CQUNIVERSITY RESEARCH

The level and pattern of physical activity among fifth-grade students in Ho Chi Minh City, Vietnam
Q.G.To; D.Gallegos ; D.V.Do; H.T.M.Tran ; K.G.To ; L.Wharton ; S.G.Trost

This is the Authors Accepted Manuscript (AAM) of a work submitted for publication from the following source: https://www.sciencedirect.com/science/article/pii/S0033350618301185?via\% 3Dihub

Bibliographic Citation

> To, Q. G., Gallegos, D., Do, D. V., Tran, H. T. M., To, K. G., Wharton, L., \& Trost, S. G. (2018). The level and pattern of physical activity among fifth-grade students in Ho Chi Minh City, Vietnam. Public Health, 160, 18-25. https://doi.org/10.1016/j.puhe.2018.03.021

Copyright

This work is covered by copyright. Unless the document is being made available under a Creative Commons License, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses.
(CC BY-NC-ND)

If you believe that this work infringes copyright, please provide details by email to acquirestaff@cqu.edu.au

Please do not remove this page

Abstract

Objectives: Despite the benefits of physical activity (PA), a significant proportion of children do not meet physical activity guidelines. However, most studies were among secondary-school-aged youth and relied on PA self-report. Additionally, information regarding children's PA behaviours during specific segments of day/week are not usually collected. This study, therefore, investigated the level and pattern of PA among fifth-grade students in Ho Chi Minh city (HCMC), Vietnam.

Study design: A complex cross-sectional survey was conducted on a representative sample of 619 fifth-grade students in eight public schools in urban areas of HCMC in 2016.

Methods: Demographic/anthropometric characteristics were measured using standard protocols. PA was measured using pedometers. After-school activities were measured using the Previous Day Physical Activity Recall questionnaire. Survey procedures with sampling weights were used for analyses.

Results: Approximately 18\% children met the physical activity guideline; 52.7% were overweight/obese. On average, students recorded about 8800 steps/day. Boys were more active than girls at school and on weekdays. Students were more active at school on PE days vs. nonPE days, and weekdays vs. weekends. Overweight/obese students were more active at school on PE days. After-school physical activities differed between boys and girls, while sedentary activities were popular among both genders.

Conclusions: A majority of fifth-grade students had insufficient PA levels. Patterns of PA are different at various times during the day and week. The finding emphasized an urgent need for interventions to improve children's PA and obesity in this area.

24 Keyword: pedometer, exercise, survey, school, children

Introduction

Physical activity (PA) is an important factor influencing health. In children, PA is associated with multiple health-related benefits including cardio-metabolic, skeletal, muscular, and mental health. ${ }^{1-3}$ Despite the benefits, significant proportions of children/youth do not meet the physical activity guideline (PAG) of engaging in daily moderate-to-vigorous PA (MVPA) for $\geq 60 \mathrm{minutes} /$ day. ${ }^{2}$ The percentage of meeting the PAG is 42% (6-11 years) in the U.S ${ }^{4}, 19 \%$ (517 years) in Australia ${ }^{5}$, and 23\% (11 years) in European countries. ${ }^{6}$

PA levels are also low among youth from low to middle-income countries (LMIC). Data from the 34 LMICs indicated that on average, $<25 \%$ youth (13-15 years) met the PAG. ${ }^{7}$ Other studies showed the percentages were 23.3% (aged 6-17 years) for Thailand ${ }^{8}$ and 66% (aged 13-17 years) for Dhaka city, Bangladesh. ${ }^{9}$ Although, national data on children's PA are unavailable in Vietnam, the percentage of students (11-16 years) self-reporting having ≥ 3 bouts of vigorous activity for ≥ 20 minutes/week, or ≥ 5 bouts of moderate activities for ≥ 30 minutes/week in urban areas of HCMC in 2004 was $75.7 \% .{ }^{10}$ However, most studies were among secondary-school aged youth (i.e. >11years) and relied on PA self-report, with the exception of the U.S data that used accelerometers. Therefore, there is a lack of population-based studies among primary-school-aged children measuring PA objectively.

Although it is important to have estimates of daily PA levels, there is also a need for information regarding children's PA behaviours during specific segments of the day/week which are not usually collected by public health surveillance systems. ${ }^{11}$ This information, if available, is critical, particularly for LMIC, in assisting policymakers to identify, plan and allocate resources
to areas with top priority. The information can also be used by schools to inform their revision or for the establishment of policies. This study, therefore, was conducted to investigate the level and pattern of PA among fifth-grade students in HCMC, Vietnam.

