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Abstract 

The livestock industry is facing one of its biggest challenges to date: to increase productivity and 

meet the world’s growing demand for protein, yet at the same time improve sustainability 

outcomes, particularly those related to social license and animal welfare. This is not a simple 

challenge to overcome, with the demands of increased production and animal welfare often seen 

as competing. However, there is one suite of technologies which may hold the answer to this 

problem: on-animal sensors. Many of these systems are in their commercial infancy and research 

is required to provide guidance on how they may be applied to solve critical industry problems 

linked to production and welfare. A key component of this research is exploring how the raw 

outputs from these sensors can be converted from large complex data to meaningful information 

so that a producer is alerted to a problem and can implement an intervention strategy. 

This thesis examines the potential for on-animal sensor technology for autonomous detection of 

a key event in grazing sheep production systems: parturition. Parturition (or lambing) can be 

considered one of the most important periods in the breeding animal’s life. It is a period of 

vulnerability for the mother and newborn, requiring specific physical, physiological and 

behavioural changes to ensure survival. Parturition is also a period of significant welfare risk both 

to the ewe (in the form of disease, particularly dystocia) and the lamb (from mismothering and a 

range of other issues). 

Chapter 1 is a general introduction and briefly introduces the major concepts that will be 

addressed. Chapter 2 is a published manuscript and provides a general review of the use of sensor 

technology in sheep research. It provides an understanding of which sensors have been applied 

to sheep and the likely best candidates for use in my research. Chapter 3 extends this knowledge 

and explores how sensor technologies might be employed in welfare assessment. This chapter 

has also been published. 

Through this scoping work (Chapters 2 and 3), Global Navigation Satellite System (GNSS) tracking 

and accelerometers were identified as two key sensor systems. Both are readily available and 

likely to provide the required information for detecting parturition-related behaviours. Since the 

experimental chapters (Chapters 5 - 9) were developed with the intention of publication, it was 

not possible to provide in-depth information on the complete data analysis process. 

Consequently, an additional chapter (Chapter 4) was included prior to the experimental chapters 

to provide more background and context for the thesis reader. This chapter outlines the data 

analysis methods used throughout the thesis. 
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Chapters 5, 6 and 7 explore how data from GNSS and accelerometers can be interpreted and 

related to the behavioural changes expressed by sheep around parturition. Chapter 5 is a 

published manuscript and reports on the value of GNSS tracking for the detection of lambing-

related behaviours. This research demonstrated the value of GNSS data to monitor daily changes 

in movement, social activity and landscape utilisation associated with parturition. However, at 

the time of publication, limitations in the ability of GNSS to detect hourly changes in behaviour 

were evident, and so the data from accelerometer sensors were also explored. Contrasting with 

the results of this chapter, later analysis uncovered further potential of GNSS to detect hourly 

changes in behaviour using novel metrics. 

To understand the potential for accelerometers to detect parturition activity, basic behavioural 

algorithms were first developed using machine learning (ML) classification techniques (Chapter 

6). These results have been published and indicate the ability of ML to detect common behaviours 

from accelerometer data with an accuracy of 76.9 – 98.1 %. These algorithms were then applied 

in Chapter 7 to explore if the accelerometer data could be linked to parturition-related activities. 

Similar to Chapter 5, measurable changes in behaviour were identified and associated with 

parturition. In particular, ewes significantly increased their walking behaviour and the number of 

posture changes in the hour of parturition. This chapter has also been published. 

The ultimate goal of this thesis was to determine if a near-real-time sensor-based system might 

be developed to detect parturition in ewes, specifically via remote monitoring of typical 

parturition behaviours. Chapter 8 integrates the knowledge gained in Chapters 5 and 7, building 

a simulated near-real-time parturition detection model that integrates the two sensor types. 

Overall, the final model successfully identified between 81.8% and 90.9 % of lambing events 

within ± 3 h of known birth, with accuracy depending on the use of different alert criteria. 

Chapter 9 has been prepared as a short communication. This chapter applies the model 

developed in Chapter 8 and investigates the value of the model for the assessment of welfare at 

lambing using data gathered from an adverse lambing event (prolapsed animal). The results 

suggest that ewes with repeated lambing alerts that are not followed by parturition may be at-

risk of an adverse event and should be closely inspected by the producer. 

The final chapter (Chapter 10) is the synthesis chapter, reporting research conclusions, limitations 

and recommendations for future research. 
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Chapter 1. Introduction 

1.1 Background 

It is no secret that sheep and wool production plays a significant role in both the economies 

and cultures of Australia and New Zealand. The adage of “riding on the sheep’s back” refers 

to Australia’s early dependence on the wool industry and the resulting period of economic 

prosperity throughout the 19th and 20th centuries (Parsonson, 2000). In New Zealand, it is 

often quoted that there are more sheep than people, and in fact, with populations of 27.5 

and 4.7 million for sheep and humans, respectively (FAO, 2017), it is actually closer to six 

sheep for every person. Sheep production also plays a significant economic role in both 

countries. In Australia, the sheep sector contributes approximately 7% (AUD$ 4.1 billion) to 

the gross value of agricultural production and 5% ($2.6 billion) to agricultural export income 

(Australian Bureau of Statistics, 2019). In New Zealand, this story is much the same. Beef and 

sheep production contribute approximately 3% (NZ$ 7.0 billion) to the Gross Domestic 

Product (GDP) (Beef and Lamb and Meat Industry Association, 2017), and wool and lamb 

provide NZ$ 3.4 billion in export value (Beef and Lamb, 2018). What both countries contribute 

on a global scale is also significant. When combined, Australia and New Zealand provide 87% 

of sheep meat exports (FAO, 2018) and constitute the largest (Australia) and third largest 

(New Zealand) suppliers of wool (Beef and Lamb, 2018, Department of Agriculture and Water 

Resources, 2018b). It is therefore easy to see why the continued prosperity of the sheep 

industry is so important, not just locally, but globally. However, this may not be as simple as 

it seems. As we move through the 21st century, livestock producers are being challenged with 

conflicting pressures: to increase production efficiency while also improving environmental 

sustainability. Furthermore, producers have to deal with another key challenge: social 

concern for animal welfare. A contributing solution to this may be the application of sensor 

technology. 

This chapter provides a brief introduction to sensor technology, animal welfare and the 

integration of these two areas of research for improved welfare monitoring in pasture-based 

sheep. More thorough reviews of the above topics are presented later in the thesis in both 

the systematic review chapters (Chapters 2 and 3) and in the introduction and discussion of 

experimental chapters (Chapters 5 to 9). 

1



1.2 A brief introduction to sensor technology 

Sensors are devices that detect or measure data from an observable element (e.g. movement, 

temperature), recording the input or otherwise responding in a certain way (AgriFutures 

Australia, 2016). Driven largely by the rise of small, cost-effective electronics (Watanabe et 

al., 2008) and the Internet of Things (IoT) (Smith et al., 2015), sensors are now being used for 

a multitude of purposes (Ahmad et al., 2017). One purpose is for the remote monitoring of 

animals. Remote monitoring of animals is far from a novel concept. First adopted in the 1950s, 

tracking technologies such as very-high frequency (VHF) transmitters were used for 

observational wildlife research (Turner et al., 2000). Later, location technologies such as the 

Global Navigation Satellite System (GNSS) were introduced (Swain et al., 2011), followed 

closely by other sensor types including accelerometers, magnetometers, audio, proximity, 

heart rate monitors and cameras (Fogarty et al., 2018, Wilmers et al., 2015). In livestock 

production, research involving the application of remote monitoring technology has been 

conducted in a number of species, including sheep (Broster et al., 2010, Broster et al., 2017, 

Fogarty et al., 2020a, Fogarty et al., 2018, Dobos et al., 2014, Dobos et al., 2015, Fogarty et 

al., 2015, Fogarty et al., 2020b), cows (Finger et al., 2014, Guo et al., 2009, Handcock et al., 

2009, Huzzey et al., 2005, Manning et al., 2017) and pigs (Cornou and Lundbye-Christensen, 

2012, Pastell et al., 2016, Thompson et al., 2016).  

In addition to research, sensor technologies are increasingly being developed for application 

in the commercial livestock sector (Trotter et al., 2018). In intensive livestock production 

systems, technologies have also been embraced by producers, for example: automated egg 

counting and bird weighing in poultry systems (Cronin et al., 2008); and automated feed 

systems, environment control and growth data in piggeries (Banhazi et al., 2012). The dairy 

industry uses wearable health monitors (Neethirajan, 2017) and collection of detailed 

production and milk quality data is a common practice (Banhazi et al., 2012). In contrast, 

extensive animal industries are yet to fully embrace these technologies, although investment 

from companies [e.g. Herddogg (HerdDogg, 2019), Allflex (Allflex, 2018)] and levy agencies 

[e.g. Australian Wool Innovation (Australian Wool Innovation, 2015)] is growing (Trotter, 

2013, Trotter et al., 2018). 
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1.2.1 Types of sensors  

Sensors for the livestock industries can be categorised into three main groups: (i) on-animal 

sensors; (ii) off-animal sensors; and (iii) in-animal sensors. On-animal sensors are those that 

are attached to the animal, e.g. ear tag or collar attachment. These devices collect 

information on the animal itself, including movement, function or measurable behaviour 

patterns (Fogarty et al., 2018). Off-animal sensors, including walk-over-weigh (WoW), 

automated drafting and low-cost cameras (Trotter, 2013, Wathes et al., 2008), do not 

physically attach to the animal, but still record various features of the animal being examined, 

e.g. body weight (via WoW). In-animal sensors such as rumen bolus or implantable devices 

collect data on the internal state of an animal (Rose-Dye et al., 2011). An additional group of 

sensors not previously identified are environmental sensors. These sensors are more 

applicable to wider agricultural enterprises rather than livestock in particular and include 

technologies such as soil moisture probes, pasture sensors and weather stations (Trotter, 

2013). Environmental sensors can be attached to a number of platforms including motor 

vehicles, unmanned aerial vehicles (i.e. drones), satellites, water pumps and irrigation 

systems (AgriFutures Australia, 2016). As a whole, sensors provide increased surveillance and 

monitoring capacity and support for decision-making processes.  

1.2.2 Communicating, managing and analysing the data from sensors 

It is essential that the information captured by sensors be adequately interpreted and 

conveyed to the livestock producer. Furthermore, due to the volume of data that can be 

collected, data transfer and communication is a critical issue (Smith et al., 2015). This is 

particularly important for remote sensing devices, where the sensor itself may be physically 

distant from a central server and/or from the producer themselves (AgriFutures Australia, 

2016). Current options for data transfer include wireless Bluetooth and ZigBee (Wathes et al., 

2008), mobile communications (e.g. 3G, 4G, 5G) and long-range area networks (WLAN) 

(AgriFutures Australia, 2016). Since data transmission requires a large amount of power, 

compression of data or embedded processing is generally recognised as being important 

(Handcock et al., 2009).  
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1.3 A brief introduction to animal welfare 

Animal welfare refers to the sentient individual’s perception of its own physical and emotional 

state, including its ability to cope and quality of life (Webster, 2016). Public concern and the 

request for high welfare standards has increased in recent years (Kaurivi et al., 2019), with 

the widespread belief that increased farming intensity leads to poor welfare outcomes 

(Dawkins, 2017). In one survey conducted with the Australian public, 71 % of respondents 

considered farm animal welfare to be a moderate to serious issue (Department of Agriculture 

and Water Resources, 2018a). In New Zealand, when asked “have you ever had concerns 

about the way farm animals are typically treated in New Zealand?”, 60 % of veterinarian and 

50 % livestock officers indicated that they have had concerns. Forty-one percent of the 

general public and 34 % of farmers also indicated they had concerns (Loveridge, 2013). In a 

survey by the European Commission, the majority of respondents noted that animal welfare 

was of great importance (average score of 7.8 out of 10) and 62 % indicated that they would 

be willing to change their shopping habits to buy more welfare-friendly products (European 

Commission, 2007). In the United States, 36 % of respondents considered animal welfare 

‘somewhat important’, with a further 22 % indicating ‘very important’ and 11 % as ‘extremely 

important’ (Grimshaw et al., 2014). These surveys highlight global animal welfare concern, 

emphasising the substantial challenge being faced by the sheep industry and wider animal 

agriculture.  

1.3.1 Welfare in sheep production systems 

In Australia and New Zealand, the majority of sheep production based on extensive grazing 

landscapes (Beef and Lamb, 2017, Australian Bureau of Statistics, 2012). This means that large 

flock numbers are run over sizeable pasture or rangeland environments, typically with low 

producer input (Petherick, 2006). In the previously referenced survey of the Australian public 

(Department of Agriculture and Water Resources, 2018a), 25 % of respondents identified 

overcrowding and space restriction as a significant welfare issue. This was closely followed by 

concern for intensive farming (22 %) and indoor confinement (21 %). Of the 24 concerns 

identified, only three are exclusive to extensive (beef or sheep) production (dehorning, 

mulesing and branding). Thus, it is clear that extensive systems are of less concern to the 

public, which is very likely due to their perception as being more “natural” (Dwyer, 2009, 
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Goddard et al., 2006). Although extensive production provides animals with considerably 

more behavioural freedom (Lynch et al., 1992), this does not mean that they are exempt from 

any welfare challenges (Dwyer, 2009, Bailey, 2016, Waterhouse, 2019). In fact, one of the 

major problems in extensive sheep systems is the stockperson’s ability to regularly inspect 

the animals (Petherick and Edge, 2010), which is ironically due to this provision of ‘freedom’ 

and space. The inability to inspect animals can impact early detection of problems and is a 

significant welfare issue that should not be overlooked (Dwyer, 2009, Petherick and Edge, 

2010). As consumers’ concerns for animal welfare continue to rise, it seems likely that the 

focus will eventually turn to extensive production systems. It is this prospect, in addition to 

the general ethics associated with producing animals for human use, that is encouraging the 

industry to find methods of improving welfare. 

Further to bracing for requested increases in welfare standards (Kaurivi et al., 2019), welfare 

improvement should also be considered from a productivity and profitability standpoint. 

There are a number of financial benefits associated with good welfare, including reduced 

morbidity and mortality, resistance to disease and improved product quality (Dawkins, 2017). 

For example, maternal undernutrition and inadequate shelter are known contributors to 

lamb mortality in Australia (Hinch and Brien, 2014). This clearly also contributes to lowered 

reproductive efficiency and results in economic losses (Dawkins, 2017). Conversely, improved 

overall health can improve farm profits through reduction of medication and treatment 

requirements, and increase in animal growth and condition (Green et al., 2012). While it is 

incorrect to assume that all welfare improvements will result in commercial gain (Dawkins, 

2017), these benefits should not be overlooked and may actually help to encourage producer 

uptake of welfare-positive changes. 

1.3.2 How do we monitor animal welfare? 

Animal welfare, and our ability to adequately measure and monitor it, has remained a topic 

for research and debate for decades (Green and Mellor, 2011). Over the years, various 

principles of animal welfare have been developed, including the Five Freedoms (FF) (Webster, 

2016), the Five Domains Model (FD) (Mellor and Reid, 1994) and concepts of Quality of Life 

(QoL) (Green and Mellor, 2011, FAWC, 2009). These ideas encompass three major 

orientations of animal welfare: biological functioning, affective states and natural living 
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(Hemsworth et al., 2015) and have provided foundational knowledge for the development of 

welfare guidelines, for instance the World Organisation for Animal Health’s ‘General 

Principles for the Welfare of Animals in Livestock Production Systems’ (Fraser et al., 2013) 

and the European Union’s ‘Welfare Quality® Project’ (Welfare Quality Network, 2018). While 

the various guidelines may differ in application, the overall goal is arguably similar: to 

minimise negative welfare and maximise positive welfare through adequate monitoring and 

assessment programs. 

1.4 Sensor technology for welfare assessment 

Current welfare assessments generally provide a ‘snapshot’ of the animal’s state at a 

particular point in time (Rushen and de Passille, 2012). However, as welfare varies over time 

this approach is limited and may result in inadequate consideration of chronic stress 

(Webster, 2016). In contrast, ‘lifelong’ animal welfare monitoring refers to the continued 

assessment of welfare throughout the duration of the animal’s life, not just during times of 

potential elevated stress. As availability of sensor technology for extensive animal industries 

continues to expand, the use of devices for animal welfare monitoring are becoming more 

important. Automatically assessing welfare could improve both the quality of assessment, by 

reducing inter-observer differences, and also the quantity of data used to make a decision 

through constant (or near constant) data recording (Rushen and de Passille, 2012). 

1.5 Thesis context 

The ability to quantify animal welfare for the life of the animal has value for livestock 

managers. This thesis was undertaken as a component of a larger research program led by 

The New Zealand Merino Company. The broad concept of this program was to evaluate the 

potential for sensors to provide an objective means of assessing lifelong welfare in sheep. 

While the initial intent of this thesis was to research a similarly broad area of animal welfare, 

it was soon discovered that the notion of lifelong monitoring was far too extensive for a single 

PhD to undertake. Thus, the specific scope of this PhD was refined to focus on a single critical 

event that impacts on the welfare of sheep from birth, specifically the parturition event itself.  
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1.5.1 Parturition and welfare 

Parturition (or lambing in sheep) can be considered one of the most important periods of time 

in the breeding animal’s life, particularly in a welfare context. It is a time when both the 

mother and newborn are vulnerable; the birth process itself is physically demanding, the 

behavioural and physiological changes associated with lambing and lactation are numerous, 

and the ewe and lamb must form an immediate and lasting bond to ensure survival (Jensen, 

2012, Bickell et al., 2010). In Australia, death of lambs is a significant issue with reported losses 

ranging between 6% and 63% (Hinch and Brien, 2014). In New Zealand, losses are also 

considerable, ranging from 13% up to 30% (Dalton et al., 1980, Kerslake et al., 2005, Nicoll et 

al., 1999). Cause of death is often multifactorial, with starvation, mismothering and cold 

exposure considered to have the greatest impact on survival (Hinch and Brien, 2014). 

Dystocia, or difficult labour, is another major cause of neonatal mortality, often resulting in 

physical damage due to malpresentation or damage to the central nervous system (Hinch and 

Brien, 2014, Schmoelzl et al., 2015). Given that the success of parturition impacts not only the 

lamb’s welfare, but the ewe’s as well, this aspect of the sheep lifecycle was chosen as the 

focus for the PhD program. Welfare at lambing can also be considered to be the very first part 

of lifelong welfare assessment for the offspring. 

1.5.2 Research questions 

The research reported in this thesis focuses on the application of sensor technologies for 

sheep behaviour monitoring in extensive grazing environments. More specifically, on-animal 

sensors have been applied for sensor-based parturition detection in pasture-based ewes, with 

an extension of this knowledge to help develop a novel lambing alert system. Due to the 

importance of devising strong analytical processes, much of the thesis focuses on the data 

management and analytics of sensor data. This has then been contextualised across welfare 

assessment, with a short application of the research findings for welfare assessment at the 

end of the thesis.  
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The research questions to be answered in this thesis are: 

(i) How are on-animal sensors used in sheep research and for what purpose? 

(ii) How can on-animal sensors be applied to facilitate the assessment of animal 

welfare? 

(iii) Can we detect changes in sheep behaviour at parturition using on-animal sensors? 

(iv) Can we develop a simulated online model for parturition detection using data 

collected from both on-animal and weather sensors? 

(v) Can the developed model be applied to detect an adverse welfare event during 

parturition? 

1.6 Thesis structure 

The structure of the thesis is outlined Figure 1.1. For the purpose of readability, each chapter 

has been treated as a distinct unit and written with the intention for publication. Though 

separate, each chapter is linked to form part of the overall narrative.  

Chapters 2, 3, 5, 6 and 7 are published manuscripts. Chapters 8 and 9 have been prepared for 

publication. All published manuscripts have been reproduced in their published format. The 

remaining experimental chapters have been prepared in the format and referencing style 

requested by the journal where their submission will occur. The use of published manuscripts 

as thesis chapters is in accordance with CQUniversity’s Policy ‘Research Higher Degree Theses 

Policy and Procedure’. 
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Figure 1.1 Schematic outline of the thesis structure 
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Chapter 2. Autonomous on-animal sensors in sheep research: 

A systematic review 
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Overview 

To understand how autonomous sensors may be used for behavioural monitoring and 

ultimately welfare assessment, it is first important to understand how they have been 

previously applied. This chapter explores the use of autonomous sensors in sheep research, 

including the type of sensors used, the application method and focus of the research. This 

review was conducted for two key reasons: firstly, to explore what research had been 

implemented to date using on-animal sensors and sheep; and secondly, to clarify which 

particular sensors have the most potential for use in this research program. This review was 

conducted as a systematic review to ensure maximum breadth of knowledge.  

This manuscript has been published in Computers and Electronics in Agriculture and appears 

in this thesis in its published form.  
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A B S T R A C T

This systematic review explores the use of on-animal sensor technology in sheep research. A total of 71 peer-
reviewed articles reporting on 82 independent experiments were reviewed, ranging in publication date from
1983 to 2017 and distributed across all populated continents. The findings demonstrate increasing numbers of
published studies that validate the application of sensor technology to categorise and quantify sheep behaviour.
The studies also used sheep sensors for environmental management, validation of data analysis methods and for
health and welfare research. Whilst historically many applications of sensors in sheep research have been
conducted over a short period with small numbers of experimental animals, this trend appears to be changing as
technology develops and access improves. The literature suggests that many applications of sensors have already
or are currently moving through a proof-of-concept stage, allowing future applications to focus on commer-
cialisation of technology and potential integration with other technologies already in use (e.g. weather data).

1. Introduction

Location technology was first used to study animal movement in the
1960s, when very-high frequency (VHF) transmitters revolutionised our
ability to monitor complex animal behaviour (Kochanny et al., 2009).
Two decades later, the satellite-based system ARGOS was employed for
wildlife observation (Swain et al., 2011), followed by Global Posi-
tioning System (GPS), which was first applied to monitor moose (Alces
alces) in 1994 (Rempel et al., 1995). Whilst these location technologies
were being established, concurrent development of body movement
monitoring technology was also occurring, including pressure sensors
to monitor standing and lying in cattle (Canaway et al., 1955), ped-
ometers to measure walking behaviour in sheep (Powell, 1968) and
mercury tilt switches to indicate cattle and sheep body posture
(Champion et al., 1997; Rutter et al., 1997a). More recently, accel-
erometers have been used to measure linear acceleration along one or
multiple reference axes (Yang and Hsu, 2010). Inertial Monitoring Units
(IMUs) extend this and include gyroscopes and/or magnetometers for
additional measurements of angular motion and gravitational force
(Andriamandroso et al., 2017). Other sensor developments include:
contact loggers for the study of pair interactions in sheep (Broster et al.,
2010; Broster et al., 2012; Freire et al., 2012); and heart rate monitors
(Goddard et al., 2000; Simitzis et al., 2009; Destrez et al., 2012; Simitzis
et al., 2012; Coulon et al., 2015) and oxygen sensors (Barkai et al.,
2002) to help understand physiological change.

According to the FAO, overall food production needs to increase by

70% to meet growth projections of the world population by 2050 (FAO,
2009). This will require technologies that improve current efficiency
standards. Whilst the use of sensors in livestock research has shown
promise, their application in existing farming systems is still in its in-
fancy (King, 2017). The exception to this is the dairy industry, where
commercial sensors such as the GEA CowView System (GEA Farm
Technologies, Bönen, Germany) and Afimilk Silent Herdsman (Afimilk,
Kibbutz Afikim, Israel) are among several commercial offerings used to
monitor health and oestrous behaviour (Tullo, 2016; King, 2017). In
contrast, the use of digital technologies to measure extensive livestock
performance and behaviour is lacking. This is considered an untapped
area for development, particularly in countries such as Australia and
New Zealand where nearly half of all agricultural businesses (including
cropping) indicate a main agricultural activity of beef and/or sheep
farming (Australian Bureau of Statistics, 2012; Statistics New Zealand,
2012).

Small ruminants, particularly sheep, are hugely important in many
regions of the world, providing both food and fibre. According to the
FAO, Asia is the largest global producer of sheep products contributing
52.6% of sheep meat and 45.6% of sheep milk production in 2016
(FAO, 2017). In addition, they are the world’s leading producer of
greasy wool, providing over 900,000 tonnes in 2013 (FAO, 2017).
Whilst Asia remains dominant across the three major industries, the
regions providing the next largest production value differs between
commodities, with Africa the second largest sheep meat producer
(18.8%), Europe the second largest sheep milk producer (29%) and
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Oceania the second largest greasy wool producer (24.2%) (FAO, 2017).
This global contribution to sheep production highlights the importance
of the industry and indicates how collective improvements in produc-
tion efficiency could significantly improve the outlook for future food
security.

The aim of this review was to use a quantitative systematic meth-
odology to review how sensors have been applied in sheep research and
trends for their application. The focus was on commercially relevant
technologies. To the best of the authors' knowledge, this current review
is the first for on-animal sensors used in sheep research.

2. Materials and methods

2.1. Search strategy

The method for this review was based on that used in Higgins and
Green (2011) and Williams et al. (2016). A search of electronic data-
bases was conducted in February 2017 and May 2017 for literature
concerning the use sensors in sheep production systems. Searches were
performed in the following databases: Scopus, ScienceDirect, CAB Ab-
stracts and ProQuest. Search terms used were ‘sheep’, ‘ovine’, ‘Ovis
aries’, ‘ewe*’, ‘ram’ and ‘lamb’ in conjunction with ‘gps’, ‘global posi-
tioning system*’, ‘gnss’, ‘global navigation satellite system*’, ‘accel-
erometer*’, ‘proximity log*’, ‘contact log*’, ‘rumen sensor’, ‘rumen
bolus’, ‘body temperature monitor’, ‘body temperature AND sensor’,
‘blood pressure monitor’ ‘blood pressure AND sensor’, ‘heart rate
monitor’ and ‘heart rate AND sensor’. Search terms were not case-sen-
sitive. Initial searches including ‘ram*’ and ‘lamb*’ returned many ir-
relevant results and thus the truncation option was not used. Searches
were restricted to titles, abstracts and keywords. The Boolean search
term ‘AND’ was used in each search to join the sheep-related and
sensor-related terms, respectively (e.g. sheep AND GPS, ewe* AND ac-
celerometer). When searching Scopus, if irrelevant results were still
found (e.g. RAM computer memory), the search was limited to the
‘agricultural and biological sciences’ subject area. However, this option
was not available when searching the other databases.

Articles were required to meet the following criteria for inclusion:
(i) written in English; (ii) included domestic sheep (Ovis aries) as sub-
jects (some studies involved additional species and were also included);
and (iii) included at least one type of on-animal autonomous sensor
attached to at least one sheep subject. Books and book chapters were
not included. If a paper was not peer-reviewed or missing data (e.g.
conference papers), a comprehensive search for peer-reviewed articles
presenting the data was made. If no peer-reviewed article could be
found, the paper was excluded. If an article was unavailable online, a
comprehensive search through affiliated networks and interlibrary loan
services was conducted before the article was discarded. Articles that
involved invasive animal procedures such as implantation of sensors
into the abdominal cavity (Faurie et al., 2004) or skull (Bishai et al.,
2003) of an unborn foetus or measuring brain wave activity at slaughter
(Rodríguez et al., 2012), were excluded as these were considered to
have minimal commercial relevance. Similarly, articles involving
monitoring of animals in oxygen chambers (Aharoni et al., 2003) or
metabolism cages (López and Fernández, 2013) were excluded as ir-
relevant as were those monitoring the stress response during transport
(Fisher et al., 2010; Hall et al., 2010; de la Fuente et al., 2012;
Santurtun et al., 2014; Santurtun et al., 2015). Other studies that were
excluded included those that involved manual measurements e.g. heart
rate measured once daily (Piccione et al., 2007) and studies that em-
ployed radio-frequency identification (RFID) as a data management
tool (Ait-Saidi et al., 2014). For all articles that met the above criteria, a
comprehensive bibliographic search was conducted to identify other
relevant literature. A search for literature that had cited the original
paper was also conducted using Google Scholar.

2.2. Data collection and extraction

Once a complete list of articles meeting the criteria was established,
the bibliographic details including author, title and year of publication
were listed. If multiple experiments were presented in one article, they
were treated as a single study unless explicitly separated with results
independently analysed and reported. Details of each experiment were
then recorded, including the location of each experiment site by
country and then more broadly by continent: Africa, Antarctica, Asia,
Europe, Oceania, North America and South America. If no details on
experiment site were documented, the location of the First Author’s
institution was used. Climate details (e.g. tropical, arid, temperate,
cold, polar) were based on the Kӧppen-Geiger system detailed in Peel
et al. (2007). Further details including the year of experiment initiation
and conclusion and the season in which the experiment was conducted
was also recorded. Seasons were based on standard quarterly grouping
of months for the northern and southern hemispheres i.e. December to
February, March to May, June to August and September to November
corresponding to winter, spring, summer and autumn for the northern
hemisphere and summer, autumn, winter, spring for the southern
hemisphere. Experiments were then classified as ‘grazing’ or ‘intensive’.
A ‘grazing’ experiment was one in which animals were managed in
outdoor paddocks and grazed forage for either all or part of the day
(Williams et al. 2016). In comparison, an ‘intensive’ experiment was
one where animals were housed in small pens or barns for the duration
of the study. Experiments in which animals were grazed during the day
and kept indoors at night were still considered ‘grazing’ if sensors were
removed overnight. If however the sensors remained on the animals
whilst indoors, this was recorded as a ‘combination’. Duration of ex-
periments was then determined using three criteria: (i) the period of
time between first sensor attachment and last sensor removal; (ii) the
maximum period of sensor deployment used throughout the experi-
ment; and (iii) the total length of time sensors were deployed, even if
this was done over multiple deployments. Durations were ‘clustered’
based on defined periods of time (i.e. 1–2weeks, 2–4weeks) and clus-
ters were always classified to the smaller cluster group (i.e. a 14-day
study was classified as 1–2weeks, not 2–4weeks). When determining
experiment duration, a month was considered to be four weeks. The
number of repeat deployments per experiment was also recorded.

Animal details were recorded for each experiment, including sheep
breed, class (ewe, ram, wether, hogget, lamb) and number used. Details
of additional species co-monitored with the sheep were also recorded.
Sensor information was then extracted, including the sensor type (GPS,
accelerometer etc.), attachment method and programmed data collec-
tion interval. Finally, the broad focus of the study based on the objec-
tives of each experiment, was determined to be up to two of the fol-
lowing: (i) behaviour; (ii) health; (iii) methods validation; (iv)
environment management; (v) sensor validation; (vi) welfare; and (vii)
other (Table 1).

3. Results

3.1. Database and bibliographic search results

Database searches identified 2294 unique documents containing the
relevant search terms. Approximately 11.6% (n= 266) and 6.5%
(n= 149) of articles were excluded as they related to sheep but not
sensors, or sensors but not sheep, respectively. A further 11.3%
(n= 260) were not relevant to either subject area. Due to the large
number of results returned, a large proportion of documents (51.9%;
n=1191) were excluded as soon as their non-relevance to sheep was
determined without examining their relevance to sensors.
Approximately 8.4% (n=192) of articles were excluded based on the
document type (e.g. book, book chapter, review, conference paper) and
1.2% (n=27) as non-English language. Of the remaining 209 articles, a
further 42 were excluded as they involved invasive medical procedures,
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37 were excluded as they related to wild sheep (e.g. Bighorn sheep,
mouflon etc.), 25 were removed as the sensor used in the study was not
attached to the animal (e.g. handheld GPS used to identify locations of
interest) and 14 related to carcass traits. A further 18 were removed for
other reasons (e.g. using sensors for identification purposes or using
chamber sensors). Twenty-one articles were unable to be retrieved.

The bibliographic search identified 226 unique documents related
to sheep and/or sensors. Upon close examination, only 25 of these met
the required criteria. Nearly half were rejected as they related to sheep
but not sensors (46.0%; n=104). A further 18.6% (n=42) were re-
jected as relevant to sensors but not sheep and 16.8% (n= 38) were the
incorrect document type. Five articles were rejected as the sensor was
not attached to the animal, two were rejected as non-English and one
was rejected as it involved invasive medical procedures. Nine articles
were unable to be retrieved.

Overall, a total of 2520 articles were examined through both data-
base and bibliographic searches, resulting in 77 articles that met the
selection criteria. Six articles were excluded from further analyses due
to incomplete methodology. For the remaining 71 articles, 82 in-
dependent experiments were reported (Table 2). The year of study
conduct (if known) and publication are shown in Fig. 1. If experiments
were conducted over multiple years, this was categorised based on the
first year only. The year of study conduct was unknown for 35 of the 82
reviewed experiments (Table 2). Thus, any further reference to year of
the experiment refers to publication year only. It is acknowledged that
due to the inevitable lag between study conduct and publication, the
use of publication date may impact the accuracy of extrapolated time
patterns discussed. However, it was conceded that consideration of all
publications was necessary for a comprehensive review. To help miti-
gate potential inaccuracies, publication dates were grouped in five-year
windows to allow a more general assessment of time patterns (Fig. 1).

3.2. Study site location, climate and environment data

The 82 independent experiments were distributed across six con-
tinents (Fig. 2). The majority of experiments were conducted in tem-
perate climates (n=56), followed by cold (n=15) and arid (n= 10)
climates. One experiment (Zampaligré and Schlecht, 2017), was con-
ducted over three locations spanning both arid-steppe and a tropical-
savannah climates. Experiments were conducted across all seasons,
most commonly in summer (n=28) and autumn (n=28), followed by
spring (n= 24) and winter (n=21). The season was not recorded for
31 experiments. Approximately 72.0% of experiments (n=59) were
conducted under grazing conditions. In comparison, only 24.4%
(n=20) were conducted in intensive, pen-style conditions, with the
remaining 3.6% of experiments (n= 3) conducted in a combination of
grazing and housed environments.

3.3. Animal data

The majority of experiments (80.5%; n=66) were conducted solely

on domestic sheep (Ovis aries) with the remainder involving one
(15.9%; n=13) or two (3.7%; n=3) additional species integrated into
the experiment. In most cases, cattle were the most common addition
(n= 9), followed by goats (n= 4). Other species included dogs (n=2),
kangaroos (n=2), deer (n= 1) and yaks (n=1). A total of 17 dif-
ferent sheep breeds were used across all experiments. Of these, Merinos
were the most common (n=25), followed by crossbreds (n=11) and a
mixture of breeds (n=9). Breed was not recorded for nine experi-
ments. The majority of experiments were conducted in ewes, either
individually (n=37) or with another animal class (n= 12). Animal
class was not recorded for ten experiments. The number of sheep used
per sensor deployment and the total number that carried a sensor
throughout the experiment is shown in Fig. 3.

3.4. Experimental design and methodology

Approximately 80.5% of experiments (n=66) were conducted
using one sensor, with the remaining conducted using two (n=12) or
three (n= 4) sensors. GPS was by far the most common sensor, being
used in 40 experiments (48.8%). Motion sensors including accel-
erometers, IMUs, inclinometers, pitch and roll sensors and mercury tilt
devices were the next most commonly used sensor type (25.6%; n=21)
followed by heart rate monitors and echocardiograms (19.5%; n=16).
Jaw and bite sensors and contact loggers were used in ten and five
experiments, respectively. Other sensors that were used in small num-
bers include oestrus detectors (n= 3), urine sensors (n= 3), tempera-
ture loggers (n=2), oxygen sensors (n=1) and respiration sensors
(n= 1). The majority of multi-sensor experiments involved GPS
(31.3%; n=5), motion sensors (18.8%; n=3), or a combination of the
two (31.3%; n=5). Of the three remaining multi-sensor experiments, a
combination of heart rate monitors, temperature loggers and jaw/bite
sensors were utilised. Fig. 4 shows how the use of the different sensor
types has changed over time.

Sensor attachment was most commonly done through the use of
collars (n=41) followed by a harness, backpack or girth strap
(n= 37). Other methods of attachment included being strapped to a
head collar or nose band (n= 10), being directly attached to the fleece
or skin (n=5) or by attachment to the leg (n=3). Other attachments
(e.g. attached to horn, facemask) were used in the remaining 5 ex-
periments. Attachment manner was not stated for one experiment.
When deploying sensors, a variety of intervals for data capture were
programmed across all sensors types. The majority were programmed to
record continuously (n=35) or between intervals of one to 10min
(n= 22) or less than one minute (n=17). Only a small number of
sensors were programmed at intervals of 11 to 30min (n=4) and over
30min (n= 3). The programmed interval was recorded as ‘other’ for 16
sensors and unknown for five. ‘Other’ included those that were not
programmed at set intervals e.g. an oestrus detector recording mounts
or contact loggers recording when animals come within a specified
distance. When examing the timed programmed intervals for the two
most common sensors, GPS and motion sensors, there is a clear

Table 1
Defining criteria used for establishing the broad focus of studies.

Broad focus Definition

(1) Behaviour Use sensor data to analyse various behaviour patterns, usually associated with a particular context e.g. lambing, grazing
(2) Health Experiments that aim to identify various attributes associated with the onset of existing or potential clinical/subclinical disease and/or general

indication of good health
(3) Methods validation Focus on the sensor output data and validating methods for analysis, usually with field data
(4) Environment management Focus on sheep production in a broader context to understand the impact of production on the environment
(5) Sensor validation Experiments that aim to endorse the use of sensors for various research purposes, including those that confirm that the attachment of sensors

does not impact behaviour
(6) Welfare Use of sensors to specifically measure a particular aspect of animal welfare (sometimes termed ‘animal wellbeing’). Experiments that attempted

to measure emotional states in sheep were also included in this category
(7) Other Unable to be defined by another category

.
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Table 2
Summary of the reviewed experiments.

Publication No. of
Exp.a

Year of Exp.a Continent Climateb Species Animal Class Sensor (s) Exp.a

Typec
Major
Focusd

Alhamada et al. (2016) 2 Unknown Europe Csa Sheep Ewe, ram Oestrus detector I 5
Alhamada et al. (2017) 1 Unknown Europe Csa Sheep Ewe, ram Oestrus detector G 1
Alvarenga et al. (2016) 1 2015 Oceania Cfb Sheep Ewe Motion sensor (accelerometer) C 5
Animut et al. (2005) 1 2002–03 North

America
Cfa Sheep, Goat Wether Jaw/bite G 1

Ares et al. (2007) 1 2003–04 South
America

BWk Sheep Ewe GPS G 1, 3

Barkai et al. (2002) 1 Unknown Asia BSh Sheep Lamb HR Monitor, jaw/bite, oxygen
sensor

C 5

Betteridge et al. (2010a) 1 2009 Oceania Cfb Sheep, Cattle Hogget GPS, jaw/bite, urine sensor G 4, 5
Betteridge et al. (2010b) 2 2006 Oceania Cfb Sheep, Cattle Ewe GPS, urine sensor G 4, 5
Broster et al. (2010) 1 2008 Oceania Cfa Sheep Ewe, lamb Contact Logger G 1
Broster et al. (2012) 1 2008 Oceania Cfa Sheep Ewe GPS G 1
Broster et al. (2017) 1 2010 Oceania Cfa Sheep Ewe, lamb Contact Logger, GPS G 1
Champion et al. (1997) 2 Unknown Europe Cfb Sheep, Cattle Ewe Motion sensor (mercury tilt) G 5
Coulon et al. (2015) 1 Unknown Europe Dfc Sheep Lamb HR Monitor I 1
Cronin et al. (2016) 1 2011 Oceania Cfb Sheep Lamb Motion sensor (accelerometer) G 2
Désiré et al. (2004) 3 Unknown Europe Dfc Sheep Lamb Echocardiogram I 1
Destrez et al. (2012) 1 Unknown Europe Dfc Sheep Lamb HR Monitor I 1
Destrez et al. (2013) 2 Unknown Europe Dfc Sheep Lamb HR Monitor I 1, 6
di Virgilio and Morales

(2016)
1 2014–15 South

America
Csb Sheep Ewe, hogget,

wether
GPS G 1, 4

Dobos et al. (2014) 1 2012 Oceania Cfb Sheep Ewe GPS G 1, 5
Dobos et al. (2015) 1 2009 Oceania Cfb Sheep Ewe GPS G 1
Donovan et al. (2013) 1 Unknown Oceania Cfb Sheep Hogget GPS G 1, 2
Doyle et al. (2016) 2 2012 & 2014 Oceania Cfa Sheep Ewe Contact Logger G 1, 3
Falú et al. (2014) 1 2009–11 South

America
Cfa Sheep, Cattle Ewe GPS G 1, 4

Falzon et al. (2013) 1 2010 Oceania Cfb Sheep Ewe GPS G 2
Fogarty et al. (2015) 1 2013 Oceania Cfb Sheep Ewe, ram GPS G 1, 5
Freire et al. (2012) 1 Unknown Oceania Cfa Sheep Ewe Contact Logger, GPS G 1
Giovanetti et al. (2017) 1 2013–14 Europe Csa Sheep Ewe Motion sensor (accelerometer) G 5
Gipson et al. (2012) 1 2002–03 North

America
Cfa Sheep, Goat,

Dog
Not recorded GPS G 1

Goddard et al. (2000) 1 1995–96 Europe Cfb Sheep Lamb HR Monitor I 1
Greiveldinger et al.

(2007)
1 Unknown Europe Dfc Sheep Lamb HR Monitor I 1, 6

Haddadi et al. (2011) 1 2010 Oceania Csb Sheep Not recorded GPS, motion sensor (IMU) G 3
Hargreaves and Hutson

(1990)
1 Unknown Oceania Cfb Sheep Wether HR Monitor I 1, 6

Harris et al. (2016) 1 2010–12 Asia BSk Sheep, Yak Not recorded GPS G 4
Hobbs-Chell et al. (2012) 1 Unknown Oceania Csb Sheep Ewe GPS, motion sensor (IMU) I 5
Hulbert et al. (1998) 1 1997 Europe Cfb Sheep Ewe GPS G 5
Jørgensen et al. (2016) 1 2013–14 Europe Dfc Sheep Ewe GPS G 1
Kaur et al. (2016) 1 2015 Oceania Csa Sheep Lamb GPS G 1, 2
Kawamura et al. (2005) 1 2002 Asia BSk Sheep Not recorded GPS G 3, 5
Kuźnicka and

Gburzyński (2017)
1 Unknown Europe Dfb Sheep Lamb Motion sensor (accelerometer) I 3, 5

Lin et al. (2011) 1 2008 Asia BSk Sheep Ewe GPS G 1
Lowe et al. (2001) 1 2000 Oceania Cfb Sheep Lamb Echocardiogram, Temperature

logger
G 7

Manning et al. (2014) 1 2013 Oceania Cfb Sheep Ewe GPS G 1, 5
McLennan et al. (2015) 1 Unknown Europe Cfb Sheep Ewe Motion sensor (accelerometer) G 5
Morgan-Davies et al.

(2016)
1 2013 Europe Cfb Sheep Ewe GPS G 7

Morton et al. (2014) 2 2012 & 2013 Europe Cfb Sheep Ewe, wether Motion sensor (accelerometer) G 2
Munn et al. (2013) 1 2008 Oceania BWh Sheep,

Kangaroo
Not recorded GPS G 4

Munn et al. (2016) 1 2009 Oceania BWh Sheep,
Kangaroo

Ewe GPS G 4

Mysterud et al. (2014) 1 2007–08 Europe Dfc Sheep Not recorded GPS G 3, 4
Nadimi et al. (2012) 1 Unknown Europe Dfb Sheep Not recorded Motion sensor (accelerometer) G 5
Ormaechea and Peri

(2015)
1 2008–10 South

America
Cfb Sheep Not recorded GPS G 1, 4

Penning (1983) 5 Unknown Europe Cfb Sheep Ewe, ram,
wether

Jaw/bite, motion sensor (mercury
tilt & accelerometer)

G 5

Pérez-Barbería et al.
(2015)

1 2008 Europe Cfb Sheep, Deer Ewe GPS G 1, 3

Putfarken et al. (2008) 1 2003 Europe Cfb Sheep, Cattle Not recorded GPS G 1, 4
Radeski and Ilieski

(2017)
1 Unknown Europe Cfa Sheep Ewe, ram Motion sensor (accelerometer) I 5

Reefmann et al. (2009) 1 2007 Europe Dfb Sheep Ewe Echocardiogram, respiration
sensor, temperature logger

I 1, 6

(continued on next page)
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preference for motion sensors to record continuously (Fig. 5). In com-
parison, GPS was most often programmed to record at intervals of one
to ten minutes (n=18), with no studies using GPS intervals of less than
one second.

