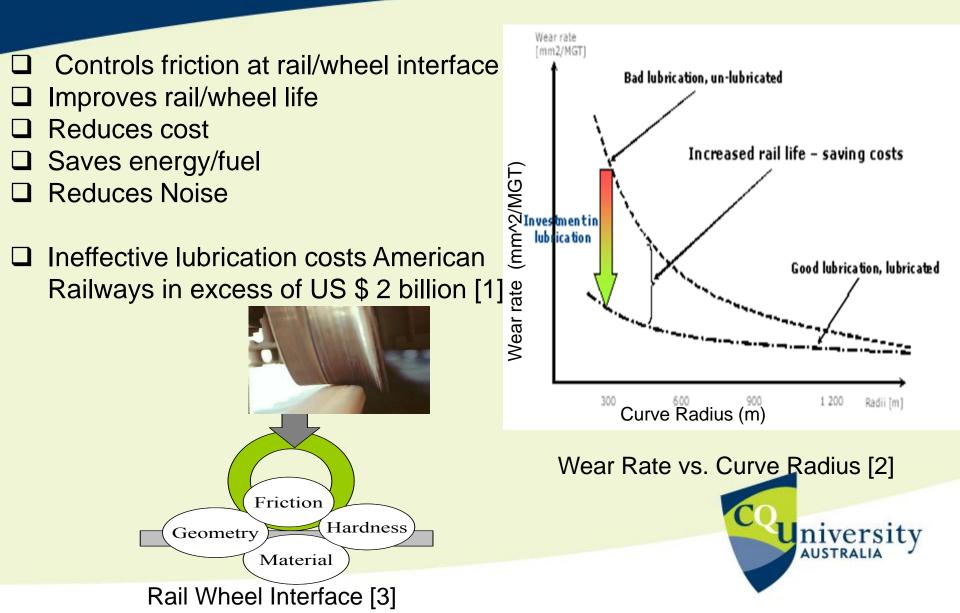
Development of Wayside Lubricator Placement Model for Heavy Haul Lines

Presented By Md Gyas Uddin PhD Candidate


Supervisors

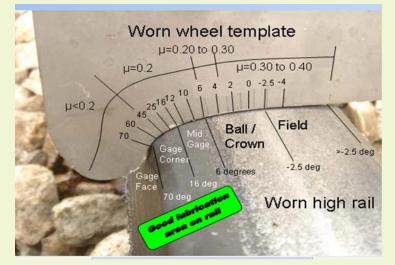
Professor Gopinath Chattopadhyay Assoc. Prof. Mohammad Rasul

CRICOS PROVIDER CODES: QLD 00219C, NSW 01315F, VIC 01624D

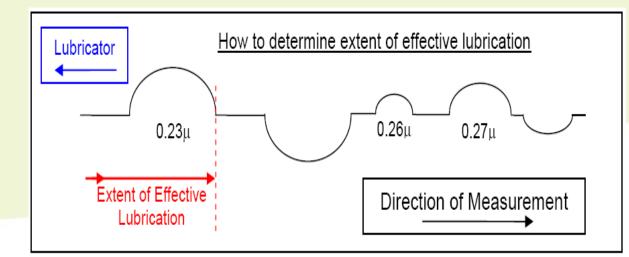
Why Rail Curve Lubrication?

Consequences of Ineffective Lubrication !!!

Wastage of dollars
Wastage of time
Top of Rail Contamination
Wastage of Grease
Dry/Unlubricated Rail
Quick Grease Drop off


What is Effective Lubrication?

Continuous presence of grease on rail


□ Friction Management Guidelines-

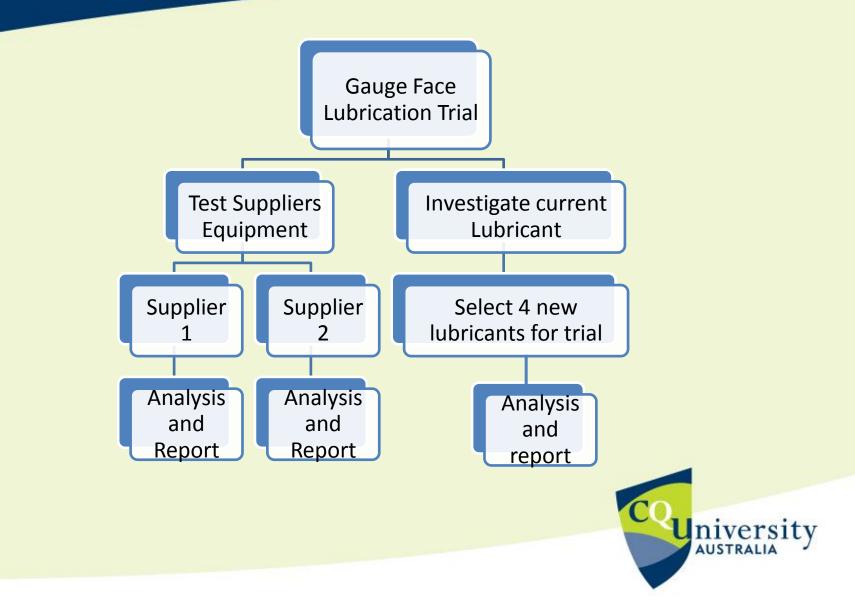
- AREMA Recommendations
- CPR Recommendations