Methods

Study design and population

A cross-sectional survey using a two-stage stratified cluster sampling was conducted between January and September 2016. Public schools with more than two fifth-grade classes in urban areas of HCMC were eligible to participate. These schools were stratified into "nationally recognized schools" and "not nationally recognized schools" and then into "high socio-economic status (SES)" and "low SES". National recognition is awarded to schools meeting criteria set by the Ministry of Education and Training ${ }^{12}$ including number of classes and students, area of a class and playground, and infrastructure/equipment for teaching and learning. The classification for SES was based on the statistics of HCMC^{13} and used in previous studies. ${ }^{10,14}$ In each stratum, two schools were randomly selected using a probability-proportional-to-size method. The number of selected schools, therefore, was eight including two half-day (7:00am-11:00am) and six full-day schools (7:00am-4:00pm). Four fifth-grade classes (five classes in one school and three for another school) were randomly selected from each school. A total of 32 classes were selected.

All students in the selected classes were invited to participate. Written consent forms were obtained from the parents. Written approvals from the schools and the HCMC Department of

Education and Training were also obtained. Ethics approval from Queensland University of Technology Human Research Ethics Committee was also obtained (1500000549).

Measurement

Research assistants were recruited from the University of Medicine and Pharmacy at HCMC and formally trained on data collection procedures before data collection. Students self-reported age and gender. Student's height and weight were measured at school following the methods outlined by WHO. ${ }^{15}$ Weight was measured to the nearest 0.1 kg without shoes and heavy clothing using an electronic scale (Tanita BF 571, Japan). Standing height was measured twice to the nearest 0.1 cm without shoes, or caps/hair ornaments using a stadiometer; BMI calculated by weight $(\mathrm{kg}) /$ height $(\mathrm{m})^{2}$ was used to classify students as overweight (z -score >1) obese (z score >2), or underweight (z-score <-2). Details on this calculation have been published elsewhere. ${ }^{16}$

The Previous Day Physical Activity Recall (PDPAR) was used to collect data on students' afterschool activities using procedures described by Trost. ${ }^{17}$ The PDPAR is a self-report instrument designed specifically for the cognitive abilities of children and adolescents. To help children and adolescents recall their past behavior more accurately, the previous day is divided into 30-minute time blocks that, in turn, are grouped into broader time periods such as morning, lunchtime, afternoon, and evening. To further enhance recall accuracy, the instrument provides a numbered list of commonly performed activities grouped into the following broad categories: eating, sleeping/bathing, transportation, work/school, spare time, physical activities, and sports. To help students rate the intensity of the reported physical activities, the instrument includes cartoon
illustrations depicting light, moderate, hard, and very hard activities ${ }^{18}$. As schools closed at different times, the after-school time started at $4: 00 \mathrm{pm} / 4: 30 \mathrm{pm}$ instead of $3: 30 \mathrm{pm}$. The PDPAR has been validated in fifth-grade ${ }^{17}$ and 7-12-grade U.S students. ${ }^{19}$ A modified version was also validated in Singaporean adolescents. ${ }^{20}$ Depending on the end time of school, student completed fourteen to fifteen 30 -minute blocks. Students with >4 incompatible responses between an activity and its intensity (e.g. the activity is sleeping and the intensity is hard) or four blocks of missing values were excluded.

Pedometers (SW200), which are cost-effective and provide valid measurement of PA among children, were used to record steps. ${ }^{21}$ The pedometer protocol from Rowe ${ }^{22}$ was modified and used. Pedometers were worn for seven days. Students recorded steps on reporting cards at the beginning and end of school during weekdays, but only once in the morning during weekends. Text messages were sent to parents to remind students to wear pedometers and record the step counts.

Data preparation

Step data were entered into Excel spreadsheets, scrutinized, and corrected as follows: 1) if students forgot to wear pedometers in the morning, the step count on the following morning was corrected to be that of the previous morning as they were asked not to wear pedometers for the rest of the day; 2) if a step count on the following morning was smaller than the count on the previous evening, the count in the morning was set to a sum of two counts as students may have reset the count; 3) if pedometers stopped working during school and were fixed that evening, daily steps and school steps for that day were set to missing; 4) if a student was absent in the
morning but was at school in the afternoon, the step count was set to missing for that evening and the following morning.

