

CONSTRAINED MULTI-OBJECTIVE PARTICLE

SWARM OPTIMIZATION WITH APPLICATION IN

POWER GENERATION

Lily Dujuan Li

MIT (University of Newcastle)

A thesis submitted

 in fulfilment of the requirements for the degree of

 Doctor of Philosophy

School of Computing Sciences

Faculty of Arts, Business, Informatics and Education

CQUniversity of Australia

April 2009

I

ABSTRACT

This thesis is devoted to the study of metaheuristic optimization algorithms and their

application in power generation. The study focuses on constrained multi-objective

optimization using Particle Swarm Optimization algorithm.

A multi-objective constraint-handling method incorporating a dynamic

neighbourhood PSO algorithm is proposed for tackling single objective constrained

optimization problems. The benchmark simulation results demonstrate the proposed

approach is effective and efficient in finding the consistent quality solutions. Compared

with the recent research results, the proposed approach is able to provide better or similar

good results in most benchmark functions. The proposed performance-based dynamic

neighbourhood topology has proved to be able to help make convergence faster than the

static neighbourhood topology.

The thesis also presents a modified PSO algorithm for solving multi-objective

constrained optimization problems. Based on the constraint dominance concept, the

proposed approach defines two sets of rules for determining the cognitive and social

components of the PSO algorithm. Simulation results for the four numerical optimization

problems demonstrate the proposed approach is effective. The proposed approach has a

number of advantages such as being applicable to any number of objective functions and

computationally inexpensive.

As applications, three engineering design optimization problems and the power

generation loading optimization problem are investigated. The simulation results for the

engineering design optimization problems and the power generation loading optimization

problem reveal the capability, effectiveness and efficiency of the proposed approaches.

The methodology can be readily applicable to a broad range of applications.

II

TABLE OF CONTENTS

ABSTRACT .. I

TABLE OF CONTENTS .. II

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

LIST OF ABBREVIATIONS ... X

GLOSSARY ... XI

ACKNOWLEDGMENTS .. XIII

DECLARATION ... XV

CHAPTER 1 INTRODUCTION ... 1

1.1 PROLOGUE .. 1

1.2 CONSTRAINED OPTIMIZATION PROBLEMS .. 2

1.2.1 Single Objective Optimization Problems ... 2

1.2.2 Multi‐objective Optimization Problems .. 4

1.2.3 Basic Concept and Terminology .. 5

1.3 OPTIMIZATION ALGORITHMS ... 8

1.3.1 Classification .. 8

1.3.2 Deterministic Methods .. 9

1.3.3 Stochastic and Heuristic/Metaheuristic Methods ... 10

1.4 MOTIVATION AND SCOPE ... 12

1.4.1 Motivation ... 12

1.4.2 Research Scope .. 12

1.5 THESIS GOALS AND CONTRIBUTIONS ... 13

1.5.1 Goals .. 13

1.5.2 Contributions ... 13

1.6 STRUCTURE OF THE THESIS .. 15

III

CHAPTER 2 METAHEURISTIC OPTIMIZATION METHODS – A LITERATURE REVIEW 17

2.1 INTRODUCTION ... 17

2.2 METAHEURISTIC OPTIMIZATION ALGORITHM OVERVIEW .. 19

2.2.1 Genetic Algorithms .. 19

2.2.2 Differential Evolution ... 21

2.2.3 Ant Colony Optimization ... 24

2.2.4 Particle Swarm Optimization ... 26

2.2.5 Discussion .. 29

2.3 CONSTRAINT‐HANDLING METHODS OVERVIEW .. 30

2.3.1 Preservation of Feasibility ... 31

2.3.2 Penalty Function Approach ... 32

2.3.3 Methods Based on Searching for Feasibility ... 33

2.3.4 Other Hybrids... 35

2.4 PSO IN SINGLE OBJECTIVE CONSTRAINED OPTIMIZATION ... 39

2.5 PSO IN MULTI‐OBJECTIVE OPTIMIZATION .. 43

2.6 SUMMARY ... 46

CHAPTER 3 A MULTI‐OBJECTIVE CONSTRAINT‐HANDLING METHOD WITH THE PSO

ALGORITHM ... 48

3.1 INTRODUCTION ... 48

3.2 PROBLEM FORMULATION AND TRANSFORMATION ... 50

3.3 A MULTI‐OBJECTIVE CONSTRAINT‐HANDLING METHOD WITH A DYNAMIC NEIGHBOURHOOD PSO

ALGORITHM ... 53

3.3.1 PSO Algorithm .. 53

3.3.2 Selection Rules ... 54

3.3.3 Performance‐Based Dynamic Neighbourhood Topology 54

3.3.4 The Proposed Algorithm .. 58

3.4 NUMERICAL OPTIMIZATION SIMULATION ... 62

3.4.1 Test Functions .. 62

3.4.2 Parameters... 63

3.4.3 Results and Discussion ... 63

IV

3.5 COMPARATIVE STUDY .. 72

3.5.1 Quality and Consistency Comparison .. 72

3.5.2 Dynamic Neighbourhood and Static Neighbourhood Comparison 74

3.6 SUMMARY ... 80

CHAPTER 4 CONSTRAINED MULTI‐OBJECTIVE OPTIMIZATION USING PSO ALGORITHM

 82

4.1 INTRODUCTION ... 82

4.2 PROPOSED APPROACH ... 84

4.2.1 Problem Description and Constraint Dominance .. 84

4.2.2 Selection Rules ... 85

4.2.3 Algorithm ... 87

4.3 EXPERIMENTS ... 88

4.3.1 Test Functions .. 88

4.3.2 Results .. 89

4.4 PERFORMANCE EVALUATION ... 95

4.5 SUMMARY ... 98

CHAPTER 5 PROGRAM DESIGN, IMPLEMENTATION AND MORE RESULTS 99

5.1 INTRODUCTION ... 99

5.2 A MULTITHREADED OBJECT‐ORIENTED APPROACH FOR PSO IMPLMENTATION 101

5.2.1 Parallel Computing and Evolutionary Algorithms 101

5.2.2 Multithreaded Object‐Oriented Programming in Brief 102

5.2.3 System Design and Implementation .. 104

5.2.4 Discussion .. 110

5.3 ENGINEERING DESIGN OPTIMIZATION ... 111

5.3.1 Problem Transformation and Formulation.. 111

5.3.2 A Goal‐Oriented Multi‐objective Constraint‐handling Method with PSO

Algorithm ... 113

5.3.3 Results .. 115

5.3.4 Discussion .. 120

5.4 SUMMARY ... 123

V

CHAPTER 6 POWER GENERATION UNIT LOADING OPTIMIZATION 125

6.1 INTRODUCTION ... 125

6.2 MODELLING ... 127

6.2.1 General Description ... 127

6.2.2 Specification... 129

6.2.3 Formulation ... 133

6.3 APPROACHES FOR SINGLE OBJECTIVE CONSTRAINED MODEL ... 135

6.3.1 Multi‐objective Constraint‐Handling Method Incorporating with PSO

Algorithm ... 135

6.3.2 Preserving Feasibility Method Incorporating with PSO Algorithm 136

6.4 APPROACH FOR MULTI‐OBJECTIVE CONSTRAINED MODEL ... 139

6.5 SIMULATION RESULTS AND DISCUSSION .. 140

6.5.1 Unit Heat Rates and Unit Gas Emission Curves ... 140

6.5.2 Parameter Setting .. 141

6.5.3 Results .. 141

6.5.4 Discussion .. 144

6.6 SUMMARY ... 147

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH .. 149

7.1 CONCLUSIONS .. 149

7.2 FUTURE RESEARCH OUTLOOK .. 152

APPENDIX I CONSTRAINED NUMERICAL OPTIMIZATION TEST FUNCTIONS 153

APPENDIX II ENGINEERING DESIGN OPTIMIZATION PROBLEMS 159

BIBLIOGRAPHY .. 164

PUBLICATION LIST ... 180

VI

LIST OF TABLES
TABLE 3‐1 THE 13 CONSTRAINED NONLINEAR OPTIMIZATION TEST FUNCTIONS 63

TABLE 3‐2 BEST, MEAN AND STANDARD DEVIATION RESULTS FROM 30 INDEPENDENT RUNS 65

TABLE 3‐3 BEST, MEAN AND STANDARD DEVIATION RESULTS COMPARISON FROM 30 INDEPENDENT RUNS

 .. 73

TABLE 3‐4 LOWEST, AVERAGE AND HIGHEST ITERATION NEEDED FOR DYNAMIC AND STATIC

NEIGHBOURHOOD TOPOLOGY FROM 30 INDEPENDENT RUNS .. 76

TABLE 3‐5 BEST, AVERAGE AND WORST RESULTS FOUND FOR DYNAMIC AND STATIC NEIGHBOURHOOD

TOPOLOGY FROM 30 INDEPENDENT RUNS (MAXIMUM ITERATION = 4000)...................... 76

TABLE 4‐1 PERSONAL BEST PARTICLE UPDATING RULES .. 85

TABLE 4‐2 LOCAL BEST PARTICLE SELECTION RULES ... 86

TABLE 4‐3 STRUCTURE OF THE MODIFIED PSO ALGORITHM FOR CONSTRAINED MULTI‐OBJECTIVE

OPTIMIZATION PROBLEMS .. 87

TABLE 4‐4 SPACING AND MAXIMUM SPREAD FOR TESTING CASES BASED ON 20 RUNS 97

TABLE 4‐5 STATISTIC RESULTS BY DIFFERENT APPROACHES .. 97

TABLE 5‐1 UML RELATIONSHIP NOTATIONS ... 105

TABLE 5‐2 OPTIMAL SOLUTION OF WELDED BEAM DESIGN .. 116

TABLE 5‐3 STATISTIC RESULTS FOR DIFFERENT APPROACHES (WELDED BEAM DESIGN) 117

TABLE 5‐4 OPTIMAL SOLUTION OF PRESSURE VESSEL DESIGN ... 118

TABLE 5‐5 STATISTIC RESULTS FOR DIFFERENT APPROACHES (PRESSURE VESSEL DESIGN) 119

TABLE 5‐6 OPTIMAL SOLUTION OF TENSION/COMPRESSION STRING DESIGN 120

TABLE 5‐7 STATISTIC RESULTS FOR DIFFERENT APPROACHES (TENSION/COMPRESSION STRING DESIGN) 120

TABLE 5‐8 ITERATIONS NEEDED TO REACH THE BEST‐KNOWN SOLUTION ... 122

TABLE 6‐1 NOMENCLATURE OF POWER GENERATION LOADING OPTIMIZATION 130

TABLE 6‐2 PSEUDO CODE OF THE PRESERVING FEASIBILITY CONSTRAINT‐HANDLING METHOD WITH PSO

ALGORITHM .. 138

TABLE 6‐3 UNIT HEAT RATE AND NOX EMISSION FUNCTIONS ... 140

TABLE 6‐4 OPTIMIZED WORKLOAD DISTRIBUTION FOR MODEL 1 .. 142

TABLE 6‐5 TIME SPENT FOR TWO CONSTRAINT‐HANDLING APPROACHES FOR MODEL 1 146

VII

List of Figures

FIGURE 1.1 ILLUSTRATION OF THE CONCEPTS OF FEASIBLE REGION, PARETO‐FRONT, A DECISION POINT X

AND ITS CORRESPONDING OBJECTIVE VALUE IN DECISION AND OBJECTIVE SPACES 5

FIGURE 1.2 ILLUSTRATION OF CONCEPT OF DOMINANCE ... 6

FIGURE 1.3 CLASSIFICATION OF OPTIMIZATION ALGORITHMS ... 8

FIGURE 2.1 PSEUDO‐CODE FOR A TYPICAL GENETIC ALGORITHM ... 19

FIGURE 2.2 PSEUDO‐CODE FOR A GENERIC ACO ALGORITHM .. 24

FIGURE 3.1 THE PARETO‐OPTIMAL FRONT, FEASIBLE SOLUTIONS AND DESIRED CONSTRAINED MINIMUM

FOR A BI‐OBJECTIVE CONSTRAINT HANDLING OPTIMIZATION PROBLEM 52

FIGURE 3.2 TWO MOST COMMON NEIGHBOURHOOD TOPOLOGIES FOR PSO 56

FIGURE 3.3 ILLUSTRATION OF THE DYNAMIC NEIGHBOURHOOD TOPOLOGY 58

FIGURE 3.4 DATA FLOW DIAGRAM OF THE PROPOSED MULTI‐OBJECTIVE CONSTRAINT‐HANDLING

METHOD WITH PSO ALGORITHM .. 60

FIGURE 3.5 PSEUDO CODE OF THE PROPOSED MULTI‐OBJECTIVE CONSTRAINT‐HANDLING METHOD WITH

PSO ALGORITHM .. 61

FIGURE 3.6 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G1 65

FIGURE 3.7 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G2 66

FIGURE 3.8 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G3 66

FIGURE 3.9 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G4 67

FIGURE 3.10 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G5 67

FIGURE 3.11 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G6 68

FIGURE 3.12 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G7 68

FIGURE 3.13 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G8 69

FIGURE 3.14 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G9 69

FIGURE 3.15 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G10 70

FIGURE 3.16 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G11 70

FIGURE 3.17 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G12 71

FIGURE 3.18 CONVERGENCE GRAPH OF BEST SOLUTION FOR FUNCTION G13 71

VIII

FIGURE 3.19 TARGET‐BASED EXPERIMENT CONVERGENCE GRAPH OF AVERAGE SOLUTION IN DIFFERENT

NEIGHBORHOOD TOPOLOIES FOR G5 ... 77

FIGURE 3.20 TARGET‐BASED EXPERIMENT CONVERGENCE GRAPH OF AVERAGE SOLUTION IN DIFFERENT

NEIGHBORHOOD TOPOLOIES FOR G6 ... 77

FIGURE 3.21 TARGET‐BASED EXPERIMENT CONVERGENCE GRAPH OF AVERAGE SOLUTION IN DIFFERENT

NEIGHBORHOOD TOPOLOIES FOR G7 ... 78

FIGURE 3.22 TARGET‐BASED EXPERIMENT CONVERGENCE GRAPH OF AVERAGE SOLUTIONS IN DIFFERENT

NEIGHBORHOOD TOPOLOIES FOR G9 ... 78

FIGURE 3.23 TARGET‐BASED EXPERIMENT CONVERGENCE GRAPH OF AVERAGE SOLUTIONS IN DIFFERENT

NEIGHBORHOOD TOPOLOIES FOR G10 ... 79

FIGURE 4.1 THEORETICAL PARETO‐OPTIMAL FRONT FOR TEST PROBLEM BNH 91

FIGURE 4.2 SIMULATED PARETO‐OPTIMAL FRONT FOR TEST PROBLEM BNH 91

FIGURE 4.3 THEORETICAL PARETO‐OPTIMAL FRONT FOR TEST PROBLEM TNK 92

FIGURE 4.4 SIMULATED PARETO‐OPTIMAL FRONT FOR TEST PROBLEM TNK 92

FIGURE 4.5 THEORETICAL PARETO‐OPTIMAL FRONT FOR TEST PROBLEM SRN 93

FIGURE 4.6 SIMULATED PARETO‐OPTIMAL FRONT FOR TEST PROBLEM SRN 93

FIGURE 4.7 THEORETICAL PARETO‐OPTIMAL FRONT FOR TEST PROBLEM OSY 94

FIGURE 4.8 SIMULATED PARETO‐OPTIMAL FRONT FOR TEST PROBLEM OSY 94

FIGURE 5.1 EXECUTING MULTIPLE THREADS IN A MULTI‐PROCESSOR SYSTEM AND IN A SINGLE‐PROCESSOR

SYSTEM .. 103

FIGURE 5.2 THE GOALS, PRINCIPLES, AND TECHNIQUES OF OBJECT‐ORIENTED DESIGN 104

FIGURE 5.3 CLASS STRUCTURE IN UML MODEL ... 108

FIGURE 5.4 PARALLEL EXECUTION PROCESS DIAGRAM ... 109

FIGURE 5.5 THE GOAL AREA FOR A BI‐OBJECTIVE CONSTRAINT‐HANDLING OPTIMIZATION PROBLEM ... 112

FIGURE 5.6 PSEUDO CODE OF THE GOAL‐ORIENTED MULTI‐OBJECTIVE CONSTRAINT‐HANDLING METHOD

WITH PSO ALGORITHM ... 114

FIGURE 6.1 A TYPICAL COAL‐FIRED POWER GENERATION UNIT .. 128

FIGURE 6.2 A MULTI‐UNIT POWER GENERATION MODEL ... 132

FIGURE 6.3 THE GRAPHIC ILLUSTRATION OF THE REPAIRING ALGORITHM 137

FIGURE 6.4 THE INFEASIBILITY REPAIRING ALGORITHM .. 137

IX

FIGURE 6.5 OPTIMAL UNIT LOADING DISTRIBUTION FOR THE WHOLE RANGE OF THE GENERATION

CAPACITY FOR MODEL 1 .. 142

FIGURE 6.6 SIMULATED PARETO‐FRONT FOR MODEL 2 (1000totalM =
MW) 143

FIGURE 6.7 SIMULATED PARETO‐FRONT FOR MODEL 2 (1200totalM = MW) 144

FIGURE 6.8 ANNUAL MONEY SAVING FROM LOADING OPTIMIZATION ... 145

X

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

API Application Programming Interface

CNOP Constrained Nonlinear Optimization Problem

DE Differential Evolution

EA Evolutionary Algorithm

ERP External Repository

ETS Emission Trading Scheme

GA Genetic Algorithm

IBE Iteration-based Experiment

JVM Java Virtual Machine

MO Multiobjective Optimization

MOOP Multiobjective Optimization Problem

OO Object-Oriented

PSO Particle Swarm Optimization

SP Spacing

TBE Target-based Experiment

TSP Travelling Salesman Problem

UML Unified Modelling Language

XI

GLOSSARY

a parameter in ACO, coefficients of the polynomial to heat rate function

b coefficients of the polynomial to emission curve function

C criterion for TBE

rC cross factor in DE

c PSO parameter

d distance of arc in ACO

f objective function

F objective function, mutation factor in DE, feasible solutions
g inequality constraint function

savingH heat consumption saving

h equality constraint function, heat consumption per hour to a unit at a given load

,i j index

k index, order of polynomial function (superscript)
, L l lower boundary

lBest best particle in a local neighbourhood

savingM annual money saving

totalM total power demand by market, total workload

minM lowest power generated, lowest workload

maxM highest power generated, highest workload

m number of constraints

pN population size in DE

n dimension, total iterations (or generations)

P particle, maximum NOx emission license limit to each unit
p B est best previous position for a particle

p probability

XII

q NOx emission level to a unit at a given load

R penalty parameter

r
individual index in DE, random number in PSO, NOx emission constraint

function

S decision space, search space

T iteration, generation, target value

U upper boundary

u trail vector in DE , upper boundary

maxV maximum velocity in PSO

v velocity in PSO, mutated individual in DE

w inertia weight factor in PSO

x decision variable

z repair attempts in repairing algorithm
,Φ Ω constraint violation

δ minimum error criterion for equality constraint

ε feasibility tolerance
χ constriction coefficient in PSO

τ amount of pheromone in ACO
 ρ rate of pheromone evaporation in ACO, relative size of feasible space
 η inverse distance of arc in ACO
 β parameter in ACO

XIII

ACKNOWLEDGMENTS

 Nothing is impossible with God. – Luck 1:37-42 (Bible)

It is never an easy task to conduct a PhD research program. It is even harder when you have

fulltime teaching commitments involved. When finishing this thesis, I am indeed filled

with gratitude and joy. God has blessed me in all the ways during the past few years. In this

section, I would like to thank and acknowledge the people who have carried God’s grace

and love for me throughout this journey.

Firstly, I would like to thank Prof. Xinghuo Yu, my principal supervisor, for his

kindness to take me as his student. It cannot be over exaggerated the importance of Prof.

Yu’s support, encouragement and guidance in my research journey. I do learn a lot from his

high level professional stands.

I am grateful to Dr Xiaodong Li and Dr Wei Li, my associate supervisors, for their

time in providing guidance, advices and discussions. Dr Xiaodong Li’s exceptional

knowledge and prompt inputs has been such a valuable asset to me. Dr Wei Li has provided

great advices at the early stage of this research which is much appreciated.

I cannot forget the support from my previous supervisor, Associate Professor Russel

Stonier who has retired. Here I thank Russel for his support and patience.

I would like to thank my colleagues Dr Sylvia Ward, Dr Paul Waight, Dr Andrew

Chiou, Dr Noel Patson, Dr William Guo and Dr Jo Luck who kindly offered to proofread

my thesis and gave me invaluable feedback. Thanks to my friends Dr Fengling Han, Ms

Jeni Richardson, Dr Shang Gao, Dr Michael Li, Ms Sandy Behrens, Mr Denial Pun, Ms Yi

Hu, and Dr Jun Zhao for their continuous encouragement.

XIV

I want to thank the head of School of Computing Sciences, Mr Tim Roberts, for his

support in adjusting my teaching commitments while I was finalising my thesis. Thanks

also go to Prof. Kevin Tickle and Prof. Qinglong Han for their support and concern from

the faculty management.

Thanks extended to my friends Mrs Amelia Evans and Mr Terry Parkin from

Rockhampton City Band for reading some chapters of this thesis and for reminding me the

importance of a balanced life.

I am in debt to my dear parents and my parent-in-laws. For many years, I did not have

time to accompany them and was not able to look after them when they were sick. Deepest

appreciations go to them for their love and understanding. I am grateful to my three

beautiful sisters, Xiaojuan, Pei and Huafan and their husbands for their contributions in

looking after our aged parents so that to allow me to complete this study.

Very special thanks to my husband, Jiping, for his endless support. He has been

always there to share my joys and sadness, help me and tolerate my moodiness. This thesis

would not have been completed without his unmeasurable support.

Lastly, thanks to my handsome and dearest son, Joe. He is so special for me. Because

of him, I have got the courage and energy to deal with difficulties in my life. I do learn a lot

from being a mum.

Introduction

1

Chapter 1

INTRODUCTION

1.1 PROLOGUE

Optimization is all about better choices. As human beings, we try to make optimal choices

in our daily lives. When we are driving in busy city streets, we choose short and less

crowded routes and avoid traffic lights to minimize our travelling time. When buying a car,

we would choose the most comfortable model at the minimum cost. Better choices come

from knowledge and experiences.

In most industrial activities, making an optimal choice is not that simple. The reasons

may be that it is too complicated; there are too many choices; there is limited knowledge

and experience; or environmental and human constraints exist. Such cases require

complicated calculations and reasoning to help with our decision making. Fortunately,

many of these applications can be formulated into mathematical models that can be

represented and analysed systematically. This forms the base for the study of optimization.

Optimization is a branch of operations research. It involves topics in wide subfields

such as nonlinear programming, stochastic programming, combinatorial optimization, and

other computational intelligence technologies. It has a wide range of practical applications

crossing industries such as production planning, transportation scheduling and mechanical

Introduction

2

design. Optimization plays a key role in improving the quality of decision making which

leads to improved business performance for any organization.

This thesis is devoted to the study of optimization algorithms and their applications.

The rest of the chapter is organized as follows. Section 1.2 formally introduces

optimization problems including basic concepts and terminologies. Section 1.3 presents an

outline of the optimization algorithms. Section 1.4 describes the research motivation and

scope. Section 1.5 states the goals and the contributions of the thesis. Section 1.6 previews

the remaining chapters.

1.2 CONSTRAINED OPTIMIZATION PROBLEMS

Many real world optimization applications involve optimizing (minimizing or

maximizing) one or more objectives subject to satisfying diverse equality and inequality

constraints. Optimization problems are made up of three basic components: one (or more)

objective function(s), a set of unknown decision variables and a set of constraints. The

objective functions are numerical functions to determine how good a solution is. A set of

unknown decision variables determine the value of the objective functions. The constraints

are conditions that allow the decision variables to take on certain values but exclude others.

The following sections introduce the optimization problems and some basic concepts.

1.2.1 Single Objective Optimization Problems

A single objective constrained optimization problem can be formalized as a pair (,)S f ,

where nS⊆\ is a bounded set on n\ and :f S → \ is a n-dimensional real-valued

function. The problem is to find a point *x S∈ such that (*)f x is minimum or maximum

Introduction

3

on S (S is denoted as the decision space). Maximization of a real-value function 1()f x can

be regarded as the minimization of the transformed function 1() ()f x f x= − , the

minimization problems are taken into consideration in general.

 The problem can be stated more formally as to find *x which

min imize ()
subject to () 0, 1,2,..., ;
 () 0, 1,2,..., ;

i

j

f x
g x i m
h x j p

⎫
⎪

≤ = ⎬
⎪= = ⎭

where x is the vector of solution 1 2 (, ,...,)T
nx x x x= , and each (1,...)ix i n= is bounded by

lower and upper limits i i il x u≤ ≤ ; m is the number of inequality constraints and p is the

number of equality constraints. In both cases, constraints could be linear or non-linear.

The equality constraints () 0 jh x = can be translated into inequality constraints

| () | 0, jh x δ− ≤ where δ is a tolerance allowed. Equation (1.1) can be converted into:

min imize ()

subject to () 0, 1,2,..., ;i

f x
g x i m

⎫
⎬≤ = ⎭

 where m is the total number of constraints.

 More specifically, the optimization task is to find a *x S∈ such that

1 2(, ,...) : (*) ()T
nx x x x S f x f x∀ = ∈ ≤ subject to satisfying all constraints.

(1.1)

(1.2)

Introduction

4

Single objective optimization has one search space (decision space) and one global

solution.

1.2.2 Multi-objective Optimization Problems

As in the single objective constrained optimization problem definition described earlier, a

general multi-objective constrained optimization problem consists of a decision vector

1 2 (, ,...,)T

nx x x x= , an objective function vector 1 2() (, ,..., () () ())kf x f f fx x x= and a constraint

function vector 1 2 () (, ,..., () () ())mg x g g gx x x= .

The problem can be stated as to find *x which

minimize (), 1, 2,...

subject to () 0, 1, 2,...
j

i

f x j k

g x i m

= ⎫⎪
⎬

≤ = ⎪⎭

where k is the total number of objective functions and m is the total number of constraints.

In single-objective optimization, there exists a global optimum, while in the

multi-objective case no optimal solution is clearly defined apart from a set of optima. The

optimization is to find good compromises (or “trade-offs”) rather than a single solution as

in the single objective optimization. All solutions to a multi-objective optimization

problem are called Pareto-optimal solutions, the curve by joining these solutions is known

as a Pareto-optimal front [1].

 The optimization tasks for multi-objective optimization is to

• find a set of solutions as close as possible to the Pareto-optimal front and

• find a set of solutions as diverse as possible

(1.3)

Introduction

5

Multi-objective optimization problems have two search spaces named decision space

and objective space.

1.2.3 Basic Concept and Terminology

Since the scope (further described in Section 1.4) of this thesis is focused on integrating the

multi-objective constraint-handling methods with the metaheuristic optimization

algorithms, it is necessary to introduce some concepts and terminologies about

multi-objective optimization. Figures 1.1 and 1.2 illustrate some basic concepts and

terminologies based on a two-objective problem, which are then explained in detail.

Figure 1.1 Illustration of the concepts of feasible region, Pareto-front, a decision point x
and its corresponding objective value in decision and objective spaces

Introduction

6

Figure 1.2 Illustration of concept of dominance

Definition 1 (Feasible Set):

A solution x is feasible if it satisfies all constraints that are imposed. That is, the

feasible set fx is a set of solution x that satisfy all the constraints g(x):

{ | () 0} fx x S g x= ∈ ≤

The feasible region is shadowed in light blue colour in Figure 1.1.

