INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 189, Volume 79, Number 11, November 2021

ISSN: 2349-4689

Sentiment Analysis on Covid19 Texts: The impact
of the Bidirectional Layer on a Long Short-Term
Memory Recurrent Neural Network

Georgios Kiminos, Nanjappa Ashwath, Vijaya Beeravalli

CQ University, Australia 4701

Abstract — The pandemic crisis erupted by covid19 outburst at
the end of 2019 created consequent literature in social media.
The analysis of such texts, especially when coming from non-
scientific organizations like online news providers, may prove
useful t0 reveal the pandemic’s impact in the real world.
Moreover, monitoring the variability and the evolution of
opinions coming from different sources may inform analysts
about opinion centres’ existence and people’s endurance on
hard or mild measures on facing virus spreading. On the other
hand, Sentiment Analysis is a well-investigated but not
exhausted data science topic welcoming further research and
improvement. Following recent innovations in this field, this
study analysed the texts’ sentiment in the context of Machine
Learning (ML) for Text Classification rather than using
predefined values assigned on lexical entities. For this purpose,
12,284 articles consisted of several sentences were processed
and labelled for negative or positive sentiment. In the context
of Sequence Classification using Deep Learning (DL), the
study examined two state-of-the-art algorithms: (a) A Long
Short-Term Memory Recurrent Neural Network (LSTM) and
(b) Extending (a) to a Bidirectional Long Short-Term Memory
Recurrent Neural Network (BLSTM). The study examined the
impact of the Bidirectional extension of LSTM in the flow of
changing parameter values like the batch size and dropout rate.
The evaluation of these two models regarded the calculation of
accuracy in a validation dataset. The outcomes made it clear
that the classification of articles from online news providers
related to covidl9 into pesitive Or negative sentiment using
RNN can be successful. Moreover, extending LSTM to BLSTM
can be a valuable addition to the DL recipe and an accuracy of
90% is feasible.

Keywords: NLP, LSTM, BLSTM, RNN, Deep Learning, DL,
Text Classification, Sentiment Analysis, Data Science,
COVID19, coronavirus, Neural Network, RNN.

I. INTRODUCTION

The rapid and continuous increase in social media allowed
people of all categories to share their opinions about a
wide range of topics. Moreover, the same people became
keen to read and be influenced by online news providers
and opinion leaders. A consequence Of these was
sentiment analysis to become an important tool that may
increase the knowledge and understanding of forming
“common sense”.

WWw.ijspr.com

The pandemic of coronavirus led mass media to provide
constant updates of the crisis describing the impact on the
economy and society and the innovations in the medical
science related to vaccines and treatments. Such articles,
when coming from well-known providers, could work like
a receiver-transmitter sentiment tool. An economic analyst
could read these texts to foresee an economic impact, but a
political analyst could write such articles to guide people’s
sentiment.

In the context of data science, the problem of classifying
texts according to sentiment can be solved by Sentiment
Analysis using predefined polarity assigned to each word.

text = "Good heavens!”

: ', TextBlob(text).polarity ,
:', vader.polarity scores(text)['compound'])

("TextBlob:', ©.875, 'nltk.vader:', ©.7088)
Figure 1. A Case of Skewed Sentiment

Though easy to apply with modern Python tools like
Vader of NLTK and TextBlob, this tactic could meet
several drawbacks. Interaction among semantics,
morphology, and colloquialisms belong to a non-
conceivable spectrum when using such tools. Moreover,
identical words within different language frameworks
produce the same polarity, thus skewing what a natural
speaker perceives. (Figure 1 demonstrates a case of
skewed sentiment.)

The second solution for a data scientist is to complete this
task by constructing a model following the principle
“learning from example”. This supervised training process
aims to estimate the parameters of a problem using
training data. Defining the model’s structure in advance is
the only way for the scientist to use prior knowledge
regarding this problem (Schuster et al., 1997).

Recent evolution in computer processors permits data
scientists to use as many texts as they can get and train
complicated ML models with millions of parameters in an
acceptable time. A difficulty that can be arisen by this
kind of treatment is that ML models need labelled data.
When treating a binary Text Classification problem, one

1JSPR | 1

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

or more annotators should read the texts and assign a
positive (1) or a negative (0) value to each one of them
(labelling). One may conduct a Sentiment Analysis in the
context of Text Classification. After labelling texts with
positive or negative sentiment, a trained model with this
labelled data can classify unknown unlabelled texts.