As shown in Fig. 6 maximum continuous deployment tended to be
short in duration, with the majority of experiments either using sensors
for≤ 48 h (n= 36) or between 2 and 7 days (n=22). The longest
single deployment, used in a total of three experiments, was
3–6months. Total deployment also tended to be short, with periods of
≤48 h (n=24), 2–7 days (n=18) and 2–4weeks (n=13) the most
common. The longest total deployment was 1–2 years, seen in just one
experiment (di Virgilio and Morales 2016). In contrast to the first two
characteristics, total experimental duration (calculated from first sensor
attachment to last sensor removal) showed a relatively even distribu-
tion (Fig. 6); with the most common duration being ≤48 h (n=14),
1–2weeks (n= 10) and 6–12months (n=10). Total sensor deploy-
ment and experiment length was unknown for two and five experi-
ments, respectively. Approximately 61.0% (n= 50) of experiments in-
volved repeat sensor deployment, with the number of deployments

ranging from 1 to 40, with a mean of 4.2 and a median of 2.
Most experiments were conducted to autonomously categorise and

quantify animal behaviour, including both spatial behaviour (e.g. lo-
cation within a given area or relative to resources and other in-
dividuals) and general behaviour (e.g. grazing, drinking, walking etc.;
52.4%; n=43) or to validate the use of sensors (35.4%; n=29; Fig. 7).
Following this, experiments focused on environment management
(17.1%; n= 14), methods validation (11.0%; n=9), health (8.5%;
n=7) or welfare (6.1%; n= 5). Only two experiments fell into the
“other” category; Lowe et al. (2001) who examined the impact of cli-
mate on body temperature in sheep and Morgan-Davies et al. (2016)
who studied the impact of an animal’s origin on their ability to thrive in
mountainous regions of Scotland. The majority of studies (67.1%;
n=55) had a singular focus, with the remaining having a focus over
two areas (32.9%; n= 27). Of those with two major focal areas, most
involved GPS (n= 18) or heart rate monitors (n=6), followed by four
experiments for 'other' sensors, two experiments each for motion sen-
sors and contact loggers and one for jaw and bite sensors. Four of these
experiments involved multiple sensors hence discrepancies in totals

Table 2 (continued)

Publication No. of
Exp.a

Year of Exp.a Continent Climateb Species Animal Class Sensor (s) Exp.a

Typec
Major
Focusd

Rurak et al. (2008) 1 Unknown North
America

Cfb Sheep Ewe, lamb Motion sensor (accelerometer) I 5

Rusch et al. (2009) 1 2002 Europe Dfc Sheep Ewe GPS G 4
Rutter et al. (1997a) 1 Unknown Europe Cfb Sheep Ewe GPS, jaw/bite, motion sensor

(mercury tilt)
G 5

Rutter et al. (1997b) 1 Unknown Europe Cfb Sheep Ewe Jaw/bite G 5
Schlecht et al. (2006) 1 1998 Africa BSh Sheep, Cattle,

Goat
Not recorded GPS G 4

Simitzis et al. (2009) 1 Unknown Europe Csa Sheep Lamb HR Monitor I 1, 2
Simitzis et al. (2012) 1 Unknown Europe Csa Sheep Lamb HR Monitor I 1
Tallet et al. (2006) 1 Unknown Europe Dfc Sheep Lamb Echocardiogram I 1
Taylor et al. (2011) 1 2008–09 Oceania Cfb Sheep Ewe GPS G 1
Thomas et al. (2008) 1 2007 Oceania BWh Sheep Ewe GPS, motion sensor (inclinometer) G 1
Umstätter et al. (2008) 1 Unknown Europe Cfb Sheep Ewe GPS, motion sensor (pitch & roll

sensor)
C 3, 5

Verbeek et al. (2012) 1 Unknown Oceania Cfb Sheep Lamb Motion sensor (accelerometer) G 1
Webber et al. (2015) 1 2010 North

America
BSk Sheep, Dog Ewe GPS G 1

Williams et al. (2011) &
Williams et al.
(2009)

1 2004–06 Europe Cfb Sheep Ewe GPS G 1, 4

Zampaligré and Schlecht
(2017)

1 2009–10 Africa Aw, BSh Sheep, Cattle,
Goat

Ewe GPS G 1, 4

a Exp.= Experiment.
b As per Peel et al. (2007).
c I= Intensive; G=Grazing; C=Combination.
d As per Table 1; See Fig. 7.
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Fig. 1. The year of experiment conduct (solid) and year of study publication (diagonal striped). The year of experiment conduct was unknown for 35 experiments and
is not included.
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listed. The proportion of each sensor type’s application to the seven
major focus areas is shown in Fig. 8. The values are based on the total
number of focal areas listed for each sensor type i.e. 58 focal areas for
GPS (40 experiments with at least one focus plus an additional 18 with
a dual focus); 22 focal areas for heart rate monitors (16 experiments
with at least a single focus plus six with a second focal area).

4. Discussion

4.1. General trends

The results of this systematic review show that there is a growing
application of the use of sensors in sheep research. This rising interest is
evident in Fig. 1 where the number of peer-reviewed papers published
in the 17months between 2016 and the date of this review (n= 16)
surpasses those published between 2006 and 2010 (n= 15) and is al-
ready more than half of those published between 2011 and 2015 (n =
28). The global interest of this research area is also evident from Fig. 2,
particularly in Europe and Oceania. When considering these results, the
use of the first author’s institution where no direct reference to study
location was provided should be noted as a potential limitation. In
addition, the restriction to English language publications may also be
considered a potential source of bias. However, removal of those

articles where the author’s institution was used still indicates Europe
and Oceania as leaders in this area of research (n=20 and n= 23,
respectively). Furthermore, of those publications discarded as non-
English, 16 were from Europe, ten were from Asia and one was from
South America. Thus, the high level of interest from Europe and
Oceania is likely correct, potentially reflecting the interest for produc-
tion efficiency gains in these two developed regions and the corre-
sponding value of sheep production (The European Sheep Meat Forum
2016; Australian Bureau of Statistics 2017). However, the low number
of studies from Asia is likely under representative considering the value
of the industry in this region (FAO 2017). In this case, Asia will likely
continue to emerge as a dominant player in this field, particularly
considering the rapidly growing Asian economies evident today (FAO,
2009).

4.2. The impact of sensor capabilities on experimental design

This review highlighted the impact of sensor capabilities on how
studies have been designed and undertaken. For example, a preference
for shorter continuous deployment is evident (Fig. 6). This is also shown
for period of total deployment, which follows a similar yet less pro-
nounced pattern (Fig. 6). In contrast, total experiment duration does
not follow this trend, ranging from less than 48 h to over 2 years in

Fig. 2. Distribution of experiments across continents. Map source (Wikimedia Commons).
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Fig. 3. The total number of animals used in a single deployment (solid) or that had a sensor attached at some point during the experiment (diagonal striped).
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length. Overall, these results suggest that sensors are being deployed for
short periods of time, removed and then re-deployed multiple times
within a single experiment. This is reinforced in Fig. 6, which shows
that while nine experiments had a total duration of over one year, only
one of the experiments had a total deployment period of this length. In
this case, these experiments involved long periods of time during which
the sensors were not attached or were not collecting data. An inclina-
tion for shorter programmed time intervals for data collection is also
apparent. As shown in Fig. 5, the majority of sensors were programmed
to capture data at less than one-minute intervals, with this number
falling progressively as interval length increased.

The aforementioned trend for shorter experiment duration and
programmed data capture interval likely reflect the impact of battery
constraints and memory capacity on study design (Schwager et al.,
2007; Swain et al., 2011). Due to these limitations, sensor intervals are

often recommended to be short enough for high-resolution data, but
long enough to allow for an adequate study length, depending on the
objective of the study (Schwager et al., 2007). In this current review,
studies with continuous sensor deployment of 3–6months generally
employed longer intervals of 30 (Mysterud et al., 2014) to 60min
(Pérez-Barbería et al., 2015). The exception was di Virgilio and Morales
(2016), who used an interval of 5min for a maximum of 164 days. In
contrast, experiments where deployment was less than 48 h generally
collected data continuously (64.4%; n=29) or at intervals of less than
one minute (17.8%; n=8). The exceptions were Falzon et al. (2013)
and Barkai et al. (2002) where intervals of 12 and 20min were used
when collecting GPS and heart rate data, respectively. Of note, Barkai
et al. (2002) also used jaw movement and oxygen concentration sensors
which were set to record continuously. This compromise between the
need to collect detailed datasets within the limitation of sensor
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Fig. 4. The use of sensors over time. Sensor types include GPS (dark grey), heart rate monitors and echocardiograms (HR; diagonal stripe), motion sensors (MS; mid-
grey), jaw and bite sensors (JB; horizontal stripe), contact loggers (CL; light grey) and other sensors (spotted).
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capabilities has changed over time. That is, of those studies published
before the 21st century, the longest continuous deployment was only
1–2weeks (Hulbert et al., 1998). In contrast, experiments with con-
tinuous deployments in excess of this were not published until 2008
when Thomas et al. (2008) deployed GPS and motion sensors for
19 days. Since then, deployments have continued to grow with the three
longest being 91 days (Mysterud et al., 2014), 164 days (di Virgilio and
Morales, 2016) and 6months (Pérez-Barbería et al., 2015). Thus as
sensor technologies and capabilities have matured over the last two
decades (Ruiz-Garcia et al., 2009; Swain et al., 2011), the corre-
sponding impact on sensor use in a research capacity and experimental
design is evident. From here, it is expected that deployment durations
will continue to grow, even as programmed intervals for data collection
remain consistent.

Another impact of sensor functionality on experimental design is
shown in the trend for smaller numbers of experimental subjects in each
study; mostly commonly one to five (42.7%; n= 35) or six to ten ani-
mals (22.0%; n=18; Fig. 3). This contrasts the total number of sheep
with a sensor attached at some point throughout the experiment, which
indicates no clear pattern of use. In this case, it appears researchers are
using the same sensors deployed across multiple periods within the one

experiment. A reason for this may be the economic cost of sensors,
which has remained high despite the falling cost of many electronic
components such as GPS chip sets and wireless sensor technologies
(Ruiz-Garcia et al., 2009; Trotter et al., 2010; Swain et al., 2011;
Banhazi et al., 2012). Furthermore, when the high cost per unit is
multiplied by the number of animals involved in the study, the moti-
vation for smaller groups becomes clear. Again, examination of this
trend over time indicates growth in the number of experimental sub-
jects being used. Between 1980 and 2000 the maximum number of
animals used per deployment was 12 (Champion et al., 1997). From
there, group sizes per deployment remained under 20 until 2008 when
Rurak et al. (2008) attached accelerometers to 33 newborn lambs. This
was followed by experiments involving 40 animals in 2012 and 2014
(Verbeek et al., 2012; Morton et al., 2014) and 49 animals in 2016
(Doyle et al., 2016). Only one experiment has involved over 50 animals,
with Alhamada et al. (2017) attaching oestrus detectors to five rams
and sixty ewes to monitor mounting behaviour. Thus, whilst earlier
research appears to have been more focused towards data interpreta-
tion based on smaller groups, falling technology prices and improved
access to technology has impacted experimental design, resulting in
more sensors (and more experimental subjects) being studied within a
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Fig. 6. The maximum length of the deployment period (dark grey solid), total deployment period (diagonal striped) and total length of experiment (light grey solid).
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single deployment period. As the cost of sensor units continues to fall, it
is possible that devices will be applied even more broadly, facilitating
the commercialisation of cost-efficient research devices and leading to
overall expansion of precision livestock farming in the sheep industry.

4.3. Application of sensors

The reviewed literature highlights a change in sensor use over time
(Fig. 4). For example, the popularity of GPS for tracking animal
movement appears to have increased since the mid-1990s, with a peak
of 20 experiments published between 2011 and 2015. Similarly, contact
loggers though less popular overall, have only been used in the last
decade, the first of which being Broster et al. (2010). In contrast, the
use of motion sensors and heart rate monitors has remained relatively
stable since the 1980s. However, further examination of this reveals a
change in the type of motion sensor used. For example, the last ex-
periments to use mercury tilt sensors were conducted in the late 1990s
(Champion et al., 1997; Rutter et al., 1997a). Since then accelerometers
have increased in popularity with a total of ten experiments since 2011.
Later use of other types of motion sensors is also noted for inclinometers
and pitch and roll sensors (Thomas et al., 2008; Umstätter et al., 2008),
and the more advanced IMUs (Haddadi et al., 2011; Hobbs-Chell et al.,
2012). Of interest, Hobbs-Chell et al. (2012) did not use the IMUs to
their capacity in their study, instead focusing on confirmation that the
sensor attached to a sheep harness does not impact behaviour. This
change in sensor use highlights the impact of technology improvements
and sensor capabilities on experimental design, allowing more detailed
datasets to be gathered using smaller and more discrete devices.

The results of this review also demonstrate the broad application of
technologies in sheep production research, covering all seven focal
areas defined in Table 1. As outlined in Section 3.4, for the majority of
studies the objective was to apply sensors to enable quantification of
sheep behaviour or to validate the sensor-generated data. As sensor-
based livestock monitoring using digital technologies is relatively new,
this may reflect basic ‘proof-of-concept’ research with a focus on
‘finding’ sensors that are appropriate for both research and industry to
derive reliable and meaningful information. This focus on proof-of-
concept is supported by the fact that of the 12 experiments published
between 1980 and 2000, ten were classified as ‘sensor validation’
(Fig. 7). Since the start of the 21st century, other applications of the
technology have been explored including experiments focused on

method validation emerging between 2001 and 2005, and health and
environmental management from 2006. Despite this rise in other ap-
plications, behaviour monitoring has remained a dominant objective,
with more experiments published since 2001 than any other field. This
concentration of activity toward sensor validation and behaviour
monitoring suggests commercial applications will likely focus on
identification of different aspects of behaviour and behavioural change,
at least in the early stages. Indeed much of the research has already
confirmed the ability of sensors to identify and monitor broad aspects of
behaviour e.g. grazing, posture, walking (Radeski and Ilieski, 2017;
Penning, 1983; Champion et al., 1997; Rutter et al., 1997b; Umstätter
et al., 2008; Nadimi et al., 2012; McLennan et al., 2015; Alvarenga
et al., 2016; Giovanetti et al., 2017), with a recent shift toward iden-
tification of more unique and discrete behaviours e.g. sexual behaviour
(Fogarty et al., 2015; Alhamada et al., 2016, 2017) and suckling events
(Kuźnicka and Gburzyński, 2017). Thus, as the foundation of knowl-
edge from these more mature focus areas becomes further established,
it is likely that future research will move toward broader and possibly
innovative sensor application methods, including those already emer-
ging as focal areas.

The impact of sensor type on the ability to research particular ob-
jectives can be seen in Fig. 8, where the proportions of all major focal
areas for each sensor type is shown. Across all technologies, with the
exception of motion sensors, behaviour is considered the major focus
for the majority of studies. At the other end of the spectrum, health and
welfare show the lowest level of application, in addition to ‘other’
studies. GPS was the most widely applied sensor type, used in all types
of studies except for welfare. This wide application reflects the tech-
nology’s unique capacity to provide information on the location of the
animal and also allow derivation of various movement metrics (de
Weerd et al., 2015). In contrast, jaw and bite sensors were the least
widely applied, reflecting the limitations of solely measuring feeding
activity. Motion sensors were most often applied in sensor validation
studies with only a small number used to study behaviour, health and
method validation. This result is expected given the use of multiple
types of motion sensors that all require independent validation. Fur-
thermore, as the inherent nature of motion sensors is to measure
movement only, their application in an environmental focused study is
unlikely given the expected requirement to monitor animals in relation
to their surroundings. As we move forward, it is possible that sensors
that have already been widely applied in sensor validation studies (GPS,

Fig. 8. The proportion of each sensor type and their application within the major focal areas listed in Table 1. Sensor types include GPS, motion sensors (MS), heart
rate monitors and echocardiograms (HR), jaw and bite sensors (JB), contact loggers (CL) and other sensors (oth). Major focal areas include behaviour (dark grey),
health (light hatch), methods validation (MV; horizontal stripe), environmental management (EM; mid grey), sensor validation (SV; diagonal striped), welfare
(spotted) and other (cross hatch).
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motion sensors, jaw and bite sensors, other sensors) will become more
widely seen in other experiment types. However, this doesn’t auto-
matically exclude sensors that have not be widely validated (i.e. heart
rate monitor and contact loggers), as these are more focused on mea-
suring objective criteria rather than inferring patterns from a data set
and thus do not require as intensive validation. Thus, it is likely that
research will continue to utilise different sensor types, chosen based on
the research question at hand. Further development of integrated
technologies in a single device may provide a further step in the de-
velopment of a ‘gold-standard’ for sensor application, allowing mea-
surement of a number of different criteria for a broader monitoring
potential.

5. Conclusion

The results of this current review highlight the broad application of
sensor technologies in sheep production research, and the increasing
interest in this area. As shown, sensors have been applied under a broad
range of contexts, highlighting the potential for precision technologies
to revolutionise livestock management. As further developments in
sensor technology continue, the number of commercial applications is
expected to increase. However, to ensure on-animal sensors are used to
the best of their capabilities, it is likely further research expanding the
existing application of technologies will be required. This is likely to be
achieved through integration of both on-animal and external sensors.
There is a unique opportunity to apply this integrated sensor approach
to meet several industry needs as this technology matures.
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Chapter 3. A systematic review of the potential uses of on-

animal sensors to monitor the welfare of sheep evaluated using the 

Five Domains Model as a framework  

Fogarty E.S., Swain D.L., Cronin G.M., Trotter M. 2019. A systematic review of the potential 

uses of on-animal sensors to monitor the welfare of sheep evaluated using the Five Domains 

Model as a framework. Animal Welfare, 28, 407-420. 

doi: https://doi.org/10.7120/09627286.28.4.407 

 

Overview 

As is evident from the systematic review conducted in Chapter 2, specific sensor-based 

research conducted for the purpose of welfare assessment is limited. This chapter expands 

on the findings of Chapter 2, exploring how on-animal sensors may be applied for welfare 

assessment. This assessment was conducted using the Five Domains (FD) Model as a 

framework. Initially the publications were also assessed under the Five Freedoms (FF) 

paradigm. However, this approach resulted in an unintended comparison between the two 

frameworks, opening up the review to debate on the relative merits of the FF and FD, rather 

than focusing on the merits of sensor technology in welfare assessment. Thus, in the 

published manuscript, only the FD Model was reported and discussed. 

The intention of this chapter was to provide clarity around the potential for on-animal sensor 

application for welfare assessment, including the relative strengths and weaknesses of using 

different sensor types. This knowledge would then be applied during fieldwork planning to 

assess welfare in pasture-based sheep.  

This manuscript has been published in Animal Welfare and appears in this thesis in its 

published form. Supplementary material for this chapter can be found in Appendix A. 
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Abstract

This systematic review explores the use of on-animal sensors in sheep and their potential application in objective welfare monitoring.
The key questions posed were: To what extent can current scientific knowledge inform a sensor-based approach to welfare evalua-
tions? And, how might this knowledge shape development of commercial monitoring systems? These questions were explored through
retrospective classification of published sensor applications using The Five Domains (FD) Model as a framework for animal welfare
assessment. A total of 71 studies were reviewed. The results indicate studies specifically evaluating the use of sensors for welfare
assessment are limited, though many experiments could still be related to some aspect of welfare. The assessment of sensor utilisa-
tion revealed the greatest proportion of applications within the ‘Behaviour’ Domain (90.1%; n = 64), and the lowest within the
‘Health’ (25.4%; n = 18) and ‘Mental state’ Domains (25.4%; n = 18). The review also highlights how different sensor types (location,
motion or physiological) differ in their applicability for welfare assessment. This paper is the first to classify published sensor applica-
tions using the FD Model as a framework and highlights the potential for sensor technology in sheep welfare monitoring. The results
suggest that any attempt to create a commercial sensor-based system for objective welfare assessment will require the integration of
more than one sensor type, particularly if multiple Domains are to be addressed. 

Keywords: animal welfare, Five Domains Model, remote monitoring, sensor, sheep, systematic review

Introduction
Issues surrounding animal welfare are faced by all livestock
industries. Whilst it can be argued that this is not a novel
problem, a recent increase in community and political
scrutiny is evident (Webster 2016; Australian Farm Institute
2017; Dawkins 2017). Animal welfare impacts consumer
purchasing behaviour, with studies indicating a growing
ethical concern for animal welfare standards, particularly in
western countries (Coleman 2007; European Commission
2007; Napolitano et al 2010). Whilst many developed
nations, including Australia, New Zealand, the United
Kingdom and many countries in Europe, already have rela-
tively high standards of animal welfare (Mellor & Bayvel
2008; Webster 2008; Blokhuis et al 2010; Australian Farm
Institute 2017), rising awareness among citizens has
resulted in an increased prominence of animal protection as
a broader societal issue (Napolitano et al 2010). In a review
by Poletto and Hötzel (2012), implementation of ‘clean,
green and ethical’ animal production systems that still
guarantee high animal welfare standards, was cited as a
significant global challenge. Coupled with the increased

demand for food and fibre for the expanding human popu-
lation, the risk for declining welfare standards in response to
greater farm intensification is amplified (Dawkins 2017). 
To assist livestock industries in responding constructively to
changing societal views, it will be important for welfare
standards to be based on objective scientific measures (Poletto
& Hötzel 2012). Objective measures are also necessary to
improve animal welfare for the sake of the animal itself and
should be strived for in all production systems. However, the
development of these measures is often not straightforward.
Fraser and Broom (1990) define animal welfare as “the state
of an animal as it attempts to cope with its environment”,
encompassing both physiological and psychological aspects
of an animal’s life (Tilbrook & Ralph 2018). This definition or
similar, whilst commonly accepted by welfare scientists,
provides little in the way of measurable criteria for welfare
assessment. Added to this difficulty is the problem that the key
features of objective welfare assessment systems need to be
reliably recorded, quantified and reported. 
The Five Freedoms (FF) paradigm was one of the first
attempts to develop a comprehensive ‘check list’ upon
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which the strengths and weaknesses of a given husbandry
system could be judged (Webster 2008). Largely unchanged
since the early 1990s (Webster 2008), the FF has achieved
worldwide recognition and continues to be incorporated
into many legislative, policy and corporate documents
(FAWC 2009; McCulloch 2013). Despite this clear and
lasting impact, the FF is often critiqued by contemporary
animal welfare scientists due to perceived limitations of
encouraging unattainable welfare goals and its focus on
removing negative welfare aspects (McCulloch 2013;
Mellor 2016a,b). This has led to the development of new
models for welfare assessment, including the Five Domains
(FD) Model (Mellor & Reid 1994; Mellor & Beausoleil
2015; Mellor 2016b, 2017), the Welfare Quality Project®
(Blokhuis et al 2010; Welfare Quality® Network 2018) and
three conceptual frameworks for understanding welfare;
‘biological functioning’, ‘affective states’ and ‘natural
living’ (Fraser et al 1997; Hemsworth et al 2015). 
The FD Model was developed in the 1990s to facilitate
complete systematic welfare assessment (Mellor 2017). The
FD Model incorporates five areas in which welfare can be
either compromised or enhanced; three internal survival-
related factors (Domains 1–3), one external situation-
related factor (Domain 4) and an overarching assessment of
how Domains 1–4 impact the affective experience of the
animal (Domain 5) (Table 1; see Mellor and Beausoleil
[2015] for an in-depth review). The FD Model supports a

dual focus for assessment, the first by encouraging correc-
tion of negative welfare and the second through promotion
of positive welfare states (Mellor & Beausoleil 2015). This
incorporation of positive welfare mirrors the shift in
contemporary welfare science, where animals are now
expected to ‘thrive’ in their environment and not simply
‘survive’ (Hemsworth et al 2015; Mellor 2016a,b).
Precision livestock management (PLM) and the application
of remote automated monitoring technologies have been
proclaimed as a method of improving productivity of
existing farm systems (Tullo et al 2016; King 2017). Whilst
there are proponents for the use of PLM for welfare moni-
toring (Umstätter et al 2008; Morris et al 2012; Nadimi et al
2012; McLennan et al 2015; Radeski & Ilieski 2017), there
are few practical examples of this in the literature. The
broad aim of this review was to evaluate how research
reporting the use of on-animal sensors might be related to
animal welfare assessment, and in particular to consider
how the use of sensors might further enhance such assess-
ment using the FD Model as a framework. Sheep were
chosen as a case-study to provide focus for the review. The
specific objectives were to: (i) understand how on-animal
sensors can be applied to facilitate the assessment of animal
welfare by reference to the FD Model, even if this was not
the original intent of the study; (ii) explore how different
sensor types impact our ability to monitor particular
features of the Domains; and (iii) identify gaps in the
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Table 1   The FD Model for welfare assessment; key features and examples.

Table adapted from Mellor and Beausoleil (2015).

Physical/Functional Domains

Survival-related factors Situation-related factors

1 Nutrition 2 Environment 3 Health 4 Behaviour

Restrictions on: Opportunities to: Unavoidable/
Imposed conditions:

Available 
conditions:

Presence of: Presence of: Exercise of ‘agency’
impeded by:

‘Agency’
exercised by:

Water or food
intake

Drink enough
water

Thermal
extremes

Thermally 
tolerable

Disease Appropriate
body condition
score

Choices
markedly
restricted

Available
engaging
choices

Food quality and
variety

Eat a
balanced/varied
diet

Close 
confinement

Space for freer
movement

Injury Bonding

Voluntary over-
eating

Unpredictable
events

Normal 
environment
variation

Functional
impairment

Good fitness
level

Constraints on
animal-animal
interaction

Play

Affective experience Domain

5 Mental state

Negative: Positive: Negative: Positive: Negative: Positive: Negative: Positive:

Forms of 
discomfort:

Forms of 
comfort:

Calmness

Thirst Quenching thirst Thermal Thermal Pain Comforts of
good health
and high 
functional
capacity

Anger Engaged

Hunger Pleasure of 
different
tastes/smells

Respiratory, eg
breathlessness

Respiratory Debility Boredom Maternally
rewarded

Auditory, eg
impairment

Auditory Sickness Helplessness Playfulness
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current literature to direct future research efforts and better
inform commercial sensor development. This review is the
first to assess existing literature under an established
welfare framework as a way of determining the potential
value of on-animal sensors for welfare assessment. 

Materials and methods

Initial literature search
The methods used for this systematic review have been
described in depth by Fogarty et al (2018). Briefly, four
electronic databases (Scopus, ScienceDirect, CAB
Abstracts and ProQuest) were searched for relevant litera-
ture between February and May 2017. Search terms used
were ‘sheep’, ‘ovine’, ‘ovis aries’, ‘ewe*’, ‘ram’ and ‘lamb’
in conjunction with ‘GPS’, ‘Global Positioning System*’,
‘GNSS’, ‘Global Navigation Satellite System*’,
‘accelerometer*’, ‘proximity log*’, ‘contact log*’, ‘rumen
sensor’, ‘rumen bolus’, ‘body temperature monitor’, ‘body
temperature AND sensor’, ‘blood pressure monitor’ ‘blood
pressure AND sensor’, ‘heart rate monitor’ and ‘heart rate
AND sensor’. To be included in this review, articles needed
to be written in English, conducted on domestic sheep
(Ovis aries) and use at least one type of on-animal sensor
attached to at least one sheep. Only peer-reviewed articles
were retained. If a paper was not peer-reviewed or missing
data (eg abstract only or conference paper), a thorough
search for the relevant peer-reviewed paper presenting this
information was conducted. If this could not be sourced, the
paper was excluded. Books, book chapters and review
papers were also excluded. The reference list of each publi-
cation was also searched to ensure comprehensive coverage
of the subject area. 

Potential use of on-animal sensors to monitor welfare

Experiment overview and objectives 

General information including the location and duration of
the study, number and type of animals used and sensor
application were recorded for each reviewed experiment. In
addition, the broad focus of each experiment was deter-
mined to include up to two of the following categories: (i)
behaviour; (ii) health; (iii) method validation; (iv) environ-
ment management; (v) sensor validation; (vi) welfare; or
(vii) other (see Fogarty et al [2018] for details). A focus on
‘welfare’ was defined as studies in which sensors were used
to measure a particular aspect of animal welfare (either
positive or negative).
Application to the Five Domains Model

To explore potential relationships between the reviewed
studies and key features of the FD Model, a comprehensive
list of keywords was developed (Table 2). These keywords
were based on the descriptions presented in Table 1. Each
study was then evaluated based on the presence or absence
of these keywords in either the aims, objectives or conclu-
sion sections. If a keyword was present, the study was
considered ‘applicable’ to that particular Domain. If studies
did not include an overt statement of aims or conclusions
then the entire last paragraph of the introduction and/or

discussion were assessed. When assessing the presence of
keywords, some level of scientific judgment was necessary
to ensure inclusion was contextually relevant (eg ‘grazing’
referring to the act of grazing per se [Domain 1 and 4] or as
a general descriptor of the type of production system which
would not be considered relevant to any Domain). Each
publication was assessed as a whole, even if multiple inde-
pendent experiments were included within a single paper.
This contrasts with the approach of Fogarty et al (2018),
who presented results for each independent experiment. The
present approach was considered necessary to minimise
repetition and inflation of results due to similar experiments
within a single publication. 
The use of different sensor types for welfare assessment 

Once the welfare assessment had been conducted, each
study was then reviewed to determine the broad ‘family’ of
sensors: (i) location; (ii) motion; and (iii) physiological.
Each ‘family’ was then subdivided based on the type of data
collected (see Table 3 for definitions).

Results and Discussion

Search results
The results of the database and bibliographic searches iden-
tified 2,294 and 226 unique documents, respectively,
relevant to the search terms. Of these, a total of 71 studies
reporting on 82 independent experiments were included in
this review. An in-depth summary of results can be found in
Fogarty et al (2018). 

The Five Domains
The outcomes of aligning published sensor applications in
each study to the FD Model are shown in Table 4 (supple-
mentary material to papers published in Animal Welfare:
https://www.ufaw.org.uk/the-ufaw-journal/supplementary-
material) and summarised in Figure 1. The assessment of
sensor utilisation revealed the greatest proportion of appli-
cations within the ‘Behaviour’ Domain (90.1%; n = 64), and
the lowest within the ‘Health’ (25.4%; n = 18) and ‘Mental
state’ Domains (25.4%; n = 18). 
Location sensors were utilised in 64.8% of reviewed studies
(n = 46), followed by motion sensors (33.8%; n = 24) and phys-
iological sensors (28.2%; n = 20). Fourteen of the 71 reviewed
studies used multiple sensors and thus reported percentages do
not sum to 100. The distribution of sensor type under each
Domain is shown in Figure 2. Location sensors were dominant
across all Domains, with the exception of ‘Mental state’, where
physiological sensors were widely utilised. 
Nutrition

The results of this review suggest sensors may have some
relevance for assessing the nutritional aspects of welfare
(Figure 1, Figure 2[a]). At a basic level, many of the studies
were focused on grazing or bite behaviour, satisfying the
fundamental assessment of ‘food intake’. In initial experi-
ments by Penning (1983) and Rutter et al (1997b), jaw
movement was successfully measured by a change in
conductivity of a fitted noseband, with 91.0 and 95.0%
agreement between visual observations and sensor output,
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Table 2   The specific keywords or phrases used for categorisation into the FD Model.

Domain Keywords or phrases

1 Nutrition Feeding, grazing, ruminating, suckling, foraging, drinking or similar

Water

Food, diet

Jaw movement, bite rate or similar

Undernutrition, malnutrition, starvation or similar

Nutritional status, nutritional condition or similar

Metabolisable energy (ME)

Energy expenditure (EE)

Food availability, herbage mass or similar

Food variety, eg preferred/unpreferred vegetation, varied foraging opportunity, vegetation type

Food quality

2 Environment Environment

Exposure/thermal stress

Weather, temperature, wind, chill, rainfall or similar

Shelter

Housing conditions

Space for free movement (eg stocking rate/similar, spatial/grazing distribution/similar, confinement, home range, roaming)

Environmental variability, eg landscape heterogeneity, seasonal patterns

Predictability or unpredictability, novel changing conditions

3 Health Disease or reference to a specific disease, eg Huntington’s disease, NCL disease

Walking, locomotion (only if discussed in the context of normal vs abnormal)

Parasite burden, eg faecal egg count

Functional impairment including restricted growth/function

Immunology

Core temperature

Death/survival

Reduced physical activity

Body condition score, body mass, liveweight, weight gain/loss or similar

4 Behaviour Behaviour

Feeding behaviour, eg grazing

Social behaviour, eg affiliative behaviour, mother-offspring interaction

Movement behaviour, eg walking, running, standing, ambulation, number of steps, distance travelled, speed of travel

Spatial behaviour, eg foraging paths, spatial utilisation, sheltering

Vigilance behaviour, eg hide from predators

Sexual behaviour, eg mountings

Agency, eg site selection/preference, judgement bias

Sleep, rest, lying

Specific behaviours, eg urination, faecal excretion

5 Mental state Affective state(s)

Emotion, eg calm, relaxed, optimism, optimistic

Positive/negative perception

Fear, fearfulness or similar

Distress, stress or similar

Temperament

Hunger/satiated

Libido

Boredom

Isolation

Cognitive
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respectively. More recently, accelerometers (a type of
motion sensor) have emerged as a replacement, perhaps due
to limitations of jaw sensors in terms of skills required for
precise attachment for accurate readings, the miniaturisa-
tion of acceleration sensors and/or the greater range of
application for accelerometers across multiple types of
behaviours (Watanabe et al 2008). 
Attempts to identify grazing from data signatures, either as
a separate behaviour (Nadimi et al 2012; Alvarenga et al
2016; Giovanetti et al 2017) or as part of a class of ‘active’
behaviours (Nadimi et al 2012; McLennan et al 2015) have
yielded variable results both between and even within
experiments. For example, when grouped with ‘standing’
and ‘standing ruminating’, McLennan et al (2015) found
‘grazing’ could only be detected in 3.4% of cases. However,
when joined with ‘walking’ to form an ‘active’ behaviour
group, accuracy increased to 80.0%. In contrast, Alvarenga
et al (2016) found high levels of precision (85.0 to 92.9%)
when distinguishing ‘grazing’ from other behaviours
(‘lying’, ‘running’, ‘standing’ or ‘walking’), depending on

the method of analysis. While these experiments indicate
that sensors can detect feeding to some degree, performance
is inconsistent and will need to be further refined before
successful implementation in a commercial system. 
The quality and variety of feed available to animals should
also be considered when assessing animal welfare. This is
particularly important in extensive production systems
where pasture quality can vary considerably (Rutter 2014).
For improved welfare standards, managing the survival-
critical aspect of having enough food would simply
minimise negative welfare, whereas encouraging explo-
ration and acquisition of varied foods would improve it,
along with other relevant aspects of welfare, such as health
status and body condition (Mellor 2016b). In this review,
only three experiments addressed this area of welfare using
varied application of location (GPS) sensors (Ares et al
2007; Pérez-Barbería et al 2015; Jørgensen et al 2016).
Ares et al (2007) found sheep travelled at different speeds
depending on grass or shrub density. Similarly, Pérez-
Barbería et al (2015) found vegetation type impacted intra-
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Table 3   Sensor family and broad measurement definitions.

Sensor family Sub-family Definition Broad measurement Definition

Location Absolute Location information
based on the absolute
location of the animal in
space and time (ie GPS)

Distance/Speed Using the distance and/or time between consecutive
locations to calculate distance travelled or speed of
movement

Social interaction Comparison of GPS positions to determine how
close in space animals are

Spatial data GPS positions related to the environment, including
resource use, spatial map visualisation, etc

Relative Location information based
on the sensor’s 
relative location to another
sensor (ie contact logger)

Social interaction Time and duration of contacts

Motion Acceleration Movement based on the
acceleration the of animal
(ie accelerometer)

Raw and/or derived
metrics

Use of raw axis (x, y, z) data and/or derived 
calculations

Proprietary metrics Output from proprietary programme providing 
summary data

Body or
body-part
position

Sensors that determine a
change in body position or
orientation (ie mercury tilt
sensors, jaw/bite sensors
or similar)

Body movement Some measure of body movement eg jaw movements

Body orientation Some measure of orientation usually through a tilt
sensor

Proprietary metrics Output from proprietary programme providing summary
data

Physiological Group of sensors that
measure various aspects
of an animals’ physiology
(ie HR monitor, oxygen
sensor, respiratory 
sensor, temperature 
sensor, urine sensor)

General HR Basic measures of heart rate eg beat per minute
(bpm), mean/min/max bpm

Complex HR Complex derivations from heart rate eg beat-to-beat
intervals; root-mean-square of successive beat-to-beat
differences 

Oxygen concentration Concentration of oxygen in breathed air via face
mask system

Respiration rate Rate of respiration via extensible belt

Body temperature Various measures of body temperature, eg ear

Body humidity A measure of perspiration

Urination Urination events
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species interaction but did not impact inter-species contact
between sheep and deer. Jørgensen et al (2016) did not find
any impact of habitat quality on ranging behaviour of two
sheep breeds in alpine Norway. Whilst detectable influ-
ences of food quality on grazing behaviour were inconsis-
tent, this aspect of welfare, as highlighted in the FD model,
should be explored further. This could then be combined
with simpler measurements of food intake, extending
welfare assessment to include both negative welfare
minimisation and positive welfare promotion.
Comprehensive welfare assessment should also consider the
influence of other factors on feeding behaviour. Several other
factors were explored in a number of studies where various
impacts on grazing were examined: social behaviour (di
Virgilio & Morales 2016); stocking density (Lin et al 2011);
food availability (Freire et al 2012); weather (Thomas et al
2008); and overall spatiotemporal patterns (Kawamura et al
2005; Schlecht et al 2006; Ares et al 2007; Putfarken et al
2008; Williams et al 2009, 2011; Falú et al 2014; Mysterud
et al 2014; Ormaechea & Peri 2015; Zampaligré & Schlecht
2018). Given that sheep exist in a dynamic environment, the
ability to address context-specific impacts would provide addi-
tional value in a welfare monitoring system. In the experiment
by di Virgilio and Morales (2016), GPS was able to confirm the
impact of social hierarchy on food choice, with dominant indi-
viduals more likely to graze preferred areas compared to low-
ranked animals. Whilst provision of a ‘yes/no’ indicator of
whether an animal has eaten is useful, extrapolation to known
contextual parameters (in this case social grouping) would
ensure a more holistic assessment of welfare, ie is the animal
eating more or less due to underlying social interactions or is
this an indicator of a larger health issue. 

Environment

Similar to ‘Nutrition’, the application of sensors to
monitor the ‘Environment’ Domain shows merit
(Figure 1, Figure 2[b]). Many of these studies addressed
aspects of the animal’s physical environment, including
provision of a thermally comfortable setting (Lowe et al
2001; Thomas et al 2008; Broster et al 2010; Taylor et al
2011; Falú et al 2014; Pérez-Barbería et al 2015; Doyle
et al 2016; Harris et al 2016; Broster et al 2017;
Zampaligré & Schlecht 2018). All studies were
conducted using location sensors, with the exception of
Lowe et al (2001) who used a heart-rate (HR) monitor
and temperature sensor to monitor changes in body
temperature based on weather fluctuations. This wide-
spread use of location sensors is not particularly
surprising, given an animal’s absolute (GPS) or relative
(contact logger) position can provide valuable informa-
tion on complex animal-environment relationships. For
example, Thomas et al (2008) found sheep travelled
faster and further from water on cooler days, evidenced
by speed of movement between consecutive GPS points
and interaction with paddock resources. Similarly,
Doyle et al (2016) noted daily contact time between
animals increased on hotter and wetter days, measured
by the number and duration of contact logger interac-
tions. As sheep often live in fluctuating environments,
the ability to monitor animal welfare in such changeable
conditions would be hugely beneficial. This also
suggests a deeper level of complexity for welfare assess-
ment: that it is not only the individual itself but many
contextual factors that impact welfare.

