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Abstract 8 

Non-destructively identifying the centre composition of panned chocolate goods may be useful in 9 

quality assurance settings. However, no studies to date have investigated this topic. In this study, NIR 10 

spectra (1000-2500 nm) were collected from chocolate-coated peanuts and chocolate-coated sultanas 11 

(n=170 of each) in order to investigate the prospect of non-invasively detecting the composition of the 12 

centre. Principal component analysis (PCA) confirmed that the spectra of these samples were distinct 13 

from one another. Partial least squares discriminant analysis (PLS-DA) model showed a high level of 14 

separation between chocolate-coated peanuts and sultanas in the training set (R2 = 0.95; RPD = 4.4). 15 

Discrimination between peanut and sultana samples from an independent test set was also possible, 16 

although with slightly less distinct separation between the sample types. A SIMCA model was also 17 

able to differentiate between the two sample types, albeit with higher levels of misclassification 18 

compared to PLS-DA. Incorporating samples from different manufacturers may be useful for 19 

improving the broader applicability of the model.  20 

 21 
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Introduction 25 

Chocolate-coated nuts and fruit are a common snack food in Western society. The first commercial 26 

chocolate-coated peanuts are believed to have been produced by Blumenthal Brothers Chocolate & 27 

Cocoa Company in North Carolina in 1925, sold under the product name “Goobers”. Currently, the 28 

chocolate industry in Europe alone is valued at over $51 billion USD, with 90% of small and medium 29 

sized chocolate manufacturers in this region focusing almost exclusively on the production of filled 30 

chocolate products, which include coated nuts and fruit.1  31 

Such chocolate-coated produce is usually manufactured through a process known as “chocolate 32 

panning”, whereby the chocolate coating is sequentially layered onto the centre in a rotating pan or 33 

drum.2 Between each layer, adequate time is allowed for solidification, before addition of further 34 

layers until the desired size is reached.3 The final product is then polished, glazed and varnished to 35 

seal the product, and to prevent the chocolate from melting on the consumer’s fingers.4 For more 36 

information on the manufacturing process, the reader is referred to several recent reviews that cover 37 

this topic.3-5  38 

Recent research on chocolate-coated produce has investigated the use of peanut skins for increasing 39 

the antioxidant and phenolic content of peanut coatings6 and investigated the optimum package types 40 

for long-term storage of chocolate-coated fruits and nuts.7 In another recent study, Raman 41 

spectroscopy was used to detect chocolate bloom on a range of chocolate samples, including 42 

chocolate covered macadamia nuts.8 Detection of chocolate bloom is an important aspect of the 43 

quality assurance process, as its presence reduces the shelf-life of product and affects consumer 44 

acceptability.9 Other problems that can occur with panned chocolates include incomplete or poor 45 

coverage, rough surfaces, peeling of the chocolate coating, crushed centres, and the production of 46 

“doubles”.3  47 

Another aspect of quality assurance is determining the centre composition in the final chocolate-48 

coated product. As shown in Figure 1, different products such as chocolate-coated peanuts and 49 

sultanas can be visually similar, making it difficult to confirm the identity of the manufactured 50 

product without resorting to destructive means. However, one non-invasive analytical technique 51 
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which could show promise for this application is near infrared (NIR) spectroscopy, which uses 52 

electromagnetic wavelengths between 800-2500 nm to non-destructively gather chemical information 53 

about the sample composition. The penetration depth of infrared light is wavelength dependent, with a 54 

depth of 0.5-2.5 mm found in wheat flour between 1100–1350 nm.10 However, the penetration depth 55 

may be different for the chocolate matrix.11 As chocolate coatings are usually 1-2 mm thick, the NIR 56 

signal may include some information relating to the composition of the chocolate-coated centre. 57 

