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ABSTRACT 
 

This thesis is devoted to the study of metaheuristic optimization algorithms and their 

application in power generation. The study focuses on constrained multi-objective 

optimization using Particle Swarm Optimization algorithm. 

A multi-objective constraint-handling method incorporating a dynamic 

neighbourhood PSO algorithm is proposed for tackling single objective constrained 

optimization problems. The benchmark simulation results demonstrate the proposed 

approach is effective and efficient in finding the consistent quality solutions. Compared 

with the recent research results, the proposed approach is able to provide better or similar 

good results in most benchmark functions. The proposed performance-based dynamic 

neighbourhood topology has proved to be able to help make convergence faster than the 

static neighbourhood topology. 

The thesis also presents a modified PSO algorithm for solving multi-objective 

constrained optimization problems. Based on the constraint dominance concept, the 

proposed approach defines two sets of rules for determining the cognitive and social 

components of the PSO algorithm. Simulation results for the four numerical optimization 

problems demonstrate the proposed approach is effective. The proposed approach has a 

number of advantages such as being applicable to any number of objective functions and 

computationally inexpensive. 

As applications, three engineering design optimization problems and the power 

generation loading optimization problem are investigated. The simulation results for the 

engineering design optimization problems and the power generation loading optimization 

problem reveal the capability, effectiveness and efficiency of the proposed approaches. 

The methodology can be readily applicable to a broad range of applications.  
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Chapter 1                                        

INTRODUCTION 
 

1.1 PROLOGUE 

Optimization is all about better choices. As human beings, we try to make optimal choices 

in our daily lives. When we are driving in busy city streets, we choose short and less 

crowded routes and avoid traffic lights to minimize our travelling time. When buying a car, 

we would choose the most comfortable model at the minimum cost. Better choices come 

from knowledge and experiences.    

In most industrial activities, making an optimal choice is not that simple. The reasons 

may be that it is too complicated; there are too many choices; there is limited knowledge 

and experience; or environmental and human constraints exist. Such cases require 

complicated calculations and reasoning to help with our decision making. Fortunately, 

many of these applications can be formulated into mathematical models that can be 

represented and analysed systematically. This forms the base for the study of optimization.  

Optimization is a branch of operations research. It involves topics in wide subfields 

such as nonlinear programming, stochastic programming, combinatorial optimization, and 

other computational intelligence technologies. It has a wide range of practical applications 

crossing industries such as production planning, transportation scheduling and mechanical 
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design. Optimization plays a key role in improving the quality of decision making which 

leads to improved business performance for any organization. 

This thesis is devoted to the study of optimization algorithms and their applications. 

The rest of the chapter is organized as follows. Section 1.2 formally introduces 

optimization problems including basic concepts and terminologies. Section 1.3 presents an 

outline of the optimization algorithms. Section 1.4 describes the research motivation and 

scope. Section 1.5 states the goals and the contributions of the thesis. Section 1.6 previews 

the remaining chapters.  

1.2  CONSTRAINED OPTIMIZATION PROBLEMS 

Many real world optimization applications involve optimizing (minimizing or 

maximizing) one or more objectives subject to satisfying diverse equality and inequality 

constraints. Optimization problems are made up of three basic components: one (or more) 

objective function(s), a set of unknown decision variables and a set of constraints. The 

objective functions are numerical functions to determine how good a solution is.   A set of 

unknown decision variables determine the value of the objective functions.  The constraints 

are conditions that allow the decision variables to take on certain values but exclude others. 

The following sections introduce the optimization problems and some basic concepts. 

1.2.1 Single Objective Optimization Problems   

A single objective constrained optimization problem can be formalized as a pair ( , )S f , 

where  nS⊆ is a bounded set on n and :f S →  is a n-dimensional real-valued 

function. The problem is to find a point *x S∈ such that ( * )f x  is minimum or maximum 
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on S (S is denoted as the decision space). Maximization of a real-value function 1( )f x  can 

be regarded as the minimization of the transformed function 1( ) ( )f x f x= − , the 

minimization problems are taken into consideration in general.  

         The problem can be stated more formally as to find   *x   which  

 

min imize              ( )
subject to              ( ) 0,            1,2,..., ;
                             ( ) 0,           1,2,..., ;

i

j

f x
g x i m
h x j p

⎫
⎪

≤ = ⎬
⎪= = ⎭

                   

 

where x is the vector of solution 1 2  ( , ,..., )T
nx x x x=  , and each ( 1,... )ix i n=  is bounded by 

lower and upper limits  i i il x u≤ ≤ ; m  is the number of inequality constraints and p  is the 

number of equality constraints. In both cases, constraints could be linear or non-linear. 

The equality constraints ( ) 0 jh x = can be translated into inequality constraints 

| ( ) | 0,  jh x δ− ≤ where  δ is a tolerance allowed. Equation (1.1) can be converted into: 

 

min imize              ( )
 

subject to              ( ) 0,            1,2,..., ;i

f x
g x i m

⎫
⎬≤ = ⎭

                   

         

 where  m is the total number of constraints. 

 More specifically, the optimization task is to find a *x S∈ such that

1 2( , ,... ) : ( *) ( )T
nx x x x S f x f x∀ = ∈ ≤  subject to satisfying all constraints. 

(1.1)

(1.2)
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Single objective optimization has one search space (decision space) and one global 

solution.  

1.2.2 Multi-objective Optimization Problems 

As in the single objective constrained optimization problem definition described earlier, a 

general multi-objective constrained optimization problem consists of a decision vector

 
1 2  ( , ,..., )T

nx x x x= , an objective function vector 1 2( )  (  ,  ,...,  ( ) ( ) ( ) )kf x f f fx x x=  and a constraint 

function vector 1 2  ( )  (  , ,..., ( ) ( ) ( ) )mg x g g gx x x= .  

The problem can be stated as to find   *x   which  

 

minimize              ( ),                1, 2,...

subject to             ( ) 0,          1, 2,...
j

i

f x j k

g x i m

= ⎫⎪
⎬

≤ = ⎪⎭
                                 

   

where k is the total number of objective functions and  m is the total number of constraints. 

In single-objective optimization, there exists a global optimum, while in the 

multi-objective case no optimal solution is clearly defined apart from a set of optima. The 

optimization is to find good compromises (or “trade-offs”) rather than a single solution as 

in the single objective optimization.  All solutions to a multi-objective optimization 

problem are called Pareto-optimal solutions, the curve by joining these solutions is known 

as a Pareto-optimal front [1].   

    The optimization tasks for multi-objective optimization is to 

• find a set of solutions as close as possible to the Pareto-optimal front and 

• find a set of solutions as diverse as possible 

(1.3)
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Multi-objective optimization problems have two search spaces named decision space 

and objective space.   

1.2.3 Basic Concept and Terminology 

Since the scope (further described in Section 1.4) of this thesis is focused on integrating the 

multi-objective constraint-handling methods with the metaheuristic optimization 

algorithms, it is necessary to introduce some concepts and terminologies about 

multi-objective optimization.  Figures 1.1 and 1.2 illustrate some basic concepts and 

terminologies based on a two-objective problem, which are then explained in detail.  

 

 

Figure 1.1   Illustration of the concepts of feasible region, Pareto-front, a decision point x 
and its corresponding objective value in decision and objective spaces 
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Figure 1.2   Illustration of concept of dominance 

 

Definition 1 (Feasible Set):  

A solution x is feasible if it satisfies all constraints that are imposed.  That is, the 

feasible set fx  is a set of solution x that satisfy all the constraints g(x): 

{ | ( ) 0}   fx x S g x= ∈ ≤                                              

The feasible region is shadowed in light blue colour in Figure 1.1. 

Definition 2 (Pareto Dominance):  

A solution x(1) is said to dominate the other solution x(2), if both conditions a) and b) 

are true: 

a) The solution x(1) is no worse than x(2) in all objectives  j (j =1,2,…,k). 

b) The solution x(1) is strictly better than x(2) in at least one objective  j ( j =1,2,…,k)  

     if (1) (2) ( ) ( )f x f x≤ ,   x
(1) dominates x(2), denoted as (1) (2) x x=≺  

     if (1) (2) (2) (1) ( ) ! ( )    or     ( ) ! ( )f x f x f x f x≤ ≤ , x(1) is indifferent to x(2), denoted as 

(1) (2 ) x x∼ . 
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Figure 1.2 illustrates a two-objective minimization optimization problem with five 

different solutions shown in the objective space.   Solution B dominates solutions C and D 

because B has lower values in both objective functions f1 and f2 than those by C and D. 

Solution A dominates solution D and solution C because A has a lower value in f1 than C 

and the same value f2 as C.  Solutions A, B and E are indifferent because they do not 

dominate each other. 

Definition 3 (Non-dominated set): 

 Among a set of solutions P, the non-dominated set of solutions P’ are those that are 

not dominated by any member of the set P. In Figure 1.2, for example, the non-dominated 

set consists of solution E, A and B.  

Definition 4 (Pareto-optimal set): 

The non-dominated set of the entire feasible search space S is the Pareto-optimal set. 

The curve by joining these solutions is known as a Pareto-optimal front as shown in Figure 

1.1. 

Definition 5 (Constraint dominance):  

A solution x(1) is said to ‘constraint-dominate’ a solution x(2), denoted as (1) (2)  ,cx x≺  

if any of the following conditions are true: 

• Solution x(1) is feasible and solution x(2) is not. 

• Solution x(1) and solution x(2) are both infeasible, but solution x(1) has a smaller 

constraint violation. 

• Solution x(1) and solution x(2) are feasible and solution x(1) dominates solution x(2) in 

the usual sense (see Definition 2). 
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1.3   OPTIMIZATION ALGORITHMS 

1.3.1 Classification 

Optimization algorithms can be classified into two categories. The first category is called 

deterministic methods. The second category is stochastic and heuristic/metaheuristic 

methods. The deterministic methods find the optimum up to certain accuracy while the 

stochastic and heuristic/metaheuristic methods find the optimum up to a certain 

probability. In other words, the deterministic methods find more accurate solutions if the 

problem representation meets certain requirements. The stochastic and 

heuristic/metaheuristic methods, however, can find solutions with a certain probability.   A 

classification of the optimization techniques is presented in Figure 1.3. A description of 

these techniques follows.   

 

Figure 1.3   Classification of optimization algorithms 
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1.3.2 Deterministic Methods 

The deterministic methods are also called classical methods. The classical optimization 

methods can be further classified into two groups:  Direct methods and Gradient-based 

methods [1-3].  

Direct search methods converge iteratively to the optimum. It starts from a random 

guess solution. Based on a pre-specified transition rule, the algorithm suggests a direction 

for successive search points [1, 3]. “In direct search methods, only the objective function 

f(x) and the constraint values g(x) are used to guide the search strategy, which require 

many function evaluations for convergence, it is generally slow” [1] . 

Gradient-based methods compute the position of the minima by differentiating the 

objective function and setting the obtained gradient equation to zero: 

 

0,           {1, 2,... },   
i

f i n
x
∂

= ∈
∂

                                     

          

while fulfilling the sufficient condition 

 

2

0,       , {1,2,... }. 
i j

f i j n
x x
∂

> ∈
∂ ∂

                                    

        

Obviously, gradient-based methods require the mathematical equations of the 

objective functions to be clearly defined and the functions must be continuous and 

differentiable.    “The gradient-based methods can quickly converge near an optimal 

solution. But they are not efficient in non-differentiable or discontinuous problems”[1].   

(1.5)

(1.4)
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Deb [1] has summarized the difficulties that classical optimization methods have 

encountered, as follows: 

• The convergence to an optimal solution depends on the chosen initial solution.  

