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Abstract: The study experimentally investigated a novel approach for producing hydrogen from
methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst.
Plasma-catalytic methane (CH4) cracking was undertaken in a dielectric barrier discharge
(DBD) catalytic plasma reactor using Ni/MgAl2O4. The Ni/MgAl2O4 was synthesised through
co-precipitation followed customised hydrothermal method. The physicochemical properties of
the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy—energy
dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl2O4

shows a porous structure spinel MgAl2O4 and thermal stability. In the catalytic-plasma methane
cracking, the Ni/MgAl2O4 shows 80% of the maximum conversion of CH4 with H2 selectivity 75%.
Furthermore, the stability of the catalyst was encouraging 16 h with CH4 conversion above 75%,
and the selectivity of H2 was above 70%. This is attributed to the synergistic effect of the catalyst and
plasma. The plasma-catalytic CH4 cracking is a promising technology for the simultaneous H2 and
carbon nanotubes (CNTs) production for energy storage applications.

Keywords: hydrogen production; methane cracking; DBD plasma reactor; MgAl2O4; CNTs

1. Introduction

The atmosphere is heavily polluted due to the urbanisation and commercialisation throughout
the globe. It causes serious greenhouse gases (GHGs) emissions, more specifically, the carbon dioxide
(CO2) and methane (CH4) along with other volatile compounds. Various techniques have been
applied to treat the GHGs to reduce harmful emissions for sustainable development. One of the
exciting techniques is to utilise the GHGs for producing zero-emission fuel, which is currently under
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investigation throughout from the last couple of decades. It is an essential step to reduce the GHG
concentration in the atmosphere as well as a sustainable approach for fuel synthesis [1–3]. Previous
studies revealed that CH4 is one of the prominent components of GHG with a total share of 16% in
the environment usually emitted from petroleum processing, waste management and agriculture
activities [4].

On the other hand, CH4 is also the principal constituent (76 wt%) of natural gas (NG) which
reserves are abundantly available in underground. The utilisation of CH4 has various routes as
fuel both in domestic and industrial processes. One of the most sustainable and attractive ways
to utilise CH4 is to produce syngas and hydrogen (H2) along with co-reactants such as O2, H2O,
and CO2 [5,6]. The popular routes for CH4 mitigation are thermocatalytic processes such as thermal
decomposition of methane as shown in the below reaction (R1), methane partial oxidation [7], methane
dry reforming [8–10] and methane steam reforming [11] in thermal reactors. The higher energy input
for elevated temperatures makes the thermal reactors economically challenging for this process [12,13].
Various techniques have been employed to overcome the shortfalls to make the process viable [14,15].

CH4 → C + 2 H2 ∆H◦25◦C = 75 kJ mol−1 (R1)

In recent days, various plasma systems are used for the processing of the methane carking as well
as other oxidative reactions using microwave plasma, spark plasma [8,10,16] and nonthermal plasmas
(NTPs) like dielectric barrier discharge (DBD) and silent discharges. NTP seeks attention for gas
processing, especially the DBD cold plasma reactor is one of the promising techniques [8,12]. The DBD
plasma reactor has some useful characteristics from low-temperature operation to accessible upscaling
opportunities as compared to thermal plasma [8,17]. More significant aspects of the DBD plasma for
gas processing has been reported in an extensive review by Ramses and Bogaerts [12]. In addition, the
DBD plasma has been successfully utilised for CH4 cracking with efficient conversion and significant
H2 yield [18–20]. The hydrogen is the next-generation future fuel due to the recent developments
in hydrogen-based fuel cell technologies [21]. The DBD plasma-based methane cracking has been
reported in several studies aiming for cleaner production of H2. However, the conversion efficiency
and cleaner H2 is always challenging in the DBD plasma reactor for a longer time on streams [6,22].