There are many different approaches to treat a Text
Classification problem. There also many choices to
vectorize text and represent it as numbers since a number
is what an ML algorithm understands. A simple way is to
use the bag-of-words (BOW), a dictionary representation
calculating a word frequency where each word is a feature.
A more advanced dictionary approach is the n-gram
approach, where each gram consists of n continuous
words. More advanced structures to represent text could
be word embeddings and word sequences. The data
scientist may pre-process texts before vectorizing and
clean them from stop words, misspelled words, and non-
semantic entities. Words also maybe lemmatized or
stemmed using well-known and tested automated tools
like Wordnet Lemmatizer or Porter Stemmer, both also
implemented within NLTK.

Bayesian models could treat simple problems by
calculating conditional probabilities, while
approach that earned much attention in previous years was
the Support Vector Machines (SVM) algorithm. SVM
could achieve better results in several cases (Shah et al.,
2016). Nowadays, data scientists use Neural Networks
(NN) escalating DL. Data scientists may use various NN
to treat a Text Classification problem.

another

This study demonstrates a DL recipe, including layers of
Word Embeddings, Convolution, Dropout, and the
extension of LSTM to BLSTM. The purpose is to analyse
the impact of extending LSTM to BLSTM e in a flow of
increasing dropout rates assigned on different layers and
achieving progressively higher classification accuracies.

Il. PREVIOUS WORK

Journal of Information and Telecommunication recently
published a Nemes and Kiss (2020) paper about social
media sentiment analysis based on covid19. From Twitter
API, they downloaded recent data (tweets) using the
‘covid’ keyword. With this data, they trained an RNN
using the Keras implementation of TensorFlow and
classified tweets into seven ordinal categories (from
Strongly Negative to Positive). They compared their
results to Text Blob’s sentiment analyser, which resulted
in a significant difference. The Text Blob analyser proved
biased in favour of the Neutral sentiment category in
contradiction to RNN, which was biased against
neutrality. Moreover, Twitter sentiment about Covid19
was mainly negative.

WWw.ijspr.com

ISSN: 2349-4689

Dai et al. (2019) investigated backdoor attacks to a deep
neural network. Specifically, they investigated such
attacks on the backdoor of RNN. They implemented a
backdoor attack against LSTM-based text classification
for Sentiment Analysis by poisoning the dataset of IMDB
movie reviews. They explain that when one injects the
backdoor, the model will misclassify any text samples that
contain a specific trigger sentence into a target category.
Their experiment achieved a 96% success rate, with a 1%
poisoning rate proving that LSTM is also vulnerable to
backdoor attacks like CNN.

Borna and Ghanbari (2019) analyzed the Hierarchical
LSTM network (HAN) for Text Classification. They
mined three different datasets and trained CNN, RNN, and
HAN for each of these datasets. They concluded that CNN
is a decent general method for acceptable validation
accuracy, while RNN and HAN did not provide consistent
results. Nevertheless, they concluded that HAN
outperforms other algorithms when treating problems with
vast datasets.

Rao and Spasojevic (2016) used LSTM combined with
Word Embeddings and developed Text Classification
models for more than 30 languages achieving high
accuracy (more than 87%). They built two axes of binary
classifications. The first one was to detect Actionability,
and the second one was to catch the political preference of
tweets. They used extensive datasets with more than
300,000 rows, and they concluded that LSTM outperforms
other algorithms when combined with Word Embeddings.
They also reached a recipe to maximize accuracy that sets
LSTM to 32 units, Word Embeddings to 128, and the
batch size to 64 observations, adding a Dropout layer
before the activation function. Moreover, they investigated
the optimizers and the activation function type concluding
that ADAM and the sigmoid function increased accuracy.

=000

Figure 1. Input volume connected to a convolutional layer

Hassan and Mahmood (2017) suggested a neural
language model on the base of pre-trained word vectors.
They utilized the Bidirectional Recurrent Neural
Network (BRNN) to substitute pooling layers in CNN to
preserve the local information’s details and catch long-
term dependencies. They validated their model using
two notorious datasets: (a) Stanford Large Movie
Review (IMDB) and (b) Stanford Sentiment Treebank

1JSPR | 2

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

(SST). They concluded that CNN could extract higher-
level features invariant to local translation, and the RNN
preserved order information even with one layer and
suggested their combination.