© 2019 Universities Federation for Animal Welfare

Figure 1

Alignment of the reviewed studies to the FD Model. 
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Provision of a thermally comfortable setting is often
achieved through adequate shelter. This was studied by
Broster et al (2010, 2012, 2017) and Taylor et al (2011) who
used GPS and/or contact loggers to monitor sheltering
behaviour in lambing ewes. Each experiment explored
different aspects of this behaviour, noting increased shel-
tering on high chill days (Taylor et al 2011), altered mother-
offspring interaction in different shelter types (Broster et al
2010), increased crossing of sheltered areas at low stocking
rates (Broster et al 2012) and preference for shelter at partu-
rition (Broster et al 2017). Given wind, rain and low air

temperatures are known to increase lamb mortality
(Alexander et al 1980; Mellor & Stafford 2004), the use of
on-animal sensors during this critical period is a good
example of how sensors may be used to improve welfare
monitoring. Further integration of these animal-based indi-
cators with environment-based sensors (eg adverse weather
reporting from an external weather station), would extend
welfare assessment further, ensuring animals are more
effectively managed in extensive production systems. 
Another aspect of the ‘Environment’ Domain is the animal’s
‘space for freer movement’. In extensive animal production,
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Figure 2

Alignment of major sensor families to the FD Model for (a) Nutrition, (b) Environment, (c) Health, (d) Behaviour and (e) Mental state.
Families include location sensors (GPS and contact loggers), motion sensors (accelerometers, jaw/bite sensors, mercury tilt sensors
or similar) and physiological sensors (HR monitors, temperature sensors, urine sensors or similar). The dotted line represents the
total number of studies conducted using that particular sensor family. 
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space availability can be determined through stocking rate.
This aspect was studied in a number of the experiments,
usually with one of two motivations: (i) understanding the
impact of changing stocking rate on sheep behaviour
(Animut et al 2005; Putfarken et al 2008; Williams et al
2009; Lin et al 2011; Broster et al 2012); or (ii) under-
standing the impact of stocking rate on the environment
(Kawamura et al 2005; Rusch et al 2009; Mysterud et al
2014; Harris et al 2016). The former has an obvious impact
on welfare, with increased stocking rate found to increase
the number of steps taken and time spent eating, even at the
expense of rest (Animut et al 2005; Lin et al 2011).
However, inclusion of the second group highlights a
potential limitation of the review, with the method of
accepting studies based on the presence or absence of
keywords introducing research with minimal application to
welfare. In the case of these studies, whilst the health of the
environment would have some indirect impact on the
animal’s welfare, the sensor technology has ultimately been
applied with a very different focus in mind. Despite this,
there does appear to be some crossover between welfare
assessment and environmental sustainability assessment
which is also an emerging area for commercial sensor
systems (Handcock et al 2009). 
Health

One of the lowest levels of sensor alignment across all
studies was with the ‘Health’ Domain (Figure 1,
Figure 2[c]). Many of these experiments were concerned
with identification of impaired growth and/or function. For
example, Donovan et al (2013) and Simitzis et al (2009)
used location (GPS) or physiological (HR monitor) sensors,
respectively, to examine the effects of maternal undernutri-
tion on offspring development. Other relevant studies were
those with a specific disease or disease-related focus: Cronin
et al (2016) on neuronal ceroid lipofuscinosis (NCL),
Morton et al (2014) on Huntington’s disease, Goddard et al
(2000) on immunological response to human contact and
Falzon et al (2013) on measurable impacts of worm burden.
Due to the variability of disease states and shared clinical
signs of functional impairment, identification of sensors
dedicated to single diseases may prove difficult. For
example, Cronin et al (2016) found NCL-affected animals
showed high levels of walking behaviour compared to unaf-
fected animals. Falzon et al (2013) found sheep with higher
faecal egg counts travelled greater distances in a 24-h period
compared to animals with a lower worm burden. Whilst
completely unrelated, these studies present similar
symptoms for detection (increased walking) and highlight
potential limitations for technology application. 
When conducting this review, distinguishing between a
study’s ‘relevance’ or ‘non-relevance’ was often difficult.
This was particularly the case for this Domain, with
reference to the required inclusion of ‘abnormal movement’
(Table 2). Given that the FD Model extends the definition of
‘health’ to include ‘general activity’ and ‘physical fitness’ as
a sign of positive welfare, this decision may have falsely
limited the results and contributed to the apparent low level
of application. However, this demarcation was considered

important to minimise confusion over what would be
included under ‘general’ activity. Furthermore, given that
these aspects of welfare would often be included under
another Domain (eg distance travelled included in the
‘Behaviour’ Domain), this distinction prevented inflation of
the results from aspects that would be considered relevant
across these other Domains. 
Behaviour

Sensor technology allows for recording of numerous behav-
iours: eg anti-predator (Manning et al 2014), urination
(Betteridge et al 2010a,b), feeding (Penning 1983; Rutter
et al 1997b; Nadimi et al 2012; Alvarenga et al 2016;
Giovanetti et al 2017) and sexual behaviour (Fogarty et al
2015; Alhamada et al 2016, 2017). This was supported in
this review, with the majority of studies aligned with this
Domain (Figure 1, Figure 2[d]). At first glance, this
suggests great potential for on-animal sensors as a method
of quantitative data collection for behavioural welfare
assessment. However, as previously stated, many behav-
iours are non-specific and may be altered due to a number
of factors. On the one hand, this can be beneficial, allowing
use of sensor data across a variety of purposes (eg
measuring increased or decreased walking to indicate
disease, foraging due to hunger or engagement in play). On
the other hand, this generalised presentation makes it
difficult to pinpoint causative factors, requiring human
operator judgment as to whether a behaviour represents
‘good’ or ‘bad’ welfare. Of course, where behaviours are
unique to a specific event, eg centripedal rotation during
predation (Manning et al 2014), on-animal behaviour moni-
toring has an obvious and easy application. For the most
part, however, commercial welfare monitoring from a
behavioural standpoint will require ample thought before
implementation. Furthermore, as behaviour is plastic and
can easily be modified based on the perceived stimuli at any
time, systems will need to be adaptable (Ralph et al 2018),
with the presence of a particular behaviour and the resulting
impact on welfare often dependent on the context under
which it is being expressed.
Mental state

There was a generally low level of alignment of the
reviewed studies with the ‘Mental state’ Domain (Figure 1).
This reflects the subjective nature of affective states and
difficulty in ‘measuring’ an emotional response
(Hemsworth et al 2015; Tilbrook & Ralph 2018). In a
review by Hemsworth et al (2015), historical focus of
welfare science has been on detection of negative welfare
states using physiological or behavioural measurements.
Similar results were found in this review (Figure 2[e]), with
all experiments examining negative affects (ie ‘stress’,
‘isolation’, ‘fear’ etc) using physiological sensors
(Hargreaves & Hutson 1990; Goddard et al 2000; Lowe
et al 2001; Tallet et al 2006; Destrez et al 2012; Simitzis
et al 2012; Destrez et al 2013) or ‘behavioural’ measures
from GPS (Webber et al 2015) or accelerometers (Verbeek
et al 2012). Of those using physiological sensors, all were
conducted with HR monitors, either exclusively

© 2019 Universities Federation for Animal Welfare
38



On-animal sensors for monitoring sheep welfare   415

(Hargreaves & Hutson 1990; Goddard et al 2000; Tallet
et al 2006; Destrez et al 2012; Simitzis et al 2012; Destrez
et al 2013) or in conjunction with another physiological
sensor (temperature sensor; [Lowe et al 2001]). This is
unsurprising given elevated heart rate is often related to
stimulation of the sympathetic (ie fight or flight) nervous
system (Hargreaves & Hutson 1990). 
In addition to measuring negative affects, a number of
experiments addressed the positive aspects of mental state
(Freire et al 2012; Gipson et al 2012; Coulon et al 2015;
Alhamada et al 2016, 2017) or general emotions (Désiré
et al 2004; Greiveldinger et al 2007; Reefmann et al 2009).
Many of these experiments also utilised HR monitors
(Désiré et al 2004; Greiveldinger et al 2007; Reefmann et al
2009; Coulon et al 2015) with inter-heartbeat interval and
heart-rate variability indicative of parasympathetic (ie rest
and digest) activation. 
One aspect lacking in the reviewed papers was the use of
sensors to measure internal (ie mental) stressors. In experi-
ments involving race car drivers (Taelman et al 2016) and
horses (Norton et al 2018), heart-rate modelling can be used
to indicate mental stress by decoupling the recorded heart
rate into its fundamental components: basal metabolism,
thermoregulation and physical activity. In both studies, once
these fundamental components have been accounted for,
any further change in heart rate is thought to reflect a quan-
tifiable measure of the organism’s stress level. This repre-
sents a novel approach to objectively measure stress
(specifically acute stress response) using wearable tech-
nology and could be applied in future sheep research to
quantify mental aspects of welfare. This would undoubtedly
improve overall welfare assessment and allow for contin-
uous objective monitoring of an aspect of welfare that has
remained difficult to measure thus far.

Limitations of the review
This review indicates the potential for animal sensor
systems to monitor welfare through reliable quantitative
behavioural and physiological measures that can then be
mapped to welfare frameworks. However, there are a
number of limitations that should be considered. First, there
is a measure of subjectivity when determining ‘application’
to each Domain. The development of keywords has
attempted to mitigate this, though some level of scientific
judgement was still required. For example, ‘grazing’ can be
used to indicate food intake (Domain 1 and 4) or as a
method of describing an extensive production system (not
relevant to any Domain). In this case, contextual use has
significant impact on the relevance of the study and needs
to be assessed accordingly. Furthermore, inclusion of a
contextually relevant word did not necessarily equate to
relevance either, with some papers including keywords
when recommending future scientific work, not discussing
the research at hand. 
Another limitation of this review is the tendency to include
studies as relevant based on presence of a keyword, with no
option to determine relevance if a keyword is not used. For
example, if a keyword was present the paper was automati-

cally assessed to determine application to a Domain. On the
other hand, missing keywords meant the article was never
assessed under that Domain, even if they should have been.
For example, Manning et al (2014) used location sensors
(GPS) to study sheep behaviour during predation. Whilst
this could be considered relevant to ‘Health’ (injury from a
predation event) and ‘Mental state’ (fear associated with the
event), it was not included under either Domain due to the
absence of relevant keywords in the aims and/or conclu-
sions. Furthermore, as some studies did not include overt
statements of objectives or conclusions, there was some
discrepancy between assessment based on concise state-
ments (eg Dobos et al 2014) or assessment on entire para-
graphs (eg Freire et al 2012; Donovan et al 2013; Munn
et al 2013). This may have led to under or over estimation
of relevance, respectively, and should be considered when
interpreting these results. 
Since the inclusion criteria did not relate to the quality of
the study, this should also be considered when interpreting
results. For example, of the 71 publications reviewed, only
19.7% (n = 14) referred to previously validated accuracy
of the sensors, with a further 21.1% (n = 15) including the
validation as part of the publication methods. An addi-
tional 18.3% (n = 13) of publications that did not include
reference to sensor accuracy, all used GPS and employed
some method of post hoc data ‘cleaning’: exclusion based
on speed/distance values (Dobos et al 2014; Falú et al
2014; Webber et al 2015); removal of location points
outside of a paddock boundary (Gipson et al 2012; Harris
et al 2016); rejection based on a given horizontal dilution
of precision (HDOP) value (or similar) (Schlecht et al
2006; Williams et al 2009, 2011; Jørgensen et al 2016;
Broster et al 2017); and/or other methods (Haddadi et al
2011; Gipson et al 2012; Donovan et al 2013; Falú et al
2014). Forty-one percent (n = 29) of publications did not
include validated accuracy measures or post-processing
cleaning. Thus, when considering how technology might
enhance welfare assessment, consideration of study design
and quality of work is also important.
Finally, this review provided a comprehensive assessment
of how sensors can be used to monitor various components
of welfare. However, there was no exploration of the thresh-
olds or limits around which an objective measure of welfare
might be based. For this reason, this review should not be
used as a definitive ranking of studies based on their
perceived merit for welfare assessment, but as a benchmark
that establishes what has been published in this space and
where further studies are required. Furthermore, the review
provides a scaffold upon which technology developers may
better understand the requirements for welfare assessment
and how their system may contribute to this. 

Animal welfare implications
The results of this review highlight the low number of
studies that have been conducted with an explicit focus on
sensor technology for welfare assessment. In most cases it is
clear that the reviewed literature was never intended to relate
to welfare, with the majority of publications (59.2%; n = 42)
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having no mention of ‘welfare’ in the main body of text.
Perhaps the reason for this low level of application is the
complexity of welfare per se. Welfare encompasses physio-
logical and psychological aspects (Tilbrook & Ralph 2018),
with the focus for assessment invariably depending on the
context in which welfare is being viewed (Hemsworth et al
2015; Mellor & Beausoleil 2015; Littlewood & Mellor 2016;
Mellor 2017). For this reason, it is likely that the reviewed
studies, given that they are using relatively novel technology
that first needs to be proven as a useful tool in an agricultural
context, chose not to focus on such a complex issue in the
first instance. Despite this apparent low level of deliberate
application, the retrospective classification of the reviewed
literature under the FD Model highlights how sensors can
often be applied to welfare assessments, even if this was not
the authors’ original intent.
When choosing a sensor type for commercial development,
those sensors with broad application across multiple
Domains would be beneficial. Location information would
be valuable in extensive livestock systems, where animals
are often dispersed over large distances. This information
could also be used to locate an individual, enabling swift
intervention for animals that fall outside the welfare
standards. However, as some location sensors (GPS) have
high power requirements, this could be a significant barrier
for implementation (Swain et al 2011). Motion sensors can
detect a number of behaviours which can then be extrapo-
lated to infer many aspects of welfare, eg disease state,
injury, time spent lying or daily activity patterns. However,
practicalities of fitting the sensor, data accuracy, download
and interpretation are still being determined (Watanabe et al
2008; Barwick et al 2018). Finally, physiological sensors
appear uniquely able to measure aspects of mental state and
should not be discounted for inclusion in a commercial
device. Again, practicalities associated with attachment will
need to be researched further. 
Given the benefits of each sensor type, perhaps the develop-
ment of on-animal sensors for welfare assessment should
focus on the integration of more than one sensor. Though
issues such as large device size and common attachment
points will still need to be overcome, integration will allow
broad welfare assessment. As the current rate of technology
development continues to rise, further miniaturisation of
existing technologies and improved battery capacity will
increase the relevance of appropriate sensor technologies. In
the meantime, the use of sensors in a research capacity will
provide fundamental knowledge upon which commercial
welfare systems will be able to be built. 
Despite the clear benefit of sensor technology for welfare
assessment, careful consideration of a number of factors is
still required before implementation. Firstly, regardless of
the model chosen for assessment, every system will still
need to adequately consider the physical, biotic and social
context of the animal in question. The apparent numerical
objectivity of technological sensors may hinder this, as it
will be tempting for commercial business to develop
arbitrary welfare ‘scores’ in order to rank different

animals/farms/production systems etc. Furthermore, given
that use of technological sensors will inevitably result in
reliance on indices that can actually be measured or observed
in every situation, there is the potential to miss important
aspects of the animal’s life that may still impact their welfare
status. This may result in assessment being based on incom-
plete ‘snapshots’ of the animal’s life at a given point in time
rather than constant monitoring of welfare. It is important to
note that these considerations are not limited to sensor tech-
nology, but rather common amongst welfare assessments in
general. Thus, whilst these aspects still require considera-
tion, as long as the final welfare assessment is based on
cautious inference from scientifically informed best
judgment (Mellor 2017), sensor technology has the potential
to enhance current monitoring systems. 
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Chapter 4. General field research methods and introduction to 

sensor data  

 

Overview 

This section has been included to provide clarity around how data has been managed and its 

presentation across Chapters 5 to 9. As these chapters have been written for the purpose of 

publication, it was not possible to thoroughly explain the process of data management, 

analysis and other thesis-scale background detail in the individual manuscripts themselves. It 

is the intent of this section to provide the reader with a synoptic view of the methodology 

used in the PhD program, the sensors applied and how each field trial and data analysis 

process has been undertaken. Details on dataset distribution between each chapter are also 

provided. 
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4.1 Context 

The original focus of the PhD was to assess sensor application for lifelong welfare monitoring 

(as directed by the agency funding the research). However, throughout the development of 

Chapter 2, it was decided that this concept was too large and complex to address within a 

single PhD program. Hence, the research focus shifted to parturition as a time of potential 

adverse welfare. Parturition can be considered as a period of considerable welfare risk (Bickell 

et al., 2010, Hinch and Brien, 2014). For the ewe, it is a period of physical discomfort (Jensen, 

2012), especially if the birth process has complications such as dystocia. For the lamb, 

parturition is the first experience of the newborn, and can be considered the first aspect of 

‘lifelong’ welfare monitoring.  

The systematic literature reviews reported in Chapters 2 and 3 indicate merit in the use of 

sensors for autonomous welfare assessment. The three major sensor types most appropriate 

for assessment are location technologies, motion sensors and physiological sensors (Chapter 

3). In this program, two technologies were chosen for further analysis, namely GNSS (location 

sensor) and accelerometers (motion sensor). These were selected for two reasons: the first 

being that they showed potential for detection of key behaviours of interest; and the second 

being that they are readily available as research tools. These sensors are also being developed 

into commercial platforms (Trotter, 2018). Though physiological sensors such as a heart rate 

monitor would also provide great information, especially for the ‘Mental State’ domain, 

operational versions of this technology are not readily available in either a research or 

commercial context. 

4.2 Field work 

The PhD research program was based on two separate field campaigns involving fitting of on-

animal sensor systems and observational data recording. Both field campaigns were 

conducted at a commercial mixed enterprise property in North Canterbury, New Zealand 

(43.0°S and 173.2°E). The following information has been reported in detail in Chapter 5 and 

Chapter 7. However, a summary is provided here to better understand how the data from 

each trial was handled. 

47



4.2.1 2017 field trial 

The first field trial was conducted from 29 September to 13 October 2017. Mixed-aged Merino 

and Merino-cross ewes (n = 40; 20 twin-bearing and 20 single-bearing) were selected based 

on an expected lambing date within the experimental period and number of expected lambs 

(confirmed by ultrasound assessments as per normal farm practice). Prior to the study’s 

commencement, ewes were fitted with i-gotU GT-600 GNSS loggers (Mobile Action, Taiwan) 

attached to neck collars and programmed to obtain locations at 3 min intervals. Total weight 

of the GNSS collar was approximately 500 g (Figure 4.1) The animals were also fitted with tri-

axial accelerometers (Axivity AX3, Axivity Ltd, Newcastle, UK) attached to ear tags and 

configured at 12.5 Hz. Total weight of the accelerometer ear tag was 20 g (Figure 4.2). An in-

situ photograph of sensor attachment is shown in Figure 4.3. The accelerometers were fixed 

with orientation of the X-, Y- and Z-axis along the dorso-ventral (up-down), lateral (side-to-

side) and anterior-posterior (forward-backward) axes, respectively (Figure 4.4). Animals were 

kept in a 3.09 ha experimental paddock for the entire study duration. Forage and water were 

supplied ad libitum and shelter was provided by the natural sloping topography. The devices 

remained on the animals until 25 October 2017 (total attachment period 26 days), after which 

they were removed, and the data downloaded. 

 

Figure 4.1 i-gotU GT-600 GNSS loggers enclosed in a neck collar 
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Figure 4.2 Axivity AX3 tri-axial accelerometer attached to a standard ear tag 

Figure 4.3 In-situ photograph of attached GNSS collar and accelerometer ear tag 

Figure 4.4 Schematic drawing of the ear tag attachment site including device orientation 
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Throughout the experimental period (30 September 2017 to 13 October 2017: 14 days in 

total), ewes were observed from a neighbouring paddock using binoculars and a Nikon 

Coolpix B500 camera with a 40x optical zoom (Nikon, Japan). However, due to technical issues 

associated with time stamping, the videos were unable to be used during data analysis. Ad 

libitum behaviour observations (Martin and Bateson, 2007) were conducted from 0630 h – 

1230 h and 1530 h – 1800 h ± 30 min to record lambing events. Where possible, the exact 

time of lambing was recorded (to the nearest minute). Lambing was considered the time in 

which the first lamb was expelled fully. If this was not achievable, lambing time was estimated 

to the nearest hour. For ewes that lambed overnight or during periods where the observer 

was not present, only the day of lambing was recorded. In this situation, day of lambing was 

noted as the day the newborn was first identified.  

4.2.2 2018 field trial 

The second field trial was conducted from 8 September to 23 September 2018. Mixed-age 

ewes (n = 39; Merino or Merino-cross) were selected from the main commercial flock based 

on them having an expected lambing date during the experimental period and number of 

expected lambs (confirmed by ultrasound assessments as per normal farm practice). Again, 

prior to study commencement, ewes were fitted with GNSS collars and accelerometer ear 

tags as per the 2017 trial. The accelerometers were configured at the same rate as 2017 (12.5 

Hz). However, the GNSS collars were configured to collect locations at 2 min intervals. 

Following device attachment, animals were moved to the planned study paddock. However, 

on the morning of Study Day 1 it was noted that this paddock did not allow adequate 

observation of the animals. Hence the flock were moved to an adjoining paddock at 1100 h 

on Study Day 1, where they remained for the rest of the study. This second paddock was 4.4 

ha. Forage and water were supplied ad libitum and shelter was provided by tree breaks along 

the east and west paddock boundaries. The north side of the paddock followed a major farm 

road. The devices were removed on the morning of 24 September 2018 (total attachment 

period 16 days) and data was subsequently downloaded. 

Similar to the 2017 trial, ewes were visually observed throughout the experimental period (9 

September to 23 September 2018: 15 days in total). Ad libitum behaviour observations 

(Martin and Bateson, 2007), assisted by binoculars, were conducted from 0730 h – 1230 h 
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and 1330 h – 1730 h (± 30 min) to record lambing events. Video observations were also 

acquired during these times using a Nikon Coolpix B500 camera with a 40x optical zoom 

(Nikon, Japan) and a Sony HDR-PJ410 Camcorder (Sony, Japan). Both cameras were 

synchronised with the “time.is” website (https://time.is/) at the start of each day before any 

recordings. 

Again, where possible the exact time of lambing was recorded. If this was not possible, 

lambing was estimated to the nearest hour or day (for those that lambed overnight or during 

periods where the observer was not present).  

4.3 Data management and analysis 

As detailed previously, two types of sensors were selected for evaluation: GNSS and 

accelerometers. The following section provides a basic description of each sensor and chosen 

methods of data processing. 

4.3.1  GNSS 

GNSS tracking of animal movement was first conducted in 1994 and applied to Moose (Alces 

alces) to understand the impact of forest cover on accuracy (Rempel et al., 1995). Today, 

GNSS tracking is widely used in both wildlife (see Wilmers et al. (2015) and Hofman et al. 

(2019) for a review) and livestock (see Swain et al. (2011) for a review) research. As detailed 

in Chapter 2, GNSS is widely reported in sheep research (48.8% of reviewed literature), usually 

for the purpose of monitoring behaviour or environment-related analysis. 

4.3.1.1 Raw GNSS data 

At a basic level, raw GNSS data provides three important pieces of information: a timestamp 

and the corresponding latitude and longitude (Figure 4.5). Other information such as altitude 

and horizontal dilution of precision (HDOP) is also provided, but this was not considered in 

the current analysis. In the majority of publications, raw GNSS data is processed into more 

meaningful metrics e.g. speed or distance travelled (Dobos et al., 2014, Dobos et al., 2015, 

Fogarty et al., 2015, Broster et al., 2012, Falzon et al., 2013, Thomas et al., 2008), social 

metrics (Dobos et al., 2014), or general interactions with the environment, e.g. distance from 
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shelter (Broster et al., 2012, Taylor et al., 2011), distance from water (Thomas et al., 2008), 

preferred grazing locations (Falú et al., 2014, Ormaechea and Peri, 2015). 

 

Figure 4.5 Example of raw GNSS data: a) tabular and b) graphical 

In this project, three major GNSS metrics were calculated: (i) speed of movement; (ii) distance 

to peers; and (iii) use of space. Processing and analysis was conducted using a combination of 

ArcGIS Version 10.3.1 (ESRI, 2016) and the statistical software R (R Core Team, 2018). This 

work has been presented in detail in Chapter 5. For contextual purposes, the following 

sections provide further details of each metric.  

4.3.1.2 Speed of movement 

Distance, time and speed between consecutive locations was calculated using the raw GNSS 

data. Speed of movement was calculated as distance between consecutive GNSS locations 

divided by the time interval between the readings (Dobos et al., 2014, Schlecht et al., 2004, 

Trotter et al., 2010) (Figure 4.6). For the 2017 field trial, speeds over 3 m/s and distances over 

540 m (calculated as the maximum distance that could be travelled at 3 m/s for the 3 min 

interval between GNSS fixes) were removed, as these are commonly associated with GNSS 

error (Swain et al., 2011, Taylor et al., 2011, Dobos et al., 2015). For the 2018 field trial, speeds 

over 3 m/s and distances over 360 m (the maximum distance that could be travelled at 3 m/s 

for the 2 min interval between GNSS fixes) were removed (Dobos et al., 2015). Once these 

erroneous points had been excluded, movement metrics were recalculated. A moving 

window average for speed was also applied, based on the two locations prior to and following 

the point of interest. This was done to smooth out inaccuracies in the uncorrected dataset 
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and was considered particularly important for maximum and minimum speed calculation 

where inaccurate GNSS data may be falsely interpreted as erratic movement. 

 
Figure 4.6 Calculation of speed of movement between consecutive GNSS locations. Arrows show direction of 
movement. Speed calculation is based on the straight-line distance between consecutive locations, divided 
by the time interval between locations. For example, distance between Point A and Point B is 100 m and the 
time interval between the points is 3 min (180 s). Calculated speed is 0.56 m/s. 

4.3.1.3 Distance from peers 

The distance of each ewe to her peers served as a measure of ewe isolation. The method for 

calculation was: (i) for each GNSS point of a reference ewe, find the closest point in time for 

every other ewe in the paddock; (ii) calculate the straight-line distance between the reference 

ewe and each comparison ewe; and (iii) remove points where the time difference between 

the 2 GNSS points was over 5 min (300 s). This interval was chosen to ensure animals that 

were consistently on asymmetric GNSS fix timings would still be included in analysis.  

As per the discussion section in Chapter 5, an additional calculation of distance to ‘closest 

peer’ was suggested for future research. This was calculated for later analysis and applied in 

Chapter 8. Figure 4.7 provides a schematic diagram of how mean distance to peers and 

distance to closest peer metrics are calculated.  
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Figure 4.7 Schematic diagram of calculation of distance to peers. a) Mean distance to peers is calculated by 
averaging the straight-line distance of the sheep of interest (red circle) from all other sheep in the flock (blue 
circles). b) Distance to closest peer is the straight-line distance from the sheep of interest (red circle) to the 
closest animal in the flock (green circle). In this situation, the straight-line distance to all other ewes in the 
flock is discarded. 

4.3.1.4 Use of space by minimum convex polygon (MCP) 

To determine how much of the paddock each ewe utilised, a 95% minimum convex polygon 

(MCP) was calculated. MCP is calculated by drawing a polygon around the outermost points 

in a dataset and measuring the area within the polygon (Burgman and Fox, 2003). For 

calculation of 95 % MCP, 5 % of outlying locations furthest from the centroid are discarded 

before calculation, improving the accuracy of the estimate (Calenge, 2006). The 95 % MCP 

was calculated for each ewe on each day of the study. Due to normal inaccuracies that occur 

in GNSS data (Trotter and Lamb, 2008), the data was trimmed to the paddock boundaries  

(+10 m buffer) prior to MCP calculation. This was done to prevent overestimate of the 

animal’s spatial utilisation where the location estimates were seemingly outside of the 
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paddock. The buffer size (+10 m) was chosen based on the mean location error of < 10 m for 

the i-gotU device (Morris and Conner, 2017) 

Figure 4.8 shows an example of a 95 % MCP calculated for two different sheep on Day 5 of 

the 2017 field trial.  

 
Figure 4.8 The 95 % MCP calculated for two different animals: a) Red 7; b) Black 2. Data represents a single 
day (Day 5) of the 2017 field trial. Calculated MCP: a) 0.43 ha; b) 1.67 ha. 

4.3.1.5 Use of GNSS-derived metrics 

Once the GNSS-derived metrics were calculated, changes in these behaviours in the period 

surrounding parturition were examined. The objective of this research was to identify 

potential metrics that could be used in later algorithm development for parturition detection. 

Analysis was conducted using linear mixed-effects models with a first order autoregressive 

correlation structure. Metrics were summarised on a daily and hourly basis and the results of 

this work are presented in Chapter 5.  
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4.3.2 Accelerometer data 

Similar to GNSS, raw accelerometer data provides four basic pieces of information: a 

timestamp and a corresponding acceleration on the X-, Y- and Z-axis. As detailed in Chapter 

2, the use of accelerometers has increased in recent years, allowing researchers to interpret 

animal movements through discernible changes in acceleration (Bidder et al., 2014). In many 

cases, accelerometers provide information on broad categories of animal behaviour. In 

sheep, the three behaviours most prominent in terms of time budget are grazing, travelling 

and rest (either standing or lying) (Barwick, 2016). These behaviours, and subsequent changes 

to the normal patterns of these behaviours, can be used to identify important changes in the 

animal, e.g. parturition (Jensen, 2012, Krieger et al., 2018, Krieger et al., 2017), lameness 

(Barwick et al., 2018a) or disease (Cronin et al., 2016, Morton et al., 2014).  

In the current work, the initial focus for accelerometer data analysis involved identification of 

methods that make adequate differentiation between these main behaviours possible. The 

finalised results are presented in Chapter 6. For context, the following sections have been 

included to explain the data handling process behind this work and to provide a justification 

for particular methodological decisions. 

4.3.2.1 Raw accelerometer data  

Figures 4.9 – 4.12 illustrate the raw data signatures from four behaviours (grazing, lying, 

standing and walking) for a 60 s duration. Note walking behaviour is only displayed for a 40 s 

period as this was the longest duration of consistent walking visually observed.  
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Figure 4.9 Acceleration signal from the ear-borne accelerometer while the animal was grazing (60 s). 

Figure 4.10 Acceleration signal from the ear-borne accelerometer while the animal was lying (60 s). 
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Figure 4.11 Acceleration signal from the ear-borne accelerometer while the animal was standing (60 s). 

Figure 4.12 Acceleration signal from the ear-borne accelerometer while the animal was walking (40 s). 

As shown in Figures 4.9 – 4.12, there are some obvious differences in the raw data signatures 

between the behaviours. However, analysing these raw signals is not simple. Due to the high 

sampling frequency of accelerometers (usually multiple readings per second), raw 

accelerometer datasets can be large if collected over extended periods of time (Brown et al., 

2013). This results in datasets that are difficult to manage due to their high processing 
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requirements. Furthermore, as we move toward sensor application in a commercial setting, 

consideration of infrastructure requirements for data transfer is crucial. For example, data 

transmission is an extremely power-intensive process (Handcock et al., 2009), and therefore 

optimal sampling size and algorithm selection is essential to prevent transfer of surplus data 

(Vázquez-Diosdado et al., 2019). This is particularly important if initial analysis is conducted 

on the device itself (embedded processing) or close to the device (edge computing; see 

Chapter 8 for details). For this reason, research with a commercial application focus, which is 

the case in this thesis, should concentrate on discovering the best analysis processes. 

One method of reducing the complexity of accelerometer datasets is by summarising the data 

over a set time period (termed ‘epoch’). This results in the calculation of numerous summary 

‘features’ that represent the overall intensity of activity during each time period (Barwick, 

2016, Chen and Bassett, 2005, Yang and Hsu, 2010). Features can be summarised over any 

epoch length, with published literature ranging from 3s (Alvarenga et al., 2016) to 300s 

(Decandia et al., 2018). In specific studies of sheep, epoch durations of 3 to 10 s are common 

(Alvarenga et al., 2016, Barwick et al., 2018a, Barwick et al., 2018b, Radeski and Ilieski, 2017, 

Walton et al., 2018, Mansbridge et al., 2018), though there is also merit in examining a 30 s 

epoch (Decandia et al., 2018, Umstätter et al., 2008). In the current program, multiple epoch 

lengths (5, 10 and 30 s) were evaluated. Epochs were calculated as a discrete unit of time 

based on actual time of day, with no overlap (Table 4.1). Further detail is provided in Chapters 

6 and 7. 
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Table 4.1 Example epoch classification based on consecutive periods of time 

Time range (hh:mm:ss) 10s epoch 30s epoch 

00:00:00 – 00:00:10 1 

1 00:00:10 – 00:00:20 2 

00:00:20 – 00:00:30 3 

00:00:30 – 00:00:40 4 

2 00:00:40 – 00:00:50 5 

00:00:50 – 00:01:00 6 

 

4.3.2.2 Feature calculation 

During the feature calculation process, numerous metrics are computed to provide more 

information on the raw acceleration waveforms (Brown et al., 2013, Barwick, 2016). These 

features can be calculated for a single axis (e.g. mean or standard deviation of the X-axis) or 

all three axes can be evaluated simultaneously. The features used in this research program 

have been reported in the literature (Barwick et al., 2018b, Alvarenga et al., 2016, Barwick et 

al., 2018a, Campbell et al., 2013, Marais et al., 2014). A summary is provided in Table 4.2.  
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Table 4.2 Features calculated for each epoch (5, 10, 30s) based on raw X, Y and Z acceleration values. 

Feature Description Reference 

MeanX  

MeanY 

MeanZ  

Mean value for each axis over the epoch  

Barwick et al. (2018a); 

Barwick et al. (2018b); Marais 

et al. (2014) 

MinX 

MinY 

MinZ  

Minimum (Min) value for each axis over 

the epoch 

Barwick et al. (2018a); 

Barwick et al. (2018b); Marais 

et al. (2014) 

MaxX 

MaxY 

MaxZ 

Maximum (Max) value for each axis over 

the epoch 

Barwick et al. (2018a); 

Barwick et al. (2018b); Marais 

et al. (2014) 

SDX 

SDY 

SDZ 

Standard deviation (SD) for each axis over 

the epoch 

Campbell et al. (2013); Marais 

et al. (2014) 

Movement 

Intensity (MI) 

Measurement of the instantaneous 

intensity of movements, averaged over an 

epoch. MI is independent of device 

orientation (Zhang and Sawchuk, 2011) 

Barwick et al. (2018a); 

Barwick et al. (2018b) 

Signal Magnitude 

Area (SMA) 

The average magnitude of acceleration 

over an epoch (Zhang and Sawchuk, 2011) 

Alvarenga et al. (2016); 

Barwick et al. (2018a); 

Barwick et al. (2018b); 

Campbell et al. (2013) 
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Energy 
Sum of the squared signal components 

from each axis (Zhang and Sawchuk, 2011) 

Alvarenga et al. (2016); 

Barwick et al. (2018a); 

Barwick et al. (2018b); Marais 

et al. (2014) 

Entropy 

A measure of the freedom of motion 

whereby smooth motion is more 

predictable than random motion and 

therefore has lower entropy (Smith et al., 

2016)  

Alvarenga et al. (2016); 

Barwick et al. (2018a); Marais 

et al. (2014) 

Movement 

Variation (MV) 

Total variance of signal vibration within an 

epoch (Barwick, 2016) 

Alvarenga et al. (2016); 

Barwick et al. (2018a); 

Barwick et al. (2018b) 

Two commonly used techniques for accelerometer data analysis are fast Fourier 

transformation (FFT) and continuous wavelet transformation (CWT). FFT decomposes the 

acceleration signal, making it possible to identify individual frequencies and amplitudes 

(Shuert et al., 2018). CWT generates a spectrum of acceleration signals, allowing for 

documentation of when and where a frequency occurs (Sakamoto et al., 2009, Brown et al., 

2013). While these two techniques have potential, they can be complicated and are often not 

essential for adequate analysis (Shephard et al., 2008, Laich et al., 2009). In contrast, simpler 

statistics and machine learning (ML) are more intuitive and widely accessible to a range of 

users (Shephard et al., 2008, Brown et al., 2013). For this reason, the more complex FFT and 

CWT were not pursued as part of this analysis. 

4.3.2.2.1 Preliminary results 

The following section provides summary statistics for some of the key features identified 

through the analysis process. This data was not presented in the published papers because it 

would have resulted in these manuscripts being excessively long. However, it is presented in 

this thesis to provide the reader with a more in-depth understanding of the results. The data 

presented below was collected from 12 ewes in the 2018 field trial (see Chapter 6 for details). 
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Each data point represents the calculated features for one discrete epoch. Epochs have also 

been labelled with the known behaviour according to video observations. 

To visualise the data, density plots were generated (Figures 4.13 – 4.15). For brevity, only data 

for the three most important features for behaviour discrimination are presented: movement 

variation (MV; Figure 4.13), standard deviation of X (SDX; Figure 4.14) and standard deviation 

of Y (SDY; Figure 4.15). In addition, only the 10 s epoch is presented, as this was the most 

valuable epoch duration for classification of the four mutually exclusive behaviours (see 

Chapter 6 for details). 

As shown, there appears to be some ability to differentiate between the four mutually 

exclusive behaviours using the calculated features. For example, lower activity behaviours 

(i.e. lying) are generally represented by smaller feature values. Conversely, higher activity 

behaviours (i.e. grazing) generally display larger feature values. This is particularly true for 

MV, where the clear distinction between inactive (lying and standing) and active behaviours 

(grazing and walking) is apparent for the majority of animals. Given that each of the presented 

features provides a measure of signal variance within an epoch, the distinction between low- 

and high-level activity is unsurprising and can be attributed to the low inertia of the sheep’s 

ear, resulting in higher velocity as the sensor is moved (Barwick et al., 2018b). These findings 

are also consistent with published literature, with features that consider signal variation often 

identified as the most important predictors, for example variance of single and combined axes 

(Giovanetti et al., 2017), inverse coefficient of variation (Giovanetti et al., 2017) and 

movement variation (Alvarenga et al., 2016, Barwick et al., 2018b). 

Although broad patterns for behaviour differentiation are evident, there is still considerable 

overlap between the behaviours, particularly lying/standing and grazing/walking. This 

represents a limitation for behaviour discrimination using a single metric, with a combination 

of metrics potentially more appropriate. To explore this further, 3D plots were generated for 

a number of feature combinations. Again, for brevity, plots have been only been included for 

the most important predictor features (MV, SDX and SDY) for each 10 s epoch (Figure 4.16). 
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Figure 4.13 Density plots of movement variation (MV) for four mutually exclusive behaviours: grazing (red), lying (orange), standing (blue) and walking (green). Mean 
lines for each behaviour are also included (dashed lines). Plots are presented for individual sheep (see Section 4.4 and Chapter 6 for more details). Note, observed walking 
behaviour was not available for animals bl2 and bl6. 
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Figure 4.14 Density plots of standard deviation for the x-axis (SDX) for four mutually exclusive behaviours: grazing (red), lying (orange), standing (blue) and walking (green). 
Mean lines for each behaviour are also included (dashed lines). Plots are presented for individual sheep (see Section 4.4 and Chapter 6 for more details). Note, observed 
walking behaviour was not available for animals bl2 and bl6. 
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Figure 4.15 Density plots of standard deviation for the y-axis (SDY) for four mutually exclusive behaviours: grazing (red), lying (orange), standing (blue) and walking (green). 
Mean lines for each behaviour are also included (dashed lines). Plots are presented for individual sheep (see Section 4.4 and Chapter 6 for more details). Note, observed 
walking behaviour was not available for animals bl2 and bl6. 
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Figure 4.16 3D scatterplot of four mutually exclusive behaviours: grazing (red), lying (orange), standing 
(blue) and walking (green). Data represents features calculated for discrete 10 s epochs: MV SDX and SDY. 

Similar to the density plots (Figures 4.13 – 4.15), there appears to be some capacity for 

behaviour differentiation using a combination of the top three features (MV, SDX and SDY). To 

clarify this further, Figure 4.16 has been reproduced below with an isolated scale to show the 

majority of the data (Figure 4.17). As indicated, classification of behaviours could be based on 

the approximate boundaries provided, allowing differentiation of behaviours based on where 

they fall in 3D space. Furthermore, the boundaries indicate potential for different groupings 

of behaviours to improve classification accuracy, for instance active (grazing/walking) vs 

inactive (lying/standing) behaviours; or lying posture vs upright posture (grazing, standing, 

walking). This is explored further in Chapter 6. It is important to note that the boundaries 

included in Figure 4.17 are estimates of the actual boundaries, and have been included to 

show how classification might work. In practice, the true boundaries are likely to be more 

complex, even occurring across more than three dimensions, highlighting the potential for 

more sophisticated measures of behaviour classification such as ML. 
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Figure 4.17 Reproduction of Figure 4.13 with different axis scales for ease of visualisation. Four mutually 
exclusive behaviours are shown: grazing (red), lying (orange), standing (blue) and walking (green). Note that 
the figure has been annotated with ovals representing the approximate boundaries of each behaviour class. 

4.3.2.3 Machine Learning 

Basic graphing and inspection of accelerometer data provides interesting insights during 

preliminary analysis. However, to explore the full potential of accelerometer data, advanced 

statistical classification techniques are commonly employed. This is usually conducted after 

feature calculation, with the metrics applied to various ML algorithms. ML algorithms can be 

either supervised [e.g. Classification and Regression Trees (CART); Support Vector Machines 

(SVM); Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random 

Forest (RF)] or unsupervised (Cluster Analysis, Hidden Markov Model) (Brown et al., 2013). 

Supervised ML uses data from a period of time where the behaviour is known (known as 

‘labelled’). This labelled data is used to ‘train’ the algorithm, with the objective of subsequent 

classification of the remaining data (Shuert et al., 2018). Unsupervised ML does not require 

labelled data, instead forming its own method of classification based on previously unknown 

patterns in the data (Sakamoto et al., 2009). ML has been criticised for being a “black box” 

method of classification, as the internal rules of classification are often difficult to interpret 

(Bidder et al., 2014, Nathan et al., 2012). Nevertheless, they are widely used for behaviour 

classification, and have been used with success in sheep (Barwick et al., 2018a, Barwick et al., 
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2018b, Walton et al., 2018). In this project, four types of ML were evaluated for behaviour 

classification: CART, SVM, LDA and QDA. This work is presented in Chapter 6.  

4.3.2.4 Use of ML-classified behaviours from accelerometer data 

Similar to the GNSS data, once the accelerometer data was classified into more meaningful 

information (i.e. corresponding behaviours), changes in the pattern of behaviour in the period 

around parturition were examined. Again, the intent of this work was to identify changes in 

ewe behaviour at parturition that can be measured using an ear tag accelerometer. The 

results of this work are presented in Chapter 7.  

4.3.2.5 A note on individual animal variability 

As shown throughout Section 4.3.2, whilst broad patterns of behaviour differentiation are 

evident, there is also variability between individual animals. For example, in Figures 4.13 – 

4.15, of the 10 animals where all four behaviours were observed, the majority of animals (n = 

7) displayed a pattern of increasing feature values in the order of lying, standing, walking and 

grazing for at least one of the reported features. The exception to this was animals re4, wh10 

and wh3 which consistently displayed a different pattern of behaviour. Disparities in the data 

signatures for individual animals are expected (Miriam et al., 2013) and have been explored 

in dynamic modelling systems for dairy cows (Jensen et al., 2018, Jensen et al., 2016). Causes 

of disparities may occur for a number of reasons; for example, differences between individual 

accelerometers, time-drift and the resulting incongruence between observed and recorded 

behaviours or shifting orientation of a device during deployment. Differences may also result 

from individuality of ewes, including differences in movement or other patterns of behaviour 

that develop over time.  

Although the impact of individuality is an important consideration for improved model 

accuracy, development of more ‘generalised’ models has been deliberately conducted in this 

thesis. In a commercial situation, model training for each individual is likely to be unfeasible, 

as it would require considerable producer input to observe and record behaviours for each 

individual animal. In contrast, the application of generalised models would allow producers 

to immediately use a commercial sensor for their advertised purpose. Although the use of 

individual models should not be discounted in the future, for the purposes of this thesis a 
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more generalised approach was considered key, particularly in the model training processes 

in Chapters 6 and 8. The impact of individuality has also been discussed further in these 

chapters, and in Chapter 9. 

4.3.3 Integrative use of GNSS and accelerometer data for predictive algorithm 

development  

Using the knowledge of sheep parturition behaviour gained in Chapter 5 and Chapter 7, a 

second ML model was developed for the purpose of detecting parturition in a simulated real-

time scenario. This model was then applied to detect an adverse birth event using the single 

ewe that experienced vaginal prolapse as a case study. This work is discussed in-depth in 

Chapters 8 and 9.  

4.4 How was the field data used within each chapter? 

As stated previously, the original intent of this project was to examine the potential of on-

animal sensors for lifelong welfare monitoring. However, this scope was too great for a single 

PhD thesis to undertake. Parturition was consequently chosen as the focussed research topic 

since this event represents a key point of risk for both ewe and lamb in terms of welfare. To 

study this, a field program was developed with the hope of capturing as many ‘adverse’ (i.e. 

dystocic) parturition events as possible. This information was then going to be compared to 

typical birth events to determine if the adverse event could be differentiated. In 2017 this 

was carried out by selecting equal numbers of twin- and single-bearing ewes, with the hope 

of comparing higher-risk twin births (Hinch and Brien, 2014, Alexander et al., 1983) with their 

single-bearing counterparts. However, throughout the 2017 trial, only one adverse birth 

event occurred (ewe prolapse and subsequent euthanasia). Thus, the focus of the research 

shifted to discovering an appropriate sensor-based method for detecting the parturition 

event itself. Throughout the data analysis process, it also emerged that the scope of data 

analysis for parturition detection was extensive enough without the added complexities of an 

exploration of dystocia. As a result of this shift toward detection of the birth event itself 

(either typical or adverse), ewes were selected differently in the 2018 trial to assist in 

observation (all selected ewes were single-bearing).  
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To provide clarity regarding the use of data throughout the thesis, summary tables have been 

provided (Tables 4.3 and 4.4). As shown, in addition to the small number of adverse birth 

events, failure of video observation in the 2017 field trial severely restricted the use of the 

accelerometer data, with requirements to wait until the 2018 trial to collect adequate 

observations for ML analysis. For detailed summaries of the use data collection from 

individual animals, see Appendix B and C. 

Table 4.3 Summary of the available datasets at study conclusion. Device failure refers to devices that either 
did not turn on at study commencement and therefore were not attached, or those that failed to record for 
the entire duration of the experiment.  

Year Sensor Complete datasets at 

trial conclusion 

Failed device 

2017 GNSS 37 3 

Accelerometer 38 2 

Total (Integrated dataset) 35 5 

2018 GNSS 35 4 

Accelerometer 38 21 

Total (Integrated dataset) 33 6 

1One accelerometer from 2018 failed to record past Day 9 but was still used in Chapter 7 as a large proportion of the 

required data (see Chapter 7 for details). The animal was then removed in Chapter 8.  
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Table 4.4. Summary of the datasets used in each chapter of the thesis. Note: Animals that were used in Chapter 6 for ML algorithm development were removed from any 
further analysis.  

Chapter Year Sensor 
Total number of 
datasets 
analysed 

Day of lambing 
identified only 

Day + hour of 
lambing 
identified 

Did not 
lamb 
(DNL) 

Animal died Use in data analysis 

5 2017 GNSS 36 14 8 14 NA1 Statistical analysis GNSS-derived 
behaviour at lambing 

6 2018 Accelerometer 122 NA NA NA NA 
ML algorithm training and 
validation to identify basic 
behaviours  

7 2018 Accelerometer 25 14 11 NA NA 
Statistical analysis ML-derived 
behaviour (from accelerometer 
data) at lambing 

8 

2017 Accelerometer 
& GNSS 8 NA 8 NA NA ML algorithm training to identify 

hours of lambing activity  

2018 Accelerometer 
& GNSS 9 NA 9 NA NA Independent validation of the ML 

algorithm 

9 2017 Accelerometer 
& GNSS 14 14 NA NA 1 

Use of the model in Chapter 8 to 
compare alert profiles of typical and 
‘adverse’ parturition events 

1One animal died during the 2017 trial. However, this dataset was not analysed until Chapter 9. 
2Animals in this chapter were used for initial ML algorithm development and subsequently removed from any further analysis. 
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Overview 

Lambing (parturition) was selected as a focus for this PhD program because it represents a 

key point of risk for both the ewe and the lamb. As shown in Chapter 3, a holistic welfare 

assessment system will likely require integrating a number of sensors. However, an 

understanding of each technology separately provides important foundational knowledge. 