• Most algorithms tend to get stuck to a suboptimal solution. 

• An algorithm efficient in solving one optimization problem may not be efficient in 

solving a different optimization problem. 

• Algorithms are not sufficient in handling problems having a discrete search space. 

• Algorithms cannot be efficiently used on a parallel machine.   

With these difficulties, the applications of classical optimization methods have been 

restricted to the problems that have clear mathematical formulas for both objective 

functions and constraint functions, and the functions must be continuous and differentiable. 

They are not designed for processing inaccurate, noisy and complex data although they 

might excel at dealing with complicated data [4]. 

1.3.3 Stochastic and Heuristic/Metaheuristic Methods 

The stochastic optimization methods are optimization algorithms which incorporate 

probabilistic (random) elements, either in the problem data (the objective function, the 

constraints), or in the algorithm itself (through random parameter values, random choices), 

or in both [5]. Heuristic/metaheuristic methods are those methods to search in the search 

space in a (more or less) intelligent way [6]. Most stochastic and heuristic/metaheuristic 

methods are inspired by nature since nature operates with random processes (e.g., for 

mutating genetic information, within the annealing process of metal, in molecular 

dynamics, or in swarm behaviours of birds) [3].     In this thesis, we refer metaheuristics as 

heuristic/metaheuristic stochastic methods.  
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The metaheuristic methods can be further classified into two groups:  point-to-point 

methods and population-based methods [7, 8]. In point-to-point methods, the search 

invokes only one solution at the end of each iteration from which the search will start in the 

next iteration. Simulated annealing [9], Monte-Carlo-based Algorithms[10], and 

Stochastic Approximation[11] are typical examples of the point-to-point metaheuristics. 

Instead of one solution in each iteration, the population-based methods work with a 

population of solutions. By starting with a random set of solutions, a population-based 

algorithm modifies the current population to a different population in each iteration. 

Well-known representatives of the population-based metaheuristics are those Evolutionary 

Algorithms (EAs) like Genetic Algorithms (GA) [12-14], Particle Swarm Optimization 

(PSO) [15, 16], Ant Colony Optimization (ACO) [17] and Differential Evolution (DE) 

[18].  Working with a number of solutions provided algorithms with the ability to capture 

multiple optimal solutions in one single simulation run.  

Compared with deterministic methods, the metaheuristic methods offer the following 

advantages: 

• Wide applicability.  Since the metaheuristic methods do not use any deterministic 

rules, and their representations are flexible (e.g., continuous, discrete, 

differentiable, non-differentiable), these properties make the algorithms flexible 

enough to be used in a wide variety of problem domains.  

• Higher performance. The metaheuristic methods have ability to capture multiple 

solutions in one single simulation run. They often find optima in complicated 

optimization problems faster than classical optimization methods [1, 4, 19].  
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Chapter 2 will present a detailed review of the well-known population-based 

metaheuristic methods. 

1.4 MOTIVATION AND SCOPE 

1.4.1 Motivation 

Several new emerging  metaheuristics like PSO have proven to be effective and efficient 

for solving real-valued global unconstrained optimization problems [16, 20, 21]. 

However, their utilisations in solving constrained optimization problems remain 

problematic.  Most real world applications have to cope with constraints. Often the 

constraints are many in numbers and are nonlinear. The traditional penalty functions 

approaches tend to have difficulties to deal with highly constrained search spaces [22, 23]. 

To seek other better constraint-handling methods incorporating the more superior 

algorithms is desirable. This research is motivated by the constrained real world 

applications and the fact of the unsatisfying performance of current constraint-handling 

methods in the metaheuristic algorithms.  

1.4.2 Research Scope 

This thesis is devoted to the study of metaheuristic algorithms in constrained optimization. 

New metaheuristic algorithms and the constraint handling methods are to be investigated. 

The study will focus on integrating multi-objective constraint-handling methods with the 

PSO algorithm for solving constrained optimization problems. The thesis also includes a 

study of the power generation loading optimization application.  
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1.5 THESIS GOALS AND CONTRIBUTIONS 

1.5.1 Goals 

The overall goal of this thesis is to investigate the PSO algorithm in constrained 

optimization and its application in power generation.  

The objectives of the thesis are as following. 

a) To integrate the relative superior multi-objective constraint-handling method with 

PSO algorithm for solving constrained optimization problems.  

b) To conduct performance evaluation of the proposed approach including benchmark 

function experiments, search quality evaluation, computing consistency evaluation 

and comparison study.  

c) To investigate how the different neighbourhood topologies affect the algorithm 

performance. To introduce and evaluate the dynamic neighbourhood topology in 

order to improve convergence rate.  

d) To conduct performance evaluation of the proposed approach in engineering design 

optimization problems. 

e) To investigate the power generation loading optimization application and to 

examine the utility of the proposed approaches in the application. 

 

1.5.2 Contributions 

In summary, the contributions of the thesis include: 

• A new approach to integrate the multi-objective constraint-handling method 

with PSO algorithm is proposed.  PSO algorithm offers some advantages over the 
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genetic algorithms. There are few attempts made to integrate constraint-handling 

methods with PSO algorithm.  

• A novel performance-based dynamic neighbourhood topology is proposed. 

Neighbourhood topology determines how particles communicate with each other. It 

is a key factor in PSO to determine how an individual makes use of its social 

experiences. The proposed performance-based dynamic neighbourhood topology 

groups those particles that have similar performance into groups to make 

communication more efficient.  

• An effective multi-objective PSO algorithm is proposed.  Most existing 

multi-objective PSO proposals do not address the constraints. Integrating 

constraint-handling mechanisms with multi-objective PSO is a quite challenging 

topic. This thesis is one of the few attempts to use PSO algorithm in constrained 

multi-objective optimization problems.   

• As a variant of the proposed approach, a goal-oriented multi-objective 

constraint-handling method via PSO algorithm is introduced.  Since the goals 

can be used as the exit criteria, each particle does not need to go through whole 

iterations. This makes the computation more cost-effective.  

• Power generation loading optimization problem is solved by using the 

proposed approaches.  The power generation loading optimization problem is of 

practical importance in the evolving carbon constrained power industry in terms of 

fuel saving and minimizing environmental impact.  This thesis presents two 

optimization models of the power generation loading optimization, and applies the 

proposed approaches in the application. The simulation result demonstrates that the 
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loading optimization is significant and the proposed algorithm is effective and 

efficient. The methodology can be easily extended to other industrial applications. 

1.6 STRUCTURE OF THE THESIS 

The thesis contains seven chapters.  A preview of the chapters is presented as follows. 

Chapter 1 (the current chapter) introduces the constrained optimization problems, 

presents some basic concepts and terminologies, outlines the existing approaches, the 

research motivation and scope. The research goals and contributions of the thesis are also 

highlighted in this chapter.  

Chapter 2 presents a literature review of the popular metaheuristic optimization 

methods including constraint-handling methods. A state-of-the-art PSO in constrained and 

multi-objective optimization are also included.  

Chapter 3 presents a multi-objective constraint-handling method with a dynamic 

neighbourhood PSO algorithm. The chapter starts with problem formulation and 

transformation, followed by the description of PSO, a few selection rules and the idea of 

performance-based dynamic neighbourhood topology. The proposed algorithm is then 

presented. The algorithm is tested using some numerical bench mark functions. The 

numeric simulation results are to be presented. This chapter addresses the research goals a), 

b) and c) focusing on single objective constrained problems. 

Chapter 4 proposes a modified PSO algorithm for tackling constrained 

multi-objective optimization problems. The proposed approach defines two sets of rules 

for determining the cognitive and social components of the PSO algorithm. The simulation 

results for the four constrained multi-objective optimization problems will be presented. 
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This chapter continues to address research goals a), and b) focusing on multi-objective 

constrained problems. 

Chapter 5 consists of two parts.  The first part describes the design and 

implementation issues for the proposed approaches. The second part presents the 

simulation results for three engineering design optimization problems. For special case, 

where the objective function has a predefined goal, the optimization task is to find solutions 

that achieve the predefined goal, is addressed. This chapter is to address the research goal 

d).   

In Chapter 6, a challenging real-world application, the power generation loading 

optimization problem is presented. Based on the problem description and specification, the 

power generation loading optimization models are presented. Then the proposed two 

approaches with PSO are applied to the application. Optimization results are presented and 

discussed. The research goal e) is addressed in this chapter. 

Chapter 7 concludes the thesis by discussing the contributions and suggesting 

possible directions for future research. 

In addition to the main text, two appendices are included in the thesis. Appendix I 

contains the thirteen constrained numerical optimization testing functions. And Appendix 

II contains the three constrained engineering design optimization functions. 
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Chapter 2                                    

METAHEURISTIC OPTIMIZATION METHODS 

– A LITERATURE REVIEW 
 

2.1 INTRODUCTION  

The term “metaheuristics” was first proposed by Glover in 1986 [24]. Metaheuristics 

contain all heuristics methods that show evidence of achieving good quality solutions for 

the problems of interest within an acceptable time [25, 26]. In the operations research 

discipline, a metaheuristic is a general-purpose algorithmic framework that can be applied 

to different optimization problems with relatively few modifications [27]. However, the 

metaheuristics offer no guarantee of obtaining the global solutions.  

The evolutionary algorithms (EAs) are typical metaheuristics. By detecting the 

optimal solution through cooperation and competition among the individuals of the 

population, evolutionary optimization often finds optima in complicated optimization 

problems faster than classical optimization methods [1].     The concept of a genetic 

algorithm (GA) was first conceived by John Holland in 1975. Since then, a number of 

evolutionary algorithms such as ACO [28], PSO[15] and DE[29] have emerged.  These 

emerging metaheuristics have been increasingly attracting attention both in academia and 
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industry. Over the last decade or so, evolutionary algorithms have been extensively studied 

as search and optimization tools in various problem domains. The primary reasons for their 

success are their broad applicability, ease of use and global perspective [13].   However, the 

original versions of these metaheuristics have no mechanisms to deal with constraints. 

Most real world optimization applications have to deal with constraints. Integrating 

constraint-handling methods with these metaheuristics becomes imperative.  

There are a number of constraint-handling methods available in evolutionary 

optimization [1, 22, 30]. The research on integrating constraint-handling methods with 

metaheuristics has been concentrated on genetic algorithms[30-32]. Integrating these 

constraint-handling methods with other algorithms has not been properly studied. 

This chapter presents a literature review of the four most salient metaheuristics, that 

is, GA, DE, ACO and PSO.  Two questions are particularly focused in the review:  How do 

the algorithms work? What are the advantages and disadvantages of the algorithms?  The 

constraint-handling methods and their pros and cons will also be included in the review. 

Furthermore, a review of the state-of-the-art of the PSO algorithms in constrained 

optimization will be presented as this is the primary focus of this research.      

The rest of the chapter is organized as follows. Section 2.2 presents an overview of 

the four metaheuristic optimization algorithms. Section 2.3 overviews the existing 

constraint-handling methods. Section 2.4 reviews the state-of-the-art PSO in constrained 

optimization. Section 2.5 reviews the PSO in multi-objective optimization and Section 2.6 

summarizes the chapter. 
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2.2 METAHEURISTIC OPTIMIZATION ALGORITHM 

OVERVIEW 

2.2.1 Genetic Algorithms 

Genetic Algorithms are heuristic search algorithms inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover (also called recombination). The basic 

techniques of the GAs are designed to simulate processes in natural systems for evolution 

especially those that follow Darwin’s principles of "survival of the fittest". The genetic 

algorithms are attributed to Holland [33, 34] and Goldberg [13].  