I1l. BACKGROUND
1. Textual data.
1.1.1 Handling Textual Data.

Text Classification problems demand that a data scientist
handles text to create a meaningful structure appropriate
for numerical transformation. The most common actions
are cleaning, tokenization, stop word removal,
lemmatization, and stemming (Shah et al., 2016). The
purpose of these steps is (a) remove from the text possible
features semantically indifferent (cleaning, stop word
removal), (b) extract features (tokens) like words,
emoticons, periods (full dots, question marks, commas,
etc.), or/and (c) normalizing terms by reducing the
morphological index to lemma or stem. Algorithms may
use detailed dictionaries to draw the appropriate
information (Leopold et al. 2002). After the completion of
these steps, the remained entities are the features of the
classification problem. The presence and the interaction of
these features describe the problem’s classes (Han et al.,
2001).

1.1.2 Vectorizing Text Features.

Natural Language Processing (NLP) enables the
communication between computers and humans by
building computational models. Such communication is
feasible only after equivalent numeric representations
replace textual data to be handled by an ML algorithm
(Elghannam, 2019). The well-known BOW illustrates
such a vectorizing process creating a sparse representation
despite not preserving the sentences’ structure (Hu et al.,
2012).

Scientists using DL may also use Word Embeddings. This
representation uses dense vectors to project each word into
a continuous vector space. The word’s position in the
vector space depends on its surroundings. The embedding
is the word’s position in the learned vector space (Mikolov
etal., 2013). Word embeddings create vectors able to keep
semantic ~ similarity according to the linguistical
distributional hypothesis (Firth 1957).

1.2 Layers of a DL Recipe.

In this study, a DL recipe is the classifier pipeline
(Sequential model) after vectorizing text. In the context of
the Keras implementation for DL in Python:
“A Sequential model is appropriate fora plain stack of
layers where each layer has exactly one input tensor and
one output tensor.”

WWw.ijspr.com

ISSN: 2349-4689

1.2.1 Convolution Layer.

A convolution layer as part of a DL recipe is an automated
system for feature extraction from a fixed-length segment.
The location of the feature is not significant (Géron
Aurélien, 2019). There are three hyperparameters to tune:
(i) The depth to define the number of neurons to be
connected, (ii) The stride to determine the allocation of the
depth columns, and (iii) The padding to control the spatial
size of the output. A convolution layer on the top of a
word vector before a fully connected layer can achieve
excellent sentence classification results (Kim, 2014).

1.2.2 Max Pooling Layer.

Single depth slice
0o 2 3

O R

6 6 8
1 1 0 3 4
2 2 4

Y
Figure 2. Max_pooling with 2x2 filter and stride = 2By

Max Pooling layer divides the vector into equal rectangles
and then outputs the maximum from every rectangle. The
intuition behind this process is that the relativity of the
location of a feature is critical. The result of this layer is to
control overfitting by reducing the spatial size of the
representation. Successive convolution layers activated by
a Rectified Linear Unit (ReLU) and followed by a Max
Pooling Layer may prove more efficient (Géron Aurélien,
2019).

1.2.3 LSTM Layer.

LSTM is an improvement in the context of RNN to treat
the problem of vanishing and exploding gradients after
backpropagation (Hochreiter; Schmidhuber, 1997). LSTM
units consist of cells and gates. A cell is the memory of the
LSTM unit to record the dependencies of the input
sequence.

. —= X :; =
I (_’lan;h }n

|

h o = X h,

r

Figure 3. Internal Structure of an LSTM Cell.
IUSPR | 3

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

With LSTM units, when error values are backpropagated
from the output layer, the error remains in the LSTM
unit’s cell. There are three gates in every unit to control
the information flow: (i) the input gate to control the flow
of new values, (ii) the output gate to determine whether
the values in memory will be used in the activation, and
(iii) the forget gate to remove a value from the cell. The
activation can be a sigmoid or a tangent function.

In Figure 3, each orange box is an activation function, and
each yellow circle is a pointwise operation. Merging two
arrows means a linear transformation, while splitting one
arrow means a Copy operation.