Furthermore, in order to monitor welfare at parturition, it is imperative that the actual 

parturition event itself can be accurately detected. Hence, Chapters 5 to 8 will focus on the 

detection of parturition only. This chapter explores GNSS and measurable parameters that 

are able to identify lambing. Data presented in this paper was collected during the 2017 field 

trial.  

This manuscript has been published in Animal Production Science and appears in this thesis 

in its published form. 
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Abstract
Context. On-animal sensing systems are being promoted as a solution to the increased demand for monitoring

livestock for health and welfare. One key sensor platform, global navigation satellite system (GNSS) positioning,
provides information on the location and movement of sheep. This information could be used to detect partition in
sheep, a key period of time when both ewes and lambs are at risk. The development of algorithms based on key
behavioural features could provide alerts to sheep managers to enable intervention when problems arise.

Aims. To investigate the use of GNSS monitoring as a method for detecting behavioural changes in sheep in the
period around parturition.

Methods.GNSS collars were attached to 40 late gestation ewes grazing a 3.09 ha paddock in New Zealand. Several
metrics were derived: (i) mean daily speed, (ii) maximum daily speed, (iii) minimum daily speed, (iv) mean daily
distance to peers, and (v) spatial paddock utilisation by 95% minimum convex polygon. Speed metrics and distance to
peers were also evaluated at an hourly scale for the 12 h before and 12 h after lambing.

Key results.Minimum daily speed peaked on the day of parturition (P < 0.001), suggesting animals may have been
expressing more agitation and did not settle. Isolation was also evident during this time, with postpartum ewes located
further from their peers than pre-partum ewes (P < 0.001). Day of lambing was also evident by reduced spatial paddock
utilisation (P < 0.001).

Conclusions. This study demonstrates that GNSS technology can be used to detect parturition-related behaviours in
sheep at a day scale; however, detection at the hour scale using GNSS is not possible.

Implications. This research highlights the opportunity to develop predictive models that autonomously detect
behavioural changes in ewes at parturition using GNSS. This could then be extended to identify ewes experiencing
prolonged parturition, for example dystocic birth enabling intervention which would improve both production and
welfare outcomes for the sheep industry.

Additional keywords: behaviour monitoring, ewe, GNSS, GPS, Ovis aries.
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Introduction

Livestock monitoring has historically relied on direct human
observation of animal behaviour (Turner et al. 2000; Watanabe
et al. 2008). However, issues associated with observer error
(especially at night), an inability to observe during extreme
weather events and high labour costs may limit its use (Turner
et al. 2000; Dobos et al. 2015). Since the advent of remote
monitoring tools, for example global navigation satellite system
(GNSS), their use in livestock research has increased
dramatically, allowing the study of animal behaviour at an
intensity not previously possible by visual observation alone

(Swain et al. 2011;Dobos et al. 2015; Fogarty et al. 2018).As the
cost of electronics continues to decrease, commercialisation of
sensor technologies, such as GNSS, for real-time or near-real
time monitoring are becoming more prevalent (Bailey et al.
2018). In order to ensure maximum benefit from the use of this
technology, accurate interpretations of GNSS data are required.
In the case of extensive sheep production, remote monitoring
and identification of lambing events could provide a previously
unattainable level of surveillance, allowing for closer
supervision to safeguard against ewe and lamb mortality or
for postpartum selection of higher performing ewes (Dobos
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et al. 2014). Close supervision at parturition often results in
lower lamb mortality (Holmøy et al. 2012).

To understand how a sensor system might detect a birth
event, it is necessary to understand what behaviours a ewe may
exhibit. In general, parturition is seen as a period of
restlessness in the ewe, with increasingly frequent changes
in body position as labour approaches (Owens et al. 1985).
Although the first signs of parturition have been noted from as
early as 15 days prior (Holmes 1976), overt behaviours are
more commonly identified on the actual day of lambing
(Owens et al. 1985; Echeverri et al. 1992; Schmoelzl et al.
2018). In a study by Echeverri et al. (1992), ewes spent more
time standing during the 8 h before birth and increased their
number of steps during the 6 h prior. Ground sniffing and
pawing also increased during this time (Owens et al. 1985;
Echeverri et al. 1992), possibly reflecting the ewe’s attraction
to birth fluid and/or nesting behaviour (Arnold and Morgan
1975; Echeverri et al. 1992). In a report by Schmoelzl et al.
(2018), average time from first sign of parturition to lamb
expulsion was 163 min � 22 (s.e.m.). Similarly, Owens et al.
(1985) found abdominal straining was evident from 1 h before
delivery, followed by appearance of the chorio-allantoic sac
33–55 min before lamb expulsion. Once the lamb is born, ewes
generally stand within 4 min of delivery (Owens et al. 1985),
after which the ewe grooms the lamb to facilitate bonding
(Alexander 1988).

Many livestock species also display isolation at birth,
facilitating the development of the mother–offspring bond
(Alexander 1988; Lidfors et al. 1994). Although documented
in cattle (Bos taurus) (Vitale et al. 1986; Lidfors et al. 1994),
mouflon (Ovis orientalis) (Langbein et al. 1998;Ciuti et al. 2009)
and bighorn sheep (Ovis canadensis) (Bangs et al. 2005; Karsch
et al. 2016), this behaviour is not always observed in domestic
sheep. In a study by Alexander et al. (1979), the proportion of
ewes that lambed in isolation (defined as having no other ewe
within 10 m of the birth site) ranged from 27.3 to 64.6%,
depending on the size of the paddock, presence of shelter and
whether the ewe had been recently shorn. Similarly, Arnold and
Morgan (1975) found 46% of ewes isolated themselves before
birth, with a further 20% alienated when the flock moved on
without the new mother. In contrast, Fraser (1968) (as cited in
Arnold and Morgan (1975)) found only 12% of ewes were
isolated at lambing. Stevens et al. (1981) also noted less than
10% of Merino ewes displayed this behaviour. Despite this
inconsistency, isolation as an indicator of parturition shows
merit and should be evaluated further.

A change in the ewe’s spatial landscape utilisation can also
indicate onset of parturition (Dobos et al. 2012). New mothers
decrease their rate of travel and amount of space used, due to the
immobility associated with the birth event or a need to remain at
the birth site for several hours (Alexander 1980; Alexander et al.
1983). Furthermore, sheep are considered ‘followers’, where
young remain with the mother after birth, as compared with
‘hiders’ where the young lie concealed while the mother grazes
(Alexander 1988). Thus, the limited physical capabilities of the
newborn lamb also limit how far the ewe can travel, particularly
during the neonate’s first few days of life (Alexander 1980).

The use of GNSS technologies to investigate ewe
characteristics around parturition has been reported by several

authors (Taylor et al. 2011;Broster et al. 2012;Dobos et al. 2012,
2014, 2015; Broster et al. 2017). Dobos et al. (2014, 2015) relied
on speed of movement to identify lambing. Mean distance to
peers has also been used to indicate isolation (Dobos et al.
2014) and minimum convex polygon (MCP) calculated to
estimate a ewe’s use of space (Dobos et al. 2012). The
work undertaken to date has proposed and applied several
different metrics (Dobos et al. 2012, 2014, 2015). The
objective of the present study was to assess all of these
metrics in a commercial flock of ewes to determine the
feasibility of GNSS to detect behavioural change at
parturition. It is hypothesised that GNSS will be able to
detect broad scale patterns of behaviour and identify
changes in these patterns associated with lambing. Once
these parameters have been identified, it is proposed that
they could then be used in the future development of a
predictive model to autonomously detect a lambing event.
However, in order to ensure adequate model development,
validation of the appropriate predictors is essential.

Materials and methods

Location and use of animals
The study was conducted at a commercial mixed enterprise farm
in North Canterbury, New Zealand (43.0�S, 173.2�E), over a 2-
week period from 29 September to 13 October 2017.
Temperatures ranged from 3.8 to 22.3�C and total rainfall was
85.6 mm, as recorded by the on-farm weather station.

As part of this farm’s normal practice, an experienced
operator used an ultra-sound scanner to confirm pregnancy in
the total ewe flock (n = 9200), and to estimate lambing date and
parity status (singles or twins). Forty ewes were then selected
from a subflock of ~175Merino andMerino-cross animals, all of
which had an expected lambing date within the experimental
period. Of the 40 ewes selected, 20 were twin-bearing and 20
were single-bearing.

These 40 ewes were placed in a 3.09 ha experimental
paddock and provided ad libitum access to forage and
water. Shelter was provided by the natural sloping
topography. The experimental paddock was slightly smaller
than average for this property (mean size 5–8 ha) but could
otherwise be considered a normal commercial size for this
region. The paddock was selected as it allowed visual
observation from a neighbouring paddock with minimal
flock disturbance. The impact of the reduced paddock size
was mitigated by using a smaller number of ewes (n = 40)
compared with normal subflock sizes for this property (65–100
ewes per paddock). This ensured stocking rates used in this
study were similar to the normal practices of this commercial
farm.

All research procedures and use of animals were approved by
the Massey University Animal Ethics Committee (approval
number MUAEC 17/59).

Data collection
On the morning of 29 September 2017, experimental ewes were
separated from the larger commercial flock and moved into the
yards. Animals were fitted with i-gotU GT-600 GNSS loggers
(Mobile Action Technology Inc., Taipei, Taiwan) attached to
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neck collars. The GNSS devices were programmed to obtain
locations at 3-min intervals. Ewes were also fitted with
identification ‘bibs’, which were numbered (1–10) and
coloured (black, green, orange, red) to allow for 40 unique
colour and number combinations. Upon fitting GNSS collars
and bibs, ewes were observed for at least 30 min to monitor
for signs of distress before being moved to the experimental
paddock at 15:30 hours.

Ewes were observed from a neighbouring paddock using
binoculars and a Nikon Coolpix B500 camera with a 40·
optical zoom (Nikon, Tokyo, Japan), from 30 September to
13 October 2017 (14 days in total). Ad libitum behaviour
observations (Martin and Bateson 2007) were conducted
from 06:30 to 12:30 and 15:30 to 18:00 hours to record
lambing events and ewe-lamb interactions. Collars and bibs
were removed on 25 October 2017.

GNSS data analysis
The GNSS tracking data were processed and analysed using a
combination of ArcGIS ver. 10.3.1 (ESRI 2016) and R statistical
software (R Core Team 2018). After the tracking data were
downloaded, erroneous locations were detected (e.g. locations
with a latitude and longitude of zero) and removed. Distance,
time and speed between successive locations was then
calculated. Speed of movement was calculated as distance
between consecutive GNSS locations divided by the time
interval between the readings (Schlecht et al. 2004; Trotter
et al. 2010; Dobos et al. 2014). Speeds over 3 m/s and
distances over 540 m (calculated as the maximum distance
that could be travelled at 3 m/s for the 3-min interval between
GNSS fixes) were also removed, as these are commonly
associated with GNSS error (Swain et al. 2011; Taylor et al.
2011). Once these erroneous points had been excluded,
movement metrics were recalculated. A moving window
average for speed was also determined based on the two
locations before and following the point of interest (i.e. an
average over five GNSS points or 12 min).

Visualisation of the data in ArcGIS showed many of the
GNSS points were outside the paddock boundaries (mean
location error of i-gotU device <10 m (Morris and Conner
2017)). Previous studies (Trotter and Lamb 2008; Mullen
et al. 2013; Fogarty et al. 2015) have automatically excluded
these points as GNSS error, but this was not initially conducted
on this dataset to minimise processing requirements. The
exception to this were the data for MCP calculation
which was trimmed to the paddock boundaries to prevent
overestimation of the animal’s spatial utilisation where GNSS
locations were apparently outside of the paddock.

Daily and hourly speed metrics
Calculation of speed metrics was based on the methodology

proposed by Dobos et al. (2014). That is, the mean daily speed
of ewes was calculated for each calendar day of the study
based on a 24-h period from midnight to midnight. In addition,
the maximum daily speed and the minimum daily speed were
also determined. Metrics were calculated using a moving
window average to smooth out inaccuracies in the
uncorrected dataset (moving window average was calculated
for each position using the preceding and following two

locations, i.e. 5 GNSS points or 12 min). This was
especially important for calculation of minimum and
maximum speed values where inaccurate data may be
incorrectly interpreted as erratic sheep movement. For ewes
that lambed during the trial, daily metrics were based on day of
lambing (Day 0) to allow comparison of speed values in the
4 days leading up to and following parturition (Day � 4). Due
to the relatively short length of the trial, a 4-day period was
chosen to maximise the number of animals with a complete set
of days for analysis.

Mean hourly speed was also determined for the 12 h before
and after lambing, where ‘Hour 0’ represented the hour in
which the lambing occurred (i.e. if a birth was recorded at
16:30 hours, then 16:00 to 16:59 hours was determined as
Hour 0 with 15:00 to 15:59 and 17:00 to 17:59 hours
representative of Hour – 1 and Hour + 1 respectively).
Only animals with known birth time were included in these
analyses and birth time was classified by hour of the day.
Again, hourly speed values were based on a moving window
average of five values for each time point.

Daily and hourly isolation at lambing
The mean distance of each ewe to her peers was calculated

for each study day to determine isolation behaviour at
parturition. This approach mirrors Dobos et al. (2014),
where ewe isolation was also identified by monitoring the
spatial distance (in metres) of each individual ewe to her
peers. Previous work (Alexander et al. 1979) has defined
‘isolation’ as a categorical variable based on a defined
distance (e.g. 10 m). However, this approach applies an
arbitrary threshold and is unable to account for differences
in individual ewe behaviour. Furthermore, as distance from
peers can be considered as existing on a continuum and subject
to normal variability, the chosen approach allows application
across a broader range of contexts and periods of time. The
method for calculation was: (i) for each GNSS point of a
reference ewe, find the closest point in time for every other
ewe in the paddock; (ii) calculate the straight-line distance
between the reference ewe and each comparison ewe; and
(iii) remove points where the time difference between the two
GNSS points was over 5 min (300 s). This interval was chosen
to ensure animals that were consistently on asymmetric GNSS
fix timings would still be included in analysis. For ewes that
lambed during the trial, daily metrics were aligned based
on day of lambing (Day 0) to allow comparison between
the 4 days before and after parturition. The mean distance
to peers was also calculated on an hourly basis in the 12 h
leading up to and after parturition.

Daily spatial paddock utilisation
To determine changes in spatial utilisation of the paddock

throughout the study, the 95% MCP for each animal was
calculated in the software R using the ‘adehabitatHR’ package
(Calenge 2006). MCP is normally calculated by drawing a
polygon around the outer most points in a dataset ensuring no
internal angle exceeds 180degrees andmeasuring the areawithin
the polygon (Burgman and Fox 2003). It is considered a standard
method for estimating home range (van Beest et al. 2011). In the
case of the 95% MCP, 5% of outlying locations furthest from
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the centroid are discarded before calculation, improving the
accuracy of the estimate (Calenge 2006). The 95% MCP was
calculated for each ewe on each day of the study and aligned
around day of lambing (Day 0) for animals that lambed during
the study.

MCP was not calculated at an hourly level as it is considered
a coarse-scale metric, used to provide overall patterns of
movement on a minimum of a daily basis.

Statistical analyses
All statistical analyses were conducted using R software with
linear mixed-effects models using the ‘nlme’ package (Pinheiro
et al.2018) and a significance level ofP<0.05. Separate analyses
were conducted using daily or hourly data. For the daily speed
analysis, the model contained day around birth as a fixed effect
and individual animals as random effects. A first order
autoregressive structure was specified for the errors to account
for the repeated-measures natureof the experiment. For theseday
scale analyses, dependent variables included mean, maximum
andminimumspeed,mean distance to peers and 95%MCP in the
4 days leading up to and following parturition. Maximum daily
speed was log-transformed to ensure normality of errors. For
assessment at an hourly scale, the model contained hour as a
fixed effect and individual animals as a random effect. A first
order autoregressive correlation structure was specified for the
errors. Only speed (mean, maximum and minimum) and mean
distance to peers were used as dependent variables. Mean and
maximum hourly speed were log-transformed to ensure
normality of errors. Least square means and standard errors
were generated for each model using the ‘lsmeans’ package
withinR software (Lenth 2016). Pairwise comparisonswere also
computedwith the ‘lsmeans’ packagewith theTukey adjustment
for multiple comparisons.

Results

Lambing and records collected

Of the 40 ewes, 25 lambed during the observation period
including 12 twin-bearing (24 lambs) and 13 singles
(13 lambs) for a total of 37 lambs. Of these animals, eight
ewes (four twin-bearing and four singles) had the exact time
of birth recorded (within a 60-min period). The remaining
animals (eight twin-bearing and nine singles) either lambed
overnight or during periods when the observer was not
present. For these animals, day of lambing was recorded as
the day in which the newborn was first identified.

Of the 37 lambs in this experiment, four died before the end of
the experimental period. Two of these lambs were from a twin-
bearing ewe that prolapsed during labour and was subsequently
euthanised as per normal farm practice. This ewe was excluded
fromanalysis. The remaining two lambsdiedduring the trial.The
first was born alive to a twin-bearing ewe (confirmed through
observation of maternal behaviour towards both lambs) and died
during the first 24 h. The second was found dead upon arrival to
the paddock. The mother of the lamb, and whether the lamb was
stillborn or died shortly after birth, were not known. Three
GNSS collars failed during the experiment; one twin-bearing,
one singleton and one animal that did not give birth during the
observation period. These animals were excluded from analysis.

To summarise, daily GNSS data was available for 36 ewes:
22 that lambed (10 twin-bearing, 12 singletons) and 14 that did
not lamb. Hourly GNSS data was available for eight ewes:
four twin-bearing and four singletons.

GNSS data analyses

Daily and hourly speed metrics

No differences in mean daily speed (P = 0.07) or maximum
daily speed (P = 0.15) were detected in the 4 days before and
following parturition (Day � 4). Minimum daily speed of
animals differed between the 4 days surrounding parturition
(P < 0.001). As shown in Fig. 1, minimum daily speed was
the highest on the day of parturition.

No differences (P = 0.51) were detected in the mean hourly
speeds of ewes around parturition. Also no difference in mean
hourly speed for pre- and postpartum animals were detected
(P = 0.06). Similarly, no difference in the minimum hourly
speeds around parturition (P = 0.50) or between pre- and
postpartum animals (P = 0.87) were detected. Maximum
hourly speed in the 12 h before and following parturition
differed (P = 0.04), with an apparent spike at Hour –9
(Fig. 2a). Pre- and postpartum maximum hourly speed (shown
as dotted and dashed lines, respectively, in Fig. 2a) differed
(P = 0.001). Upon closer examination of the data contributing
to the spike at Hour –9, this result reflects a single outlying
value for one particular animal where the recorded location
was 400 m outside out of paddock boundaries, and then
immediately back inside the paddock within a 3-min interval.
Although this error did not exceed the speed threshold that would
have resulted in its removal from the analyses in the initial
data cleaning process, exploring the impact of removing it is
warranted. If this animal is removed completely from the dataset,
no differences (P = 0.08) in maximum hourly speed around
parturition can be detected. Nevertheless, the general decline
in maximum hourly speed is still evident between pre- and
postpartum animals (P = 0.005; Fig. 2b).

Daily and hourly isolation at lambing

Mean distance to peers differed in the days surrounding
lambing (P < 0.001). As shown in Fig. 3, this metric exhibited
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an almost linear increase from Day –4 to Day 0, followed by a
plateau through to 4 days post lambing. No differences in mean
distance to peers in the 12 h leading up to or after parturitionwere
detected (P = 0.11), though a potential trend for increased
isolation before lambing is suggested between Hour –4 and
Hour –1 (Fig. 4).

Daily spatial paddock utilisation

Differences in the 95%MCP in the days surrounding lambing
were detected (P < 0.001). As shown in Fig. 5, ewes decreased
their degree of spatial utilisation of the paddock from 2 days
before birth, with a minimum at Day 0. After parturition, ewes
increased their spatial utilisation in a linear fashion. To

compare this trend at parturition with the more general
pattern over time, the 95% MCP for animals that did not
lamb during the study was also calculated. This analysis
showed important changes over the days of the study
(P < 0.001) with a general increasing trend over time (Fig. 6).

Discussion

This research supports the hypothesis that GNSS technology
can detect broad scale patterns in ewe activity associated
with lambing, including change in speed of movement,
distance to peers and spatial utilisation of the paddock.
Validation of these measurable variables is an essential
step before the development of autonomous lambing
detection models, providing fundamental knowledge for
model construction and scope.

Change in daily patterns of behaviour

The ability to detect the day of parturition or provide an
indicator that this event was about to occur would be
valuable to the sheep industry, allowing both targeted
monitoring of ewes during this critical period and ensuring
accurate recording of birth date. In this study, ewes displayed
a significantly higher minimum daily speed on the day of
parturition compared with all other days (Fig. 1). Importantly,
this increase in minimum daily speed was followed by a
decline, returning to previous levels in the days following
parturition. This suggests the day of parturition was
characterised by heightened agitation in the ewe, likely
reflecting a level of restlessness as she seeks a suitable
birth site or manages physical discomfort (Holmes 1976;
Owens et al. 1985; Echeverri et al. 1992). In Dobos et al.
(2014, 2015), day of lambing was identified by a decrease in
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mean daily speed. However, this was not supported in the
present study. This may reflect differences in data analysis,
with Dobos et al. (2014, 2015) using a 7-day window for
investigation, compared with only 4 days in this study.
Although necessary to maximise the number of complete
datasets for analysis, the use of a smaller window is
considered a limitation of this study. Given that the first
signs of parturition have been noted to occur from as early
as 15 days prior (Holmes 1976), comparison with days even
more temporally distant is warranted in future research.
Despite this, as the intensity of periparturient behaviour is
widely reported to increase closer to the birth event (Arnold
and Morgan 1975; Owens et al. 1985; Echeverri et al. 1992),
the methodology used in the present study should have been
sufficient to identify changes in daily speed if present.

Increasing levels of isolation fromDay –4were evident in this
study, with mean distance to peers reaching a maximum on
the day of lambing and remaining high during the 4 days post-
birth (Fig. 4). Dobos et al. (2014) also reported an increase
in mean distance to peers on day of lambing, although extension
of this behaviour beyond parturition was not seen. These
inconsistencies may reflect differences in the size of the
paddock used in the two studies (3.09 ha in the present study
compared with 1.6 ha), with ewes in the present study able to
disperse more broadly in the days following lambing. Curiously
however, the extent to which the ewes in Dobos et al. (2014)
separated themselves on lambing day (83.6� 14.6 m) wasmuch
higher compared with the current study (45.7 � 1.86 m), thus
highlighting the strong desire for isolation at lambing, even in
paddocks of smaller size. Given paddocks in commercial
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enterprises may vary greatly in size and shape, further research
that examines this behaviour in paddocks of even larger scale is
warranted. Future research should also attempt to expand on the
current findings and determine if the extent of ewe isolation can
be used to indicate maternal investment or her ability to
successfully deliver and raise a newborn through to weaning.
As lamb survival is impacted by many interconnecting factors
and lambing conditions are rarely comparable (Murphy et al.
1994), further research may only be able to infer correlation
between ewe isolation and survival. Nevertheless, lamb
survival is known to increase when ewes remain in close
contact with the newborn for at least 6 h (Murphy et al.
1994). Thus, distance from peers may be indicative of close
contact of the mother and its newborn and could potentially be
useful to identify ewes more likely to lose offspring.

In addition to a sustained level of isolation (Fig. 4), ewes in
this study increased their spatial utilisation of the paddock
during the 4 days following birth (Fig. 5). This may reflect the
ewe’s change in physiological state as she moves from late
gestation into early lactation. Lactation has large energetic
costs, requiring females maintain a higher plane of nutrition to
meet metabolic needs (Ciuti et al. 2009). In bighorn sheep,
lactating animals have been found to increase time spent
grazing by 57% compared with dry ewes (Ruckstuhl and
Festa-Bianchet 1998). This is similar to dairy cattle and
wild red deer (Cervus elaphus), where total time spent
grazing increased by 105 min (Gibb et al. 1999) and 2 h
(Clutton-Brock et al. 1982) respectively. In domestic sheep,
heightened pasture intake is generally managed through
increased time spent grazing or rate of consumption
(Arnold and Dudzinski 1967; Arnold 1975; Penning et al.
1995). Increased spatial utilisation of the paddock over the
following days after lambing also likely reflects the increased
ability of lambs to walk, nurse and follow their mother (Dwyer
2003). In the present study, postpartum ewes appeared to
increase their use of the paddock at the expense of close
social contact, possibly reflecting this reported need for
increased foraging activity and increased mobility of the lamb.

When interpreting the ewe’s change in spatial paddock
utilisation around parturition, patterns should be inferred
with caution. In the present study, animals were moved to a
new paddock upon commencement of the trial and thus the
tendency for reduced spatial utilisation in the initial days of the
study may actually reflect a period of habituation rather than
true pre-partum behaviour (Thomas and Revell 2011).
Likewise, the increase in use of space in the latter stages
may reflect declining dry matter availability over time (Arnold
1960; Forbes and Hodgson 1985), requiring animals expand
their foraging area irrespective of changes to nutritive
requirements due to lactation. This is somewhat supported
by data shown in Fig. 6, where the animals that did not lamb
during the course of the study still showed an increasing trend
for spatial utilisation of the paddock over time. However,
given that the degree of spatial utilisation of new mothers
4 days post-parturition (0.81 ha � 0.06) was still less than that
covered by ewes that did not lamb (1.10 ha � 0.08 on Day 14),
there still appears to be an impact of parturition status on ewe
behaviour, even if this is confounded by time. It is possible that
if the analysis was extended past Day 4, postpartum ewes may

have maintained these lower levels of overall spatial paddock
utilisation compared with animals yet to lamb. Further
research should focus on confirming this behavioural
change over a wider period of time and in paddocks of
varying size and forage availability.

Change in hourly patterns of behaviour

In addition to identifying the day of parturition, the ability to
detect the hour of birth and particularly the onset of lambing
before it commences, could improve current management
practice and allow direct intervention by producers if required
(Dobos et al. 2014). However, in our study, the use of GNSS
technology to monitor hourly changes in ewe behaviour was
largely unsupported. This outcome is similar to Dobos et al.
(2014), who was also unable to identify changes in ewe
behaviour that could be used as a reliable warning signal for
lambing.One reason for thismay be due to the tendency for ewes
to give birth at different hours of the day, with normal diurnal
patterns making it difficult to discern changes in behaviour due
to parturition alone. Once the values are averaged over the
coarser daily metric, subtle changes in diurnal pattern do not
appear to confound the results. Although the tracking interval
used in this study was at a slightly finer resolution to that of
Dobos et al. (2014) (3 vs 5 min), this does not appear sufficient
to mitigate the effects of normal diurnal patterns. Further
assessment of GNSS at a subday scale should be attempted
using even finer resolution tracking or through integration with
another sensor type. For example, accelerometers, which
provide a measure of three-dimensional movement and have
already been applied in sheep to identify lambing (Schmoelzl
et al. 2016), suckling (Ku�znicka and Gburzy�nski 2017) and
other general behaviours (Alvarenga et al. 2016; Giovanetti
et al. 2017; Radeski and Ilieski 2017; Barwick et al. 2018) and
could be used to detect more subtle changes associated with
parturition.

In the present study, a ewe’s level of isolation was not
predictive of the hour of lambing (P = 0.11). However, as
seen in Fig. 4, there was a trend for increased isolation before
lambing, followed by a decrease post-birth, even if this was
not significant. Although somewhat expected given the
inconsistencies of this behaviour in domestic sheep (Fraser
1968; Arnold and Morgan 1975; Alexander et al. 1979;
Stevens et al. 1981), the method for assessment should also
be discussed. In Alexander et al. (1979), ewes were visually
confirmed as ‘isolated’when therewas no other ewewithin 10m
of the birth site.However, in our study, themeandistance topeers
at either an hourly (Fig. 3) or daily scale (Fig. 4) never decreased
below 25 m. In this instance, estimating an animal’s level of
isolation based on her distance to all others within the flock
may be considered a limitation, with assessment based on the
distance to the nearest neighbour a potentially superior
method. Using the former calculation, a ewe located at an
intermediate distance from all others in the flock (i.e. truly
isolated) would exhibit a similar mean distance compared with
one distant from the majority but still within close contact with
a smaller subflock (i.e. not isolated). Thus, although the
approach of Alexander et al. (1979) to define isolation
based on a fixed distance was considered arbitrary and
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limited, the approach in this study could also be refined.
Further research should consider this to ensure subflocking
behaviour is not being masked. This will also be important for
application of these metrics in a commercial sensor-based
system, where some threshold level will be required to
determine if an ‘alert’ of parturition should be delivered.

Conclusions

Changes in ewe speed of movement, isolation and spatial
paddock utilisation occur at parturition and can be detected
using GNSS sensors. Using a day-scale resolution, minimum
daily speed increases on the day of lambing, potentially
indicating a level of restlessness in the ewe. In addition, ewes
isolate themselves and limit their spatial utilisation of the
paddock. Although some change in hourly maximum speed
was identified in this study, GNSS technology alone is not
sufficient to detect the onset of lambing or actual time of birth.

In the present study we identified measurable variables for
detection of parturition in sheep using GNSS. With the
methodology applied in this study, behavioural changes
related to lambing were detected at a daily scale. Ideally,
GNSS or other similar sensor technology should be further
developed for lambing detection at a much finer scale (e.g.
hourly) to maximise benefits of real-time monitoring. Despite
this limitation, the patterns identified in this study could still be
used to inform a model that identifies if a ewe has given birth in
the preceding 24 h based on a deviation from ‘normal’ baseline
patterns. If this were extended to include ameasure of parturition
success (e.g. dystocia), the use of the model in a commercial
setting would allow producers to effectively manage their
animals during this period, improving welfare standards and
increasing economic returns from rapid intervention and
increased survival rates. However, in order to ensure adequate
model development, validation of appropriate variables such
as a universal change in speed of movement, isolation or use of
space, as has been attempted in this study, is an essential first
step. A variety of mathematical and statistical models are
currently used for detecting a variety of phenomena in the
animal sciences. For example, for the autonomous detection
of mastitis (de Mol and Ouweltjes 2001) and oestrus in
dairy cows (Chung et al. 2013) and diseases on different
livestock species (Fernández-Carrión et al. 2017). Thus, the
identification of variables that are significantly altered around
birth events would enable the development of predictor
variables that could be used in time series and machine
learning models for the detection of birth events in sheep.
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Chapter 6. Behaviour classification of extensively grazed sheep 

using machine learning 

Fogarty E.S., Swain D.L., Cronin G.M., Moraes L.E., Trotter M. 2020. Behaviour classification 

of extensively grazed sheep using machine learning. Computers and Electronics in Agriculture, 

169, 105175. 

doi: https://doi.org/10.1016/j.compag.2019.105175 

Overview 

Accelerometers have increased in popularity in recent years (Chapter 2). However, despite 

the growing number of studies in this area, there is still no established method of data analysis 

appropriate for sheep behaviour classification. Thus, this chapter provides supporting 

evidence to determine the most appropriate method of accelerometer data analysis to detect 

sheep behaviour. Machine learning was selected as the method of analysis due to its 

promising application in previous sheep research (Barwick, 2016, Alvarenga et al., 2016). The 

chosen ML models [Classification and Regression Trees (CART)], Support Vector Machine 

(SVM), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) were 

based on previous use of these models in sheep (Alvarenga et al., 2016, Marais et al., 2014, 

Umstätter et al., 2008, Barwick et al., 2018) and cattle (Robert et al., 2009, Hokkanen et al., 

2011, Nadimi et al., 2012, Watanabe et al., 2008). 

This manuscript has been published in Computers and Electronics in Agriculture and appears 

in this thesis in its published form. Data presented in this chapter was collected during the 

2018 field trial.  
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A B S T R A C T

The application of accelerometer sensors for automated animal behaviour monitoring is becoming increasingly
common. Despite the rapid growth of research in this area, there is little consensus on the most appropriate
method of data summation and analysis. The objective of this current study was to explore feature creation and
machine learning (ML) algorithm options to provide the most accurate behavioural classification from an ear-
borne accelerometer in extensively grazed sheep. Nineteen derived movement features, three epochs (5, 10 and
30 s) and four ML-algorithms (Classification and Regression Trees (CART), Linear Kernel Support-Vector
Machines (SVM), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)) were as-
sessed. Behaviour classification was also evaluated using three different ethograms, including detection of (i)
grazing, lying, standing, walking; (ii) active and inactive behaviour; and (iii) body posture. Detection of the four
mutually-exclusive behaviours (grazing, lying, standing and walking) was most accurately performed using a
10 s epoch by an SVM (76.9%). Activity was most accurately detected using a 30 s epoch by a CART (98.1%).
LDA and a 30 s epoch was superior for detecting posture (90.6%). Differentiation relied on identification of
disparities between behaviours rather than pattern recognition within a behaviour. The choice of epoch and ML
algorithm will be dependent on the application purpose, with different combinations of each more accurate
across the different ethograms. This study provides a crucial foundation for development of algorithms which
can identify multiple behaviours in pasture-based sheep. This knowledge could be applied across a number of
contexts, particularly at times of change in physiological or mental state e.g. during parturition or stress-indu-
cing husbandry procedures.

1. Introduction

Behaviour is often used by researchers to better understand an an-
imal’s interaction with their environment and physiological state (Frost
et al., 1997; Barwick et al., 2018a). However, behaviour is often diffi-
cult to consistently monitor, especially when animals are in large
numbers or spread over vast distances (Dobos et al., 2015). The de-
velopment of sensor technologies has improved our ability to remotely
monitor livestock in a broad range of contexts and on scales not pre-
viously possible (Brown et al., 2013; Schmoelzl et al., 2016). Of these
sensors, one type that has increased in popularity is the accelerometer
(Fogarty et al., 2018). Accelerometers measure both gravitational and
inertial acceleration associated with movement, usually on three dif-
ferent axes (called tri-axial) (Brown et al., 2013; Alvarenga et al., 2016;
Barwick et al., 2018b). Recent advances in miniaturisation of tech-
nology has increased accelerometer uptake, with reduced size, mass
and power consumption making attachment to the animal easier and

less invasive (Watanabe et al., 2008; Alvarenga et al., 2016; Walton
et al., 2018). Extensive beef and sheep industries are now exploring the
potential for these systems to optimise production, reduce costs and
enhance sustainability (Trotter, 2018).

In sheep, accelerometers have previously been used to detect basic
behaviours (specifically, behavioural states rather than behavioural
events) such as high- and low-level general activity (McLennan et al.,
2015), gait and posture (Radeski and Ilieski, 2017) or some combina-
tion of grazing, lying, standing, ruminating, running and/or walking
(Nadimi et al., 2012; Alvarenga et al., 2016; Giovanetti et al., 2017;
Barwick et al., 2018b; Decandia et al., 2018; Mansbridge et al., 2018;
Walton et al., 2018). More specific applications have included the de-
tection of suckling (Kuźnicka and Gburzyński, 2017) and lameness
(Barwick et al., 2018a). These studies vary in their approach, with
differences in study purpose, design, sensor attachment and data
sample rate. Some have also been conducted in controlled pen en-
vironments, either wholly (Alvarenga et al., 2016; Giovanetti et al.,
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2017; Barwick et al., 2018a) or in part (Radeski and Ilieski, 2017). As
these sensors evolve into commercially affordable systems, further
evaluation in sheep kept under normal grazing conditions is warranted.
This is particularly important for behaviour signatures that may subtly
differ between pen and pasture environments (e.g. differences in biting
signatures of animals eating a total mixed ration compared to those
actively tearing pasture (Martz and Belyea, 1986)) or behaviours that
may arise due to extensive management conditions (e.g. increased in-
sect-defence behaviours such as ear-flicking or head shaking
(Dougherty et al., 1993; Mooring et al., 2003)).

In addition to differing study design, there has also been a number
of ways in which behaviour states have been interpreted and classified.
For example, Alvarenga et al. (2016) used accelerometers to classify
five mutually-exclusive sheep behaviours (grazing, lying, running,
standing and walking). Similarly, Barwick et al. (2018b) and Walton
et al. (2018) classified lying, standing and walking behaviours, with
Barwick et al. (2018b) including an additional classification of grazing.
Other approaches include Mansbridge et al. (2018), where classification
was focused on grazing, ruminating and other non-eating behaviours
and Rurak et al. (2008) and Umstätter et al. (2008) where behaviours
were classified as either ‘active’ or ‘inactive’. While a higher degree of
resolution in behavioural observation might be desirable from a re-
search perspective, it is entirely feasible that simple bivariate classifi-
cations (e.g. active/inactive) may prove reliable enough to be applied
in commercial contexts and should not be immediately dismissed.

The first step in most accelerometer-based data analysis involves the
process of feature extraction. There have been a large number of fea-
tures proposed in the literature, ranging from simple averages of a
single accelerometer axis (Hokkanen et al., 2011) to more complex
metrics designed to capture the variability of signal magnitude across
all three axes (Alvarenga et al., 2016; Barwick et al., 2018b; Walton
et al., 2018). Most features are created using a fixed time segment
commonly referred to as the ‘epoch’ (Decandia et al., 2018). Epochs
help to reduce both the amount and complexity of data and reduce
noise in the dataset (Chen and Bassett, 2005; Barwick, 2016). However,
choosing an optimal epoch length can be challenging, as epochs are
required to be both short enough to maximise the likelihood of cap-
turing a single behaviour yet sufficient in duration to allow adequate
differentiation between behaviours (Chen and Bassett, 2005). While
this method of data summation is common, there is not yet a consensus
on the most appropriate epoch length for behaviour detection.

Once the features have been created, these are then analysed using
any one of a number of machine learning (ML) algorithms e.g. dis-
criminant analysis (Giovanetti et al., 2017; Barwick et al., 2018a;
Barwick et al., 2018b; Decandia et al., 2018); classification trees
(Alvarenga et al., 2016); random forest (Barwick et al., 2018a; Barwick
et al., 2018b; Mansbridge et al., 2018; Walton et al., 2018); support
vector machine (Mansbridge et al., 2018). Whilst some studies have
compared the value of different epochs and ML algorithms, none have
comprehensively evaluated the many different combinations in parallel
and the resulting ability to classify multiple behaviour states in ex-
tensively grazed sheep.

The objective of this current study was to explore how a range of ML
algorithms (Classification and Regression Trees (CART), Linear Kernel
Support Vector Machine (SVM), Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA)) can be used to predict
behavioural states in sheep. Algorithms were assessed using three epoch
lengths (5, 10, 30 s). Assessment of calculated features was also con-
ducted to determine the best features for behaviour prediction. Analysis
was applied to three different ethograms: (i) detection of four mutually-
exclusive behavioural states (grazing, lying, standing, walking); (ii)
detection of general activity (active – grazing, walking; inactive –
standing, lying); and (iii) detection of body posture (upright – grazing,
standing, walking; prostrate – lying). Though similar aspects of accel-
erometer application have been studied in sheep (Umstätter et al.,
2008; Alvarenga et al., 2016; Giovanetti et al., 2017; Barwick et al.,

2018b; Decandia et al., 2018; Mansbridge et al., 2018; Walton et al.,
2018) and cattle (Martiskainen et al., 2009; Robert et al., 2009; Smith
et al., 2016; Abell et al., 2017), the focus of this study was to assess
multiple combinations of analysis protocols, with the objective of
identifying algorithms appropriate for commercial application in ex-
tensively grazed sheep. Further to this, while comparable applications
are already present in the dairy industry (Trotter, 2013), there is still a
requirement to study these aspects in sheep given the differences be-
tween the two species e.g. bio-mechanical differences related to
common behaviours and the resulting difference in acceleration sig-
natures (Chambers et al., 1981; Barwick et al., 2018b).

2. Materials and methods

2.1. Animals, location and instrumentation

All procedures were approved by the Massey University Animal
Ethics Committee (MUAEC 18-67).

This study was conducted at a commercial mixed enterprise prop-
erty on the South Island of New Zealand (43.0°S and 173.2°E). Twelve
pregnant mixed-aged ewes (Merino or Merino cross) were selected for
observation and fitted with ear-borne accelerometers (Axivity AX3,
Axivity Ltd, Newcastle, UK). These animals were part of a larger flock
(39 ewes in total) also fitted with ear tag accelerometers being mon-
itored for the purposes of parturition detection. All ewes (n = 39) were
selected from the main commercial flock on the basis of being ultra-
sound scanned as single-bearing with an expected lambing date from
early to mid-September 2018. The experimental paddock was 4.4 ha.
Animals were provided with ad libitum access to forage and water.
Shelter was provided by tree breaks along the east and west boundaries.
The north side of the paddock followed a major farm road (Fig. 1).

The accelerometers were configured to collect data at 12.5 Hz (12.5
records/second). The internal clock was synced with the time.is website
(https://time.is) prior to deployment. The accelerometers were at-
tached to ear tags and fixed to the ewe’s ear by an experienced operator
using a commercial Allflex applicator (Allflex Australia Pty Ltd,
Australia). Tags were fixed with orientation of the X, Y and Z axis along
the dorso-ventral, lateral and anterior-posterior axes, respectively. A
schematic drawing of the tag and attachment site is shown in Fig. 2.
Tags were attached on the morning of 8 September 2018 with animals
observed for at least 30 min to monitor for signs of distress. Animals
were then moved to the experimental paddock with data collection
starting at midnight on 9 September 2018 (Day 1). Tags were removed
by 1200 on 23 September 2018 (Day 16). Accelerometer data were then
downloaded using the proprietary software (OMGUI, Axivity Ltd,
Newcastle, UK).

2.2. Observations

To facilitate observation, ewes were fitted with unique identifica-
tion ‘bibs’. Ewes were observed from 0730 h to 1230 h and 1330 h to
1730 h (± 30 min) for the duration of the study. Visual observations
were conducted for the purpose of recording lambing behaviour and
time of birth. For the purpose of the current study ad libitum video re-
cordings were acquired during these times using a Nikon Coolpix B500
camera with a 40x optical zoom (Nikon, Japan) and a Sony HDR-PJ410
Camcorder (Sony, Japan). Both cameras were synced with the time.is
website at the start of each day before any recordings. Video recordings
were usually conducted from the roadside at the northern end of the
paddock. The exception to this was when the entire flock was located at
the southern end of the paddock and recordings were collected from
within the paddock at an appropriate distance to minimise flock dis-
turbance (Fig. 1).
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2.3. Behavioural annotation of video files

Video files were downloaded and annotated by a single observer
(first author) to record the exact time and duration of each behaviour
state. Observations were ad libitum and classified as per Table 1. Be-
haviours were only recorded if they were continuously performed for at
least ten seconds (for the 5 and 10 s epochs) or 30 s (for the 30 s epoch).
This was conducted to ensure each discrete epoch only contained the
accelerometer data from a single behaviour. If an animal transitioned to
another behaviour within an epoch, this was discarded. If the observer
was unsure of the animal's behaviour (e.g. if they were partially con-
cealed by another animal), the observation was discarded. Due to the

difficulties in differentiating between grazing and standing behaviours,
grazing was only recorded when clear jaw movements were evident and
standing was only recorded when the head was upright with no jaw
movements. Again, if the observer was unsure of the behaviour, the
observation was discarded.

Behaviours recorded on the day of lambing were excluded from
analysis because of the potential impact of parturition behaviour on the
accelerometer data. Days either side of this were still included in ana-
lysis as overt behavioural changes are usually only evident on the actual
day of lambing (Wallace, 1949; Owens et al., 1985; Echeverri et al.,
1992; Schmoelzl et al., 2016).

2.4. Ethogram development

To facilitate assessment using different methods of behaviour clas-
sification, further annotations were made to reclassify each behaviour
based on activity and posture (Table 1). Put simply, three different
ethograms were used for assessment, with each ethogram representing
different groupings of similar behaviours: (i) detection of four mutually-
exclusive behaviours (grazing, lying, standing, walking); (ii) detection
of active (grazing, walking) and inactive (lying, standing) behaviours
and (iii) detection of upright (grazing, walking, standing) and prostrate
(lying) body posture.