Genetic algorithms are implemented based on natural selection. After an initial 

population is randomly generated, the algorithm evolves through three operators: selection, 

crossover and mutation. A typical GA is illustrated in Figure 2.1. An explanation to the 

three operators follows.  

 

Figure 2.1   Pseudo-code for a typical genetic algorithm 

 

Selection: Selection operator gives preference to better individuals, allows them to 

pass on their genes to the next generation. The goodness of each individual depends on its 

fitness which may be determined by an objective function or by a subjective judgment. 
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Goldberg and Deb [1, 35] evaluated four well-known selection schemes: proportionate 

reproduction (or “roulette wheel selection”), ranking selection, tournament selection and 

Genitor (or “steady state”) selection. The proportionate selection is found to have a large 

computational complexity as well as a scaling problem [1]. Compared to linear ranking 

selection, the binary tournament selection is recommended because of its better time 

complexity [35]. The Genitor selection, tournament selection with larger tournament sizes, 

or nonlinear ranking can have higher growth ratio in time complexity [35]. 

Crossover: Crossover operator is the prime distinguished factor of GA from other 

optimization techniques.  In this operation, two individuals are picked from the population 

using the selection operator.  A crossover site along the bit strings is randomly chosen. The 

values of the two strings are exchanged up to this point. The two new offspring created 

from this mating are put into the next generation of the population. By recombining 

portions of good individuals, this process is likely to create even better individuals.  

Mutation: With some low probability, a portion of the new individuals will have 

some of their bits exchanged. The purpose of mutation is to maintain diversity within the 

population and inhibit premature convergence. Mutation alone induces a random walk 

through the search space.  

Since initiated, GAs have been well studied by many researchers for decades. The 

major advantages and disadvantages for GAs are summarized as follows.  

Advantages: As the population-based evolutionary algorithm, GAs can quickly scan 

a vast solution set and locate good solutions rapidly. Bad individuals do not affect the end 

solution negatively as they are simply discarded. The inductive nature of the GA means 
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that it doesn't have to know any rules of the problem [36]. This is very useful for complex 

or loosely defined problems.  

Disadvantages: In many problems, GAs may have a tendency to converge towards 

local optima or even arbitrary points rather than the global optimum of the problem [4, 37]. 

The likelihood of this occurring depends on the shape of the fitness landscape: certain 

problems may provide an easy ascent towards a global optimum; others may make it easier 

for the function to find the local optima. This problem can be alleviated by increasing the 

rate of mutation or by using selection techniques that maintain a diverse population of 

solutions [33]. However, tuning the parameters such as mutation probability, 

recombination probability and population size remains controversial.   Another difficulty 

for GAs is that generally the problems need to be encoded into binary format.  

2.2.2 Differential Evolution 

Differential evolution is a stochastic, population-based optimization algorithm introduced 

by Storn and Price in 1995 [29]. It is one of the most promising novel EAs [29, 38-40].  The 

procedure for a DE algorithm is the same as GAs, after an initial population is randomly 

generated; the algorithm evolves through three operators: mutation, crossover and 

selection.  

Mutation:  “A mutation process begins by randomly selecting three individuals from 

the population to form a triplet. In the triplet, one member is randomly taken as the donor 

and the other two members are taken to make up perturbation to the donor” [41].  For a 

given solution vector , 1 ,  ( , ..., )i i i nx x x= , where [0,  1] Pi N∈ − indexes the population; 
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pN is the population size; n is dimension; the perturbed individual is therefore generated 

based on the three chosen individuals as in the form: 

 

1 2 3 ( )i r r rv x F x x= + −i  

 

where 1 2 3  , ,  {0, ..., 1} pr r r N∈ − are randomly selected and satisfy: 1 2 3r r r i≠ ≠ ≠ ; the 

mutation factor [0, 2] F ∈  introduced by Storn and Price [29] in Equation (2.1) is a control 

parameter of  DE.  

Crossover: After the mutation operation, the perturbed individual , 1 ,   ( , ..., ) i i i nv v v=  

and the current individual   ix  (that is, individual being mutated) are then subject to the 

crossover operation.  Then a “trial” vector , 1 ,  ( , ..., )i i i nu u u=  is generated by the follow 

equation: 

 

, 
,  

,  

        if     or   

        otherwise
i j j r

i j
i j

v rand C j k
u

x

≤ =⎧⎪= ⎨
⎪⎩

 

 

where 1, ...,j n= , {1, ... , }k n∈  is a random parameters index, chosen once for each i , and 

the crossover factor, [0,1]rC ∈ , is set by the user. 

Selection: The selection scheme is also different from those in GAs. The population 

for the next generation is selected from an individual in the current population and its 

corresponding trial vector, that is, ,i ju . The selection rule can be expressed as follows: 

(2.1) 

(2.2) 
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where t is the generation number.    

In summary, at each generation, new vectors  iv are generated by the combination 

of vectors 1 2 3 ( ,  ,  ) r r rx x x randomly chosen from the current population (mutation). The 

new vectors are then mixed with the predetermined target vectors  ix and produce the trial 

vectors   iu (crossover). Finally, the trial vector is accepted for the next generation if and 

only if it yields a reduction in the value of the objective function (selection). 

Advantages: The strength of DE lies on the replacement of the current population by 

a new population that is surely a better fit.  This ensures the “fittest to survive”.  DE is 

simple to implement and has empirically demonstrated excellent performance that is 

superior to some traditional EAs [41]. DE can be easily extended for handling continuous, 

discrete and integer variables as well as multiple non-linear and non-trivial constraints[40].  

In addition, the algorithm doesn’t require the binary encoding or scaling like those in GAs, 

which make the algorithm easy to implement.  It has been noticed that DE has exceptional 

performance compared to other search heuristics methods in numerical optimization [42].  

Sickel et al [43] claimed that DE achieves the same level of performance as PSO based on 

a power plant control application.     

Disadvantage: Krink et al [42] found that DE performs poorly for noisy 

optimization problems (where the fitness function cannot be clearly formulated) compared 

to conventional EA and PSO. This is because that DE uses a rather greedy and less 

(2.3) 
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stochastic approach to problem solving [42].  Since the algorithm is relatively new, there 

are not many drawbacks reported in the literature. 

2.2.3 Ant Colony Optimization  

Ant Colony Optimization, introduced by Marco Dorigo in 1992 [28], is a probabilistic 

technique for solving optimization problems inspired by the behaviour of ants in finding 

paths from the colony to food. At the beginning, ants move at random. During moving, 

pheromone is deposited on its path. Ants detect the lead ant’s path and are inclined to 

follow. The more pheromone deposited on the path, the more probability of the path being 

followed.  Over time, the pheromone trail starts to evaporate to reduce its attractive 

strength. ACO algorithms are often applied to the problems that can be represented in the 

form of sets of components (nodes) and transitions (arcs), or by a set of weighted graphs 

such as Travelling Salesman Problems (TSPs), Vehicle Routing Problems, Network 

Routing Problems and Scheduling Problems.   

There are some variants of ACO algorithms available. Figure 2.2 illustrates a generic 

colony optimization algorithm. 

 

 

Figure 2.2   Pseudo-code for a generic ACO algorithm 
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At the beginning of the search process, a constant amount of pheromone is assigned 

to all arcs (initialization). Then ants start moving.  An ant k will move from node   i to 

node  j with probability 
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 where 

• k
iJ  is the set of nodes that ant k still has to visit when it is on node i . 

• , ( )i j tτ  is the amount of pheromone on arc ,i j  at time t. 

•   α is a parameter to control the influence of ,i jτ . 

• , ,  1 /i j i jdη =  is the inverse distance of arc ,i j . 

•  β is a parameter to control the influence of ,i jη .   

where the arc  ,  i j is traversed, the pheromone amount  
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is deposited along the path. Then, the local pheromone trail is updated by 

  

                           , , ,( ) ( ) ( )i j i j i jt t tτ ρτ τ= + Δ  

 

(2.4) 

(2.6) 

(2.5) 
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where  ρ is the rate of pheromone evaporation.  

Advantages: ACO algorithms suit better for those problems that can be graphically 

represented in the forms of nodes and arcs. Convergence is guaranteed but time to converge 

is uncertain.  For TSPs with a small number of nodes, the ACO performs better against 

other optimization techniques. The ACO algorithms have an advantage over simulated 

annealing and GA approaches when the graph may change dynamically; the ant colony 

algorithm can be run continuously and adapt to changes in real time. This is of interest in 

network routing and urban transportation systems [17, 27].  

Disadvantages: Theoretical analysis is difficult due to the sequences of random 

decisions and the dynamic probability distribution by iteration. Coding is somewhat 

complicated because the formulas are not straightforward. It is found for problems that 

have a large number of nodes, an ACO algorithm takes an exponential time to converge  

[17, 27].  

2.2.4 Particle Swarm Optimization 

Particle Swarm Optimization is a stochastic metaheuristic method for optimizing 

numerical functions on the metaphor of social behaviours of flocks of birds and schools of 

fish [15].  A PSO algorithm consists of individuals, called particles that form a swarm. 

Each particle represents a candidate solution to the problem. Particles change their 

positions by flying in a multi-dimensional search space looking for the optimal position. 

During flight, each particle adjusts its position according to its own experience and the 

experience from its neighbouring particles, making use of the best position encountered by 

itself and the best position in the entire population (global PSO) or its local neighbourhood 



Metaheuristic Optimization Methods – A Literature Review 

 

27 

 

(local PSO).  The performance of each particle is measured by a predefined fitness function 

(objective function) which is problem-dependent.   

     The original local PSO algorithm is expressed as follows: 

 

  
1 1 2 2

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ ( )+ ( )
id id id id id id id id

t t t t t t t tv v c r pBest x c r lBest x+ = − −     

 
( 1) ( ) ( 1)

id id id

t t tx x v+ += +          

 

where 1 2( , ,... )i i i iDx x x x=  denotes the i-th particle in a D-dimensional search space;

1 2( , , ... )i i i iDpBest p p p=  denotes the best previous position of the i-th particle in the flight 

history; 1 2( , ,... )Di g g glBest p p p= denotes the best particle of the neighbourhood;

1 2( , ,... )i i i iDv v v v=  denotes the velocity for particle i; c1 and c2 are two positive constants, 

called the cognitive and social parameters respectively (or acceleration constants); r1id and 

r2id are two random numbers uniformly distributed in the range [0, 1], which are used to 

maintain the diversity of the population; t denotes the iteration. 

So far, several variants of the PSO algorithm have been developed. Among them, two 

variants are prominent. One is the Inertia weight PSO and the other one is the Constriction 

PSO (as cited in [44]). Equation (2.9) and Equation (2.10) below give a generic PSO form 

containing these two parameters.  

 

1 1 2 2

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ + ( )+ ( )]
i d i d id id i d id i d i d

t t t t t t t tv w v c r pBest x c r lB est xχ+ = − −  

( 1) ( ) ( 1)
id id id

t t tx x v+ += +
 

(2.7)

(2.8)

(2.9)

(2.10) 
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where w is the inertia weight which is considered critical for the PSO’s convergence 

behaviour; χ is a constriction coefficient. These two new parameters are used for 

controlling particles’ velocities.  

Three variants of PSO can be observed from the generic PSO as in Equation (2.9) and 

Equation (2.10): when 1χ = , the generic PSO is an inertia weighted PSO; when  1w = , the 

generic PSO is a constriction PSO; when 0,  1,  w χ= = the generic PSO is called a bare 

bones PSO [45].  