1.2.4 The Bidirectional Extension on LSTM Layer.

Extending an LSTM layer to Bidirectional connects two
hidden layers of opposite directions. With this extension,
the output layer simultaneously carries information from
the past and the future states (Schuster, Paliwal, 1997).
The earlier hidden states only observe a few vectors from
the lower layer, while the later ones are computed based
on lower-layer vectors (Hassan, Mahmood, 2017).

1.2.5 Dropout Layer.

Dropout in the context of a DL recipe is a regularization
process of removing from the NN a percentage of nodes to
avoid overfitting and maximizing the model’s
generalization. The removal of the node’s during dropout
is a stochastic process. The reduced network keeps
updating their weights, while the removed nodes preserve
their weights during this training stage. The results are (a)
accelerated training, (b) feature robustness, and (C)
depreciation of nodes’ interaction (Srivastava et al., 2014).

1.2.6 Dense Layer.

A Dense layer is a fully connected layer where every input
is connected to an output with a weight. The Dense layer
performs a linear operation, which may end with a non-
linear activation function. Several Dense layers may exist
in a DL recipe. However, the last layer in the DL
classification tasks calculates the class’s probability, and
this is a Dense layer with the appropriate non-linear
activation. The last layer’s usual activation is the sigmoid
function (Hassan, Mahmood, 2017), but any function is
possible for the previous dense layers.

1.3 An Optimization Algorithm.

There are several optimization algorithms one may select.
This selection can make a difference not only for the result
to achieve but also for training time. Kingma and Ba
(2015) introduced an efficient stochastic optimization that
only requires first-order gradients and little memory
requirement.

WWw.ijspr.com

ISSN: 2349-4689

o
IS
Q

0.50 IMDB BoW feature Logistic Regression
: T
By | — Adagrad+dropout
'I".."-ul —— RMSProp-+dropout
045 e eees 'f"',"ll"l Tl — SGDMNesterov-+dropout|]]
— Adam-+dropout
T
:Pl‘l

training cost
a
W
w

o 20 4o &0 a0 100 120 140 160
iterations over entire dataset

Figure 4. Logistic regression training negative log-likelihood on
IMDB movie reviews with 10,000 bag-of-words (BoW) feature
vectors (Kingma, Ba, 2015)

Their method computes individual adaptive learning rates
for different parameters from estimates of first and second
moments Of the gradients. They named their algorithm
ADAM derived from adaptive moment estimation.

Their method combines the advantages of two popular
methods: AdaGrad (Duchi et al., 2011), which works well
with sparse gradients, and RMSProp (Tieleman & Hinton,
2012), which works well in online and non-stationary
settings. In 2017, Ruder (2017) suggested that ADAM
might be the overall best choice after comparing a series
of famous Stochastic Gradient Descent algorithms.
Moreover, Kinga and Ma (2015) experiment on IMDB
BoW features suggest that Adam can be more efficient for
text classification tasks (Figure 4). Rao and Spacojevic
(2016) also supported the ADAM’s superiority.

IV. METHODOLOGY
4.1 Data.
4.1.1 Selecting and Downloading Data.

This study’s choice regarding the data was to scrape new,
unused public data from famous online news providers
using keywords like coronavirus and covidl9. A scraper
downloaded a total number of about 10.000 articles
corresponded to the date range from May until September
of 2020. The primary providers of these articles were
10news.com, cnn.com, and foxla.com. The downloaded
articles varied significantly in the number of sentences and
the word count.

4.1.2 Normalizing Text Sizes.

Many articles too extended in size created a question of
truncating or split them. On the other hand, others were
too short. The decision was to reconstruct articles to create
paragraphs with an approximate length of 10 sentences to
utilize as much data as possible. For this procedure, an
automated script that used NLTK’s sentence tokenizer
extracted 41,839 text entities that would be used for

IJSPR | 4

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

sentiment analysis when labeled. The NLTK tokenizer
was updated to recognize abbreviations like ‘Dr.’, ‘Mr.’,
‘Mrs.’, “prof.’, ‘inc.’, and ‘i.e.’ to avoid some known
mistakes.

4.1.3 Labeling Data.

The task of labeling data was handled manually by human
annotation. The annotators assigned the value 1 (positive
class) for texts with positive sentiment and the value 0
(negative class) for text with negative sentiment. After the
end of the labeling process, about 8,500 texts were
removed from the dataset. Annotators assigned these texts
with contradictory labels because of neutrality or
interpretation difficulty. The final dataset contained
33,324 texts, from which 62.51% belonged to the positive
class.