To improve the conversion of CH4, the various catalysts have been employed in the catalytic
DBD plasma. The most valuable catalysts for plasma catalytic DBD methane cracking are
Ni/γ-Al2O3, γ-Al2O3, Pd/SiO2, Pd/TiO2, Pd/Al2O3 [23], Pt/γ-Al2O3 [24], ZnO, ZnCr2O4, Cr2O3 [25].
The improvement in the conversion of CH4 as well as enhanced product selectivity been a witness
in various referenced studies [25]. Plasma-catalysis drives scope on improving the selectivity of
targeted products which is very important for CH4 cracking process. The magnesium aluminate
(MgAl2O4) as a catalyst has been investigated for various reforming process [9,26,27] as well as plasma
catalytic methane dry reforming in previous studies. It demonstrated a substantial improvement in
conversion of reactants and product distribution, especially on the H2 selectivity [28,29]. The nickel
(Ni) impregnated MgAl2O4 can improve the CH4 conversion and H2 selectivity suppressing the
recombination of methyl radicals [30]. The MgAl2O4 based catalyst has not been previously reported
as its distinct properties such as high resistance to temperature, and mild plasma conditions are
much suitable to use in plasma-based methane cracking processes. Therefore, it is seems meaning
to incorporate the Ni impregnated MgAl2O4 in the DBD plasma reactor for methane cracking for
hydrogen production and simultaneously it produces carbon nanotubes (CNTs) which are essential
material for energy storage applications [31]. Plasma produces a very clean and well-structured CNTs
for further application reported in various studies.

In this work, an experimental study has been conducted to the synthesis of a nanocatalyst
(Ni/MgAl2O4) for CH4 cracking in fixed bed DBD plasma reactor for H2 and CNTs production.
The catalyst was synthesised using the co-precipitation method followed by hydrothermal process.
The catalyst is further characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM),
energy dispersive X-ray spectrometry (EDX) and thermogravimetric analysis (TGA). Furthermore,
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the stability of the catalyst was examined for 16 h reaction time or time on stream (TOS). Finally,
spent catalyst is further characterised using SEM, TGA and differential thermogravimetric (DTG) to
investigate the formed CNTs over catalyst surface.

2. Materials and Methods

2.1. Synthesis of Ni/MgAl2O4

The support MgAl2O4 was prepared through co-precipitation process supported by the
hydrothermal method presented in Figure 1. Briefly, magnesium nitrate hexahydrate (Mg(NO3)2·6H2O)
(99.5 %, Sigma, St. Louis, MI, USA) and aluminium nitrate nonahydrate (Al(NO3)3·9H2O) (99.5 %,
Merck, NJ, USA) was dissolved in ACS reagent, ammonia solution (28.0%) with the 2:1 molar ratio of
Mg:Al. The nitrate solution was then combined to 0.01 molar citric acid (CA) solution using pipette at
60 ◦C on continuous stirring at a speed of 350 rpm. The ammonia is acting as a precipitating agent
while citric acid is assisting control crystal growth and morphology. The nitrate solution is transferred
to a polytetrafluoroethylene (PFTE) Teflon autoclave and kept in the furnace for 24 h at a temperature
of 160 ◦C. Further, the sample has been washed using ethanol numerous times and deionised (DI)
water for the removal of impurities. The prepared samples dried in the oven at a temperature of 120 ◦C
for 24 h to remove the moisture. The received derived sample was crushed and kept for calcination at
700 ◦C for 4 h.
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For Ni impregnation, wetness incipient impregnation technique has been employed. The precursor
(10 wt%). nickel nitrate hexahydrate (Ni(NO3)2·6H2O) (99%, Merck) was added to DI water to get 0.01
molar nitrate solution. The nitrate solution stirred for 10 min at 60 ◦C. The required amount of support
MgAl2O4 was then combined to the nickel nitrate solution and stirring for three (3) hours at 110 ◦C.
The sample was kept in a furnace (CSF 1100, Carbolite, Cheshire, UK) for overnight about 10 to 12 h
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for drying. The dried sample was crushed and preserved in the furnace for 5 h at 700 ◦C to achieve the
final catalyst for methane cracking application.