As literature regarding thresholds for outliers is scarce, a statistical package in R (ROBUSTBASE) incorporating "medcouple", a robust measure of skewness, was used to draw adjusted boxplots. Based on graphical analyses (using a criterion of 2.5 times interquartile range), outliers were identified as follows. For full-day schools, thresholds were 200-19,077 (home steps) and 108-19,565 (school steps); for half-day schools, thresholds were 500-29,364 (home steps) and 102-11,704 (school steps). For daily steps, the same threshold of 1,000-32,183 steps was applied for full-day and half-day schools. As a result, 2.25% of daily step data (119 data points), 0.94% home step data, and 0.21% school step data were excluded.

Intraclass correlation coefficients (ICC) and the Spearman Brown prophecy formula were used to determine the number of days needed to achieve a reliability of 0.75 , which is four days. Given the difference in average step counts between weekdays and weekends, those with ≥ 3 weekdays and one weekend day of daily step data were included.

$\underline{\text { Statistical analysis }}$

Sampling weights were used to account for difference in selection probability and non-responses. PROC SURVEYMEANS/SURVEYFREQ in SAS v9.4 were used to generate weighted descriptive statistics. As 12,000 steps/day is considered a benchmark for meeting the PAG of 60 MVPA minutes $/ \mathrm{day}^{23}$, this percentage was also calculated. The prevalence of after-school
activities was also examined. These statistics were presented by gender and weight status with 95% confidence intervals (CI).

PROC SURVEYREG/PROC SURVEYLOGISTIC were used to test differences between PA outcomes with gender and weight status, and differences between weekdays step vs. weekend steps, and PE-day steps vs. non-PE-day steps. Differences between school steps vs. out-of-school steps were tested for full-day and half-day schools. Taylor series linearization was used for variance estimation. P-values were two-sided and considered significant if <0.05.

Results

Among 1235 students invited to participate, 757 consents were obtained generating a response rate of 61.3%. However, 619 students (81.8%) with ≥ 3 weekdays and one weekend day of pedometer data were included in the analysis. Average students' age was 10.4 years ranging from 9.7 to 12.6 years. Although boys (52.8% of the sample) were not different from girls in age and height, they had higher weights and BMIs. More than half were classified as overweight/obese (OW/OB). The prevalence of obesity was greater in boys than girls.

PA level

On average, students recorded about 8800 steps/day; 5500 steps (full-day) and 2300 steps (halfday) at school; 9400 steps (full-day) and 8900 steps (half-day) on weekdays; 8300 steps (fullday) and 8200 steps (half-day) on weekends; 10100 steps (full-day) and 8600 steps (half-day) on PE days; and 9100 steps (full-day) and 8900 steps (half-day) on non-PE days. There was no difference in daily steps between full-day and half-day students.

The numbers of steps/day and percentages of students meeting the PAG are presented by gender in Figure 1. Boys recorded more steps than girls ($\mathrm{p}<0.01$). Approximately 18% of students met the PAG. Boys were more likely to meet the PAG than girls $(\mathrm{OR}=2.3,95 \% \mathrm{CI}=1.1,4.5)$.

INSERT FIGURE 1 NEAR HERE

OW/OB and non-overweight students respectively recorded about 9300 and 8500 steps/day in full-day schools; and 8600 and 8800 steps in half-day schools. Percentage of non-overweight and OW/OB students meeting the PAG respectively was 21.6% and 15.3% for all schools. Associations between weight status and PA were insignificant.

PA patterns

Differences in PA levels by gender and weight status are presented in Table 1. Boys were more active than girls at school and on weekdays (including PE and non-PE days) but not at home and on weekends. OW/OB students were not more active than non-overweight students with the exception of average school steps on PE days when OW/OB students were significantly more active.

INSERT TABLE 1 NEAR HERE

Differences in PA levels between segments are presented in Table 2. In general, full-day students were more active at school and on weekdays (including PE and non-PE days) compared to home
and weekends. Half-day students were more active at home compared to school. Although the difference between average school steps on PE and non-PE days was insignificant for half-day students, the difference was significant combining full-day and half-day schools ($\mathrm{p}<0.05$).