4.2 Text Cleaning - Preprocessing.

Despite the formality of the texts, which saved endless
hours of dealing with spelling inconsistencies and
mistakes, the articles contained various features that added
a non-necessary burden on the dimensionality. Moreover,
there were names of famous personalities like ‘Donald
Trump’ and other entities that could add bias to the model.
It would be easy for a DL model to learn the names and
titles connected to a sentiment instead of learning
unbiased text features. There were two cleaning axes: (i)
clean tokens semantically insignificant, and (ii) clean
tokens that may convey bias. Thus, titled names,
uppercased words, tokens containing non-alphanumeric
characters, numbers, stopwords, and words like ‘corona’,
‘coronavirus’, ‘covid19’ were removed from the text.

This study also introduces an abstraction token to replace
22 negations like not, wouldn’t, cannot, can’t, mightn’t,
etc. under the token <negation>. Keeping a negation
indicator in the text might help the model to distinguish
bigrams and trigrams like “not bad”, “not good enough”,
“cannot do”. Then the remained tokens were stemmed
using the Porter Stemmer of NLTK.

6000

5000

4000

3000

2000

1000 I I
n 50 100

®

Frequency

150 20

Figure 5. Histogram of tokens number.

WWw.ijspr.com

ISSN: 2349-4689

count 33,324.00
mean 51.1%
std 26.38
min -

25% 73.00
50% 91.00
T5% 108.00
max 271.00

The average number of tokens for texts remaining in the
dataset was 91, with a maximum of 271 and 75% of the
instances to have more than 73 tokens (Table 1). The
tokens number follows the Normal Distribution closely
except for a minimal number of outliers creating a right
tail (Figure 5).

The analysis above about tokens number led to the
decision to normalize the data further and remove possible
outliers. Under this concept, texts containing less than 36
tokens were removed. This token number corresponds to
the 0.0150st quantile of Table 1. Tokens’ Number the
token’s distribution. That way, 1.5% of the data, possibly
corresponding to outliers, was excluded.

4.3 Vectorizing Tokens

Data provided now 32,841 sequences of cleaned and
stemmed text tokens. The vocabulary of this data reached
22,073 unique tokens. The frequencies of these tokens
were calculated and ranked. Also, the minimum
acceptable frequency was set intuitively to eight. The most
frequent tokens were the: <said> with 50,237 appearances,
<negation> with 28,093, <peopl> with 22,064, <state>
16,358, and <case> with 15,676. The token <negation>
corresponds to stopwords preserved in the text under this
abstraction token as described in 3.2. Some tokens with
minimum frequency were <Swoosh>, <investiture>,
<unclimb>, <calfir>, <mandarin>.

For constructing the sequences, unique integers replaced
every token. Tokens having frequency under the minimum
(8) received zero value. The length of every sequence was
set to the 0.9850st quantile of the token distribution (152).
Thus, after truncating and padding the sequences, the
vectorized dataset consisted of 32,841 sequences of 152
units.

4.3 Train Test Split

For this study, 67% of the data would be the training set,
and the rest will be the validation set. The split was
random, but a seed was selected for reproducibility. The
number of sequences to train the model was 22,003, and
the number of sequences to test it 10,838.

1JSPR | 5

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

4.4 Sequential Model.
4.4.1 Strategy.

The sequential model’s main structure was due to utilizing
the previous work, which has been described in section 1.
The building strategy of the sequential model was to add a
dropout after every layer. Conducting several experiments
with fluctuating numbers of parameters and taking the
maximum accuracy after training models differing to the
Bidirectional extension of LSTM would create a flow of
comparable accuracies.

4.4.2 Baseline Model.

The first layer on the stack would be an Embedding layer
with input the vocabulary number (22,073 unique tokens)
and output a 64-dimension vector of length 152 (0.9850st
quantile of the token distribution). A Dropout layer would
follow. The third layer would be a one-dimensional
convolution layer with 16 filters and an activation function
set to ReLU, followed by a Max Pooling layer with pool
size set to two. The fifth layer would be again a Dropout
layer, and then the LSTM layer would follow either with
Bidirectional extension or not. The LSTM layer also
supports internal dropouts, but one more Dropout layer is
added that corresponds to the whole system. The system is
completed with a Dense layer with a non-linear activation
(sigmoid function) to calculate the final output
(probabilities), a binary cross-entropy as the loss function,
and ADAM’s declaration be the DL optimizer. Table 2
summarizes the layers and the parameters of the model.