Definition 2 (Pareto Dominance):

A solution x(1) is said to dominate the other solution x(2), if both conditions a) and b)

are true:

a) The solution x(1) is no worse than x(2) in all objectives j (j =1,2,…,k).

b) The solution x(1) is strictly better than x(2) in at least one objective j (j =1,2,…,k)

 if (1) (2) () ()f x f x≤ , x
(1) dominates x(2), denoted as (1) (2) x x=≺

 if (1) (2) (2) (1) () ! () or () ! ()f x f x f x f x≤ ≤ , x(1) is indifferent to x(2), denoted as

(1) (2) x x∼ .

Introduction

7

Figure 1.2 illustrates a two-objective minimization optimization problem with five

different solutions shown in the objective space. Solution B dominates solutions C and D

because B has lower values in both objective functions f1 and f2 than those by C and D.

Solution A dominates solution D and solution C because A has a lower value in f1 than C

and the same value f2 as C. Solutions A, B and E are indifferent because they do not

dominate each other.

Definition 3 (Non-dominated set):

 Among a set of solutions P, the non-dominated set of solutions P’ are those that are

not dominated by any member of the set P. In Figure 1.2, for example, the non-dominated

set consists of solution E, A and B.

Definition 4 (Pareto-optimal set):

The non-dominated set of the entire feasible search space S is the Pareto-optimal set.

The curve by joining these solutions is known as a Pareto-optimal front as shown in Figure

1.1.

Definition 5 (Constraint dominance):

A solution x(1) is said to ‘constraint-dominate’ a solution x(2), denoted as (1) (2) ,cx x≺

if any of the following conditions are true:

• Solution x(1) is feasible and solution x(2) is not.

• Solution x(1) and solution x(2) are both infeasible, but solution x(1) has a smaller

constraint violation.

• Solution x(1) and solution x(2) are feasible and solution x(1) dominates solution x(2) in

the usual sense (see Definition 2).

Introduction

8

1.3 OPTIMIZATION ALGORITHMS

1.3.1 Classification

Optimization algorithms can be classified into two categories. The first category is called

deterministic methods. The second category is stochastic and heuristic/metaheuristic

methods. The deterministic methods find the optimum up to certain accuracy while the

stochastic and heuristic/metaheuristic methods find the optimum up to a certain

probability. In other words, the deterministic methods find more accurate solutions if the

problem representation meets certain requirements. The stochastic and

heuristic/metaheuristic methods, however, can find solutions with a certain probability. A

classification of the optimization techniques is presented in Figure 1.3. A description of

these techniques follows.

Figure 1.3 Classification of optimization algorithms

Introduction

9

1.3.2 Deterministic Methods

The deterministic methods are also called classical methods. The classical optimization

methods can be further classified into two groups: Direct methods and Gradient-based

methods [1-3].

Direct search methods converge iteratively to the optimum. It starts from a random

guess solution. Based on a pre-specified transition rule, the algorithm suggests a direction

for successive search points [1, 3]. “In direct search methods, only the objective function

f(x) and the constraint values g(x) are used to guide the search strategy, which require

many function evaluations for convergence, it is generally slow” [1] .

Gradient-based methods compute the position of the minima by differentiating the

objective function and setting the obtained gradient equation to zero:

0, {1, 2,... },
i

f i n
x
∂

= ∈
∂

while fulfilling the sufficient condition

2

0, , {1,2,... }.
i j

f i j n
x x
∂

> ∈
∂ ∂

Obviously, gradient-based methods require the mathematical equations of the

objective functions to be clearly defined and the functions must be continuous and

differentiable. “The gradient-based methods can quickly converge near an optimal

solution. But they are not efficient in non-differentiable or discontinuous problems”[1].

(1.5)

(1.4)

Introduction

10

Deb [1] has summarized the difficulties that classical optimization methods have

encountered, as follows:

• The convergence to an optimal solution depends on the chosen initial solution.

• Most algorithms tend to get stuck to a suboptimal solution.

• An algorithm efficient in solving one optimization problem may not be efficient in

solving a different optimization problem.

• Algorithms are not sufficient in handling problems having a discrete search space.

• Algorithms cannot be efficiently used on a parallel machine.

With these difficulties, the applications of classical optimization methods have been

restricted to the problems that have clear mathematical formulas for both objective

functions and constraint functions, and the functions must be continuous and differentiable.

They are not designed for processing inaccurate, noisy and complex data although they

might excel at dealing with complicated data [4].

1.3.3 Stochastic and Heuristic/Metaheuristic Methods

The stochastic optimization methods are optimization algorithms which incorporate

probabilistic (random) elements, either in the problem data (the objective function, the

constraints), or in the algorithm itself (through random parameter values, random choices),

or in both [5]. Heuristic/metaheuristic methods are those methods to search in the search

space in a (more or less) intelligent way [6]. Most stochastic and heuristic/metaheuristic

methods are inspired by nature since nature operates with random processes (e.g., for

mutating genetic information, within the annealing process of metal, in molecular

dynamics, or in swarm behaviours of birds) [3]. In this thesis, we refer metaheuristics as

heuristic/metaheuristic stochastic methods.

Introduction

11

The metaheuristic methods can be further classified into two groups: point-to-point

methods and population-based methods [7, 8]. In point-to-point methods, the search

invokes only one solution at the end of each iteration from which the search will start in the

next iteration. Simulated annealing [9], Monte-Carlo-based Algorithms[10], and

Stochastic Approximation[11] are typical examples of the point-to-point metaheuristics.

Instead of one solution in each iteration, the population-based methods work with a

population of solutions. By starting with a random set of solutions, a population-based

algorithm modifies the current population to a different population in each iteration.

Well-known representatives of the population-based metaheuristics are those Evolutionary

Algorithms (EAs) like Genetic Algorithms (GA) [12-14], Particle Swarm Optimization

(PSO) [15, 16], Ant Colony Optimization (ACO) [17] and Differential Evolution (DE)

[18]. Working with a number of solutions provided algorithms with the ability to capture

multiple optimal solutions in one single simulation run.

Compared with deterministic methods, the metaheuristic methods offer the following

advantages:

• Wide applicability. Since the metaheuristic methods do not use any deterministic

rules, and their representations are flexible (e.g., continuous, discrete,

differentiable, non-differentiable), these properties make the algorithms flexible

enough to be used in a wide variety of problem domains.

• Higher performance. The metaheuristic methods have ability to capture multiple

solutions in one single simulation run. They often find optima in complicated

optimization problems faster than classical optimization methods [1, 4, 19].

Introduction

12

Chapter 2 will present a detailed review of the well-known population-based

metaheuristic methods.

1.4 MOTIVATION AND SCOPE

1.4.1 Motivation

Several new emerging metaheuristics like PSO have proven to be effective and efficient

for solving real-valued global unconstrained optimization problems [16, 20, 21].

However, their utilisations in solving constrained optimization problems remain

problematic. Most real world applications have to cope with constraints. Often the

constraints are many in numbers and are nonlinear. The traditional penalty functions

approaches tend to have difficulties to deal with highly constrained search spaces [22, 23].

To seek other better constraint-handling methods incorporating the more superior

algorithms is desirable. This research is motivated by the constrained real world

applications and the fact of the unsatisfying performance of current constraint-handling

methods in the metaheuristic algorithms.

1.4.2 Research Scope

This thesis is devoted to the study of metaheuristic algorithms in constrained optimization.

New metaheuristic algorithms and the constraint handling methods are to be investigated.

The study will focus on integrating multi-objective constraint-handling methods with the

PSO algorithm for solving constrained optimization problems. The thesis also includes a

study of the power generation loading optimization application.

Introduction

13

1.5 THESIS GOALS AND CONTRIBUTIONS

1.5.1 Goals

The overall goal of this thesis is to investigate the PSO algorithm in constrained

optimization and its application in power generation.

The objectives of the thesis are as following.

a) To integrate the relative superior multi-objective constraint-handling method with

PSO algorithm for solving constrained optimization problems.

b) To conduct performance evaluation of the proposed approach including benchmark

function experiments, search quality evaluation, computing consistency evaluation

and comparison study.

c) To investigate how the different neighbourhood topologies affect the algorithm

performance. To introduce and evaluate the dynamic neighbourhood topology in

order to improve convergence rate.

d) To conduct performance evaluation of the proposed approach in engineering design

optimization problems.

e) To investigate the power generation loading optimization application and to

examine the utility of the proposed approaches in the application.

1.5.2 Contributions

In summary, the contributions of the thesis include:

• A new approach to integrate the multi-objective constraint-handling method

with PSO algorithm is proposed. PSO algorithm offers some advantages over the

Introduction

14

genetic algorithms. There are few attempts made to integrate constraint-handling

methods with PSO algorithm.

• A novel performance-based dynamic neighbourhood topology is proposed.

Neighbourhood topology determines how particles communicate with each other. It

is a key factor in PSO to determine how an individual makes use of its social

experiences. The proposed performance-based dynamic neighbourhood topology

groups those particles that have similar performance into groups to make

communication more efficient.

• An effective multi-objective PSO algorithm is proposed. Most existing

multi-objective PSO proposals do not address the constraints. Integrating

constraint-handling mechanisms with multi-objective PSO is a quite challenging

topic. This thesis is one of the few attempts to use PSO algorithm in constrained

multi-objective optimization problems.

• As a variant of the proposed approach, a goal-oriented multi-objective

constraint-handling method via PSO algorithm is introduced. Since the goals

can be used as the exit criteria, each particle does not need to go through whole

iterations. This makes the computation more cost-effective.

• Power generation loading optimization problem is solved by using the

proposed approaches. The power generation loading optimization problem is of

practical importance in the evolving carbon constrained power industry in terms of

fuel saving and minimizing environmental impact. This thesis presents two

optimization models of the power generation loading optimization, and applies the

proposed approaches in the application. The simulation result demonstrates that the

Introduction

15

loading optimization is significant and the proposed algorithm is effective and

efficient. The methodology can be easily extended to other industrial applications.

1.6 STRUCTURE OF THE THESIS

The thesis contains seven chapters. A preview of the chapters is presented as follows.

Chapter 1 (the current chapter) introduces the constrained optimization problems,

presents some basic concepts and terminologies, outlines the existing approaches, the

research motivation and scope. The research goals and contributions of the thesis are also

highlighted in this chapter.

Chapter 2 presents a literature review of the popular metaheuristic optimization

methods including constraint-handling methods. A state-of-the-art PSO in constrained and

multi-objective optimization are also included.

Chapter 3 presents a multi-objective constraint-handling method with a dynamic

neighbourhood PSO algorithm. The chapter starts with problem formulation and

transformation, followed by the description of PSO, a few selection rules and the idea of

performance-based dynamic neighbourhood topology. The proposed algorithm is then

presented. The algorithm is tested using some numerical bench mark functions. The

numeric simulation results are to be presented. This chapter addresses the research goals a),

b) and c) focusing on single objective constrained problems.

Chapter 4 proposes a modified PSO algorithm for tackling constrained

multi-objective optimization problems. The proposed approach defines two sets of rules

for determining the cognitive and social components of the PSO algorithm. The simulation

results for the four constrained multi-objective optimization problems will be presented.

Introduction

16

This chapter continues to address research goals a), and b) focusing on multi-objective

constrained problems.

Chapter 5 consists of two parts. The first part describes the design and

implementation issues for the proposed approaches. The second part presents the

simulation results for three engineering design optimization problems. For special case,

where the objective function has a predefined goal, the optimization task is to find solutions

that achieve the predefined goal, is addressed. This chapter is to address the research goal

d).

In Chapter 6, a challenging real-world application, the power generation loading

optimization problem is presented. Based on the problem description and specification, the

power generation loading optimization models are presented. Then the proposed two

approaches with PSO are applied to the application. Optimization results are presented and

discussed. The research goal e) is addressed in this chapter.

Chapter 7 concludes the thesis by discussing the contributions and suggesting

possible directions for future research.

In addition to the main text, two appendices are included in the thesis. Appendix I

contains the thirteen constrained numerical optimization testing functions. And Appendix

II contains the three constrained engineering design optimization functions.

Metaheuristic Optimization Methods – A Literature Review

17

Chapter 2

METAHEURISTIC OPTIMIZATION METHODS

– A LITERATURE REVIEW

2.1 INTRODUCTION

The term “metaheuristics” was first proposed by Glover in 1986 [24]. Metaheuristics

contain all heuristics methods that show evidence of achieving good quality solutions for

the problems of interest within an acceptable time [25, 26]. In the operations research

discipline, a metaheuristic is a general-purpose algorithmic framework that can be applied

to different optimization problems with relatively few modifications [27]. However, the

metaheuristics offer no guarantee of obtaining the global solutions.

The evolutionary algorithms (EAs) are typical metaheuristics. By detecting the

optimal solution through cooperation and competition among the individuals of the

population, evolutionary optimization often finds optima in complicated optimization

problems faster than classical optimization methods [1]. The concept of a genetic

algorithm (GA) was first conceived by John Holland in 1975. Since then, a number of

evolutionary algorithms such as ACO [28], PSO[15] and DE[29] have emerged. These

emerging metaheuristics have been increasingly attracting attention both in academia and

Metaheuristic Optimization Methods – A Literature Review

18

industry. Over the last decade or so, evolutionary algorithms have been extensively studied

as search and optimization tools in various problem domains. The primary reasons for their

success are their broad applicability, ease of use and global perspective [13]. However, the

original versions of these metaheuristics have no mechanisms to deal with constraints.

Most real world optimization applications have to deal with constraints. Integrating

constraint-handling methods with these metaheuristics becomes imperative.

There are a number of constraint-handling methods available in evolutionary

optimization [1, 22, 30]. The research on integrating constraint-handling methods with

metaheuristics has been concentrated on genetic algorithms[30-32]. Integrating these

constraint-handling methods with other algorithms has not been properly studied.

This chapter presents a literature review of the four most salient metaheuristics, that

is, GA, DE, ACO and PSO. Two questions are particularly focused in the review: How do

the algorithms work? What are the advantages and disadvantages of the algorithms? The

constraint-handling methods and their pros and cons will also be included in the review.

Furthermore, a review of the state-of-the-art of the PSO algorithms in constrained

optimization will be presented as this is the primary focus of this research.

The rest of the chapter is organized as follows. Section 2.2 presents an overview of

the four metaheuristic optimization algorithms. Section 2.3 overviews the existing

constraint-handling methods. Section 2.4 reviews the state-of-the-art PSO in constrained

optimization. Section 2.5 reviews the PSO in multi-objective optimization and Section 2.6

summarizes the chapter.

Metaheuristic Optimization Methods – A Literature Review

19

2.2 METAHEURISTIC OPTIMIZATION ALGORITHM

OVERVIEW

2.2.1 Genetic Algorithms

Genetic Algorithms are heuristic search algorithms inspired by evolutionary biology such

as inheritance, mutation, selection, and crossover (also called recombination). The basic

techniques of the GAs are designed to simulate processes in natural systems for evolution

especially those that follow Darwin’s principles of "survival of the fittest". The genetic

algorithms are attributed to Holland [33, 34] and Goldberg [13].

Genetic algorithms are implemented based on natural selection. After an initial

population is randomly generated, the algorithm evolves through three operators: selection,

crossover and mutation. A typical GA is illustrated in Figure 2.1. An explanation to the

three operators follows.

Figure 2.1 Pseudo-code for a typical genetic algorithm

Selection: Selection operator gives preference to better individuals, allows them to

pass on their genes to the next generation. The goodness of each individual depends on its

fitness which may be determined by an objective function or by a subjective judgment.

Metaheuristic Optimization Methods – A Literature Review

20

Goldberg and Deb [1, 35] evaluated four well-known selection schemes: proportionate

reproduction (or “roulette wheel selection”), ranking selection, tournament selection and

Genitor (or “steady state”) selection. The proportionate selection is found to have a large

computational complexity as well as a scaling problem [1]. Compared to linear ranking

selection, the binary tournament selection is recommended because of its better time

complexity [35]. The Genitor selection, tournament selection with larger tournament sizes,

or nonlinear ranking can have higher growth ratio in time complexity [35].

Crossover: Crossover operator is the prime distinguished factor of GA from other

optimization techniques. In this operation, two individuals are picked from the population

using the selection operator. A crossover site along the bit strings is randomly chosen. The

values of the two strings are exchanged up to this point. The two new offspring created

from this mating are put into the next generation of the population. By recombining

portions of good individuals, this process is likely to create even better individuals.

Mutation: With some low probability, a portion of the new individuals will have

some of their bits exchanged. The purpose of mutation is to maintain diversity within the

population and inhibit premature convergence. Mutation alone induces a random walk

through the search space.

Since initiated, GAs have been well studied by many researchers for decades. The

major advantages and disadvantages for GAs are summarized as follows.

Advantages: As the population-based evolutionary algorithm, GAs can quickly scan

a vast solution set and locate good solutions rapidly. Bad individuals do not affect the end

solution negatively as they are simply discarded. The inductive nature of the GA means

Metaheuristic Optimization Methods – A Literature Review

21

that it doesn't have to know any rules of the problem [36]. This is very useful for complex

or loosely defined problems.

Disadvantages: In many problems, GAs may have a tendency to converge towards

local optima or even arbitrary points rather than the global optimum of the problem [4, 37].

The likelihood of this occurring depends on the shape of the fitness landscape: certain

problems may provide an easy ascent towards a global optimum; others may make it easier

for the function to find the local optima. This problem can be alleviated by increasing the

rate of mutation or by using selection techniques that maintain a diverse population of

solutions [33]. However, tuning the parameters such as mutation probability,

recombination probability and population size remains controversial. Another difficulty

for GAs is that generally the problems need to be encoded into binary format.

2.2.2 Differential Evolution

Differential evolution is a stochastic, population-based optimization algorithm introduced

by Storn and Price in 1995 [29]. It is one of the most promising novel EAs [29, 38-40]. The

procedure for a DE algorithm is the same as GAs, after an initial population is randomly

generated; the algorithm evolves through three operators: mutation, crossover and

selection.

Mutation: “A mutation process begins by randomly selecting three individuals from

the population to form a triplet. In the triplet, one member is randomly taken as the donor

and the other two members are taken to make up perturbation to the donor” [41]. For a

given solution vector , 1 , (, ...,)i i i nx x x= , where [0, 1] Pi N∈ − indexes the population;

Metaheuristic Optimization Methods – A Literature Review

22

pN is the population size; n is dimension; the perturbed individual is therefore generated

based on the three chosen individuals as in the form:

1 2 3 ()i r r rv x F x x= + −i

where 1 2 3 , , {0, ..., 1} pr r r N∈ − are randomly selected and satisfy: 1 2 3r r r i≠ ≠ ≠ ; the

mutation factor [0, 2] F ∈ introduced by Storn and Price [29] in Equation (2.1) is a control

parameter of DE.

Crossover: After the mutation operation, the perturbed individual , 1 , (, ...,) i i i nv v v=

and the current individual ix (that is, individual being mutated) are then subject to the

crossover operation. Then a “trial” vector , 1 , (, ...,)i i i nu u u= is generated by the follow

equation:

,
,

,

 if or

 otherwise
i j j r

i j
i j

v rand C j k
u

x

≤ =⎧⎪= ⎨
⎪⎩

where 1, ...,j n= , {1, ... , }k n∈ is a random parameters index, chosen once for each i , and

the crossover factor, [0,1]rC ∈ , is set by the user.

Selection: The selection scheme is also different from those in GAs. The population

for the next generation is selected from an individual in the current population and its

corresponding trial vector, that is, ,i ju . The selection rule can be expressed as follows:

(2.1)

(2.2)

Metaheuristic Optimization Methods – A Literature Review

23

t+1 1
1 if () ()

 otherwise

t t
i i it

i t
i

u f u f x
x

x

+
+

⎧ ≤⎪= ⎨
⎪⎩

where t is the generation number.

In summary, at each generation, new vectors iv are generated by the combination

of vectors 1 2 3 (, ,) r r rx x x randomly chosen from the current population (mutation). The

new vectors are then mixed with the predetermined target vectors ix and produce the trial

vectors iu (crossover). Finally, the trial vector is accepted for the next generation if and

only if it yields a reduction in the value of the objective function (selection).

Advantages: The strength of DE lies on the replacement of the current population by

a new population that is surely a better fit. This ensures the “fittest to survive”. DE is

simple to implement and has empirically demonstrated excellent performance that is

superior to some traditional EAs [41]. DE can be easily extended for handling continuous,

discrete and integer variables as well as multiple non-linear and non-trivial constraints[40].

In addition, the algorithm doesn’t require the binary encoding or scaling like those in GAs,

which make the algorithm easy to implement. It has been noticed that DE has exceptional

performance compared to other search heuristics methods in numerical optimization [42].

Sickel et al [43] claimed that DE achieves the same level of performance as PSO based on

a power plant control application.

Disadvantage: Krink et al [42] found that DE performs poorly for noisy

optimization problems (where the fitness function cannot be clearly formulated) compared

to conventional EA and PSO. This is because that DE uses a rather greedy and less

(2.3)

Metaheuristic Optimization Methods – A Literature Review

24

stochastic approach to problem solving [42]. Since the algorithm is relatively new, there

are not many drawbacks reported in the literature.

2.2.3 Ant Colony Optimization

Ant Colony Optimization, introduced by Marco Dorigo in 1992 [28], is a probabilistic

technique for solving optimization problems inspired by the behaviour of ants in finding

paths from the colony to food. At the beginning, ants move at random. During moving,

pheromone is deposited on its path. Ants detect the lead ant’s path and are inclined to

follow. The more pheromone deposited on the path, the more probability of the path being

followed. Over time, the pheromone trail starts to evaporate to reduce its attractive

strength. ACO algorithms are often applied to the problems that can be represented in the

form of sets of components (nodes) and transitions (arcs), or by a set of weighted graphs

such as Travelling Salesman Problems (TSPs), Vehicle Routing Problems, Network

Routing Problems and Scheduling Problems.

There are some variants of ACO algorithms available. Figure 2.2 illustrates a generic

colony optimization algorithm.

Figure 2.2 Pseudo-code for a generic ACO algorithm

Metaheuristic Optimization Methods – A Literature Review

25

At the beginning of the search process, a constant amount of pheromone is assigned

to all arcs (initialization). Then ants start moving. An ant k will move from node i to

node j with probability

, ,
,

, ,

[()] []
()

[()] []k
i

i j i jk
i j

i l i jl J

t
p t

t

α β

α β

τ η
τ η

∈

⋅
=

⋅∑

 where

• k
iJ is the set of nodes that ant k still has to visit when it is on node i .

• , ()i j tτ is the amount of pheromone on arc ,i j at time t.

• α is a parameter to control the influence of ,i jτ .

• , , 1 /i j i jdη = is the inverse distance of arc ,i j .

• β is a parameter to control the influence of ,i jη .

where the arc , i j is traversed, the pheromone amount

,
,

1/ if ant travels on arc ,
()

0 otherwise
i jk

i j

d k i j
tτ

⎧
Δ = ⎨

⎩

is deposited along the path. Then, the local pheromone trail is updated by

 , , ,() () ()i j i j i jt t tτ ρτ τ= + Δ

(2.4)

(2.6)

(2.5)

Metaheuristic Optimization Methods – A Literature Review

26

where ρ is the rate of pheromone evaporation.

Advantages: ACO algorithms suit better for those problems that can be graphically

represented in the forms of nodes and arcs. Convergence is guaranteed but time to converge

is uncertain. For TSPs with a small number of nodes, the ACO performs better against

other optimization techniques. The ACO algorithms have an advantage over simulated

annealing and GA approaches when the graph may change dynamically; the ant colony

algorithm can be run continuously and adapt to changes in real time. This is of interest in

network routing and urban transportation systems [17, 27].

Disadvantages: Theoretical analysis is difficult due to the sequences of random

decisions and the dynamic probability distribution by iteration. Coding is somewhat

complicated because the formulas are not straightforward. It is found for problems that

have a large number of nodes, an ACO algorithm takes an exponential time to converge

[17, 27].

2.2.4 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic metaheuristic method for optimizing

numerical functions on the metaphor of social behaviours of flocks of birds and schools of

fish [15]. A PSO algorithm consists of individuals, called particles that form a swarm.

Each particle represents a candidate solution to the problem. Particles change their

positions by flying in a multi-dimensional search space looking for the optimal position.

During flight, each particle adjusts its position according to its own experience and the

experience from its neighbouring particles, making use of the best position encountered by

itself and the best position in the entire population (global PSO) or its local neighbourhood

Metaheuristic Optimization Methods – A Literature Review

27

(local PSO). The performance of each particle is measured by a predefined fitness function

(objective function) which is problem-dependent.

 The original local PSO algorithm is expressed as follows:

1 1 2 2

(1) () () () () () () ()+ ()+ ()
id id id id id id id id

t t t t t t t tv v c r pBest x c r lBest x+ = − −

(1) () (1)

id id id

t t tx x v+ += +

where 1 2(, ,...)i i i iDx x x x= denotes the i-th particle in a D-dimensional search space;

1 2(, , ...)i i i iDpBest p p p= denotes the best previous position of the i-th particle in the flight

history; 1 2(, ,...)Di g g glBest p p p= denotes the best particle of the neighbourhood;

1 2(, ,...)i i i iDv v v v= denotes the velocity for particle i; c1 and c2 are two positive constants,

called the cognitive and social parameters respectively (or acceleration constants); r1id and

r2id are two random numbers uniformly distributed in the range [0, 1], which are used to

maintain the diversity of the population; t denotes the iteration.

So far, several variants of the PSO algorithm have been developed. Among them, two

variants are prominent. One is the Inertia weight PSO and the other one is the Constriction

PSO (as cited in [44]). Equation (2.9) and Equation (2.10) below give a generic PSO form

containing these two parameters.

1 1 2 2

(1) () () () () () () ()[+ ()+ ()]
i d i d id id i d id i d i d

t t t t t t t tv w v c r pBest x c r lB est xχ+ = − −

(1) () (1)
id id id

t t tx x v+ += +

(2.7)

(2.8)

(2.9)

(2.10)

Metaheuristic Optimization Methods – A Literature Review

28

where w is the inertia weight which is considered critical for the PSO’s convergence

behaviour; χ is a constriction coefficient. These two new parameters are used for

controlling particles’ velocities.

Three variants of PSO can be observed from the generic PSO as in Equation (2.9) and

Equation (2.10): when 1χ = , the generic PSO is an inertia weighted PSO; when 1w = , the

generic PSO is a constriction PSO; when 0, 1, w χ= = the generic PSO is called a bare

bones PSO [45].

According to the PSO formulas, the computation is straightforward once the

parameters are settled. A suitable value for the inertia weight w usually provides balance

between global and local exploration abilities and consequently results in a reduction of the

number of iterations required to locate the optimum solutions. The experimental results

indicated that it is better to initially set the inertia to a large value, in order to promote

global exploration of the search space, and gradually decrease it to get more refined

solutions [20]. Thus, an initial value around 1.2 and a gradual decline towards 0 can be

considered as a good choice for w [19, 46]. The c1 and c2 are not critical for PSO’s

convergence. However, proper fine-tuning may result in faster convergence and alleviation

of local minima. Kennedy proposed to use c1 = c2 = 2 (as cited in [19]). But experimental

results indicated that c1 = c2 = 0.5 might provide even better results [19]. It is reported by

Carlisle and Dozier (as cited in [19]) that it might be even better to choose a larger

cognitive parameter c1 than a social parameter c2 but with c1 + c2 ≤ 4. However, most

parameters recommended are based on the experiments for unconstrained optimization

problems. The parameter setting for constrained problems varies.

Metaheuristic Optimization Methods – A Literature Review

29

 Among the EAs, PSO is the only one that does not follow the “survival of the fittest”

concept. It does not utilize a direct selection function. The particles with lower fitness can

survive during the optimization and potentially visit any point of the search space [47].

