function ReLU

Output Layer Activation Function Softmax

Loss Function Cross-Entropy

Sensors 2022, 22, 32 13 of 22

5.1.4. Testing

The testing strategy of the hybrid model is described in Algorithm 8. First, the test
dataset is inputted. The most relevant features are extracted and projected in the latent
space with the trained AE. Note that the trained AE has the knowledge of which features
are most used in a certain DoS attack class. The extracted data, with their label, are then fed
into the trained MLP model, which works as a supervised classifier, to identify the specific
attack class.

Algorithm 8: Testing of the Hybrid model

Input: Testing dataset X′ = {x′1, x′2, x′3, . . . , x′n}
Testing Label Y′ = {y′1, y′2, . . . , y′n}
Output: O(ŷ′|y′)
begin

/* Testing */
for each (x′, y′) ∈ (X′, Y′) do

/* get latent presentations from trained AE */
a′ ← Eφ(x′)

/* use trained MLP for classification */
/* the output represents the probability of a value that categorize

different attack class */

O(ŷ′|y′)← Mδ((a′), y′)
end

end

5.2. Data and Pre-Processing

We discuss the details of the dataset and the pre-processing strategies we used.

5.2.1. Datasets

Considering there are no DDoS datasets yet available specifically exclusive to Smart
Transport Systems, we utilize the three largest and most up-to-date DDoS datasets publicly
available online. We believe that a comprehensive range of DDoS attack classes, both
from reflection-based and exploitation-based DDoS attacks, contained in these datasets are
relevant to the Smart Transport Systems context and aligns well with the types of DDoS
attack mentioned in existing studies in blockchain [11,12]. We use CICDDoS2019 [29] that
contains the largest number of DDoS attack classes that are up to date. We also use CIC-
IDS2017 [30] dataset which contains a wide range of intrusion attacks. We only extracted
their DDoS attack that exploits HTTP protocol. BoT-IoT dataset [30] contains three different
types of attacks but again we only extracted DoS/DDoS attack-related data samples.

These datasets have two different types of sub-datasets, one set is used in the training
phase while this other set is used in the testing phase of a deep learning model. The total
number of training and testing set categorized whether benign or malicious DDoS payload
is shown in Table 2.

Table 2. Record numbers.

Dataset Phase Benign Malicious

CICDDoS2019 Training 56,863 50,006,249
Test 56,965 20,307,560

CIC-IDS2017 Training 1,703,489 284,806
Test 567,831 94,934

BoT-IoT Training 358 2,682,662
Test 119 894,222

Sensors 2022, 22, 32 14 of 22

The different dataset contains different types of DoS/DDoS attacks. CICDDoS2019
dataset contains different DDoS attack types that exploit a wide range of network or
application protocols. We categorize 5 different DDoS attack types that exploit LDAP,
NetBIOS, MSSQL, SYN, and UDP flooding.

CIC-IDS2017 dataset contains 4 DoS/DDoS-related attacks, namely ‘DDoS’, ‘DoS
GoldenEye’, ‘DoS Hulk’, and ‘DoS slowloris’. These attacks are all HTTP flood attacks
obtained either through a live network setup, such as ‘DoS slowloris’ and ‘DoS GoldenEye’,
while other attack samples were obtained through network simulation tools such as ‘DoS
Hulk’. This dataset distinguishes DoS from DDoS attacks. DDoS attacks are obtained
through launching an attack from several attack machines to a target machine while DoS
attacks were sent (or simulated) from a single machine to a target machine.

The BoT-IoT dataset only contains 2 different types of attack (DoS and DDoS) that
exploits either TCP or UDP protocols.

The summary of different DoS/DDoS attacks and the description of each attack that
appears in these three datasets are illustrated in Table 3.

Table 3. Summary of DoS/DDoS attacks in our datasets and their descriptions.