4.5 Impact of the Bidirectional Extension.

A way to analyse how BLSTM may impact optimal
parameters iS to conduct six experiments training LSTM
and BLSTM models for five (5) epochs using the train set.
Every experiment regard changing the values of one
parameter. The concept uses the validation data to
calculate the accuracy score and record it for every epoch.
After completing the training for every value of the
parameter, a comparison of the achieved maximum
accuracy for every value demonstrates the Bidirectional
extension’s impact on maximum accuracy.

An update of the parameters from one experiment to the
other gradually optimizes accuracy, performing and
proposing a parameter tuning for both LSTM and
BLSTM. The evaluation of the results proposes ways to
handle parameters to utilize the Bidirectional extension of
LSTM.

5 RESULTS
1.1 Batch Size.

The study’s first experiment aimed to demonstrate how
the bidirectional extension could influence the optimal

WWw.ijspr.com

ISSN: 2349-4689

batch size. There were 6 sizes tested: [16, 32, 64, 128,
256, 512] accuracies achieved for every batch size.

[- It
08% A o
A : bistm
0894 g\ /N
\ / N\
./ N\
> \ N/ \
8 0892 A .
5 \ / N\,
¥ L] \
0890 \\\\
0888 e
=
0 100 200 200 400 500

batch size

Figure 6. Validation Accuracy VS Batch Size.

LSTM and BLSTM seem to provide higher accuracies for
smaller batch sizes. BLSTM seems to be more stable than
LSTM despite achieving lower accuracies. The highest
LSTM accuracy was 0.8966 for batch size 32 versus
0.8951 for batch size 16 of BLSTM.

Table 2. LSTM Baseline Model

Model: "sequential 132"

Layer (type) Output Shape Param #
embedding_zzzzzEmbedding) (None, 152, 64) 1412736
dropout_392 (Dropout) (None, 152, 64) 5
convld 131 (ConviD) (None, 152, 16) 3088
max_poolingld_131 (MaxPoolin (None, 76, 16)]
dropout_393 (Dropout) (None, 76, 16)]
Istm 131 (LSTM) (None, 32) 6272
dropout 394 (Dropout) (None, 32)]
dense_131 (Dense) (None, 1) 33
Total para;Z?:;,422,129
Trainable params: 1,422,129
Non-trainable params: @

1.2 Dropout after Embedding Layer.

I ’ =4 kim

0900 st |

0838

g 08% /"’\\\ N f/\
3 / \ N\ 7
* oo /’ \ // \\\\\

/
0862 ¢

0890 v

Figure 7. Validation Accuracy VS Dropout Rate after
Embedding Layer

The second experiment analysed the dropout after the
embedding layer. The embedding layer provides 64
dimensions, and four (4) dropout values were tested:
[0.10, 0.25, 0.50, 0.75]. The batch size for this iteration
was set to 64 for both LSTM and BLSTM. The maximum
accuracy for LSTM reached 0.8977 for a 0.50 dropout and

1JSPR | 6

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

BLSTM 0.8960 for a 0.25 dropout. It seems that a dropout
rate after embeddings can be useful for both LSTM and
BLSTM. BLSTM does not seem to perform better than
LSTM, yet. Figure 7 presents these results graphically,
and one may also observe that BLSTM is again more
stable than LSTM.

1.3 Dropout after Convolution Layer.

The third experiment analyzed the dropout after the
convolution and the max-pooling layer. The dropout
values tested were the: [0, 0.10, 0.25, 0.375, 0.50, 0.625,
0.750]. The batch size and the dropout after embedding
were set to 64 and 0.50, respectively, for LSTM and
BLSTM. The best result for LSTM was a maximum
accuracy of 0.8967

= [stm
0500 tistm |

0898

g 086 / \\/ \\ /\
L / \ /
Do 7 \ 7/ \
N/

0892 ¢

»

1
00 01 02 03 04 05 0 07

0830

Figure 8. Validation Accuracy VS Dropout Rate after
Convolution Layer

achieved for a 0.10 dropout. On the contrary, BLSTM
achieved a 0.9008 accuracy for a 0.25 dropout. The
visualization of the results (Figure 8) suggests; tuning the
dropout rate after convolution and max pooling may prove
more important when extending LSTM to Bidirectional.