INSERT TABLE 2 NEAR HERE

Abstract

After-school activities Among 757 students in the original sample, nine did not return the PDPAR and 35 had >4 response errors. A total of 44 (5.8\%) questionnaires were excluded from the PDPAR analysis. Percentages of students reporting participation in common activities (\geq one 30 -min block) during after-school period are presented in Figure 2. Activities were grouped into domains of studying, spare time use, and sports/PA. Three-quarters reported doing homework and approximately 40% attending private tutoring. Most (86\%) reported watching TV/movies; $<50 \%$ reading; and about one-third playing video games, using the computer/internet, or listening to music. Physical activities were reported including bicycle riding (31\%), walking (30\%), and jogging/running (29\%). Popular sports among girls were rope jumping (24.4\%) and badminton (23.5\%); among boys were soccer (28.5\%), shuttlecock (16.7\%), and badminton (15.7\%).

Percentages reporting undertaking at least one $\mathrm{PA} /$ sport during the after-school period were $79.4 \%(95 \% \mathrm{CI}=63.4 \%, 95.4 \%), 80.2 \%(95 \% \mathrm{CI}=62.9 \%, 97.5 \%)$ for boys and $78.5 \%(95 \%$ $\mathrm{CI}=64.2 \%, 92.9 \%$) for girls. When walking and jogging were excluded, percentages were 64.9%
$(95 \% \mathrm{CI}=51.0 \%, 78.7 \%), 68.9 \%(95 \% \mathrm{CI}=57.5 \%, 80.3 \%)$ for boys and $60.4 \%(95 \% \mathrm{CI}=46.1 \%$, 74.7%) for girls.

INSERT FIGURE 2 NEAR HERE

Discussion

The results showed that a majority of fifth-grade students (82\%) in urban schools in HCMC were not sufficiently active. Although it is difficult to compare the PA level among studies given discrepancies in methodologies and students' ages, students in HCMC have lower daily steps than those in studies conducted in the U.S, Australia, and New Zealand. ${ }^{24-27}$ The percentage of students meeting the PAG was also smaller than those in Australia (40\%) ${ }^{28}$, the U.S $(42 \%)^{4}$, and Bangladesh (Dhaka city). ${ }^{9}$ The percentage, however, is similar to those reported in a study of 39 high income countries (23% children aged 11 years 6), Indonesia and Myanmar (about 20\% children aged 13-15 years ${ }^{7}$), Thailand (23.3% children aged 6-17 years). ${ }^{8}$ This result supports findings from an adolescent study in 2004 that students in urban areas of HCMC were not sufficiently active. ${ }^{10}$ It indicates that effective interventions are urgently needed to improve children's PA.

The findings are also consistent with current literature that boys are more active than girls. ${ }^{29-31}$ Explanations are that girls may enjoy PE classes less than boys ${ }^{32}$, and be less likely to participate in organized sports than boys. ${ }^{33}$ In support of this hypothesis, the PDPAR data showed that the percentage of girls participating in at least one after-school sport was lower than boys. However, it is worth noting that no significant difference between boys and girls was found for home steps
and weekend steps when sport participation typically occurs. As our study was not designed to test this hypothesis, data including frequency/length of sport attendance were not collected; therefore, a firm conclusion cannot be made. Lack of social support may be another reason for girls to have less PA, as studies found boys perceive more peer support ${ }^{34}$ and parental support than girls. ${ }^{35}$ Although interventions for both genders are needed, additional efforts to improve girls' PA are required given that compliance to the PAG among girls was only half of that among boys. Gender-specific interventions, especially school interventions may be more effective as PA patterns at school and on weekdays were different for boys and girls.

The result also showed that full-day students undertook about 62% of their daily steps at school. They also accumulated more steps in school than out-of-school, which is contrary to findings from previous studies. ${ }^{25,26,36,37}$ However, the difference is likely due to the longer time full-day students in HCMC spend at school (9 hours). Assuming that students in the previous studies spent six hours at school, they had more average steps/hour at school than those in this study. This suggests that more could be done to improve students' PA level during school in HCMC.

Consistent with previous studies, full-day students were more active on school days vs. weekends. ${ }^{24,27,38,39}$ Although the association was insignificant for half-day students, average weekday steps were higher than that on weekends. This emphasizes the need for additional interventions targeting students' activities during weekends.

Our study also showed that PE positively contributed to students' PA which is consistent with a conclusion from a previous review. ${ }^{40}$ However, contribution of PE to students' PA was greater
for full-day vs. half-day schools (about 1100 vs. 700 steps/day), and boys vs. girls (about 1100 vs. 750 steps/day). This improvement was also smaller compared to the finding of a U.S. study in which the least, moderate, and most active children recorded about 1700, 1100, and 2500 more steps on school PE days, respectively. ${ }^{41}$ Therefore, adjustments to the PE program could be made to improve effectiveness of PE, especially in half-day schools. More girl-friendly activities also need to be included to help girls be more active.