2.2. Materials Characterisation

The physicochemical properties of the synthesised catalyst are examined by several methods
i.e., XRD, SEM-EDX and TGA. XRD was accomplished employing Bruker’s X-ray Diffractometer
(D8-Advance, MA, USA), using Cu-kα radiation (40 kV, 200 mA). The crystallite size was analysed by
Scherrer’s equation [32]. After that, SEM was carried out using TESCAN VEGA 3 (Czech Republic),
conducted at 20 kV HV and integrated with the beam of X-MaxN by Zeiss optics [13]. TGA 5500
(TA Instruments, Newcastle, DC, USA) was used to analyses the weight loss (%) and differential
thermogravimetric analysis (DTG) of the fresh catalyst. The sample (10 mg) was loaded in a platinum
pan and placed in the furnace at a heating rate of 10 ◦C min−1 under the N2 flow of 40 mL min−1 [30,33].
Spent catalyst was characterised by SEM and TGA-DTG ((TA Instruments, Newcastle, DC, USA)) after
16 h TOS to investigate the morphological changes and CNT formation.

2.3. Plasma-Catalytic Methane Cracking System

The experimental setup for the catalytic-DBD reactor for CH4 cracking is as shown in Figure 2.
The reactant CH4 (99.9 %) flow rate was regulated by a mass flow meters/controller (MFC) (Alicat,
Tucson, AZ, USA). The plasma power supply model CTP-2000K (Nanjing, China) incorporated with
the high voltage regulator was used to produce plasma in the DBD reactor. The input voltage and
input current were also monitored by Tektronix TDS 2012B oscilloscope (Beaverton, OR, USA) coupled
with voltage probe Tek P6015A (Beaverton, OR, USA) [28]. The plasma reactor consists of an alumina
tube having an inner diameter (ID) of 10 mm and the outer diameter (OD) of 12 mm. The stainless steel
rod with an inner diameter of 4 mm and 20 cm in length was utilised as a HV electrode while a mesh
of aluminium is wrapped serving as a ground electrode. The prepared catalyst is loaded in the centre
of the alumina tube hold by quartz wool. The gases were analysed by GC-TCD/FID (Agilent 6890N,
Santa Clara, CA, USA). The GC column details are given in details here [34]. The HP PlotQ capillary
column with configuration of 40 m × 0.53 mm ID, 40 µm was used to detect CO2 while Molsieve
column with the configuration of 30 m × 0.530 mm ID, 25 µm used for detecting H2 and CH4, both the
columns were connected to TCD. Another column HayeSep Q-Supelco with the configuration of 6 ft
× 1/8 in. ID × 2.1 mm OD, 80/100 mesh was employed as TCD C2–C6 back flashing. To separate the
hydrocarbons ranging from C1–C6 were analysed by GS-Gaspro column having the configuration of
60 m × 0.32 mm ID) detected to FID. Agilent supplied all the columns. The process parameters such as
feed flow rates, power input and loading of prepared catalyst were maintained constant.
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The plasma-catalytic performance was monitored for methane conversion, H2 selectivity, specific
input energy (SIE) and DBD energy efficiency (EE) using the following equations (Equations (1)–(4)).
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(
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)
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]
(1)
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 (2)

SIE
( J
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)
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)
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(
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)
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(
mmol min−1

)
Pin

(
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)  (4)

where n = molar fraction of the gases. Feed flow rate was quantified in mL min−1 was transformed
into mmol min−1 applying the conditions; temperature T = 25 ◦C, p = 1 atm along with a conversion
factor, 1 mmol = 24.04 mL [34]. The calculation of the Pin calculation is reported elsewhere [34].
The experiments were replicated to minimise experimental errors.