1.4 LSTM Internal Non-Recurrent Dropout.

The LSTM layer provides two internal dropout
parameters. A recurrent dropout and a non-recurrent
dropout. Internal Non-Recurrent Dropout refers to the
fraction of the units to drop for the inputs’ linear
transformation. The fourth experiment of this study tested
how Bidirectional extension may influence maximum
accuracy in a flow of different dropout rates than a simple
LSTM after performing some parameter searching. The
batch size and the dropout after embedding did not
change. Dropout after the convolution layer is set to 0.10
for LSTM and 0.25 for BLSTM. The experiment resulted
in LSTM achieving a 0.9007 maximum accuracy for a
0.375 dropout rate and BLSTM a 0.9032 for a 0.10
dropout rate.

Both LSTM and BLSTM appeared to earn a bit of
accuracy, and previous observation about BLSTM being
more stable but demanding careful parameter tuning was
also confirmed.

WWw.ijspr.com

ISSN: 2349-4689

-+ lstm

030 ! P \ bistm
089 1

00 01 02 03 04 05 06 07
Figure 9. Validation Accuracy VS LSTM Internal Dropout
1.5 LSTM Recurrent Dropout.

In this study, recurrent dropout is the fraction of the units
to drop for the linear transformation of the recurrent state.
The fifth experiment explored the possibility of improving
accuracy when training with several recurrent dropout
rates. The rates to run are: [0, 0.10, 0.25, 0.375, 0.50,
0.625, 0.75] while the parameters of non-recurrent dropout
were updated to 0.375 for LSTM and 0.10 for BLSTM.

N - [stm
08 betm

-
om0
0885 \
>
§ 0880 X
3
4 0813

0870

\
\\
N\
-
0865 \\ \F—’—*
0860
02 03 04 05 06 0

00 0l

Figure 10. Validation Accuracy VS Recurrent Dropout
Rate

This experiment indicated that recurrent dropout in the
LSTM cell limits the amount of information the model
receives. Nevertheless, BLSTM accuracy seems steadily
higher than the LSTM.

1.6 Final Dropout Layer

09000 -+ lstm

08975

\ ”
08350 LY VAN
: A
§ oms N va AN /
é 08900 \/ \\
088TS \

\ _,"'f
08650 \ /.

08825

00 0l 02 03 04 05 1] 07

The previous experiment suggested that recurrent dropout
in the LSTM cell cannot further improve the accuracies
nor for LSTM neither for BLSTM. For validating our
results until this stage, a final experiment ran with dropout
rates: [0, 0.10, 0.25, 0.375, 0.50, 0.625, 0.75], expecting
that a non-zero rate could not beat previous highest
accuracies. A different result would mean that dropout

1JSPR | 7

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

rates could further receive updates with greater values.
The highest accuracy for BLSTM was 0.9002, achieved
for a zero rate, while the highest accuracy for LSTM was
0.8980, achieved with a 0.10 rate.

6 CONCLUSION

In this study, about 32,000 texts were downloaded,
processed, and annotated for sentiment polarity. Our
purpose was to use a labeled dataset to analyze the impact
of the Bidirectional extension of the LSTM layer in a DL
classifier in the context of Text Classification for
Sentiment analysis. We conducted five experiments to
analyze the connection of dropout rates to the maximum
accuracy the classifier can achieve and one to analyze the
batch size.

The findings may support the notion that BLSTM can
outperform LSTM when tuned carefully and with detail.
The experiments also demonstrated that while BLSTM
needs meticulous tuning to maximize its predictability, it
also can handle more successfully than LSTM inaccurate
and unlucky parameter tuning. We also indicated that
LSTM efficiency could vary, and randomness may play an
important role and should be considered when training a
model.

We also analyzed the idea of combining Dropout layers
after Embeddings, Convolution, and LSTM layers, and we
found no proof against this. The same idea also suggests
that the final Dropout layer may be of no use if the
previous ones are combined successfully. The first
experiment (4.1) also confirmed the idea that a smaller
batch size can achieve higher accuracy.

Finally, we proved that sentiment analysis using DL could
be successful for text pieces characterized by formality
and objectivity like the ones coming from prominent
organizations like CNN or FOX with the primary purpose
to inform rather than express personal and subjective
opinions and judgments.