Although more than half of students were classified as $\mathrm{OW} / \mathrm{OB}$ in this study, there were no differences in the level and pattern of PA between OW/OB and non-overweight, with the exception of average school steps on PE days. This finding is contrary to previous studies which reported $\mathrm{OW} / \mathrm{OB}$ children to be less active ${ }^{37,42-45}$, but consistent with the results of a review of reviews concluding that BMI was not associated with PA. ${ }^{46}$ In fact, OW/OB students accumulated significantly more school steps than non-overweight students on PE days. Although speculative, it may be that the OW/OB students received more attention and support from PE instructors, who may encourage or provide them with more opportunities to be active than nonoverweight students. Efforts should be focused not only on the PE curriculum but also on creating school health policies which encourage all school staff to provide opportunities and support for students to be involved in more PA.

Finally, the PDPAR results showed that the most common sedentary activities reported by students during the after school period were homework and watching TV/movies. Boys were more likely to report playing video games and talking on the phone, while girls were more likely to report listening to music. Although bicycling, walking, and jogging/running were popular among both genders, playing badminton and rope jumping were the most prevalent after-school
sports reported by girls whereas playing soccer and shuttlecock were by boys. If an intervention is going to target after-school activities, it may do so specifically for boys and girls, and these activities are good candidates for consideration.

Strengths and limitations

This is the first population-based study among primary school students in Vietnam using pedometers to objectively measure PA. The sample was relatively large and representative of urban areas of HCMC. The response rate was acceptable at 61.3%. However, the study has some limitations. First, as SW200 can only record steps, the intensity of activity was not measured. Recall bias may also be possible with self-reported data on after-school activities. As the sample was drawn from public urban schools, the findings are not generalizable to rural and international/private schools. However, majority of schools in HCMC are public schools. The study also did not collect PA data for segments of weekend days and therefore was not able to make comparison between segments on weekend days as well as between weekdays and weekend days. Finally, it was not possible to collect data during the summer holidays; therefore, the results only represent a school year not a whole year.

Conclusion

A majority of fifth-grade students in public schools from urban areas in HCMC did not have sufficient PA levels. Boys were more active than girls at school and on weekdays. Full-day students accumulated a majority of steps at school whereas half-day students did so at home. Students were more active during weekdays compared to weekends, but the association was only significant among full-day students. Students were more active at school on PE days compared
to non-PE days. OW/OB students were more active at school on PE days. After-school physical activities were different between boys and girls, while sedentary activities such as studying were popular among both genders.

This study emphasized an urgent need for interventions to improve not only children's PA, but reduce excess adiposity given that more than half of the students were considered OW/OB. As Vietnam is undergoing a nutrition transition and rapid urbanization, the situation could worsen unless effective interventions are implemented. To improve effectiveness, future PA interventions would have general components targeting all students but also specific components for each gender.

In addition, the findings have a number of important implications for school health policy, educators, and PE instructors in HCMC. Schools may want to establish a comprehensive school PA program that coordinates multiple components including quality PE, PA before, during, and after school, staff involvement, and family and community engagement ${ }^{47}$. Although this program could be developed and implemented by PE instructors, classroom teachers and other staff also play an important role so that PA opportunities are integrated into academic classes and breaks. This program should also create an active school environment where school staff serve as role models for students and to provide strong social and cultural support for all.

Finally, future research may examine ways to improve the PA engagement of girls; examine school factors besides PE that contribute to the gender gap in PA; test the hypothesis that OW/OB students are more active at school due to PE; and collect data for PA segments on
weekend days. Given that obesity is quite prevalent in big cities in Vietnam, parents and teachers, may be aware that they need to provide more support for obese students to be more active. This is also an interesting finding that may need further studies.