According to the PSO formulas, the computation is straightforward once the 

parameters are settled. A suitable value for the inertia weight w usually provides balance 

between global and local exploration abilities and consequently results in a reduction of the 

number of iterations required to locate the optimum solutions. The experimental results 

indicated that it is better to initially set the inertia to a large value, in order to promote 

global exploration of the search space, and gradually decrease it to get more refined 

solutions [20]. Thus, an initial value around 1.2 and a gradual decline towards 0 can be 

considered as a good choice for w [19, 46].    The c1 and c2 are not critical for PSO’s 

convergence. However, proper fine-tuning may result in faster convergence and alleviation 

of local minima. Kennedy proposed to use c1 = c2 = 2 (as cited in [19]). But experimental 

results indicated that c1 = c2 = 0.5 might provide even better results [19]. It is reported by 

Carlisle and Dozier (as cited in [19]) that it might be even better to choose a larger 

cognitive parameter c1 than a social parameter c2  but with c1 + c2 ≤ 4. However, most 

parameters recommended are based on the experiments for unconstrained optimization 

problems. The parameter setting for constrained problems varies. 
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 Among the EAs, PSO is the only one that does not follow the “survival of the fittest” 

concept. It does not utilize a direct selection function. The particles with lower fitness can 

survive during the optimization and potentially visit any point of the search space [47].   

Advantages: Compared with other EAs, PSO can be easily implemented and it is 

computationally inexpensive because it has lower requirements for memory and CPU 

speed [48]. Moreover, it does not require gradient information of the objective function 

under consideration, but only its values, and it used only primitive mathematical operators 

[19]. PSO has been proved to be an efficient method for many global optimization 

problems (single objective) and in some cases it does not suffer the difficulties encountered 

by other EA techniques [15]. Research has also shown that PSO usually results in faster 

convergence rate than the GAs [16, 19, 46]. 

Disadvantages: PSO algorithms have more parameters than other algorithms. Some 

parameters like w and χ  are sensitive.   A set of parameters may work well for some 

functions but work badly for other functions.  The parameters suggested so far are all based 

on trial-and-error methods.  Thus, how to select appropriate parameters for different 

applications is an issue.    

2.2.5 Discussion 

Like other EAs, the four main stream algorithms reviewed in section 2.2 work with a 

population of solutions instead of one solution in each iteration. Working with a number of 

solutions provides an EA with the ability to capture multiple optimal solutions in one single 

simulation run [1]. 
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The population-based metaheuristic algorithms do not assume any particular 

structure of a problem to be solved. The flexible representation makes the algorithms 

suitable to be used in a wide variety of problem domains.  

GA and DE have two operations, namely selection and search (crossover and 

mutation). In the selection operation, better solutions in the current population are 

emphasized. In the search operation, new solutions are created by exchanging partial 

information among solutions of the mating pool and by perturbing them in their 

neighbourhood.  

ACO and PSO belong to a discipline called Swarm Intelligence[19, 48].  One of the 

basic principles of swarm intelligence is “adaptability”. That is, the ants or swarm are able 

to alter their behaviours toward the better solutions.  

Regarding implementation difficulty, it seems that PSO and DE are easier because 

the formulas are straightforward. ACO is somehow difficult because of the random 

decisions and the dynamic probability distribution.  GA has the difficulties in encoding 

problems into binary format and scaling.    

The common issues for these algorithms include integration of constraint-handling 

strategies, diversity maintaining, and speed-diversity trade-off. These issues remain open.  

2.3 CONSTRAINT-HANDLING METHODS OVERVIEW 

The real world optimization cannot escape from handling constraints. Unfortunately, the 

original EAs like those reviewed in the previous sections do not have constraint-handling 

mechanisms integrated. How to integrate the constraint-handling methods with the EAs 

becomes very necessary.     



Metaheuristic Optimization Methods – A Literature Review 

 

31 

 

Constraint-handling methods for EAs have been grouped into four categories [22, 

49], as follows:  

• methods based on preserving feasibility of solutions, 

• methods based on penalty functions, 

• methods which make a clear distinction between feasible and infeasible solutions,  

• other hybrid methods. 

We review each of these methods in turn.   

2.3.1 Preservation of Feasibility 

Preservation of feasibility methods assume that all individuals start at the feasible region. It 

does not allow any solutions that violate any of the assigned constraints to evolve to the 

next generation. To implement this, firstly, all individuals have to be initialized in the 

feasible region. During evolution, any infeasible solutions should be disregarded (rejected) 

or fixed (repaired) to be feasible in some way.  One example is GENOCOP systems [14] 

which use so called specialized operators. By using these operators, the feasible 

individuals are transformed into other feasible individuals in order to ensure the offspring 

solution vectors are always feasible in any case [37].  The GENOCOP assumed that all 

constraints are linear.  

In order to keep population size, if any infeasible solutions are disregarded during 

evolution, new feasible individuals should be regenerated.  

Obviously, the drawback of this constraint-handling method is that the initialization 

process may be impractically long or almost impossible for those constrained nonlinear 

optimization problems (CNOPs) that have extremely small feasible spaces[50].  
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Disregarding the infeasible solutions is questionable in EAs. Recent research shows 

that maintaining infeasible solutions during evolution can improve the computing 

performance [51]. An EA-hard problem can be transformed to an EA-easy problem by 

exploiting infeasible solution [52].  Thus, handling constraints by using the preservation of 

feasibility approach may not be a good idea unless the problems are simple.  “Simple” 

means the problem has a large feasible space which makes the initialization easier and the 

constraints are linear only.  

2.3.2 Penalty Function Approach 

Penalty function approach is the most common approach for solving constrained 

optimization problems. The penalty functions are used to degrade the quality of an 

infeasible solution [37] . In this manner, the constrained problem is transformed to an 

unconstrained one by using the modified evaluation function 

 

( ) ( )    ( )F x f x R x= + Ωi  

 

where R is the penalty parameter; ( )xΩ  is the constraint violation which can be calculated 

by 

 
1

| ( ) |  ,             i f  ( ) 0 ;
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0  ,                        o t h e r w i s e .    
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where ( ),  1, 2, ... ,  jg x j m= are the constraint functions. If no constraint violation occurs,  

( )xΩ  is zero, the penalty is zero, ( ) ( )F x f x= ; otherwise, it is positive (minimization 

problems are assumed).  The penalty parameter R is used to make both of the terms on the 

(2.11) 

(2.12) 
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right side of the Equation (2.11) to have the same order of magnitude [1]. R varies from 

case to case.  

Penalty functions can be static (or stationary) or dynamic (or non-stationary). Static 

penalty functions use fixed penalty values R throughout the minimization, while in 

dynamic penalty functions, the penalty values R are dynamically modified [1]. Literature 

shows, for single objective optimization problems, results obtained using dynamic penalty 

functions are almost always superior to those obtained through static function [46].  

However, most studies in multi-objective optimization problems (MOOPs) use carefully 

chosen static values of R [1]. 

There are some difficulties in choosing penalty parameters, as indicated by Deb [1]:  

• If a smaller than adequate penalty parameter value is chosen, the penalty effect is 

less and the resulting optimal solution may be infeasible.  

• If a larger than adequate penalty parameter value is chosen, the constraints will be 

over-emphasized, and the minimization algorithms usually get trapped in local 

minima. 

Unfortunately, there is no rule for choosing an adequate penalty parameter but 

trial-and-error.  Thus, the penalty function based approach for constraint-handling is 

problem dependent. This is a major drawback of the approach. 

2.3.3 Methods Based on Searching for Feasibility 

The constraint-handling methods based on searching for feasibility emphasize a distinction 

between feasible and infeasible solutions[22, 37].  One example is the so called 

“Behavioural memory method” proposed by Schoenauer and Xanthakis (as cited in [37]) 

which considers the problem constraints in sequence. That is, it only considers one 
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constraint at a time. Once a sufficient number of feasible solutions are found in the 

presence of one constraint, the next constraint is considered.  Eventually, all constraints 

will be satisfied. 

Another method called “superiority of feasible points” is  based on a classical penalty 

approach with one notable exception [53].  Each individual is evaluated by the formula: 

 

1

( ) ( ) ( ) ( , )
m

j
j

F x f x r f x t xθ
=

= + +∑  

 

where r is a constant; the original component ( , )t xθ is an additional iteration-dependent 

function that influences the evaluations of infeasible solutions [37]. This method 

distinguishes feasible and infeasible individuals by adopting an additional heuristic rule 

suggested earlier in Rechardson et al [54]: for any feasible individual x and any infeasible 

individual y: ( )  ( ),  f x f y≺  that is,  any feasible solution is better than any infeasible one. 

This can be achieved in many ways. The point is to penalize the infeasible individuals such 

that they cannot be better than the worst feasible individual.    

The third example in this category is the repairing of infeasible individuals, 

introduced in GENOCOP III [37] . The method needs to find some feasible individuals as 

reference points and then apply an algorithm to repair the infeasible individuals to be 

feasible. For example, if an individual s is not feasible, the system selects one of the 

reference points, say  r from  rP ( rP is a population that contain all feasible references), and 

creates a sequence of random points z from a segment between s and  r by generating 

(2.13) 
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random numbers a  from the range (0,1): (1 )z a s a r= × + − × . Once a fully feasible z is 

found, replace  s by   z .   

However, the behavioural memory method requires that there is a linear order of all 

constraints, and the order in which the constraints are processed influences the results 

provided by the algorithm in terms of total running time and precision [30]. The superiority 

of feasible points approach will fail in cases where the ratio between the feasible region and 

the whole search space is too small (for example, when there are constraints very difficult 

to satisfy) unless a feasible point is introduced in the initial population [30]. The repairing 

infeasible individuals approach may be a good choice when an infeasible solution can be 

easily transformed into a feasible solution. However this approach is problem-dependent 

too since a specific repair algorithm has to be designed for each particular problem [30, 37]. 

2.3.4 Other Hybrids  

Some earlier approaches combine evolutionary computation techniques with deterministic 

procedures for numerical optimization problems. One is to combine EA and the direction 

set method (as cited in [37]). However, these methods have some limitations as 

deterministic methods do.  

Another interesting method is to use evolutionary multi-objective optimization 

techniques to handle constraints. These multi-objective constraint-handling approaches 

can be categorized into two groups:  

• approaches transform a constrained optimization problem into an unconstrained 

bi-objective optimization problem;  

• approaches transform a constrained optimization problem into an unconstrained 

multi-objective optimization problem.  
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However, although a problem is now a multi-objective unconstrained optimization 

problem (MOOP), there is no need for good trade-offs between multi-objectives. We want 

to find the best possible solutions that do not violate any constraints.    

In the following paragraphs, we present a review to the typical approaches for the 

two categories of the multi-objective constraint-handling methods.  The first group (that is, 

bi-objective model) is specifically focused since the model will be adopted in our research.     

     

Approaches for bi-objective optimization model: 

The idea for the first group of the multi-objective constraint-handling methods is to 

restate a single objective optimization problem in such a way that two objectives would be 

considered: the first would be to optimize the original objective function   f and the second 

would be to minimize  

1
( ) max(0, ( ))    

m

i
i

x g x
=

Φ =∑  

where  ( )  xΦ is the total amount of constraint violations; ( ) ig x for  1  i m≤ ≤  are the 

constraint functions. The optimization problem is transformed to find   x that minimize

( ) ( ( ), ( )) F x f x x= Φ .    An ideal solution  x would have ( ) 0 xΦ =  (that is, satisfy all 

constraints) and  ( ) ( ) f x f y≤ for all feasible  y  (minimization problem is assumed).  

The examples which fall in the bi-objective optimization model can be found in [12, 

31, 55-58].  