2.5. Calculation of movement metrics

The raw accelerometer data that corresponded to individual beha-
viours were then extracted and partitioned into epochs of 5 s, 10 s and

Fig. 1. Schematic diagram of the experimental paddock.

Fig. 2. Schematic drawing of the tag and attachment site including device or-
ientation.

Table 1
Recorded behaviour definitions (Barwick et al., 2018b).

Ethogram classification
Behaviour description 1. Behaviour 2. Activity 3. Posture

Animals are grazing with their head down or chewing with head up. Grazing animals still or moving. Grazing Active Upright
Animals are recumbent and inactive with minor head movements. Lying Inactive Prostrate
Animals are idle and standing upright. Only standing behaviour with head up was recorded. Standing Inactive Upright
Animals are travelling using progressive steps in a forward direction. Head position can be up or down. Walking Active Upright
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30 s. Again, epochs were only included if they contained data from a
single behaviour for the entire epoch (e.g. a 15 s observation of a single
behaviour would provide three 5 s epochs, one 10 s epoch and no 30 s
epochs). Nineteen movement features were calculated for each epoch
(Table 2). These were the most commonly applied and reported in
previous research (Campbell et al., 2013; Marais et al., 2014; Alvarenga
et al., 2016; Barwick et al., 2018a; Barwick et al., 2018b).

To summarise, nine separate datasets were developed through this
process, representing the three epoch durations and three ethograms to
be assessed. Each row of the datasets contained data for a single epoch,
including the calculated movement metrics, animal ID and the corre-
sponding behaviour (Table 1).

2.6. Training and test data sets

All ML model development and validation was conducted in R (R
Core Team, 2018) using the ‘caret’ (Kuhn, 2018) and ‘randomForest’
packages (Liaw and Wiener, 2002). Leave one out cross validation
(LOOCV) was used to train and subsequently test the performance of
each ML algorithm. This process was based on Smith et al. (2016), and
involves training the ML on all but one of the available datasets (11 of
the 12 individual animal datasets), with the remaining animal’s dataset
used for performance evaluation. This process was repeated 12 times
across all individual animals.

Within each training progression, a 10-fold CV was also used to split
the training data into non-overlapping secondary training and test sets
for parameter selection. This process ensures optimal parameter selec-
tion during the training process, whilst retaining a completely in-
dependent dataset (from the animal that had been ‘left out’) for final
model validation. Again, this process was based on (Smith et al., 2016).

The use of unbalanced datasets has been shown to provide sub-
optimal classification, particularly for the minority class (Weiss and

Provost, 2003; Amrine et al., 2014). To account for this, the training
dataset was under-sampled by randomly removing observations from
the majority class(es) to make the dataset more balanced. This was
conducted for Ethogram One only, where the disparity between beha-
viour frequencies was most obvious (particularly for walking data). For
Ethogram Two and Three the training sets were kept in their original
(unbalanced) form. This decision was made to maximise the number of
available observations for training and to minimise handling of the
dataset. The method of under-sampling was adapted from Smith et al.
(2016) and Abell et al. (2017).

2.7. ML classifiers

Models for classification of each ethogram were developed using ML
algorithms (CART, SVM, LDA and QDA) from the ‘caret’ package (Kuhn,
2018).

CART is a simple and intuitive process, resulting in a single decision
tree based on simple yes/no questions (Valletta et al., 2017). These
algorithms are easy to train and can manage unbalanced data; however,
they are prone to overfitting (Nathan et al., 2012; Valletta et al., 2017).

SVM is a type of non-probabilistic classifier (Mansbridge et al.,
2018). The model works by creating a hyperplane to separate ob-
servations, maximising the distance of observations from the hyper-
plane (Nathan et al., 2012; Wang, 2019). SVM is primarily a binary
classifier, though multiclass classifications can be implemented by
comparing one class to all other classes (Nathan et al., 2012). SVMs
have relatively high computational costs (Vázquez-Diosdado et al.,
2015).

LDA reduces dimensionality of the data by applying linear bound-
aries between groups; maximising the distance between the classes
whilst simultaneously minimising the variance within each class
(Nathan et al., 2012). The use of the linear boundaries can minimise the

Table 2
Nineteen features calculated for each epoch (5, 10, 30 s) based on raw X, Y and Z acceleration values. Equations
adapted from Campbell et al. (2013); Marais et al. (2014); Alvarenga et al. (2016); Barwick et al. (2018a); Barwick
et al. (2018b).

Feature Equation

Average X-axis (Ax) = ∑ =A x t( )x T t
T1

1

Where T is the total number of counts in the epoch
Average Y-axis (Ay) As above for the Y-axis
Average Z-axis (Az) As above for the Z-axis
Average all-axis (Axyz) = ∑ + +=A x t y t z t( ( ) ( ) ( ))xyz T t

T1
1

Where T is the total number of counts in the epoch
Minimum X (MinX) The minimum X-axis acceleration value for the epoch
Minimum Y (MinY) The minimum Y-axis acceleration value for the epoch
Minimum Z (MinZ) The minimum Z-axis acceleration value for the epoch
Maximum X (MaxX) The maximum X-axis acceleration value for the epoch
Maximum Y (MaxY) The maximum Y-axis acceleration value for the epoch
Maximum Z (MaxZ) The maximum Z-axis acceleration value for the epoch
Standard Deviation (SDX) = ∑ −= x t xSD ( ( ) ¯)X T t

T1
1

2

Standard Deviation (SDY) As above for the Y-axis
Standard Deviation (SDZ) As above for the Z-axis
Average Standard Deviation (SDXYZ) = ∑ + +=SD SDX SDY SDZ( )XYZ T t

T1
1

Movement Intensity (MI) ∑ + += x t y t z t( ( ) ( ) ( ) )T t
T1

1
2 2 2

Where T is the total number of counts in the epoch
Signal Magnitude Area (SMA) ∑ + += x t y t z t(| ( )| | ( )| | ( )|)

T t
T1

1

Where T is the total number of counts in the epoch
Energy ∑ + += x t y t z t( ( ) ( ) ( ) )

T t
T1

1
2 2 2 2

Where T is the total number of counts in the epoch
Entropy ∑ + + + + + += x t y t z t x t y t z t(1 ( ( ) ( ) ( )) ln(1 ( ( ) ( ) ( )) )

T t
T1

1
2 2

Where T is the total number of counts in the epoch
Movement Variation (MV) ∑ − + − + −= − − −x x y y z z( (| | | | | |))T t

T
t t t t t t

1
1 1 1 1

Where T is the total number of counts in the epoch
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risk of overfitting but may also reduce accuracy. QDA is an extension of
LDA where the decision boundary between classes is quadratic (Marais
et al., 2014). LDA is often considered a baseline algorithm, though still
performs relatively well (Nathan et al., 2012; Marais et al., 2014).

Though these methods can be considered ‘black box’, with the in-
ternal rules with each algorithm difficult to determine (Nathan et al.,
2012), the above MLs were chosen for inclusion as they are relatively
easy to apply and interpret. There is also precedence for their use based
on previous applications in sheep (Marais et al., 2014; Alvarenga et al.,
2016; Barwick et al., 2018b; Mansbridge et al., 2018) and cattle
(Martiskainen et al., 2009; Robert et al., 2009; Smith et al., 2016).

2.8. Feature evaluation

For CART and SVM, all 19 features were used in model develop-
ment. A Receiver Operating Characteristics (ROC) curve analysis was
then conducted to determine the dominant features for prediction using
each algorithm. For LDA and QDA, variable selection of the top three
features was performed before model development using random forest
(RF). This prior selection of features was conducted to allow direct
comparison with previous protocols established by Barwick et al.
(2018b) and to explore if the application of numerous features (as per
protocols used in CART and SVM) improved classification accuracy.
The feature selection process involved development of a RF using the
‘randomForest’ package (Liaw and Wiener, 2002), then calculation of
the average Gini Index of each variable. Gini Index provides a measure
of error across the forest (Alvarenga et al., 2016; Barwick et al., 2018b).
The RF was calculated using an mtry (approximately equal to the
square root of the number of variables used for classification) of 4.4 and
ntree (number of trees in the random forest) of 500 (Barwick et al.,
2018b).

2.9. ML evaluation

Once prediction models for each ethogram had been developed, the
average accuracy and Kappa value was calculated. Accuracy was cal-
culated using the following equation:

=
+

+ + +
accuracy TP TN

TP TN FP FN
( )

( )

where true positive (TP) refers to the number of instances where the
behaviour of interest was correctly identified, false negative (FN) is the
number of instances where the behaviour of interest was incorrectly
identified as another behaviour, true negative (TN) where the beha-
viour of interest was correctly classified as not being observed and false
positive (FP) is the number of instances where the behaviour of interest
was incorrectly identified as not being observed. The Kappa value
compares the observed accuracy with an expected (random) accuracy,
providing a value between 0.00 and 1.00 where higher scores indicate
higher performance (Alvarenga et al., 2016). This metric is particularly
useful in unbalanced samples such as in this current study (Santegoeds,
2016).

Average sensitivity, specificity and precision was then calculated for
the highest performing algorithms per ethogram, using the following
equations:

=
+

sensitivity TP
TP FN( )

=
+

specificity TN
TN FP( )

=
+

precision TP
TP FP( )

The entire workflow for ethogram development is summarised in
Fig. 3.

3. Results

3.1. Sensor and observation results

A summary of the total number of epoch observations collected for
each behaviour is presented in Table 3.

The proportion of available data for the 5 s and 10 s epoch was 40%
grazing, 45% lying, 13% standing and 2% walking. This equates to 42%
active compared to 58% inactive behaviour and 55% upright compared
to 45% prostrate posture. The low amount of walking data resulted in
the development and application of the under-sampling protocol de-
scribed in Section 2.6.

The proportion of available data for the 30 s epoch was 29%
grazing, 64% lying and 7% standing. Walking was excluded due to the
very low levels of data. This equates to 29% active compared to 71%
inactive behaviour and 36% upright compared to 64% prostrate pos-
ture.

3.2. Ethogram One: Detection of grazing, lying, standing and walking
behaviour

The results of the CART, SVM, LDA and QDA for detecting grazing,
lying, standing and walking behaviour are shown in Table 4. The
highest performing algorithm that was able to detect all four behaviours
was SVM using a 10 s epoch (Table 5).

3.3. Ethogram Two: Detection of activity

The results for the ML algorithms for detecting active or inactive
behaviour is shown in Table 6. For 5 and 10 s epochs, active behaviour
was trained using grazing and walking data. For the 30 s epoch, active
behaviour was trained using grazing data only. Inactive behaviour was
trained using standing and lying behaviours for all epochs. Accuracy
and kappa values were high for all ML and epoch combinations, with
the highest for CART using 30 s epochs (Table 7).

3.4. Ethogram Three: Detection of posture

The results for the ML algorithms for detecting posture are shown in
Table 8. The highest performing epoch was 30 s, especially for LDA
which showed 90.6% accuracy and 0.8 kappa value. The performance
statistics for the LDA model are shown in Table 9.

3.5. Feature evaluation

One objective of this study was to explore which features might be
most valuable to the ML analysis. This was achieved separately for the
CART/SVM and LDA/QDA algorithms. The relative importance of the
nineteen features for CART and SVM development was calculated using
ROC curve analysis after model development (Table 10). For LDA and
QDA, feature selection was conducted before model development using
the RF Gini Index (Barwick et al., 2018b) (Table 11). As shown in
Tables 10 and 11, MV, SDY, SDX and MinX were consistently identified
as the most important features for classification, particularly for the RF
calculation where only one other metric was identified (MeanY;
Table 11). MaxY was also identified by the SVM algorithm as important
for walking (5 s epoch and 10 s epoch) and standing (30 s epoch) dif-
ferentiation (Table 10).

4. Discussion

In this study, a number of features, epoch lengths and ML algo-
rithms were used to successfully classify various behaviour states in
extensively grazed sheep using an ear-borne accelerometer. Given the
value of the ear-tag form and its application in current husbandry
practice (Barwick et al., 2018b), this research provides valuable insight
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of the behaviour assessments that can be conducted using this attach-
ment method.

The results indicate that the ear attachment method is able to dis-
tinguish between four basic behaviours with reasonable accuracy. In
general, longer epochs reported greater accuracy overall. However, due
to lack of available training data, the 30 s epochs models could not be
applied to classify walking (Table 4). As shown in Table 5, standing and
walking classification had relatively low sensitivity (62.9% and 65.6%,
respectively). This means that of those available data points, only a
small proportion were correctly identified in the test dataset (true po-
sitive), with the rest being misclassified as another behaviour (false
negative). Specificity was also low for these behaviours, particularly
walking (45.2%), and reflects a lower true negative rate (i.e. higher

false positives). This contrasts with Barwick et al. (2018b), where
standing had 98% and 95% and walking had 96% and 100% sensitivity
and specificity, respectively, using the same attachment method. Cur-
iously, the sensitivity of lying classification was also low in the current
study (55.5%). This contrasts Walton et al. (2018) where lying classi-
fication had over 92% for all performance metrics. In this study, the
amount of walking data collected was significantly lower than the other
behaviours (Table 3). Though we attempted to mitigate this by under-
sampling the remaining behaviours, the results of the current study
should be interpreted with caution. It should also be noted that under-
sampling may have impacted the results for the other behaviours such
as lying by discarding potentially useful information which may have
assisted in algorithm development. Further research should be

Fig. 3. Workflow for development of Ethogram One using ML-algorithms. This process was repeated for Ethogram Two and Ethogram Three.
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conducted to improve this result, ensuring adequate training data is
collected for behaviour differentiation. Researchers should note that
obtaining adequate amounts of data for some behaviours (e.g. walking
and running) in extensive grazing environments may be challenging as
animals may only spend a small amount of time in this behaviour state
compared to grazing and resting. Observation of these behaviours in
extensive environments may also be difficult if animals are ranging over
large areas or hilly terrain. For this reason, it may be necessary to
manage the animals in such a way that large amounts of data can be
easily collected for these behaviours that are less frequent but still
highly significant.

In situations where it is not necessary to determine the exact be-
haviour of the animal, discrimination between activity levels may be sufficient. This reduces the complexity of the ethogram and decreases

the computational burden of data processing. For example, if

Table 3
Total number of epoch observations available for each animal and behaviour.

Total number of epoch observations
Grazing Lying Standing Walking

Animal 5 10 30 5 10 30 5 10 30 5 10

1 176 88 12 536 268 83 44 22 4
2 82 41 6 506 253 75 18 9
3 186 93 12 46 23 5 74 37 3 6 3
4 144 72 11 94 47 12 42 21 1 18 9
5 192 96 20 56 28 8 80 40 4 4 2
6 96 48 7 18 9 1 48 24 1 8 4
7 182 91 10 124 62 18 56 28 5 22 11
8 128 64 9 78 39 12 30 15 4 2 1
9 182 91 14 26 13 2 82 41 1 10 5
10 140 70 9 96 48 15 44 22 6 14 7
11 74 37 5 132 66 20 42 21 2 4 2
12 196 98 18 304 152 45 44 22 4 8 4

TOTAL 1778 889 133 2016 1008 296 604 302 35 96 48

Table 4
Accuracy and kappa values for ML prediction of grazing, lying, standing and
walking at 5, 10 and 30 s epochs. Bold indicates the highest accuracy/kappa
combination.

Epoch ML Accuracy (%) Kappa No.1 of behaviours detected

5 s CART 54.0 0.4 4
SVM 64.6 0.5 4
LDA 53.8 0.3 4
QDA 64.3 0.4 4

10 s CART 63.4 0.4 4
SVM 76.9 0.6 4
LDA 56.6 0.4 4
QDA 65.9 0.5 4

30 s CART 71.4 0.6 3
SVM 75.6 0.6 3
LDA 74.6 0.6 3
QDA 71.5 0.5 3

1 No. = Number.

Table 5
Performance statistics for the 10 s epoch SVM test dataset for Ethogram One.
Metrics reflect the average values for all iterations of the model (i.e. mean of all
12 test sets).

Grazing Lying Standing Walking

Metrics used All
Accuracy (%) 76.9

Range (54.81−90.82)
Sensitivity (%) 90.3 55.5 62.9 65.6
Specificity (%) 98.1 93.3 84.0 45.2
Precision (%) 96.8 69.8 45.2 25.1

1 Animal ID: 11.
2 Animal ID: 8.

Table 6
Accuracy and kappa values for ML prediction of active or inactive behaviours at
5, 10 and 30 s epochs. Bold indicates the highest accuracy/kappa combination.

Epoch ML Accuracy (%) Kappa

5 s CART 95.2 0.9
SVM 95.5 0.9
LDA 90.7 0.8
QDA 92.4 0.8

10 s CART 96.6 0.9
SVM 96.9 0.9
LDA 96.0 0.9
QDA 96.2 0.9

30 s CART 98.1 1.0
SVM 97.8 0.9
LDA 96.8 0.9
QDA 98.0 0.9

Table 7
Performance statistics for the 30 s epoch CART test dataset for Ethogram Two.
Metrics reflect the average values for all iterations of the model (i.e. mean of all
12 test sets).

Active Inactive

Metrics used All
Accuracy (%) 98.1

Range (86.71–100.02)
Sensitivity (%) 97.4 98.5
Specificity (%) 98.5 97.4
Precision (%) 96.9 98.6

1 Animal ID: 10.
2 Animal ID: 1, 2, 3, 4, 5, 6, 7, 11.

Table 8
Accuracy and kappa values for ML prediction of upright and prostrate postures
at 5, 10 and 30 s epochs. Bold indicates the highest accuracy/kappa combi-
nation.

Epoch ML Accuracy (%) Kappa

5 s CART 83.3 0.6
SVM 81.1 0.5
LDA 82.8 0.6
QDA 81.6 0.6

10 s CART 85.3 0.6
SVM 82.7 0.6
LDA 84.4 0.6
QDA 84.1 0.6

30 s CART 89.4 0.7
SVM 88.0 0.7
LDA 90.6 0.8
QDA 89.0 0.7

Table 9
Performance statistics for the 30 s epoch LDA for Ethogram Three. Metrics re-
flect the average values for all iterations of the model (i.e. mean of all 12 test
sets). The LDA algorithm used the top three ranked metrics from the training
data, identified using RF.

Upright Prostrate

Metrics used MV, MinX, SDX

Accuracy (%) 90.6
Range (80.01–100.02)

Sensitivity (%) 80.7 100
Specificity (%) 100 80.8
Precision (%) 100 79.0

1 Animal ID: 10.
2 Animal ID: 2.
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accelerometers are being used for the sole purpose of measuring feed
intake, the ability to distinguish grazing from other behaviours is cru-
cial. In contrast, if it is enough to know that an animal is alive and
moving, then a more general indication of activity may be adequate.
This may be the case for some commercial applications where varia-
tions in day-to-day activity provide useful information; for example
detection of oestrus behaviour in sheep using a sensor-based approach
(Fogarty et al., 2015). Detection of active or inactive behaviours in this
current study had over 90% accuracy for all epoch durations. The
highest performing ML was CART (98.1%), closely followed by QDA
(98.0%), both using the 30 s epoch. This was similar, if not slightly
better than related studies (Umstätter et al., 2008) where pitch (vertical
head movement) and tilt (lateral head movement) collected at 30 s
increments was able to detect active and inactive behaviours with
94.4% and 96.6% accuracy, respectively. Adding to the benefit of
higher model accuracy, classification of activity may also be applicable
across a wider range of contexts because of the clear and distinct dif-
ferences between the two states. In contrast, unless identification of a
specific behaviour is absolutely crucial, such explicit classification may
actually be detrimental in some situations. This is because ML classi-
fication requires the algorithm to be ‘taught’ a finite spectrum of be-
haviours, which might not necessarily be relevant to the behaviour
being performed. Furthermore, the ML is inherently required to make a
classification regardless of whether the behaviour completely ‘fits’ into
one of the pre-defined groups. This is problematic for behaviours which
may not be commonly trained, but are still relevant e.g. licking beha-
viour of a ewe to clean placenta off a newborn lamb may be incorrectly
classified as grazing; scratching behaviour of sheep infested with lice
maybe be incorrectly classified as walking. While there may be a mo-
tivation for development of commercial algorithms that provide as
much detail as possible, more basic ethograms may actually be more
appropriate in some situations.

Another method of reducing ethogram complexity is to detect the

animal’s posture. For example, lying behaviour in sheep is known to
change with biomass availability (Arnold, 1984), parasite burden
(Berriatua et al., 2001) and stress from surgical husbandry procedures
(Fell and Shutt, 1989). Changes in lying and standing behaviour may
also indicate an altered physiological status, including the onset of
parturition (Echeverri et al., 1992). In this current study, the ability to
differentiate between postures varied with epoch length and ML algo-
rithm (81.1%–90.6%). The highest overall accuracy was evident using a
30 s epoch and LDA (90.6%), followed closely by the other ML algo-
rithms also using 30 s epochs. This is superior to McLennan et al.
(2015), where detection of lying and lying-ruminating behaviours had
an accuracy of 74.6%. In the current study, upright posture was more
difficult to classify than prostrate posture, with sensitivity of 80.7%
compared to 100%, respectively. This contrasts the results for Ethogram
One (Table 5) where standing behaviour had a higher sensitivity
(62.9%) compared to lying (55.5%). The reasons for this may be two-
fold. Firstly, it may simply reflect the impact of under-sampling in
Ethogram One. Secondly, it may reflect differences in the method of ML
behaviour classification, with differentiation of lying from all other
behaviours (grazing, standing and walking) potentially easier than
differentiation from the three separate behaviours. This is supported by
the results of Ethogram One, with lying most often misclassified as
standing (data not presented). Given that the orientation of the ear
would not significantly change between standing and lying behaviours,
this difficulty in differentiating between the two exclusive behaviours is
expected (Barwick et al., 2018b). Leg-mounted devices may offer a
solution to this issue (Radeski and Ilieski, 2017), however their use and
maintenance in the field is difficult (McLennan et al., 2015) and pos-
sibly impractical in a commercial situation (Barwick et al., 2018b). As
ear-borne sensors could be easily integrated with current ear tag
identifiers (Barwick et al., 2018b; Walton et al., 2018), there is merit in
exploring the commercial development in this form, even if more
simple methods of behaviour differentiation (i.e. posture) are required.
Another potential method of improving this accuracy could be through
identification of the transition event itself (i.e. the change between
lying and standing behaviour) rather than the established state, as has
been explored in dairy cattle (Vázquez-Diosdado et al., 2015). This
warrants further research.

As part of the model development process, key features were as-
sessed either post-model development (CART and SVM) or pre-model
development (LDA and QDA). Across all ethograms and epochs, MV,
SDY, SDX and MinX were consistently identified amongst the top fea-
tures (Tables 10 and 11). Interestingly, most of these features relate to
some measure of variation across a given epoch. MV calculates total
variation as a cumulative measure of amplitude, frequency and dura-
tion (Campbell et al., 2013), providing information on the total amount
of movement (Barwick, 2016). Similarly, SDX and SDY measure var-
iance of a particular axis, in this case the dorso-ventral (up-down) and
lateral (side-to-side) movement, respectively. Thus, behaviour dis-
crimination appears to rely on detecting differences between beha-
viours rather than identifying specific movement patterns within a
behaviour. This was also concluded by Barwick et al. (2018b), with MV
also identified as the most important predictor for the ear-borne ac-
celerometer. This was associated this with the tendency of the ear tag to
experience a higher degree of movement compared to collar or leg at-
tachment methods, due to the less rigid fixation point for the device and
the small size of the ear resulting in lower inertia and higher accel-
eration values when the animal moves (Barwick et al., 2018b). Though
beneficial in some aspects, this susceptibility to movement may also be
problematic, potentially causing a shift in axis orientation and/or in-
consistencies between the orientation of the device between individual
animals. This is particularly important for features that are dependent
on deployment orientation (e.g. SDY and SDX).

In the context of developing commercially efficient ear-borne sensor
systems, it is important to consider how the algorithms will actually be
deployed. In this study, the devices used were “store-on-board”, with

Table 10
The top three features for each ethogram using 5, 10 and 30 s epochs.
Importance was calculated after CART and SVM model development using a
ROC curve analysis. Values in parentheses are alternative dominant features for
one particular behaviour (S = standing; W = walking).

Epoch Ethogram One Ethogram Two Ethogram Three

CART SVM CART SVM CART SVM

5 s SDY SDY SDY SDY SDY SDX

MV MV MV MV MV SDY

SDX SDX (MaxY)W SDX SDX SDX MV
10 s MV MV MV MV MinX MinX

SDX SDY SDX SDY SDY Energy
MaxY SDX (MaxY)W MinX SDX MV SDY

30 s MV MV MV MV MV SDY

SDX SDY (MeanY)S MinX SDY MinX MV
MinX SDX (MaxY)S SDX SDX SDY SDX

Table 11
The top three features for each ethogram using 5, 10 and 30 s epochs training
dataset. Importance was calculated based on the Gini index from RF calcula-
tion.

Epoch Ethogram One Ethogram Two Ethogram Three

5 s MV MV MV
SDY SDY SDY

SDX SDX SDX

10 s MV MV MV
SDX SDX SDX

MinX MinX SDY

30 s MV MV MV
SDY MinX MinX
MeanY SDX SDX
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the data stored on the tag and downloaded at the conclusion of the trial.
This is obviously not appropriate for a commercial setting, where real-
time or near-real-time information is required (Bailey et al., 2018). As
data transmission is considered one of the most power intensive ac-
tivities (Handcock et al., 2009), consideration of the amount and type
of data to be transferred is important. When seeking to optimise the
power management of commercial ear tag systems, it will be necessary
to run embedded processing systems where the algorithms are pro-
cessed on the device itself. This has important implications, as complex
algorithms may take longer to compute and therefore reduce energy
efficiency. In the current study, CART and SVM performed slightly
better than the LDA and QDA models across all ethograms and epochs.
However, this came at the expense of requiring more input feature
variables for adequate training. In contrast, the simpler LDA used only
three input features and was consistently only marginally lower in ac-
curacy compared to the more complex ML’s. Whilst more computa-
tionally intensive ML’s may prove relevant in the future, the simplest
solution (LDA) appears to be the most useful in this situation.

Though not the focus of the current study, it is also important to
consider the impact of individual animal behaviour on the development
of general algorithms for commercial application. As shown in Tables 5,
7 and 9, model accuracy varied between the highest and lowest per-
forming animals for each ethogram, ranging from a 36% difference in
Ethogram One, to 13% difference in Ethogram Two. Interestingly, the
results did not demonstrate a consistent performance of individuals,
with the animal scoring the lowest accuracy in Ethogram One (Animal
11; Table 5), amongst the highest performers in Ethogram Two
(Table 7). The exception to this was Animal 10, which was lowest
performing animal for Ethograms Two and Three, and the third lowest
performing animal in Ethogram One (accuracy 69.39%). As previously
mentioned, ear tag accelerometers experience a higher degree of
movement compared to other attachment methods (Barwick et al.,
2018b). This may result in changing orientation of a single device,
leading to systematic inaccuracies of an individual dataset. Other
causes of inaccuracies may be due to changes in the physical movement
of individuals. An extreme example of this would be animals experi-
encing lameness (Barwick et al., 2018a), and although this was not the
case for animals in this study, even subtle variations in gait may have
influenced the results. Finally, differences in individual animals may
reflect just that, differences in individuals and the idiosyncrasies that
may develop over time. Regardless of the cause, given that individuality
of results is present in the current study, this represents an important
factor impacting generic commercial application, and should be con-
sidered in future work.

5. Conclusion

Accelerometers allow for fine-scale monitoring of animal movement
and behaviour, and are becoming increasingly used in animal beha-
viour research (Fogarty et al., 2018). Despite the technology’s growing
popularity, there is still no consistent protocol for data analysis, parti-
cularly for sheep behaviour classification using ear-borne accel-
erometers. The current study found that ear-borne accelerometers are
able to distinguish between four main behaviours, two activity states
and two postures in pasture-based ewes. Accuracy varied depending on
the method of behaviour classification, with the highest performing ML
for each ethogram having over 75% accuracy (Ethogram One) and 90%
accuracy (Ethogram Two and Three). Overall, epochs of 10 s and 30 s
appear the most appropriate across a range of contexts.

Future research should consider the use of dynamic epochs and
features for best-practice behaviour detection; for example, a 30 s epoch
for detection of activity and 10 s epoch for detection of mutually-ex-
clusive behavioural states or 30 s epoch of MV and 5 s epoch of SDX.
Application of these findings should then be used to identify changes in
overall behaviour patterns, particularly at times where these patterns
would be expected to change e.g. during parturition or stress-inducing

husbandry procedures.
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Chapter 7. Can accelerometer ear tags identify behavioural 

changes in sheep associated with parturition? 
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tags identify behavioural changes in sheep associated with parturition? Animal Reproduction 
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Overview 

This chapter builds on Chapter 6, applying the highest performing ML algorithms to monitor 

changes in behaviour at lambing as measured by accelerometer-based behaviour 

classification. Methods applied in this chapter are similar to Chapter 5, with a focus on 

detecting daily and hourly changes in behaviour. These findings are intended to facilitate the 

development of a parturition detection model using machine learning.  

This manuscript has been published in Animal Reproduction Science and appears in this thesis 

in its published form. Data presented in this paper was collected during the 2018 field trial. 
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A B S T R A C T

On-animal sensor systems provide an opportunity to monitor ewes during parturition, potentially
reducing ewe and lamb mortality risk. This study investigated the capacity of machine learning
(ML) behaviour classification to monitor changes in sheep behaviour around the time of lambing
using ear-borne accelerometers. Accelerometers were attached to 27 ewes grazing a 4.4 ha
paddock. Data were then classified based on three different ethograms: (i) detection of grazing,
lying, standing, walking; (ii) detection of active behaviour; and (iii) detection of body posture.
Proportion of time devoted to performing each behaviour and activity was then calculated at a
daily and hourly scale. Frequency of posture change was also calculated on an hourly scale.
Assessment of each metric using a linear mixed-effects model was conducted for the 7 days (day
scale) or 12 h (hour scale) before and after lambing. For all physical movements, regardless of the
ethogram, there was a change in the days surrounding lambing. This involved either a decrease
(grazing, lying, active behaviour) or peak (standing, walking) on the day of parturition, with
most values returning to either pre-partum or near-pre-partum levels (all P<0.001). Hourly
changes also occurred for all behaviours (all P<0.001), the most marked being increased
walking behaviour and frequency of posture change. These findings indicate ewes were more
restless around the time of parturition. Further application of this research should focus on de-
velopment of algorithms that can be used to identify onset of lambing and/or time of parturition
in pasture-based ewes.

1. Introduction

Extensive sheep production refers to animals raised on large pasture or rangeland conditions and typically requires small amounts
of producer input (Petherick, 2006). Traditionally, concern for animal welfare in extensive systems has been largely overlooked, due
to the perception of it being more ‘natural’ than intensive systems (Goddard et al., 2006). Although extensively-raised animals have
considerably more behavioural freedom than their intensively-raised counterparts (Dwyer, 2009), managing animals in these con-
ditions can result in welfare challenges (Bailey, 2016). For example, extensively-raised sheep are maintained outside year-around,
often in rugged environments (Munoz et al., 2018). Consequently, sheep are subject to variable climatic conditions, inconsistent food
and water availability (Goddard et al., 2006) and increased risk of predation (Manning et al., 2014). Furthermore, animals are often
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managed in large groups at a low stocking density, often with considerable dispersal over the landscape (Petherick and Edge, 2010).
This can make close inspection of animals difficult, restricting the stockperson’s capacity to identify and manage adverse welfare
events (Munoz et al., 2018). Topography and natural landforms (e.g. rivers) may also limit the close inspection of animals (Petherick
and Edge, 2010), meaning that animals that become ill or injured may not be identified and treated as quickly as those in intensive
systems (Bailey et al., 2018). Remote on-animal sensing technologies could benefit extensive sheep production, improving the fre-
quency with which the animals are effectively observed. This increased surveillance will enable earlier detection of issues than is
currently possible, improving decision-making capabilities and potentially allowing timely intervention to improve animal welfare
and farm profitability (Trotter, 2010, 2013; Neethirajan, 2017; Bailey et al., 2018; Vázquez-Diosdado et al., 2019).

One of the key periods of time in which this increased surveillance would be of benefit is during lambing (parturition). Parturition
is a critical period for the ewe and lamb, and mortality at this time affects productivity and welfare (Alexander, 1980, 1988; Hinch
and Brien, 2014). Previous applications of sensor technology to detect parturition-related behaviours in sheep has mostly been
conducted using Global Navigation Satellite System (GNSS). While these techniques can be used for identification of lambing-related
behaviour on a day scale, GNSS has not yet been found to have the capacity for detecting hourly changes in behaviour (Dobos et al.,
2014; Fogarty et al., 2020a). Alternative sensor technologies such as accelerometers have been proposed to address this limitation
(Dobos et al., 2014), due to the capacity of this instrumentation to monitor behaviour on a finer scale. Accelerometers have pre-
viously been used for parturition detection in cows (Huzzey et al., 2005; Jensen, 2012; Krieger et al., 2017, 2018) and sows (Cornou
and Lundbye-Christensen, 2012; Pastell et al., 2016; Thompson et al., 2016). The application of these technologies for lambing
detection, particularly in pasture-based sheep, however, has not yet been fully explored. A single study has been published in which
there was examination of parturition duration using accelerometer technology (Schmoelzl et al., 2016). Ewes, however, were only
assessed for a 24 h period, and thus a comprehensive analysis of temporal changes in behaviour was not possible. Furthermore, these
animals were monitored using leg-attached accelerometers, which have arguably limited commercial application because these
devices are more difficult to attach and maintain (McLennan et al., 2015). As commercially affordable sensor-based systems become
more widely available for sheep production, evaluation of the use of sensors in normal grazing conditions is essential (Fogarty et al.,
2020a).

In this study we have applied behaviour classification machine learning (ML) algorithms to accelerometer data to monitor
changes in sheep behaviour around the time of lambing. It is hypothesised that accelerometer data will have the capacity for
identification of changes in daily and hourly patterns of behaviour associated with lambing. This knowledge is intended to faciliate
the future development of algorithms based on ear tag accelerometer data for the detection of behavioural changes around the time of
lambing in real-time or near-real-time.

2. Materials and methods

2.1. Location and animals

All procedures were approved by the Massey University Animal Ethics Committee (MUAEC 18–67). The study was conducted at a
commercial mixed enterprise on the South Island of New Zealand (43.0 °S and 173.2 °E) from 8 September to 23 September 2018.
Mixed-age ewes (n = 39: Merino or Merino cross) were selected from the main commercial flock and fitted with accelerometer ear
tags (Axivity AX3, Axivity Ltd, Newcastle, UK). Selection was based on ewes having an expected lambing date during the experi-
mental period and being single-bearing (confirmed through ultrasonic assessments as per normal farm practice). Of the 39 ewes
selected, 12 ewes were used for observation (via ad libitum video recordings acquired between 0730 h – 1230 h and 1330 h–1730 h
(± 30 min.) of each day of the study) and subsequent development of ML behaviour algorithms (Fogarty et al., 2020a). The current
study extends this research, and reports on the application of the algorithms on the remaining animals (n = 27). The experimental
paddock was 4.4 ha and animals were provided ad libitum access to forage and water.

2.2. Accelerometers

Accelerometers were configured at 12.5 Hz, attached to ear tags and fixed to the ewe’s ear by an experienced operator. The total
tag weight was 18.5 g and battery life is 30 days as per manufacturer’s guidelines (Axivity AX3, Axivity Ltd, Newcastle, UK). Tags
were fixed with orientation of the X, Y and Z axis along the dorso-ventral (up-down), lateral (side-to-side) and anterior-posterior
(forward-backward) axes, respectively. The accelerometers were attached on the morning of 8 September 2018, with animals ob-
served for at least 30 min to monitor for signs of distress. Animals were then returned to the paddock, with data collection com-
mencing at midnight on 9 September 2018 (Study Day 1). On the morning of Study Day 1, it was noted that in the experimental
paddock there was not allowance for adequate observation of the animals. Thus, the flock were moved to an adjoining paddock at
1100 h on Study Day 1, where the flock remained for the rest of the study. These early data were not removed as it was thought to
reflect commercial conditions where movement of animals prior to parturition may be necessary. Data collection ceased at 2359 h on
23 September (Study Day 15) and tags were removed by 1300 h on 24 September 2018 (Study Day 16). Accelerometer data were then
downloaded using the proprietary software (OMGUI, Axivity Ltd, Newcastle, UK) and analysed using R-Studio (R Core Team, 2018).

2.3. Observations

Throughout the experiment, ewe behaviour was observed ad libitum (Martin and Bateson, 2007) for the purpose of recording the
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time of birth. Observations were conducted from 0730 h – 1230 h and 1330 h–1730 h (± 30 min.) on each day of the study. A single
observer (the first author) remained at the paddock during these times and recorded the time of lambing when observed. To facilitate
visual observations, ewes were fitted with unique identification ‘bibs’ that could be easily distinguished through binoculars or by
visual observation alone.

Where possible, the exact time of lambing (to the nearest minute) was recorded. If this was not achievable, lambing time was
estimated to the nearest hour. For ewes that lambed overnight or during periods where the observer was not present, only the day of
lambing was recorded. In this situation, day of lambing was noted as the day in which the newborn was first identified.

2.4. Machine learning algorithm development

The development of ML algorithms applied in this study has been previously published (Fogarty et al., 2020a). Three different
ethograms were examined, including: (i) detection of four mutually-exclusive behaviours (grazing, lying, standing, walking); (ii)
detection of active (or inactive) behaviour; and (iii) detection of body posture (upright or prostrate). A summary of the ethograms and
most effectively performing ML algorithms as reported in Fogarty et al. (2020a) are shown in Table 1.

2.5. Behaviour classification

Using the algorithms developed and reported in Fogarty et al. (2020a) (Table 1), behaviour classification was conducted on the
complete accelerometer dataset for the entire experimental period. Classification was based on a calculated epoch of 10 s (Ethogram
One) or 30 s (Ethograms Two and Three). Epochs were determined based on actual time of day using consecutive 10 s (Ethogram
One) or 30 s (Ethograms Two and Three) time periods. This resulted in a behaviour classification for each ewe and calculated epoch
for the entire 15-day period.

2.6. Change in sheep behaviour at parturition

After the ML classification for each 10 s or 30 s epoch was determined for all three ethograms, the proportion of time devoted to
performing each behaviour was calculated on a daily and hourly basis. Daily metrics were centred around the day of lambing (Day 0)
and calculated for the 7 days before and 7 days after parturition (Day± 7; 15 days in total). Individual ewe datasets were still
included in the analysis even if there were missing days [e.g., parturition occurred on Study Day 4 would have an individual dataset
of Day -3 through to Day +7 (11 days in total)].

Hourly metrics were centred around the hour of lambing (Hour 0) and calculated for the 12 h before and 12 h after parturition
(Hour±12; 25 h in total). Hourly metrics were only calculated for those ewes where the hour of birth was known (n = 11). Hour of
birth was classified by hour of the day, regardless of when the birth occurred within that hour (i.e., a birth at 1201 h and 1259 h
would both have an hour of birth (i.e., Hour 0) of 1200 h). The number of posture changes was also calculated on an hourly basis. A
posture change was defined as the change in classification from upright to prostrate or vice versa for consecutive epochs. For
example, if the data were classified as prostrate for 5 min, then upright for the next 30 s epoch, then prostrate again, this would be
noted as two posture changes (prostrate to upright and upright to prostrate).

2.7. Statistical analysis

All statistical analyses were conducted using R-Studio (R Core Team, 2018). Linear mixed-effects models were developed using
the ‘nlme’ package (Pinheiro et al., 2018). Significance was P ≤ 0.05. Separate analysis was conducted for day and hour data and for
each method of behaviour classification. Day or hour around birth was treated as a fixed effect. Individual animals were treated as
random effects and the subject of the repeated measures analysis. As this experiment involved repeated measures, either a first-order
autoregressive AR(1) structure or first-order heterogenous autoregressive ARH(1) structure was specified. Selection of the structure
was based on the lowest Akaike Information Criteria (AIC) score. These structures were selected considering the mathematical
properties that assume an exponential decay of the correlation on the errors of observation on the same animal over time. That is,

Table 1
Summary of the ML algorithms developed for each ethogram as per Fogarty et al. (2020a).

Ethogram ML algorithm Epoch length Possible classification Accuracy
(Fogarty et al., 2020a)

One Linear kernel Support Vector Machine (SVM) 10 s Grazing 76.9 %
Lying
Standing
Walking

Two Classification tree (CART) 30 s Active 98.1 %
Inactive

Three Linear discriminant analysis (LDA) 30 s Upright 90.6 %
Prostrate
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errors on pairs of observations closer in time are more correlated than errors on pairs of observation more distant in time. The
selection between AR(1) and ARH(1) allowed for examination of potential model improvement when there was allowance for the
error variances to be different at the different time points. Day scale metrics did not require transformation. All hour scale metrics
were square root transformed to ensure normality of errors. The exception to this was hourly posture change (± 12 h) which did not
require transformation. Least-square means and upper and lower 95 % confidence intervals were generated using the ‘lsmeans’
package (Lenth, 2016). Pairwise comparisons with Tukey adjustment were also computed using this package.

Additional analyses were conducted to compare differences in behaviour for the three possible behaviour states (pre-partum
(Days -7 to -1; Hours -12 to -1); lambing (Day 0; Hour 0) or post-partum (Days +1 to +7; Hours +1 to +12)). In this case, the
behaviour state (a factor with three categorisations) was treated as a fixed effect and individual animals were treated as random
effects. Again, all hour scale metrics (except posture change± 12 h) were square root transformed to ensure normality of errors and
autoregressive structure was based on AIC score. Day scale metrics did not require transformation. Least-square means, upper and
lower 95 % confidence intervals and pairwise comparisons with Tukey adjustment were also calculated.

3. Results

3.1. Animal data and lambing records

Of the 27 ewes used in this study, 26 lambed during the observation period (Study Day 1 to Study Day 15), with the earliest birth
on Study Day 3 and the latest on Study Day 14. The remaining ewe did not give birth before the accelerometers were removed and
was excluded from analysis. Of the 26 ewes that lambed, 12 ewes had the time of birth recorded within a 60 min time period. The
remaining 14 animals lambed overnight or during periods when observation was not being conducted. In these cases, day of lambing
was recorded as the day the lamb was first observed.

With one accelerometer, attached to a ewe with a known hour of birth, there was failure to record throughout the entire ex-
perimental duration and data were excluded from the analysis. With another accelerometer, also attached to a ewe with the hour of
birth documented, there was failure to record past Study Day 9. The data for this animal were still included in analysis up until Study
Day 8 because the ewe lambed early in the experiment (Study Day 3) and thus there was still a relatively large dataset for this ewe to
analyse (Day -2 to Day +5; 8 days in total).

To summarise, from the 27 ewes in the study, 25 datasets were available for day scale analysis. The average number of days
analysed per animal (from a maximum of 15 days) was 12.5 (range 8–15). Of the 12 animals where hour of birth was recorded, 11
datasets were available for hour scale analysis. All had a complete hourly dataset of 25 h (Hour 0± 12).

3.2. Daily changes in behaviour derived from the accelerometers

3.2.1. Grazing, lying, standing and walking behaviour
The proportion of time devoted to grazing, standing, walking and lying varied among the 7 days before and 7 days after par-

turition (all P<0.001; Fig. 1). Values for time devoted for grazing decreased from Day -2, decreasing to a minimum on lambing day
before increasing to pre-lambing values by Day +1 (Fig. 1a). When grouped by behaviour state, the average daily proportion [± 95
% CI] of time devoted to grazing was 25.7 % [23.1; 28.3] and 28.0 % [25.4; 30.6] for pre- and post-partum animals, respectively,
compared with 21.5 % [18.3; 24.7] on the day of lambing. For standing and walking behaviour, there was an inverse trend in time
values compared to grazing, with both behaviours increasing from Day -2, reaching a peak on lambing day and returning to pre-
partum values by Day +1 (Fig. 1b; c). When grouped by behaviour state, the daily proportion of standing behaviour in pre- and post-
partum animals was 34.9 % [28.1; 41.7] and 36.6 % [29.7; 43.4], respectively, compared with 40.2 % [33.3, 47.2] on the day of
lambing. For walking behaviour, the daily proportions were 10.1 % [7.5; 12.7] pre-partum, 14.4 % [11.4; 17.4] at lambing and 10.2
% [7.5; 12.9] post-partum.