Notably, NIR spectroscopy has previously been applied to the detection of internal defects in intact 58 

macadamia kernels,12, 13 demonstrating that this technique can be used to detect the internal nut 59 

composition through the kernel thickness.  60 

 61 

Figure 1. The appearance of chocolate-coated peanuts and sultanas.  62 

Near infrared spectroscopy has a long and successful history of use for quality assurance and process 63 

control in the food industry.14-17 Although NIR spectroscopy has been used for various aspects of the 64 

quality assurance of chocolate, including prediction of sucrose content,18 measurement of viscosity,19 65 

discrimination of chocolate varieties20 and detection of contaminants including insects21 and cocoa 66 
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shell.22 However, there does not appear to be any work to date investigating the non-destructive 67 

discrimination of the identity of chocolate-coated centres. This ability could be potentially useful for 68 

confirming product identity in post-manufacture settings. Consequently, the aim of this paper was to 69 

investigate the potential use of NIR spectroscopy for non-destructively discriminating between 70 

chocolate-coated peanuts and sultanas.  71 

Methods 72 

For calibration purposes, two batches of chocolate-coated peanuts and two batches of chocolate-73 

coated sultanas (all Cadbury brand) were purchased from local grocery stores. For the peanuts, 120 74 

samples were analysed from the first batch and 50 from the second batch, while 115 samples were 75 

analysed from the first batch of coated sultanas and 65 samples from the second batch. For the 76 

unknown samples (test set), a container of mixed Cadbury chocolate-coated fruit & nut was used. This 77 

product comprises chocolate-coated peanuts, sultanas, and almonds in a ratio of approximately 8:2:1. 78 

For the purposes of this study, the almonds were excluded from analysis.  79 

The NIR spectra were acquired using the integrating sphere on a Thermo Scientific Antaris II FT-NIR 80 

Analyzer (Thermo Scientific, Watham, MA, USA), operating at wavelengths between 1000-2500 nm 81 

(10,000-4,000 cm-1). The spectral resolution was 8 cm-1, with 16 scans averaged for each spectra. The 82 

chocolate-coated samples were placed directly on top of the integrating sphere port, allowing spectra 83 

to be collected from the sample in reflectance mode. Although stray light was not eliminated, its 84 

potential effects were minimised by conducting all analyses in a controlled room with indirect 85 

fluorescent lighting. Spectra were collected in triplicate for each sample (removing and replacing the 86 

sample each time) and exported in *.csv format. Partial least squares discriminant analysis (PLS-DA) 87 

was performed in R Studio running R 4.0.5,23 using the spectrolab, prospectr and plsr packages. 88 

SIMCA was performed using the mdatools package.24 Pre-processing methods included SNV 89 

normalisation and 1st derivative using a Savitzky-Golay algorithm with 11 smoothing points. For the 90 

purposes of this portion of the study, the peanut-containing samples were coded as a value of “1”, 91 

while the sultana-containing samples were coded as “-1”. Consequently, the mean “reference value” 92 

of the calibration set was 0.00 and the standard deviation of the dataset was 1.00.  93 
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The experimental work was performed in several stages. The first step was to confirm whether NIR 94 

could in fact penetrate through the thickness of the chocolate coating. In order to assess this, NIR 95 

spectra were collected in triplicate from intact chocolate-coated peanut and sultana samples (n=5 96 

samples for each). The chocolates were then cut open and the centre removed, before NIR spectra 97 

were collected from the hollow samples.  98 

The second stage was to determine whether there was a detectable difference in the NIR spectra of the 99 

nut and fruit cores, which would be a necessary prerequisite to allow discrimination of these samples 100 

using NIR spectroscopy. Spectra were collected from one each of the peanut and sultana cores 101 

isolated in the previous step.  102 

The third and major aim of the experimental work involved collecting NIR spectra from larger 103 

numbers of chocolate-coated peanuts and chocolate-coated sultanas (n=170 samples for each; sourced 104 

from two independent batches for each sample type). The data were used to create a discriminant 105 

calibration model.  106 

Finally, an independent test set was used to confirm the accuracy of the calibration model. As 107 

previously mentioned, the test set was drawn from a mixed container of Cadbury chocolate-coated 108 

fruit & nut, from a different manufacturing batch to either the peanut or sultana samples (n=50 109 

samples). Following collection of the NIR spectra, the identity of the centre composition (i.e. peanut 110 

or sultana) was confirmed by destructive organoleptic analysis (100% accuracy).  111 