Camponogara and Talukdar [12] proposed a scheme that calculates improvement 

directions from Pareto sets defined by the objective function ( )f x and constraint violations 

( )xΦ . The direction search  ( )/ | |i j i jd x x x x= − − , where , ,i i j jx S x S∈ ∈  and iS and jS are 

(2.14) 
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Pareto sets, is intended to simultaneously minimize all the objectives. The linear search is 

performed during the crossover stage of GA. The scheme outperformed GAs based on 

penalty methods [12]. However, the scheme has problems to maintain diversity [59]. Using 

line search within a GA adds some extra computational cost [30, 59]. It is not clear what the 

impact is on the segment chosen to search in the overall performance of the algorithm[30, 

59]. 

Surry et al [55] proposed COMOGA (Constrained Optimization by Multi-objective 

Optimization Genetic Algorithms) where the population was ranked based on constraint 

violations. One portion of the population was selected based on constraint ranking, and the 

rest based on real cost (fitness) of the individuals. “The aim of the proposed approach to 

solve this bi-objective problem is based on reproducing solutions which are good in one of 

the two objectives with other competitive solutions in the other objective (e.g., constraint 

violation)” [59] . COMOGA was tested on a gas network design problem providing 

slightly better results than those provided by a penalty function approach. Its main 

drawbacks are that it requires several extra parameters and that it has not been tested 

extensively [30, 59].  

Coello [31] proposed a ranking procedure where “each individual is assigned a rank 

based on its degree of dominance over the rest of the population.  Feasible individuals are 

always ranked higher than infeasible ones, and the degree of constraint violation 

determines the rank among infeasible individuals”.  This approach was tested on a set of 

engineering design problems providing competitive results. Its main drawback is the 

computational cost of the technique and its difficulty to handle equality constraints [60].  
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Zhou et al [56] proposed a ranking procedure based on Pareto Strength [61] for the 

bi-objective problem.  The simplex crossover operator is used to generate a set of offspring 

where the individual with the highest Pareto strength and the solution with the lowest sum 

of constraint violation are both selected to take part in the population for the next 

generation. The approach was tested on a subset of the well-known benchmark functions. 

“The results were competitive but using different set of parameters for different functions, 

which made evident the sensitivity of the approach to the values of its parameters”[59]. 

Similar to [56], Wang and Cai [57] also employed a simplex crossover operator  with 

a set of parents to generate a set of offspring. Additionally, they used an external archive to 

store infeasible solutions with a low sum of constraint violation in order to replace some 

random solutions in the current population. The approach provided good results in 13 

well-known test problems. However, a different set of values for the parameter were used, 

depending of the dimensionality of the problem [59].    

Venkatraman and Yen [58] proposed a generic, two-phase framework for 

constrained optimization problems using GAs. In the first phase, the objective function is 

completely disregarded and the constrained optimization problem is treated as a constraint 

satisfaction problem. The second phase starts when the first feasible solution was found. 

Now both objectives are taken into account and nondominated sorting [62] is used to rank 

the populations.  The approach provided good quality results in 11 well-known benchmark 

problems but lacked consistency.  
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Approaches for multi-objective optimization model: 

The procedure for the second group of the multi-objective constraint-handing 

methods is to redefine the single objective optimization of ( )  f x as a multi-objective 

optimization problem in which we will have 1 m + objectives, where   m is the number of 

constraints. Then any multi-objective optimization techniques to the new multi-objective 

vector 1( ) ( ( ), ( ),..., ( )),mF x f x f x f x= where 1( ),..., ( )  mf x f x are the original constraints 

of the problem, can be applied. An ideal solution  x would thus have  ( ) 0 if x ≤ for 

 1  i m≤ ≤ (that is, satisfy all constraints) and ( ) ( ) f x f y≤ for all feasible   y .  

A number of approaches have been developed in solving a multi-objective problem 

with objective function and constraints as separate objectives. Some examples are: Coello 

[63], Liang et al [64], Ray et al [65-67] and  Coello et al [68, 69]. Briefly, these approaches 

make use of the multi-objective optimization techniques plus some special considerations 

to the objectives of constraint satisfaction.  However, no approach dominates. All 

approaches have certain drawbacks. For details, please refer to the multi-objective 

optimization references such as the one by Deb [1].      

It is observed that most approaches that appoint multi-objective constraint-handling 

methods are via GAs.  

2.4 PSO IN SINGLE OBJECTIVE CONSTRAINED OPTIMIZATION 

Although EAs have been successful in many applications, their utilisation in solving 

constrained optimization problems remains problematic because their original versions 

lack a mechanism to incorporate constraints with the fitness function [30, 59, 60, 70]. As a 

member of the evolutionary optimization techniques, PSO offers some advantages over 
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other algorithms and has proven to be effective and efficient for solving real-valued global 

unconstrained optimization problems [16, 20]. For constrained optimization problems, 

there have been only a few attempts [70]. These attempts mainly focus on adopting those 

constraint-handling methods that have been used in genetic algorithms.  

Hu et al [71, 72] presented a modified PSO algorithm for constrained nonlinear 

optimization problems. In their research, the preserving feasibility strategy is employed to 

deal with constraints. That is, all particles start with feasible individuals. During flying, 

only those feasible particles are counted and those infeasible particles are ignored.  Eleven 

well-known constrained benchmark numerical functions are tested. Results reveal that 

PSO can find the optimum for most cases, although some cases need a large population size 

and more iterations to converge. However, the computation cost is questionable since it 

assumes that all particles start with feasible individuals, which requires a longer 

initialization process. This approach also has diversity problems. The computing 

performance depends on the initial random population.      

Parsopoulos and Vrahatis [46, 73] reported an investigation to appoint the penalty 

function approach to deal with constrained optimization problems through PSO.  The 

simulation results to the six constrained optimization problems and four engineering 

optimization problems demonstrated the capability of the PSO method in solving 

constrained optimization problems with promising results.   The main drawback for this 

approach is that many parameters are problem-dependent. The approach has not addressed 

the diversity issue.  

Pulido and Coello [70] proposed a criterion-based  selection scheme which is based 

on the constraint dominance concept [1] for handling constraints. The idea is: when two 
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feasible particles are compared, the particle that has the highest fitness value wins; if one of 

the particles is infeasible and the other one is feasible, the feasible particle wins; if both 

particles compared are infeasible, the particle that has the lowest value in its total violation 

of constraints wins. They also used a turbulence operator to perturb the swarm as to avoid 

local convergence. The approach was tested on thirteen benchmark functions with the 

competitive results. However, the approach did not perform consistently in problems G5, 

G10 and G13 which are considered complicated problems. Also, the constraint violation 

measurement seems not easy to implement in this approach.  

He et al [74] also adopted the preserving feasibility and searching for feasibility 

constraint-handling method in the engineering optimization problems. The drawback for 

this approach is the same as [71, 72], that is, a higher computation cost was caused by the 

longer initialization process. No diversity control was mentioned in the approach. 

Zavala et al [75] proposed PESO (Particle Evolutionary Swarm Optimization 

Algorithm) in 2005 for tackling constrained optimization problems. Similar to     Pulido 

and Coello [70], constraints were handled by the feasibility rules. The approach proposed 

two new perturbation operators: “c-perturbation” and “m-perturbation”. The goal of these 

operators is to fight premature convergence and poor diversity issues [75] . The simulation 

results for the benchmark functions were very competitive. However, the approach did not 

achieve a satisfactory result in G13 which has a large search space with a small feasible 

region.  

Wei and Wang [76] adopted the multi-objective constraint-handling method into 

PSO algorithm. The approach converts a single objective constrained optimization 

problem into a bi-objective unconstrained problem. Then a particle can find its personal 
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best and the global best by applying the feasibility rules like those applied in [70, 75]. They 

also proposed a three-parent crossover operator to modify the new particle generated from 

the previous iteration by the PSO algorithm.  The authors claimed that the new crossover 

operator would make the offspring having greater probability to locate near the feasible 

region.   However, the approach has only tested on four simple problems (lower 

constrained) with moderately good results. The crossover operator was also questionable 

since it disturbs the PSO formulation.  

Zielinkski and Laur [77] proposed an approach similar to  [70]. The total sum of 

constraint violation was used for measurement in the selection rules. The simulation results 

showed that the approach was successful in many test functions. It also demonstrates the 

approach has some difficulties for the problems that have high dimension and high number 

of equality constraints.  

He and Wang [78] proposed a co-evolutionary particle swarm optimization for 

constrained engineering design problems, where PSO is applied with two kinds of swarms 

for evolutionary exploration and exploitation in spaces of both solutions and penalty 

factors.  The drawback is the penalty factors are problem dependent. Some results reported 

from this reference are not feasible.  

To summarize, the “feasibility rules” (or selection rules) approach has been attracting 

more attention than other constraint-handling methods in PSO.  The reason is: PSO 

algorithm has straightforward formulas and a fundamental decision is to determine the best 

neighbourhood particle lBest and the best personal experience pBest. The feasibility rules 

serve this purpose better.  The  results reported from PESO [75] seems the best-so-far 

results. It introduced two perturbation operators which make PSO more stochastic. The 
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adoption of multi-objective constraint-handling methods in PSO, especially to transfer the 

original problem into multi-objective optimization model has not been properly 

investigated.  

2.5 PSO IN MULTI-OBJECTIVE OPTIMIZATION 

There are a number of proposals that discussed the multi-objective optimization using PSO 

algorithm. 

Hu and Eberhart [79] introduced a dynamic neighbourhood strategy to select the 

global best. In their method, one objective called fixed objective must be selected firstly. 

Then the distance of the current particle from other particles (in the objective space) is 

calculated in terms of the fixed objective function.   Then find the nearest m 

(neighbourhood size) particles as the neighbours of the current particle based on the 

distances. Lastly, find the local optima among the neighbours in terms of the fitness value 

of the second objective function.  The personal best is determined by the Pareto-dominance 

concept. This approach is tested by seven bi-objectives functions with effective results. No 

comparison was made with any other models, or the true Pareto fronts for the problems. 

How to select the fixed objective and how it affects the results are unknown. The 

formulation suits bi-objective problems only. 

Coello and Lechuga [80]  proposed a grid method. The objective space is divided into 

many small hypercubes, and a fitness value is assigned to each hypercube depending on the 

number of elite particles that lie in it. The more elite particles the hypercube have, the less 

fitness value of it. Then one of the hypercubes is selected by roulette-wheel method. Global 

best is a random particle selected from the selected hypercube. The personal best is updated 
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by the Pareto-dominance concept. This approach is tested by three bi-objective test 

functions with effective results. Diversity is well maintained by using a grid method. 

However, the implementation for selecting global best is complicated when a large number 

of objective functions are involved.      

Parsopoulos and Vrahatis [81]  adopted  the Weighted Aggregation technique in 

applying PSO in multi-objective problems. According to this approach, all objectives are 

summed to a weighted combination. Then a multi-objective problem is converted into a 

single objective problem. The weighted aggregate algorithm needs to be run many times to 

produce estimated Pareto optimal points. Therefore, it is computationally expensive. 

Parsopoulos et al [82] also introduced the vector evaluated PSO which uses multi 

swarms. Each swarm is evaluated using only one of the objective functions. And the best 

particle of each swarm is selected to act as the global best particle to another swarm.  The 

implementation for this approach is complicated since there is information exchange 

between multi swarms. 

Fieldsend and Singh [83] used a dominated tree for storing the particles, which 

consists of a list of composite points ordered by weakly dominated relations. In this method 

the selection of the best global in the population is based on its closeness to a particle in the 

archive. It has been shown to be significantly better than the methods used in a recent 

alternative multi-objective PSO. However, the authors mentioned that the approach may 

experience problems if there is little or no relationship between “closeness” in objective 

space and “closeness” in decision space[83] .  