3. Results and Discussion

3.1. Physicochemical Properties of the Catalyst

Figure 3 illustrates the XRD pattern for synthesising MgAl2O4 and 10 wt% Ni/MgAl2O4. The
MgAl2O4 spinel is identified for the JCPDS# 72-6947, showing a single spinel cubic phase and prominent
peaks are found at 19◦ (111), 37◦ (220), 38.7◦ (311), 44.9◦ (400), 55.9◦, 59.6◦ and 65.5◦ (440), and are in
good agreement with the literature [35]. It also shows the space group (227:Fd-3m), the crystallite
sized (average) is recorded at 10.3 nm. In addition, hexagonal structure NiO is detected for the JCPDS
# 44-1159 having major peaks at 37.5◦, 43.9◦ and 63◦ with miller indices of (101), (012) and (110)
correspondingly [36]. The space group for hexagonal NiO is R-3m(166) and active phase is NiO2+ [37].
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The crystallite size is 9.7 nm for NiO, and the finer crystallite size depicts the formation of a uniform
structure catalyst and dispersion over support MgAl2O4.
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The surface morphology of MgAl2O4 and Ni/MgAl2O4 is examined using the SEM with
magnifications of 5 µm and 500 nm and presented in Figure 4. The MgAl2O4 shows the fine
particles with spherical structure, and some particles exhibited the worm-like shapes Figure 4a,b [38].
The two different morphologies of the MgAl2O4 offers a comprehensive and uniform distribution of
Ni over the surface depicted in Figure 4c,d. The porous structure of MgAl2O4 offers to diffuse the
Ni inside the pores and create actives sites. It may also assist the reactant gas and plasma species
interaction later in the plasma-catalytic process.

The elemental analysis of MgAl2O4 and 10 wt% Ni/MgAl2O4 are demonstrated in Figure 5a,b.
The significant elements O, Mg and Al, were found, and the composition is exhibited inset table and
spectrum of Figure 5a. While 10 wt% Ni/MgAl2O4 shows Ni along with O, Al and Mg, which is evident
in the presence of Ni in the reported catalyst. The extra peaks without identification are due to the
carbon tape and gold coating before the SEM/EDX analysis.

The TGA for 10 wt% Ni/MgAl2O4 is undertaken to analyse the thermal stability of the prepared
samples, as shown in Figure 6. The 6% weight loss under 300 ◦C is observed, and it is ascribed to
the moisture and volatile matters depicted in Figure 6, column A. In column B, which temperature is
more significant than 300 ◦C demonstrated no weight loss further to 900 ◦C. This analysis revealed
that the synthesised catalyst is stable for the plasma-catalytic operation for methane cracking in mild
conditions [39]. The unstable catalyst may lead to phase modification and sintering later in the methane
cracking reactions [40].
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3.2. Plasma-Catalytic Methane Cracking

3.2.1. Plasma and Plasma-Catalytic Test and Reaction Mechanism

The CH4 cracking is undertaken for performance analysis of plasma and plasma-catalysis
presented in Figure 7. The CH4 conversion for plasma, MgAl2O4 and Ni/Mgal2O4 is recorded as 65%,
73% and 80% respectively at the same experimental conditions (Figure 7a). The plasma only CH4

conversion is lower as compared to the plasma-catalytic reaction. Plasma only reaction occurs due to
the electron-induced dissociation of CH4, which is independent of reaction temperature [41]. The CH4

molecules collide with an energetic electron in the plasma discharge zone at discharge volume (VD) of
13.5 cm3 and start to dissociate while overcoming the required dissociation energy of 4.5 eV [22,42].
In plasma only electron-CH4 interaction is induced, which led to the dissociation reactions and product
formation reactions are as follows:

Dissociation reactions ((R2)–(R4))

e−+CH4 → CH∗3 + H∗ + e− (R2)

e− + CH∗3 → CH∗2 + H∗ + e− (R3)

e− + CH∗2 → CH∗ + H∗ + e− (R4)

Gaseous product formation reactions ((R5)–(R8))

H∗ + H∗ → H2 (R5)

CH∗3 + CH∗3 → C2H6 (R6)

CH∗2 + CH∗2 → C2H4 (R7)

CH∗ + CH∗ → C2H2 (R8)
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Figure 7. Plasma/plasma-catalyst activity: (a) XCH4 conversion (b) SH2 selectivity (c) EE; GHSV = 364 h−1,
specific input energy (SIE) = 300 J mL−1, loading of catalyst = 0.5 g, T = 350 ◦C, discharge gap
(Dgap) = 03 mm, discharge length (DL) = 20 cm, discharge volume (VD) without catalyst: 13.5 cm3, VD

with catalyst loading = 9.75 cm3.