Attack Type Attack Description Datasets

LDAP Attack

It refers to DDoS attack associated with exploiting Lightweight Direc-
tory Access Protocol (LDAP) protocol. The attacker sends a massive
number of LDAP requests to the vulnerable LDAP servers by pre-
tending to be a legitimate LDAP client using spoofed IP addresses.
The LDAP server becomes too busy to create responses for attackers
and becomes unable to respond to real LDAP clients.

CICDDoS2019

NetBIOS Attack

In this attack, attackers exploit the vulnerability associated with
the Network Basic Input/Output System (NetBIOS) which is the
main protocol used in file-sharing applications. The attackers send
a large number of spoofed messages to interfere with all NetBIOS
network traffic.

CICDDoS2019

MSSQL Attack

In this attack, attackers exploit the vulnerabilities in Microsoft Struc-
tured Query Language (MSSQL) which is used to obtain records from
the underlying database. The attacker executes the scripted MSSQL
requests to the MSSQL Server to block other legitimate MSSQL clients
from accessing the server.

CICDDoS2019

SYN Attack

The SYN flood attack is one of the most exploited DDoS attacks asso-
ciated with the vulnerability in the TCP-three-way handshake phase
of the TCP protocol that is used by almost all network communica-
tions including the Internet. In this attack, the attacker sends a huge
amount of SYN packets repeatedly until the target machine becomes
unresponsive to legitimate users.

CICDDoS2019,
BoT-IoT (named
as TCP attack)

UDP Attack

Similar to TCP protocol, UDP protocol is used to deliver non-
guaranteed delivery (i.e., packets can be lost) which is often used
to deliver multimedia contents. Attackers send a massive number of
UDP packets to random ports of a victim’s machine. This results in
the network of the victim becoming exhausted or malfunctioning.

CICDDoS2019,
BoT-IoT

HTTP Attack
Attackers overwhelm a victim’s server by opening and maintaining
a massive number of simultaneous HTTP connections between the
attacker and the victim.

CIC-IDS2017

5.2.2. Pre-Processing

We first clean our datasets by removing the features that have been considered irrele-
vant to classification tasks as suggested by [31]. We further clean the datasets by removing
feature values that have no meaning for training, for example, blank or garbage values.

The next step in data pre-processing is to code categorical values to floats/numeric
values as deep learning methods cannot work with character values. We either use Label
Encoding to encode labels (e.g., benign or indicating specific attack type), or One-Hot-
Encoding to encode any categorical/object values to floating/numeric values.

Sensors 2022, 22, 32 15 of 22

These cleaned and converted input data are now normalized to eliminate the impacts
of high variance of feature values. We use min–max-based data normalization (i.e., put
values all in the [0,1] range) for the feature scaling.

We also apply either/both Random Undersampling or/and Synthetic Minority Over-
sampling Technique (SMOTE) [32] to balance training sets that have the imbalanced distri-
bution of samples. For example, the number of training samples in “DoS GoldenEye” (only
7742 records) and “DoS slowloris” (only 4347 records) were significantly under-sampled
compared to other attack classes in the CIC-IDS2017 dataset.

Figure 4 illustrates the PCA-based visualization outcomes of the latent presentation
for both the training set (after sampling) and the test set.

(a) (b)

(c) (d)

(e) (f)

Figure 4. PCA visualization of data distribution of datasets. (a) CICDDoS2019 Training set; (b)
CICDDoS2019 Test set; (c) CIC-IDS2017 Training set; (d) CIC-IDS2017 Test set; (e) Bot-IOT Training
set; (f) Bot-IOT Test set.

In the CICDDoS2019 dataset (Figure 4a,b), the data distribution of “BENIGN” samples
both in training and testing sets are significantly more extensive while the data distribution
of 5 different DDoS attack types is condensed around smaller clusters.