Salazar-Lechuga and Rowe [82] adopted a fitness sharing concept [84] in PSO 

algorithm. The idea of fitness sharing is to distribute a population of individuals along a set 
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of resources. When an individual is sharing resources with other individuals, its fitness is 

disregarded in proportion to the number and closeness to individuals that surround it [85]. 

The fitness sharing helps to maintain diversity between solutions in the non-dominated 

repository. The global best is selected by using Roulette Wheel method from the 

repository. The approach was tested and compared with other methods and the 

effectiveness of the approach was shown.  

Huo et al [86] presented an approach which select a global best in such a way: firstly, 

best particles for each objective function are selected; secondly, the mean value of those 

particles is calculated. Then the mean value is set as the gBest. This gBest is not the true 

position but a virtue position. The personal best is selected by two steps: the first step 

calculates the distance between the current particles to the non-dominated archive 

solutions; then the archive member with minimal distance to one particle will be selected as 

pBest. A distance valve strategy is used for diversity control. The approach was tested by 

three functions with good results. However, the parameters were differently set.  

There are more than 25 proposals [87] that have addressed  multi-objective 

optimization using PSO algorithm. However, the majority of them are constraint free.       

Two papers addressed the constrained multi-objective optimization using PSO algorithm. 

Ji [88] presented  a divided range multi-objective PSO for distributed computing. For 

constraint-handling, the author adopted the symbiosis mechanism where the feasible 

particles evolve towards Pareto-front; and infeasible particles evolve toward feasibility 

guided by an unfeasibility function.  A gradually decreased threshold is used for the 

proportion of infeasible particles. The approach was tested by three constrained MO 

functions. The author claimed that the Pareto fronts were achieved but no detailed results 
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were given. The unfeasibility function used to guide the infeasible particles is unclear. 

Reddy and Kumar  [89] presented EM-MOPSO which combines PSO technique with 

Pareto dominance criteria to evolve non-dominated solutions. The constraint-handling is 

based on the constraint dominance concept  [1]. The global best particle (gBest of lBest) is 

randomly selected from the ERP (an external repository) where all non-dominated 

solutions are stored. The personal best particle is determined by the Pareto-dominance 

concept. The approach was tested by four constrained MO functions with the promising 

results. However, the implementation looks very complicated and the use of ERP makes 

the computation expensive. 

As we can see, constrained multi-objective optimization using PSO algorithm has not 

been well studied yet.    

2.6 SUMMARY 

This chapter has reviewed the popular metaheuristic optimization algorithms and the 

constraint-handling methods in evolutionary optimization. A review of PSO in constrained 

optimization and in multi-objective optimization has also been presented.  

The population-based algorithms have the ability to capture multiple optimal 

solutions in one single simulation run which leads to a high computing performance. The 

flexible representations make the algorithms appropriate to be used in a wide variety of 

problem domains. The four population-based algorithms (that is, GA, DE, ACO and PSO) 

and their pros and cons have been specially focused in the review.  GA and DE use 

operators to produce better population for the next generation.  ACO and PSO are able to 

alter their behaviours toward the better solutions by their “adaptability” feature. In regard 
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to implementation difficulty, PSO and DE are easier because the formulas are 

straightforward. The common open issues for these algorithms are integrating 

constraint-handling strategies, diversity maintaining, and speed-diversity trade-off.  

A review of the four types of constraint-handling mechanisms has been conducted. 

The preserving feasibility constraint-handling methods are easy to implement; but they are 

not efficient since a long initialization process is needed. Since the penalty factors are 

problem-dependent, the applicability is restricted by penalty-based constraint-handling 

approaches. The methods based on searching for feasibility also have some drawbacks like 

problem-dependent. Comparatively, the multi-objective constraint-handling methods offer 

some advantages over other approaches. We have specifically reviewed the literature in 

multi-objective constraint-handling methods.  

The state-of-the-art PSO in single objective constrained optimization has been 

reviewed. Most of the papers focus on adopting those constraint-handling methods that 

have been used in GAs in PSO algorithm. The “selection rules” based constraint-handling 

approach has been popular than the others in PSO. Integrating the multi-objective 

constrained-handling method with the PSO algorithm is in need of further study. 

 Lastly, the PSO in multi-objective optimization has been reviewed. Most 

multi-objective PSO proposals are constraint free.  Constraint-handling in multi-objective 

optimization problems via PSO has not been well investigated. 

 



A Multi-Objective Constraint-Handling Method with PSO Algorithm 

 

48 

 

 

Chapter 3                                                                    

A MULTI-OBJECTIVE 

CONSTRAINT-HANDLING METHOD WITH 

THE PSO ALGORITHM 
 

3.1 INTRODUCTION 

In Chapter 2, we reviewed the most popular metaheuristic optimization algorithms and 

the constraint-handling methods. It is apparent that constraint-handling in evolutionary 

optimization remains problematic.  The drawback for the preserving feasibility method 

is that the initialization process may be impractically long or almost impossible for those 

CNOPs (Constrained Nonlinear Optimization Problems) that have extremely small 

feasible spaces [50].  The computation is very costly. The penalty function approaches 

have drawbacks in finding appropriate penalty factors which need to be carefully 

fine-tuned [60]. Therefore, they are problem-dependent [1, 32].  The criteria-based 

selection approaches are becoming popular because the PSO algorithm has 

straightforward formulas and the selection rules make the comparison (between 

particles) possible, which helps in determining the best neighbourhood particle lBest and 

the best personal particle pBest.  The adoption of the multi-objective constraint-handling 
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method in PSO, especially to transfer the original problem into multi-objective 

optimization models, needs further investigation. 

Multi-objective constraint-handling was firstly proposed by Fonseca and Fleming 

back in 1995 (as cited in [59]). The main idea is to treat the constraints as extra 

objectives. By doing so, an original single objective constrained optimization problem 

can be transformed into a multi-objective unconstrained optimization problem. Then the 

techniques for multi-objective optimization can be employed. Since 1995, a number of 

models have been developed using this idea. Several representative examples include 

COMOGA [55],  Camponogara and Talukdar [12], Mezura-Montes and Coello [31, 90, 

91] and Jimenez et al.[92]. Unfortunately, these models have some shortcomings. For 

example, some of them add extra computational cost  [12, 31]; others require extra 

parameters [55, 68, 92]. A detailed review of these models has been presented in 

Chapter 2. It is noticed that most of these models are built on GAs. 

In this chapter, we propose an approach to integrate the multi-objective constraint- 

handling mechanism with a dynamic neighbourhood PSO algorithm. By converting a 

single objective constrained optimization problem into a bi-objective unconstrained 

optimization problem, the proposed approach aims to minimize the original objective 

function and the total amount of constraint violations (the second objective). The 

concept of Pareto domination from multi-objective optimization is adopted in 

determining a particle’s best past experience and the best social experience in the group. 

The second objective is used as a benchmark to select particles (defined in selection 

rules). An adaptive inertia weight factor and a minor perturbation are introduced to 

improve the convergence and the diversity. The dynamic neighbourhood topology is 
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proposed for improving the algorithm performance. The simulation results to the 

thirteen numerical benchmark functions will be presented. 

The rest of the chapter is organized as follows: Section 3.2 presents the problem 

formulation and transformation; Section 3.3 describes the proposed multi-objective 

constraint handling incorporating with a dynamic neighbourhood PSO algorithm. 

Section 3.4 presents the simulation results to the numerical benchmark functions. 

Section 3.5 presents the results of experiments of two comparative studies. Section 3.6 

summarizes the chapter. 

3.2 PROBLEM FORMULATION AND TRANSFORMATION 

As mentioned in Chapter 1, a general single objective constrained optimization problem 

can be stated as:  

 

minimize              ( )
         

subject to             ( ) 0,            1,2,..., ;i

f x
g x i m

⎫
⎬≤ = ⎭

   

 

where m is the total number of constraints. An equality constraint h is regarded as an 

inequality constraint with a toleranceδ , that is, | ( ) | 0jh x δ− ≤ . 

The multi-objective constraint-handling method (as addressed in Chapter 2) 

transforms a global optimization problem into a bi-objective problem where the first 

objective is to optimize the original objective function ( )f x and the second is to 

minimize 

1

  ( ) max (0, ( ))    
m

i
i

x g x
=

Φ =∑
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where  ( )xΦ  is a total amount of  constraint violations. From the above equation, if a 

solution vector 1 2  ( , ,..., )nx x x x=  satisfies all constraints, that is, ( ) 0ig x ≤  for 

 1,2,...,i m= ,  ( )xΦ  returns a zero. Otherwise, it returns a positive number indicating 

the total amount of constraint violations. Thus, the optimum value for  ( )xΦ  is zero. 

Therefore, the single objective constrained optimization problem as in Equation (1.2) 

can be transformed into: 

 

1

minimize    F( ) = ( ( ) ,  ( ) )
  

where         ( ) max  (0,  ( )) 
m

i
i

x f x x

x g x
=

Φ ⎫
⎪
⎬Φ = ⎪⎭

∑
              

    

 

Equation (3.1) is a bi-objective unconstrained optimization problem.  

For a general multi-objective optimization problem, the ideal procedure is to find a 

set of Pareto-optimal solutions first and then choose one solution from the set by using 

some other higher-level information for consideration [1]. For global constrained 

optimization as in model (3.1), constraint satisfaction is a must and it is more important 

than real objective function minimization. That is, if a solution is not feasible, no matter 

how fit its objective function is, it is useless. In other words, if a solution is feasible, even 

if it is not fit enough, it can be still considered as a candidate solution. Therefore, the 

second objective 0Φ =  (totally constraint satisfied) or εΦ ≤  (total constraint nearly 

satisfied), can be used as higher-level information to guide decision making during the 

search. The  ε is a small positive number which indicates the feasibility tolerance. This 

is the so called “decision making during the search” approach in multi-objective 

(3.1)
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optimization [93]. Figure 3.1 below is an example to illustrate the Pareto-front, feasible 

solutions and the desired solution to the established bi-objective optimization problem 

as described by Equation (3.1),  and the final solution will fall in A to B depending on 

how  ε is selected.  

Most multi-objective optimization methods use a Pareto dominance concept to 

search for non-dominated solutions, since this concept allows a way to compare 

solutions with multiple objectives. The definition for Pareto dominance can be found 

from Chapter 1.  

 

 

Figure 3.1   The Pareto-optimal front, feasible solutions and desired constrained 
minimum for a bi-objective constraint handling optimization problem 
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3.3 A MULTI-OBJECTIVE CONSTRAINT-HANDLING 

METHOD WITH A DYNAMIC NEIGHBOURHOOD PSO 

ALGORITHM 

3.3.1 PSO Algorithm 

The generic local variant model PSO formulation in Equation (2.9) and Equation (2.10) 

are adopted.  If a maximum velocity maxv is used, PSO algorithm can be rewritten as: 

 

1 1 2 2

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1)
m ax m ax

( 1) ( 1)
m ax m ax

[ + ( )+ ( )]

,              

,           

i d i d id id i d id i d i d

i d i d

i d i d

t t t t t t t t

t t

t t

v w v c r pB est x c r lB est x

v v if v v

v v if v v

χ+

+ +

+ +

= − −

= >

= − < −

    

 

( 1) ( ) ( 1)
id id id

t t tx x v+ += +          

 

Although Clerc and Kennedy [94] suggested the use of a constriction coefficient 

 χ  to the velocity formula and showed that the constriction coefficient can converge 

without using maxv , their suggestion is based on the unconstrained optimization 

experiments. In order to ensure convergence and explore a wider area, in this research, 

both  χ and maxv  will be used.  