References

1. Okely AD, Salmon J, Vella S, Cliff D, Timperio A, Tremblay M, et al. A systematic review to update the Australian physical activity guidelines for children and young people. Canberra, Australia: Commonwealth of Australia.2012.
2. Physical Activity Guidelines Advisory Committee. Physical activity guidelines advisory committee report, 2008. Washington, DC: US Department of Health and Human Services 2008.
3. To QG, Frongillo EA, Gallegos D, Moore JB. Household food insecurity is associated with less physical activity among children and adults in the U.S. population. The Journal of Nutrition 2014;144(11):1797802.
4. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008;40(1):181-8.
5. Australian Bureau of Statistics. Australian Health Survey: Physical Activity, 2011-12. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/462FBA87B642FCA4CA257BAC0015F3CE?opend ocument. Accessed 06 March 2018.
6. Currie C, Zanotti C, Morgan A, Currie D, de Looze M, Roberts C, et al. Social determinants of health and well-being among young people. Health Behaviour in School-aged Children (HBSC) study: international report from the 2009/2010 survey. 2012; http://www.euro.who.int/en/publications/abstracts/social-determinants-of-health-and-well-being-among-young-people.-health-behaviour-in-school-aged-children-hbsc-study. Accessed 07/08/2017.
7. Guthold R, Cowan MJ, Autenrieth CS, Kann L, Riley LM. Physical Activity and Sedentary Behavior Among Schoolchildren: A 34-Country Comparison. J Pediatr 2010;157(1):43-9.
8. Amornsriwatanakul A, Nakornkhet K, Katewongsa P, Choosakul C, Kaewmanee T, Konharn K, et al. Results from Thailand's 2016 Report Card on physical activity for children and youth. Journal of Physical Activity and Health 2016;13(11 Suppl 2):S291-S8.
9. Khan A, Burton N, Trost S. Patterns and correlates of physical activity in adolescents in Dhaka city, Bangladesh. Public Health 2017;145:75-82.
10. Trang N, Hong TK, Dibley MJ, Sibbritt DW. Factors associated with physical inactivity in adolescents in Ho Chi Minh City, Vietnam. Med Sci Sports Exerc 2009;41(7):1374-83.
11. IOM (Institute of Medicine). 2013. Educating the student body: Taking physical activity and physical education to school. Washington, DC: The National Academies Press.
12. Ministry of Education and Training. Ban Hanh Quy Dinh Ve Tieu Chuan Danh, Cong Nhan Truong Tieu Hoc Dat Muc Chat Luong Toi Thieu, Truong Tieu Hoc Dat Chuan Quoc Gia. 2012; http://thuvienphapluat.vn/van-ban/Giao-duc/Thong-tu-59-2012-TT-BGDDT-cong-nhan-truong-tieu-hoc-dat-chuan-quoc-gia-163114.aspx. Accessed 09/04/2017.
13. Department of Statistics. Statistics of Ho Chi Minh City. Ho Chi Minh City, Vietnam: Department of Statistics; 2004.
14. Trang NHHD, Hong TK, Dibley MJ. Active commuting to school among adolescents in ho chi minh city, vietnam change and predictors in a longitudinal study, 2004 to 2009. Am J Prev Med 2012;42(2):1208.
15. World Health Organization. Physical status: The use of and interpretation of anthropometry, Report of a WHO Expert Committee. 1995; http://apps.who.int/iris/bitstream/10665/37003/1/WHO TRS 854.pdf. Accessed 07/08/2017.
16. Onis Md, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 2007;85(9):660-7.
17. Trost SG, Ward DS, McGraw B, Pate RR. Validity of the Previous Day Physical Activity Recall (PDPAR) in fifth-grade children. Pediatr Exerc Sci 1999;11(4):341-8.
18. Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med 2007;1(4):299-314.
19. Weston AT, Petosa R, Pate RR. Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc 1997;29(1):138-43.
20. Lee KS, Trost SG. Validity and reliability of the 3-day physical activity recall in Singaporean adolescents. Res Q Exerc Sport 2005;76(1):101-6.
21. Trost SG. Objective measurement of physical activity in youth: current issues, future directions. Exerc Sport Sci Rev 2001;29(1):32-6.
22. Rowe DA, Mahar MT, Raedeke TD, Lore J. Measuring physical activity in children with pedometers: Reliability, reactivity, and replacement of missing data. Pediatr Exerc Sci 2004;16(4):343-54.
23. Colley RC, Janssen I, Tremblay MS. Daily step target to measure adherence to physical activity guidelines in children. Med Sci Sports Exerc 2012;44(5):977-82.
24. Telford RM, Telford RD, Cunningham RB, Cochrane T, Davey R, Waddington G. Longitudinal patterns of physical activity in children aged 8 to 12 years: The LOOK study. Int J Behav Nutr Phys Act 2013;10(1):81-93.