Sensors 2022, 22, 32 16 of 22

The data distribution of the CIC-IDS2017 dataset is comparatively more realistic than
the CICDDoS2019 dataset as the “BENIGN” samples are dominant in the dataset. This is
consistent with the real network where most of the traffic is normal. Meanwhile, the data
distribution across different DDoS attack types in CIC-IDS2017 is relatively unbalanced
compared to the CICDDoS2019. Due to the above reasons, we decide not to apply the
sampling technique on CIC-IDS2017 and we split the dataset into a 3:1 ratio with stratifi-
cation as no suggestion was proposed by the dataset creators. Therefore, the training set
(Figure 4c) and test set (Figure 4d) share the same distribution among the classes.

The training set of the BoT-IoT dataset (Figure 4e) contains significantly large benign
samples (after oversampling) with a few clusters of the mix of DoS and DDoS attack
samples are formed away from benign samples. Very different from the training set, the test
set of the BoT-IoT dataset (Figure 4f) has significantly larger attack samples of DoS/DDoS.

6. Evaluation and Analysis

In this section, we describe the details of our setup environment that we used to run
our evaluation, the performance metrics we used to measure the effectiveness of the hybrid
model, and the experimental results with analysis.

6.1. Evaluation Setup

Our hybrid model was built with Tensorflow 2.6 [33] and Keras API [34], and our ex-
periments were carried out on Kaggle.com platform using the following hyper-parameters
shown in Table 4.

Table 4. Training hyper-parameters (both autoencoder and MLP classifier).

Parameters Values Description

Batch Size 64 The number of training examples in one
forward/backward pass.

Learning rate 0.001 Learning rate is used in the training of
neural networks range [0.0, 1.0].

Optimizer Adam [35] a stochastic gradient descent method,
an argument required for compiling model.

Epoch 20 Total iterations for the entire dataset.
Validation split 0.2 Validation ratio in training.

6.2. Evaluation Metrics

We use four performance metrics, recall, precision, F1-score, and ROC curve, respec-
tively. True Positive (TP) indicates the classification that actually positive and predicted
positive, True Negative (TN) indicates the classification that is actually negative and pre-
dicted to negative, False Positive (FP) indicates the classification that is actually negative
but predicted to positive, and False Negative (FN) indicates the classification that is actually
positive but predicted to negative.

True Positive Rate (TPR), also known as Recall, is used to measure the ratio of truly cor-
rect positive prediction compared to the total number of supposed to be positive predictions,
as shown in Equation (13).

TPR(Recall) =
TP

TP + FN
(13)

False Positive Rate (FPR) is used to measure the ratio of truly correct negative predic-
tion compared to the total number of supposed to be negative predictions, as shown in
Equation (14).

FPR =
FP

FP + TN
(14)

Precision is used to estimate the ratio of truly correct positive prediction compared to
the total number of positive prediction results which is shown in Equation (15).

Precision =
TP

TP + FP
(15)

Sensors 2022, 22, 32 17 of 22

F1-score is used as the harmonic mean between the precision and the recall which we
use as a way to understand the accuracy of the classification accuracy. This is shown using
Equation (16).

F1-score = 2×
(

Precision× Recall
Precision + Recall

)
(16)

The area under the receiver operating characteristics (ROC) Curve (AUC-ROC) is used
to plot the balance between TPR and FPR using Equation (17).

AUCROC =
∫ 1

0

TP
TP + FN

d
FP

TN + FP
(17)

6.3. Evaluation Results

We illustrate different aspects of our evaluation results and analysis.

6.3.1. Results Based on Performance Metrics

Due to the data size, we used 5% of random samples from both CICDDoS2019 and
BoT-IoT datasets while all data from CIC-IDS2017. We used 80% of the sampled data to
train the model while the rest 20% was used as a validation set further tuning the hyper-
parameters. The classification performance based on the performance metrics we defined
earlier on the three datasets is shown in Table 5. The performances of all three datasets
produce very stable results with high F1-scores. However, the best performance dataset
was from the CICDDoS2019 dataset were two types of DDoS attacks, related to NetBIOS
and SYN flood, achieving 100% F1-score while other classes achieved more than 95%. The
result of the BoT-IoT dataset was compatible with the CICDDoS2019 dataset achieving
the range from 94% to 100% accuracy. The results from the CIC-IDS2017 dataset had a
slight fluctuation with the unbalanced classes, such as DoS slowloris, despite upsampling
technique applied, had the lowest F1-score at 84% while all other classes achieved more
than 90%.