Results and Discussion 112 

NIR spectra of intact and hollow chocolates 113 

The mean NIR spectra of the intact and hollowed chocolate samples are shown in Figure 2. Overall, 114 

the appearance of the spectrum followed previous work on chocolate samples.18, 25 The major peaks 115 

were located at 1215 nm (C-H second overtone), 1437 nm (O-H second overtone), 1729 nm (C-H first 116 

overtone), 1765 nm (C-H stretch first overtone), 1932 nm (amide first overtone) and 2083 nm (O-H 117 

combination), with smaller but sharp peaks at 1395 nm (C-H combination first overtone), 1692 nm 118 

(C-H first overtone) and 2019 nm (O-H asymmetric stretch).  119 
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There was some difference observed in the NIR signal between the intact and hollow samples, 120 

particularly for the peanut samples (Figure 2), most notably between 1300-2000 nm. However, there 121 

was less difference between the spectra from the intact and hollow sultana samples. Exploratory 122 

principal component analysis performed on the spectra revealed that the spectra for the hollow and 123 

intact sultana samples were quite similar to one another, while those for hollow and intact peanut 124 

samples were more distinct (Figure 3). This suggested that the peanut centres may be easier to detect 125 

through the chocolate coating using NIR spectroscopy compared to the sultana centres. However, the 126 

mean thickness of the chocolate layer did not vary significantly between the peanut samples (mean 127 

thickness of 1.9 ± 0.2 mm; n=5) and the sultana samples (mean thickness of 2.0 ± 0.2 mm; n=5) (t7.99 128 

= -1.129, P > 0.05), indicating that the difficulty detecting in detecting the sultana cores is due to the 129 

greater similarity between their NIR spectra and the NIR spectra of the chocolate coating.  130 
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 131 

Figure 2. (a) Mean NIR spectra of chocolate-coated peanut and sultana samples, in addition to 132 

spectra from the same samples with the centres removed (n=15 spectra for each). (b) First 133 

derivative of the spectra.  134 
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 135 

Figure 3. Scores plot showing the results of PCA performed on the first derivative of the intact 136 

and hollow sample spectra. Spectra are grouped by centre type (peanut or sultana) and 137 

hollow/intact.  138 

NIR spectra of peanut and sultana centres 139 

There was a clear difference in the NIR spectra of the non-coated peanut and sultana centres. The 140 

sultana spectra showed greater absorbance across the spectrum (Figure 4a), likely due to increased 141 

moisture content of the sample, as well as greater surface contact between the sample and the 142 

integrating sphere interface. The sultana spectra were dominated by water bands at 1200 and 1900-143 

2100 nm, as well as a peak in the 1440 nm region due to sugars.26 The peanut spectra were similar to 144 

that reported in previous work, with major peaks attributable to oil/fatty acids, protein and water.27 145 

The difference in spectral signatures was quite evident in the first derivative of the spectra (Figure 146 
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4b), confirming that if NIR spectroscopy can sufficiently penetrate through the thickness of the 147 

chocolate coating, then discrimination between these inclusion types should be feasible.  148 

 149 

Figure 4. (a) NIR spectra of the uncoated peanut and sultana centres. (b) First derivative of the 150 

NIR spectra of the uncoated peanut and sultana centres. 151 

Discrimination between chocolate-coated peanuts and sultanas 152 

In the main portion of this study, NIR spectra were collected in triplicate from a total of 170 153 

chocolate-coated peanuts (n=510 spectra) and 170 chocolate-coated sultanas (n=510 spectra), from a 154 

total of four different manufacturing batches. There was minimal variation visible between the first 155 

derivative of these spectra (calculated using the Savitzky-Golay algorithm with 11 smoothing points), 156 
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as seen in Figure 5. However, principal component analysis performed on the first derivative showed 157 

relatively clear separation of these sample types across the first two principal components (PC-1 and 158 