While loading the catalyst, CH4 conversion is improving for MgAl2O4 (73%) and Ni/MgAl2O4

(80%). The catalyst loading improves the CH4 conversion in both cases. In Ni loaded MgAl2O4

shows the highest conversion of CH4. The plasma produces hot spots on the catalyst, assist the
Ni reduction, also changes catalyst functions, and reduce activation barrier due to gas heating
effect [43]. While catalyst enriches the electric field, boost micro discharges and alters the discharge
behaviour of DBD plasma. The catalyst-plasma interaction gives surplus effects called synergistic
effect, which improves the conversion of CH4 and EE of DBD catalytic reactor. The MgAl2O4 as a
support material is mechanically stable and has porous structure confirmed by SEM, assist in activating
CH4, and improve the DBD plasma discharge behaviour. Ni further assists the CH4 activation due
to active sites, activated by plasma give more surplus effect and enhanced the conversion by 15%.
The plasma only and catalyst loaded DBD system shows the difference in the conversion of CH4 and
activity at certain level justifying by the synergistic effect. Unlike thermal catalysis, plasma-catalysis is
not purely temperature dependent reaction. The energetic electron effect on the activation of reactant
contributes more than catalytic effect [44]. However, the product selectivity in many cases is improved
more as compare to conventional catalysis [45].

The H2 and CxHx formation after the recombination of H* and CHX* in governing steps [22].
The H2 selectivity is noted 62% (Figure 7b), and some traces of C2H6 (1.5%) and C2H4 (1%) are also
analysed in GC-FID for plasma only reaction. The H2 selectivity of MgAl2O4 and Ni/MgAl2O4 is 68%
and 75% respectively (Figure 7b). The enhanced H2 selectivity is explained in the plasma-catalyst
interaction mechanism. The undetected CxHx might be the balance for the H2 and carbon balance
in the product analysis due to the limitation of the analysis technique. The EE is lowest for plasma
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only (0.105 mmol kJ−1) while MgAl2O4 (0.115 mmol kJ−1) and Ni/MgAl2O4 (0.13 mmol kJ−1) shows
improvement in the EE due to the higher conversion of CH4 at constant input power (Figure 7c).
The combined effect of plasma and catalyst enhances the EE of the reaction, and hence it is suitable
for CH4 cracking in plasma-catalytic systems to improve EE over MgAl2O4 stable catalyst in
mild conditions.

The proposed reaction mechanism for plasma-catalytic CH4 cracking is demonstrated in Figure 8.
It can be observed from the H2 selectivity about the reaction mechanism. The activation of CH4 to
methyl radical CH3

* and further breakdown in the presence of plasma while attachment to the metal
(M, Ni). Similarly, further breakdown leads to the complete dissociation of the C-H bond to form C*

and H*. While the recombination of H* formed H2 and released metal (M) [46]. At the same time,
the traces of C2H6 has produced from the recombination of CH3

* radicals. There are other possible
routes for the formation of HCs, but the analysis of the product is more suitable for proposed pathways.
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3.2.2. Time on-Stream Analysis of Ni/MgAl2O4