These results show the hybrid model we used was well trained without underfitting
or overfitting towards any particular DDoS attack type. The result confirms that this type of
deep learning model can be an effective mechanism to protect the smart transport system
(and other similar systems) against different types of DDoS attacks.

Table 5. Performance outcomes.

Dataset Class Precision Recall F1-Score

CICDDoS2019 BENIGN 0.91 0.99 0.95
LDAP 0.91 0.99 0.95

MSSQL 0.98 0.94 0.96
NetBIOS 1.00 1.00 1.00

Syn 1.00 1.00 1.00
UDP 0.96 0.97 0.97

CIC-IDS2017 BENIGN 0.99 1.00 0.99
DDoS 0.99 0.90 0.94

DoS GoldenEye 0.97 0.92 0.94
DoS Hulk 0.92 0.95 0.93

DoS Slowloris 0.99 0.84 0.91

BoT-IoT BENIGN 1.00 1.00 1.00
DDoS 0.95 0.95 0.95
DoS 0.94 0.94 0.94

6.3.2. Results Based on Confusion Metrics

Figure 5 illustrates the confusion matrix-based classification for different attack types
with the exact number of predictions are shown. Both TP and TN rates correctly classify
benign and different attack types are very high while FP and FN rates stay very low across

Sensors 2022, 22, 32 18 of 22

all three datasets (i.e., highlighted by different color squares). Though we do not see
any color square around True Negative (TN) cases in the benign samples tested on the
CICDDoS2019 and the BoT-IoT datasets, it is because they contain a significantly smaller
number of benign samples. We also witness the same result in the ‘DoS goldenEye’ attack
type when its test samples are significantly smaller in size compared to other classes. We see
False Positive (FP) and False Negative (FN) slightly highlighted in the CICDDoS2019 and
the BoT-IoT datasets, however, if we take into account the proportion of the FP + FN, they
are almost negligent in the scale of a few thousand (e.g., MSSQL/LDAP, MSSQL/UDP) or
10 thousand (e.g., DoS/DDoS, DDoS/DoS) among millions of samples tested, less than 1%.

(a) (b)

(c)

Figure 5. Confusion matrices results on the three test sets. (a) CICDDoS2019; (b) CIC-IDS2017; (c)
Bot-IOT.

6.3.3. Results Based on ROC Curves

We also produced ROC curves on our datasets, shown in Figure 6, to analyze the
trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) for all classes.
Both the micro and macro average of all the attack classification across all datasets are
above 0.99. This indicates that the hybrid model has a good detection and classification of
malicious payloads containing DDoS attacks.

Sensors 2022, 22, 32 19 of 22

(a) (b)

(c)

Figure 6. ROC curve results on three test sets. (a) CICDDoS2019; (b) CIC-IDS2017; (c) Bot-IOT.

6.4. Comparison between Our System and Other Related Frameworks

Table 6 compares our system with other previously proposed work in the smart
transport area. First, we considered if the proposed work is blockchain-based and used
smart contracts or not. We also considered data security, integrity, and trust as the metrics
for the comparison. Our blockchain-based smart transport system uses smart contracts
which are the digital contracts used among the participating entities (such as local transport
authority, maintenance team, supplier, etc.). In this scenario, there is no need for any
other third party’s involvement and all records of transactions are encrypted and shared
only with the authorized participants, this ensures the security and trustworthiness of
the information/data. In the blockchain, data are hashed before being added to a block
in the chain and that ensures data integrity. Other existing works that we mentioned in
Table 6 are also blockchain-based systems and incorporate security, trust, and integrity in
their framework. However, one major advantage of our system is that it has incorporated
an AI-based Network Intrusion Detection/Prevention system (IDS/IPS) which is highly
efficient in detecting different categories of Distributed Denial of Service (DDoS) attacks to
ensure the network is not disrupted by the attackers and always available for the intended
users. Hence, our system achieves the availability of data/information when it is needed.