The proportion of time ewes devoted to lying did not follow the trend of the other behaviours (Fig. 1d). Instead, lying behaviour
was consistent pre-partum (29.3 % [21.4; 37.2]), before decreasing on the day of parturition (25.4 % [17.2; 33.6]), with a sustained
lesser value for lying behaviour during the 7 days post-partum (25.4 % [17.4; 33.4]). Though lying behaviour varied during the entire
15-day period (P<0.001), the values at Day 0 did not differ from those on any other day (P>0.05).

3.2.2. Active and inactive behaviour
The proportion of time devoted to active behaviours varied among the 7 days before and 7 days after parturition (P = 0.004;

Fig. 2). Note that data for inactive behaviours are not displayed because these values were the inverse to active behaviour data.
Similar to grazing (Fig. 1a), ewes had decreased values for active behaviour from 2 days prior to parturition, decreasing to a
minimum on the day of lambing. Values for active behaviour then increased rapidly, returning to pre-lambing values by Day +1.
When grouped by behaviour state, the average proportion of time devoted to active behaviour prior to and after lambing was 34.2 %
[32.2; 36.1] and 34.5 % [32.5; 36.5] (P = 0.90), respectively, compared with 30.2 % [27.0; 33.3] on the day of lambing (both pairs
P<0.01). A summary of the daily changes in behaviour can be found in Table 2.
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Fig. 1. Proportion of time devoted to performing four mutually-exclusive behaviours from 7 days before to 7 days after lambing (n = 25); Values
represent least-square means± 95 % CI where a) grazing; b) standing; c) walking; d) lying (all P< 0.001); Days marked ‘*’ were different (P ≤
0.05) to the day of birth (Day 0); Mean pre-partum (dashed line) and post-partum (dotted line) behaviour are also depicted where a) P = 0.004; b) P
= 0.13; c) P = 0.97; d) P<0.001.

Fig. 2. Proportion of time devoted to active behaviours from 7 days before to 7 days after lambing (P = 0.004; n = 25); Values represent least-
square means± 95 % CI; Days marked ‘*’ were different (P ≤ 0.05) to the day of birth (Day 0); Mean pre-partum (dashed line) and post-partum
(dotted line) active behaviour are also depicted (P = 0.90).
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3.3. Hourly changes in behaviour

3.3.1. Grazing, lying, standing and walking behaviour
The proportion of time devoted to grazing varied in the 12 h period before and 12 h period after parturition (P<0.001; Fig. 3a).

When values collected during the hour of lambing (Hour 0) were compared with values during the hours preceding or hours following
parturition, there were no differences (P>0.05). When pre- and post-partum hours were grouped together, ewes had less grazing

Table 2
Difference in daily behaviour for pre-partum (Pr), lambing (L) and post-partum (Po) ewes; NS = Not significant.

Behaviour Pairs P-value Description of overall trend Reference

Grazing Pr – L <0.001 Minimum on day of lambing; Increased overall in post-partum animals compared to pre-partum Fig. 1a
L – Po <0.001
Pr – Po 0.004

Standing Pr – L <0.001 Peak on day of lambing; Return to pre-partum levels by Day +1 Fig. 1b
L – Po <0.001
Pr – Po NS

Walking Pr – L <0.001 Peak on day of lambing; Return to pre-partum levels by Day +1 Fig. 1c
L – Po <0.001
Pr – Po NS

Lying Pr – L 0.004 Decreased on day of lambing; Remained low post-partum Fig. 1d
L – Po NS
Pr – Po <0.001

Active behaviour Pr – L 0.004 Minimum on day of lambing; Return to pre-partum values by Day +1 Fig. 2
L – Po 0.002
Pr – Po NS

Fig. 3. Hourly proportion of time devoted a) grazing (P<0.001), b) standing (P<0.001) and c) lying (P = 0.005) from 12 h before to 12 h after
lambing (n = 11); Values represent backtransformed least-square means±95 % CI; Hours marked ‘*’ were different (P ≤ 0.05) to the hour of birth
(Hour 0); Backtransformed mean pre-partum (dashed line) and post-partum (dotted line) behaviour are also depicted where a) P = 0.007; b) P =
0.04; c) P = 0.02.
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activity in the hours preceding the time of lambing (8.1 % [4.8; 12.3]) compared to after lambing (16.3 % [11.4; 22.2]; P = 0.007).
The proportion of time devoted to standing (P<0.001; Fig. 3b) and lying (P = 0.005; Fig. 3c) also varied in the 12 h before and

12 h after parturition. When compared to the hour of lambing (Hour 0), there were no specific hours either preceding or subsequent
to parturition for which the values for time devoted to standing or lying were different (P> 0.05 for all pairs). There was a trend for
lesser time devoted to standing (P = 0.04) and lying behaviour (P = 0.02) post-partum compared to pre-partum.

Walking behaviour also varied in the 12 h before and 12 h after parturition (P<0.001). As depicted in Fig. 4a, the proportion of
time devoted to walking increased in the hours surrounding parturition, particularly between Hour -1 and Hour +2. This pattern is
even more pronounced when the hours surrounding lambing were extended to 7 days (± 168 h; P<0.001; Fig. 4b). As depicted in
Fig. 4b, there are also two apparent peaks in walking behaviour around Hour -143 and Hour -120. These are the result of increased
pattern of walking of two ewes and corresponds to the time when animals were moved between paddocks on Study Day 1.

3.3.2. Active and inactive behaviours
Values for hourly activity varied among the 12 h before and 12 h after parturition (P<0.001; Fig. 5). The overall pattern for

active behaviour was very similar to grazing (Fig. 3a). Although there was a trend for increased active behaviour from Hour -2 to
Hour +1, the values for a majority of hours surrounding parturition were not different from Hour 0 (P>0.05).

3.3.3. Posture change
The number of posture changes per hour varied in the 12 h prior to and following parturition (P<0.001). As depicted in Fig. 6a,

the number of hourly posture changes increased from Hour -4, reaching a maximum at Hour 0, before returning to values similar to
the pre-partum period by Hour +5. When data analyses were conducted on individual hours, the number of posture changes during
the hour of lambing (Hour 0) was 32.4 [25.5; 39.2]. Values for pre-partum posture change ranged from 7.8 [1.0; 14.7] (Hour -12) to
28.5 [21.6; 35.3] (Hour -1). Conversely, values for post-partum posture change ranged from 30.9 [24.1; 37.8] (Hour +1) to 7.0 [0.2;
13.8] (Hour +11). When grouped by behaviour state, the average number of posture changes in pre- and post-partum ewes was 14.3

Fig. 4. Proportion of walking behaviour a) 12 h before to 12 h after lambing; b) 168 h (7 days) before to 168 h (7 days) after lambing (both
P<0.001; n = 11); In a) values represent backtransformed least-square means± 95 % CI; In b) only backtransformed least-squares mean are
depicted for ease of visualisation; In a) hours marked ‘*’ were different (P ≤ 0.05) to the hour of birth (Hour 0); Backtransformed mean pre-partum
(dashed line) and post-partum (dotted line) walking behaviour are also depicted a) P = 0.05; b) P<0.001.
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[10.2; 18.5] and 17.1 [13.0; 21.2], respectively. Similar to walking behaviour, when the hours surrounding lambing were extended to
7 days (± 168 h), this increase in posture change at lambing becomes even more pronounced (P<0.001; Fig. 6b). A summary of the
data for hourly changes in behaviour can be found in Table 3.

4. Discussion

The results from this research support the hypothesis that ML classification of accelerometer data can be used to detect daily and
hourly behaviour changes associated with parturition. While there have been similar applications in other livestock species (Huzzey
et al., 2005; Cornou and Lundbye-Christensen, 2012; Jensen, 2012; Pastell et al., 2016; Thompson et al., 2016; Krieger et al., 2017,
2018), this is the first known application of ML-derived behaviour classification for monitoring parturition behaviour in pasture-
based ewes using an ear tag accelerometer.

4.1. Detectable changes in daily and hourly ewe behaviour at parturition

In the present study, all behaviour metrics, regardless of classification method, were different in the 7 days prior to and 7 days
following lambing. For the majority of behaviours, this involved either a decrease (grazing, active behaviour) or peak (standing,
walking) on Day 0, before returning to either pre-partum or near-pre-partum values. The exception was lying, for which there was not
a return to pre-partum values after lambing. Previous studies regarding the earliest observable change in ewe maternal behaviour are
inconsistent. In a study by Holmes (1976), hind-leg stamping was recorded from as early as 15 days prior, though the majority of
behaviours were only evident from 4 h pre-partum. In contrast, Alexander (1960) reported that the majority of ewes did not have any
behavioural changes until labour was imminent. These inconsistencies in findings may reflect differences in breed (Arnold and
Morgan, 1975; Holmes, 1976), litter size (Owens et al., 1985), ewe age (Alexander, 1960; Arnold and Morgan, 1975) and previous
experience (Bickell et al., 2010), or simply differences among individuals (Safar and Kor, 2014). There, however, is an overall
consensus that overt behavioural change manifests on the actual day of lambing (Wallace, 1949; Owens et al., 1985; Echeverri et al.,
1992; Schmoelzl et al., 2016). This pattern of behavioural change also occurs in cattle, with the greatest changes in calving behaviour
in the 24 h before and after parturition (Rice et al., 2017).

Of the maternal behaviours associated with lambing, increased ewe restlessness is widely reported to occur (Wallace, 1949;
Arnold and Morgan, 1975; Owens et al., 1985; Echeverri et al., 1992; Ceyhan et al., 2012). In the present study, restlessness peaked
on the day of parturition (Fig. 1c) and between Hour -1 to Hour +2 (Fig. 4a), as evidenced by an increased walking behaviour.
Increased walking and walking in a circling pattern have previously been reported to occur on the day of lambing, potentially
reflecting discomfort or nesting behaviour (Arnold and Morgan, 1975; Echeverri et al., 1992). As depicted in Fig. 1c, the proportion of
walking behaviour per day increased from approximately 10 % in pre-partum animals to 15 % on the day of parturition. At an hourly
scale, walking increased from 19 % at Hour -2 to 46 % by Hour 0 (Fig. 4a). This pattern is even more evident when values for this
variable were compared to values at hours more temporally distant (Fig. 4b), with no other hour during the 7 days before or 7 days
after parturition (± 168 h) having values greater than those at Hour 0. The values at the only other hours where there was an
increase in walking behaviour were those at Hours -143 and -120, which were the result of increased pattern of walking of two
particular ewes and corresponded to the transfer of animals between experimental paddocks on Study Day 1. Considering that the

Fig. 5. Proportion of time devoted to active behaviours 12 h before to 12 h after lambing (P< 0.001; n = 11); Values represent backtransformed
least-square means±95 % CI; Hours marked ‘*’ were different (P ≤ 0.05) to the hour of birth (Hour 0); Backtransformed mean pre-partum (dashed
line) and post-partum (dotted line) active behaviour are also depicted (P = 0.05).
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change associated with lambing could still be distinguished from all other hours, even those where animals had been considerably
disturbed, this behaviour change may represent one of the more reliable metrics for predicting a lambing event using accelerometer
sensors.

Ewe restlessness was also evident as a result of the increased frequency of posture change, particularly from Hour -2 to Hour +4
(Fig. 6a). This pattern was similar to that reported by Echeverri et al. (1992), where there was an increased frequency of posture
change starting 4 h prior to birth. In the present study, the average number of posture changes more than doubled during the lambing
period, increasing from approximately 14 changes per hour in pre-partum animals to 32 changes in Hour 0. In contrast, Echeverri
et al. (1992) noted a considerably lesser number of posture changes, ranging from only 3.2–10.7 per 2 h period. This may reflect
differences in animal management (pasture-based in the present study compared to pen-based in the Echeverri et al. (1992) study).
More likely, however, are differences associated with the data collection method (ML algorithm in the present study compared to
video observation in the Echeverri et al. (1992) study). In the present study, the epoch used for posture determination was 30 s,

Fig. 6. Number of posture changes per hour a) 12 h before to 12 h after lambing; b) 168 h (7 days) before to 168 h (7 days) after lambing (both
P<0.001; n = 11); In a) values represent least-square means±95 % CI; In b) values represent least-square means only for ease of visualisation; In
a) hours marked ‘*’ were different (P ≤ 0.05) to the hour of birth (Hour 0); Mean posture changes pre-partum (dashed line) and post-partum (dotted
line) are also depicted a) P = 0.40; b) P = 0.73.
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equating to a maximum of 120 possible posture changes per hour (i.e., total number of 30 s epochs in 1 h). At Hour 0, ewes had an
average of 32 posture changes, equating to one change every 3.8 epochs, or approximately every 2 min. In a study on castration
response, lambs had postural changes 59 times in the first 2 h following the procedure, compared to 21 times in control animals
(Jongman and Hemsworth, 2014). Thus, while the frequency of postural changes that occurred in the present study is feasible, it is
also possible that the results have been inflated by sensitivity of the ML classification. This was also supported during algorithm
development (Fogarty et al., 2020a), where an accuracy of 90.6 % meant that misclassifications of postural positions were still
occurring (Table 1). When using this metric for lambing prediction, it may be more appropriate to focus on detection of overall trends
and pattern changes, rather than strict thresholds for posture change frequency. Nevertheless, this metric, along with walking be-
haviour, appear to be particularly reliable for detecting hourly changes in behaviour, and are clear candidates for integration into
predictive algorithms.

In contrast to walking and posture change, for daily active behaviour there was a decrease prior to lambing, and a minimum value
at parturition (Fig. 2). Considering the large number of studies in which restlessness at lambing has been evaluated (Wallace, 1949;
Arnold and Morgan, 1975; Owens et al., 1985; Echeverri et al., 1992), the result from the present study was initially unexpected.
Further exploration, however, led to the observation that the majority of previous research concentrated on the time immediately
surrounding lambing, usually within the last 12–24 h prior to birth (Wallace, 1949; Arnold and Morgan, 1975; Owens et al., 1985;
Echeverri et al., 1992). In contrast, in studies by Dobos et al. (2014) and Dobos et al. (2015), the use of behaviour tracking tech-
nologies utilising GNSS indicated there was a decreased speed of movement and distance travelled on the day of parturition, com-
pared to the occurrences 7 days before or after parturition. Thus, while restlessness may increase on the day of lambing, the relative
value for this activity still appears to be less when compared to the values on the days before or after parturition. This highlights the
importance of considering multiple time scales for parturition detection, with there being different patterns of behavioural change
ascertained depending on the scale of the assessment.

Differences in daily and hourly patterns of behaviour also occurred for the time devoted for grazing. On a day scale, values for
grazing behaviour decreased from Day -2 to Day 0, with values returning to those pre-partum after parturition (Fig. 1a). On an hourly
scale this pattern was reversed, with values increasing from approximately 8% prior to lambing to 16 % post-partum (Fig. 3a).
Though previous descriptions of pre-parturition feeding in sheep are limited, decreased feeding behaviour in the 24 h period before
and after parturition has been reported in cows (Miedema et al., 2011; Jensen, 2012; Schirmann et al., 2013). This substantiates the
daily patterns that were detected to occur in the present study, however the increased grazing in the hours after parturition is
inconsistent with what occurred with cattle. In the present study, behaviour classification was limited to only four possible beha-
viours: grazing, lying, standing and walking. Considering that for ewes and lambs there is a ‘bonding’ period after birth (Dwyer and
Lawrence, 2000), after which returning to grazing is usually gradual (Alexander et al., 1983; Bickell et al., 2010), it is possible that
this behaviour increase actually reflects maternal grooming (Alexander, 1988). This is further reinforced when there is consideration
that the lowered head position and movements of grazing animals would likely be analogous to those performed when a ewe is
licking her lamb. Maternal grooming is an intensive bonding behaviour that helps to clean away placenta and improve thermal
insulation of the newborn offspring (Alexander, 1988). As the mother-offspring bond has such a large effect on lamb survival, further
research should be conducted to confirm if this movement pattern would allow for identification of post-parturition grooming, after

Table 3
Difference in hourly behaviour for pre-partum (Pr), lambing (L) and post-partum (Po) ewes; NS = Not significant.

Behaviour Pairs P-value Description of overall trend Reference

Grazing Pr – L NS Increased overall in post-partum animals compared to pre-partum Fig. 3a
L – Po NS
Pr – Po 0.007

Standing Pr – L NS Decreased overall in post-partum animals compared to pre-partum Fig. 3b
L – Po NS
Pr – Po 0.04

Lying Pr – L 0.03 Decreased overall in post-partum animals compared to pre-partum Fig. 3c
L – Po NS
Pr – Po 0.02

Walking
(± 12 h)

Pr – L <0.001 Peak at Hour 0; Returned to pre-partum values by Hour +3 Fig. 4a
L – Po 0.05
Pr – Po 0.05

Walking
(± 168 h)

Pr – L <0.001 Peak at Hour 0 Fig. 4b
L – Po <0.001
Pr – Po <0.001

Active behaviour Pr – L NS Increased physical activity in post-partum animals compared to pre-partum Fig. 5
L – Po NS
Pr – Po 0.05

Posture changes (± 12 h) Pr – L 0.04 Increased between Hour -2 to Hour +4; Returned to pre-partum levels by Hour +5 Fig. 6a
L – Po NS
Pr – Po NS

Posture change (± 168 h) Pr – L 0.002 Peak at Hour 0 before returning to pre-partum values Fig. 6b
L – Po 0.003
Pr – Po NS
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which a potential measure of lamb survivability and/or welfare status may be possible.

4.2. Implications for future algorithm development

The research conducted in the present study has allowed for identification of changes in ewe behaviour that can be quantified
using an accelerometer fitted to the ear. These findings could be applied in future research to develop an algorithm that can be used
for identification of parturition in pasture-based sheep based on the expected behaviour changes identified in the current study. For
simplicity, development of a univariate model may be tempting, particularly for behaviours for which there are marked changes at
parturition (e.g., hourly walking behaviour and number of posture changes). As, however, behaviour is known to be influenced by a
number of factors other than parturition [e.g., husbandry practices (Jongman and Hemsworth, 2014), parasite burden (Falzon et al.,
2013), climate (Thomas et al., 2008; Taylor et al., 2011)], reliance on a single feature for algorithm development is discouraged. For
example, as depicted in Fig. 4b, in addition to the change at parturition, increased walking behaviour due to management activity
(i.e., stock movement between paddocks) was also identified as a deviation from “normal”. If a predictive model was developed to
simply detect an increase in walking behaviour, it is likely that this would be falsely identified as a behaviour associated with
parturition. In contrast, if a model was developed with the requirement that both an increase in walking behaviour and increased
number of posture changes occur, this would likely reduce the number of false-positives in detecting the time of ewe parturition.

In addition to a multivariate approach, assessment of changes at both an individual and flock level may be appropriate. Using the
previous example, if an increase in walking behaviour was identified for the majority of the flock at the same time, it is likely that this
would reflect disruption to the entire flock (e.g., stock movement). In contrast, if the majority of the flock was relatively inactive, and
the walking behaviour of a single ewe rapidly increased, this would indicate an individual change, and would be more likely
reflective of parturition behaviour.

Parturition is reported as occurring at different times throughout the day (Alexander, 1988). Thus, a similar consideration for
diurnal pattern should also be incorporated into algorithm development. In previous studies by Fogarty et al. (2020a) and Dobos et al.
(2014), hourly changes in GNSS tracking data could not be effectively used to identify time of parturition, with the conclusion being
that this was due to confounding effects of diurnal patterns. In the current study, though with the use of accelerometer data there
were differences in hourly behavioural patterns, variability within the hours was still evident. This may reflect an underlying effect of
a diurnal pattern and should still be considered in future studies. Though the capacity to detect the day of lambing after it has
occurred is arguably less valuable for producers because it provides no benefit of forewarning and potential intervention, detection at
a day scale removes the confounding effect of diurnal patterns and should not be immediately dismissed as a possible approach.

One limitation of the current study is that the behaviours classified through the ML approach were restricted to only four possible
outcomes: grazing, lying, standing and walking. While this may encompass a large proportion of common sheep behaviours, it does
not allow for classification of all possible behaviours from an animal’s entire behavioural repertoire. For example, there are beha-
viours that are less commonly expressed (e.g., ground pawing) or expressed at a finer scale (e.g., ruminating) that warrant further
investigation and input into a parturition detection model (Owens et al., 1985; Echeverri et al., 1992; Saint-Dizier and Chastant-
Maillard, 2015). This may be more simple for more common behaviours or those easier to observe (e.g., ruminating), compared to
those which are less frequently expressed or more difficult to observe (e.g., ground pawing or maternal grooming). For these be-
haviours, it may be necessary to manage the animals to facilitate observation, or even generate contrived situations where ob-
servations are more easily collected. In the context of developing an online model for parturition detection, there is also a case to be
made for direct sensor data [e.g., movement variation, energy, signal magnitude area (Fogarty et al., 2020b)] to be used in the place
of ML-classified behaviours. This would obviously reduce the computational power required, however, it also reduces interpretability
and the capacity to compare model outputs against known behaviour patterns. This area of data handling and management needs to
be investigated further, with consideration to the likely processing power and data transfer limitations emerging in the industry.

5. Conclusion

The results of the present study support the use of ML classification of accelerometer data as a method of monitoring of sheep
behaviour associated with parturition. In particular, the results from the present study indicate that with the use of ear tag accel-
erometers there is the capacity to detect daily and hourly changes in sheep behaviour at parturition. Application of this knowledge in
development of an online model for detection of parturition is a logical next objective for researchers, with the challenge being to
detect changes in behaviour in real-time or near-real-time. Once developed, the models could be integrated with commercial-grade
sensors, improving the capacity to make timely operational decisions. This would have particular application in the sheep industry,
where lamb mortality is not only a significant welfare issue, but a substantial contributor to reproductive inefficiency (Hinch and
Brien, 2014).
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Chapter 8. Developing a simulated online model that 

integrates GNSS, accelerometer and weather data to detect 

parturition events in grazing sheep: a machine learning approach 

Fogarty E.S., Swain D.L., Cronin G.M., Moraes L.E., Bailey D.W., Trotter M. Developing a 

simulated online model that integrates GNSS, accelerometer and weather data to detect 

parturition events in grazing sheep: a machine learning approach. 

Prepared for submission to Computers and Electronics in Agriculture 

Overview 

The research presented in Chapters 5-7 has been analysed post-hoc. That is, the data was 

downloaded and subsequently processed well after the parturition events occurred, and in 

some cases, the analysis also explored the behaviour changes that occur in the days following 

lambing. However, if we want to explore the potential for sensors to monitor parturition in a 

commercial context, the way in which data arrives for processing is very different. For a sensor 

system’s practical application, an analytical framework must be developed so that it can 

process data as it becomes available (so that only current and historical data is known). This 

is known as ‘online’ processing. In addition, the detection algorithm needs to alert to an event 

within a reasonable time frame (known as ‘real-time’ or ‘near-real-time’).  

This chapter takes the learnings from previous chapters and explores the potential for near-

real-time lambing detection using a simulated online ML approach. To consider a 

commercially applicable case, the algorithm was developed for near-real-time parturition 

detection using the previous hour of data. Sensor integration is also explored, utilising GNSS, 

accelerometer and weather data.  

This manuscript has been prepared for submission to Computers and Electronics in 

Agriculture. It appears in this thesis in the format required by the journal. Data presented in 

this chapter is as follows: animals from the 2017 field trial were used to train and 

subsequently test the ML algorithm. Once a final model was developed, animals from the 

2018 field trial were used as an independent validation dataset. Only animals where the hour 
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of birth was recorded were used in this chapter. Furthermore, only complete datasets were 

utilised (i.e. no sensor failure for the entire duration of the trials). 
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Abstract 

Near-real-time monitoring of livestock has the potential to improve animal welfare and 

productivity through increased surveillance and improved decision-making capabilities. This 

could be achieved through integrated application of on-animal sensor technologies with 

other external data sources, e.g. local weather stations. One potentially valuable application 

of these integrated systems is for monitoring of parturition events in sheep. In the current 

study, a simulated online parturition detection model is developed and reported. Using a 

machine learning (ML)-based approach, the model incorporates data from Global Navigation 

Satellite System (GNSS) tracking collars, accelerometer ear tags and local weather data, with 

the aim of detecting parturition events in pasture-based sheep. The specific objectives were 

two-fold: (i) determine which sensor systems and features provide the most useful 

information for lambing detection; and (ii) evaluate how these data might be integrated using 

ML classification to alert to a parturition event as it occurs. Two independent field trials were 

conducted during the 2017 and 2018 lambing seasons in New Zealand, with the data from 

each used for ML training and independent validation, respectively. Based on objective (i), 

four features were identified as exerting the greatest importance for lambing detection: 

mean distance to peers (MDP), MDP compared to the flock mean (MDP.Mean), closest peer 

(CP) and posture change (PC). Using these four features, the final ML was able to detect 27.3 % 

and 54.5 % of lambing events within ±3 h of birth with no prior false positives. If earlier false 

positives were allowed, this detection increased to 90.9 % and 81.8 % depending on the 

requirement for a single alert, or two consecutive alerts occurring. To identify the potential 

causes of model failure, the data of three animals were investigated further. Lambing 

detection appeared to rely on increased social isolation behaviour in addition to increased PC 

behaviour. The results of the study support the use of integrated sensor data for ML-based 

prediction of parturition events in grazing sheep. This is the first known application of ML 

classification for the detection of lambing in pasture-based sheep. Application of this 

knowledge could have significant impacts on the ability to remotely monitor animals in 

commercial situations, with a logical extension of the information for remote monitoring of 

animal welfare. 
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8.1 Introduction 

There is increased interest in the development of sensing technologies to improve animal 

management in the extensive grazing industries (Fogarty et al., 2018). Much of the research 

to date has been conducted using individual on-animal sensors such as Global Navigation 

Satellite System (GNSS) tracking, motion sensors (e.g. accelerometers, inertial monitoring 

units, pitch and roll sensors), jaw or bite sensors and physiological sensors (Fogarty et al., 

2018, Wathes et al., 2008). In specific studies of sheep, on-animal sensor technologies have 

been applied to monitor various behaviours of interest, either within a particular context [e.g. 

lambing (Dobos et al., 2014, Dobos et al., 2015, Fogarty et al., 2020a); predation (Manning et 

al., 2014); oestrus (Fogarty et al., 2015)] or more generally for basic behaviour recognition 

(Barwick et al., 2018b, Fogarty et al., 2020b, Alvarenga et al., 2016, Decandia et al., 2018, 

Giovanetti et al., 2017).  

In the majority of sensor-based sheep research, single sensor types are applied in isolation 

(Fogarty et al., 2018). However, given the number of available technologies and the benefits 

each can provide, there is merit in exploring the use of integrated monitoring systems. This is 

likely to be particularly valuable when a single sensor is unable to collect all the desired 

information, or when the use of multiple sensors improves accuracy. For example, in work by 

Spink et al. (2013), joint GNSS and accelerometer tracking of Canada geese (Branta canadensis 

canadensis) found the combination of the two sensor types improved the ability to distinguish 

behaviours of interest, compared to GNSS alone. In Dewhirst et al. (2016), integration of 

GNSS, accelerometers and magnetometers improved the accuracy of location and distance 

travelled estimates of domestic dogs. The use of integrated sensors has also been explored in 

cattle production systems. For example, Barker et al. (2018) found integrated local positioning 

data and accelerometers could detect changes in dairy cow feeding behaviour associated with 

lameness. González et al. (2014) also reported on an integrated GNSS and accelerometer 

behaviour monitoring system, incorporating additional live weight data from remote 

weighing systems, to demonstrate the value for beef cattle grazing systems. One key gap in 

the literature is the lack of reported use of weather data in an integrated sensor approach. 

Weather has obvious implications for animal behaviour (Thomas et al., 2008), particularly in 

extensive grazing systems (Goddard et al., 2006), and so its exploration as a component of an 

overall behavioural monitoring systems is also warranted.  
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While the application of sensors in a research context is important, there is growing interest 

in the development of these systems for commercial application. In this context, sensors will 

require real-time or near-real-time data processing and information transfer to ensure timely 

operational decisions (Bailey et al., 2018). Within this near-real-time requirement sit 

additional concepts of online processing and edge computing. Online processing refers to the 

analysis of each data point as they become available, with the aim of identifying the 

nonconformities as soon as possible after they occur (Aminikhanghahi and Cook, 2017). Edge 

computing refers to the capacity to perform some level of processing either at or near the 

device, without the reliance of data transfer to the cloud (ur Rehman et al., 2016). Although 

many advances have been made in near-real-time sensor systems, there are a number of 

practical challenges associated with their implementation (Vázquez-Diosdado et al., 2019). 

For example, data transmission is an extremely power-intensive activity and selection of data 

deemed most relevant to analysis may be necessary (Handcock et al., 2009). Sensor type can 

also impact on power requirements [e.g. GNSS receivers require significant amounts of power 

(Swain et al., 2011)] and computational requirements can greatly impact the power supply 

(Vázquez-Diosdado et al., 2019). Given these limitations, most applications of on-animal 

sensors, particularly in a research context, are still conducted using ‘store-on-board’ (SOB) 

devices, where the data are saved on the sensor itself and only accessible after the device has 

been removed (Bailey et al., 2018, Trotter, 2010). In this case, the entire dataset is usually 

viewed as a whole (known as ‘offline’ processing), with previously occurring patterns 

detected after they occur through an examination of historical data (Aminikhanghahi and 

Cook, 2017). Although obviously not directly applicable to commercial settings, SOB devices 

can serve as a proxy to collect sensor data for later use in simulated online scenarios, which 

serve to evaluate the potential for developing commercially viable products. 

One potentially valuable application of sensor technology is for monitoring of parturition 

(lambing) events in sheep. Lambing is a critical period for the ewe and lamb, with lasting 

impacts on productivity and welfare (Alexander, 1980, Alexander, 1988, Hinch and Brien, 

2014). Detection of lambing has implications for two key welfare outcomes for the sheep 

industry. Firstly, it provides an indication of ewe welfare, particularly if applied to detect 

abnormal parturition-related behaviour (e.g. detection of prolapse or dystocia). Secondly, 

welfare of the newborn can also be inferred, given experience of dystocia or even selection 
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of an appropriate lambing site can indicate quality of mothering and early experience of the 

lamb (Alexander, 1988). Previous sensor-based research of lambing behaviour has focused on 

two main technologies: firstly, GNSS (Dobos et al., 2014, Dobos et al., 2012, Dobos et al., 2015, 

Fogarty et al., 2020a); and secondly and to a lesser extent, accelerometers (Schmoelzl et al., 

2016, Fogarty et al., 2020c). These studies have broadly proven the ability of each sensor type 

to detect changes in behaviour associated with lambing. However, the application of these 

sensors to detect a lambing event under commercial conditions in simulated ‘near-real-time’ 

is yet to be explored. This process has been examined in other livestock industries including 

calving beef and dairy cattle (Miller et al., 2020), farrowing pigs (Traulsen et al., 2018, Cornou 

and Lundbye-Christensen, 2012) and for detection of stress in police horses (Norton et al., 

2018).  

In this paper, a simulated online machine learning (ML) classification algorithm for detection 

of parturition events in commercial grazing ewes is developed and evaluated. SOB data were 

used as a substitute for near-real-time sensor data and allowed for sequential processing of 

each data point to simulate an online processing scenario. The algorithm uses data from GNSS 

tracking collars, accelerometer ear tags and local weather data and hence explores the 

benefits of an integrated sensor approach. The specific objectives were to: (i) determine 

which sensor systems and features provide the most useful information for lambing 

detection; and (ii) evaluate how this data might be integrated using ML classification to alert 

to a parturition event as it occurs. Within this last objective, the concept of adjusting 

detection criteria post-classification is explored in the context of applying the model in 

situations where false positives are more or less acceptable. This knowledge is intended to 

contribute to the development of commercially feasible lambing detection systems for 

improved surveillance of animals, ultimately improving methods of monitoring during this 

critical period. 

8.2 Materials and methods 

8.2.1 Location and animals  

Two independent field trials were conducted at a commercial mixed enterprise on the South 

Island of New Zealand (43.0°S and 173.2°E) over consecutive years. Trial One was conducted 

from 29 September to 13 October 2017. Trial Two was conducted from 9 September to 23 
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September 2018. All procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC 17/59; MUAEC 18/67).  

In Trial One, 40 mixed-age Merino or Merino-cross ewes were selected from the main 

commercial flock. Selection was based on ewes having an expected lambing date during the 

experimental period (determined via ultrasound scanning as per normal farm practice). The 

experimental paddock was 3.1 ha and provided ad libitum access to forage and water.  

In Trial Two, 39 mixed-age Merino or Merino-cross ewes were selected from the main 

commercial flock. Again, selection was based on ewes having an expected lambing date 

during the experimental period. Of the 39 animals selected, 12 ewes have been previously 

used for development of ML behaviour algorithms (Fogarty et al., 2020b) that are applied for 

prediction of animal behaviour in the current study. For this reason, these animals were 

excluded and their data subsequently removed from the validation dataset. The experimental 

paddock was 4.4 ha and provided ad libitum access to forage and water.  

Throughout each trial, weather data were collected by an on-farm weather station for later 

incorporation into the dataset. Weather data included average air temperature, average wind 

speed and average solar radiation recorded hourly. Total rainfall was also recorded as a 

cumulative value per day. 

8.2.2 Instrumentation 

In both trials, experimental ewes were fitted with devices on the morning prior to study 

commencement. Each animal was fitted with a GNSS logger (i-gotU GT-600, Mobile Action 

Technology Inc., Taiwan) attached to a neck collar and an accelerometer (Axivity AX3, Axivity 

Ltd, Newcastle, UK) attached to an ear tag. GNSS loggers were programmed to obtain 

locations at 3 min (Trial One) or 2 min (Trial Two) intervals. Accelerometers were configured 

at 12.5 Hz and fixed with an orientation of the X-, Y- and Z-axis along the dorso-ventral (up-

down), lateral (side-to-side) and anterior-posterior (forward-backward) axes, respectively.  

In Trial One, ewes were moved to the experimental paddock after instrument attachment 

and remained in this location for the entire experiment duration.  
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In Trial Two, animals were also moved to a paddock after instrument attachment. However, 

on the first day of the experiment, it was noted that the original paddock did not allow for 

adequate observation of the animals. Thus, the ewes were moved to an adjoining paddock at 

1100 h on Study Day One, where they remained for the duration of the trial. In this case, early 

sensor data (from midnight to 1100 h on Study Day One) were discarded, as the animals were 

not in the experimental paddock.  

8.2.3 Observation 

For Trial One, ewes were observed from 0630 h – 1230 h and 1530 h – 1800 h (± 30 min) for 

the entire experimental period (14 days). For Trial Two, observations were conducted 

between 0730 h – 1230 h and 1330 h – 1730 h (± 30 min) for the entire experimental period 

(15 days). Observations were conducted for the purpose of recording lambing time, via the 

use of binoculars. Ewes were also fitted with identification ‘bibs’ with unique colour/number 

combinations to allow the observer to differentiate individual ewes from a distance. 

Time of lambing was recorded to the nearest hour where possible. Lambing was defined as 

the time in which the lamb was fully expelled. Hour records were rounded down, i.e. lambing 

events at 1301 h and 1359 h would both be recorded within 1300 h. If ewes lambed during 

the observational period, but the actual birth was not able to be observed (e.g. if ewes were 

hidden from view), the hour of birth was recorded within a maximum 2 h window. If this could 

not be determined, the record was discarded. Ewes that lambed overnight were also excluded 

due to uncertainty of exact lambing time. 

8.2.4 Data management and analysis 

After each experiment, the devices were removed, and data downloaded. GNSS tracking data 

were downloaded using the proprietary software (@Trip PC, Mobile Action Technology Inc., 

Taipei, Taiwan). Accelerometer data were downloaded using the proprietary software 

(OMGUI, Axivity Ltd, Newcastle, UK). All data were processed and analysed using the 

statistical software R (R Core Team, 2018). Weather data from the on-farm weather station 

were also downloaded for the study period. The datasets for each trial were kept separate at 

all times. 
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8.2.4.1 GNSS data  

After download, the GNSS data were checked for fidelity. Any locations that had not been 

correctly logged (i.e. locations with a latitude and longitude of zero) were removed. Due to 

differences in the logging intervals between the trials (3 min Trial One; 2 min Trial Two), the 

GNSS data were interpolated to 5 min intervals. This interval was chosen as it was considered 

a more reasonable frequency for commercial application where battery life may be limited 

(Anderson et al., 2013) and has been previously applied in sheep (Dobos et al., 2014, 

McGranahan et al., 2018) and cattle (Trotter et al., 2010, Turner et al., 2000). This process 

was conducted by interpolating the existing GNSS tracks to a common time interval (5 min) 

using the redisltraj function in the R package adehabitatLT (Calenge, 2006).  

After interpolation, the distance and speed between successive locations were then 

calculated (Dobos et al., 2014, Fogarty et al., 2020a). Speeds over 3 m/s were removed 

because these positions were likely inaccurate (Fogarty et al., 2020a). The distance, time and 

speed between successive GNSS locations were then recalculated and a moving window 

average of speed based on the two locations prior to and following the point of interest (i.e. 

five locations in total) were calculated. 

To determine the extent of each ewe’s social activity, the distance between each ewe and 

each of her peers was determined (Fogarty et al., 2020a). The straight-line distance between 

the GNSS locations for each ewe-pair was calculated using the ‘Vincenty (ellipsoid)’ method 

(Hijmans, 2019). Once the distance between each ewe-pair was calculated, values were 

averaged to calculate the mean distance to peers (MDP). The closest peer (CP; i.e. the smallest 

distance between ewes) was also recorded. 

To calculate the spatial landscape utilisation of each ewe, the minimum convex polygon 

(MCP) was calculated for each ewe for every hour of the trial. MCP is a standard method for 

home range estimation (Burgman and Fox, 2003). To ensure MCP was not overestimated, the 

GNSS data were further processed to remove any locations outside of the paddock 

boundaries + 10m (mean location error of i-gotU device < 10m (Morris and Conner, 2017)). 
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8.2.4.2 Accelerometer data  

After download, raw accelerometer data were processed according to the methods outlined 

in Fogarty et al. (2020b) and Fogarty et al. (2020c). Briefly, a number of features were 

extracted from the raw X-, Y- and Z-axis values (see Fogarty et al. (2020b) for details). Features 

were calculated using two epoch lengths (10 s and 30 s). After feature extraction, previously 

developed ML algorithms (Fogarty et al., 2020b) were used to classify the animal’s 

behaviours. Classification was conducted in three ways: (i) detection of specific behaviour 

(grazing, standing, lying and walking); (ii) detection of general activity (active or inactive); and 

(iii) detection of posture (prostrate or upright). 

8.2.4.3 Integrating GNSS, accelerometer and weather data 

Following raw data processing, the GNSS and accelerometer data sets were each summarised 

on an hourly basis and then integrated together with the weather data (Table 8.1). These 

summaries, and the selected features, are discussed in detail in the following sections 

(Sections 8.2.4.3.1 - 8.2.4.3.3). Hourly summaries were chosen to minimise data processing 

requirements while still allowing for detection at a relatively fine temporal scale. The use of 

hourly summaries also reflects previous work (Dobos et al., 2014, Fogarty et al., 2020a, 

Fogarty et al., 2020c). In the context of simulating a commercially relevant online model, 

hourly detection was also thought to represent a reasonable time frame in which a producer 

might be made aware and respond to any alerts developed. 

8.2.4.3.1 Features derived from prior research 

A number of key features for the GNSS and accelerometer data were selected due to their 

performance in previous research (Fogarty et al., 2020a, Dobos et al., 2014, Fogarty et al., 

2020c) or hypothesised as having potential in an integrated approach. 

For the GNSS data, key features were: (i) mean speed (MeanSp); (ii) minimum speed (MinSp); 

(iii) maximum speed (MaxSp); (iv) MDP; (v) CP and (vi) MCP. These features were based on 

previous work conducted by Dobos et al. (2014) and Fogarty et al. (2020a). 

For the accelerometer data, key features were as follows: (i) the proportion of each hour 

spent performing mutually exclusive behaviours (grazing, standing, lying and walking); (ii) the 

proportion of each hour spent active; and (iii) the number of times each individual changed 
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their posture (i.e. upright to prostrate and vice versa) within an hour. These features were 

based on previous work (Fogarty et al., 2020c).  

8.2.4.3.2  Peer-based features comparing the individual to the flock 

Given the gregarious nature of sheep (Lynch et al., 1992), additional metrics were included in 

the integrated dataset to allow for concurrent assessment at an individual and flock-level. In 

an example outlined in Fogarty et al. (2020c), ewe walking behaviour was not only shown to 

increase at parturition, but also during periods of normal flock management (e.g. movement 

between paddocks). Based on this, it was decided that monitoring at both an individual and 

flock-level was necessary, noting that changes in behaviour of a single ewe would more likely 

indicate parturition, whereas broader changes to the flock would suggest a whole-flock 

change (Fogarty et al., 2020c). Thus, additional features were included comparing each ewe’s 

individual feature values at a given point in time to the mean value of all other animals at this 

time. These features were calculated as a percentage difference from the mean (i.e. 

percentage increase or decrease) and denoted “Name.Mean”, where “Name” refers to the 

feature of interest (see Table 8.1 for details). 

8.2.4.3.3 Temporal comparison of features  

To enable temporal comparison of features, the percentage increase or decrease in each 

feature was compared at key time intervals. Specifically, the percentage change between the 

current hour and the previous hour (Hour -1: denoted “Name.1h”) or the current hour and 

24 h previous (Hour -24: “Name.24h”) were calculated. Inclusion of these time-based 

calculations was considered important to ensure temporal associations in behaviour were 

accounted for in the model. These calculations also allowed for a comparison of each 

individual against their own ‘baseline’ to determine if significant changes in behaviour over 

time became evident (see Table 8.1 for details). 

Due to similarities between some derived features, a test for collinearity was conducted. 

Features with a correlation ± 0.8 were removed from further analysis (see Table 8.1 for 

details). 
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Table 8.1. Features provided from each sensor type, including the unit of measurement. Derived features are reported as absolute values per hour. Peer-based features 
are calculated as the percentage difference between the individual ewe and the mean of all other ewes in the flock. Temporal features are calculated as the percentage 
difference between the current hour and the previous hour (1 h) or 24 hours previous (24 h). Features removed due to collinearity are in italics. FNP = Feature not 
progressed. NA = Not applicable. 

Sensor type Derived features Unit Peer-based features Unit Temporal features Unit 

 Mean speed (MeanSp) m/s MeanSp.Mean % MeanSp.1h / .24h % 

 Minimum speed (MinSp) m/s MinSp.Mean1 - MinSp.1h / .24h % 

GNSS Maximum speed (MaxSp) 2 - FNP2 - FNP2 - 

 Mean distance to peers (MDP) m MDP.Mean % MDP.1h / .24h % 

 Closest peer (CP) m CP.Mean3 - CP.1h / .24h % 

 MCP % MCP.Mean % MCP.1h / .24h % 

 Time spent grazing (Grazing) % Grazing.Mean % Grazing.1h / .24h % 

 Time spent lying (Lying) % Lying.Mean % Lying.1h / .24h % 

Accelerometer Time spent standing (Standing) % Standing.Mean4 - Standing.1h / .24h % 

 Time spent walking (Walking) % Walking.Mean % Walking.1h / .24h % 

 Time spent active5 - FNP5 - FNP5 - 

 Posture changes (PC) Count PC.Mean % PC.1h / .24h % 

 Average air temperature (AirTemp) °C NA NA NA NA 

Weather data Total rainfall (Rainfall) mm NA NA NA NA 

 Average wind speed (WindSp) kph NA NA NA NA 

 Average solar radiation (SolarRad) w/m2 NA NA NA NA 
1Removed from analysis due to collinearity with MinSp 
2Removed from analysis due to collinearity with MeanSp (no additional features calculated) 
3Removed from analysis due to collinearity with CP 
4Removed from analysis due to collinearity with S 
5Removed from analysis due to collinearity with time spent grazing (no additional features calculated) 
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8.2.5 Development of a simulated online parturition detection model using 

machine learning 

ML algorithms are commonly used for pattern recognition and classification tasks (Nathan et 

al., 2012) and have been successfully used in sheep behaviour research (Barwick et al., 2018a, 

Barwick et al., 2018b, Walton et al., 2018, Fogarty et al., 2020b). This process involves 

developing the algorithm with a training dataset and then testing it against an independent 

validation dataset.  