Advantages: Compared with other EAs, PSO can be easily implemented and it is

computationally inexpensive because it has lower requirements for memory and CPU

speed [48]. Moreover, it does not require gradient information of the objective function

under consideration, but only its values, and it used only primitive mathematical operators

[19]. PSO has been proved to be an efficient method for many global optimization

problems (single objective) and in some cases it does not suffer the difficulties encountered

by other EA techniques [15]. Research has also shown that PSO usually results in faster

convergence rate than the GAs [16, 19, 46].

Disadvantages: PSO algorithms have more parameters than other algorithms. Some

parameters like w and χ are sensitive. A set of parameters may work well for some

functions but work badly for other functions. The parameters suggested so far are all based

on trial-and-error methods. Thus, how to select appropriate parameters for different

applications is an issue.

2.2.5 Discussion

Like other EAs, the four main stream algorithms reviewed in section 2.2 work with a

population of solutions instead of one solution in each iteration. Working with a number of

solutions provides an EA with the ability to capture multiple optimal solutions in one single

simulation run [1].

Metaheuristic Optimization Methods – A Literature Review

30

The population-based metaheuristic algorithms do not assume any particular

structure of a problem to be solved. The flexible representation makes the algorithms

suitable to be used in a wide variety of problem domains.

GA and DE have two operations, namely selection and search (crossover and

mutation). In the selection operation, better solutions in the current population are

emphasized. In the search operation, new solutions are created by exchanging partial

information among solutions of the mating pool and by perturbing them in their

neighbourhood.

ACO and PSO belong to a discipline called Swarm Intelligence[19, 48]. One of the

basic principles of swarm intelligence is “adaptability”. That is, the ants or swarm are able

to alter their behaviours toward the better solutions.

Regarding implementation difficulty, it seems that PSO and DE are easier because

the formulas are straightforward. ACO is somehow difficult because of the random

decisions and the dynamic probability distribution. GA has the difficulties in encoding

problems into binary format and scaling.

The common issues for these algorithms include integration of constraint-handling

strategies, diversity maintaining, and speed-diversity trade-off. These issues remain open.

2.3 CONSTRAINT-HANDLING METHODS OVERVIEW

The real world optimization cannot escape from handling constraints. Unfortunately, the

original EAs like those reviewed in the previous sections do not have constraint-handling

mechanisms integrated. How to integrate the constraint-handling methods with the EAs

becomes very necessary.

Metaheuristic Optimization Methods – A Literature Review

31

Constraint-handling methods for EAs have been grouped into four categories [22,

49], as follows:

• methods based on preserving feasibility of solutions,

• methods based on penalty functions,

• methods which make a clear distinction between feasible and infeasible solutions,

• other hybrid methods.

We review each of these methods in turn.

2.3.1 Preservation of Feasibility

Preservation of feasibility methods assume that all individuals start at the feasible region. It

does not allow any solutions that violate any of the assigned constraints to evolve to the

next generation. To implement this, firstly, all individuals have to be initialized in the

feasible region. During evolution, any infeasible solutions should be disregarded (rejected)

or fixed (repaired) to be feasible in some way. One example is GENOCOP systems [14]

which use so called specialized operators. By using these operators, the feasible

individuals are transformed into other feasible individuals in order to ensure the offspring

solution vectors are always feasible in any case [37]. The GENOCOP assumed that all

constraints are linear.

In order to keep population size, if any infeasible solutions are disregarded during

evolution, new feasible individuals should be regenerated.

Obviously, the drawback of this constraint-handling method is that the initialization

process may be impractically long or almost impossible for those constrained nonlinear

optimization problems (CNOPs) that have extremely small feasible spaces[50].

Metaheuristic Optimization Methods – A Literature Review

32

Disregarding the infeasible solutions is questionable in EAs. Recent research shows

that maintaining infeasible solutions during evolution can improve the computing

performance [51]. An EA-hard problem can be transformed to an EA-easy problem by

exploiting infeasible solution [52]. Thus, handling constraints by using the preservation of

feasibility approach may not be a good idea unless the problems are simple. “Simple”

means the problem has a large feasible space which makes the initialization easier and the

constraints are linear only.

2.3.2 Penalty Function Approach

Penalty function approach is the most common approach for solving constrained

optimization problems. The penalty functions are used to degrade the quality of an

infeasible solution [37] . In this manner, the constrained problem is transformed to an

unconstrained one by using the modified evaluation function

() () ()F x f x R x= + Ωi

where R is the penalty parameter; ()xΩ is the constraint violation which can be calculated

by

1

| () | , i f () 0 ;
()

0 , o t h e r w i s e .

m
j j

j

g x g x
x

=

>⎧
Ω = ⎨

⎩
∑

where (), 1, 2, ... , jg x j m= are the constraint functions. If no constraint violation occurs,

()xΩ is zero, the penalty is zero, () ()F x f x= ; otherwise, it is positive (minimization

problems are assumed). The penalty parameter R is used to make both of the terms on the

(2.11)

(2.12)

Metaheuristic Optimization Methods – A Literature Review

33

right side of the Equation (2.11) to have the same order of magnitude [1]. R varies from

case to case.

Penalty functions can be static (or stationary) or dynamic (or non-stationary). Static

penalty functions use fixed penalty values R throughout the minimization, while in

dynamic penalty functions, the penalty values R are dynamically modified [1]. Literature

shows, for single objective optimization problems, results obtained using dynamic penalty

functions are almost always superior to those obtained through static function [46].

However, most studies in multi-objective optimization problems (MOOPs) use carefully

chosen static values of R [1].

There are some difficulties in choosing penalty parameters, as indicated by Deb [1]:

• If a smaller than adequate penalty parameter value is chosen, the penalty effect is

less and the resulting optimal solution may be infeasible.

• If a larger than adequate penalty parameter value is chosen, the constraints will be

over-emphasized, and the minimization algorithms usually get trapped in local

minima.

Unfortunately, there is no rule for choosing an adequate penalty parameter but

trial-and-error. Thus, the penalty function based approach for constraint-handling is

problem dependent. This is a major drawback of the approach.

2.3.3 Methods Based on Searching for Feasibility

The constraint-handling methods based on searching for feasibility emphasize a distinction

between feasible and infeasible solutions[22, 37]. One example is the so called

“Behavioural memory method” proposed by Schoenauer and Xanthakis (as cited in [37])

which considers the problem constraints in sequence. That is, it only considers one

Metaheuristic Optimization Methods – A Literature Review

34

constraint at a time. Once a sufficient number of feasible solutions are found in the

presence of one constraint, the next constraint is considered. Eventually, all constraints

will be satisfied.

Another method called “superiority of feasible points” is based on a classical penalty

approach with one notable exception [53]. Each individual is evaluated by the formula:

1

() () () (,)
m

j
j

F x f x r f x t xθ
=

= + +∑

where r is a constant; the original component (,)t xθ is an additional iteration-dependent

function that influences the evaluations of infeasible solutions [37]. This method

distinguishes feasible and infeasible individuals by adopting an additional heuristic rule

suggested earlier in Rechardson et al [54]: for any feasible individual x and any infeasible

individual y: () (), f x f y≺ that is, any feasible solution is better than any infeasible one.

This can be achieved in many ways. The point is to penalize the infeasible individuals such

that they cannot be better than the worst feasible individual.

The third example in this category is the repairing of infeasible individuals,

introduced in GENOCOP III [37] . The method needs to find some feasible individuals as

reference points and then apply an algorithm to repair the infeasible individuals to be

feasible. For example, if an individual s is not feasible, the system selects one of the

reference points, say r from rP (rP is a population that contain all feasible references), and

creates a sequence of random points z from a segment between s and r by generating

(2.13)

Metaheuristic Optimization Methods – A Literature Review

35

random numbers a from the range (0,1): (1)z a s a r= × + − × . Once a fully feasible z is

found, replace s by z .

However, the behavioural memory method requires that there is a linear order of all

constraints, and the order in which the constraints are processed influences the results

provided by the algorithm in terms of total running time and precision [30]. The superiority

of feasible points approach will fail in cases where the ratio between the feasible region and

the whole search space is too small (for example, when there are constraints very difficult

to satisfy) unless a feasible point is introduced in the initial population [30]. The repairing

infeasible individuals approach may be a good choice when an infeasible solution can be

easily transformed into a feasible solution. However this approach is problem-dependent

too since a specific repair algorithm has to be designed for each particular problem [30, 37].

2.3.4 Other Hybrids

Some earlier approaches combine evolutionary computation techniques with deterministic

procedures for numerical optimization problems. One is to combine EA and the direction

set method (as cited in [37]). However, these methods have some limitations as

deterministic methods do.

Another interesting method is to use evolutionary multi-objective optimization

techniques to handle constraints. These multi-objective constraint-handling approaches

can be categorized into two groups:

• approaches transform a constrained optimization problem into an unconstrained

bi-objective optimization problem;

• approaches transform a constrained optimization problem into an unconstrained

multi-objective optimization problem.

Metaheuristic Optimization Methods – A Literature Review

36

However, although a problem is now a multi-objective unconstrained optimization

problem (MOOP), there is no need for good trade-offs between multi-objectives. We want

to find the best possible solutions that do not violate any constraints.

In the following paragraphs, we present a review to the typical approaches for the

two categories of the multi-objective constraint-handling methods. The first group (that is,

bi-objective model) is specifically focused since the model will be adopted in our research.

Approaches for bi-objective optimization model:

The idea for the first group of the multi-objective constraint-handling methods is to

restate a single objective optimization problem in such a way that two objectives would be

considered: the first would be to optimize the original objective function f and the second

would be to minimize

1
() max(0, ())

m

i
i

x g x
=

Φ =∑

where () xΦ is the total amount of constraint violations; () ig x for 1 i m≤ ≤ are the

constraint functions. The optimization problem is transformed to find x that minimize

() ((), ()) F x f x x= Φ . An ideal solution x would have () 0 xΦ = (that is, satisfy all

constraints) and () () f x f y≤ for all feasible y (minimization problem is assumed).

The examples which fall in the bi-objective optimization model can be found in [12,

31, 55-58].

Camponogara and Talukdar [12] proposed a scheme that calculates improvement

directions from Pareto sets defined by the objective function ()f x and constraint violations

()xΦ . The direction search ()/ | |i j i jd x x x x= − − , where , ,i i j jx S x S∈ ∈ and iS and jS are

(2.14)

Metaheuristic Optimization Methods – A Literature Review

37

Pareto sets, is intended to simultaneously minimize all the objectives. The linear search is

performed during the crossover stage of GA. The scheme outperformed GAs based on

penalty methods [12]. However, the scheme has problems to maintain diversity [59]. Using

line search within a GA adds some extra computational cost [30, 59]. It is not clear what the

impact is on the segment chosen to search in the overall performance of the algorithm[30,

59].

Surry et al [55] proposed COMOGA (Constrained Optimization by Multi-objective

Optimization Genetic Algorithms) where the population was ranked based on constraint

violations. One portion of the population was selected based on constraint ranking, and the

rest based on real cost (fitness) of the individuals. “The aim of the proposed approach to

solve this bi-objective problem is based on reproducing solutions which are good in one of

the two objectives with other competitive solutions in the other objective (e.g., constraint

violation)” [59] . COMOGA was tested on a gas network design problem providing

slightly better results than those provided by a penalty function approach. Its main

drawbacks are that it requires several extra parameters and that it has not been tested

extensively [30, 59].

Coello [31] proposed a ranking procedure where “each individual is assigned a rank

based on its degree of dominance over the rest of the population. Feasible individuals are

always ranked higher than infeasible ones, and the degree of constraint violation

determines the rank among infeasible individuals”. This approach was tested on a set of

engineering design problems providing competitive results. Its main drawback is the

computational cost of the technique and its difficulty to handle equality constraints [60].

Metaheuristic Optimization Methods – A Literature Review

38

Zhou et al [56] proposed a ranking procedure based on Pareto Strength [61] for the

bi-objective problem. The simplex crossover operator is used to generate a set of offspring

where the individual with the highest Pareto strength and the solution with the lowest sum

of constraint violation are both selected to take part in the population for the next

generation. The approach was tested on a subset of the well-known benchmark functions.

“The results were competitive but using different set of parameters for different functions,

which made evident the sensitivity of the approach to the values of its parameters”[59].

Similar to [56], Wang and Cai [57] also employed a simplex crossover operator with

a set of parents to generate a set of offspring. Additionally, they used an external archive to

store infeasible solutions with a low sum of constraint violation in order to replace some

random solutions in the current population. The approach provided good results in 13

well-known test problems. However, a different set of values for the parameter were used,

depending of the dimensionality of the problem [59].

Venkatraman and Yen [58] proposed a generic, two-phase framework for

constrained optimization problems using GAs. In the first phase, the objective function is

completely disregarded and the constrained optimization problem is treated as a constraint

satisfaction problem. The second phase starts when the first feasible solution was found.

Now both objectives are taken into account and nondominated sorting [62] is used to rank

the populations. The approach provided good quality results in 11 well-known benchmark

problems but lacked consistency.

Metaheuristic Optimization Methods – A Literature Review

39

Approaches for multi-objective optimization model:

The procedure for the second group of the multi-objective constraint-handing

methods is to redefine the single objective optimization of () f x as a multi-objective

optimization problem in which we will have 1 m + objectives, where m is the number of

constraints. Then any multi-objective optimization techniques to the new multi-objective

vector 1() ((), (),..., ()),mF x f x f x f x= where 1(),..., () mf x f x are the original constraints

of the problem, can be applied. An ideal solution x would thus have () 0 if x ≤ for

 1 i m≤ ≤ (that is, satisfy all constraints) and () () f x f y≤ for all feasible y .

A number of approaches have been developed in solving a multi-objective problem

with objective function and constraints as separate objectives. Some examples are: Coello

[63], Liang et al [64], Ray et al [65-67] and Coello et al [68, 69]. Briefly, these approaches

make use of the multi-objective optimization techniques plus some special considerations

to the objectives of constraint satisfaction. However, no approach dominates. All

approaches have certain drawbacks. For details, please refer to the multi-objective

optimization references such as the one by Deb [1].

It is observed that most approaches that appoint multi-objective constraint-handling

methods are via GAs.

2.4 PSO IN SINGLE OBJECTIVE CONSTRAINED OPTIMIZATION

Although EAs have been successful in many applications, their utilisation in solving

constrained optimization problems remains problematic because their original versions

lack a mechanism to incorporate constraints with the fitness function [30, 59, 60, 70]. As a

member of the evolutionary optimization techniques, PSO offers some advantages over

Metaheuristic Optimization Methods – A Literature Review

40

other algorithms and has proven to be effective and efficient for solving real-valued global

unconstrained optimization problems [16, 20]. For constrained optimization problems,

there have been only a few attempts [70]. These attempts mainly focus on adopting those

constraint-handling methods that have been used in genetic algorithms.

Hu et al [71, 72] presented a modified PSO algorithm for constrained nonlinear

optimization problems. In their research, the preserving feasibility strategy is employed to

deal with constraints. That is, all particles start with feasible individuals. During flying,

only those feasible particles are counted and those infeasible particles are ignored. Eleven

well-known constrained benchmark numerical functions are tested. Results reveal that

PSO can find the optimum for most cases, although some cases need a large population size

and more iterations to converge. However, the computation cost is questionable since it

assumes that all particles start with feasible individuals, which requires a longer

initialization process. This approach also has diversity problems. The computing

performance depends on the initial random population.

Parsopoulos and Vrahatis [46, 73] reported an investigation to appoint the penalty

function approach to deal with constrained optimization problems through PSO. The

simulation results to the six constrained optimization problems and four engineering

optimization problems demonstrated the capability of the PSO method in solving

constrained optimization problems with promising results. The main drawback for this

approach is that many parameters are problem-dependent. The approach has not addressed

the diversity issue.

Pulido and Coello [70] proposed a criterion-based selection scheme which is based

on the constraint dominance concept [1] for handling constraints. The idea is: when two

Metaheuristic Optimization Methods – A Literature Review

41

feasible particles are compared, the particle that has the highest fitness value wins; if one of

the particles is infeasible and the other one is feasible, the feasible particle wins; if both

particles compared are infeasible, the particle that has the lowest value in its total violation

of constraints wins. They also used a turbulence operator to perturb the swarm as to avoid

local convergence. The approach was tested on thirteen benchmark functions with the

competitive results. However, the approach did not perform consistently in problems G5,

G10 and G13 which are considered complicated problems. Also, the constraint violation

measurement seems not easy to implement in this approach.

He et al [74] also adopted the preserving feasibility and searching for feasibility

constraint-handling method in the engineering optimization problems. The drawback for

this approach is the same as [71, 72], that is, a higher computation cost was caused by the

longer initialization process. No diversity control was mentioned in the approach.

Zavala et al [75] proposed PESO (Particle Evolutionary Swarm Optimization

Algorithm) in 2005 for tackling constrained optimization problems. Similar to Pulido

and Coello [70], constraints were handled by the feasibility rules. The approach proposed

two new perturbation operators: “c-perturbation” and “m-perturbation”. The goal of these

operators is to fight premature convergence and poor diversity issues [75] . The simulation

results for the benchmark functions were very competitive. However, the approach did not

achieve a satisfactory result in G13 which has a large search space with a small feasible

region.

Wei and Wang [76] adopted the multi-objective constraint-handling method into

PSO algorithm. The approach converts a single objective constrained optimization

problem into a bi-objective unconstrained problem. Then a particle can find its personal

Metaheuristic Optimization Methods – A Literature Review

42

best and the global best by applying the feasibility rules like those applied in [70, 75]. They

also proposed a three-parent crossover operator to modify the new particle generated from

the previous iteration by the PSO algorithm. The authors claimed that the new crossover

operator would make the offspring having greater probability to locate near the feasible

region. However, the approach has only tested on four simple problems (lower

constrained) with moderately good results. The crossover operator was also questionable

since it disturbs the PSO formulation.

Zielinkski and Laur [77] proposed an approach similar to [70]. The total sum of

constraint violation was used for measurement in the selection rules. The simulation results

showed that the approach was successful in many test functions. It also demonstrates the

approach has some difficulties for the problems that have high dimension and high number

of equality constraints.

He and Wang [78] proposed a co-evolutionary particle swarm optimization for

constrained engineering design problems, where PSO is applied with two kinds of swarms

for evolutionary exploration and exploitation in spaces of both solutions and penalty

factors. The drawback is the penalty factors are problem dependent. Some results reported

from this reference are not feasible.

To summarize, the “feasibility rules” (or selection rules) approach has been attracting

more attention than other constraint-handling methods in PSO. The reason is: PSO

algorithm has straightforward formulas and a fundamental decision is to determine the best

neighbourhood particle lBest and the best personal experience pBest. The feasibility rules

serve this purpose better. The results reported from PESO [75] seems the best-so-far

results. It introduced two perturbation operators which make PSO more stochastic. The

Metaheuristic Optimization Methods – A Literature Review

43

adoption of multi-objective constraint-handling methods in PSO, especially to transfer the

original problem into multi-objective optimization model has not been properly

investigated.

2.5 PSO IN MULTI-OBJECTIVE OPTIMIZATION

There are a number of proposals that discussed the multi-objective optimization using PSO

algorithm.

Hu and Eberhart [79] introduced a dynamic neighbourhood strategy to select the

global best. In their method, one objective called fixed objective must be selected firstly.

Then the distance of the current particle from other particles (in the objective space) is

calculated in terms of the fixed objective function. Then find the nearest m

(neighbourhood size) particles as the neighbours of the current particle based on the

distances. Lastly, find the local optima among the neighbours in terms of the fitness value

of the second objective function. The personal best is determined by the Pareto-dominance

concept. This approach is tested by seven bi-objectives functions with effective results. No

comparison was made with any other models, or the true Pareto fronts for the problems.

How to select the fixed objective and how it affects the results are unknown. The

formulation suits bi-objective problems only.

Coello and Lechuga [80] proposed a grid method. The objective space is divided into

many small hypercubes, and a fitness value is assigned to each hypercube depending on the

number of elite particles that lie in it. The more elite particles the hypercube have, the less

fitness value of it. Then one of the hypercubes is selected by roulette-wheel method. Global

best is a random particle selected from the selected hypercube. The personal best is updated

Metaheuristic Optimization Methods – A Literature Review

44

by the Pareto-dominance concept. This approach is tested by three bi-objective test

functions with effective results. Diversity is well maintained by using a grid method.

However, the implementation for selecting global best is complicated when a large number

of objective functions are involved.

Parsopoulos and Vrahatis [81] adopted the Weighted Aggregation technique in

applying PSO in multi-objective problems. According to this approach, all objectives are

summed to a weighted combination. Then a multi-objective problem is converted into a

single objective problem. The weighted aggregate algorithm needs to be run many times to

produce estimated Pareto optimal points. Therefore, it is computationally expensive.

Parsopoulos et al [82] also introduced the vector evaluated PSO which uses multi

swarms. Each swarm is evaluated using only one of the objective functions. And the best

particle of each swarm is selected to act as the global best particle to another swarm. The

implementation for this approach is complicated since there is information exchange

between multi swarms.

Fieldsend and Singh [83] used a dominated tree for storing the particles, which

consists of a list of composite points ordered by weakly dominated relations. In this method

the selection of the best global in the population is based on its closeness to a particle in the

archive. It has been shown to be significantly better than the methods used in a recent

alternative multi-objective PSO. However, the authors mentioned that the approach may

experience problems if there is little or no relationship between “closeness” in objective

space and “closeness” in decision space[83] .

Salazar-Lechuga and Rowe [82] adopted a fitness sharing concept [84] in PSO

algorithm. The idea of fitness sharing is to distribute a population of individuals along a set

Metaheuristic Optimization Methods – A Literature Review

45

of resources. When an individual is sharing resources with other individuals, its fitness is

disregarded in proportion to the number and closeness to individuals that surround it [85].

The fitness sharing helps to maintain diversity between solutions in the non-dominated

repository. The global best is selected by using Roulette Wheel method from the

repository. The approach was tested and compared with other methods and the

effectiveness of the approach was shown.

Huo et al [86] presented an approach which select a global best in such a way: firstly,

best particles for each objective function are selected; secondly, the mean value of those

particles is calculated. Then the mean value is set as the gBest. This gBest is not the true

position but a virtue position. The personal best is selected by two steps: the first step

calculates the distance between the current particles to the non-dominated archive

solutions; then the archive member with minimal distance to one particle will be selected as

pBest. A distance valve strategy is used for diversity control. The approach was tested by

three functions with good results. However, the parameters were differently set.

There are more than 25 proposals [87] that have addressed multi-objective

optimization using PSO algorithm. However, the majority of them are constraint free.

Two papers addressed the constrained multi-objective optimization using PSO algorithm.

Ji [88] presented a divided range multi-objective PSO for distributed computing. For

constraint-handling, the author adopted the symbiosis mechanism where the feasible

particles evolve towards Pareto-front; and infeasible particles evolve toward feasibility

guided by an unfeasibility function. A gradually decreased threshold is used for the

proportion of infeasible particles. The approach was tested by three constrained MO

functions. The author claimed that the Pareto fronts were achieved but no detailed results

Metaheuristic Optimization Methods – A Literature Review

46

were given. The unfeasibility function used to guide the infeasible particles is unclear.

Reddy and Kumar [89] presented EM-MOPSO which combines PSO technique with

Pareto dominance criteria to evolve non-dominated solutions. The constraint-handling is

based on the constraint dominance concept [1]. The global best particle (gBest of lBest) is

randomly selected from the ERP (an external repository) where all non-dominated

solutions are stored. The personal best particle is determined by the Pareto-dominance

concept. The approach was tested by four constrained MO functions with the promising

results. However, the implementation looks very complicated and the use of ERP makes

the computation expensive.

As we can see, constrained multi-objective optimization using PSO algorithm has not

been well studied yet.

2.6 SUMMARY

This chapter has reviewed the popular metaheuristic optimization algorithms and the

constraint-handling methods in evolutionary optimization. A review of PSO in constrained

optimization and in multi-objective optimization has also been presented.

The population-based algorithms have the ability to capture multiple optimal

solutions in one single simulation run which leads to a high computing performance. The

flexible representations make the algorithms appropriate to be used in a wide variety of

problem domains. The four population-based algorithms (that is, GA, DE, ACO and PSO)

and their pros and cons have been specially focused in the review. GA and DE use

operators to produce better population for the next generation. ACO and PSO are able to

alter their behaviours toward the better solutions by their “adaptability” feature. In regard

Metaheuristic Optimization Methods – A Literature Review

47

to implementation difficulty, PSO and DE are easier because the formulas are

straightforward. The common open issues for these algorithms are integrating

constraint-handling strategies, diversity maintaining, and speed-diversity trade-off.

A review of the four types of constraint-handling mechanisms has been conducted.

The preserving feasibility constraint-handling methods are easy to implement; but they are

not efficient since a long initialization process is needed. Since the penalty factors are

problem-dependent, the applicability is restricted by penalty-based constraint-handling

approaches. The methods based on searching for feasibility also have some drawbacks like

problem-dependent. Comparatively, the multi-objective constraint-handling methods offer

some advantages over other approaches. We have specifically reviewed the literature in

multi-objective constraint-handling methods.

The state-of-the-art PSO in single objective constrained optimization has been

reviewed. Most of the papers focus on adopting those constraint-handling methods that

have been used in GAs in PSO algorithm. The “selection rules” based constraint-handling

approach has been popular than the others in PSO. Integrating the multi-objective

constrained-handling method with the PSO algorithm is in need of further study.

 Lastly, the PSO in multi-objective optimization has been reviewed. Most

multi-objective PSO proposals are constraint free. Constraint-handling in multi-objective

optimization problems via PSO has not been well investigated.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

48

Chapter 3

A MULTI-OBJECTIVE

CONSTRAINT-HANDLING METHOD WITH

THE PSO ALGORITHM

3.1 INTRODUCTION

In Chapter 2, we reviewed the most popular metaheuristic optimization algorithms and

the constraint-handling methods. It is apparent that constraint-handling in evolutionary

optimization remains problematic. The drawback for the preserving feasibility method

is that the initialization process may be impractically long or almost impossible for those

CNOPs (Constrained Nonlinear Optimization Problems) that have extremely small

feasible spaces [50]. The computation is very costly. The penalty function approaches

have drawbacks in finding appropriate penalty factors which need to be carefully

fine-tuned [60]. Therefore, they are problem-dependent [1, 32]. The criteria-based

selection approaches are becoming popular because the PSO algorithm has

straightforward formulas and the selection rules make the comparison (between

particles) possible, which helps in determining the best neighbourhood particle lBest and

the best personal particle pBest. The adoption of the multi-objective constraint-handling

A Multi-Objective Constraint-Handling Method with PSO Algorithm

49

method in PSO, especially to transfer the original problem into multi-objective

optimization models, needs further investigation.

Multi-objective constraint-handling was firstly proposed by Fonseca and Fleming

back in 1995 (as cited in [59]). The main idea is to treat the constraints as extra

objectives. By doing so, an original single objective constrained optimization problem

can be transformed into a multi-objective unconstrained optimization problem. Then the

techniques for multi-objective optimization can be employed. Since 1995, a number of

models have been developed using this idea. Several representative examples include

COMOGA [55], Camponogara and Talukdar [12], Mezura-Montes and Coello [31, 90,

91] and Jimenez et al.[92]. Unfortunately, these models have some shortcomings. For

example, some of them add extra computational cost [12, 31]; others require extra

parameters [55, 68, 92]. A detailed review of these models has been presented in

Chapter 2. It is noticed that most of these models are built on GAs.

In this chapter, we propose an approach to integrate the multi-objective constraint-

handling mechanism with a dynamic neighbourhood PSO algorithm. By converting a

single objective constrained optimization problem into a bi-objective unconstrained

optimization problem, the proposed approach aims to minimize the original objective

function and the total amount of constraint violations (the second objective). The

concept of Pareto domination from multi-objective optimization is adopted in

determining a particle’s best past experience and the best social experience in the group.