Neither the original PSO algorithm nor its variations have a mechanism to 

incorporate constraint-handling with the algorithms. The parameters suited better for 

unconstrained problems may not be suitable for constrained problems. In order to 

(3.2)

(3.3)
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integrate constraint handling with PSO, we introduce a few selection rules to determine 

the particles’ behaviour in the next section. 

3.3.2 Selection Rules 

In the PSO algorithm, the main task is to determine a particle’s best past location pBest 

and which particle is the best particle lBest among a neighbourhood. For a single 

objective optimization problem, this can be easily determined by the objective function. 

Considering our optimization model is now a bi-objective unconstrained problem, the 

notion of dominance comparison can be adopted [1]. The following selection rules are 

defined: 

• Non-dominated particles are better than dominated ones. 

• When two particles do not dominate each other, a particle with lower Φ  

(constraint violations) is better than a particle with higher  Φ .  

These two rules will be used in comparing particles.  

3.3.3 Performance-Based Dynamic Neighbourhood Topology  

Neighbourhood topology determines how particles are allocated in a neighbourhood and 

how particles communicate with each other. Several neighbourhood topologies have 

been proposed by Kennedy et al [95, 96] . It was found that von Neumann topology 

(north, south, east and west, of each particle placed on a two dimensional lattice) is an 

overall winner among many different communication topologies [96]. However, the von 

Neumann topology is difficult to implement.    

Two most commonly used neighbourhood topologies are listed as follows: 
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• Circle (ring) neighbourhood topology: each individual is connected to its k  

immediate neighbours only, for example, if k is 2, a particle with index   i will 

have the particle index  1 i − and particle 1 i + as its neighbours. It is realized 

that a particle and its  k neighbours are not geographically close neighbours in 

both search space and objective space. They are conceptually neighbours 

according to their indexes.  

• Star neighbourhood topology: every individual is connected to every other 

individual. This is a communication intensive topology since each particle has 

all other particles in the swarm as its neighbours.  The star topology is a global 

model of PSO. 

Figure 3.2 illustrates the circular ring ((a)) and the star ((b)) neighbourhood 

topologies.  The circular ring topology tends to allow for broader exploration of the 

problem space. When one particle finds a promising region, only its immediate 

neighbours will initially be drawn to that area. No other particles in the swarm will know 

about that region unless their own immediate neighbours move there.  In the star 

topology, if one particle finds a promising region, all other particles of the swarm are 

immediately drawn to it. As a result, the swarm generally converges more quickly but 

sometimes is trapped in a local optimal point in the space. Generally, the circular ring 

topology propagates information slowly and the star topology propagates information 

quickly [44, 95]; the circular ring topology can explore broader spaces than the star 

topology.  
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Figure 3.2   Two most common neighbourhood topologies for PSO 

     

The circle (ring) topology is adopted in our implementation. In order to improve 

the computation efficiency, a performance-based dynamic circular ring topology is 

proposed below.  

 

Performance-based dynamic circular ring neighbourhood topology 

Hypothesis:  Allocating particles that have similar performance in a neighbourhood is 

more efficient than allocating particles randomly in a neighbourhood in PSO. 

This hypothesis is inspired by the human social networks and the theory of 

sociometry (the study and measurement of interpersonal relationships in a group of 

people) [97]. In human social activities, people with the same or similar degrees of 

interests or performance generally communicate more efficiently. For example, in a 

university’s scenario, an academic’s career includes a few steps including Level A 

(Associate Lecturer), Level B (Lecturer), Level C (Senior Lecturer), Level D (Associate 

Professor) and Level E (Professor). Level A academics adopt Level B’s experiences to 

promote to Level B; Level B academics learn experiences from Level C to move onto 
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Level C. And so forth. Each individual learns from his/her closer (in terms of academic 

performance) neighbours. 

  

Performance rules:  Based on the above hypothesis, the particles with a similar level of 

performance should be allocated in a neighbourhood. The next question is how to 

evaluate the particles’ performance. A modified constraint dominance concept is 

adopted as performance rules for our specific multi-objective constraint-handling 

optimization problems, as follows: 

• If two particles are both feasible, that is, εΦ ≤  , the one with the lower  f

wins. 

• If the above is not true, the particle with lower  Φ wins (this covers the 

situation where one particle is feasible and the other is not). 

The performance rules will be used for sorting particles in the dynamic 

neighbourhood topology.  

 

Dynamic neighbourhood topology: Initially, each individual is connected to its k  

immediate neighbours only (same as the circular ring topology). After each iteration, all 

particles in the swarm are sorted according to the performance rules. Once sorted, the 

particles in the swarm are reindexed.  Although a particle i still has its  k  immediate 

neighbours connected, these  k particles may not be those particles in the last iteration. 

They are particles close to each other in terms of their performance. For our 

multi-objective constraint-handling model (Equation (3.1)), this means that a particle 

will have its geographically closer particles (in solution space) as its neighbours.  
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Figure 3.3 illustrates the idea of the dynamic neighbourhood topology. Originally, 

the five particles (A, 1), (B, 2), (C, 3), (D, 4), and (E, 5) (where the first item in the 

brackets is the particle object, the second item in the brackets is the index) form a 

circular ring topology.  Supposing the neighbourhood size is 2, the five groups of 

neighbourhood are: ABC, BCD, CDE, DEA and EAB. After sorting, the new groups of 

neighbourhood become: ABE, BEC, ECD, CDA, and DAB.  The sorting operation has 

actually changed the particles’ indexes.   

 

 

Figure 3.3    Illustration of the dynamic neighbourhood topology 

 

3.3.4 The Proposed Algorithm 

Figure 3.4 and Figure 3.5 illustrate the proposed algorithm which integrates the 

multi-objective constraint-handling method with PSO algorithm. Figure 3.4 is the data 

flow diagram and Figure 3.5 is the corresponding pseudo code.  Compared with the 

original PSO, the proposed algorithm has the following features: 
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• Whenever calculating fitness, both objectives  f  and  Φ  need to be evaluated; 

• A particle’s best neighbour particle (lBest) is determined by the following steps: 

o Find all the non-dominated particles in the neighbourhood;  

o If there is only one non-dominated particle in the neighbourhood, select it 

as lBest; otherwise, select one with the lowest Φ  as lBest (follows 

selection rules). 

• A particle’s personal best,  pBest, is determined by the selection rules, that is, if a 

particle’s new location is better than its best previous location, the pBest is 

updated.  

• A minor perturbation with the probability of p  is introduced after calculating 

the next particle position. The aim for using perturbation is to keep population 

diversity and to prevent premature convergence. 

• After each iteration, apply the sorting algorithm to reindex particles according to 

their performance (follows performance rules). The particles with similar 

performance will be allocated in the neighbourhood. 
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Figure 3.5   Pseudo code of the proposed multi-objective constraint-handling method 
with PSO algorithm 
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3.4 NUMERICAL OPTIMIZATION SIMULATION 

There are thirteen well-known numerical benchmark functions named G1, G2, …, G13. 

These functions can be found from many papers such as in references [22, 23, 37]. They 

are also included in the Appendix I of this thesis. These functions have been popularly 

used for optimization algorithm testing for years because they represent a wide variety 

of optimization problems including linear and nonlinear in objective and constraint 

functions, equality and inequality constraints, large and small dimensions, large and 

small search spaces, large and small feasible regions,   

3.4.1 Test Functions 

The numerical test functions and their features are listed in Table 3-1 (taken from [70]),  

where n is the number of decision variables (that is, dimensions), LI is the number of 

Linear-Inequality constraints, NI is the number of Nonlinear-Inequality constraints, LE 

is the number of Linear-Equality constraints and NE is the number of 

Nonlinear-Equality constraints.  

The relative size of feasible space ρ  suggested by Michalewicz and Schoenauer 

[49] in Table 3-1 is the ratio between the feasible and the total search (feasible and 

infeasible)  region of each of these problems.  It is calculated by the following 

expression: | | / | |F Sρ = , where | F | is the number of feasible solutions and | S | is the 

total number of solutions randomly generated. In Table 3-1, S = 1,000,000 random 

solutions [70]. 
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Table 3-1  The 13 constrained nonlinear optimization test functions  

TF n Type  ρ LI NI LE NE 

G1 13 Quadratic 0.0003% 9 0 0 0 

G2 20 Nonlinear 99.9973% 1 1 0 0 

G3 10 Polynomial 0.0026% 0 0 0 1 

G4 5 Quadratic 27.0079% 0 6 0 0 

G5 4 Cubic 0.0000% 2 0 0 3 

G6 2 Cubic 0.0057% 0 2 0 0 

G7 10 Quadratic 0.0000% 3 5 0 0 

G8 2 Nonlinear 0.8581% 0 2 0 0 

G9 7 Polynomial 0.5199% 0 4 0 0 

G10 8 Linear 0.0020% 3 3 0 0 

G11 2 Quadratic 0.0973% 0 0 0 1 

G12 3 Quadratic 4.7697%  0 729 0 0 

G13 5 Nonlinear 0.0000%  0 0 1 2 

 

3.4.2 Parameters 

For each case, 30 independent runs have been performed. PSO parameters are: 

1 2 2.0;c c= = 0.63χ = ; max 0.5  ( )V U L= −i ; number of particles is 100; the maximum 

iteration maxi   is set to 10,000; the inertia weight max0.25  (1 / );w i i= −i  the perturbation 

probability 0.1p = ; a potential solution is considered feasible when its 

1.0 05EεΦ< = − ; the tolerance allowed for an equality constraint is 1.0 03Eδ = − .  

3.4.3 Results and Discussion 

The experiment results are presented in Table 3-2 and Figure 3.6 to Figure 3.18. Table 

3-2 consists of the best results, the mean results and the standard deviations found in 30 



A Multi-Objective Constraint-Handling Method with PSO Algorithm 

 

64 

 

independent runs for each test function. Figure 3.6 to Figure 3.18 illustrate the algorithm 

convergence from the best runs for each function.  

According to Table 3-2, the proposed multi-objective constraint-handling PSO 

algorithm can find solutions to most benchmark functions. From the quality search point 

of view (the best results found), the results match the well-known solution well (or even 

better) in eight out of thirteen functions, that is, G3, G5, G6, G8, G9, G11,G12 and G13.   

The results are close to the well-known solutions in function G4, G7 and G10. The best 

results found for function G1 and G2 are not very satisfactory.  Regarding to algorithm 

consistency, Table 3-2 demonstrates most standard deviations are small in relation to 

their magnitudes. 

It is noticed the algorithm works well for function G5, G10 and G13. These three 

functions are considered very complex problems because G5 has both inequality and 

equality constraints and these three functions have very small feasible regions (refer to 

Table 3-1).  

Figure 3.6 to Figure 3.18 demonstrate the algorithm can converge very fast (in less 

than 100 iterations) in seven functions, that is, G3, G6, G7, G8, G9, G11 and G12.   The 

algorithm converges reasonably fast (between 2000 - 4000 iterations) in four functions, 

that is, G4, G5, G10 and G13. The algorithm converges slowly in two functions, that is, 

G1 and G2 (more than 10000 iterations).  

The tolerance allowed for equality constraints δ and for feasibility criterion ε   

has great impact on the algorithm performance. A largerδ and a larger ε will make the 

search easier. In our simulation, we selected a reasonably small  1.0 03 Eδ = −  and fairly 

small   1.0 - 05 Eε = to cover a wide range of test functions.  
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3.5 COMPARATIVE STUDY 

3.5.1 Quality and Consistency Comparison 

Another similar study found at the same time is by Flores-Mendoza and Mezura-Montes 

[98] who compared their approach with the state-of-the-art algorithms and claimed their 

approach is effective. Thus, a comparative study is performed to compare our approach 

with [98]. Table 3-3 lists the comparison results. For easy identification, the results from 

the approach presented in this chapter is referred to “This thesis”, and results from [98] 

is referred to “Reference”.   