8.2.5.1 Training dataset 

Data collected from Trial One were used as the training dataset and will henceforth be 

referred to as such. Once collated, the dependent variable on the training dataset was 

‘labelled’ to represent the behaviour state of the ewe (considered a binary state of either 

‘lamb’ or ‘non-lamb’). The process of labelling was as follows: the hour of birth (Hour 0) and 

one hour either side (Hour ± 1) were labelled as ‘lamb’ (3 hours in total). This was done to 

ensure that those animals that lambed earlier or later within the hour would still have an 

adequate representation of ‘lambing’ behaviour included in the training dataset. 

Furthermore, the inclusion of multiple ‘lamb’ hours per animal was important to increase the 

amount of training data for this behaviour state for a more balanced dataset. Conversely, 

‘non-lamb’ hours were represented by the 24-hour period for the third day prior to (Day -3) 

and third day after parturition (Day +3; 48 hours in total). Only these days were selected to 

reduce the number of ‘non-lamb’ hours for a more balanced training dataset, whilst also 

ensuring that normal diurnal patterns were represented. The use of data from three days 

prior to and following lambing was based on previous work (Fogarty et al., 2020a, Fogarty et 

al., 2020c) which suggests that most lambing-related behaviours do not commence until the 

day before (Day -1) or day of (Day 0) actual lambing. 

8.2.5.2 Validation dataset 

Data collected from Trial Two were used as the validation dataset and will henceforth be 

referred to as such. The process of labelling the validation dataset was different and 

intentionally more specific compared to the training dataset. The hour of birth was labelled 

as Hour 0 and the hours surrounding Hour 0 were labelled numerically (± x hours) to represent 

the temporal association to the parturition event. For ewes where the hour of birth was 
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known within a maximum 2 h window, the hour of birth was designated as the middle hour 

within the window, and the hours either side labelled as per the previous (i.e. a window of 

1200 h – 1400 h would designate 1300 h as Hour 0 (hour of birth), 1400 h as Hour +1, etc.). If 

the middle hour fell on a part-hour, the hour was rounded down (i.e. 1330 h would round 

down to 1300 h). 

8.2.5.3 Part A: Simulated online parturition detection ML development and evaluation 

Support Vector Machine (SVM) classification was used to predict the binary ewe status 

(“lamb” or “non-lamb”). SVMs generate a hyperplane between observations to separate 

distinct classes (Nathan et al., 2012), with the aim of maximising the distance between the 

observations and the hyperplane (Joo et al., 2013). This ML algorithm has become popular in 

recent years due to its relative ease of application and high performance in real-world 

applications (Martiskainen et al., 2009, Joo et al., 2013).  

Leave-one-animal-out cross validation (LOOCV) was used to train and test the SVM. This 

process involved using all but one of the datasets to train the algorithm, with subsequent 

performance evaluation using the remaining dataset. During each training iteration, the data 

were pre-processed to ‘centre’ and ‘scale’. The tuning cost (‘C’) parameter was also adjusted 

using a grid-based search. This process was repeated for all animals to enable selection of the 

best C value. 

Based on the first objective of this study, to determine which sensor systems and features 

provide the most useful information for lambing detection, feature selection was also 

conducted throughout this training process. To do this, a Receiver Operating Characteristics 

(ROC) curve analysis was conducted using the varImp function from the caret package (Kuhn, 

2018). This function applies ROC curve analysis to each feature, calculates the resulting area 

under the curve and uses this area as a measure of feature importance between 0 and 100 

(Kuhn, 2007). Only features with an importance ‘score’ over 75 were retained for algorithm 

training to reduce the complexity and computational requirements of the SVM as this is 

considered a limiting factor to commercial application. A similar approach has previously 

reported in Vázquez-Diosdado et al. (2019), where a single feature was incorporated into an 

online algorithm to minimise energy consumption. In that paper, the authors state that while 

including additional features can improve accuracy, their inclusion should be conducted 
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under a cost-benefit approach given the computational costs of complex models (Vázquez-

Diosdado et al., 2019). 

Once trained, performance statistics for the SVM were calculated including: Kappa value, 

precision, recall (sensitivity) and the Matthews Correlation Coefficient (MCC). The Kappa 

value compares the observed accuracy with random accuracy and is considered informative 

in unbalanced samples such as in the current study (Santegoeds, 2016). Precision and recall 

are also useful for unbalanced samples where the focus is on detection of the smaller class 

(Tang et al., 2009). MCC is widely used in bioinformatics for unbalanced classification 

(Boughorbel et al., 2017), providing a score between -1 and 1 where 1 indicates prefect 

prediction, 0 indicates random prediction and -1 indicates total disagreement. Precision, 

recall and MCC were calculated using the following equations: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
  

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝐹𝐹 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
  

 

where TP, TN, FP and FN refer to true positive (correct classification of ‘lamb’), true negative 

(correct classification of ‘non-lamb’), false positive (incorrect classification of ‘non-lamb’ as 

‘lamb’) and false negative (incorrect classification of ‘lamb’ as ‘non-lamb’), respectively. 

Accuracy was not calculated due to the imbalanced nature of the dataset (Yap et al., 2014).  
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8.2.5.4 Part B: Validation of the parturition detection model 

Based on the second objective of this study, the final algorithm was applied to the 

independent validation dataset to detect the day and hour of lambing. To simulate an online 

situation, the first hour where lambing detection occurred was recorded and compared to 

the known time of birth. Detection success was assessed across two timeframes: firstly, if it 

was within ± 1 h of the recorded hour of birth; and secondly, if it was within ± 3 h of recorded 

hour of birth. These two different levels were implemented to make it possible to identify 

both pre- and post-parturient behaviours, which are known to change in the hours just prior 

to or following lambing (Fogarty et al., 2020c). For example, in a study by Arnold and Morgan 

(1975), pre-lambing maternal interest and behavioural changes associated with parturition 

were found to increase most significantly between 180 and 120 min prior to birth. A broader 

detection window was also important to allow for the complete length of labour 

[approximately 65.4 ± 9.6 mins (Echeverri et al., 1992)], and detection of early post-parturient 

behaviour such as the tendency to remain at the birth site for up to 5 h (mean of 2 h) 

(Alexander et al., 1983). If lambing detection occurred within ±3 h of known birth, the 

predictions ceased, and the model was no longer applied to that animal. If ewes did not have 

a correct detection within ±3 h, predictions continued until the known day of birth, after 

which predictions were also ceased. This enabled the evaluation of the likely number of false 

positives that were generated. 

8.3 Results 

8.3.1 Data and lambing records 

A summary of the sensor and lambing records is presented in Table 8.2. In each year, a 

number of devices failed to record data and were excluded. In addition, one ewe prolapsed 

during the 2017 trial and was removed from the data set. Ewes that gave birth overnight or 

did not give birth during the experimental period were also excluded due to uncertainty of 

the exact time of birth. 
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Table 8.2. Data and lambing records for the training (Trial One) and validation (Trial Two) datasets. 

 Training Validation 

Animals at trial initiation 40 39 

Animals with one or more failed devices 5 6 

Complete datasets at trial conclusion 35 33 

Excluded datasets 271 222 

Day and hour of birth identified 8 9 

Hour of birth known within a maximum 2 h window 0 2 

TOTAL 8 11 

1Exclusion based on prolapse (n = 1) or unknown lambing time (overnight or outside of the experimental period; n = 26)  
2Exclusion based on previous use in ML algorithm development [n = 12; Fogarty et al. (2020b)] or unknown lambing time 

(overnight or outside of the experimental period; n = 10) 

 

8.3.2 Weather records 

During Trial One (training dataset), temperatures ranged from 3.8°C to 22.3°C and total 

rainfall was 85.6 mm. Average daily wind speed was 9.2 km/h with an average gust speed of 

21.7 km/h. Average solar radiation was 104.9 w/m2. 

During Trial Two (validation dataset), temperatures ranged from 0.7°C to 21.6°C. Average 

daily wind speed was 7.1 km/h with an average gust speed of 18.0 km/h. Average solar 

radiation was 176.0 w/m2. There was no rainfall during this period. 

8.3.3 Part A: Simulated online parturition detection ML development and 

evaluation 

8.3.3.1 Feature importance 

Using the ROC curve analysis (Figure 8.1), the feature with the highest importance for 

differentiation between lambing and non-lambing animals was MDP.Mean (i.e. the MDP of 

the ewe compared to the average MDP of all others in the flock, expressed as a percentage). 
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This was closely followed by CP and MDP (both expressed in metres). These features are all 

GNSS-derived. The most important accelerometer-derived features were PC, followed by 

PC.Mean (i.e. PC of the ewe compared to the average PC of all others in the flock, expressed 

as a percentage) and PC.24h (i.e. PC of the ewe in the hour of interest compared to the same 

hour in the previous day, expressed as a percentage). Three weather features (wind speed, 

air temperature and solar radiation) were within the top 10 most important features. Hour of 

the day was not an important feature for the purposes of differentiation. 

 

Figure 8.1. Feature importance for the integrated dataset determined by ROC curve analysis. Data types are: 
GNSS-derived (red); accelerometer-derived (blue); weather (green) and other (grey). Only those metrics with 
an importance ‘score’ above the chosen threshold (dashed line) were used in the ML. 

As depicted in Figure 8.1, it is clear that both GNSS and accelerometer sensors provide the 

most useful information for identification of lambing. Specifically, four features emerged as 

having an importance ‘score’ over 75 and were retained in the final model: MDP.Mean, CP, 

MDP and PC. Although the original objective of the study was to examine an integrated sensor 

approach for parturition detection, due to the apparent importance of the GNSS metrics in 

the ROC curve analysis, a second SVM was developed at this stage to examine the benefits of 

using GNSS data alone. 

136



8.3.3.2 ML evaluation 

The two SVM models (the integrated SVM and GNSS SVM) were evaluated by LOOCV using 

the training dataset from Trial One. The integrated SVM performed slightly better than the 

GNSS SVM, with a higher Kappa (0.4), recall (47.6 %) and MCC (0.6) compared to the single 

sensor dataset (Kappa: 0.3; recall: 33.3 %; and MCC: 0.5). The GNSS SVM demonstrated a 

higher precision (83.3 %) compared to the integrated model (71.1 %). Overall, the integrated 

SVM demonstrated a higher number of true positives (n = 10) compared to the single sensor 

(n = 7 true positives). Based on the performance of the integrated model, and due to the 

original objectives of understanding the value of integrated sensor systems, only the 

integrated model was selected for later validation using the Trial Two data. 

Prior to validation, summary statistics (Table 8.3) and density plots (Figure 8.2) were 

generated for the training dataset to assist in understanding of the SVM classification process. 

As shown in Table 8.3, lambing animals displayed an increased level of social isolation 

compared to non-lambing animals, both in terms of actual distance (MDP) and when this 

distance was compared to the mean of the flock (MDP.Mean). This pattern was also evident 

for CP, with lambing animals being a mean distance of 8 m from their closest peer compared 

to non-lamb animals at 1.5 m. Frequency of changing posture also increased at lambing (mean 

26.2 and 9.7 changes per hour for lambing and non-lambing animals, respectively).  

Table 8.3. Summary statistics for the top four features of the training dataset (determined by ROC curve 
analysis) 

 Lamb Non-lamb 

Features Mean Min Max Mean Min Max 

MDP.Mean (%) 51.3 -3.8 118.9 4.1 -28.6 191.5 

CP (m) 8.0 0.6 26.1 1.5 0 11.5 

MDP (m) 66.5 37.6 114.4 35.0 9.5 87.5 

PC (count) 26.2 6 48 9.7 0 38 
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d) 

 

Figure 8.2. Density plots of the four most important features (determined by ROC curve analysis) for differentiation between lambing (red) and non-lambing (blue) animals 
using the training dataset. Features are: a) MDP.Mean; b) CP; c) MDP; d) PC. Mean lines are also shown (lambing: red dashed line; non-lambing: blue dashed line) 
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Although all four features are dominant predictors for lambing, there is still some obvious 

overlap between the two behaviour states (Figure 8.2). For example, across all features, the 

maximum non-lamb values were consistently higher than the mean lambing values for each 

particular feature. This may contribute to inaccuracies in detection and highlights the 

potential to further refinement. This is explored further in Section 8.3.4.  

8.3.4 Part B: Validation of the parturition detection model 

To explore if the integrated SVM could alert for parturition events as they occurred 

sequentially over time, the final model was tested against the independent validation dataset 

from Trial Two (Table 8.4). To simulate a near-real-time system where data would be made 

available in an incremental fashion, only the first hour of lambing detection was recorded and 

compared to the known time of birth. If this initial detection alerted too early (i.e. false 

positives before the actual birth event), the model was applied up until the actual day of birth 

to determine if later detection of the event would still occur. 

Three animals (from a total of 11; 27.3 %) had the first lambing alert within ±1 h of the known 

lambing hour. No additional animals had the first lambing alert within ±3 h. Seven ewes 

(63.6 %) had a number of false positives (range: 1-28; mean: 8) prior to correct detection. One 

animal (Animal 6) did not have any alerts within ±3 h of known lambing hour. The closest 

alerts for this animal were Hour -6 and Hour +4. 
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Table 8.4. Application of the integrated SVM to the validation dataset. Hour of first alert is expressed relative 
to the recorded hour of birth. Notations ‘X’ and ‘X+’ indicate the animal meets the criteria. 

Animal 
Hour of first 

alert 

False positives 
(prior to actual 

lambing) 

First alert within 
±1 h (X) or  
±3 h (X+) 

Early false positives 
with later accurate 

alert ±3 h 

Failed  
(no alerts 

±3 h) 

1 -67 1  X  

2 -21 6  X  

3 0 0 X   

4 -1 0 X   

5 -43 1  X  

6 -114 (4.8 days) 28   X 

7 -118 (4.9 days) 3  X  

8 -169 (7.0 days) 18  X  

9 -1 0 X   

10 -56 6  X  

11 -68 1  X  

TOTAL  64 3 (+ 0) 7 1 

 

While this model was able to alert to all but one parturition event, this high rate of detection 

comes at the cost of numerous false positive alerts (n = 64). To explore a second scenario 

under which false positives were less acceptable, a simple modification was applied. This basic 

change required identification of at least two consecutive ‘lamb’ hours before an alert was 

generated. The results of this process are presented in Table 8.5. 
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Table 8.5. Application of the integrated SVM to the validation dataset with the additional criteria of requiring 
identification of at least two consecutive ‘lamb’ hours before an alert was generated. Hour of first alert is 
expressed relative to the recorded hour of birth. Notations ‘X’ and ‘X+’ indicate the animal meets the criteria. 

Animal 
Hour of first 

alert 

False positives 
(prior to actual 

lambing) 

First alert within 
±1 h (X) or  
±3 h (X+) 

Early false positives 
with later accurate 

alert ±3 h 

Failed  
(no alerts 

±3 h) 

1 +2 0 X+   

2 -20 3  X  

3 +1 0 X   

4 0 0 X   

5 0 0 X   

6 -110 (4.6 days) 12   X 

7 +9 0   X 

8 -141 (5.9 days) 6  X  

9 0 0 X   

10 -16 1  X  

11 +3 0 X+   

TOTAL  22 4 (+ 2) 3 2 

 

Four animals (from a total of 11; 36.4 %) had the first alert within ±1 h of the known lambing 

hour. An additional two animals had the first alert within ±3 h of the known lambing hour (6 

in total within ±3 h; 54.5 %). Three ewes had false positives (range 1-12; mean 5.5) with an 

accurate later prediction within ±3 h of birth. Two ewes did not have any alerts occur within 

±3 h of birth (Animals 6, 7). For these animals, the closest alerts Hour -16 and Hour +5 (Animal 

6) and Hour +9 (Animal 7). 

8.3.4.1 Misclassification – why is it occurring? 

To further explore reasons for misclassifications and to understand how the SVM used the 

data for lambing event detection, the individual datasets of three animals in the validation 
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dataset were plotted (Figure 8.3). Lambing alerts and the period of the actual birth event 

were also plotted. The three chosen animals represent those which were consistently correct 

(Animal 9), consistently incorrect (Animal 6) or had early false positives but were later correct 

(Animal 2).  

8.4 Discussion 

This study represents the first reported attempt to integrate data from multiple sensors for 

the purpose of parturition detection in sheep. A number of studies have reported on the 

relationship between individual sensors and parturition (Dobos et al., 2014, Dobos et al., 

2015, Fogarty et al., 2020a, Broster et al., 2010, Broster et al., 2017, Fogarty et al., 2020c). 

However, none have attempted to explore how this data might be used in the context of 

developing an online lambing detection system that might be of value in commercial 

production systems. 

8.4.1 Feature importance for lambing prediction 

The four features most important for lambing prediction were derived from GNSS 

(MDP.Mean, CP, MDP) and accelerometers (PC) and highlight the importance of these sensor 

types for lambing detection. Overall, ewes demonstrated an increased level of social isolation 

at lambing compared to non-lambing animals (Table 8.3; Figure 8.2). This was evidenced by 

an increase in MDP.Mean, MDP and CP and supports published reports of ewe social isolation 

at parturition (Fogarty et al., 2020a, Dobos et al., 2014, Arnold, 1975, Alexander et al., 1979). 

Increased frequency of changing posture was also exhibited by lambing ewes, with the mean 

number of hourly changes increasing almost 3-fold, from 9.7 to 26.2 (Table 8.3; Figure 8.2). 

Again, this is consistent with published literature (Echeverri et al., 1992, Owens et al., 1985), 

and may indicate the onset of general restlessness associated with lambing. 
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 a) Animal 9 (consistently correct alerts)  b) Animal 6 (consistently incorrect alerts) 

i) 

 

i) 

 

ii) ii) 

iii) iii) 

iv) iv) 

 c) Animal 2 (Early false positives with later correct alerts)   

i) 

 

 
Figure 8.3. Individual datasets for a) Animal 9, b) Animal 6, and c) Animal 2. 
Features include: i) MDP.Mean (blue); ii) CP (black); iii) MDP (light grey); and 
iv) PC (dark grey). Though the model was applied as a simulated online 
scenario, data is presented for all study days to enable visualisation of 
broader patterns. Alerts are shown for two scenarios: hour of alert (blue 
circles) and two consecutive ‘lamb’ hours required before alert (red circles). 
Alerts are included up to the day of birth for both scenarios. The hours of 
known lambing (Hours ±3) are included as pale green shading. 

 

ii)  

iii)  

iv)  
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Based on previously reported limitations of GNSS behaviour monitoring at an hourly scale 

(Dobos et al., 2014, Fogarty et al., 2020a), the reported importance of many of the GNSS-

derived variables was initially unexpected. In Fogarty et al. (2020a), no significant difference 

in hourly MDP were found in the 12 h surrounding lambing. However, in the current study, 

this feature was ranked as the third most important for discrimination between lambing and 

non-lambing animals. In addition, in Fogarty et al. (2020a) GNSS was only shown capable of 

detecting the day but not the hour of lambing, whereas in the current study, GNSS-derived 

metrics were amongst the most important features identified (Figure 8.1). This disparity may 

reflect a difference in the methodologies of the two studies. In Fogarty et al. (2020a), the 

statistical comparison at an hourly scale was restricted to only 12 h around parturition. In 

contrast, in the current study the training dataset used values at lambing and compared them 

to non-lambing values collected 3 days either side of parturition. Indeed, in a second analysis 

in Fogarty et al. (2020a), broader changes in daily behaviour were found to indicate 

parturition, including MDP which increased from two days prior to birth. Thus, it appears that 

when compared to hours closer in time [as in Fogarty et al. (2020a)], there is a limited capacity 

to detect broader changes in behaviour that may occur over many days. Conversely, when 

behaviour is compared to hours more distance in time (as in the current study), the behaviour 

of ewes is detectably different. 

In addition to the differences in methodology, the remaining GNSS features applied in the 

final model (MDP.Mean and CP) are novel features that to the best of our knowledge, have 

not yet been reported for sheep using GNSS data. As previously noted, given the gregarious 

nature of sheep (Lynch et al., 1992), measurements that assess flock-level behaviour change 

are important to differentiate individual changes in behaviour from the group. In contrast to 

previous literature that does not support the use of GNSS to detect hourly behaviour changes 

associated with parturition (Dobos et al., 2014, Fogarty et al., 2020a), the results of the 

current study suggests GNSS has notable monitoring ability, either in isolation or when 

integrated with an accelerometer. In the current study, the addition of Mean.MDP adjusts for 

changes in MDP that are the result of herd behaviour, which may be impacted by a number 

of factors, for example weather (Alexander et al., 1979, Thomas et al., 2008), forage quality 

(Arnold, 1984, Arnold, 1960) and social dynamics (Doyle et al., 2016). It is important to note 

that measurements of social activity using on-animal sensors are not limited to GNSS. 
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Proximity loggers represent another sensor type that can provide this information, often in a 

smaller size with lower power requirements (Handcock et al., 2009, Paganoni et al., 2020, 

Fogarty et al., 2019). Referring to commercial platforms seeking to operationalise this 

research, it may be worthwhile exploring the substitution of a proximity sensor for a GNSS. 

However, this substitution may introduce limitations, given that it will result in the loss of 

some key functionality, particularly where the location data from the GNSS may be critical for 

the producer to actually respond to a lambing alert and find a ewe in an extensive landscape. 

The reduced importance of accelerometer features in this analysis was also unexpected. This 

was particularly true for features related to walking behaviour which have been previously 

reported as a powerful predictor of lambing (Fogarty et al., 2020c). The key accelerometer 

features identified were those related to posture change (PC, PC.Mean, PC.24h), although 

only PC met the required threshold for inclusion. Given accelerometers are generally small 

devices that can be easily applied to an animal (Watanabe et al., 2008), their integration into 

a commercial-grade device warrants further investigation. It should be noted that the method 

of detecting PC in this study required a significant level of data handling prior to the ML 

classification. More explicitly, the raw data had to be classified using previously developed 

ML models (Fogarty et al., 2020b), after which hourly summaries of PC could be calculated 

and applied in the current model. This was considered to be essential as the actual process of 

ewes changing their posture was not adequately observed for ML training (Fogarty et al., 

2020b), and thus classification into two distinct postures was required before frequency of 

PC could be determined. Furthermore, classification into explicit behaviour allowed for 

comparison with known changes in parturition and assisted in the interpretability of the 

model. However, given the constraints of battery life and processing power in commercial 

situations (Vázquez-Diosdado et al., 2019), further exploration of posture change detection 

should be undertaken. For example, using metrics derived from the raw data such as 

movement variation (MV) or standard deviation of an accelerometer axis [SDX; SDY; SDZ; 

(Fogarty et al., 2020b, Barwick et al., 2018b)]. In previous work by Fogarty et al. (2020b), MV, 

SDX and SDY were consistently identified amongst the most important predictors for 

classification of behaviour, general activity and posture. Thus, it is possible that use of these 

metrics may have similar predictive power when applied for parturition detection and should 

be considered in future studies. 
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The ROC curve analysis found weather features had only moderate importance for detection 

of parturition, particularly wind speed, air temperature and solar radiation. Sheep are known 

to have two major grazing episodes which are highly correlated to sunrise and sunset 

(Gonyou, 1984). Weather is known to disrupt these patterns such as; for example reduced 

grazing range in hot weather (Thomas et al., 2008). Weather is also known to impact social 

activity, particularly rising temperature and rainfall which both result in increased social 

contact (Doyle et al., 2016). It is likely that the findings of the current study reflect the 

relatively mild weather conditions experienced, which may not have been extreme enough 

to have an impact on the ewe’s behaviour. Despite not playing an important role in the 

current study, inclusion of weather features in future models may still be warranted, 

particularly where more extreme weather events are experienced.  

8.4.2 Detection of parturition and implications for commercial application 

The use of sensor technology in a commercial environment necessitates the development of 

near-real-time information transfer. As the challenges associated with implementation are 

still widespread, SOB devices have been applied in the current study as a proxy for simulated 

online application. In the current study, 27.3 % (n = 3) and 54.5 % (n = 6) of animals had an 

accurate prediction of lambing within ±3 h of birth with no prior false positives, depending on 

the detection criteria used [i.e. first hour of alert (Table 8.4) compared to two consecutive 

hours of alert (Table 8.5)]. In a real-life scenario, it is unlikely that the model would 

automatically terminate as soon as the first alert occurs, instead requiring direct confirmation 

(or rejection) from the producer that lambing has (or has not) occurred. For this reason, 

inclusion of animals with initial false positives and later accurate alerts is also reasonable. 

Based on the latter, the results of the current study are encouraging, with 90.9 % (n = 10; 

Table 8.4) and 81.8 % (n = 9; Table 8.5) of lambing events successfully detected. The models 

applied in the current study are not true real-time detection algorithms, as they require the 

collection of an entire hour’s worth of data before summary and prediction can occur. 

However, current methods of lambing detection are usually based on visual observation 

which may increase the risk of mismothering (Alexander, 1980). Thus, despite not being a true 

real-time model, successful remote detection of lambing within ± 3 h could significantly 

increase the efficacy of ewe surveillance and may be useful for improving both production 

and welfare outcomes. 
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When considering the end-use of these models, it is important to understand how they may 

be applied in a real-life setting. For example, though the results of Table 8.4 indicate the ability 

to detect approximately 90.9 % of birth events within a 3 h window using the first hour of 

alert, the high rate of detection was also accompanied by a high rate of false positives (n = 

64). If this were applied directly in a commercial situation, it would correspond to a large 

number of false alarms for every correct alert. In situations where the animals represent a 

higher economic value (e.g. seed stock breeding animals), an increase in false positives may 

be tolerable if all events of interest are identified. In contrast, in most commercial production 

systems where the value of individual animals is lower, producers may prefer to reduce the 

number of false positives at the expense of potentially missing some events of interest 

(Dominiak and Kristensen, 2017). 

As shown in Table 8.5, inclusion of the simple requirement for two consecutive lambing alerts 

decreased the number of false positives from 64 to 22. This scenario also narrowed the 

window of detection, with a further one and two animals having the first alert within ±1 

(Animal 5) or ± 3 h (Animals 1 and 11), respectively. However, the restriction did increase the 

overall failure to detect a lambing event from one (Table 8.4) to two (Table 8.5). Practical 

application of the latter model might be found in a commercial production system where 

individual animal monitoring is less valuable and where refining flock-scale management 

brings economic return. For example, a producer may choose to be alerted when the flock 

has commenced lambing, applying this knowledge to initiate a flock-wide physical monitoring 

program (i.e. visual observation). This may be useful for flocks without adequate breeding 

records or if the flock are at known risk of adverse parturition events such as dystocia and/or 

prolapse (Hinch and Brien, 2014). Another example application might be the use of flock-level 

alerts for warning of increased lambing numbers, especially if the lambing events are 

occurring during periods of increased predation or adverse weather. In the current study, we 

have modified the model to sit at the end of two extremes and there is likely a mid-point 

where the applications are optimised. Exactly how the model sensitivity should be refined 

requires ample thought and should be contemplated in further research. This has also been 

discussed by Dominiak and Kristensen (2017) where customisation of detection models is 

advised depending on two things: firstly, the priorities of the producer; and secondly, the 

purpose of the model application (e.g. cost optimisation vs health or welfare improvement).  
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8.4.3 Understanding the limitations and reasons for model failure  

A key consideration for successful commercial application, is the ability of a detection model 

to generalise across a number of individuals. However, based on the results of the current 

study and our understanding of the variability between individual animal behaviour (Holmes, 

1976, Bickell et al., 2010, Lynch et al., 1992), this remains a challenge. One of the major 

limitations of many ML algorithms is the inability to interpret their internal ‘rules’ used to 

categorise data (Nathan et al., 2012). In the case of the current SVM, although the model has 

a relatively high accuracy for differentiation between lambing and non-lambing animals, the 

requirements for classification, including thresholds and/or the required number of features 

for alert cannot be easily determined. To explore the ML models further, three of the animals’ 

feature traces are reported in detail (Figure 8.3). Through this we can make inferences as to 

how the ML might be working and identify potential reasons for model failure. 

As an example of an individual animal for which the classification algorithm worked well, 

Animal 9 (Figure 8.3a) shows obvious peaks in the data at the time of lambing, particularly for 

CP and MDP. This suggests Animal 9 was distant from the main flock at the time of parturition 

(peak CP 8.4 m at Hour 0; peak MDP 194.9 m at Hour +1). In contrast, the classification 

algorithm did not work well for Animal 6 (Figure 8.3b), and CP and MDP actually fell at the 

hour of lambing, suggesting the ewe was not separate from the flock at this time (peak CP 4.0 

m at Hour -3; peak MDP 85.2 m at Hour +3). Given that isolation behaviour was evident in the 

training dataset (Table 8.3), the ML appears to rely on this expected behaviour for correct 

alerts (Animal 9) and hence cannot identify lambing when this expected behaviour does not 

occur (Animal 6). This is further supported by the earlier peaks in CP and MDP for Animal 6 

which correspond to early false positives. Of note, given that the MDP.Mean did not peak for 

Animal 9 at lambing, it appears that the ML does not require all three social metrics to 

increase for an alert to occur.  

Examination of the PC feature reveals a similar scenario. That is, for Animal 9 (Figure 8.3a), 

an increase in PC behaviour at lambing was evident, and was accompanied by correct lambing 

detection. In contrast, Animal 6 (Figure 8.3b) demonstrated decreased PC at the time of 

lambing, which again contributed to the model missing the event detection. For both Animal 

9 and Animal 6, earlier peaks in PC behaviour were evident prior to parturition. However, for 
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Animal 9 these were not accompanied by peaks in the remaining features whereas for Animal 

6, the increased PC behaviour was also accompanied by peaks in social isolation, ultimately 

resulting in a number of false positive alerts. Thus, while is appears that the model may not 

require all three measurements of social isolation for an alert to occur, the algorithm appears 

to be sensitive to changes in behaviour when they occur at the same time as other key 

fluctuations. Although the introduction of the stricter detection criteria did reduce these false 

positives somewhat, it does not mean that the more ‘unexpected’ patterns of behaviour for 

individual ewes can be mitigated. 

Animal 2 is an example of a ewe that displays early false positives followed by correct lambing 

alert. As shown in Figure 8.3c, false positives were evident on the day prior to birth (Study 

Day 7) due to a peak in both CP and MDP. This may reflect variable social activity of this ewe 

or it may demonstrate early social isolation and/or a time of birth site selection or nesting 

behaviour (Echeverri et al., 1992, Alexander, 1988). If this could be isolated, this behaviour 

could be used as a powerful predictor of impending parturition, providing producers with the 

opportunity to act on an alert prior to the event occurring. However, as isolation at parturition 

is inconsistent in domestic sheep (Alexander, 1988), the ability to generalise this behaviour 

across numerous individuals is unlikely. 

8.4.4 Recommendations for future research 

In this study, the method of data labelling was fixed for the training dataset (i.e. Hours ± 1 

labelled as ‘lambing’; 3h in total). However, as parturient behaviour is known to vary between 

animals (Holmes, 1976, Bickell et al., 2010), this labelling protocol may have been too rigid 

for the natural inconsistencies that exist. Although the impact of labelling protocol is valid, it 

should also be noted that the variation in lambing behaviour may also be a product of normal 

diurnal changes (e.g. normal grazing patterns). For example, parturition records in this study 

were collected at various times throughout the observation period, depending on when the 

animals lambed. This means that ewes that gave birth during the normal peak morning or 

evening grazing periods were labelled identically (and thus indistinguishable), to those that 

lambed during normal periods of resting or rumination. Given that spatial behaviour is known 

to change throughout the day (Gonyou, 1984), it is possible lambing behaviour in this study 

is confounded by time itself, thus resulting in higher variability (and wider density plots) for 
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the lambing day data (Figure 8.2). In contrast, the non-lamb data are represented by two 24-

h periods, one 3 days prior to lambing and one 3 days after lambing, and thus will naturally 

contain data that are representative of the entire diurnal pattern. Further research should be 

conducted to determine the impact of the labelling protocol, potentially using detailed 

individual observations as a method of identifying the commencement of lambing behaviour. 

In addition, research should also be conducted using data from ewes that lamb overnight, to 

ensure the patterns in behaviour are consistent across a number of contexts. 

Although this study has presented an adequate method of simulating online parturition 

detection, application of this knowledge in commercial systems still requires further thought. 

For example, the use of embedded processing and edge computing has been suggested for 

commercial application, given the energetic costs of data transmission (Vázquez-Diosdado et 

al., 2019). However, in the current study, the most valuable features for parturition detection 

were those that compared the individual ewe’s behaviour within the wider flock context (i.e. 

MDP, MDP.Mean, CP, PC.Mean) or relative to its own past behaviour (PC.24h). In the latter 

instance, edge computing is valid as previous data could be stored on the device and used as 

a comparative metric to current readings. In the former example, however, comparison with 

other ewes is necessary and would require transfer of data to a central repository for parallel 

processing with all other devices. Given this, future research should investigate how the data 

can be condensed prior to transmission and still be useful for comparison to other ewes. 

8.5 Conclusion 

The outcomes support the use of integrated sensor data for ML-based prediction of 

parturition events in grazing sheep using SOB data as a proxy for near-real-time detection. 

This is the first known application of ML classification for the detection of lambing in pasture-

based sheep. Four main features generated from GNSS and accelerometer data were 

identified as the most useful for lambing prediction: MDP.Mean, CP, MDP and PC. Using these 

features, information on ewe social activity and frequency of changing posture is used to 

detect if a lambing event has occurred within the previous hour. Though weather data were 

not used in the final model, all sensor types were well represented across the ROC curve 

analysis, thus highlighting the benefits of sensor integration. A surprising outcome of the 

current study was the success of applying the GNSS data for parturition detection in isolation, 
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without the added integration of the accelerometer data. This suggests the that application 

of GNSS over a longer time period and with novel comparisons to flock-level behaviour are 

important to adequately represent the value of this sensor type.  

In the current study, the ML models were able to detect lambing events with reasonable 

accuracy. This success depended on variation in individual animal behaviour and highlights 

the sensitivity of the ML model for detecting a change in key behaviours. Further research 

should consider the use of this model (or similar) for detection of adverse lambing events. 

This would have significant impacts on the ability to remotely monitor animal welfare using 

on-animal sensors and is a logical extension of the information presented in this paper. 
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Chapter 9. Exploring the potential for on-animal sensors to 

detect adverse welfare events: a case study of detecting ewe 

behaviour prior to vaginal prolapse 

Fogarty E.S., Swain D.L., Cronin G.M., Trotter M. Exploring the potential for on-animal sensors 

to detect adverse welfare events: a case study of detecting ewe behaviour prior to vaginal 

prolapse. 

Status: Prepared for submission to Animal Welfare 

 

Overview 

The focus of this thesis so far has been on detecting the parturition event as a necessary 

component of any welfare monitoring system. This chapter explores how a sensor system 

might be applied to detect an adverse lambing event with associated impacts on animal 

welfare. Data was available for two parturition scenarios: (i) an adverse birth event (vaginal 

prolapse); and (ii) typical birth events where labour progressed with no issues. As data were 

only available for a single ewe that experienced prolapse, the chapter has been prepared as 

a proof of concept paper. The objective of this chapter was to explore if the ewe that 

experienced vaginal prolapse exhibited common precursor parturition behaviours to ewes 

that progressed through a ‘normal’ birth event, to compare the alert profiles of each and then 

explore how this might be practically applied in an animal monitoring protocol utilised in a 

commercial environment. 

This manuscript has been prepared as a short communication for submission to Animal 

Welfare. It appears in this thesis in the format required by the journal. Data presented in this 

chapter was collected during the 2017 field trial.  
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Abstract 

Parturition is a critical period for the ewe and lamb, and the incidence of dystocia has known 

impacts on lamb and ewe welfare and productivity. Current methods of dystocia monitoring 

are mostly conducted through visual observation. Novel approaches for monitoring have also 

been suggested, including the application of on-animal sensor technologies for remote 

surveillance of parturition success. This short communication explores how the use of sensor-

based parturition detection models can be applied for detection of adverse and successful 

parturition events, respectively, in pasture-based sheep. Specifically, the alert profile of a 

single ewe that experienced vaginal prolapse is reported, and compared with the alert profiles 

of 13 ewes that experienced typical birth events. Though the ewe that experienced vaginal 

prolapse exhibited some common precursor alerts similar to ewes that progressed through a 

typical birth event, the overall alert profile was markedly different for the prolapsed animal, 

with an increased number of alerts occurring from five days prior to the prolapse event. As 

successful parturition has significant welfare and productivity outcomes, application of these 

research findings in a commercial system could greatly improve current methods of welfare 

monitoring at lambing.  

Keywords 

Accelerometers, animal welfare, GNSS, machine learning, on-animal sensors, sheep 
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9.1 Introduction 

Parturition is a critical period for the ewe and lamb, with implications for welfare and 

productivity (Alexander 1980, 1988). It is during this high-risk period that ewes may 

experience dystocia (abnormal or difficult birth), which is a known cause of lamb mortality 

(Hinch & Brien 2014; Refshauge et al 2016). Dystocia can also impact on the ewe, with adverse 

consequences such as pregnancy toxaemia and physical trauma, including vaginal or uterine 

prolapse (Scott 2015). 

Current techniques for dystocia monitoring in commercial systems are limited to periodic 

visual assessment, usually from a distance (Welch & Kilgour 1970). However, large flock sizes, 

limited labour and extensive terrain may make inspection challenging (Waterhouse 1996). In 

addition, as human presence can increase the risk of mismothering (Alexander 1980), many 

sheep producers may minimise the time spent closely observing their animals to reduce 

interference. Sheep are also characteristically stoic, tending to hide signs of pain and 

discomfort (Doyle 2017). Thus, the ability of the producer to successfully identify adverse 

parturition events such as dystocia may be limited using visual observation alone. 

A potential solution to this issue is to deploy on-animal sensor systems for remote 

surveillance of animals (Waterhouse 2019). While the application of sensors for parturition 

detection has been reported for sheep (Chapter 8) there are few, if any, publications exploring 

how sensors might be used to detect adverse parturition events such as dystocia. 

Furthermore, there has been no consideration of how these might be integrated into a 

sensor-based system for commercial application. 

This short communication reports a case study of a single ewe that experienced an adverse 

parturition event (vaginal prolapse) and explores how behavioural data from on-animal 

sensors might be integrated with routine visual inspections to optimise intervention and 

improve livestock welfare and production outcomes. Although a formal comparison of the 

behavioural differences between adverse and typical parturition events would be ideal, data 

were only available for a single prolapsed ewe, and thus the results are presented as a proof 

of concept. The early-warning symptoms of vaginal prolapse are consistent with the early 

signs of labour (Scott 2015). Therefore, we applied a previously developed parturition 
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detection model (Chapter 8) to explore if the ewe that experienced vaginal prolapse exhibited 

common precursor parturition behaviours to ewes that progressed through a typical birth 

event. We hypothesised that ewes experiencing prolapse will exhibit heightened parturition 

behaviours such as restlessness, and that these will appear as outlier data compared to ewes 

progressing through a typical birth event.  

9.2 Materials and methods 

A complete explanation of the materials and methods is available in Chapter 8. 

9.2.1 Location and use of animals  

All research procedures and use of animals were approved by the Massey University Animal 

Ethics Committee (approval number MUAEC 17/59). The study was conducted at a 

commercial mixed enterprise farm in North Canterbury, New Zealand (42°56’47’’S, 

173°11’43’’E) from 30 September (Study Day 1) to 13 October 2017 (Study Day 14). Mixed-

age ewes (n = 40; Merino and Merino-cross) were selected from the larger commercial flock 

based on estimated lambing date (confirmed by ultrasound as per normal farm practice). 

Ewes were kept in a 3.09 ha paddock with ad libitum access to pasture and water. 

Of the 40 ewes, 26 were excluded from the current study due to sensor failure (n = 5), failure 

to lamb during study period (n = 13), or previous use in model development (n = 8). The 

remaining 14 ewes are the focus of this study with one of these being the subject of the 

adverse event and 13 acting as examples of typical parturition. The case study ewe was 

identified as prolapsed between 0700 h – 0730 h on Day 14. Once identified, the farm 

manager was alerted and the animal was humanely euthanised at 0900 h. This was conducted 

according to normal farm practice. The lambs were not able to be recovered. 

9.2.2 Instrumentation and observation 

Ewes were fitted with GNSS loggers (Mobile Action, Taiwan) attached to neck collars and 

accelerometers (Axivity AX3, Axivity Ltd, Newcastle, UK). 

Visual observations were carried out on each day of the trial from 0730 h – 1230 h and 1330 

h – 1730 h (± 30 min) for the purpose of recording parturition-related activities.  
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9.2.3 Data management and analysis 

A full description of the data management and analysis is reported in Chapter 8. Briefly, 

selected features from GNSS and accelerometer data were integrated and analysed using a 

Support Vector Machine (SVM) to classify each animal as expressing either lambing or non-

lambing behaviour on an hourly basis. This analysis was undertaken in the context of a 

simulated online parturition detection model with the proposed system able to detect 90.9 % 

of lambing events within ± 3 h (Chapter 8). 

The SVM was applied to the 13 ewes that progressed through typical parturition and a single 

ewe that experienced an adverse parturition experience (vaginal prolapse). This ewe was the 

only animal to experience an adverse parturition event during the trial period.  

9.3 Results and discussion 

9.3.1 Comparison of parturition alerts for the case study ewe compared to typical 

animals 

The results of the parturition detection model application are presented in Table 9.1. As 

shown, the algorithm correctly alerted to the day of lambing for 12 of the 13 ewes that 

experienced a typical birth process. The remaining animal (Animal N) did not report any 

lambing alerts. Three ewes that experienced a typical birth process also reported a false 

positive on the day prior to recorded lambing (Animals B, C and D), followed by the 

subsequent accurate alert on the day of lambing.  

The case study ewe (Animal A) demonstrated a markedly different alert profile compared to 

the other sheep. This individual reported an alert on both Days -5 and -4 and then again on 

Days -2, -1 and 0. The alerts on Days -2 and -1 were consistent with the other sheep that 

experienced typical parturition (particularly Animals B, C and D), and are likely to reflect 

typical pre-partum behaviours (Scott 2015; Fogarty et al 2020a; Fogarty et al 2020b). In 

contrast, the alerts generated on Days -5 and -4 are less obviously related to the observed 

prolapse event. Although false positive alerts have been reported from 7 days prior to birth 

using this same model (Chapter 8), it is feasible that these behaviours were indicative of 

impending prolapse. It is possible that the ewe began experiencing difficulties up to 4 or 5 
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days prior to actual prolapse, however, this cannot be confirmed. Future research is required 

to determine if this pattern of behaviour is consistent. 

Table 9.1. The timeline of alerts reported for parturition for the case study ewe experiencing prolapse (Animal 

A) and 13 other ewes experiencing typical birthing events (Animals B – N). For Animal A, Day 0 refers to the 

day when prolapse was identified. For Animals B – N, Day 0 refers to the day of recorded lambing. Alerts are 

noted as ‘X’. Lack of alerts are noted as ‘-‘. 

ID Type of birth Day around lambing Notes 

  -5 -4 -3 -2 -1 0  

A Prolapse X X - X X X Alerts on five days. Prolapse identified and 
animal euthanised on Day 0 

B Typical - - - - X X False positive on the day prior to lambing. 
Subsequent correct detection on Day 0 

C Typical - - - - X X False positive on the day prior to lambing. 
Subsequent correct detection on Day 0 

D Typical - - - - X X False positive on the day prior to lambing. 
Subsequent correct detection on Day 0 

E Typical - - - - - X Correct detection of day of lambing 

F Typical - - - - - X Correct detection of day of lambing 

G Typical - - - - - X Correct detection of day of lambing 

H Typical - - - - - X Correct detection of day of lambing 

I Typical - - - - - X Correct detection of day of lambing 

J Typical - - - - - X Correct detection of day of lambing 

K Typical - - - - - X Correct detection of day of lambing 

L Typical - - - - - X Correct detection of day of lambing 

M Typical - - - - - X Correct detection of day of lambing 

N Typical - - - - - - Detection failure – no alerts provided 
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9.3.2 Application for improved animal management 

The results of the current study indicate the ability to detect parturition-related behaviour in 

pasture-based sheep, and the capacity to extend this application for an indication of prolapse. 