Sensors 2022, 22, 32 20 of 22

Table 6. Comparison between our proposed system and other related work in smart transport system.

Metric [3] [4] [6] [7] Our System

Blockchain based Yes Yes Yes Yes Yes

Smart contract Yes No Yes Yes Yes

Security Yes Yes Yes Yes Yes

Trust Yes Yes Yes Yes Yes

Integrity Yes Yes Yes Yes Yes

DDoS attack Detection No No No No Yes

Availability No No No No Yes

7. Conclusions

We proposed a comprehensive approach to protecting the smart transport system using
the combination of blockchain and deep learning approaches. The blockchain approach in
our proposed approach enables sensitive data such as maintenance data to be protected
from unauthorized modification (i.e., integrity attack). Using a use case, we provide the
details of system architecture, algorithms involved in the smart contracts, and mechanisms
to protect the block containing various maintenance data and transactions associated with
it. To provide protection from availability attacks (e.g., through DDoS), we add a hybrid
deep learning method in our proposed approach to detect various DDoS attacks. In our
hybrid deep learning method that combines autoencoder (AE) with multi-layer perceptron
(MLP) provides automated feature extraction and classification in a timely manner. The
experimental results were obtained through an extensive evaluation of three different
datasets namely CICDDoS2019, CIC-IDS2017, and BOT-IoT, that cover a wide range of
different DDoS attack types that are most up-to-date. Our extensive experiments show
that our proposed approach is effective to detect and classify different types of DDoS
attack types without overfitting/underfitting towards any particular DDoS attack type,
achieving very high F1-score rates that exceed 95% on an average of all three datasets.
The comparison between our proposed approach and other similar blockchain-based
approaches [3,4,6,7] shows that we provide a comprehensive range of security properties
(e.g., security, trust, integrity, and availability). This confirms that our approach that
combines both blockchain and deep learning methods can be an effective mechanism to
protect the smart transport system from various cyberattacks. For future work, we plan to
investigate other deep learning approaches for protecting the smart transport system from
other types of intrusions, such as network intrusion [36], malware [37,38], and ransomware
attacks [39]. We also plan to study a blockchain-based public transport system with the
integration of edge computing.

Author Contributions: Conceptualization, T.L., F.S. and J.J.-J.; methodology, T.L., F.S. and J.J.-J.;
software, W.X. and Y.W.; validation, W.X.; formal analysis, W.X. and J.J.-J.; investigation, T.L.; J.J.-J.
and F.S.; resources, T.L. and J.J.-J.; writing—original draft preparation, T.L., J.J.-J. and F.S.; writing—
review and editing, T.L., J.J.-J. and F.S.; visualization, T.L. and W.X.; funding acquisition, T.L. and
J.J.-J.; project administration, T.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Cyber Security Research Programme—Artificial Intelligence
for Automating Response to Threats from the Ministry of Business, Innovation, and Employment
(MBIE) of New Zealand as a part of the Catalyst Strategy Funds under the grant number MAUX1912
and Massey University—College of Sciences Massey University Research Fund Early Career Round.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 32 21 of 22

References
1. Camp, L.J.; Grobler, M.; Jang-Jaccard, J.; Probst, C.; Renaud, K.; Watters, P. Measuring human resilience in the face of the global

epidemiology of cyber attacks. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA,
8–11 January 2019.