The second objective is used as a benchmark to select particles (defined in selection

rules). An adaptive inertia weight factor and a minor perturbation are introduced to

improve the convergence and the diversity. The dynamic neighbourhood topology is

A Multi-Objective Constraint-Handling Method with PSO Algorithm

50

proposed for improving the algorithm performance. The simulation results to the

thirteen numerical benchmark functions will be presented.

The rest of the chapter is organized as follows: Section 3.2 presents the problem

formulation and transformation; Section 3.3 describes the proposed multi-objective

constraint handling incorporating with a dynamic neighbourhood PSO algorithm.

Section 3.4 presents the simulation results to the numerical benchmark functions.

Section 3.5 presents the results of experiments of two comparative studies. Section 3.6

summarizes the chapter.

3.2 PROBLEM FORMULATION AND TRANSFORMATION

As mentioned in Chapter 1, a general single objective constrained optimization problem

can be stated as:

minimize ()

subject to () 0, 1,2,..., ;i

f x
g x i m

⎫
⎬≤ = ⎭

where m is the total number of constraints. An equality constraint h is regarded as an

inequality constraint with a toleranceδ , that is, | () | 0jh x δ− ≤ .

The multi-objective constraint-handling method (as addressed in Chapter 2)

transforms a global optimization problem into a bi-objective problem where the first

objective is to optimize the original objective function ()f x and the second is to

minimize

1

 () max (0, ())
m

i
i

x g x
=

Φ =∑

A Multi-Objective Constraint-Handling Method with PSO Algorithm

51

where ()xΦ is a total amount of constraint violations. From the above equation, if a

solution vector 1 2 (, ,...,)nx x x x= satisfies all constraints, that is, () 0ig x ≤ for

 1,2,...,i m= , ()xΦ returns a zero. Otherwise, it returns a positive number indicating

the total amount of constraint violations. Thus, the optimum value for ()xΦ is zero.

Therefore, the single objective constrained optimization problem as in Equation (1.2)

can be transformed into:

1

minimize F() = (() , ())

where () max (0, ())
m

i
i

x f x x

x g x
=

Φ ⎫
⎪
⎬Φ = ⎪⎭

∑

Equation (3.1) is a bi-objective unconstrained optimization problem.

For a general multi-objective optimization problem, the ideal procedure is to find a

set of Pareto-optimal solutions first and then choose one solution from the set by using

some other higher-level information for consideration [1]. For global constrained

optimization as in model (3.1), constraint satisfaction is a must and it is more important

than real objective function minimization. That is, if a solution is not feasible, no matter

how fit its objective function is, it is useless. In other words, if a solution is feasible, even

if it is not fit enough, it can be still considered as a candidate solution. Therefore, the

second objective 0Φ = (totally constraint satisfied) or εΦ ≤ (total constraint nearly

satisfied), can be used as higher-level information to guide decision making during the

search. The ε is a small positive number which indicates the feasibility tolerance. This

is the so called “decision making during the search” approach in multi-objective

(3.1)

A Multi-Objective Constraint-Handling Method with PSO Algorithm

52

optimization [93]. Figure 3.1 below is an example to illustrate the Pareto-front, feasible

solutions and the desired solution to the established bi-objective optimization problem

as described by Equation (3.1), and the final solution will fall in A to B depending on

how ε is selected.

Most multi-objective optimization methods use a Pareto dominance concept to

search for non-dominated solutions, since this concept allows a way to compare

solutions with multiple objectives. The definition for Pareto dominance can be found

from Chapter 1.

Figure 3.1 The Pareto-optimal front, feasible solutions and desired constrained
minimum for a bi-objective constraint handling optimization problem

A Multi-Objective Constraint-Handling Method with PSO Algorithm

53

3.3 A MULTI-OBJECTIVE CONSTRAINT-HANDLING

METHOD WITH A DYNAMIC NEIGHBOURHOOD PSO

ALGORITHM

3.3.1 PSO Algorithm

The generic local variant model PSO formulation in Equation (2.9) and Equation (2.10)

are adopted. If a maximum velocity maxv is used, PSO algorithm can be rewritten as:

1 1 2 2

(1) () () () () () () ()

(1) (1)
m ax m ax

(1) (1)
m ax m ax

[+ ()+ ()]

,

,

i d i d id id i d id i d i d

i d i d

i d i d

t t t t t t t t

t t

t t

v w v c r pB est x c r lB est x

v v if v v

v v if v v

χ+

+ +

+ +

= − −

= >

= − < −

(1) () (1)
id id id

t t tx x v+ += +

Although Clerc and Kennedy [94] suggested the use of a constriction coefficient

 χ to the velocity formula and showed that the constriction coefficient can converge

without using maxv , their suggestion is based on the unconstrained optimization

experiments. In order to ensure convergence and explore a wider area, in this research,

both χ and maxv will be used.

Neither the original PSO algorithm nor its variations have a mechanism to

incorporate constraint-handling with the algorithms. The parameters suited better for

unconstrained problems may not be suitable for constrained problems. In order to

(3.2)

(3.3)

A Multi-Objective Constraint-Handling Method with PSO Algorithm

54

integrate constraint handling with PSO, we introduce a few selection rules to determine

the particles’ behaviour in the next section.

3.3.2 Selection Rules

In the PSO algorithm, the main task is to determine a particle’s best past location pBest

and which particle is the best particle lBest among a neighbourhood. For a single

objective optimization problem, this can be easily determined by the objective function.

Considering our optimization model is now a bi-objective unconstrained problem, the

notion of dominance comparison can be adopted [1]. The following selection rules are

defined:

• Non-dominated particles are better than dominated ones.

• When two particles do not dominate each other, a particle with lower Φ

(constraint violations) is better than a particle with higher Φ .

These two rules will be used in comparing particles.

3.3.3 Performance-Based Dynamic Neighbourhood Topology

Neighbourhood topology determines how particles are allocated in a neighbourhood and

how particles communicate with each other. Several neighbourhood topologies have

been proposed by Kennedy et al [95, 96] . It was found that von Neumann topology

(north, south, east and west, of each particle placed on a two dimensional lattice) is an

overall winner among many different communication topologies [96]. However, the von

Neumann topology is difficult to implement.

Two most commonly used neighbourhood topologies are listed as follows:

A Multi-Objective Constraint-Handling Method with PSO Algorithm

55

• Circle (ring) neighbourhood topology: each individual is connected to its k

immediate neighbours only, for example, if k is 2, a particle with index i will

have the particle index 1 i − and particle 1 i + as its neighbours. It is realized

that a particle and its k neighbours are not geographically close neighbours in

both search space and objective space. They are conceptually neighbours

according to their indexes.

• Star neighbourhood topology: every individual is connected to every other

individual. This is a communication intensive topology since each particle has

all other particles in the swarm as its neighbours. The star topology is a global

model of PSO.

Figure 3.2 illustrates the circular ring ((a)) and the star ((b)) neighbourhood

topologies. The circular ring topology tends to allow for broader exploration of the

problem space. When one particle finds a promising region, only its immediate

neighbours will initially be drawn to that area. No other particles in the swarm will know

about that region unless their own immediate neighbours move there. In the star

topology, if one particle finds a promising region, all other particles of the swarm are

immediately drawn to it. As a result, the swarm generally converges more quickly but

sometimes is trapped in a local optimal point in the space. Generally, the circular ring

topology propagates information slowly and the star topology propagates information

quickly [44, 95]; the circular ring topology can explore broader spaces than the star

topology.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

56

Figure 3.2 Two most common neighbourhood topologies for PSO

The circle (ring) topology is adopted in our implementation. In order to improve

the computation efficiency, a performance-based dynamic circular ring topology is

proposed below.

Performance-based dynamic circular ring neighbourhood topology

Hypothesis: Allocating particles that have similar performance in a neighbourhood is

more efficient than allocating particles randomly in a neighbourhood in PSO.

This hypothesis is inspired by the human social networks and the theory of

sociometry (the study and measurement of interpersonal relationships in a group of

people) [97]. In human social activities, people with the same or similar degrees of

interests or performance generally communicate more efficiently. For example, in a

university’s scenario, an academic’s career includes a few steps including Level A

(Associate Lecturer), Level B (Lecturer), Level C (Senior Lecturer), Level D (Associate

Professor) and Level E (Professor). Level A academics adopt Level B’s experiences to

promote to Level B; Level B academics learn experiences from Level C to move onto

A Multi-Objective Constraint-Handling Method with PSO Algorithm

57

Level C. And so forth. Each individual learns from his/her closer (in terms of academic

performance) neighbours.

Performance rules: Based on the above hypothesis, the particles with a similar level of

performance should be allocated in a neighbourhood. The next question is how to

evaluate the particles’ performance. A modified constraint dominance concept is

adopted as performance rules for our specific multi-objective constraint-handling

optimization problems, as follows:

• If two particles are both feasible, that is, εΦ ≤ , the one with the lower f

wins.

• If the above is not true, the particle with lower Φ wins (this covers the

situation where one particle is feasible and the other is not).

The performance rules will be used for sorting particles in the dynamic

neighbourhood topology.

Dynamic neighbourhood topology: Initially, each individual is connected to its k

immediate neighbours only (same as the circular ring topology). After each iteration, all

particles in the swarm are sorted according to the performance rules. Once sorted, the

particles in the swarm are reindexed. Although a particle i still has its k immediate

neighbours connected, these k particles may not be those particles in the last iteration.

They are particles close to each other in terms of their performance. For our

multi-objective constraint-handling model (Equation (3.1)), this means that a particle

will have its geographically closer particles (in solution space) as its neighbours.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

58

Figure 3.3 illustrates the idea of the dynamic neighbourhood topology. Originally,

the five particles (A, 1), (B, 2), (C, 3), (D, 4), and (E, 5) (where the first item in the

brackets is the particle object, the second item in the brackets is the index) form a

circular ring topology. Supposing the neighbourhood size is 2, the five groups of

neighbourhood are: ABC, BCD, CDE, DEA and EAB. After sorting, the new groups of

neighbourhood become: ABE, BEC, ECD, CDA, and DAB. The sorting operation has

actually changed the particles’ indexes.

Figure 3.3 Illustration of the dynamic neighbourhood topology

3.3.4 The Proposed Algorithm

Figure 3.4 and Figure 3.5 illustrate the proposed algorithm which integrates the

multi-objective constraint-handling method with PSO algorithm. Figure 3.4 is the data

flow diagram and Figure 3.5 is the corresponding pseudo code. Compared with the

original PSO, the proposed algorithm has the following features:

A Multi-Objective Constraint-Handling Method with PSO Algorithm

59

• Whenever calculating fitness, both objectives f and Φ need to be evaluated;

• A particle’s best neighbour particle (lBest) is determined by the following steps:

o Find all the non-dominated particles in the neighbourhood;

o If there is only one non-dominated particle in the neighbourhood, select it

as lBest; otherwise, select one with the lowest Φ as lBest (follows

selection rules).

• A particle’s personal best, pBest, is determined by the selection rules, that is, if a

particle’s new location is better than its best previous location, the pBest is

updated.

• A minor perturbation with the probability of p is introduced after calculating

the next particle position. The aim for using perturbation is to keep population

diversity and to prevent premature convergence.

• After each iteration, apply the sorting algorithm to reindex particles according to

their performance (follows performance rules). The particles with similar

performance will be allocated in the neighbourhood.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

61

Figure 3.5 Pseudo code of the proposed multi-objective constraint-handling method
with PSO algorithm

A Multi-Objective Constraint-Handling Method with PSO Algorithm

62

3.4 NUMERICAL OPTIMIZATION SIMULATION

There are thirteen well-known numerical benchmark functions named G1, G2, …, G13.

These functions can be found from many papers such as in references [22, 23, 37]. They

are also included in the Appendix I of this thesis. These functions have been popularly

used for optimization algorithm testing for years because they represent a wide variety

of optimization problems including linear and nonlinear in objective and constraint

functions, equality and inequality constraints, large and small dimensions, large and

small search spaces, large and small feasible regions,

3.4.1 Test Functions

The numerical test functions and their features are listed in Table 3-1 (taken from [70]),

where n is the number of decision variables (that is, dimensions), LI is the number of

Linear-Inequality constraints, NI is the number of Nonlinear-Inequality constraints, LE

is the number of Linear-Equality constraints and NE is the number of

Nonlinear-Equality constraints.

The relative size of feasible space ρ suggested by Michalewicz and Schoenauer

[49] in Table 3-1 is the ratio between the feasible and the total search (feasible and

infeasible) region of each of these problems. It is calculated by the following

expression: | | / | |F Sρ = , where | F | is the number of feasible solutions and | S | is the

total number of solutions randomly generated. In Table 3-1, S = 1,000,000 random

solutions [70].

A Multi-Objective Constraint-Handling Method with PSO Algorithm

63

Table 3-1 The 13 constrained nonlinear optimization test functions

TF n Type ρ LI NI LE NE

G1 13 Quadratic 0.0003% 9 0 0 0

G2 20 Nonlinear 99.9973% 1 1 0 0

G3 10 Polynomial 0.0026% 0 0 0 1

G4 5 Quadratic 27.0079% 0 6 0 0

G5 4 Cubic 0.0000% 2 0 0 3

G6 2 Cubic 0.0057% 0 2 0 0

G7 10 Quadratic 0.0000% 3 5 0 0

G8 2 Nonlinear 0.8581% 0 2 0 0

G9 7 Polynomial 0.5199% 0 4 0 0

G10 8 Linear 0.0020% 3 3 0 0

G11 2 Quadratic 0.0973% 0 0 0 1

G12 3 Quadratic 4.7697% 0 729 0 0

G13 5 Nonlinear 0.0000% 0 0 1 2

3.4.2 Parameters

For each case, 30 independent runs have been performed. PSO parameters are:

1 2 2.0;c c= = 0.63χ = ; max 0.5 ()V U L= −i ; number of particles is 100; the maximum

iteration maxi is set to 10,000; the inertia weight max0.25 (1 /);w i i= −i the perturbation

probability 0.1p = ; a potential solution is considered feasible when its

1.0 05EεΦ< = − ; the tolerance allowed for an equality constraint is 1.0 03Eδ = − .

3.4.3 Results and Discussion

The experiment results are presented in Table 3-2 and Figure 3.6 to Figure 3.18. Table

3-2 consists of the best results, the mean results and the standard deviations found in 30

A Multi-Objective Constraint-Handling Method with PSO Algorithm

64

independent runs for each test function. Figure 3.6 to Figure 3.18 illustrate the algorithm

convergence from the best runs for each function.

According to Table 3-2, the proposed multi-objective constraint-handling PSO

algorithm can find solutions to most benchmark functions. From the quality search point

of view (the best results found), the results match the well-known solution well (or even

better) in eight out of thirteen functions, that is, G3, G5, G6, G8, G9, G11,G12 and G13.

The results are close to the well-known solutions in function G4, G7 and G10. The best

results found for function G1 and G2 are not very satisfactory. Regarding to algorithm

consistency, Table 3-2 demonstrates most standard deviations are small in relation to

their magnitudes.

It is noticed the algorithm works well for function G5, G10 and G13. These three

functions are considered very complex problems because G5 has both inequality and

equality constraints and these three functions have very small feasible regions (refer to

Table 3-1).

Figure 3.6 to Figure 3.18 demonstrate the algorithm can converge very fast (in less

than 100 iterations) in seven functions, that is, G3, G6, G7, G8, G9, G11 and G12. The

algorithm converges reasonably fast (between 2000 - 4000 iterations) in four functions,

that is, G4, G5, G10 and G13. The algorithm converges slowly in two functions, that is,

G1 and G2 (more than 10000 iterations).

The tolerance allowed for equality constraints δ and for feasibility criterion ε

has great impact on the algorithm performance. A largerδ and a larger ε will make the

search easier. In our simulation, we selected a reasonably small 1.0 03 Eδ = − and fairly

small 1.0 - 05 Eε = to cover a wide range of test functions.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

72

3.5 COMPARATIVE STUDY

3.5.1 Quality and Consistency Comparison

Another similar study found at the same time is by Flores-Mendoza and Mezura-Montes

[98] who compared their approach with the state-of-the-art algorithms and claimed their

approach is effective. Thus, a comparative study is performed to compare our approach

with [98]. Table 3-3 lists the comparison results. For easy identification, the results from

the approach presented in this chapter is referred to “This thesis”, and results from [98]

is referred to “Reference”.

Table 3-3 demonstrates that the proposed approach is able to provide similar

search results to or better search results than those in [98] in ten functions (G3, G5, G6,

G7, G8, G9, G10, G11, G12 and G13) (refer to Best and Mean columns). The proposed

approach also achieved better consistent results in above ten functions (refer to the Std.

Dev. column). In particular, the proposed approach outperformed in complex problems

G5, G10 and G13. However, our approach is unable to perform better in function G1 and

G2. Since both G1 and G2 are high dimensional problems, it seems that the proposed

approach needs to be improved for solving high dimensional optimization problems.

This may be explained by the “No free lunch” theorem [99].

In our simulation experiments, 100 particles with a maximum 10000 iterations are

used for all functions. Although many functions can converge in less than 2000

iterations (refer to convergence graphs Figure 3.6 to Figure 3.18), the maximum number

of iterations is used for trying to cover those functions with slow convergence rate like

G1, G2 and G5. It looks that our approach used a larger number of function evaluations

(1,000,000) than the compared reference (160,000). The computation cost is not a

A Multi-Objective Constraint-Handling Method with PSO Algorithm

73

significant problem in our multithreaded object-oriented implementation (details in

Chapter 4).

Table 3-3 Best, mean and standard deviation results comparison from 30 independent
runs

TF Optimal Case Best Mean Std. Dev.

G1 -15.00000
This thesis -14.0711764 -12.16478164 9.24E-01

Reference -15 -15 0.000

 G2 -0.803619
This thesis -0.61760436 -0.46054886 6.07E-02

Reference -0.802629 -0.713879 0.046231

G3 -1.000000
This thesis -1.005059969 -1.004246441 1.83E-03

Reference -0.641 -0.154 0.170

G4 -30665.539
This thesis -30663.17206 -30658.01627 2.95E-00

Reference -30665.539 -30665.539 7.4E-12

G5 5126.4981
This thesis 5126.484102 5127.57779 3.71E-00

Reference 5126.498 5135.521 12.385

G6 -6961.81388
This thesis -6961.826142 -6961.826052 6.33E-05

Reference -6961.814 -6961.814 2.810E-05

G7 24.306209
This thesis 24.30753104 24.60382281 7.59E-01

Reference 24.366 24.691 0.227

G8 -0.095825
This thesis -0.095825041 -0.095825041 4.16E-17

Reference -0.095825 -0.095825 4.234E-17

G9 680.630057
This thesis 680.630046 680.6300462 1.12E-07

Reference 680.638 680.674 0.030

G10 7049.3307
This thesis 7049.212219 7176.001082 141.694

Reference 7053.963 7306.466 222.824

G11 0.750000
This thesis 0.748990016 0.748990001 8.45E-10

Reference 0.749 0.753 6.537E-03

G12 -1.000000
This thesis -1.000000000 -1.000000000 0.00E-00

Reference -1.000 -1.000 0.000

G13 0.053950
This thesis 0.053962476 0.133453421 8.89E-02

Reference 0.066845 0.430408 0.239807

A Multi-Objective Constraint-Handling Method with PSO Algorithm

74

3.5.2 Dynamic Neighbourhood and Static Neighbourhood

Comparison

In order to see the difference between the dynamic neighbourhood topology and the

static neighbourhood topology, two experiments have been designed as follows:

Target-based Experiment (TBE): For each optimization problem, set a target

value for its fitness function, and then calculate the number of iterations needed to reach

the target for both dynamic neighbourhood and static neighbourhood topologies. To

implement it, a criterion C can be defined to indicate the minimum distance from a

solution f to the predefined target T . For example, the numerical function G5 has a

well-known solution (target) T = 5126.4981, if the criterion 0.001C = is selected, the

iteration stops once a solution f meets the criterion | | f T C− ≤ . In case there is no

solution meeting the criterion found, a maximum number of iterations is needed.

Iteration-based Experiment (IBE): For each optimization problem, set a

maximum number of iterations, and then calculate the best results found at the end of

maximum iterations.

Because the objective for these two experiments is to evaluate the performance

between the dynamic neighbourhood topology and the static neighbourhood topology,

the algorithm for both topologies are the same. Any function out of the thirteen

benchmark functions can be selected for this purpose. The experiment results based on

the TBE and IBE for the five numerical functions - G5, G6, G7, G9 and G10 are listed

below. The results for other functions are not included in this chapter since the five

functions should be sufficient to demonstrate the influence of the idea.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

75

Table 3-4 consists of the lowest, average and highest number of iterations needed

from 30 independent runs based on TBE. The criterion value C = 0.001 for G5, G6 and

G9; C = 0.01 for G7 and C = 0.1 for G10. The reason is that both G7 and G10 have a

target minimum which is difficult to achieve. If a very small C is selected, it is possible

that the criterion can never be reached through all iterations. According to Table 3-4, the

average number of iterations needed (4379 for G5, 886 for G6, 9310 for G7, 303 for G9

and 9460 for G10) in the dynamic neighbourhood topology are less than those from the

static neighbourhood (6952 for G5, 8503 for G6, 9914 for G7, 8968 for G9 and 9889 for

G10). Particularly, the algorithm in the dynamic neighbourhood topology converges

faster than in the static neighbourhood topology in function G6 and G9 where the

maximum number of iterations (1827 for G6 and 490 for G9) in the dynamic

neighbourhood topology are less than the minimum numbers of iterations (5782 for G6

and 3731 for G9) in the static neighbourhood topology.

Table 3-5 includes the best, the average and the worst results found from 30

independent runs based on IBE for the test function G5, G6, G7, G9 and G10. The

maximum iteration is set to 4000. From the Table 3-5, the best, average and the worst

results found from the dynamic neighbourhood topology are all better than the results

achieved from the static topology.

Figure 3.19 to Figure 3.23 illustrate the convergence graphs of the average results

found from these two neighbourhood topologies based on the TBE. As indicated from

these results, the proposed dynamic neighbourhood topology can find solutions

faster than the static neighbourhood topology. The comparative experiment

results support the hypothesis proposed in Section 3.3.3.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

76

Table 3-4 Lowest, average and highest iteration needed for dynamic and static
neighbourhood topology from 30 independent runs

TF Optimal
(Target) Criteria Neighbourhood

Type Lowest Average Highest

G5 5126.4981 0.001
Dynamic 105 4379 9990

Static 352 6952 9999

G6 -6961.81388 0.001
Dynamic 113 886 1827

Static 5782 8503 9626

G7 24.306209 0.010
Dynamic 3609 9310 9999

Static 8344 9914 9999

G9 680.630057 0.001
Dynamic 200 303 490

Static 3731 8968 9999

G10 7049.3307 0.100
Dynamic 5905 9460 9999

Static 9227 9889 9999

Table 3-5 Best, average and worst results found for dynamic and static neighbourhood
topology from 30 independent runs (maximum iteration = 4000)

TF Optimal
Neighbourhood

Type
 Best Average Worst

G5 5126.4981
Dynamic 5126.484102 5132.648157 5178.538574

Static 5126.484123 5133.324432 5201.465006

G6 -6961.81388
Dynamic -6961.826137 -6961.826003 -6961.825799

Static -6961.824322 -6960.091727 -6948.589191

G7 24.3062090
Dynamic 24.33202325 25.59205796 27.64933147

Static 25.8460636 32.19146368 38.767848

G9 680.630057
Dynamic 680.6300462 680.6300466 680.6300474

Static 680.6621935 681.3825028 683.5746460

G10 7049.3307
Dynamic 7051.067080 7285.291824 8109.872342

Static 7105.547735 7665.149708 8945.864704

A Multi-Objective Constraint-Handling Method with PSO Algorithm

80

rules. A particle is always attracted by those at the front. The total force applied to each

particle is in the same (or similar) direction. This will speed up the search process.

This can be explained in the university scenario. A professor discovers a good idea

on how to get an ARC (Australia Research Council) discovery grant. If the professor’s

immediate neighbours are on a lower level, say lecturers, then the professor may instruct

his/her neighbours to apply for the ARC grant by using his/her idea. Since the lectures’

capability (velocity in PSO) is limited and they are constrained by other commitments

such as teaching, the possibility of success for the lecturers to get the ARC grant is not

very high. On the other hand, if the professor’s immediate neighbours are other

professors or associate professors with the same goal focusing on research, the

communication between the professor and his/her neighbours would be more efficient

and lead to a greater likelihood of success.

3.6 SUMMARY

A multi-objective constraint-handling method with a dynamic neighbourhood PSO

algorithm has been proposed for tackling single objective constrained optimization

problems. By adopting a multi-objective constraint-handling method, a single objective

constrained optimization problem is converted to a bi-objective unconstrained

optimization problem. Then the concept of Pareto dominance from multi-objective

optimization techniques is used. An adaptive inertia weight factor and a minor

perturbation are adopted to improve the convergence and the diversity. The simulation

results for the well-known benchmark functions have demonstrated the proposed

approach is effective and efficient in quality search and consistency.

A Multi-Objective Constraint-Handling Method with PSO Algorithm

81

Compared with the recent research results, the proposed approach is able to

provide similar good or better quality and consistent results in ten out of thirteen

functions. In particular, the proposed approach outperforms function G5, G10 and G13

which are considered complex problems. However, our approach is unable to perform

better in function G1 and G2. Since both G1 and G2 are high dimensional problems, it

seems that the proposed approach needs to be improved for solving high dimensional

optimization problems. This may be explained by the “No free lunch” theorem [99].

Based on the experiment results from the five test functions G5, G6, G7, G9 and

G10, the proposed performance-based dynamic neighbourhood has proved to be able to

find solutions faster than the static topology. It reveals that the performance

improvement by the dynamic neighbourhood topology is significant for some functions

like G6 and G9. For functions G5, G7 and G10, although the improvement is not

obvious, it still outperforms the static neighbourhood topology. The Iteration-based

experiment results demonstrate that the dynamic neighbourhood topology can find

better results than static neighbourhood topology. These results support the hypothesis

that “Allocating particles that have a similar performance in a neighbourhood is more

efficient than allocating particles randomly in a neighbourhood in PSO”. We argue that

communication is more effective between individuals which are in the same or similar

performance group.

This study is one of the few attempts to adopt the multi-objective

constraint-handling method into PSO algorithm.

Constrained Multi-objective Optimization Using PSO Algorithm

82

Chapter 4

CONSTRAINED MULTI-OBJECTIVE

OPTIMIZATION USING PSO ALGORITHM

4.1 INTRODUCTION

Chapter 3 presented a multi-objective constraint-handling method incorporating with PSO

algorithm for single objective constrained optimization problems. The target for this

chapter is to solve constrained multi-objective optimization problems using PSO

algorithm.

Most real-world search and optimization problems involve multiple objectives (MO)

that need to be achieved simultaneously. The presence of the constraints brings difficulties

in optimization since the search space has to be restricted in feasible regions. In solving

MO problems, three goals need to be achieved [1]: find a set of solutions as close as

possible to the true Pareto-optimal front; find a set of solutions as diverse as possible; and

find a set of solutions as many as possible.