7 FUTURE SCOPES

The contribution of DL and Text Preprocessing in
achieving a classification accuracy greater than 0.90 could
support additional research. In the Text Preprocessing
section, we introduced the abstraction token. However, it
was out of this study’s scope to analyze it further and
discover its possible contribution to the accuracy. We
strongly believe that finding ways to increase abstraction
features in @ model may utilize new entities. We wish to
measure the abstraction’s token contribution to sentiment
analysis accuracy and extend it to lexical entities different
than stopwords.

This study achieved a good classification accuracy while
analyzing the impact of the Bidirectional extension to
LSTM during a Dropout fluctuation. Further work may

WWw.ijspr.com

ISSN: 2349-4689

perform similar analysis on changing LSTM units or
Embedding units which have been kept steady during this
experiments.

REFERENCES

[1]. Aurélien Géron.(2019). Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems

[2]. Borna, Keivan & Ghanbari, Reza.(2019. Hierarchical
LSTM network for text classification. SN Applied Sciences.
1.1124. 10.1007/s42452-019-1165-1.

[3]. Elghannam, F. (2019). ‘Text representation and
classification based on bi-gram alphabet ‘. Journal of King
Saud University - Computer and Information Sciences.
https://doi.org/10.1016/j.jksuci.2019.01.005

[4]. Han, E.-H.S., Karypis, G. and Kumar, V. (2001). ‘Text
categorization using weight-adjusted K nearest neighbor
classification’. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science), 2035,
pp. 53-65.

[5]. Hassan and A. Mahmood. (2017). “Efficient Deep Learning
Model for Text Classification Based on Recurrent and
Convolutional Layers,” 2017 16th IEEE International
Conference on Machine Learning and Applications
(ICMLA), Cancun, 2017, pp. 1108-1113, doi:
10.1109/ICMLA.2017.00009.

[6]. Hochreiter, Sepp & Schmidhuber, Jirgen. (1997). Long
Short-term Memory. Neural computation. 9. 1735-80.
10.1162/neco.1997.9.8.1735.

[7]. Hu, X. and Liu, H. (2012). ‘Text analytics in social media’.
Mining Text Data, 9781461432234, pp. 385-414.
https://doi.org/10.1007/978-1-4614-3223-4_12

[8]. J.R. Firth. (1957), Papers in Linguistics 1934-51, October
2007, International Journal of Applied Linguistics
17(3):402 — 413, DOI: 10.1111/j.1473-4192.2007.00164.x

[9]. Jiazhu Dai, Chuanshuai Chen, YuFeng Li (2020) School of
Computer Engineering and Technology, Shanghai
University, Shanghai, China DOI
10.1109/ACCESS.2019.2941376, IEEE Access

[10].Leopold, E. and Kindermann, J. (2002). ‘Text
categorization with support vector machines. How to
represent texts in input space?’. Machine Learning, 46 (1-
3), art. no. 380516, pp. 423-444.

[11].L&szI6 Nemes & Attila Kiss (2020): Social media sentiment
analysis based on COVID-19, Journal of Information and
Telecommunication, DOIl:
10.1080/24751839.2020.1790793

[12].Mike Schuster & Kuldip K. Paliwal. (1997): Bidirectional
Recurrent Neural Networks, IEEE TRANSACTIONS ON
SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER
1997 2673

[13].N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. (2014). Dropout: A simple way to

IJSPR | 8

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 189, Volume 79, Number 11, November 2021

prevent neural networks from overfitting. In Journal of
Machine Learning Research 15, pages 1929-1958, 2014.

[14].Rao, Adithya & Spasojevic, Nemanja. (2016). Actionable
and Political Text Classification using Word Embeddings
and LSTM.

[15].Shah, F.P. and Patel, V. (2016). ‘A Review on Feature
Selection and Feature Extraction for Text Classification’.
Proceedings of the 2016 IEEE International Conference on
Wireless 30 Communications, Signal Processing and
Networking, WiSPNET 2016, art. no. 7566545, pp. 2264-
2268

[16].S. Ruder. (2017). An overview of gradient descent
optimization algorithms. arXiv:1609.04747

[17].T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In Proceedings of NIPS, 2013, 2013.

[18].Y. Kim. Convolutional neural networks for sentence
classification. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), page 1746aAS1751, 2014.

WWw.ijspr.com

ISSN: 2349-4689

1JSPR | 9