2. Li, J.; Wu, J.; Chen, L.; Li, J.; Lam, S.K. Blockchain-based Secure Key Management for Mobile Edge Computing. IEEE Trans. Mob.
Comput. 2021. [CrossRef]

3. Shi, K.; Zhu, L.; Zhang, C.; Xu, L.; Gao, F. Blockchain-based multimedia sharing in vehicular social networks with privacy
protection. Multimed. Tools Appl. 2020, 79, 8085–8105. [CrossRef]

4. Zhang, Y.; Zou, J.; Guo, R. Efficient privacy-preserving authentication for V2G networks. Peer-to-Peer Netw. Appl. 2021,
14, 1366–1378. [CrossRef]

5. Stockburger, L.; Kokosioulis, G.; Mukkamala, A.; Mukkamala, R.R.; Avital, M. Blockchain-Enabled Decentralized Identify
Management: The Case of Self-Sovereign Identity in Public Transportation. Blockchain Res. Appl. 2021, 2, 100014. [CrossRef]

6. Balasubramaniam, A.; Gul, M.J.J.; Menon, V.G.; Paul, A. Blockchain for intelligent transport system. IETE Tech. Rev. 2021,
38, 438–449. [CrossRef]

7. Sharma, R.; Chakraborty, S. B2VDM: Blockchain based vehicular data management. In Proceedings of the 2018 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018;
pp. 2337–2343.

8. Aggarwal, S.; Kumar, N. Transportation system. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021; Volume
121, pp. 431–454.

9. Campanile, L.; Iacono, M.; Marulli, F.; Mastroianni, M. Designing a GDPR compliant blockchain-based IoV distributed information
tracking system. Inf. Process. Manag. 2021, 58, 102511. [CrossRef]

10. Sundaresan, S.; Kumar, K.S.; Nishanth, R.; Robinson, Y.H.; Kumar, A.J. Artificial intelligence and machine learning approaches
for smart transportation in smart cities using blockchain architecture. In Blockchain for Smart Cities; Elsevier: Amsterdam, The
Netherlands, 2021; pp. 35–56.

11. Mecheva, T.; Kakanakov, N. Cybersecurity in Intelligent Transportation Systems. Computers 2020, 9, 83. [CrossRef]
12. Huq, N.; Vosseler, R.; Swimmer, M. Cyberattacks Against Intelligent Transportation Systems; Technical report; Trend Micro: Tokyo,

Japan, 2017.
13. Eremina, L.; Mamoiko, A.; Bingzhang, L. Use of blockchain technology in planning and management of transport systems. E3S

Web Conf. EDP Sci. 2020, 157, 04014. [CrossRef]
14. Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R. A Distributed framework for detecting DDoS attacks in smart contract-based

Blockchain-IoT Systems by leveraging Fog computing. Trans. Emerg. Telecommun. Technol. 2021, 32, e4112. [CrossRef]
15. Chen, M.; Tang, X.; Cheng, J.; Xiong, N.; Li, J.; Fan, D. A DDoS Attack Defense Method Based on Blockchain for IoTs Devices. In

Proceedings of the International Conference on Artificial Intelligence and Security, Hohhot, China, 17–20 July 2020; pp. 685–694.
16. Sabrina, F. Blockchain and Structural Relationship Based Access Control for IoT: A Smart City Use Case. In Proceedings of

the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019; pp. 137–140.
[CrossRef]

17. Sabrina, F.; Jang-Jaccard, J. Entitlement-Based Access Control for Smart Cities Using Blockchain. Sensors 2021, 21, 5264. [CrossRef]
18. Shieh, C.S.; Lin, W.W.; Nguyen, T.T.; Chen, C.H.; Horng, M.F.; Miu, D. Detection of Unknown DDoS Attacks with Deep Learning

and Gaussian Mixture Model. Appl. Sci. 2021, 11, 5213. [CrossRef]
19. ur Rehman, S.; Khaliq, M.; Imtiaz, S.I.; Rasool, A.; Shafiq, M.; Javed, A.R.; Jalil, Z.; Bashir, A.K. DIDDOS: An approach for

detection and identification of Distributed Denial of Service (DDoS) cyberattacks using Gated Recurrent Units (GRU). Future
Gener. Comput. Syst. 2021, 118, 453–466. [CrossRef]

20. Sanchez, O.R.; Repello, M.; Carrega, A.; Bolla, R. Evaluating ML-based DDoS Detection with Grid Search Hyperparameter
Optimization. In Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan,
28 June–2 July 2021; pp. 402–408.