25. Brusseau TA, Kulinna PH, Tudor-Locke C, Ferry M. Daily physical activity patterns of children living in an american indian community. Journal of Physical Activity \& Health 2013;10(1):48-53.
26. Cox M, Schofield G, Greasley N, Kolt GS. Pedometer steps in primary school-aged children: A comparison of school-based and out-of-school activity. J Sci Med Sport 2006;9(1-2):91-7.
27. Harmon J, Brusseau TA, Collier D, Lenz E. Habitual physical activity patterns of inner-city children. Human Movement 2013;14(4):305-9.
28. Commonwealth Scientific Industrial Research Organisation (CSIRO) Preventative Health National Research Flagship and the University of South Australia. 2007 Australian National Children's Nutrition and Physical Activity Survey-Main Findings. 2008; https://www.health.gov.au/internet/main/publishing.../childrens-nut-phys-survey.pdf. Accessed 07/08/2017.
29. Van der Horst K, Paw M, Twisk JW, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc 2007;39(8):1241-50.
30. Sallis JF, Prochaska JJ, Taylor WC. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc 2000;32(5):963-75.
31. Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc 2002;34(2):350-5.
32. Cairney J, Kwan MY, Velduizen S, Hay J, Bray SR, Faught BE. Gender, perceived competence and the enjoyment of physical education in children: a longitudinal examination. International Journal of Behavioral Nutrition and Physical Activity 2012;9(1):26-34.
33. Vella SA, Cliff DP, Okely AD. Socio-ecological predictors of participation and dropout in organised sports during childhood. International Journal of Behavioral Nutrition and Physical Activity 2014;11(1):62-72.
34. Edwardson CL, Gorely T, Pearson N, Atkin A. Sources of activity-related social support and adolescents' objectively measured after-school and weekend physical activity: gender and age differences. Journal of Physical Activity and Health 2013;10(8):1153-8.
35. Trost SG, Sallis JF, Pate RR, Freedson PS, Taylor WC, Dowda M. Evaluating a model of parental influence on youth physical activity. Am J Prev Med 2003;25(4):277-82.
36. Steele RM, van Sluijs EMF, Sharp SJ, Landsbaugh JR, Ekelund U, Griffin SJ. An investigation of patterns of children's sedentary and vigorous physical activity throughout the week. Int J Behav Nutr Phys Act 2010;7(1):88-96.
37. Brusseau TA, Kulinna PH, Tudor-Locke C, Ferry M, van der Mars H, Darst PW. Pedometer-determined segmented physical activity patterns of fourth- and fifth-grade children. Journal of Physical Activity \& Health 2011;8(2):279-86.
38. Ramirez-Rico E, Hilland TA, Foweather L, Fernández-Garcia E, Fairclough SJ. Weekday and weekend patterns of physical activity and sedentary time among Liverpool and Madrid youth. European Journal of Sport Science 2014;14(3):287-93.
39. Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med 2014;44(10):1427-38.
40. Pate RR, O'Neill JR, Mclver KL. Physical activity and health: does physical education matter? Quest 2011;63(1):19-35.
41. Morgan CF, Beighle A, Pangrazi RP. What are the contributory and compensatory relationships between physical education and physical activity in children? Res Q Exerc Sport 2007;78(5):407-12.
42. Page A, Cooper AR, Stamatakis E, Foster L, Crowne EC, Sabin M, et al. Physical activity patterns in nonobese and obese children assessed using minute-by-minute accelerometry. Int J Obes 2005;29(9):1070-6.
43. Laguna M, Ruiz JR, Gallardo C, García-Pastor T, Lara MT, Aznar S. Obesity and physical activity patterns in children and adolescents. J Paediatr Child Health 2013;49(11):942-9.
44. Dorsey KB, Herrin J, Krumholz HM. Patterns of moderate and vigorous physical activity in obese and overweight compared with non-overweight children. Int J Pediatr Obes 2011;6(2-2):e547-e55.
45. Trost SG, Kerr L, Ward DS, Pate RR. Physical activity and determinants of physical activity in obese and non-obese children. Int J Obes 2001;25(6):822-9.
46. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW, et al. Correlates of physical activity: why are some people physically active and others not? Lancet 2012;380(9838):258-71.
47. Centers for Disease Control and Prevention. Comprehensive School Physical Activity Programs: A Guide for Schools. Atlanta, GA: U.S. Department of Health and Human Services; 2013.