Population-based optimization techniques such as GAs, PSO, DE and ACO have

been a popular choice for MO problems. The main reason is that these algorithms are

capable of finding a set of Pareto-optimal solutions in a single run. With the success of the

PSO in single objective optimization, researchers are motivated to extend the use of PSO in

Constrained Multi-objective Optimization Using PSO Algorithm

83

MO problems. In order to apply PSO algorithm in multi-objective optimization problems,

two main decisions need to be made: the first is how to determine a particle’s personal best

location; and the second is how to select the best particle among a neighbourhood (gBest or

lBest). Up to now, a number of strategies (more than twenty five [87]) that adopt PSO

algorithm in MO problems have been proposed. Some examples are: dynamic

neighbourhood [79], grid method [80], weighted aggregation [81], multi-swarm [82],

dominated tree [83], fitness sharing [85], maximin strategy [100] and Huo et al [86]. A

detailed review can be found in [87]. However, most of these approaches are constraint

free. How to integrate constraint-handling methods with the multi-objective PSO has

motivated this research.

There are mainly two papers that have addressed the constrained multi-objective

optimization by using PSO algorithm [88] [89]. However, they have some drawbacks as

stated in Chapter 2.

 In this chapter, we also adopt the constraint dominance concept, and propose an

easy-to-implement PSO algorithm for tackling constrained multi-objective optimization

problems. The proposed approach defines two sets of rules for determining the cognitive

and social components of the PSO algorithm. The simulation results to the four constrained

multi-objective optimization problems will be presented.

The rest of the chapter is organized as follows. Section 4.2 presents the proposed

approach for constrained multi-objective optimization problems including the selection

rules and the modified PSO algorithm. Section 4.3 presents the experiment results to the

four test functions. Section 4.4 discusses the performance issues of the proposed approach.

Section 4.5 summarizes the chapter.

Constrained Multi-objective Optimization Using PSO Algorithm

84

4.2 PROPOSED APPROACH

4.2.1 Problem Description and Constraint Dominance

As stated in Chapter 1, a general multi-objective constrained optimization problem consists

of a decision vector 1 2(, ,...,)T
nx x x x= , an objective function vector

1 2() (, ,..., () () ())kf x f f fx x x= and a constraint function vector 1 2() (, ,...,() () ())mg x g g gx x x= .

The problem can be stated as to find *x which

m in im ize (), 1, 2 , ...

sub ject to () 0 , 1, 2 , ...
j

i

f x j k

g x i m

= ⎫⎪
⎬

≤ = ⎪⎭

where k is the total number of objective functions and m is the total number of constraints.

From Chapters 2 and 3, the feasibility of a solution can be assessed by its total

amount of constraint violations, described by

1
 () max(0, ())

m

i
i

x g x
=

Φ =∑

If a solution satisfies all constraints, ()xΦ returns a zero; the solution is feasible.

Otherwise, ()xΦ returns a positive number; the solution is infeasible. Considering an

absolute equality is difficult to achieve in implementation, we can use a feasibility criterion

ε to evaluate a solution’s feasibility, that is, a solution x is considered feasible if its

 ()x εΦ ≤ (ε is small positive number).

Constrained Multi-objective Optimization Using PSO Algorithm

85

The constraint dominance concept is adopted in the proposed approach. The

definition can be found in Chapter 1.

4.2.2 Selection Rules

Based on the constraint dominance concept, we propose the selection rules for determining

pBest and lBest of the PSO algorithm, as follows.

Rule Set 1: Personal best particle updating rules

Suppose a particle’s new location is pNew and its personal best location in the history

is pBest:

• If both pNew and pBest are feasible, and if pNew dominates pBest, update pBest

with pNew;

• If pNew is feasible and pBest is not feasible, update pBest with pNew;

• If pNew is not feasible and pBest is feasible, pBest is not updated;

• If both pNew and pBest are infeasible, and if pNew has a lower constraint violations

(Φ) than pBest has, update pBest with pNew.

 The Rule Set 1 is summarized in Table 4-1.

Table 4-1 Personal best particle updating rules

pNew pBest
pNew dominates

pBest?

pNew has lowerΦ

than pBest?
 Next pBest

feasible feasible yes pNew

feasible infeasible pNew

infeasible feasible pBest

infeasible infeasible yes pNew

Constrained Multi-objective Optimization Using PSO Algorithm

86

Rule Set 2: Local (or global) best particle selection rules:

Among a neighbourhood, select the best performed k (k is the number of objective

functions) particles lBesti (i= 1 to k) in each objective function:

• If all lBesti (i= 1 to k) are feasible, randomly select one as lBest. In this way, a

particle may follow lBest1 at a time, and follow lBest2 at another time. All lBesti

(i= 1 to k) will get the same probability to be selected as lBest;

• If there exist feasible particles and infeasible particles in all lBesti (i= 1 to k), the

lBest is randomly selected from all the feasible particles. The infeasible particles

are disregarded;

• If there exist no feasible particles in all lBesti (i= 1 to k), the particle with the

lowest constraint violations is selected as lBest.

For two objective optimization problems, for example, if lBest1 is the best particle in

objective f1 and particle lBest2 is the best particle in objective f2. An arbitrary particle p in

the same neighbourhood will have its lBest determined by the rules listed in Table 4-2.

Table 4-2 Local best particle selection rules

lBest1 lBest2 lBest

feasible feasible
1 2(,)rand lBest lBest

feasible infeasible lBest1

infeasible feasible lBest2

infeasible infeasible one with the lower Φ

The proposed criterion-based rules for pBest and lBest have the following features:

• The feasibility is on the top priority;

Constrained Multi-objective Optimization Using PSO Algorithm

87

• The pBest evolves towards the bottom-left direction in the objective space

(assume all objectives are being minimized) since the Pareto dominance concept

is adopted;

• The lBest makes effort to extend the spread along the Pareto-optimal front since

the best particle in one objective function is followed.

• The rules can be applied to problems that have any number of objective functions.

4.2.3 Algorithm

Table 4-3 is the structure of the proposed PSO algorithm for constrained multi-objective

optimization problems.

Table 4-3 Structure of the modified PSO algorithm for constrained multi-objective
optimization problems

01: Initialize particles

02: Calculate fitness values of particles under each objective

03: Calculate constraint violations of each particle

04: Set current locations as personal best locations

05: Set local best location for each particle according to Rule Set 2

06: Do

07: For each particle

08: Calculate new velocity by PSO formula

09: Calculate new location by PSO formula

10: Update personal best location according to Rule Set 1

11: End For

12: Set local best location for each particle according to Rule Set 2

13: End Do

Constrained Multi-objective Optimization Using PSO Algorithm

88

4.3 EXPERIMENTS

4.3.1 Test Functions

Four functions (taken from [1]), named BNH, TNK, SRN and OSY have been selected for

testing the proposed approach. Function BNH has a continuous convex Pareto-optimal set.

Function TNK has a discontinuous, convex and nonconvex Pareto-optimal set. Both

function SRN and function OSY have the continuous linear (can be considered convex or

nonconvex) Pareto-optimal sets. The TNK and OSY functions are considered difficult

problems since TNK has a discontinuous Pareto-front and OSY is a high dimensional and

highly constrained problem. They are described in Equations (4.1) to (4.4), as follows.

BNH:

2 2
1 1 2

2 2
2 1 2

2 2
1 1 2

2 2
2 1 2

1 2

M inimize () 4 4 ,

 () (5) (5) ,

subject to () (5) 25 0,

 () 7.7 (8) (3) 0,
 0 5, 0 3.

f x x x

f x x x

g x x x

g x x x
x x

⎧ = +
⎪

= − + −

= − + − ≤⎨
= − − − + ≤

≤ ≤ ≤ ≤

⎪
⎪

⎪
⎪
⎪
⎩

TNK:

1

2

1 1

2 2

2 2
1 1 2

2 2
2 1 2

1 2

Minimize () ,
 () ,

subject to () 1 0.1cos(16 arctan) 0,

 () (0.5) (0.5) 0.5 0,
 0 , .

x
x

f x x
f x x

g x x x

g x x x
x x π

⎧ =
⎪ =⎪
⎪ = − − + ≤⎨
⎪

= − + − − ≤⎪
⎪ ≤ ≤⎩

(4.1)

(4.2)

Constrained Multi-objective Optimization Using PSO Algorithm

89

SRN:

2 2
1 1 2

2
2 1 2

2 2
1 1 2

2 1 2

1 2

M inim ize () 2 (2) (1) ,

 () 9 (1) ,

subject to () 225 0,
 () 3 10 0,
 -20 , 20.

f x x x

f x x x

g x x x
g x x x

x x

⎧ = + − + −
⎪

= − −⎪
⎪ = + − ≤⎨
⎪ = − + ≤⎪
⎪ ≤ ≤
⎩

OSY:

2 2 2 2 2
1 1 2 3 4 5

2 2 2 2 2 2
2 1 2 3 4 5 6

1 1 2

2 1 2

Minimize () [25(2) (2) (1) (4) (1)],

 () ,
subject to () 2 0,
 () 6 0,

f x x x x x x

f x x x x x x x
g x x x
g x x x

= − − + − + − + − + −

= + + + + +
= − − ≤
= − + + ≤

3 1 2

4 1 2
2

5 3 4

2
6 5 6

1 2 6 3 5 4

 () 2 0,
 () 2 3 0,

 () 4 (3) 0,

 () 4 (3) 0,
 0 , , 10, 1 , 5, 0 6.

g x x x
g x x x

g x x x

g x x x
x x x x x x

⎧
⎪

= − − + ≤⎨
= − + − ≤

= − + − + ≤

= − − − ≤

≤ ≤ ≤ ≤ ≤ ≤

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎩

4.3.2 Results

For multi-objective optimization, the number of non-dominated solutions is directly linked

to the population size. Therefore, a large size of population is required.

Twenty independent runs have been performed for each case. PSO parameters are:

1 1.0 ;c = 2 2.0;c = max 0.5 ()V U L= −i , where U and L are the upper and lower boundary for the

decision variables; the population size is 200 for BNH and SRN; the population size is 500

for TNK and OSY; the maximum iteration maxi for all four cases are 1000; the inertia

weight 0.1 ;w= 0.63 ;χ= a potential solution is considered feasible when its 1.0 05EεΦ< = −

 (4.3)

 (4.4)

Constrained Multi-objective Optimization Using PSO Algorithm

90

; Neighbourhood topology is set to the circular ring local model with the neighbourhood

size 2.

Figures 4.1 to Figure 4.8 illustrate the theoretical Pareto-optimal fronts and the

simulated Pareto-optimal fronts from the best runs for the four test cases. The best run

means that the Pareto-optimal front has a small Spacing/Spread (S/D) value. The

theoretical Pareto-optimal fronts are deliberately included for a visual comparison because

there are not many research data available for constrained multi-objective test problems.

156 out of 200 non-dominated solutions are found for BHN function. 111 out of 500

non-dominated solutions are found for TNK function. 161 out of 200 non-dominated

solutions are found for SRN function and 56 out of 500 non-dominated solutions are found

for OSY function. The algorithm achieved a reasonably good number of non-dominated

solutions for the first three functions. However, the number of non-dominated solutions

found for the last function (OSY) is small due to the complexity of the problem.

By observing the simulated Pareto-optimal fronts and the theoretical Pareto-optimal

fronts [1], the proposed approach is able to converge to the Pareto-optimal solutions

effectively. The final solution curves are reasonably dispersed.

Constrained Multi-objective Optimization Using PSO Algorithm

95

4.4 PERFORMANCE EVALUATION

Three metrics can be used for evaluating the performance of a multi-objective optimization

algorithm, as follows.

Spacing (SP) (as cited in [1]) measures how well distributed (spaced) the solutions in

the non-dominated set found. The formula is presented in Equation (4.5),

21
1

()n
in i

S d d
=

= −∑

where n is the number of solutions in the obtained non-dominated set,

1
min | |M i k

i k n k i m mm
d f f∈ ∧ ≠ =
= −∑ and d is the mean value of the above distance measure

1
/n

ii
d d n

=
= ∑ ; M is the number of objective functions. When the solutions are near

uniformly spaced, the corresponding distance measure will be small. Thus, an algorithm

finding a set of non-dominated solutions having a smaller spacing S is better.

 Maximum Spread [61] gives a value which represents the maximum extension

between the farthest solutions in the non-dominated set found. The formula is presented in

Equation (4.6). A bigger value indicates better performance.

 1 1

 2
 1

 (max min)
i i

M n i n i
m mm

D f f
= ==

= −∑

 mf is the m-th objective function value.

(4.5)

(4.6)

Constrained Multi-objective Optimization Using PSO Algorithm

96

Generational Distance (as cited in [1]) is a metric to find the average distance of the

non-dominated set of solutions from the real Pareto optimal set. The formula is given in

Equation (4.7),

2
1

n
ii

d
GD

n
==

∑

where id is the Euclidean distance between solution i from the set of n non-dominated

solutions found and the closest element from the real Pareto optimal set. A smaller value

indicates the solutions found are closer to the real Pareto front.

Experiments have been conducted based on the first two metrics, that is, “Spacing”

and “Spread”. Table 4-4 presents the experiment results for the four test cases. Since a

smaller “Spacing” value and a larger “Spread” value are expected, the minimum S and the

maximum D are listed in the table. The average values and the standard deviations are also

included.

The “Generational Distance” is not evaluated at this stage because of the lack of the

real Pareto-optimal front data.

Due to the complexity and different user demands, there are not many data available

for performance comparison. We include the “Spacing” data (EM-MOPSO) from [89] in

Table 4-5 for a brief comparison. No “Max Spread” data available from [89]. The NSGA-II

data in Table 4-5 is also taken from [89].

(4.7)

Constrained Multi-objective Optimization Using PSO Algorithm

97

Table 4-4 Spacing and Maximum Spread for testing cases based on 20 runs

Criteria Item BNH TNK SRN OSY

S

Min. 0.599672 0.004032 1.089612 1.040084

Avg. 0.979688 0.012609 1.587708 2.943298

Std. 0.258917 0.003361 0.423624 1.057702

D

Max. 143.5117 1.403277 302.6255 225.3124

Avg. 136.9071 1.362672 276.0655 155.4652

Std. 3.775605 0.031040 16.26418 21.64976

Table 4-5 Statistic results by different approaches

 This approach NSGA-II EM-MOPSO

BNH

Min. 0.599672 0.6408 0.6357

Avg. 0.979688 0.7756 0.6941

Std. 0.258917 0.0727 0.0385

SRN

Min. 1.089612 1.3402 1.0768

Avg. 1.587708 1.5860 1.2439

Std. 0.423624 0.1337 0.1055

According to Table 4-5, the proposed approach obtained the best “Spacing” value in

function BNH. For function SRN, the proposed approach outperformed NSGA-II in the

best “Spacing” value but slightly worse than EM-MOPSO. For algorithm consistency, the

proposed approach did not outperform the other two approaches in both functions but the

standard deviation values obtained are less than 0.5.

It is realized that the “Spacing” value can only be applied in consecutive solutions

which may not be suitable for those problems that have discontinuous solutions such as

function TNK. In such cases, other performance metrics may be taken into consideration.

Constrained Multi-objective Optimization Using PSO Algorithm

98

4.5 SUMMARY

Population-based evolutionary techniques have been a popular choice for multi-objective

optimization problems. The presence of constraints brings difficulties since the search

space has to be restricted in a feasible region. Most existing multi-objective PSO proposals

did not consider the constraints. Integrating constraint-handling mechanisms with

multi-objective PSO is a challenging topic.

This chapter has proposed a modified PSO algorithm for solving constrained

multi-objective optimization problems. Based on the constraint dominance concept, the

proposed approach defines two sets of rules for determining the cognitive and social

components of the PSO algorithm. The advantages of the proposed approach are: it can be

applied in solving problems that have any number of objective functions; it is simple to

understand and easy-to-implement; it is relatively computationally inexpensive since no

external archive is used.

The simulation results to the four constrained multi-objective optimization problems

have demonstrated the proposed approach is able to find the Pareto-optimal solutions

effectively. Performance evaluation has shown the proposed approach achieved reasonably

good results in two metrics -“Spacing” and “Spread”.

The proposed approach is one of the few attempts that using PSO in constrained

multi-objective optimization problems.

Program Design, Implementation and More Results

99

Chapter 5

PROGRAM DESIGN, IMPLEMENTATION AND

MORE RESULTS

5.1 INTRODUCTION

This chapter consists of two parts. The first part describes the design and implementation

issues for the proposed approaches in Chapters 3 and 4. The second part presents the

simulation results for three engineering design optimization problems. A special case, that

is, when a predefined goal is known, the optimization task is to identify the design variables

that achieve the goal, will be discussed.

A basic advantage of all EAs lies in the inherent parallelism of the algorithms.

Parallel implementations of EAs are easily scalable to large populations, thus providing a

good potential to exploit even massively hardware [101]. Parallel computing involves

using multiple processing elements simultaneously to solve parallel execution problems.

Multithreaded programming principle is able to simulate the parallel processes in a single

processing element. In order to improve the computing performance, the multithreaded

object-oriented programming principles are adopted in the program design and

implementation which will be presented in the first part of this chapter.

Program Design, Implementation and More Results

100

In some real world applications, it is often that the optimization problems have

predefined targets (or goals) and the optimization task is to identify the decision variables

that are needed to attain the predefined targets. For example, in a budget allocation

application, the total budget is pre-specified; an optimization task could be used to find a

rational money allocation to different budgetary items which minimize the deviations from

the total budget. A simple scenario is: Suppose you have a total budget T, you are going to

allocate this budget T to the budgetary items 1 2, ,..., nx x x . The objective is to find

1 2(, ,...) nx x x x= to achieve
1

n
iT x=∑ or to minimize

1
| |n

iT x−∑ subject to satisfying a

number of constraints such as 1 3 1 x x T+ ≤ . That is, if a solution with the desired target

exists, the optimization task is to identify that particular solution. If there exists no solution

which achieves pre-specified targets, the optimization task is to find solutions which

minimize deviations from the targets. This is referred to as goal programming principle [1].

The goal programming generally involves multiple goals that need to be achieved.

When the multiple goals conflict with each other, the optimization is related to the

multi-objective optimization. Consider the goal programming as a constraint satisfaction

process, if one goal is picked up as the objective function and other goals to be treated as

constraints, a goal programming problem can be transformed into a single objective

constrained optimization problem. The proposed multi-objective constraint-handling

method in Chapters 3 should be applicable.

By modifying the algorithm proposed in chapter 3, the second part of this chapter

will present a goal-oriented multi-objective constraint-handling method incorporated with

the PSO algorithm for tackling optimization problems that have predefined goals. The

Program Design, Implementation and More Results

101

simulation results to the three well known engineering design optimization problems will

be presented and discussed.

The rest of the chapter is organized as follows: Section 5.2 presents a multithreaded

Object-Oriented approach for PSO implementation including UML modelling. Section 5.3

presents the goal-oriented multi-objective constraint-handling method and simulation

results to the three engineering design optimization problems. Section 5.4 is the summary

of the chapter.

5.2 A MULTITHREADED OBJECT-ORIENTED APPROACH FOR

PSO IMPLMENTATION

5.2.1 Parallel Computing and Evolutionary Algorithms

Generally, two types of parallelization exist for evolutionary algorithms – individual

parallelization and population parallelization. For individual parallelization, all individuals

evolve simultaneously according to some artificial rules such as operators in GAs or

mathematical formulas in PSO algorithm. The individuals may or may not need to

communicate with the others during evolution. Population parallelization involves multiple

populations (population contains individuals) that evolve simultaneously. The

co-evolution model [102], the multi-swarm model [103] and the multiple-independent-run

are typical examples for population parallelization.

Two main parallel models have been followed for parallel computing. In

fine-grained model, few individuals (or populations) are assigned to single processors and

information exchange among the processors is frequent. On the contrary, in coarse-grained

Program Design, Implementation and More Results

102

model, larger subpopulations are assigned to single processors and information exchange is

rather rare. Research on parallel EAs has quickly shown that fine-grained parallelization

results in a very significant communication overhead. Therefore, the focus has mostly

turned to coarse-grained parallelization schemes [27].

5.2.2 Multithreaded Object-Oriented Programming in Brief

In computer science contexts, threads are a way for a program to split itself into two or

more simultaneously running tasks. The multiple threads can be distributed to a

multiprocessor (multiple CPUs) system such as a supercomputer or a cluster computing

system. Moreover, multithreading allows a single-processor system to act like a

multiprocessor system in order to allow a computer with a single CPU to simulate

concurrency. This feature greatly benefits computing tasks that can be easily split into

multiple tasks and execution simultaneously. Multithreaded programs often run faster and

are more user-friendly than those programs written in sequential and single-threaded

programs.

Figure 5.1 illustrates how multithreading executes in a multiprocessor system and in

a single-processor system. With a multi-processor system, the multiple threads are

distributed to each processor. Each thread is independent of others. In a single-processor

system, the multiple threads share the CPU time. The CPU devotes a small amount of time

to one task, and then devotes a small amount of time to another task. In Java programming

language, the multiple threads are scheduled by the Java Virtual Machine (JVM) which

interprets compiled Java binary code for a computer processor so that it can perform a Java

program instructions [104] .

Program Design, Implementation and More Results

104

Figure 5.2 The goals, principles, and techniques of object-oriented design

5.2.3 System Design and Implementation

5.2.3.1 Design Objectives

Several objectives need to be considered in system design.

• The system should be applicable to different optimization problems.

• The programs should be easily adapted to different strategies in order to compare

with other approaches.

• When generating individuals (particles for PSO) randomly, the individuals that lie

on the variable boundary should be included. It is emphasized here since many

random functions such as Java’s Random function generating numbers that include

the lower boundary value but exclude the upper boundary values.

• The multiple-independent-run can be executed in parallel. The coarse-grained

parallel model would suffice since there is no information exchange between

populations.

Program Design, Implementation and More Results

105

5.2.3.2 UML Modelling

Unified Modelling Language (UML) [106] is a standardized general-purpose modelling

language in the field of software engineering which has been widely used in

object-oriented design. To help understanding, a few UML notations are listed in Table

5-1.

Figure 5.3 illustrates the class structure in UML model. Six Java classes and one Java

interface have been defined for the system. Two important interfaces “Runnable” and

“Comparable” from the Java Application Programming Interface (API) [107] are also

included in the UML model for easy illustration. Other Java classes from Java API are

omitted in the UML model since they are considered trivial. The main responsibilities for

each class or interface are specified as follows:

Table 5-1 UML relationship notations

Relationship Symbol Meaning

Interface

Implementation

Denotes one class must implement all

methods defined by the interface

Aggregation

Denotes that objects of one class contain

references to objects of another class

Dependency
Denotes methods of one class uses an object

of the other class in some way

• StartMain: This class is the entry point where the program starts to run. It

creates objects of the application (that is, which optimization problem to run),

generates multithreads for multiple independent runs, and starts building swarms to

evolve for computation.

Program Design, Implementation and More Results

106

• ApplicationInterface: This interface defines common methods that an

application must implement. It uses interface types to make code more reusable.

• TheApplication: This is the class for a specific optimization problem. Since

each problem has different dimension, it contains problem attributes like the

number of dimensions and the boundary constraints. This class implements the

“ApplicationInterface” interface.

• Randoms: Like any population-based computation, PSO needs to uniformly

generate particles randomly. The “Randoms” class provides methods to generate

double values between a lower boundary constraint and an upper boundary

constraint.

• BoundaryConstraint: “BoundaryConstraint” class is simply the limits

to (the minimum and maximum of) a number range. Its “boundaryType”

attribute indicates how a value that exceeds the boundaries is to be modified such

that it is again within the boundaries.

• Particle: This class represents particle objects. A particle has its ID, velocity,

coordinators (that is, location in a D-dimensional space), fitness and constraint

violations. Each particle object also contains a reference to its best local particle of

the neighbourhood. The class aggregates “TheApplication” and

“BoundaryConstraint” classes. It also implements “Comparable” interface

to define how to compare particles.

• Swarm: The “Swarm” class contains the main routine of PSO algorithm. It

implements the “Runnable” interface since multiple swarms will be used to

achieve multiple-independent-run which is always needed for any evolutionary

Program Design, Implementation and More Results

107

algorithms (that is, we should never report results by one run). The “Swarm” class

initializes particles, determines particles’ behaviours, calculates particles next

positions, and conducts other necessary functions such as output data.

• Runnable: It is a standard Java interface from Java API. The “Runnable”

interface should be implemented by any class whose instances are intended to be

executed by a thread. Comparable: The “Comparable” interface imposes a

total ordering on the objects of each class that implements it. By implementing its

“comparTo” method, the objects can be sorted according to the rules specified.

Since it is often that particles need to be compared in PSO algorithm, adopting this

approach will make the comparison a lot easier.

Program Design, Implementation and More Results

110

5.2.4 Discussion

There are a number of benefits of using a Multithreaded Object-Oriented approach for EA

implementation. Firstly, it is easy to extend to different applications. Object-Oriented

design is modular. The structure imposed by modularity enables software reusability. For

example, in the model illustrated in Figure 5.3, the TheApplication class is the only

class that needed to be replaced for different applications. The implementation to the

TheApplication class is simple since the pattern has been specified in the

ApplicationInterface interface. Secondly, it is easy to adapt to different

computing strategies. For example, if the comparison criteria for particles are changed, the

user only needs to modify the comparTo method in the Particle class; if the user

wants to change the random strategy such as uniform distribution or normal distribution,

the Randoms class needs to be modified only. Lastly, since Java offers some advantages

such as platform independent, friendly graphical user interface and multithreading, the

approach can make the parallel execution in any platform more convenient.

However, compared with other traditional scientific programming languages like

FORTRAN [108] or C [109], Java is not considered a high performance programming

language in numerical computing [110]. For those problems that need intensive

computation (e.g., execution takes months or years), approaches other than Java-based may

perform better.

Program Design, Implementation and More Results

111

5.3 ENGINEERING DESIGN OPTIMIZATION

5.3.1 Problem Transformation and Formulation

Let’s take a goal programming problem that has two objective functions as an example to

illustrate the idea. Suppose 1 () f x has a predefined target 1 T , and 2() f x has a predefined

target 2 T , the optimization task can be stated as to find 1 2* (, ,...,) nx x x x= that satisfy

1 1 2 2() and () f x T f x T= =

or

1 1 1

2 2

minimize () | () |
subject to () and
 () 0, 1, 2,..., ;i

F x f x T
f x T
g x i m

= −⎧
⎪ =⎨
⎪ ≤ =⎩

Recall the single objective constrained problems as in Equation (1.2), the only difference in

Equation (5.1) from Equation (1.2) is that one more equality constraint is added. This

constraint can be merged into other constraints as in ()ig x which make a total 1 m+

number of constraints, and then a goal programming problem can be rewritten as

minimize () | () |
subject to () 0, 1,2,..., 1;i

F x f x T
g x i m

= −⎧
⎨ ≤ = +⎩

Recall the multi-objective constraint-handling method, Equation (5.2) can be transformed

into

(5.1)

(5.2)

Program Design, Implementation and More Results

112

1

minimize '() ((), ())

where () () - and () max(0, ())

goals () - T and ()

m

i
i

F x F x x

F x f x T x g x

f x x ε
=

= Φ⎧
⎪⎪ = Φ =⎨
⎪
⎪ ≤ Δ Φ ≤⎩

∑

Where Δ and ε are two small positive numbers which indicate how close a solution

to the predefined targets. Please note there is no need to use | () -T | f x ≤ Δ because any

better-than-target solutions (that is, f (x) < T) are allowed to be found for the model.

Figure 5.5 illustrates the expected solution area (goal area) for the model in Equation

(5.3) in the objective space.

Figure 5.5 The goal area for a bi-objective constraint-handling optimization problem

 In terms of the PSO algorithm, the particles should fly toward the goal area. Once the

goals are achieved, no more evolution is needed. In case there is no solution satisfying both

goals, the priority is given to ()x εΦ ≤ , the solution is found from all particles where their

 ()x εΦ ≤ .