21. Samom, P.S.; Taggu, A. Distributed Denial of Service (DDoS) Attacks Detection: A Machine Learning Approach. In Applied Soft
Computing and Communication Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 75–87.

22. Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Ddosnet: A deep-learning model for detecting network attacks. In Proceedings
of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork,
Ireland, 31 August–3 September 2020; pp. 391–396.

23. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A Deep Learning Approach for Network Intrusion Detection System. EAI Endorsed Trans.
Secur. Saf. 2016, 3, e2. [CrossRef]

24. Sadaf, K.; Sultana, J. Intrusion Detection Based on Autoencoder and Isolation Forest in Fog Computing. IEEE Access 2020,
8, 167059–167068. [CrossRef]

25. Wei, Y.; Jang-Jaccard, J.; Sabrina, F.; Singh, A.; Xu, W.; Camtepe, S. Ae-mlp: A hybrid deep learning approach for ddos detection
and classification. IEEE Access 2021, 9, 146810–146821. [CrossRef]

26. Ferrag, M.A.; Maglaras, L. DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids.
IEEE Trans. Eng. Manag. 2019, 67, 1285–1297. [CrossRef]

Sensors 2022, 22, 32 22 of 22

27. Zhou, L.; Ouyang, X.; Ying, H.; Han, L.; Cheng, Y.; Zhang, T. Cyber-attack classification in smart grid via deep neural network.
In Proceedings of the 2nd International Conference on Computer Science and Application Engineering, Hohhot, China, 22–24
October 2018, pp. 1–5.

28. Zhu, J.; Jang-Jaccard, J.; Liu, T.; Zhou, J. Joint Spectral Clustering based on Optimal Graph and Feature Selection. Neural Process.
Lett. 2021, 53, 257–273. [CrossRef]

29. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

30. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

31. Xu, W.; Jang-Jaccard, J.; Singh, A.; Wei, Y.; Sabrina, F. Improving Performance of Autoencoder-Based Network Anomaly Detection
on NSL-KDD Dataset. IEEE Access 2021, 9, 140136–140146. [CrossRef]

32. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

33. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 21 September 2021).

34. Keras. Available online: https://keras.io (accessed on 21 September 2021).
35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
36. Alavizadeh, H.; Jang-Jaccard, J.; Alavizadeh, H. Deep Q-Learning based Reinforcement Learning Approach for Network Intrusion

Detection. arXiv 2021, arXiv:2111.13978.
37. Zhu, J.; Jang-Jaccard, J.; Watters, P.A. Multi-Loss Siamese Neural Network With Batch Normalization Layer for Malware Detection.

IEEE Access 2020, 8, 171542–171550. [CrossRef]
38. Zhu, J.; Jang-Jaccard, J.; Singh, A.; Watters, P.A.; Camtepe, S. Task-aware meta learning-based siamese neural network for

classifying obfuscated malware. arXiv 2021, arXiv:2110.13409.
39. Zhu, J.; Jang-Jaccard, J.; Singh, A.; Welch, I.; AI-Sahaf, H.; Camtepe, S. A Few-Shot Meta-Learning based Siamese Neural Network

using Entropy Features for Ransomware Classification. arXiv 2021, arXiv:2112.00668.

	OA COVERSHEET TEMPLATE JUL 22.pdf
	Link to Published Version: (Add link to OA version e.g http://journal.sjdm.org/16/16222/jdm16222.pdf/)
	aCQUIRe CQU repository
	Please do not remove this page
	CQUNIVERSITY RESEARCH