PC-2) (Figure 6). There was some spectral variance between the two different manufacturing batches 159 

of each sample type, which was primarily found across PC-1 (Figure 6).  160 

 161 

Figure 5. First derivative of the NIR spectra for the chocolate-coated peanut and sultana 162 

samples.  163 
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 164 

Figure 6. Scores plot showing the results of PCA performed on the first derivative of the NIR 165 

spectra.  166 

Subsequently, partial least squares discriminant analysis (PLS-DA) was performed on the first 167 

derivative of the NIR spectra, using leave-one-out (LOO) cross-validation to optimise the number of 168 

latent variables.28 The model performance as a function of the number of latent variables is presented 169 

in Table 1. To avoid over-fitting the model,29 the RMSECV scree plot (Figure 7) was used to select 3 170 

components as the optimum number of latent variables. The R2
cv of this model was 0.949, with an 171 

RMSECV of 0.225 and RPD value of 4.44.  172 

Table 1. Performance of the PLS-DA model using different numbers of latent variables.  173 
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Latent 
variables 

Variance explained (%) 
RMSECV R2

CV RPD 
Spectra Reference 

1 88.4 14.2 0.928 0.139 1.08 
2 92.6 71.4 0.539 0.710 1.86 
3 93.7 95.1 0.225 0.949 4.44 
4 97.2 95.9 0.205 0.958 4.88 
5 97.5 97.2 0.175 0.969 5.71 
6 97.8 97.7 0.160 0.974 6.25 
7 98.0 97.9 0.152 0.977 6.58 
8 98.3 98.1 0.149 0.978 6.71 
9 98.7 98.2 0.145 0.979 6.90 
10 99.0 98.3 0.143 0.980 6.99 

 174 

 175 

Figure 7. Scree plot showing the RMSECV values for different numbers of model components.  176 

The cross-validated model predictions are shown in Figure 8. During the cross-validation process, all 177 

of the sultana samples were identified as belonging to the correct class, while three of the peanut 178 

spectra (from two different samples) were misclassified as being sultanas (Figure 8).  179 

Examination of the loadings plot for the first component of the PLS-DA model (which explained 88% 180 

of the total spectral variance) revealed the most influential wavelengths to be located at 2040, 1431, 181 

1685 and 2245 nm (Figure 9). These were attributed to the peaks resulting from O-H asymmetric 182 
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stretch (2040 nm), O-H second overtone (1431 nm), C-H first overtone (1685 nm) and bonds 183 

associated with saturated and unsaturated triglycerides (2245 nm).18, 25  184 

 185 

Figure 8. Cross-validated predictions of the PLS-DA model (3 components) calculated using the 186 

leave-one-out method. 1 = peanut, -1 = sultana  187 

 188 

Figure 9. Loadings plot for the first two components of the PLS-DA model.  189 
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Independent test set 190 

Finally, the PLS-DA model was applied to an independent test set, comprising 50 unknown samples 191 

of chocolate-coated peanuts or sultanas (comprising 11 sultana and 39 peanut samples for a total of 192 

n=150 spectra). All peanut samples were correctly classified (i.e. had a score > 0), while one spectra 193 

from one sultana sample was mis-classified as a peanut spectra (0.7% error). The PLS-DA prediction 194 

results for the chocolate-coated sultana samples gave a mean score of -0.29 ± 0.13, compared to a 195 

mean score of 0.61 ± 0.20 for the peanut samples (Figure 10), suggesting slightly poorer ability to 196 

discriminate between sample types in the independent test set. Nevertheless, the sample types were 197 

still clearly distinguishable from one another. It is possible that minor differences in the chocolate 198 

composition between the training and test batches may contribute to some of this error; however, the 199 

inclusion of multiple batches in the training set would be anticipated to reduce this effect. The risk of 200 

model over-fitting was considered low, given that the optimum number of components was chosen 201 

using the RMSECV scree plot to provide the best trade-off between the number of components and 202 

model accuracy. Using a higher or lower number of components did not improve the accuracy of the 203 

model performance on the independent test set, suggesting that under- or over-fitting was not an issue.  204 