(5.3)

Program Design, Implementation and More Results

113

5.3.2 A Goal-Oriented Multi-objective Constraint-handling Method

with PSO Algorithm

Figure 5.6 illustrates the goal-oriented multi-objective constraint-handling method with the

PSO algorithm. It is modified from the multi-objective constraint-handling method with

PSO algorithm proposed in Chapter 3. PSO variant adopted in this section is the same as

the one in Chapter 3, that is, as in Equation (3.2) and Equation (3.3). The selection rules are

the same as the ones in Chapter 3. The modified parts are highlighted in Figure 5.6.

Compared with the previous multi-objective constraint-handling PSO with no

predefined goals, the goal-oriented multi-objective constraint-handling method via PSO

algorithm has the following differences:

• Whenever calculating fitness, both objectives () () F x f x T= − and () xΦ need

to be evaluated. The first objective function now becomes ()f x T− rather than

()f x .

• After each iteration, check whether the goal is obtained; if obtained, the iteration

ends. This means that the particles do not need to go through the maximum

iterations. Once the target is met, it stops evolving.

Program Design, Implementation and More Results

114

Figure 5.6 Pseudo code of the goal-oriented multi-objective constraint-handling method

with PSO algorithm

Program Design, Implementation and More Results

115

5.3.3 Results

Three engineering optimization examples are selected for simulation. The neighbourhood

topology is set to ring topology with the neighbour size of 2. For each case, 30 independent

runs (note: it is generally a convention to run programs 30 times to evaluate the

consistency) have been performed. PSO parameters are: 0w= ; 1 2 2c c= = ; 0.63χ = ;

max 0.5 ()V U L= −i , where U and L are the upper and lower limits for decision variable ;x

0.1%p = ; number of particles is 100; the maximum iteration is set to 10000. The

feasibility tolerance allowed 1.0 09Eε = − .

In order to see the improvement made from different approaches, results from three

other recent approaches are included in this section. The three approaches, CPSO [78],

HPW-PSO [74] and Coello and Montes [69] are selected for comparison. The reasons for

choosing these three approaches are: both CPSO and HPW-PSO are based on PSO

algorithm as we adopted. However, they use different constraint handling methods. CPSO

adopted a penalty function method and HPW-PSO adopted a preserving and searching for

feasibility method. The Coello and Montes’ approach uses the similar multi-objective

constraint handling method as we adopted, but their implementation is through genetic

algorithm. Therefore, we can evaluate the algorithm in different aspects.

5.3.3.1 Results for Welded Beam Design Problem

The Welded Beam Design problem (E01) is described in Appendix II. The goal value for

this problem is set to 1.724852 which is best-known. The best solution found from our

simulation and the other three approaches are listed in Table 5-2. In our approach, the best

result found is 1.724852321, which is close to the best-known result 1.724852; the mean

result for 30 independent runs is 1.724861948; and the standard deviation is 2.05462E-05.

Program Design, Implementation and More Results

116

According to Table 5-2, the solution found from our approach is better than those achieved

by the other three approaches (the result presented in CPSO [78] seems incorrect because

they used max 13,000 psiτ = rather than max 13,600 psiτ =). The statistics data demonstrate

our approach performs excellently in both quality search and consistency.

Table 5-2 Optimal solution of welded beam design

Design

variables

Best solution found

Proposed CPSO HPW-PSO Coello and Montes

1x 0.205729642 0.202369 0.24436898 0.205986

2x 3.470488637 3.544214 6.21751974 3.471328

3x 9.036623843 9.048210 8.29147139 9.020224

4x 0.205729643 0.205723 0.244436898 0.206480

1()g x -1.67E-09 -12.839796 -5741.1769331 -0.103050

2()g x -1.32E-05 -1.247467 -0.00000067 -0.231748

3()g x -6.08E-10 -0.001498 0.00000000 -0.000495

4()g x -3.43298378 -3.429347 -3.02295458 -3.430043

5()g x -8.07E-02 -0.079381 -0.11936898 -0.080986

6()g x -2.36E-01 -0.235536 -0.23424083 -0.235514

7()g x -2.47E-04 -11.681355 -0.00030900 -58.64688

()f x 1.724852321 1.728024 2.3809565827 1.728226

It needs to be mentioned that our solutions are generated based on 100 particles and

10,000 maximum iterations, which forms a total maximum number of 1,000,000 function

evaluations. In fact, since a goal oriented programming concept is adopted in the program,

Program Design, Implementation and More Results

117

the total number of function evaluations, in most cases, is less than this maximum number

setting. An experiment result will be presented later in this section.

Table 5-3 Statistic results for different approaches (welded beam design)

Case Approach Best Mean Std. Dev.

Case 1
Proposed 1.72485231 1.73612022 2.46E-02

CPSO 1.72802400 1.74883100 1.29E-02

Case 2
Proposed 1.72485231 1.73612022 2.46E-02

HES-PSO 1.72485084 NA NA

Case 3
Proposed 1.72485747 1.76521069 4.40E-02

Coello and Montes 1.72822600 1.79265400 7.47E-02

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations

To compare with others, we simulated our approach by adjusting the total maximum

number of function evaluations to 200,000 (to match CPSO[78]), 30,000 (to match

HPW-PSO[74]) and 80,000 (to match Coello and Montes[69]) respectively, based on the

30 independent runs, the simulation results are listed in Table 5-3.

From Table 5-3, the proposed approach performs better in quality search (best

solution found) than any of the other three approaches. The mean results obtained by our

approach are also better than HPW-PSO and Coello and Monster’s. In consistency

(Standard Dev.), our approach performs better than Coello and Montes’s approach and

slightly worse than the other two. However, they are still small and acceptable.

5.3.3.2 Results for Pressure Vessel Design Problem

The Pressure Vessel Design problem (E02) is described in Appendix II. The goal value

for this problem is set to 6059.946. The best solution found from our approach and the

other three approaches are listed in Table 5-4. The best result found from our approach is

Program Design, Implementation and More Results

118

5971.4003, which is a better solution than any other solution (the best-known result is

6059.94634 before this research); the mean result for 30 independent runs is 6049.1590;

and the standard deviation is 22.841537. As we can see, our approach performs well in

quality search and reasonable consistency. Same as before, the best results are generated

with a particle size of 100 and the maximum iteration is 10000.

Again, Table 5-5 is a collection of data obtained by comparing with other

approaches.

From Table 5-5, the proposed approach in this chapter performs better in quality

search than the other three. The mean results and standard deviations obtained by our

approach are not better than the others. By looking up the much better solution generated

from the original setting (100 particles, 10000 maximum iterations), it looks like our

approach need more iterations to achieve more consistent results for this problem.

Table 5-4 Optimal solution of pressure vessel design

Design

variables

Best solution found

Proposed CPSO HPW-PSO Coello and Montes

1x 0.79641436 0.812500 0.81250000 0.812500

2x 0.39944943 0.437500 0.43750000 0.437500

3x 41.0039194 42.091266 42.0984456 42.097398

4x 190.801191 176.746500 176.636595 176.654047

1()g x -5.04E-03 -0.000139 0.00000000 -0.000020

2 ()g x -8.27E-03 -0.035949 -0.03588083 -0.035891

3 ()g x -595.450105 -116.382700 0.00000000 -27.886075

4 ()g x -49.1988089 -63.253500 -63.3634042 -63.345953

()f x 5971.4003 6061.0777 6059.7143 6059.94634

Program Design, Implementation and More Results

119

Table 5-5 Statistic results for different approaches (pressure vessel design)

Case Approach Best Mean Std. Dev.

Case 1
Proposed 5990.105542 6160.11071 145.152

CPSO 6061.077700 6147.13320 86.4545

Case 2
Proposed 5990.105542 6160.11071 145.152

HES-PSO 6059.131300 NA NA

Case 3
Proposed 6035.857686 6362.82540 266.134

Coello and Montes 6059.946300 6177.25330 130.930

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations

5.3.3.3 Results for Spring Design Problem

The Spring Design problem (E03) is described in Appendix II. The goal value for this

problem is set to 0.012665. The best solution found from our approach and other three

approaches are listed in Table 5-6. The best result found from our approach is

0.012665236, which is very close to the best-known solution 0.012665 and better than any

of the three comparing approaches; the mean result from our approach is 0.012714543; and

the standard deviation is 6.28E-05. These data demonstrate our approach performs really

well in both quality search and consistency.

Table 5-7 is a collection of data obtained by comparing with the other approaches.

The data from Table 5-7 indicate the proposed approach in this research performs better

than or very similar in quality search to the three other approaches (note the HPW-PSO[74]

has second constraint nearly broken up). The mean results and the standard deviations

obtained by our approach are slightly worse than the others. However, they are fairly small

and in an acceptable range.

Program Design, Implementation and More Results

120

Table 5-6 Optimal solution of tension/compression string design

Design

variables

Best solution found

Proposed CPSO HPW-PSO Coello and Montes

1x 0.051702169 0.051728 0.05169040 0.051989

2x 0.357033166 0.357644 0.35674999 0.363965

3x 11.27049760 11.244543 11.2871260 10.890522

1()g x -4.07E-8 -0.000845 -0.0000045 -0.000013

2()g x 5.14E-9 -1.26E-05 0.00000009 -0.000021

3()g x -4.05440797 -4.051300 -4.0538266 -4.061338

4()g x -0.72750978 -0.727090 -0.7277064 -0.722698

()f x 0.012665236 0.0126747 0.01266528 0.012681

Table 5-7 Statistic results for different approaches (tension/compression string design)

Case Approach Best Mean StD. Dev.

Case 1

Proposed 0.012666062 0.012812823 2.28E-04

CPSO [78] 0.012674700 0.012730000 5.20E-05

Case 2

Proposed 0.012667195 0.013350094 7.50E-04

HPW-PSO[74] 0.012665281 0.012702330 4.12E-05

Case 3

Proposed 0.012666626 0.012964163 3.67E-04

Coello and Montes[69] 0.012681000 0.012742000 5.90E-05

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations

5.3.4 Discussion

As mentioned before, the best solutions generated from our approach are based on 100

particles and 10,000 maximum iterations, which form a total number of 1,000,000 function

evaluations. Although the maximum number of function evaluation looks larger, the actual

Program Design, Implementation and More Results

121

numbers of function evaluation are less than this maximum because a goal oriented

programming concept is adopted in the program. That is, once the goal is reached,

evolution stops. This approach suits the real world applications better. Therefore, we have

performed an experiment to illustrate how many minimum iterations/generations are

needed to reach the best-known solutions or to achieve even better solutions. Table 5-8 is a

summary of the experiment results based on 30 independent runs and with a particle

population size of 100. In Table 5-8, a goal result is the existing best-known result. The

minimum tolerance allowed Δ indicates how close a solution is to a goal solution. If a

solution is less than the goal solution (better than the best-known) or if its f goal− ≤ Δ

(close enough to the goal), evolution stops. Since the problem E02 has a larger magnitude

than E01 and E03, the Δ is set to a relative larger value.

According to the Table 5-8, the lowest number of iterations needed to reach the goal

solution for the E01, E02 and E03 problems are 610, 680 and 183 respectively; the average

number of iterations needed are 1597, 4210 and 1158 respectively. This mechanism makes

the computation cost more reasonable. Under our multithreaded Java programming

implementation, the computation costs to these three engineering problems are not a big

issue. The feasibility tolerance ε impacts on the results. A larger ε can sometime make

the constraints not fully satisfied but the search will be easier. We used a fairly small

1.0 09Eε = − to ensure the constraints are fully satisfied.

Program Design, Implementation and More Results

122

Table 5-8 Iterations needed to reach the best-known solution

Problem
Goal

(Best-Known)

Tolerance

allowed Δ
Lowest* Average* Highest*

E01 1.724852 1.0E-04
610

(61000)

1597

(159700)

3324

(332400)

E02 6059.946 1.0E-01
680

(68000)

4210

(421000)

9998

(999800)

E03 0.012665 1.0E-04
183

(18300)

1158

(115800)

4590

(459000)

* indicate lowest iteration, average iteration and highest iteration needed (number in brackets indicates the

number of function evaluation)

There is an issue in applying the goal-oriented multi-objective constraint-handling

method via PSO algorithm in goal programming discipline. The goal programming

problems normally involve multiple goals to be satisfied. How to pick up one goal acting

on the objective function and treat other goals as constraints is crucial for optimization

success. Referring to Equation (5.1), if 2 2() f x T= or 2 2| () - | f x T δ≤ is treated as a

constraint, there is a possibility that this constraint can never be satisfied if the equality

tolerance δ is small. In practice, some high level knowledge like preference (or priority)

may help in choosing objective function and constraint functions. Otherwise,

multi-objective optimization techniques should be used.

Program Design, Implementation and More Results

123

5.4 SUMMARY

This chapter has presented a multithreaded object-oriented approach for PSO

implementation. Based on the multithreading concept and the object-oriented

programming principles, the UML modelling has been introduced. The

multiple-independent-run has been implemented in the coarse-grained parallel execution

process. The proposed multithreaded object-oriented approach has a number of

advantages, for example, it is easy to extend to different applications, and easy to adapt to

different computing strategies.

This chapter has also presented the engineering design applications using the

proposed goal-oriented multi-objective constraint-handling method via PSO algorithm. By

picking up one goal as the objective and treating other goals as constraints, a goal

programming problem can be transferred into a single objective constrained problem. The

simulation results to the three well-known engineering design problems demonstrate that

the proposed approach is effective and efficient in finding the consistent solutions for the

three engineering design optimization problems.

In order to evaluate the algorithm performance, the population size and the maximum

number of iterations have been adjusted to match three existing approaches for

comparison. In relation to the search quality, the proposed approach has achieved better or

very similar results on the three well-known engineering problems compared with existing

approaches. Remarkably, a best ever solution has been found for the pressure vessel design

problem. In relation to the algorithm consistency, the proposed approach performs better

or similar in two (E01 and E03) out of three engineering design problems than the

compared approaches. For E02 (pressure vessel design problem), the mean results and

Program Design, Implementation and More Results

124

standard deviations obtained by the proposed approach are not better than the others.

However, if the population and maximum number of iterations increase to the original

values proposed (that is, 100 particles and 10000 maximum iterations), much better results

can be achieved.

Since the goals can be used as the exit criteria, each particle does not need to go

through the whole number of iterations. This will make the computation cost more

reasonable.

Goal programming problems can be regarded as constraint satisfaction problems. In

applying the proposed approach in goal programming discipline, one crucial task is to pick

up one goal as objective function and treat other goals as constraints. If not properly

selected, there is a possibility that the constraints can never be satisfied. Some high level

knowledge like preference (or priority) may help in choosing the objective function and

constraint functions. Otherwise, multi-objective optimization techniques should be

considered for goal programming problems.

Power Generation Unit Loading Optimization

125

Chapter 6

POWER GENERATION UNIT LOADING

OPTIMIZATION

6.1 INTRODUCTION

In December 2008, the Australian government introduced a national Emission Trading

Scheme (ETS) in order to reduce carbon pollution which is causing climate change and is

resulting in higher temperatures, more droughts, rising sea levels and more extreme

weather [111] . Many companies and organizations have responded in compliance with

the ETS. Since the largest source of greenhouse gas emissions (69.6% in 2006) [111] is

contributed by the energy sector, power generation unit efficiency will be of great

importance in the evolving carbon constrained economy.

Power plant efficiency improvement activities can be classified into two categories –

plant modification (often irreversible) and operational improvement (often reversible).

Traditional performance improvement activities have been often linked to plant

modifications and large capital investment. Those performance improvement modifications

are not, as people think, risk free. Even successfully done, they do not always materialize

the promised benefits. For example, when a unit is upgraded to suit higher load, it will not

Power Generation Unit Loading Optimization

126

be as efficient when load demand is low. Frequent changes in market strategy often require

reversible changes such as operational changes rather than irreversible plant modifications.

On the other hand, operational improvement is low-risk, low-cost and often with instant

benefits. However, due to the various reasons, efficiency improvement through optimal

operations has not been given the necessary attention.

The research on power generation unit loading optimization is to improve the

operations to address the issue. It must be noted that any improvement gains including plant

modification can only be materialized through operation. Optimal operation is the key to

power generation performance.

The unit loading optimization problem has been studied in a branch called

“Economic Load Dispatch” over the years. Many of the models only consider one

objective, that is, heat consumption (as production cost), and using traditional deterministic

approaches [112-115]. Due to public awareness of environmental protection, society

demands adequate and secure electricity not only at the cheapest possible price but also at

minimum levels of pollution [116]. Minimizing atmospheric pollution will be one of the

major challenges for electric utilities. Several attempts have been made in using the

stochastic metaheuristic methods for this application [116-118]. Zhao and Cao [117]

proposed to use PSO algorithm and fuzzy rules to solve this multi-objective optimization

problem. Basu et al [116, 118] reported their approach of using evolutionary programming

and fuzzy satisfying method for this problem. Both approaches demonstrated the

capabilities of using metaheuristics for the multi-objective load dispatch optimization

problem.

Power Generation Unit Loading Optimization

127

As an example, this chapter presents two PSO-based approaches for solving the

power generation unit loading optimization problem. The first approach (Model 1) treats

emission as additional constraints and considers the application a single objective

optimization problem. The second approach (Model 2) treats emission as an additional

objective and considers the application as a multi-objective optimization problem. For

evaluation purpose, two constraint-handling mechanisms, that is, multi-objective

constraint-handling method and preserving feasibility constraint-handling method, are

compared for the first model. The simulation results based on a coal-fired power plant is

performed and the results will be presented and discussed.

The rest of the chapter is organized as follows. The problem modelling is presented

in Section 6.2. It consists of problem description, specification and model formulation.

Section 6.3 presents the proposed approach for the Model 1 including two

constraint-handling mechanisms incorporating with the PSO algorithm. Section 6.4

presents the approach for the Model 2. The simulation results and a comparison study of

the two different constraint-handling methods will be presented in Section 6.5. Section 6.6

is a summary of the chapter.

6.2 MODELLING

6.2.1 General Description

A typical coal-fired power generation unit mainly consists of three components - a boiler, a

steam turbine and a generator. The boiler burns fuel (coal) to produce heat. The heat turns

water into steam. The turbine is driven by the steam to transform heat into mechanical

Power Generation Unit Loading Optimization

128

energy. The generator converts mechanical energy into electrical energy. Figure 6.1

illustrates this typical coal-fired power generation unit.

Figure 6.1 A typical coal-fired power generation unit

 (image from: http://www.tva.gov/power/images/coalart.gif)

A power generation plant usually has a number of units that work together.

Generally, a power generation company has a m-year (or m-month) overhaul system, that

is, each time, a unit goes through a major overhaul in turn and every m years (or m-months)

the plant completes an overhaul cycle. The unit which was overhauled most recently would

have the highest thermal efficiency and the one close to an overhaul will have the lowest

thermal efficiency. Units with higher thermal efficiency will consume less fuel and cause

less environmental harm while units with lower thermal efficiency will consume more fuel

and lead to higher environmental harm. In the normal operation range, unit thermal

efficiency increases (or heat rate decreases) as load increases. The thermal efficiency for

each unit is different depending on when the unit is last overhauled, what kind of problems

Power Generation Unit Loading Optimization

129

it developed, what modifications it went through, and what operation mode a unit is

operating under (such as mill pattern). The optimized loading can be achieved based on the

units’ thermal efficiency and emission characteristics, that is, heat rate/NOx vs. load, for a

given plant condition.

The generation of electricity from fossil fuel release several contaminants, such as

SO2, NOx and CO2, into the atmosphere. Among these contaminants, nitrogen oxides NOx

are contributed largely by the power stations and they are strongly requested to be reduced

by the Environmental Protection Agency [119]. In this research, NOx emission is taken as

a selected index for environment conservation. However, the methodology can be easily

extended to other contaminates such as CO2.

There are two objectives for the power generation loading optimization problem.

One is to minimize the total heat consumption (fuel consumption) and another is to

minimize the total NOx emission. It is desirable that the unit with higher thermal efficiency

(lower heat rate) receives higher workload and the unit with lower thermal efficiency

(higher heat rate) receives lower workload.

6.2.2 Specification

Table 6-1 introduces the nomenclature of the power generation loading optimization

problem. A specification to these terms is followed.

Power Generation Unit Loading Optimization

130

Table 6-1 Nomenclature of power generation loading optimization

Symbol Meaning

totalM total power demand by the market, total workload (MW)

minM lowest workload (MW)

maxM highest workload (MW)

 Q Total NOx emission for all units at a given load (g/m3)

 F total units heat consumption (MJ / h)

 a coefficients of the polynomial to heat rate function

 b coefficients of the polynomial to emission curve function

 f unit heat rate, is the heat consumption for generating per unit electricity
 (KJ/KW.h)

 g output demand constraint function (MW)

 h heat consumption per hour to a unit at a given load (MJ / h)

 i generation unit index (subscript)

 k order of polynomial function (superscript)

 n number of generation unit

 P maximum NOx emission license limit to each unit (g/m3)

 q NOx emission level to a unit at a given load (g/m3)

 r NOx emission constraint function (g/m3)

 x workload allocated to a unit (MW)

 δ minimum error criterion for equality constraint

Specification:

• For a given condition, a unit’s heat rate if is a function of the unit load ix which

can be expressed by a polynomial format. This function is obtained from field testing

and unit modelling. The general expression for the heat rate function for unit i is

Power Generation Unit Loading Optimization

131

(1)

(1) 1 0() ... k k

i i k i i k i i i iif x a x a x a x a−

−
= + + + +

• A unit’s heat consumption ih at a given load ix is calculated by

() i i i ih x f x=

• Each unit has its own NOx emission curve q . It is generally a linear function in the

normal operation range, which is obtained from the field testing and unit modelling.

1 0 () i i i iiq x b x b= +

• The total heat consumption is the sum of all units’ heat consumption, which can be

expressed as the following

1 1

() ()
n n

i i
i i

i iF h x f xx
= =

= =∑ ∑

• The total workload is the total power generated by all units at a given time.

1

n

total i
i

M x
=

= ∑

• The NOx gas emission for each unit has to be restricted within a license limit P.

 () (1,2,...) i iq x P i n≤ =

(6.4)

(6.5)

(6.6)

(6.1)

(6.2)

(6.3)

Power Generation Unit Loading Optimization

133

6.2.3 Formulation

Several constraints should be taken into consideration. The first one is that the total power

generated should meet the market demand at a given time. Considering that the data types

have to be implemented in double precision, this constraint can be rewritten as

1
1

| | .()
n

i total
i

g x Mx δ
=

= − <∑

The second set of constraints is the NOx gas emission. For countries like Australia,

there is an environmental licence limit applied in practice. The licence specifies the

maximum amount of NOx gas emission allowed for each thermal unit. In this case, the

constraints can be written as

 () = () 0 (1,2,...) .i i ir x q x P i n− ≤ =

If there is no environmental licence applied, these constraints can be disregarded.

The third constraint is the unit capacity constraint which can be modelled as the

boundary constraint in the optimization.

The objective for the power generation loading optimization is to find the optimal

unit load distribution so as to minimize the total heat consumption ()F x and the total NOx

gas emission ()Q x . The optimization problem can take two different models – the single

objective constrained model and the multi-objective constrained model, as described in

Equations (6.11) and (6.12).

(6.9)

(6.10)

Power Generation Unit Loading Optimization

134

Model 1 – Single objective constrained model

1 1

1
1

(1)
(1) 1

M inim ize () ()

subject to () | | 0

 () () 0 (= 1, 2, ...)

w here () ...

n n

i i
i i

n

i tota l
i

i i

i i i

k k
i i k i i k i ii

F h x f x

g x x M

x

r x q x P i n

f x a x a x a x

δ

= =

=

−
−

=

= − − ≤

=

= − ≤

= + + +

∑ ∑

∑

m in m ax

0

 (1, 2, ...)

 i i i

i i

M x M i n

a

≤ ≤ =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ +⎪
⎪⎩

Model 2 – Multi-objective constrained model

1 1

1

1

1

M in im iz e () ()

s u b je c t to () | | 0

 () = ()

 () () 0 (1, 2 , . . .)

w h e re ()

n n

i i
i i

n

i to ta l
i

i i

n
i ii

i i i

ii

F h x f x

g x x M

x

Q x q x

r x q x P i n

f x

δ

= =

=

=

=

= − − ≤

=

= − ≤ =

=

∑ ∑

∑

∑

m in m a x

(1)
(1) 1 0

1 0

 (1, 2 , . . .)

. . .

()

i i i

k k
i k i i k i i i i

i i i ii

M x M i n

a x a x a x a

q x b x b

−
−

≤ ≤ =

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

+ + + +⎪
⎪ = +⎪
⎪⎩

 The difference between the Model 1 and Model 2 is that the Model 2 has an additional

objective – minimizing NOx gas emission.

(6.11)

(6.12)

Power Generation Unit Loading Optimization

135

6.3 APPROACHES FOR SINGLE OBJECTIVE CONSTRAINED

MODEL

In order to evaluate the algorithm performance, two constraint-handling mechanisms, that

is, the multi-objective constraint-handling method and the preserving feasibility

constraint-handling method, have been adopted in this application. The following sections

describe the algorithms.

6.3.1 Multi-objective Constraint-Handling Method Incorporating with

PSO Algorithm

As stated in the earlier chapters, a multi-objective constraint-handling method treats

constraints as separate objectives in which a constrained optimization problem can be

transformed into a bi-objective problem. The first objective is to optimize the original

objective function and the second objective is to minimize

1

() max(0, ())
m

i
i

x g x
=

Φ =∑

By adopting this concept, the power generation loading optimization problem in

Model 1 can be transformed into

1

1

1

1

1
1

() ()

| | -

Minimize () ((), ())

where

max(0, ()) max (0, ())

 ()

 () (

 ()

n

i i
i

n

i total
i

i

n

i
i

i i

F x f x

x M

x

F x F x x

x

g x r x

g x

r q x

x

δ

=

=

=

=

−

= Φ

= +

=

=

Φ

∑

∑

∑

) (1, 2,...,)i P i n

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ − =⎩

(6.13)

Power Generation Unit Loading Optimization

136

The problem in Equation (6.13) becomes a bi-objective unconstrained optimization

problem. The method proposed in Chapter 3 can be applied directly. There is no need to

mention the algorithm again.

6.3.2 Preserving Feasibility Method Incorporating with PSO Algorithm

The preserving feasibility method [14] assumes that the constraints are all linear and the

start points are all feasible. When initializing, particles can be generated within the entire

search space but only those which are in feasible space (satisfy all the constraints) are kept

for processing. However, although initial particles are all in the feasible space, during

flying, they may get out of the feasible space to become infeasible due to improper

parameter settings. In order to maintain the population size, it would be better to get these

infeasible particles repaired rather than rejecting them. Unfortunately, there are no standard

repairing algorithms for every situation. The repairing infeasibility methods lie in their

problem dependence [37]. In this research, an infeasible particle is repaired by replacing

the infeasible particles with a closer, first-found feasible particle. The algorithms are

illustrated Figure 6.3 and Figure 6.4.

Figure 6.3 is a graphical illustration of the repairing algorithm. Ps is an infeasible

particle, Pr is a feasible reference particle, Z1, Z2… are those attempt particles between Ps

and Pr, Zn is the first-found feasible particle between Ps and Pr. Zn will be used as a

repaired particle of Ps. Figure 6.4 is the repairing algorithm.

Table 6-2 is the Pseudo code of the preserving feasibility constraint-handling method

with PSO algorithm. Compared with the original PSO algorithm, two modifications have

been made:

Power Generation Unit Loading Optimization

137

1. All particles are repeatedly initialized until they are feasible, that is, to satisfy all

constraints.

2. During flying (iteration), if particles are not feasible, repair them to be feasible. Then

calculate the fitness.