However, while the alert to parturition and prolapse is an important proof of concept, it is of 

little value if it cannot be integrated into a viable management system.  

To explore this further, a conceptual flowchart was developed (Figure 9.1) to demonstrate 

how the individual alerts could be interpreted to enhance the likelihood of observing and/or 

intervening in an adverse event. As depicted in (Figure 9.1), once an alert is triggered, the 

producer would inspect the flock within a reasonable timeframe (e.g. within 24 h), visually 

confirming the presence or absence of new lambs and thus designating the alert as ‘true 

positive’ or ‘false positive’. If a parturition event was confirmed (i.e. true positive), application 

of the model for this ewe would cease, and no further action would be required. Conversely, 

if the alert was a false positive, this information would be integrated into the system for 

further analysis. If an alert was generated for two days but the producer was unable to 

identify a lamb for the ewe in question, this would escalate the ewe to a potential-risk status, 

and subsequently continued observation in the paddock is recommended. Once a third alert 

was generated without the presence of a lamb, the ewe’s risk status would be escalated 

further to encourage separation for closer inspection. 

In the instance of the case study ewe, the ewe would have been identified for closer 

inspection after Day -4 (Escalation One) and then again after Day -2 (Escalation Two). If this 

process was applied and if the escalation status was genuine, it is feasible that the ewe could 

have been targeted for separation and close monitoring, potentially allowing intervention 

and/or prevention of prolapse progression. At the very least, the escalation after Day -2 would 

have enabled rapid detection of the prolapse condition and reduced the animal’s suffering. It 

is also worth noting that the case study animal received early treatment in this study due to 

the presence of the observer. Under normal commercial conditions where observation is less 

frequent, it is possible that the ewe would not have been identified for a longer period and 

therefore suffered for a longer period of time. 
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Figure 9.1. Conceptual flowchart detailing commercial application of predictive type models for improved 

surveillance of ewes during parturition and identification of at-risk ewes 

9.4 Animal welfare implications 

Successful parturition has a significant and lasting impact on animal welfare and productivity 

outcomes in sheep production systems (Brien & Hinch 2010). Identification of animals either 

before or during a disease state could greatly improve survival, allowing producers to address 

areas of concern before they become an issue. This would not only improve on-farm welfare, 

it would also result in increased productivity and cost-benefits for the farmer (Trotter 2013; 

Trotter et al 2018). Similarly, when animals are detected to be in an untreatable disease state, 

the length of time spent suffering could be reduced through earlier detection. As public 

concern for animal welfare continues to rise (Dawkins 2017), it is also possible that a push for 

autonomous welfare assessment will come from outside the industry, increasing the current 

requirements for transparency and adequate documentation (Smith et al 2015). There is 
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already a shift in business behaviour, for example targeted marketing of “certified ethical” 

wool (ZQ Natural Fibre 2019), promoting animal welfare and traceability as major company 

values. 

As with any novel monitoring system, a number of critical issues remain which need to be 

considered. For example, using the proposed method, the model of response requires 

additional investment in time to undertake closer individual inspections, and where 

necessary, invoke management actions. Furthermore, knowledge of negative welfare status 

changes the duty of care of producers, effectively increasing their responsibility to act on an 

alert once they become aware of any issues (Waterhouse 2019). Considering this, further 

research into how sensor-based welfare systems can be practically applied across livestock 

production systems is required, including ways that satisfy all parties involved. 

Although the use of a single animal may be regarded as a limitation of this study, it is feasible 

that the outcomes of this research could be further applied to other adverse welfare events 

including abortion, neonate death or predation. Furthermore, as the parturition detection 

model applied in this study only uses measures of social behaviour and posture change to 

detect parturition events, it is possible that a model that incorporates more features would 

also be valuable. This warrants further investigation using a larger sample number.  

  

168



9.5 References 

Alexander G 1980 Husbandry practices in relation to maternal offspring behaviour. Reviews 
in Rural Science 4: 99-107 

Alexander G 1988 What makes a good mother? Components and comparative aspects of 
maternal behaviour in ungulates. Proceedings of Australian Society of Animal 
Production 17: 25-41 

Brien FD, and Hinch GN 2010 Improving lamb survival and reproductive efficiency in sheep 
3rd Australian Veterinary Association (AVA) and New Zealand Veterinary Association 
Pan Pacific Veterinary Conference: Brisbane, QLD Australia 

Dawkins MS 2017 Animal welfare and efficient farming: is conflict inevitable? Animal 
Production Science 57: 201-208 

Doyle RE 2017 Sheep cognition and its implications for welfare, In: Ferguson DM, Lee C and 
Fisher A (eds) Advances in Sheep Welfare  pp 55-71. Woodhead Publishing 

Fogarty ES, Swain D, Cronin GM, Moraes LE, Bailey DW, and Trotter M 2020a Potential for 
autonomous detection of lambing using Global Navigation Satellite System 
technology. Animal Production Science https://doi.org/10.1071/AN18654:  

Fogarty ES, Swain D, Cronin GM, Moraes LE, and Trotter M 2020b Can accelerometer ear 
tags identify behavioural changes in sheep associated with parturition? Animal 
Reproduction Science 216: 106345  

Hinch GN, and Brien F 2014 Lamb survival in Australian flocks: a review. Animal Production 
Science 54: 656-666 

Refshauge G, Brien FD, Hinch GN, and van de Ven R 2016 Neonatal lamb mortality: factors 
associated with the death of Australian lambs. Animal Production Science 56: 726-735 

Scott PR 2015 Reproductive System Sheep Medicine Second Edition Edition pp 21-61. CRC 
Press: Boca Raton, Florida USA 

Smith D, Lyle S, Berry A, and Manning N 2015 Case Study Report The Internet of Animal 
Health Things: Opportunities and Challenges, In: Zaki M and Neely A (eds). Centre for 
Digital Innovation, Zoetis: University of Cambridge 

Trotter M 2013 PA Innovations in livestock, grazing systems and rangeland management to 
improve landscape productivity and sustainability. Agricultural Science 25: 27-31 

Trotter M, Cosby A, Manning JK, Thomson M, Trotter T, Graz P, Fogarty ES, Lobb A, and 
Smart A 2018 Demonstrating the value of animal location and behaviour data in the 
red meat value chain. Meat and Livestock Australia 

Waterhouse A 1996 Animal welfare and sustainability of production under extensive 
conditions—A European perspective. Applied Animal Behavior Science 49: 29-40. 

Waterhouse A 2019 PLF technology and real-time monitoring should improve welfare in 
extensive systems, but does it change the duty of care and require modification of 
welfare guidelines for livestock keepers? In: O’Brien B, Hennessy D and Shalloo L (eds) 
Proceedings of the European Conference of Precision Livestock Farming,  pp 256-261 

Welch RAS, and Kilgour R 1970 Mis-mothering among Romneys. New Zealand Journal of 
Agriculture 121: 26-27 

ZQ Natural Fibre 2019 ZQ Natural Fibre  https://www.discoverzq.com/  Accessed: 20 Nov 
2019 

 

169



 
 

170



Chapter 10. General discussion and conclusions 

10.1 Research summary 

This thesis reports on the application of GNSS and accelerometer sensor technologies and 

explores their value for autonomous monitoring of sheep in grazing systems. Focussing on 

parturition as a period of critical welfare risk, this thesis has: firstly, highlighted the ability of 

each technology to detect changes in ewe behaviour associated with lambing; and secondly, 

explored how these technologies’ integration might be used for near-real-time detection of 

both successful and adverse lambing events. The specific research questions explored in this 

thesis were as follows: 

(i) How are on-animal sensors used in sheep research and for what purpose? 

(ii) How can on-animal sensors be applied to facilitate the assessment of animal 

welfare? 

(iii) Can we detect changes in sheep behaviour at parturition using on-animal sensors? 

(iv) Can we develop a simulated online model for parturition detection using data 

collected from both on-animal and weather sensors? 

(v) Can the developed model be applied to detect an adverse welfare event during 

parturition? 

A brief summary of how each piece of research has contributed to these original objectives 

follows.  

10.1.1 The use of on-animal sensors in sheep research 

As detailed in Chapter 2, a number of different technologies have demonstrated application 

for sheep research, including location sensors (e.g. GNSS, contact loggers), motion sensors 

(e.g. accelerometers, pitch and roll sensors, mercury tilt devices) and physiological sensors 

(e.g. HR monitors, oxygen sensors, respiration sensors). The most common research 

objectives of papers using these technologies were to quantify sheep behaviour and/or to 

validate the sensor data itself. Other more minor applications included environmental 

management and health monitoring. Of interest, the use of on-animal sensors specifically for 

welfare assessment was not commonly reported. This was attributed to the prerequisite need 

to validate the use of sensors for sheep research, before extending their use to more complex 
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applications such as welfare assessment. Overall, this represented a large gap in the literature 

and highlighted a need for further research. 

Of note, this paper contains publications up to and including May 2017. However, a number 

of other relevant publications have been produced since this time. To quantify this, a count 

of references made throughout this thesis from June 2017 until 2020 was conducted. For 

consistency with Chapter 3, websites, software and general reports were excluded. A total of 

24 additional references were counted throughout the thesis. Of these, 12 publications were 

focused on sheep, four were focused on cattle and three focused on other species (i.e. pigs, 

horses). Four publications were referenced for analytical or methodological purposes and one 

concentrated on general concepts of animal welfare. 

10.1.2 On-animal sensors for assessment of animal welfare 

On-animal sensors have been advocated as a potential method of improving on-farm animal 

welfare monitoring (King, 2017, Morris et al., 2012). However, based on the results of the 

initial review, there were few practical examples of this in the literature. Hence, in the second 

literature review (Chapter 3), the potential for welfare monitoring by on-animal sensors using 

the Five Domains (FD) Model as a reference framework was explored. The review identified 

three types of sensors that are able to address the major aspects of welfare [Nutrition, 

Environment, Health, Behaviour, Mental State (Mellor and Beausoleil, 2015): location 

sensors, motion sensors and physiological sensors. Of the five welfare domains, Behaviour 

was the most easily monitored using sensor technology, followed by Nutrition, Environment, 

Health and Mental State. Based on the outcomes of Chapters 2 and 3, two sensor types were 

selected for use in this PhD program; GNSS and accelerometers. These were selected based 

on the availability of research-grade forms and the technology’s proven potential for 

detecting key behaviours of interest. While physiological sensors also demonstrated obvious 

potential for application, operational versions of these sensors were ultimately considered 

too difficult to access for this program. These would benefit from further research, 

particularly as they appear uniquely able to monitor aspects of the Mental State Domain. 
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10.1.3 Detecting changes in sheep behaviour at parturition using on-animal 
sensors 

To facilitate welfare monitoring at parturition, it is essential to understand each of the 

selected technologies in isolation, before attempting an integrated sensor-based approach. 

Hence, the research presented in Chapters 5 to 7 focused on the detection of parturition using 

each sensor type independently. 

In Chapter 5, the feasibility of GNSS for detecting behaviour change at parturition was 

presented. Overall, GNSS derived data was able to monitor daily changes in behaviour, 

including increased minimum daily speed, increased mean distance to peers and reduced 

spatial utilisation of the paddock. Despite trends for behaviour change at an hourly scale, 

GNSS derived data did not appear sufficient to detect sub-day changes in behaviour 

associated with lambing at the time of publication. This was later contradicted in Chapter 8, 

where novel GNSS metrics (CP and MDP.Mean) were amongst the most important features 

for lambing detection at this time scale. This suggests that the benefits of GNSS lie in the 

comparison between individual ewe data and the rest of the flock, rather than more simple 

metrics collected from each ewe in isolation (Chapters 4 and 8). It is worth noting that these 

novel features were developed as a direct consequence of an in-depth exploration of the raw 

data, coupled with an improved understanding of animal behaviour developed throughout 

the project. There are likely to be other novel features that may become important in other 

environments or when exploring other applications of sensors. This is an area ripe for further 

research. 

To assess the viability of accelerometer-based behaviour monitoring at parturition, a similar 

study was conducted in Chapter 7. Prior to this however, the accelerometer data was 

processed using ML to classify the data into known behaviours. This was important to ensure 

interpretability and to allow for comparison with published behaviour patterns. Presented in 

Chapter 6, ML classification was able to detect four common behaviours (grazing, lying, 

standing, walking), with an accuracy of 76.9% using a 10 s epoch. When the behaviours were 

grouped by activity (i.e. active or inactive) and posture (i.e. upright or prostrate), accuracy 

increased to 98.1% and 90.6%, respectively, using a 30 s epoch. Based on the differences in 

epoch performance across different behaviours, application of dynamic epochs may 

represent a method for improved ML classification. For example, use of 30 s epoch to detect 
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overall activity and a 10 s epoch to detect the specific behaviour. This would be particularly 

important for short-duration behaviours (e.g. standing up, lying down, head shake) which are 

often misclassified as an intermediate activity when averaged over longer epochs (Chen and 

Bassett, 2005). Dynamic epochs could also be used to combine features summarised over 

different lengths (e.g. 30 s epoch of MV and a 5 s epoch of SDx) and represents another area 

of novel research.  

Using the ML-classified data, accelerometers demonstrated a capacity for detecting daily and 

hourly changes in sheep behaviour at parturition. On a day scale, grazing and lying behaviours 

decreased in favour of standing and walking. On an hourly scale, changes in behaviour were 

also detected. This was particularly marked for walking behaviour and frequency of posture 

change, which both significantly increased in the hours immediately surrounding parturition. 

Although the predictive value of the latter two features was significant, the research 

concluded that application of these findings for lambing detection should still incorporate a 

multivariable approach. This was considered particularly important since behaviour is 

impacted by a number of factors outside of parturition [e.g. walking behaviour may be 

impacted by husbandry practices (Jongman and Hemsworth, 2014)]. Assessment of changes 

at both an individual and flock level was also a recommendation for further investigation. As 

this technology continues to be developed, the demonstrated ability to monitor behaviour 

on a finer temporal scale makes this sensor type an obvious contender for integration into a 

commercial system. Of note, this research has highlighted the challenges associated with 

accelerometer data interpretation, with this approach requiring transformation into useful 

behaviour categories prior to interpretation. It is possible that further development of 

algorithms may not require this intermediate step to produce alerts for the human end-user. 

However, this work has highlighted the significant difficulties associated with data 

interpretation that often requires some measure of ‘ground-truthing’ to ensure correct 

interpretation. 

10.1.4 Development of a simulated online model for parturition detection using 
integrated sensor data 

Using the knowledge gained in Chapters 5 and 7, it is clear that GNSS and accelerometers 

have potential for monitoring sheep behaviour at parturition. However, to ensure 

commercially-relevant application, it was important to develop an analytical framework that 

174



processes the data as it becomes available for near-real-time alerts. The outcomes of this 

work are detailed in Chapter 8, and successfully demonstrate the use of ML-based detection 

of parturition using integrated GNSS and accelerometer data. Although the integration of 

weather data were also explored, this was not incorporated into the final model. This was 

likely reflective of the relatively mild weather conditions experienced throughout the field 

program and underplays the potential impact of climate on animal behaviour. Considering 

the known impact of weather on many aspects of behaviour, e.g. sheltering (Broster et al., 

2012, Alexander et al., 1979), social activity (Doyle et al., 2016), and grazing behaviour 

(Thomas et al., 2008), further investigation of weather data integration into event detection 

models is recommended. 

Overall, the final model was able to identify 90.9% and 81.8% of lambing events within ± 3 h 

of known birth, with accuracy depending on the use of different alert criteria. Accuracy also 

differed between individuals, with some ewes having consistently correct or consistently 

incorrect lambing alerts occurring. Based on the results documented in Chapter 5 and the 

previous limitations identified in GNSS monitoring of parturition, a surprising outcome of this 

chapter was the model’s performance when trained using GNSS data alone. This highlights 

the benefit of GNSS application when individual ewe metrics are compared to the flock.  

This chapter raised an interesting issue with regard to the requirements of reporting events 

and the need for balancing sensitivity (true positive rate) and specificity (true negative rate) 

in model application. In normal commercial situations, generation of the right alert at the 

correct time is crucial. Conversely, false positives are time-consuming and reduce trust in the 

system (Dominiak and Kristensen, 2017). Somewhat frustratingly, however, the definition of 

‘allowable’ false positives is usually on a case-by-case scenario, for instance higher-value seed 

stock animals compared to lower-value production stock. ‘Allowable’ false positives are also 

impacted by welfare impacts, such as possible detection of adverse parturition events (like 

dystocia) requiring immediate action, compared to detection of reduced feed intake requiring 

less urgent investigation. In this chapter, including the requirement for two consecutive 

lambing predictions resulted in a substantial decline in the number of false positive alerts 

generated. However, the number of failed alerts also increased. Refinement of model criteria 

should be researched further, including the potential application of a ‘sliding scale’ to tune 

the model to each particular circumstance. The application of a multi-stage decision process 
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is another possibility, where the combination of machine-prediction and human validation 

could be of value. This was explored further in Chapter 9. 

10.1.5 Application of the developed model for detection of an adverse welfare 
event  

To explore the feasibility of monitoring parturition success as a measure of animal welfare, 

the model developed in Chapter 8 was applied to another group of animals in Chapter 9. The 

results suggest that ewes with repeated alerts that are not followed by parturition may be at-

risk of an adverse event and should be inspected. As data was only available for a single 

animal, this chapter represents a proof of concept for remote monitoring of welfare at 

parturition.  

This chapter raised another key issue with reference to the use of on-animal sensors for 

welfare monitoring, whereby true autonomous application may not be possible if the model 

requires producer input in the form of visual inspection, confirmation of an event occurring 

and subsequent management action. The potential change in the producer’s duty of care is 

another important consideration for commercial application; requiring collaborative input by 

producers, commercial companies, levy agencies and lawmakers alike.  

10.2 Study limitations 

There were a number of limitations of the research presented in this thesis. First, due to the 

use of sensors in a commercial pasture-based setting, there was limited ability to collect 

detailed observations of the animals either during lambing or at other times. Other similar 

issues included technical difficulties around time stamp matching of video which was a 

particular problem in the 2017 field campaign. Conduct of the field campaigns on a 

commercial property (as opposed to a research station with purpose-built facilities), also 

meant that it was impossible to view the animals overnight, leading to a number of ‘missed’ 

lambing events (See Appendix B and C). This restricted the later use of these datasets. 

A major theme presented throughout this thesis is the development of analytical processes 

suitable for commercial exploit. As such, a key research focus was the development of 

generalised models that can be used across a number of animals. As previously identified in 

Chapter 4, although broad patterns of behaviour are evident for the majority of animals, 
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differences between individuals were also evident. This is further discussed in Chapter 6, 

where ML accuracy for the highest and lowest performing animals ranged between 54.8 % 

and 90.8% for Ethogram One. To account for this, subsequent model development in Chapter 

8 utilised completely independent groups of animals to train and test the model. This made 

it possible to examine common behaviour patterns associated with parturition, even when 

using animals from different lambing seasons. Although the results in Chapter 8 broadly 

support generalisation across different animal groups, a larger proportion of false positives 

(n = 64) was evident, suggesting some incongruence between the two flocks. By comparison, 

when the model was applied to another group of animals within the same lambing season 

(Chapter 9), this resulted in a considerably smaller number of false positives (n = 3), which 

only occurred for the prolapsed animal. Based on this, the approach used in the current 

research can be considered limited, with potential improvements if model training is 

conducted using data from a similar context (e.g. the same lambing season). The commercial 

feasibility of this is still unknown, however, as it would require the producer to collect detailed 

observations of each individual animal. 

One final limitation is the focus on sensor-based detection of parturition behaviour, with 

minimal discussion on the importance of other welfare Domains. Arguably, we have used 

behaviour monitoring not only for assessment under the Behaviour Domain, but as a means 

of collecting information on the ewe for application across the other Domains [e.g. detection 

of functional impairment (i.e. prolapse) as an example of the Health Domain; the inferred 

presence of pain or debility or being maternally rewarded as an example of the Mental State 

Domain; (Mellor and Beausoleil, 2015)]. Furthermore, we attempted to address aspects of 

the Environment Domain by including weather data in Chapter 8, although this was not 

incorporated into the final model. Based on the results of Chapter 3, the use of sensor data 

for autonomous welfare monitoring is complex. This is similarly reported in published 

literature, whereby the integrative nature of body functions means that the animal’s state, 

their affective experience and the external circumstances they experience inevitably interact 

across a number of Domains (Mellor, 2017, Mellor and Beausoleil, 2015). The results 

presented in this thesis, although somewhat limited, can also be considered as important 

foundational knowledge for on-animal sensor-based welfare assessment using parturition as 

a case study. 
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10.3 Application of this research 

The use of parturition detection models developed throughout this thesis have potential 

production implications. For example, individual lambing alerts (either during or after birth) 

could serve to facilitate targeted inspection of ewes and lambs following birth, particularly 

for high value production systems (e.g. seed stock breeding animals). Alternatively, flock-level 

alerts could be used to initiate a physical monitoring program by visual observation, 

particularly if flocks are at known risk of dystocia, prolapse or other adverse scenarios. Other 

production applications may include early inspection tagging of neonate lambs, movement of 

ewe/lambs from high-risk locations e.g. near cliffs, or for identification of potential 

mismothering if multiple ewes are lambing in the same area. Valuable breeding information 

could also be collected, including identification of ewes with desirable maternal behaviour 

e.g. ewes that remain at the birth site, the intensity and duration of maternal grooming and 

reduced time to first suckling event (Hinch and Brien, 2014). This could then be applied more 

broadly to Estimated Breeding Values (EBVs) for faster genetic gain.  

In addition to use in a direct production sense, it is possible that the ability to detect lambing 

events may be used for entirely different reasons. That is, producers may make use of real-

time tracking records to market their products for a higher dollar premium. Animal welfare 

and the push for improved welfare standards is a mounting pressure for 21st century 

producers (Dawkins, 2017). Thus, increasing transparency and adequate documentation of 

the industry through early adoption of technologies could enable producers to safeguard 

themselves against public backlash and the perception that they are not satisfying adequate 

welfare standards. This shift in business behaviour is already evident in the sheep industry, 

for example ‘ZQ Natural Fibre™’ (ZQ). ZQ is a leading wool brand developed by The New 

Zealand Merino Company (and co-funders of this research). The brand is marketed as a 

‘certified ethical’ product, and lists ‘animal welfare’, ‘environmental sustainability’, 

‘traceability’ and ‘social responsibility’ as major brand values (ZQ Natural Fibre, 2019). ZQ is 

a prime example of the integration of animal welfare, on-farm productivity and marketing, 

encouraging consumer demand for ethically-produced fibre. 

Of interest, this particular work has been conducted using neck collar and ear tag sensor 

attachment methods, with the purpose of providing supporting evidence for the 
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establishment of commercial devices. It has been stated in the literature that ear tag form 

factors will likely be the most appropriate due to the easy integration with existing husbandry 

procedures (Barwick et al., 2018). However, it should be noted that ear tag attachment can 

be considered a welfare issue in its own right, due to issues associated with pain of 

attachment and the potential for ear damage (Awad, 2016). Collar attachment should 

therefore also be considered for initial commercial development. Leg attachment is unlikely 

to be appropriate due to difficulties associated with on-farm maintenance (McLennan et al., 

2015). Further consideration is also required for development of a completely integrated 

device. In this research, the two devices were attached using different methods (neck collar 

and ear). However, in a commercial context, it will be necessary for both sensors to be located 

on the same device. This may have limitations associated with power supply and/or on-sensor 

data analysis and should be explored in further research. 

10.4 Recommendations for future research 

This project has identified a number of aspects that should be explored in future research. 

These range from discrete packages of technical work related to sensor analysis through to 

conceptual research and the need for hardware development to support commercialisation.  

10.4.1 Technical work related to sensor analysis 

Refinement of behaviour models is an important consideration for future research. In the 

context of parturition detection, exploration of fine-scale behaviours associated with lambing 

is of particular interest. For example, during the field campaigns it was observed that the ewes 

approaching lambing would ‘toss’ their heads up and to the side whilst in lateral recumbency. 

This behaviour appeared to correspond to the period of active labour and was initially 

considered for further investigation. However, due to limitations in gathering detailed 

observations in a commercial setting, and the technical issues associated with video 

collection, this was unable to be conducted. Future research should attempt to capture this 

behaviour, potentially in a confined pen trial with continuous video recording. 

Further research should also investigate the ability to detect other maternal behaviours, such 

as grooming and suckling. Chapter 7 noted a trend for increased grazing behaviour in the 

hours following lambing. Given that post-partum return to grazing is usually gradual 

179



(Alexander et al., 1983, Bickell et al., 2010), it was concluded that this behaviour increase was 

reflective of maternal grooming (Alexander, 1988). Further research should be conducted to 

identify this behaviour, especially given the impact of maternal grooming on lamb 

survivability (Alexander, 1988). Similar research should also be conducted to identify suckling 

behaviour, particularly the initial suckling event where delivery of colostrum is important 

(Alexander, 1988). Suckling could also be utilised to infer information about the welfare of 

the lamb from the ewe sensor data, as continued suckling would suggest the lamb has 

survived, whereas initial suckling followed by a cessation would suggest lamb death. 

Refinement of study methodology could also be addressed in future work. For example, in 

this work, the GNSS speed data was averaged over a moving window of five location 

estimates. This process was done to smooth out the uncorrected dataset, although the actual 

choice of the five locations was arbitrary. Further work could be conducted to determine the 

impact of this decision, if any.  

Finally, further work should also be conducted to incorporate a broader range of behaviours 

into the initial ML classification model. In Chapter 6, behaviour classification was limited to 

only grazing, lying, standing and walking, with further reclassification into activity and 

posture. However, sheep obviously have a wider behavioural repertoire that should also be 

considered. For example, decreased rumination is a known indicator of calving (Saint-Dizier 

and Chastant-Maillard, 2015). This highlights limitations of ML as the model is only able to 

classify behaviours within the constraints of its training. Given this, further development of 

ML classification models should incorporate a larger number of behaviours, for example 

rumination, maternal grooming and suckling. Consideration for mixed behaviour epochs 

should also be conducted; for example, classification of epochs based on the ‘majority’ 

behaviour performed. Alternatively, simple classification as a ‘mixed behaviour’ epoch could 

also be used. Limitations associated with mixed behaviour epochs could be addressed 

through shorter epoch durations or a moving window classification. This has only recently 

been addressed in the literature (Barwick et al., 2020). 

10.4.2 Conceptual research of sensor-based welfare assessment 

This thesis has explicitly examined how GNSS and accelerometer technologies can be used for 

improved monitoring and welfare assessment of lambing ewes. However, if the ultimate 

180



industry objective is for lifelong sensor-based welfare monitoring, then the presented 

research represents only a small aspect of a much larger picture. To explain this further, a 

schematic diagram has been included below (Figure 10.1). This figure illustrates the type of 

sensors and/or data sources that may be available on farms, and the potential use of this data 

for application across the FD framework. Using the research presented in this thesis as an 

example (shown in colour), sensor data can be readily applied across the four physical 

Domains: Nutrition, Environment, Health and Behaviour. As shown, GNSS is applicable across 

all four Domains, illustrating the importance of location-based data, particularly for grazing 

animals. Accelerometer data is also applicable across these Domains; the exception being the 

Environment Domain due to the limited capacity of motion sensors to contextualise 

movement within the external environment when used in isolation. In contrast, weather data 

has an obvious application to the Environment Domain, with limited representation across 

the remaining Domains. It should be noted that in the current research, environment data 

was provided by on-farm weather stations only. Further use of regional weather stations 

and/or weather warnings would also be of benefit and should be explored further. 

As depicted in Figure 10.1, the use of other sources of data not included in this thesis also has 

merit for holistic welfare assessment. For example, off-animal sensors (e.g. Walk over Weigh) 

and external sensors (e.g. pasture biomass sensors) which can provide further information on 

the animal or environment, respectively. Management data (e.g. shearing, drenching or 

joining records) may also be useful in identifying at-risk animals. Also depicted in Figure 10.1 

is the generally limited application of sensor technologies for the direct assessment of the 

Mental State Domain. The exception to this, as previously discussed in Chapter 3, are 

physiological sensors including HR monitors, which can be used to objectively measure the 

stress-response. This limitation is consistent with published literature, where the animal’s 

affective experience is often inferred from the internal state and external circumstances of 

the animal (Mellor, 2017), and may represent a subjective aspect of welfare assessment that 

continues to remain elusive to scientific research. 

Realistically, an on-farm welfare monitoring system may also be applied purely during periods 

of higher welfare risk, particularly in the earlier stages of commercialisation where targeted 

application may be more achievable. Irrespective of the final application (i.e. lifelong or 

targeted), it is important to understand where the current research applies within the broader 
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scope of welfare assessment and its purpose as an initial step towards realising the full 

possibilities that sensors will provide for animal management. 

10.4.3 Hardware development to support application 

Further to considering where this research fits into the broader concept of sensor-based 

welfare monitoring, it is important to reflect on how the results presented in this thesis may 

actually work in a commercial on-farm environment. Figure 10.2 provides a graphical 

representation of the likely design of an on-farm commercial system. Of course, there are 

likely to be differences as commercial systems evolve, but emerging systems [e.g. Australian 

Wool Innovation (2015), HerdDogg (2019)] follow a similar pattern. One of the key 

considerations for commercial application is how large amounts of data generated by sensors 

might be managed across these systems, particularly with regard to energy efficiency. The 

research in this thesis was undertaken, wherever possible, with this in mind. This is 

particularly evident throughout Chapters 6, 8 and 9 where aspects of analytics and data 

transfer, and the broader potential for embedded processing (Vázquez-Diosdado et al., 2019) 

and edge computing (ur Rehman et al., 2016) are discussed. In addition to this work, however, 

other areas of research including transfer infrastructure and the integration of multiple data 

sources are required. As illustrated in Figures 10.1 and 10.2, the current research represents 

a small aspect of the overall narrative, with considerable research and development still 

necessary. Nevertheless, the concepts presented throughout this thesis provide strong 

foundational knowledge for the continued research and development of sensor-based 

welfare monitoring systems. 
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Figure 10.1 Schematic diagram indicating required inputs for holistic welfare assessment under the FD Model. Research aspects presented in this thesis are shown in 
colour (GNSS: red; Accelerometer: blue; Weather sensors: green). Shapes indicate sensor types: on-animal sensors (circle); off-animal sensors (rectangle); external 
sensors (hexagon) and other (diamond) 
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Figure 10.2 Proposed structure and data flow of a remote welfare monitoring system. Research aspects presented in this thesis are shown in blue 
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10.5 Final conclusions 

The application of sensor technologies in livestock production has many potential benefits. 

They offer the potential for improved animal welfare, particularly in extensive systems where 

adequate monitoring may be difficult. Good animal welfare has both ethical and economic 

advantages, the former allowing production under a social license, and the latter resulting 

from on-farm gains. Conversely, poor welfare constitutes a moral quandary and impacts on 

social acceptance of the agriculture industry. Ultimately, as we continue to produce animals 

and use their products for our own gain, it is our responsibility to work within the ethical 

production requirements and ensure quality of life for these animals. Sensor technologies 

may offer part of the solution to this, allowing a level of surveillance that was not previously 

possible. This thesis has focused on welfare at parturition and serves as a proof of concept 

that this application is possible. From here, continued research and development is essential 

to ensure that the benefits of these sensor technologies can be easily applied in commercial 

settings. 
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Appendix A: Chapter 2 – Supplementary material 

Assessment of each experiment’s application to the FD Model. Application marked with a ‘X’ 

Experiments Sensor family Sub-family Sensor(s) Broad measurement Nutrition Environment Health Behaviour 
Mental 
State 

Alhamada et al (2016) Location Relative RFID (oestrus sensor) Social interaction X - - X X 

Alhamada et al (2017) Location Relative RFID (oestrus sensor) Social interaction - - - X X 

Alvarenga et al (2016) Motion Acceleration Accelerometer Raw and/or derived metrics X X - X - 

Animut et al (2005) 
Motion 

Body or body-
part position 

Jaw/bite Proprietary metrics 
X X - X - 

Physiological - HR monitor General HR 

Ares et al (2007) Location Absolute GPS Distance/speed & Spatial data X X - X - 

Barkai et al (2002) 

Motion 
Body or body-
part position 

Jaw/bite Proprietary metrics 

X X - - - Physiological - HR monitor General HR 

Physiological - Oxygen Sensor Oxygen concentration 

Betteridge et al (2010a) 

Location Absolute GPS Spatial data 

X X - X - Motion 
Body or body-
part position 

Pendulum with 
magnetic reed switch 

Body orientation & Body 
movement 

Physiological - Urine sensor Urination events 

Betteridge et al (2010b) 
Location Absolute GPS Spatial data 

- - - X - 
Physiological - Urine sensor Urination events 

Broster et al (2010) Location Relative Contact Logger Social interaction X X X X - 
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Experiments Sensor family Sub-family Sensor(s) Broad measurement Nutrition Environment Health Behaviour 
Mental 
State 

Broster et al (2012) 
Location Absolute GPS Distance/speed & Spatial data 

- X X X - 
Location Relative Contact Logger Social interaction 

Broster et al (2017) Location Absolute GPS Distance/speed & Spatial data X X X X - 

Champion et al (1997) Motion 
Body or body-
part position 

Mercury tilt sensor 
Body orientation & Body 

movement 
X - - X - 

Coulon et al (2015) Physiological - HR monitor Complex HR - - - X X 

Cronin et al (2016) Motion Acceleration Accelerometer Proprietary metrics X - X X - 

Désiré et al (2004) Physiological - HR monitor Complex HR - X - X X 

Destrez et al (2012) Physiological - HR monitor General HR - - - X X 

Destrez et al (2013) Physiological - HR monitor General HR - X - X X 

di Virgilio and Morales 
(2016) 

Location Absolute GPS 
Social interaction & spatial 

data 
X X - X - 

Dobos et al (2014) Location Absolute GPS 
Distance/speed & social 

interaction 
- - - X - 

Dobos et al (2015) Location Absolute GPS Distance/speed X - - X - 

Donovan et al (2013) Location Absolute GPS Distance/speed X - X X - 

Doyle et al (2016) Location Relative Contact Logger Social interaction - X - X X 

Falú et al (2014) Location Absolute GPS Distance/speed & spatial data X X - X - 

Falzon et al (2013) Location Absolute GPS Distance/speed - - X X - 

Fogarty et al (2015) Location Absolute GPS Distance/speed - - - X - 

Freire et al (2012) 
Location Absolute GPS Distance/speed 

X X - X X 
Location Relative Contact Logger Social interaction 

Giovanetti et al (2017) Motion Acceleration Accelerometer Raw and/or derived metrics X - - X - 
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Experiments Sensor family Sub-family Sensor(s) Broad measurement Nutrition Environment Health Behaviour 
Mental 
State 

Gipson et al (2012) Location Absolute GPS 
Distance/speed & spatial data 

& social interaction 
- X - X X 

Goddard et al (2000) Physiological - HR monitor General HR - - X X X 

Greiveldinger et al 
(2007) 

Physiological - HR monitor Complex HR - X - X X 

Haddadi et al (2011) 
Location Absolute GPS Social interaction 

- - - X - 
Motion Multiple IMU NA1 

Hargreaves and Hutson 
(1990) 

Physiological - HR monitor General HR - - - - X 

Harris et al (2016) Location Absolute GPS Spatial data X X - - - 

Hobbs-Chell et al (2012) 
Location Absolute GPS NA1 

- - - X - 
Motion Multiple IMU NA1 

Hulbert et al (1998) Location Absolute GPS NA1 X - X X - 

Jørgensen et al (2016) Location Absolute GPS Spatial data X X - X - 

Kaur et al (2016) Location Absolute GPS Distance/speed - - X X - 

Kawamura et al (2005) Location Absolute GPS Distance/speed & spatial data X X - - - 

Kuźnicka and 
Gburzyński (2017) 

Motion Acceleration Accelerometer Raw and/or derived metrics X - - X - 

Lin et al (2011) Location Absolute GPS Distance/speed & spatial data X X X X - 

Lowe et al (2001) 
Physiological - HR monitor General HR 

- X X - X 
Physiological - Temperature sensor Body temperature 

Manning et al (2014) Location Absolute GPS Distance/speed - - - X - 
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Experiments Sensor family Sub-family Sensor(s) Broad measurement Nutrition Environment Health Behaviour 
Mental 
State 

McLennan et al (2015) Motion Acceleration Accelerometer Proprietary metrics X - X X - 

Morgan-Davies et al 
(2016) 

Location Absolute GPS Distance/speed & spatial data X X X X - 

Morton et al (2014) Motion Acceleration Accelerometer Proprietary metrics - - X X - 

Munn et al (2013) Location Absolute GPS Distance/speed & spatial data X X - X - 

Munn et al (2016) Location Absolute GPS Distance/speed X X - X - 

Mysterud et al (2014) Location Absolute GPS Spatial data X X - - - 

Nadimi et al (2012) Motion Acceleration Accelerometer Raw and/or derived metrics X - - X - 

Ormaechea and Peri 
(2015) 

Location Absolute GPS Distance/speed & spatial data X X - X - 

Penning (1983) 

Motion Acceleration Accelerometer Raw and/or derived metrics 

X - - X - Motion 
Body or body-
part position 

Mercury tilt sensor Body orientation 

Motion 
Body or body-
part position 

Jaw/bite Body movement 

Pérez-Barbería et al 
(2015) 

Location Absolute GPS 
Distance/speed & social 

interaction 
X X - X - 

Putfarken et al (2008) Location Absolute GPS Distance/speed & spatial data X X - X - 

Radeski and Ilieski 
(2017) 

Motion Acceleration Accelerometer Raw and/or derived metrics - - - X - 

Reefmann et al (2009) 

Physiological - HR monitor Complex HR 

- - - X X Physiological - Respiratory sensor Respiration rate 

Physiological - Temperature sensor Body temperature & humidity 

Rurak et al (2008) Motion Acceleration Accelerometer Proprietary metrics - - X X - 

Rusch et al (2009) Location Absolute GPS Distance/speed & spatial data - X - - - 
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Experiments Sensor family Sub-family Sensor(s) Broad measurement Nutrition Environment Health Behaviour 
Mental 
State 

Rutter et al (1997a) 

Location Absolute GPS Spatial data 

X X - X - Motion 
Body or body-
part position 

Mercury tilt sensor Body orientation 

Motion 
Body or body-
part position 

Jaw/bite NA1 

Rutter et al (1997b) Motion 
Body or body-
part position 

Jaw/bite Proprietary metrics X - - X - 

Schlecht et al (2006) Location Absolute GPS Distance/speed & spatial data X X - X - 

Simitzis et al (2009) Physiological - HR monitor General HR X - X X - 

Simitzis et al (2012) Physiological - HR monitor General HR - - - X X 

Tallet et al (2006) Physiological - HR monitor General HR - - - X X 

Taylor et al (2011) Location Absolute GPS Distance/speed & spatial data - X - X - 

Thomas et al (2008) 
Location Absolute GPS Distance/speed & spatial data 

X X X X - 
Motion 

Body or body-
part position 

Inclinometer Body orientation 

Umstätter et al (2008) 
Location Absolute GPS NA1 

X  - - X - 
Motion 

Body or body-
part position 

Pitch-Roll sensor Body orientation 

Verbeek et al (2012) Motion Acceleration Accelerometer Proprietary metrics X - - X X 

Webber et al (2015) Location Absolute GPS Distance/speed X X X X X 

Williams et al (2009) Location Absolute GPS Spatial data X X - X - 

Williams et al (2011) Location Absolute GPS Spatial data X X - X - 

Zampaligré and 
Schlecht (2017) 

Location Absolute GPS Distance/speed & spatial data X X - X - 

1Sensor data not presented  
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Appendix B: Chapter 4 - Summary of the 2017 fieldwork data and its use in the thesis.  

Use of the animals within each chapter is included in parentheses where: D = day scale analysis only; D & H = day and hour scale analysis; Train = included in training 
dataset; and ID refers to relevant chapter ID (where applicable) 

Study ID GNSS Acc Status Chapter (ID) Additional Chapter (ID) Study ID GNSS Acc Status Chapter Additional Chapter 
(ID) 

B9   HoB 5 (D & H) 8 (Train) B4   DoB 5 (D) NA 

B10   HoB 5 (D & H) 8 (Train) B1   DNL 5 NA 

G8   HoB 5 (D & H) 8 (Train) B2   DNL 5 NA 

O4   HoB 5 (D & H) 8 (Train) B3   DNL 5 NA 

R2   HoB 5 (D & H) 8 (Train) B5   DNL 5 NA 

R4   HoB 5 (D & H) 8 (Train) B6   DNL 5 NA 

R7   HoB 5 (D & H) 8 (Train) B7   DNL 5 NA 

R9   HoB 5 (D & H) 8 (Train) G1   DNL 5 NA 

G9   Prolapse 9 (ID A) NA G3   DNL 5 NA 

G4   DoB 5 (D) 9 (ID B) G5   DNL 5 NA 

G7   DoB 5 (D) 9 (ID C) G6   DNL 5 NA 

O6   DoB 5 (D) 9 (ID D) O8   DNL 5 NA 

O9   DoB 5 (D) 9 (ID E) O10   DNL 5 NA 

R3   DoB 5 (D) 9 (ID F) R5   DNL 5 NA 

G10   DoB 5 (D) 9 (ID G) R8   DNL 5 NA 

G2   DoB 5 (D) 9 (ID H) B8   Sensor Failure NA NA 

O1   DoB 5 (D) 9 (ID I) O3   Sensor Failure NA NA 

O2   DoB 5 (D) 9 (ID J) O7   Sensor Failure NA NA 

O5   DoB 5 (D) 9 (ID K) Status: HoB Hour of birth recorded 

R1   DoB 5 (D) 9 (ID L)  DoB Day of birth recorded 

R10   DoB 5 (D) 9 (ID M)  DNL Did not lamb 

R6   DoB 5 (D) 9 (ID N)    
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Appendix C: Chapter 4 - Summary of the 2018 fieldwork data and its use in the thesis 

Use of the animals within each animal is included in parentheses where: D = day scale analysis only; D & H = day and hour scale analysis; and ID refers to relevant chapter 
ID (where applicable) 

Study ID GNSS Acc Status Chapter (ID) Additional Chapter (ID) Study ID GNSS Acc Status Chapter (ID) Additional Chapter 
(ID) 

Bl2   NA 6 NA Gr9   HoB 7 (D & H) NA 

Bl6   NA 6 NA Bl5  1 HoB 7 (D & H) NA 

Re1   NA 6 NA Wh7   HoB2 7 (D) 8 (ID 10) 

Re10   NA 6 NA Wh9   HoB2 7 (D) 8 (ID 11) 

Re2   NA 6 NA Bl7   DoB 7 (D) NA 

Re3   NA 6 NA Bl8   DoB 7 (D) NA 

Re4   NA 6 NA Gr3   DoB 7 (D) NA 

Re7   NA 6 NA Gr4   DoB 7 (D) NA 

Re8   NA 6 NA Gr5   DoB 7 (D) NA 

Wh10   NA 6 NA Re5   DoB 7 (D) NA 

Wh3   NA 6 NA Re6   DoB 7 (D) NA 

Wh5   NA 6 NA Re9   DoB 7 (D) NA 

Bl1   HoB 7 (D & H) 8 (ID 1) Wh4   DoB 7 (D) NA 

Bl10   HoB 7 (D & H) 8 (ID 2) Gr10   DoB 7 (D) NA 

Bl3   HoB 7 (D & H) 8 (ID 3) Gr2   DoB 7 (D) NA 

Bl4   HoB 7 (D & H) 8 (ID 4) Gr8   DoB 7 (D) NA 

Bl9   HoB 7 (D & H) 8 (ID 5) Wh1   DNL NA NA 

Gr1   HoB 7 (D & H) 8 (ID 6) Gr7   Sensor failure NA NA 

Gr6   HoB 7 (D & H) 8 (ID 7) Status: HoB Hour of birth recorded 

Wh6   HoB 7 (D & H) 8 (ID 8) DoB Day of birth recorded 

Wh8   HoB 7 (D & H) 8 (ID 9) DNL Did not lamb 
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