The stability of the plasma-catalytic CH4 cracking on Ni/MgAl2O4 catalyst is presented in Figure 9.
The CH4 conversion and H2 selectivity being partially declining along with the TOS. The CH4

conversion above 75% while sustaining the EE above 0.125 mmol kJ−1. Along with the TOS the total
reduction in the conversion of CH4, and H2 selectivity is only −5% and −4%, respectively. The negative
sign indicates the reduction in the conversion and selectivity. Similar trends can be observed for EE in
the 16 h TOS. The stability is mostly attributed to the activation of NiO particles due to plasma species
and instant heating. The impurities in the catalyst are also removed by plasma in catalyst expose to
plasma [47]. The catalyst activation assists in the CH4 activation as proposed in the possible reaction
mechanism routes. Further, the breakdown of the methyl radical is also assisted by the plasma-catalyst
interface while inhibiting the recombination of methyl radical, which is also observed the product
analysis of in basic screening [43]. The plasma-catalyst interface improves many aspects since MgAl2O4

is mechanically stable support material and NiO also assist the Ni dispersion. The selectivity of H2 is
also ascribed to the highly basic nature of the MgAl2O4, which improves the CHx

* adsorption and assist
in the activation and further breakdown [48–50]. The CH4 cracking on plasma-catalytic to CHx heavily
depends on the Ni/MgAl2O4 interaction providing the higher coordinate sites in the plasma-catalytic
interface, which is expected to achieve in the case for longer TOS. The plasma-catalytic interface gave
reasonable stability and improved EE for CH4 cracking in catalytic-DBD reactor condition.
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Figure 9. Analysis of time on stream (TOS) (16 h) on XCH4 (%), SH2 (%) and EE mmol kJ−1. Experimental
conditions: GHSV = 364 h−1, specific input energy (SIE) =300 J mL−1, loading of catalyst = 0.5 g,
T = 350 ◦C, discharge gap (Dgap) = 03 mm, discharge length (DL) = 20 cm, discharge volume (VD)
without catalyst: 13.5 cm3, VD with catalyst loading = 9.75 cm3.

3.3. Characterisation of Spent Catalyst and Reaction Mechanism

The morphology and TGA-DTG analysis of the spent Ni/MgAl2O4 after 16 h TOS is given in
Figure 10. The CNTs were observed in SEM analysis (Figure 10a) of spent catalyst along carbon
fibres [51]. Mostly the CNTs formed are useful for further utilisation in energy storage application [31].
The TGA analysis (Figure 10b) shows the weight less than 200 ◦C is ascribed to the volatile matters,
while weight lost from 200–400 ◦C is ascribed to the amorphous carbon. The weight loss beyond 500 is
ascribed to the multiwall CNTs [52]. The CNTs can also be seen in SEM micrographs. The nature of
the carbon formed is analysed using DTG profile (Figure 10b). The DTG curve at 355 ◦C, the peak is
ascribed to the amorphous and fibrous carbon formed and ioxidized at less than 400 ◦C [51]. The DTG
curve at 690 ◦C is ascribed to multiwall CNTs with low defects and low curvature with pure sp2

structure [53,54]. The formed carbon is ascribed to a stable material for energy storage applications
and discharge while increasing the temperature without surface modification [55]. This technology for
methane cracking for simultaneous hydrogen and CNT formation is a beneficial process [56].
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Figure 10. Spent Ni/MgAl2O4 after 16 h TOS analysis (a) SEM micrograph (b) TGA-DTG analysis.

4. Conclusions

The CH4 cracking in catalytic DBD plasma fixed bed reactor has been studied and found that
the plasma-catalytic process enhances the CH4 conversion (80%), improved the EE of the catalytic
DBD reactor. The possible interaction between plasma-catalyst enhances the discharge behaviour,
active species and improve the contact time between electrons and gas molecules to dissociate and
formed the products. The selectivity for H2 is improved to 75% in plasma-catalytic-DBD systems as
compared to plasma only CH4 cracking (62%). While EE also improved in such manner 0.13 mmol
kJ−1. The 16 h TOS stability shows a slight declined in the CH4 conversion due to the fibrous carbon
and CNT formation confirmed from TGA-DTG analysis. The spent catalyst shows the formation of
CNTs which are beneficial for further utilisation for energy storage systems.

The CH4 utilisation in non-thermal DBD plasma for H2 and CNTs formation is a highly desirable
route for the simultaneous H2 production and storage for fuel cell applications. Further study is
recommended on the cleaning of H2 in cold plasma catalytic systems via membrane or monolith
reactor systems.
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