Figure 6.3 The graphic illustration of the repairing algorithm

Figure 6.4 The infeasibility repairing algorithm

Power Generation Unit Loading Optimization

138

Table 6-2 Pseudo code of the preserving feasibility constraint-handling method with PSO
algorithm

01: For i = 0 to population size

02: Do

03: Initialize particle

04: While particle is not feasible

05: End For

06: For each particle

07: Calculate fitness F

08: Calculate constraint violations Φ

09: Set current locations as personal best locations

10: Set local best location for each particle according selection rule

11: End For

12: Do

13: For each particle

14: Calculate new velocity by PSO formula

15: Calculate new location by PSO formula

16: Repair particle if not feasible

17: Update personal best location according to selection rule

18: End For

19: Set local best location for each particle according to selection rule

20: End Do

Power Generation Unit Loading Optimization

139

6.4 APPROACH FOR MULTI-OBJECTIVE CONSTRAINED

MODEL

Again, the feasibility of a solution can be evaluated by its constraint violations

1

 = max(0, ())
m

i
i

g x
=

Φ ∑ . If εΦ ≤ , where ε is the tolerance allowed for feasibility, the

solution is feasible. Otherwise, ε is a positive number indicating how far the solution is

from the feasible region. The smaller the constraint violation value, the closer the solution

to the feasible region. Model 2 in Equation (6.12) can be rewritten as

1

1 1

1

1

1
1

M in im ize () ()

su b jec t to

| | -

 () = ()

m ax (0 , ()) m ax (0 , ())

w h e re ()

 ()

()

n n

i i
i i

n

i to ta l
i

i i

n
i ii

n

i
i

i

F h x f x

x M

x

x

Q x q x

g x r x

g x

r q

x

δ

ε

= =

=

=

=

=

−

=

= + ≤

=

=

Φ

∑ ∑

∑

∑

∑

 () (1, 2 , ...,)i ix P i n

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪ − =
⎩

The problem in Equation (6.14) is a multi-objective (two objectives) constrained

(one constraint) optimization problem. The method proposed in Chapter 4 can be applied

directly.

(6.14)

Power Generation Unit Loading Optimization

140

6.5 SIMULATION RESULTS AND DISCUSSION

6.5.1 Unit Heat Rates and Unit Gas Emission Curves

A local power plant has four 360MW and a total generation capacity of 1440MW. It has a

four-year overhaul system, that is, each year, a unit goes through a major overhaul in turn

and every four year the plant completes an overhaul cycle.

The boundary constraints min M and max M for each unit are 220 (MW) and 360

(MW). The total load output of the power station ranges from 4 220 880 (MW)× = as the

minimum to 4 360 1440 (MW) × = as the maximum. It would be better to simulate a

series of output (a series of totalM) in order to allow the power plant to choose from the

optimal results according to the market demand.

The heat rate functions and the NOx emission functions for the four generator units

are provided from a local power plant setting. The heat rate functions are in the polynomial

format with the power of two. The NOx emission functions are linear. Table 6-3 lists the

sample functions. These functions can be modified when the units’ performance are

changed. Due to commercial reasons, the functions have been slightly modified.

Table 6-3 Unit heat rate and NOx emission functions

Unit No. Heat Rate NO x Emission

1 2

1 1 1
() 0.0023 3.7835 9021.7f x x x−= + 1 1

() 0.0036 0.1717q x x= −

2 2

2 2 2
() 0.0238 9.7773 9432.6f x x x−= + 2 2

() 0.0031 0.0226q x x= −

3 2

3 3 3
() 0.0187 5.3678 10240.0f x x x−= + 3 3

() 0.0036 0.1252q x x= −

4 2

4 4 4
() 0.0120 5.7450 9231.7f x x x−= + 4 4

() 0.0039 0.1706q x x= −

Power Generation Unit Loading Optimization

141

6.5.2 Parameter Setting

The minimum error criterion for equality constraint is selected as 1.0 03Eδ = − . The NOx

license limits P is 1.3 g/m3. PSO neighbourhood topology is set to static ring topology with

the neighbour size of 2. PSO parameters are: w = 0; 1 2 2; c c= = 0.63 ;χ =

max max min0.5 () ;V M M= × − population size is 40 for Model 1 and 500 for Model 2; the

maximum iteration is set to 10,000 for Model 1 and 1000 for Model 2. The feasibility

tolerance allowed 1.0 08Eε = − , that is, if a total amount of constraint violation εΦ ≤ ,

the solution is considered feasible.

For each total load output totalM , the program runs ten times with the best solution

recorded. For Model 1, the best solution means the feasible solution that has the lowest heat

consumption. For Model 2, the best solution is a set of Pareto-optimal solutions that has a

small “Spacing/Spread” (refer to Chapter 4) value.

6.5.3 Results

6.5.3.1 Results for Single Objective Constrained Model (Model 1)

These results are generated by the multi-objective constraint-handling method

incorporating with PSO algorithm. The preserving feasibility constraint-handling approach

will be discussed in section 6.5.4.

Table 6-4 and Figure 6.5 present the simulation results to the whole range of the

generation capacity. For each total output demand, the optimal workloads to the four

generators have been found based on their efficiency functions as listed in Table 6-3. After

optimization, the unit with higher thermal efficiency will receive a higher workload (such

Power Generation Unit Loading Optimization

146

such a desirable way, that is, we cannot guarantee all four units keep running for a whole

year without stopping. Assume there is a 50% chance of possible loading optimization, the

benefits will be halved and fuel savings will be around one million dollars per year.

In order to compare the two constraint-handling methods for Model 1, two

experiments have been conducted to evaluate the computation time for each individual run.

PSO parameters for both approaches are the same. The 40 particles, 10000 maximum

iterations have been used for both experiments. Based on ten independent runs, the

minimum time, maximum time and the average time spent for 1000 MWtotalM = are listed

in Table 6-5.

Table 6-5 Time spent for two constraint-handling approaches for Model 1

(Based on 10 independent runs)

CPU time spent *Approach I (ms) **Approach II (ms)

Minimum 31 3016

Maximum 156 4204

Average 68.9 3925.3

* Multi-Objective Constraint-Handling with PSO
 ** Preserving Feasibility Constraint-handling method with PSO

Table 6-5 demonstrates that the multi-objective based constraint-handling method is

much faster than the preserving feasibility method with PSO. The main reason is that the

preserving feasibility approach assumes all particles starting at the feasible space which

require a long initialization process. In other words, the evolution will not start until all

particles are in the feasible space. It may be impractically too long or impossible for the

problems that have large search spaces and with small feasible spaces. The multi-objective

constraint-handling approach, however, does not require the particles to be in the feasible

Power Generation Unit Loading Optimization

147

space at the beginning. The initialization does not need to check if the particles satisfy all

constraints which make the initialization easier and faster.

Regarding to the two models, if there is an environment licence limit applied, either

Model 1 or Model 2 will suffice. Otherwise Model 2 can be adopted.

6.6 SUMMARY

Power generation unit efficiency will be of greater practical importance in the coming

pollution constrained economy in terms of fuel saving and minimizing environmental

harm. This chapter has presented a real world application - Power Generation Unit Loading

Optimization using PSO algorithm.

Based on the problem description and specification, the two optimization models,

that is, the single objective constrained model (Model 1) and the multi-objective

constrained model (Model 2), have been presented. The multi-objective

constraint-handling method incorporating with PSO algorithm (proposed in Chapter 3) has

been adopted for the single objective constrained model and the selection rules based

constraint-handling method with PSO algorithm (proposed in Chapter 4) has been adopted

for the multi-objective constrained model.

A simulation to a four-unit coal-fired local power plant has been conducted. The

simulation results reveal the capability, effectiveness and efficiency of applying the

proposed approaches in the power industry. The simulation results have also

demonstrated that the room for loading optimization is significant.

Power Generation Unit Loading Optimization

148

In order to compare the two constraint-handling methods, two experiments have been

conducted to evaluate the computation time. The experiment results have demonstrated

that the multi-objective constraint-handling based approach is more efficient than the

preserving feasibility constraint-handling approach in terms of CPU time consumed. The

main reason is that the preserving feasibility approach assumes all particles starting at the

feasible space which require a long initialization process. Since the multi-objective

constraint-handling method has no problem-dependent parameters like those applied in the

penalty function based constraint-handling approach, it makes it easier to extend to a wide

variety of applications.

Regarding to the two models, if there is an environment licence limit applied in

practice, either Model 1 or Model 2 will suffice. Otherwise Model 2 can be adopted subject

to disregard the constraints on environment licence limit.

Conclusions and Future Research

149

Chapter 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 CONCLUSIONS

The population-based evolutionary algorithms have the ability to capture multiple optimal

solutions in one single simulation run which leads to a high computing performance. The

flexible representations make the algorithms appropriate to be used in a wide variety of

problem domains.

The original versions of the EAs have no mechanisms to deal with constraints.

Among a number of constraint-handling methods available, the multi-objective

constraint-handling method has a number of advantages. Firstly, it has no

problem-dependent parameters like those applied in the penalty function based approaches,

which makes the approach applicable for a wide variety of applications. Secondly, the

multi-objective constraint-handling method does not require that all individuals start

evolving at the feasible region like those applied in the preserving feasibility methods,

which makes the initialization a lot faster and ensures that the evolution will start. Thirdly,

the multi-objective constraint-handling method does not reject the infeasible solutions

during evolution. Recent research shows that maintaining infeasible solutions during

Conclusions and Future Research

150

evolution can improve the computing performance [51] and can transform some EA-hard

problems into EA-easy problems [52].

To tackle single objective constrained optimization problems, a multi-objective

constraint-handling method incorporating a dynamic neighbourhood PSO algorithm has

been proposed in this thesis. A modified PSO algorithm for tackling multi-objective

constrained optimization problems has also been proposed. The simulation results for the

numerical benchmark functions have demonstrated the proposed approaches are effective

and efficient in finding the consistent quality solutions.

As applications, three well-known engineering design optimization problems and the

power generation loading optimization problem have been investigated. The simulation

results to the applications have revealed the capability, effectiveness and efficiency of

applying the proposed approaches in constrained optimization.

In summary, the overall goal this thesis, that is, to investigate the PSO algorithm in

constrained optimization and its application in power generation, has been successfully

achieved.

The major contributions and results in this thesis can be summarized in the

following:

A multi-objective constraint-handling method incorporating PSO algorithm

has been proposed. The simulation results to the thirteen well-known benchmark

functions demonstrate that the proposed approach is effective and efficient in most (eleven

out of thirteen) functions. The algorithm did not receive satisfactory results for two out of

thirteen test functions G1 and G2. It seems that the proposed approach needs to be

Conclusions and Future Research

151

improved for solving high dimensional optimization problems. This may be explained by

the “No free lunch” theorem [99].

• A novel performance-based dynamic neighbourhood topology has been

proposed. The proposed performance-based dynamic neighbourhood has proved

to be able to converge faster than the static neighbourhood topology. The method

has potential to be adopted in those applications that are computational intensive.

• An effective multi-objective PSO algorithm has been proposed. Most existing

multi-objective PSO proposals do not address the constraints. Integrating

constraint-handling mechanisms with multi-objective PSO is a challenging topic.

This thesis is one of the few attempts to integrate constrain-handling methods with

the multi-objective PSO algorithms. The simulation results to the four constrained

multi-objective optimization problems demonstrated the proposed approach is able

to find the Pareto-optimal solutions effectively.

• As a variant of the proposed approach, a goal-oriented multi-objective

constraint-handling method via PSO algorithm has been introduced for

tackling those problems that have predefined goals. Since the goals can be used

as the exit criteria, each particle does not need to go through a whole iterations. This

makes the computation more cost-effective.

• A real world application, Power Generation Loading Optimization gas been

presented. The power generation loading optimization problem is of practical

importance in the evolving pollution constrained power industry in terms of fuel

saving and minimizing environmental harm. This thesis has presented two

optimization models derived from the practice of power industry, and applies the

Conclusions and Future Research

152

methods proposed in the thesis in solving these problems. The simulation results

have shown that there is a large room for loading optimization. The project has

great commercialisation potential.

7.2 FUTURE RESEARCH OUTLOOK

In concluding this thesis, an outlook on future research can be foreseen as follows.

• Except for GAs, algorithms like PSO, DE and ACO have not been well studied in

solving constrained multi-objective optimization problems. The multi-objective

constrained optimization is a fertile area for future research.

• The multithreading technique makes parallel execution possible which leads to

high performance computation. Using the multithreading technique to implement

other parallel processes for EAs, or distributing the parallel processing tasks to

distributed hardware for large computational-intensive applications will be an

interesting topic.

• Extending the proposed method in this thesis for tackling goal programming

problems should yield useful outcomes. When a goal programming problem is

regarded as a constraint satisfaction problem, the approach proposed in this thesis

may be used. The detailed model needs to be identified in the future.

• For the power generation loading optimization application, minimizing emissions

from other contaminants such as SO2, and CO2 should be taken into consideration.

The current work undertaken only considered the emission from NOx.

Appendix I

153

APPENDIX I CONSTRAINED NUMERICAL

OPTIMIZATION TEST FUNCTIONS

G1: Minimize

 s.t.

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

() 2 2 10 0,
() 2 2 10 0,
() 2 2 10 0,
() 8 0,
() 8 0,
() 8 0,
() 2 0,
() 2 0,
() 2 0.

g x x x x x
g x x x x x
g x x x x x
g x x x
g x x x
g x x x
g x x x x
g x x x x
g x x x x

= + + + − ≤
= + + + − ≤

= + + + − ≤
= − + ≤
= − + ≤
= − + ≤

= − − + ≤
= − − + ≤
= − − + ≤

• Number of variables: 13 variables.

• Search Space: 0 , 1,2,...,13, (1,1,...,1,100,100,100,1)i ix u i u≤ ≤ = =

• The global minima: * (1,1,...,1,3,3,3,1), (*) 15.x f x= = −

G2: Maximize

4 2
1 1

2
1

cos () 2 cos ()
() ,

nn
i ii i

n
ii

x x
f x

ix
= =

=

−
= ∑ ∏

∑

s.t.

1 1

2 1

() 0.75 0,

g () 7.5 0.

n
ii

n
ii

g x x

x x n
=

=

= − + ≤

= − ≤

∏
∑

• Number of variables: n variables.

4 4 132
1 1 5

() 5 5 ,i i ii i i
f x x x x

= = =
= − −∑ ∑ ∑

Appendix I

154

• Search Space: 0 10, 1,2,... .ix i n≤ ≤ =

• Best known: at 20, (*) 0.803619.n f x= =

G3: Maximize

1
() () ,nn

ii
f x n x

=
= ∏

 s.t.
2

1 1
() -1 0.n

ii
h x x

=
= =∑

• Number of variables: n variables.

• Search Space: 0 1, 1,2,... .ix i n≤ ≤ =

• The global minima: at n =10, 0 5 0.5* (1/ ,...1/), (*) 1.x n n f x= =

G4: Minimize
2

3 1 5 1() 5 .3578547 0.8356891 37.293239 40792.141,f x x x x x= + + −

s.t.

1 2 5 1 4 3 5

2 2 5 1 4 3 5

2
3 2 5 1 2 3

4

() 85.334407 0.0056858 0.0006262 0.0022053 92 0,
() 85.334407 0.0056858 0.0006262 0.0022053 0,

() 80.51249 0.0071317 0.0029955 0.0021813 -110 0,

() 80.5124

g x x x x x x x
g x x x x x x x

g x x x x x x

g x

= + + − − ≤

= − − − + ≤

= + + + ≤

= − 2
2 5 1 2 3

5 3 5 1 3 3 4

6 3 5 1 3 3 4

9 0.0071317 0.0029955 0.0021813 90 0,
() 9.300961 0.0047026 0.0012547 0.0019085 25 0,
() 9.300961 0.0047026 0.0012547 0.0019085 20 0.

x x x x x
g x x x x x x x
g x x x x x x x

− − − + ≤

= + + + − ≤

= − − − − + ≤

• Number of variables: 5 variables.

• Search Space: , 1,...,5,i i il x u i≤ ≤ = ,

 ()(7 8, 3 3, 2 7 , 2 7 , 2 7), 1 0 2 , 4 5, 4 5, 4 5, 4 5 .l u= =

• The global minima:

 * (78,33, 29.995, 45,36.7758), (*) - 30665.539.x f x= =

G5: Minimize

6 3 6 3
1 1 2 2

2() 3 10 2 10 ,
3

f x x x x x− −= + + + ×

 s.t.

1 3 4

2 4 3

() 0.55 0,
() 0.55 0,

g x x x
g x x x

= − − ≤
= − − ≤

Appendix I

155

1 3 4 1

2 3 3 4 2

3 4 4 3

() 1000 [sin(0.25) sin(0.25)] 894.8 0,
() 1000 [sin(0.25) sin(0.25)] 894.8 0,
() 1000 [sin(0.25) sin(0.25)] 1294.8 0.

h x x x x
h x x x x x
h x x x x

= − − + − − + − =

= − + − − + − =

= − + − − + =

• Number of variables: 4 variables.

• Search Space: , 1,...,4,i i il x u i≤ ≤ =

 ()(0,0, 0.55, 0.55), 1200, 1200, 0.55, 0.55 .l u= − − =

• Best known:

 * (679.9453,1026,0.118876, 0.3962336), (*) 5126.4981.x f x= − =

G6: Minimize
3 3

1 2() (10) (20) ,f x x x= − + −

 s.t.
2 2

1 1 2
2 2

2 1 2

() (5) (5) 1 0 0 0 ,

() (6) (5) 8 2 .8 1 0 .

g x x x

g x x x

= − − − − + ≤

= − + − − ≤

• Number of variables: 2 variables.

• Search Space: 100, 1,2 (13,0).i il x i and l≤ ≤ = =

• The global minima: * (14.095,0.84296), (*) 6961.81388.x f x= = −

G7: Minimize

2 2 2 2 2

1 2 1 2 1 2 3 4 5
2 2 2 2 2

6 7 8 9 10

() 14 16 (10) 4(5) (3)

 2(-1) 5 7(-11) 2(-10) (-7) 45,

f x x x x x x x x x x

x x x x x

= + + − − + − + − + −

+ + + + + +

 s.t.

1 1 2 7 8

2 1 2 7 8

3 1 2 9 10
2 2 2

4 1 2 3 4
2 2

5 1 2 3 4
2 2 2

6 1 2 5 6

7

() 4 5 3 9 105 0,
() 10 8 17 2 0,
() 8 2 5 2 12 0,

() 3(2) 4(3) 2 7 120 0,

() 5 8 (6) 2 40 0,

() 0.5(8) 2(4) 3 30 0,

()

g x x x x x
g x x x x x
g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x x

= + − + − ≤
= − − + ≤
= − + + − − ≤

= − + − + − − ≤

= + + − − − ≤

= − + − + − − ≤

= 2 2
1 2 1 2 5 6

2
8 1 2 9 10

2(2) 2 14 6 0,

() 3 6 12(8) 7 0,

x x x x x

g x x x x x

+ − − + − ≤

= − + + − − ≤

Appendix I

156

• Number of variables: 10 variables.

• Search Space: 10 10, 1,2,...,10.ix i− ≤ ≤ =

• The global minima:

G8: Maximize
3

1 2
3

1 1 2

sin (2)sin(2)() ,
()
x xf x

x x x
π π

=
+

s.t.
2

1 1 2
2

2 1 2

() 1 0 ,

() 1 (4) 0 .

g x x x

g x x x

= − + ≤

= − + − ≤

• Number of variables: 2 variables.

• Search Space: 0 10, 1,2.ix i≤ ≤ =

• The global minima: * (1.2279713, 4.2453733), (*) 0.095825.x f x= =

G9: Minimize
2 2 4 2 6

1 2 3 4 5
2 4

6 7 6 7 6 7

() (10) 5(12) 3(11) 10

 +7 4 10 8 ,

f x x x x x x

x x x x x x

= − + − + + − +

+ − − −

s.t.
2 4 2

1 1 2 3 4 5

2
2 1 2 3 4 5

2 2
3 1 2 6 7

2 2 2
4 1 2 1 2 3 6 7

() 2 3 4 5 127 0,

() 7 3 10 282 0,

() 23 6 8 196 0,

() 4 3 2 5 11 0.

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x x x x

= + + + + − ≤

= + + + − − ≤

= + + − − ≤

= + − + + − ≤

• Number of variables: 7 variables.

• Search Space: 10 10, 1,2,...,7.ix i− ≤ ≤ =

• The global minima:

* (2.330499, 1.951372, 0.4775414, 4.365726,
 0.6244870, 1.038131, 1.594227),

(*) 680.6300573.

x

f x

= −
−
=

* (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
 1.430574,1.321644, 9.828726, 8.280092, 8.375927),

(*) 24.3062091.

x

f x

=

=

Appendix I

157

G10: Minimize

1 2 3() ,f x x x x= + +

s.t.

1 4 6

2 4 5 7

3 5 8

4 1 1 6 4

5 2 4 2 7 4 5

6 3 5 3 8 5

() 1 0.0025() 0,
() 1 0.0025() 0,
() 1 0.01() 0,
() 100 833.33252 83333.333 0,
() 1250 1250 0,
() 2500 1250000 0.

g x x x
g x x x x
g x x x
g x x x x x
g x x x x x x x
g x x x x x x

= − + + ≤
= − + − + + ≤
= − + − + ≤
= − + − ≤
= − − + ≤
= − − + ≤

• Number of variables: 8 variables.

• Search Space: , 1,...,8,i i il x u i≤ ≤ =

(100, 1000, 1000, 10, 10, 10, 10, 10),
(10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000).

l
u
=
=

• The global minima:

* (579.3167, 1359.943,5110.071, 182.0174,

 295.5985, 217.9799, 286.4162, 395.5979),
(*) 7049.3307.

x

f x

=

=

G11: Minimize
2 2

1 2() (1) ,f x x x= + −

s.t.
2

1 2 1() 0 .h x x x= − =

• Number of variables: 2 variables.

• Search Space: 1 1, 1,2.ix i− ≤ ≤ =

• The global minima: 0.5* (1/ 2 ,1/ 2), (*) 0.75.x f x=± =

G12: Maximize
2 2 2

1 2 3() 1 0.01 [(5) (5) (5)],f x x x x= − − + − + −

 s.t.

2 2 2
, , 1 2 3() () () () 0.0625 0,

where , , 1,2,...,9.
i j kg x x i x j x k

i j k

= − + − + − − ≤

=

Appendix I

158

• Number of variables: 3 variables.

• Search Space: 0 10, 1,2,3.ix i≤ ≤ =

• The global minima: * (5,5,5), (*) 1.x f x= =

G13: Minimize

 1 2 3 4 5 () ,x x x x xf x e=

s.t.
2 2 2 2 2

1 1 2 3 4 5

2 2 3 4 5

3 3
3 1 2

() 10 0,
() 5 0,

() 1 0.

h x x x x x x
h x x x x x

h x x x

= + + + + − =

= − =

= + + =

• Number of variables: 5 variables.

• Search Space: , 1,...,5,i i il x u i≤ ≤ =

 , (2.3, 2.3, 3.2, 3.2, 3.2).l u u= − =

• The global minima:

()* 1.717143, 1.595709,1.827247, 0.7636413, 0.763645 ,

(*) 0.0539498.
x
f x
= − − −

=

Appendix II

159

APPENDIX II ENGINEERING DESIGN

OPTIMIZATION PROBLEMS
E01: Welded Beam Design Problem

As shown in Figure I, a welded beam is designed for minimum cost subject to constraints

of shear stress (τ), bending stress in the beam (σ), buckling load on the bar (Pc), end

deflection of the beam (δ), and side constraints. There are four design variables: the

thickness of the weld 1 h x= , the length of the welded joint 2 l x= , the width of the beam

3 t x= and the thickness of the beam 4 b x= .

 Please note the welded beam problem included in this chapter is not exactly the same as

the original version proposed by Reklaitis et al in 1983 [120]. There are five constraints in

the original version. For some reason, many researchers have studied another version of

this problem as following with seven constraints. We include this version for comparison

purposes.

Figure I Welded beam design

Appendix II

160

The formal statement of the problem is the following:

minimize

 2
1 2 3 4 2() 1.10471 0.04811 (14.0)f x x x x x x= + +

subject to

1 max

2 max

3 1 4

() () 0
() () 0
() 0

g x x
g x x
g x x x

τ τ
σ σ

= − ≤

= − ≤
= − ≤

2
4 1 3 4 2

5 1

6 max

7

() 0.10471 0.04811 (14) 5 0
() 0.125 0
() () 0
() () 0c

g x x x x x
g x x
g x x
g x P P x

δ δ

= + + − ≤
= − ≤
= − ≤
= − ≤

where:

2 22

1 2

() (') 2 ' '' ('')
2

'
2

xx
R

P
x x

τ τ τ τ τ

τ

= + +

=

2

2
21 32

'' , ()
2

()
4 2

xMR M P L
J

x xxR

τ = = +

+
= +

22

1 31 2 22
12 22

x xx x xJ
⎧ ⎫⎡ ⎤+⎪ ⎪⎛ ⎞= +⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

3

3 2
3 4 4 3

4 6() , ()PL PLx x
Ex x x x

δ σ= =

2 6

3 4 3
2

4.013 () / 36
() 1

2 4c

EGx x x EP x
L L G

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

6 6

max max max

6000 , 14 ., 30 10 , 12 10
13,600 , 30,000 , 0.25 .

P lb L in E psi G psi
psi psi inτ σ δ

= = = × = ×
= = =

Appendix II

161

 The ranges for the design variables are given as follows:

1 2

3 4

0.1 2.0, 0.1 10,
0.1 10, 0.1 2.0.

x x
x x

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

E02: Pressure Vessel Design Problem

The pressure vessel design problem, shown in Figure II, is a cylindrical vessel capped at

both ends by hemispherical heads. The objective is to minimize the total cost, including the

cost of the materials forming the welding. There are four design variables: Thickness of the

shell 1 sT x= , thickness of the head 2 hT x= , the inner radius 3 R x= , and the length of the

cylindrical section of the vessel 4 L x= , sT and hT are discrete values which are

integer multiples 0.0625 (inch), in accordance with the available thickness of rolled steel

plates, R and L are continuous.

Figure II Pressure vessel design

The optimization problem can be expressed as follows:

 minimize

2 2 2
1 3 4 2 3 1 4 1 3() 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x= + + +

Appendix II

162

 subject to

1 3 1

2 3 2

2 3
3 3 4 3

4 4

() 0 .0193 0
() 0 .00954 0

4() 1296000 0
3

() 240 0

g x x x
g x x x

g x x x x

g x x

π π

= − ≤
= − ≤

= − − ≤

= − ≤

 where the design variables have to be in the following ranges:

 1 2

3 4

0.0625 6.1875, 0.0625 6.1875,
10 200, 10 200.

x x
x x
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

E03: Spring Design Problem

As shown in Figure III, this problem consists of minimizing the weight of a

tension/compression spring, subject to constraints of minimum deflection, shear stress,

surge frequency, and limits on outside diameter and on design variables. The three design

variables are: the wire diameter 1 d x= , the mean coil diameter 2 D x= and the number

of active coils 3 N x= .

Figure III Spring design

The formal statement of the problem is as follows:

Appendix II

163

 minimize

 2
3 2 1() (2)f x x x x= +

 subject to

3
2 3

1 4
1

2
2 1 2

2 3 4 2
2 1 1 1

1
3 2

2 3

2 1
4

() 1 0
71785

4 1() 1 0
12566() 5108

140.45() 1 0

() 1 0
1.5

x xg x
x

x x xg x
x x x x

xg x
x x

x xg x

= − ≤

−
= + − ≤

−

= − ≤

+
= − ≤

 The boundaries of the design variables are as follows:

1 2 30.05 2, 0.25 1.3, 2 15.x x x≤ ≤ ≤ ≤ ≤ ≤

Bibliography

164

BIBLIOGRAPHY

[1] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms: John Wiley

& Sons, 2001.