 205 
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Figure 10. Prediction results for the application of the PLS-DA model to the independent test 206 

set. Each sultana-containing sample is indicated by a red ellipse. 1 = peanut, -1 = sultana 207 

 208 

Figure 11. Scores plot showing a PCA performed on the first derivative of the NIR spectra from 209 

the independent test set, projected onto the PCA of the spectra from the calibration set.  210 

SIMCA 211 

As the unknown spectra showed considerable overlap when included in the PCA of the calibration 212 

spectra (Figure 11), soft independent modelling by class analogy (SIMCA) was investigated as an 213 

alternative classification method. A model created on the chocolate-coated peanut samples showed an 214 

optimum number of three components (Figure 12), with a classification accuracy of 0.959. When this 215 



Page 16 of 20 
 

model was extended to the full dataset, it showed a specificity of 0.836, sensitivity of 0.959 and 216 

accuracy of 0.890. The SIMCA model was able to correctly classify all of the chocolate-coated 217 

sultana samples, as well as correctly classify 94% of the peanuts and sultanas from the independent 218 

test set (Table 2). Similar to previous studies which have compared the performance of SIMCA and 219 

PLS-DA,30, 31 both models appeared suitable for the discrimination of chocolate-coated peanuts and 220 

sultanas from their NIR spectra. However, the SIMCA results found here were slightly poorer than 221 

those from PLS-DA, supporting the use of the latter technique for future work.  222 

 223 

Figure 12. Summary of SIMCA results for the detection of chocolate-coated peanut samples.  224 

 225 
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Table 2. Confusion matrix for the SIMCA model (3 components).  226 

 Real class 
Predicted class 

Peanut Sultana 

Calibration set 
Peanut 489 21 
Sultana 0 509 

Independent test set 
Peanut 108 9 
Sultana 0 33 

 227 

Overall, the results suggest that NIR spectroscopy has the ability to discriminate between chocolate-228 

coated peanut and sultana samples with a high level of accuracy. However, creation of a calibration 229 

model incorporating the chemical variability found across different brands of these products may be 230 

beneficial for ensuring a high level of robustness.  231 

Although beyond the scope of this study, future work could also investigate the use of NIR 232 

spectroscopy for the quality determination of panned chocolate goods, namely the quality of the 233 

chocolate and core (peanut or sultana) used in the manufacturing process. This could allow detection 234 

of potential adulteration of panned chocolate products with low quality peanuts or sultanas. Other 235 

researchers have used hyperspectral imaging to detect adulteration of chocolate powder with non-236 

cocoa products.11 Furthermore, NIR spectroscopy may be able to simultaneously profile the fatty acid 237 

composition28, 32 or sucrose content18 of the chocolate layer, allowing identification of products made 238 

from lower quality chocolate.  239 

 240 

Conclusion 241 

This study investigated the potential of NIR spectroscopy for the discrimination of the centre 242 

composition of panned chocolate goods for the first time. The NIR spectra showed a high level of 243 

separation between chocolate-coated peanuts and sultanas in the training set. Similarly, NIR 244 

spectroscopy could discriminate between the peanut and sultana samples in an independent test set, 245 

although the separation between samples was not as distinct. The robustness of this model may be 246 

improved by incorporating samples from different manufacturers. Nevertheless, this proof-of-concept 247 

study demonstrates the power of NIR spectroscopy for confirming product identity in post-248 
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manufacture quality assurance settings. Future work could extend this to the quality analysis of the 249 

peanuts or sultanas used in the manufacture of panned chocolate goods.  250 
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