□ Factors in Effective Lubrication

Target friction value & location [4]

Currently used Lubricator Technology-

Mechanical, Hydraulic & Electric lubricators
 Benefits of Electric lubricators Highly reliable & efficient
 Precise control
 Minimise wastage
 Less maintenance
 RPM Inbuilt
 Solar powered



Scope of Research

- Development of Wayside Lubricator Placement Model for Heavy Haul Lines
- Development of Framework for the best practice of rail curve lubrication in Australian heavy hauls
- Simulation model for evaluation of lubrication effectiveness and cost/benefit analysis for maintenance decisions

Project Field Trial and Data Analysis Plan

Investigation of Applicator Bars (Long Bars & Short Bars)

- □ Long bars placed on tangent track
- □ Short bars on spiral of curves
- □ Long bars are highly advantageous


Bars Combination	Grease	Achieved Carry Distance (km)
(2+2) Long Bars,		
Supplier X	С	4.623
2 Short Bars on High		
Rail, Supplier X	С	2.4

Investigation of Greases

Grease properties
Optimal Delivery Rate
Splash Test
Coeff. Of Friction µ Measurement
Distance Travelled

Test Results- Combined Effect of Grease & Lubricator Configuration

Lubricator Configuration	Best Grease	Distance Travelled (km)	Lubricator Configuration	Best Grease	Distance Travelled (km)
2 Long Bars on Both Rail	Grease A	0.33	Lubricator 1	Grease E	Nil
2 Long Bars on Both Rail	Grease B	2.96	Lubricator 2	Grease E	Nil
2 Long Bars	Grease C	1.6	Lubricator 3	Grease E	1.7
on Both Rail 2 Long Bars	Grease D	1.7	Lubricator 4	Grease E	1.7
on Both Rail			Lubricator 5	Grease E	4.6
2 Long Bars on Both Rail	Grease E	4.6		UIEdSE L	4.0

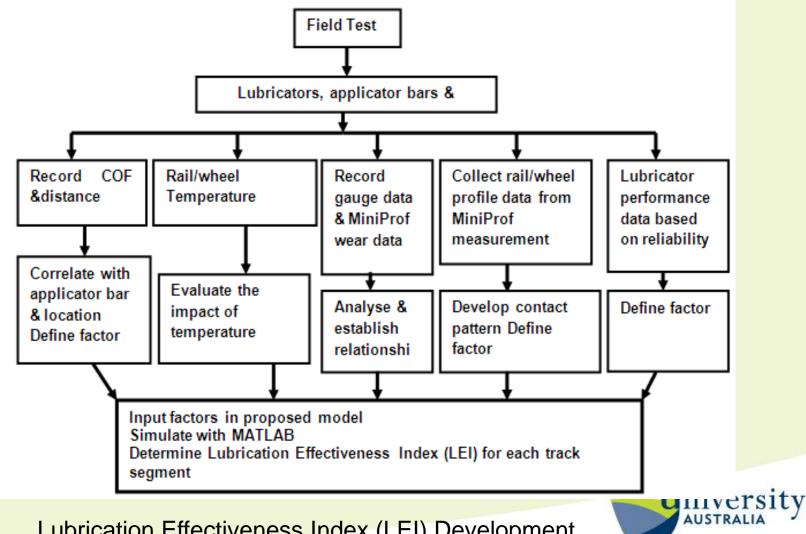
Progress and Plan

Field Trials conducted Development of models in progress: • Wayside Lubricator Placement Model • Framework for best practice of curve lubrication • Simulation model for cost/benefit of lubrication effectiveness

Publications: International conferences •ASOR2009 •CORE2010 •AusRAIL 2010 •Accepted for IHHA2011 and •COMADEM2011 Journal paper in Progress

Acknowledgement CRC for Railway Engineering and Technology Centre for Railway Engineering Rail Innovation Australia Queensland Rail, Australia QR National, Australia ARTC, Australia RailCorp, Australia

Thanks to Mr. Alex Howie and his team and Mr. Peter Sroba for their outstanding support


Thank You

References

- 1. Sid, D, Wolf, E 2002, 'Transportation FOR THE 21ST CENTURY,', *Trac Glide Top-of-Rail Lubrication System*, Report from Department of Energy, USA
- 2. Danks, D & Clayton, P 1987, 'Comparison of the wear process for eutectoid rail steel field and laboratory tests,' *WEAR*, vol. 120, pp.233-250.
- 3. Chattapadhyay, G, Reddy V, Hargreaves, D 2004, 'Assessment of risks and cost benefit analysis of various lubrication strategies for rail tracks under different operating conditions,' *Tribologia*, vol. 23, pp.32-40.
- Uddin, M, G., Chattopadhyay, G., Sroba, P., Rasul, M., Howie, A., Wayside lubricator placement model for heavy haul lines in Australia, CORE2010, Sept 2010,
- Wellington, NZ.

Lubrication Effectiveness Index (LEI)

Lubrication Effectiveness Index (LEI) Development