[2] K. Deb, Optimization for Engineering Design: Algorithms and Examples. New

Delhi: Prentice-Hall, 1995.

[3] D. Buche, "Multi-Objective Evolutionary Optimization of Gas Turbine

Components," Zurich: PhD thesis, Swiss Federal Institute of Technology, 2003.

[4] X. Yao, "Evolutionary Computation, A Gentle Introduction," in Evolutionary

Optimization, R. Sarker, M. Mohammadian, and X. Yao, Eds.: Kluwer Academic

Publishers, 2002, pp. 27-53.

[5] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control: Wiley, 2003.

[6] Wikipedia, "Global Optimization,"

http://en.wikipedia.org/wiki/Global_optimization, Retrieved on 2008-8-13.

[7] A.-R. Hedar and M. Fukushima, "Derivative-Free Filter Simulated Annealing

Method for Constrained Continuous Global Optimization," Journal of Global

Optimization, vol. 35(4), pp. 521-549, 2006.

[8] A.-R. Hedar, E. Hamdy, and M. Fukushima, "Tabu Programming Method: A New

Meta-Heuristics Algorithm Using Tree Data Structures for Problem Solving,"

http://www.amp.i.kyoto-u.ac.jp/tecrep/ps file/2008/2008-004.pdf, Retrieved on

2008-11-2.

Bibliography

165

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated

Annealing," Science, vol. Volume 220, pp. 671-680, 1983.

[10] B. A. Berg, Markov Chain Monte Carlo Simulations and Their Statistical Analysis.

Singapore: World Scientific, 2004.

[11] B. Bharath and V. Borkar, "Stochastic Approximation Algorithms: Overview and

Recent Trends," Sadhana vol. 24, pp. 425-452, 1999.

[12] E. Camponogara and S. N. Talukdar, "A Genetic Algorithm For Constrained and

Multiobjective optimization," in Proceeding of 3rd Nordic Workshop on Genetic

Algorithms and Their Applications, Vaasa, Finland, 1995, pp. 49-62.

[13] D. E. Goldberg, Genetic Algorithms for Search, Optimization, and Machine

Learning: Addison-Wesley, 1989.

[14] Z. Michalewicz and C. C. Janikow, "GENOCOP: A Generic Algorithm for

Numerical Optimization Problems with Linear Constraints," Communication of the

ACM, 1996.

[15] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of

IEEE International Conference on Neural Networks. vol. 4 Perth, Australia: IEEE

Service Centre, 1995, pp. 1942-1948.

[16] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence: San Francisco: Morgan

Kaufmann Publisher, 2001.

[17] M. Dorigo and T. Stutzle, Ant Colony Optimization: MIT Press, 2004.

[18] K. V. Price, R. M. Storn, and J. A. Lanpinen, Differential Evolution: A Practical

Approach to Global Optimization: Springer, 2005.

Bibliography

166

[19] K. E. Parsopoulos and M. N. Vrahatis, "Recent Approaches to Global Optimization

Problems Through Particle Swarm Optimization," Natural Computing, vol. 1, pp.

235-306, 2002.

[20] Y. Shi and R. Eberhart, "Parameter Selection in Particle Swarm Optimization," in

The 7th Ann. Conf. on Evolutionary Programming, San Diego, CA, 1998.

[21] H. Fan, "A Modification to Particle Swarm Optimization Algorithm," Engineering

Computations, vol. vol.19, pp. 970-989, 2002.

[22] S. Koziel and Z. Michalewicz, "Evolutionary Algorithms, Homomorphous

Mappings, and Constrained Parameter Optimization," Evolutionary Computation,

vol. vol. 7, no.1, pp. 19-44, 1999.

[23] T. P. Runarsson and X. Yao, "Stochastic Ranking for Constrained Evolutionary

Optimization," IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,

vol. VOL. 4,, pp. 284-294, September 2000 2000.

[24] F. Glover, "Future Paths for Integer Programming and Links to Artificial

Intelligence," Computers and Operations Research, vol. 13(5), pp. 533-549, 1986.

[25] A.-R. H. A. Ahmed, "Studies on Metaheuristics for Continuous Global

Optimziation Problems," PhD thesis, Kyoto University, Japan, 2004.

[26] Wikipedia, "Metaheuristic," http://en.wikipedia.org/wiki/Metaheuristic, Retrieved

on 2008-8-25.

[27] M. Dorigo, M. Birattari, and T. Stutzle, "Ant Colony Optimization, Artificial Ants

as a Computational Intelligence Technique," IRIDIA - Technical Report Series,

TR/IRIDIA/2006-023, 2006.

Bibliography

167

[28] M. Dorigo, "Optimization, Learning and Natural Algorithms (in Italian)," in Ph.D.

dissertation, Dipartimento di Elettronica: Politecnico di Milano, 1992.

[29] R. Storn and K. Price, "Differential Evolution - A Simple and Efficient Adaptive

Scheme for Global Optimization over Continuous Spaces," Technical Report

TR-95-912, ICSI, 1995.

[30] C. A. C. Coello, "A Survey of Constraint Handling Techniques used with

Evolutionary Algorithms, Technical Report Lania-RI-9904, Laboratorio, Nacional

de Informtica Avanzada," 1999.

[31] C. A. C. Coello, "Constraint-Handling using an Evolutionary Multiobjective

Optimization Technique," Civil Engineering and Environmental Systems, vol. 17,

pp. 319-346, 2000.

[32] Ruhul Sarker, Masoud Mohammadian, and X. Yao, "Evolutionary Optimization,"

in International Series in Operations Research & Management Science, F. S.

Hillier, Ed., 2002.

[33] Wikipedia, "Genetic Algorithm," http://en.wikipedia.org/wiki/Genetic_algorithm,

Retrieved on 2008-10-14.

[34] J. Holland, Adaptation in Natural and Artificial Systems: University of Michigan

Press, 1975.

[35] D. Goldberg and K. Deb, "A Comparative Analysis of Selection Schemes Used in

Genetic Algorithms," in Foundations of Genetic Algorithms: Morgan Kaufmann,

1991, pp. 69-93.

[36] TJHSST Science and Technology, "Genetic Algorithms ":

http://www.tjhsst.edu/~ai/AI2001/GA.HTM, Retreived on 2008-11-2.

Bibliography

168

[37] Z. Michalewicz and M. Schmidt, "Evolutionary Algorithms and Constrained

Optimization," in Evolutionary Optimization, R. Sarker, M. Mohammadian, and X.

Yao, Eds.: Kluwer Academic Publishers, 2002, pp. 57-86.

[38] R. Storn and K. Price, "DE - A Simple and Efficient Heuristic for Global

Optimization over Continuous Space," Journal of Global Optimization, vol. 11, pp.

341-359, 1997.

[39] K. Price, "An introduction to DE," in New Ideas in Optimization, D. Corne, M.

Dorigo, and G. Glover, Eds. London: McGraw-Hill, 1999, pp. 78-108.

[40] J. Lampinen, "A Constraint Handling Approach for the Differential Evolution

Algorithm," in Proceedings of IEEE World Congress on Computational

Intelligence, Honolulu, Hawaii, 2002, pp. 1468 - 1473

[41] H.-Y. Fan, J. Lampinen, and Y. Levy, "An Easy-to-Implement Differential

Evolution Approach for Multi-objective Optimizations," Engineering

Computations: International Journal for Computer-Aided Engineering and

Software, vol. 23, pp. 124-138, 2006.

[42] T. Krink, B. Filipic, and G. B. Forgel, "Noisy Optimization Problems - A Particular

Challenge for Differential Evolution?," in Proceedings of IEEE Congress on

Evolutionary Computation, Portland, USA, 2004, pp. 332-339.

[43] J. H. Sickel, K. Y. Lee, and J. S. Heo, "Differential Evolution and its Applications

to Power Plant Control," in Proceedings of International Conference on Intelligent

Systems Applications to Power Systems Kaohsiung, Taiwan, 2007, pp. 1-6.

Bibliography

169

[44] X. Li, "Particle Swarm Optimization : An Introduction and Its Recent

Development," in Proceedings of the 2007 GECCO conference companion on

Genetic and evolutionary computation London, United Kingdom: ACM, 2007.

[45] J. Kennedy, "Bare Bones Particle Swarms," in Proceeding of The Swarm

Intelligence Symposium, 2003.

[46] K. E. Parsopoulos and M. N. Vrahatis, "Particle Swarm Optimization Method for

Constrained Optimization Problem," Intelligent Technologies--Theory and

Application: New Trends in Intelligent Technologies, vol. 76 of Frontiers in

Artificial Intelligence and Applications, pp. 214-220, IOS Press, pp. 214-220,

2002.

[47] R. C. Eberhart and Y. Shi, "Comparison between Genetic Algorithms and Particle

Swarm Optimization," in Proceedings of the 7th International Conference on

Evolutionary Programming VII, 1998, pp. 611-618.

[48] R. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools.

San Diego: Academic Press Professional, 1996.

[49] Z. Michalewiza and M. Schoenauer, "Evolutionary Algorithms for Constrained

Parameter Optimization Problems," Evolutionary Computation, vol. 4(1), pp. 1-32,

1996.

[50] G. Coath and S. K. Halgamuge, "A Comparison of Constraint-Handling Methods

for the Application of Particle Swarm Optimization to Constrained Nonlinear

Optimization Problems," in Proceedings of IEEE Congress on Evolutionary

Computation, Newport Beach, CA, USA, 2003, pp. 2419-2425.

Bibliography

170

[51] A. Isaacs, T. Ray, and W. Smith, "Blessing of Maintaining Infeasible Solutions for

Constrained Multi-objective Optimization Problems," in Proceedings of IEEE

Congress on Evolutionary Computation, Hong Kong, China, 2008, pp. 2785-2792.

[52] Y. Yu and Z.-H. Zhou, "On the Usefulness of Infeasible Solutions in Evolutionary

Search: A Theoretical Study," in Proceedings of Congress on Evolutionary

Computation, Hong Kong, China, 2008, pp. 835-840.

[53] D. Powell and M. Skolnick, "Using Genetic Algorithms in Engineering Design

Optimization with Non-linear Constraints," in Proceedings of the Fifth ICGA,

Morgan Kaufmann, 1992, pp. 424-430.

[54] J. T. Rechardson, M. R. Palmer, G. E. Liepins, and M. R. Hilliard, "Some

Guidelines for Genetic Algorithms with Penalty Functions," in Proceeding of the

3rd International Conference on Genetic Algorithms: Morgan Kaufmann, 1989, pp.

191-197.

[55] P. D. Surry and N. J. Radcliffe, "The COMOGA Method: Constrained

Optimization by Multi-Objective Genetic Algorithms," Control and Cybernetics,

vol. 26, 1997.

[56] Y. Zhou, Y. Li, J. He, and L. Kang, "Multi-objective and MGG Evolutionary

Algorithm for Constrained Optimization," in Proceedings of the Congress on

Evolutionary Computation, Canberra, Australia, 2003, pp. 1-5.

[57] Y. Wang and Z. Cai, "A Constrained Optimization Evolutionary Algorithm Based

on Multiobjective Optimization Techniques," in Proceedings of IEEE Congress on

Evolutionary Computation,. vol. 2 Edinburgh, Scotland, 2005, pp. 1081- 1087

Bibliography

171

[58] S. Venkatraman and G. G. Yen, "A Generic Framework for Constrained

Optimization Using Genetic Algorithms," IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, vol. 9(4), pp. 424-435, 2005.

[59] E. Mezura-Montes and C. A. C. Coello, "A Survey of Constraint-Handling

Techniques Based on Evolutionary Multiobjective Optimization,"

http://dbkgroup.org/knowles/MPSN3/mezura-workshop-ppsn06.pdf, Retrieved on

2008-10-14.

[60] E. Mezura-Montes and C. A. C. Coello, "Multiobjective-Based Concepts to Handle

Constraints in Evolutionary Algorithms," in Proceedings of the Fourth Mexican

International Conference on Computer Science Apizaco, MEXICO, 2003, pp.

192-199.

[61] E. Zitzler and L. Thiele, "Multiobjective Evolutionary Algorithms: A Comparative

Case Study and the Strength Pareto Approach," IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION,, vol. 3 (4), pp. 257-271, 1999.

[62] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II," IEEE Transaction onEvolutionary

Computation, vol. 6(2), pp. 197-215, 2002.

[63] C. A. C. Coello, "Treating Constraints as Objectives for Single-Objective

Evolutionary Optimization," Engineering Optimization, vol. 32(3), 2000.

[64] J. J. Liang and P. N. Suganthan, "Dynamic Multi-Swarm Particle Swarm Optimizer

with a Novel Constraint-Handling Mechanism," in Proceedings of IEEE Congress

on Evolutionary Computation, Vancouver, Canada, 2006, pp. 9 -16.

Bibliography

172

[65] T. Ray, T. Kang, and S. K. Chye, "An Evolutionary Algorithm for Constrained

Optimization,," in Proceedings of the Genetic and Evolutionary Computation

Conference Las Vegas, USA: Morgan Kaufmann, 2000, pp. 771-777.

[66] S. A. KHTAR, K. Tai, and T. Ray, "A Socio-Behavioural Simulation Model for

Engineering Design Optimizaiton," Engineering Optimization, vol. 34 (4), pp.

341-354, 2002.

[67] T. Ray and K. M. Liew, "Society and Civilization: An Optimization Algorithm

Based on the Simulation of Social Behavior," IEEE Transaction on Evolutionary

Computation, vol. 7(4), pp. 386- 396, 2003.

[68] C. A. C. Coello and E. Mezura-Montes, "Handling Constraints in Genetic

Algorithms Using Dominance-Based Tournaments," in Proceedings of the Fifth

International Conference on Adaptive Computing Design and Manufacture,

Devon, UK, 2002, pp. 273-284.

[69] C. A. C. Coello and E. M. Montes, "Constraint-Handling in Genetic Algorithms

Through the Use of Dominance-Based Tournament Selection," Advanced

Engineering Informatics, vol. 16 pp. 193--203, 2002.

[70] G. T. Pulido and C. A. C. Coello, "A Constraint-Handling Mechanism for Particle

Swarm Optimization," in Proceeding of the 2004 Congress on Evolutionary

Computation, Portland, OR, USA, 2004, pp. 1396-1403.

[71] X. Hu and R. Eberhart, "Solving Constrained Nonlinear Optimization Problems

with Particle Swarm Optimization," in Proceedings of the Sixth World

Multiconference on Systemics, Cybernetics and Informatics, 2002.

Bibliography

173

[72] X. Hu, R. C. Eberhart, and Y. Shi, "Engineering Optimization with Particle

Swarm," http://www.swarmintelligence.org/papers/SIS2003Engineering.pdf,

Retrieved on 2008-10-14.

[73] K. E. Parsopoulos and M. N. Vrahatis, "Unified Particle Swarm Optimization for

Solving Constrained Engineering Optimization Problems " in Lecture Notes in

Computer Science. vol. 3612/2005: Springer, 2005, pp. 582-591.

[74] S. He, E. Prempain, and Q. Wu, "An Improved Particle Swarm Optimizer for

Mechanical Design Optimization Problems," Engineering Optimization, vol. 36,

pp. 585-605, 2004.

[75] A. E. M. Zavala, A. Hernandez, and E. R. V. Diharce, "Constrained Optimization

via Particle Evolutionary Swarm Optmization Algorithm (PESO)," in Proceedings

of the 2005 Conference on Genetic and Evolutionary Computation, Washington

DC, USA 2005, pp. 209 - 216

[76] J. Wei and Y. Wang, "A Novel Multi-objective PSO Algorithm for Constrained

Optimization Problems," in Proceeding of 6th International Conference on

Simulated Evolution And Learning, LNCS 4247, 2006, pp. 174-180.

[77] K. Zielinski and R. Laur, "Constrained Single-Objective Optimization Using

Particle Swarm Optimization," in Proceedings of IEEE Congress on Evolutionary

Computation, Vancouver, Canada, 2006, pp. 443-450.

[78] Q. He and L. Wang, "An Effective Co-Evolutionary Particle Swarm Optimization

for Constrained Engineering Design Problems," Engineering Application of

Artificial Intelligence, vol. 20, pp. 89-99, 2007.

Bibliography

174

[79] X. Hu and R. Eberhart, "Multiobjective Optimization Using Dynamic

Neighborhood Particle Swarm Optimization," in Proceeding of IEEE Congress on

Evolutionary Computation, Honolulu, Hawaii, 2002.

[80] C. A. C. Coello and M. S. Lechuga, "MOPSO: A Proposal for Multiple Objective

Particle Swarm Optimization," in Proceedings of IEEE Congress on Evolutionary

Computation. vol. 2 Honolulu, HI, USA, 2002, pp. 1051-1056.

[81] K. E. Parsopoulos and M. N. Vrahatis, "Particle Swarm Optimization Method in

Multiobjective Problems," in Proceeding of ACM Symposium on Applied

Computing Madrid, Spain, 2002, pp. 603-607.

[82] K. E. Parsopoulos and M. N. Vrahatis, "Multiobjective Optimization using Parallel

Vector Evaluated Particle Swarm Optimization," in In Proceedings of the IASTED

International Conference on Artificial Intelligence and Applications,: ACTA Press,

2004, pp. 823--828.

[83] J. E. Fieldsend and S. Singh, "A Multi-objective Algorithm Based upon Particle

Swarm Optimization, An Efficient Data Structure and Turbulence," in Proceeding

of UK Workshop on Computational Intelligence (UKCI'02), Birminghan, UK,

2002, pp. 37-44.

[84] D. E. Goldberg and J. Richardson, "Genetic Algorithms with Sharing for

Multimodal Function Optimization," in Proceedings of the 2nd International

Conference on Genetic Algorithms, J. Grefenstette, Ed., 1987, pp. 41-49.

[85] M. Salazar-Lechuga and J. E. Rowe, "Particle Swarm Optimization and Fitness

Sharing to solve Multi-Objective Optimization Problems," in Proceedings of IEEE

Congress on Evolutionary Computation, Edinburgh, UK, 2005, pp. 1204-1211.

Bibliography

175

[86] X. Huo, L. Shen, and H. Zhu, "A Smart Particle Swarm Optimization Algorithm for

Multi-Objective Problems," in Lecture Notes in Computer Science. vol. 4115/2006,

2006.

[87] M. Reyes-Sierra and C. A. C. Coello, "Multi-Objective Particle Swarm Optimizers:

A Survey of the State-of-the-Art," International Journal of Computational

Intelligence Research, vol. 2, pp. 287-308, 2006.

[88] C. Ji, "A Revised Particle Swarm Optimization Approach for Multi-objective and

Multi-constraint Optimization," in Proceeding of 2004 Genetic and Evolutionary

Computation Conference (GECCO) Seattle, Washington, USA, 2004.

[89] M. J. Reddy and D. N. Kumar, "Multi-objective Particle Swarm Optimization for

Generating Optimal Trade-offs in Reservoir Operation," Hydrological Process,

vol. 21, pp. 2897-2909, 2007.

[90] C. A. C. Coello and E. Mezura-Montes, "Handling Constraints in Genetic

Algorithms Using Dominance-Based Tournaments," in Proceedings of the Fifth

International Conference on Adaptive Computing Design and Manufacture Devon,

UK, 2002, pp. 273-284.

[91] C. A. C. Coello, "The use of a multiobjective optimization technique to handle

constraints," citeseer.ist.psu.edu/64436.html Retreived on 2008-10-14.

[92] F. Jimenez, A. F. Gomez-Skarmeta, and G. Sanchez, "How Evolutionary

Multiobjective Optimization can be used for Goals and Priorities based

Optimization," in Proceeding of AEB'02, Merida Espana., 2002.

Bibliography

176

[93] J. Horn, "Evolutionary Computation Applications F1.9 Multicriterion decision

making," in Handbook of Evolutionary Computation: IOP Publishing LTD and

Oxford University Press, 1997.

[94] M. Clerc and J. Kennedy, "The Particle Swarm-Explosion, Stability, and

Convergence in a Multidimensional Complex Space," IEEE Transactions on

Evolutionary Computation, vol. VOL. 6, NO.1, pp. 58-73, 2002.

[95] J. Kennedy, "Small Worlds and Mega-Minds: Effects of Neighborhood Topology

on Particle Swarm Performance," in Proceedings of IEEE Congress on

Evolutionary Computation, Washington D.C, USA, 1999, pp. 1931-1938.

[96] J. Kennedy and R. Mendes, "Population Structure and Particle Swarm

Performance," in Proceedings of IEEE Congress on Evolutionary Computation,

Honolulu, HI, USA, 2002, pp. 1671-1676.

[97] Wikipedia, "Sociometry," http://en.wikipedia.org/wiki/Sociometry, Retrieved on

2008-10-14.

[98] J. Flores-Mendoza and E. Mezura-Montes, "Dynamic Adaptation and

Multiobjective Concepts in a Particle Swarm Optimizer for Constrained

Optimization," in Proceedings of IEEE Congress on Evolutionary Computation,

Hong Kong, China, 2008, pp. 3426-3433.

[99] D. H. Wolpert and W. G. Macready, "No Free Lunch Theorems for Optimization,"

IEEE Transactions on Evolutionary Computation vol. 1, pp. 67-, 1997.

[100] X. Li, "Better Spread and Convergence: Particle Swarm Multiobjective

Optimization Using the Maximin Fitness Function," in Proceedings of the Genetic

and Evolutioanry Computation Conference (GECCO'2004) Seattle, Washington,

Bibliography

177

USA: Springer-Verlag, Lecture Notes in Computer Science Vol.3102, 2004, pp.

117-128.

[101] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms: Oxford University Press US,

1996.

[102] C. A. C. Coello, "Use of A Self-Adaptive Penalty Approach for Engineering

Optimization Problems," Computers in Industry, vol. 41, pp. 113-127, 2000.

[103] T. Blackwell and J. Branke, "Multi-swarm Optimization in Dynamic

Environment," in Lecture Notes in Computer Science. vol. 3005, 2004, pp.

489-500.

[104] C. Horstmann, Big java: John Wiley & Sons, 2007.

[105] M. Goodrich and R. Tamassia, Data Structures and Algorithms in Java: John Wiley

& Sons, 1998.

[106] OMG, "OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2,"

http://www.omg.org/docs/formal/07-11-04.pdf, Retrieved on 2008-10-14.

[107] Sun Microsystems Inc., "Java Platform, Standard Edition 6 API Specification,"

http://java.sun.com/javase/6/docs/api/, Retrieved on 2008-11-3.

[108] Wikipedia, "Fortran," http://en.wikipedia.org/wiki/Fortran, Retrieved on

2008-11-4.

[109] Wikipedia, "C (programming language),"

http://en.wikipedia.org/wiki/C_(programming_language), Retrieved on 2008-11-4.

[110] J. L. Volakis, IEEE Antennas and Propagation Magazine, vol. 40, No. 5, 1998.

Bibliography

178

[111] Commonwealth of Australia, "Carbon Pollution Reduction Scheme - Green Paper,"

The Department of Climate Change, 2008.

[112] A. Farag, S. Al-baiyat, and T. C. Cheng, "Economic Load Dispatch Multiobjective

Optimization Procedures using Linear Programming Techniques," IEEE

Transactions on Power System, vol. 10, No. 2, 1995.

[113] I. N. d. Silva and L. Nepomuceno, "An Efficient Neural Approach to Economic

Load Dispatch in Power Systems," in Proceedings of the IEEE PES Summer

Meeting, CD-Rom, 2001.

[114] I. N. d. Silva, L. Nepomuceno, and T. M. Bastos, "An Efficient Hopfield Network

to Solve Economic Dispatch Problems with Transmission System Representation,"

International Journal of Electrical Power & Energy Systems, vol. 26, pp. 733-738,

2004.

[115] R. Danraj and F. Gajendran, "An Efficient Algorithm to Find Optimal Economic

Load Dispatch for Plants having Discontinuous Fuel Cost Functions," IE(I) Journal

- EL, vol. 85, 2004.

[116] M. Basu, P. K. Chattopadhyay, R. N. Chakrabarti, and T. K. Ghoshal, "Economic

Emission Load Dispatch with Non-smooth Fuel Cost and Emission Level

Functions through an Interactive Fuzzy Satisfying Method and Evolutionary

Programming Technique," IE(I) Journal - EL, vol. 87, 2006.

[117] B. Zhao and Y.-j. CAO, "Multiple Objective Particle Swarm Optimization

Technique for Economic Load Dispatch," Journal of Zhejiang University

SCIENCE, pp. 420-427, 2005.

Bibliography

179

[118] M. Basu, "Dynamic Economic Emission Dispatch Using Evolutionary

Programming and Fuzzy Satisfying Methods," International Journal of Emerging

Electric Power Systems, vol. 8 (2007), Issue 4, 2007.

[119] Queensland Government: http://www.epa.qld.gov.au/, Retrieved on 2009-3-25.

[120] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Optimization

Methods and Applications. New York: Wiley, 1983.

Publication List

180

PUBLICATION LIST

[1]. Lily D Li, Xinghuo Yu, Xiaodong Li and William Guo. “A Modified PSO Algorithm

for Constrained Multi-Objective Optimization”, in Proceeding of IEEE International

Conference on Networks & System Security (IEEE NSS 2009), Gold Coast, Australia.

[2]. Lily D Li, Xiaodong Li and Xinghuo Yu. “Power Generation Loading Optimization

using a Multi-Objective Constraint-Handling Method via PSO Algorithm”, in

Proceeding of IEEE International Conference on Industrial Informatics (IEEE

INDIN 2008), Daejeon, Korea, 2008, p1632-1637.

[3]. Lily D Li, Xiaodong Li and Xinghuo Yu. “A Multi-Objective Constraint-Handling

Method with PSO Algorithm for Constrained Engineering Optimization

Problems”, in Proceeding of IEEE Congress on Evolutionary Computation (IEEE

CEC 2008), Hong Kong, China, 2008, pp1528-1535.

[4]. Lily D Li, Jiping Zhou, Xinghuo Yu, Xiaodong Li. “Constrained Power Plants Unit

Loading Optimization using Particle Swarm Optimization Algorithm”. WSEAS

Transactions on Information Science and Applications, Issue 2, Volume 4, February

2007, pp296-302, ISSN 1790-0832.

[5]. Lily D Li, Jiping Zhou, Xinghuo Yu. “Performance Based Unit Loading

Optimization using Particle Swarm Optimization Approach”, in Proceeding of

CIMMACS'06 , Venice, Italy 2006, pp 351-356.

[6]. Lily D Li, Wei Li, Russel Stonier and Xinghuo Yu. “Breaking the Constraints to a

High Performance Metacomputing System: A System Approach”, in Proceeding of

Publication List

181

ISCA 20th International Conference on Computers and Their Applications, New

Orleans, USA, 2005, pp379-384.

[7]. Lily D Li, ASM Sajeev, F. Han. “Time Scheduling using Agent Technology”, in

Proceedings of 2002 International Symposium on Nonlinear Theory and its

Applications, Xian, China, 2002, pp555-558.

[8]. D.H Wood and Lily D Li. “Assessment of the Accuracy of Representing a Helical

Vortex by Straight Segments”. AIAA Journal. Vol. 40, No. 4, p647-p651, 2002. ISSN

0001-1452.

[9]. Fengling Han, Xinghuo Yu, Lily D Li, and Russel Stonier. “Complex Dynamic

Behaviour in a Third-Order Continuous System with Hysteresis Series”, in

Proceedings of 2002 International Symposium on Nonlinear Theory and its

Applications, 2002, Xian, China, pp933-936.

[10]. William Guo, Lily D Li and Greg Whymark. “Statistics and Neural Networks for

Approaching Nonlinear Relations between Wheat Plantation and Production in

Queensland of Australia”, in Proceeding of IEEE International Conference on

Industrial Technology (IEEE ICIT 2009), Churchill, Australia, 2009.