Table 3-3 demonstrates that the proposed approach is able to provide similar 

search results to or better search results than those in [98] in ten functions (G3, G5, G6, 

G7, G8, G9, G10, G11, G12 and G13) (refer to Best and Mean columns). The proposed 

approach also achieved better consistent results in above ten functions (refer to the Std. 

Dev. column).  In particular, the proposed approach outperformed in complex problems 

G5, G10 and G13. However, our approach is unable to perform better in function G1 and 

G2.  Since both G1 and G2 are high dimensional problems, it seems that the proposed 

approach needs to be improved for solving high dimensional optimization problems.  

This may be explained by the “No free lunch” theorem [99]. 

In our simulation experiments, 100 particles with a maximum 10000 iterations are 

used for all functions. Although many functions can converge in less than 2000 

iterations (refer to convergence graphs Figure 3.6 to Figure 3.18), the maximum number 

of iterations is used for trying to cover those functions with slow convergence rate like 

G1, G2 and G5. It looks that our approach used a larger number of function evaluations 

(1,000,000) than the compared reference (160,000). The computation cost is not a 
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significant problem in our multithreaded object-oriented implementation (details in 

Chapter 4).  

Table 3-3  Best, mean and standard deviation results comparison from 30 independent 
runs 

TF Optimal Case Best Mean Std. Dev.

G1 -15.00000 
This thesis -14.0711764 -12.16478164 9.24E-01

Reference -15 -15   0.000

 G2 -0.803619 
This thesis -0.61760436 -0.46054886 6.07E-02

Reference -0.802629 -0.713879 0.046231

G3 -1.000000 
This thesis -1.005059969 -1.004246441 1.83E-03

Reference -0.641 -0.154 0.170

G4 -30665.539 
This thesis -30663.17206 -30658.01627 2.95E-00

Reference -30665.539 -30665.539 7.4E-12

G5 5126.4981 
This thesis 5126.484102 5127.57779 3.71E-00

Reference 5126.498 5135.521 12.385

G6 -6961.81388 
This thesis -6961.826142 -6961.826052 6.33E-05

Reference -6961.814 -6961.814 2.810E-05

G7 24.306209 
This thesis 24.30753104 24.60382281 7.59E-01

Reference 24.366 24.691 0.227

G8 -0.095825 
This thesis -0.095825041 -0.095825041 4.16E-17

Reference -0.095825 -0.095825 4.234E-17

G9 680.630057 
This thesis 680.630046 680.6300462 1.12E-07

Reference 680.638 680.674 0.030

G10 7049.3307 
This thesis 7049.212219 7176.001082 141.694

Reference 7053.963 7306.466 222.824

G11 0.750000 
This thesis 0.748990016 0.748990001 8.45E-10

Reference 0.749 0.753 6.537E-03

G12 -1.000000 
This thesis -1.000000000 -1.000000000 0.00E-00

Reference -1.000 -1.000 0.000

G13 0.053950 
This thesis 0.053962476 0.133453421 8.89E-02

Reference 0.066845 0.430408 0.239807
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3.5.2 Dynamic Neighbourhood and Static Neighbourhood 

Comparison 

In order to see the difference between the dynamic neighbourhood topology and the 

static neighbourhood topology, two experiments have been designed as follows: 

Target-based Experiment (TBE): For each optimization problem, set a target 

value for its fitness function, and then calculate the number of iterations needed to reach 

the target for both dynamic neighbourhood and static neighbourhood topologies. To 

implement it, a criterion C can be defined to indicate the minimum distance from a 

solution  f to the predefined target T . For example, the numerical function G5 has a 

well-known solution (target) T = 5126.4981, if the criterion 0.001C =  is selected, the 

iteration stops once a solution f meets the criterion  | |  f T C− ≤ . In case there is no 

solution meeting the criterion found, a maximum number of iterations is needed.  

Iteration-based Experiment (IBE):  For each optimization problem, set a 

maximum number of iterations, and then calculate the best results found at the end of 

maximum iterations.   

Because the objective for these two experiments is to evaluate the performance 

between the dynamic neighbourhood topology and the static neighbourhood topology, 

the algorithm for both topologies are the same. Any function out of the thirteen 

benchmark functions can be selected for this purpose.  The experiment results based on 

the TBE and IBE for the five numerical functions - G5, G6, G7, G9 and G10 are listed 

below. The results for other functions are not included in this chapter since the five 

functions should be sufficient to demonstrate the influence of the idea.   
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Table 3-4 consists of the lowest, average and highest number of iterations needed 

from 30 independent runs based on TBE.  The criterion value C = 0.001 for G5, G6 and 

G9; C = 0.01 for G7 and C = 0.1 for G10.  The reason is that both G7 and G10 have a 

target minimum which is difficult to achieve. If a very small C is selected, it is possible 

that the criterion can never be reached through all iterations. According to Table 3-4, the 

average number of iterations needed (4379 for G5, 886 for G6, 9310 for G7, 303 for G9 

and 9460 for G10) in the dynamic neighbourhood topology are less than those from the 

static neighbourhood (6952 for G5, 8503 for G6, 9914 for G7, 8968 for G9 and 9889 for 

G10).  Particularly, the algorithm in the dynamic neighbourhood topology converges 

faster than in the static neighbourhood topology in function G6 and G9 where the 

maximum number of iterations (1827 for G6 and 490 for G9) in the dynamic 

neighbourhood topology are less than the minimum numbers of iterations (5782 for G6 

and 3731 for G9) in the static neighbourhood topology.    

Table 3-5 includes the best, the average and the worst results found from 30 

independent runs based on IBE for the test function G5, G6, G7, G9 and G10.  The 

maximum iteration is set to 4000.  From the Table 3-5, the best, average and the worst 

results found from the dynamic neighbourhood topology are all better than the results 

achieved from the static topology.  

Figure 3.19 to Figure 3.23 illustrate the convergence graphs of the average results 

found from these two neighbourhood topologies based on the TBE. As indicated from 

these results, the proposed dynamic neighbourhood topology can find solutions 

faster than the static neighbourhood topology. The comparative experiment 

results support the hypothesis proposed in Section 3.3.3.   
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Table 3-4  Lowest, average and highest iteration needed for dynamic and static 
neighbourhood topology from 30 independent runs 

TF Optimal 
(Target) Criteria Neighbourhood 

Type Lowest Average Highest 

G5 5126.4981 0.001 
Dynamic 105 4379 9990

Static 352 6952 9999

G6 -6961.81388 0.001 
Dynamic 113 886 1827

Static 5782 8503 9626

G7 24.306209 0.010 
Dynamic 3609 9310 9999

Static 8344 9914 9999

G9 680.630057 0.001 
Dynamic 200 303 490

Static 3731 8968 9999

G10 7049.3307 0.100 
Dynamic 5905 9460 9999

Static 9227 9889 9999

 

Table 3-5  Best, average and worst results found for dynamic and static neighbourhood 
topology from 30 independent runs (maximum iteration = 4000) 

TF Optimal 
Neighbourhood 

Type 
     Best          Average             Worst 

G5 5126.4981
Dynamic 5126.484102 5132.648157 5178.538574

Static 5126.484123 5133.324432 5201.465006

G6 -6961.81388
Dynamic -6961.826137 -6961.826003 -6961.825799

Static -6961.824322 -6960.091727 -6948.589191

G7 24.3062090
Dynamic 24.33202325 25.59205796 27.64933147

Static 25.8460636 32.19146368 38.767848

G9 680.630057
Dynamic 680.6300462 680.6300466 680.6300474

Static 680.6621935 681.3825028 683.5746460

G10 7049.3307
Dynamic 7051.067080 7285.291824 8109.872342

Static 7105.547735 7665.149708 8945.864704
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rules.  A particle is always attracted by those at the front. The total force applied to each 

particle is in the same (or similar) direction. This will speed up the search process.  

This can be explained in the university scenario. A professor discovers a good idea 

on how to get an ARC (Australia Research Council) discovery grant. If the professor’s 

immediate neighbours are on a lower level, say lecturers, then the professor may instruct 

his/her neighbours to apply for the ARC grant by using his/her idea.   Since the lectures’ 

capability (velocity in PSO) is limited and they are constrained by other commitments 

such as teaching, the possibility of success for the lecturers to get the ARC grant is not 

very high. On the other hand, if the professor’s immediate neighbours are other 

professors or associate professors with the same goal focusing on research, the 

communication between the professor and his/her neighbours would be more efficient 

and lead to a greater likelihood of success.  

3.6 SUMMARY 

A multi-objective constraint-handling method with a dynamic neighbourhood PSO 

algorithm has been proposed for tackling single objective constrained optimization 

problems. By adopting a multi-objective constraint-handling method, a single objective 

constrained optimization problem is converted to a bi-objective unconstrained 

optimization problem. Then the concept of Pareto dominance from multi-objective 

optimization techniques is used. An adaptive inertia weight factor and a minor 

perturbation are adopted to improve the convergence and the diversity. The simulation 

results for the well-known benchmark functions have demonstrated the proposed 

approach is effective and efficient in quality search and consistency.  
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Compared with the recent research results, the proposed approach is able to 

provide similar good or better quality and consistent results in ten out of thirteen 

functions. In particular, the proposed approach outperforms function G5, G10 and G13 

which are considered complex problems. However, our approach is unable to perform 

better in function G1 and G2.  Since both G1 and G2 are high dimensional problems, it 

seems that the proposed approach needs to be improved for solving high dimensional 

optimization problems.  This may be explained by the “No free lunch” theorem [99]. 

Based on the experiment results from the five test functions G5, G6, G7, G9 and 

G10, the proposed performance-based dynamic neighbourhood has proved to be able to 

find solutions faster than the static topology. It reveals that the performance 

improvement by the dynamic neighbourhood topology is significant for some functions 

like G6 and G9. For functions G5, G7 and G10, although the improvement is not 

obvious, it still outperforms the static neighbourhood topology. The Iteration-based 

experiment results demonstrate that the dynamic neighbourhood topology can find 

better results than static neighbourhood topology. These results support the hypothesis 

that “Allocating particles that have a similar performance in a neighbourhood is more 

efficient than allocating particles randomly in a neighbourhood in PSO”. We argue that 

communication is more effective between individuals which are in the same or similar 

performance group. 

This study is one of the few attempts to adopt the multi-objective 

constraint-handling method into PSO algorithm.  
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Chapter 4                                                                    

CONSTRAINED MULTI-OBJECTIVE 

OPTIMIZATION USING PSO ALGORITHM 
   

4.1 INTRODUCTION 

Chapter 3 presented a multi-objective constraint-handling method incorporating with PSO 

algorithm for single objective constrained optimization problems. The target for this 

chapter is to solve constrained multi-objective optimization problems using PSO 

algorithm. 

Most real-world search and optimization problems involve multiple objectives (MO) 

that need to be achieved simultaneously. The presence of the constraints brings difficulties 

in optimization since the search space has to be restricted in feasible regions. In solving 

MO problems, three goals need to be achieved [1]: find a set of solutions as close as 

possible to the true Pareto-optimal front; find a set of solutions as diverse as possible; and 

find a set of solutions as many as possible.  

Population-based optimization techniques such as GAs, PSO, DE and ACO have 

been a popular choice for MO problems. The main reason is that these algorithms are 

capable of finding a set of Pareto-optimal solutions in a single run. With the success of the 

PSO in single objective optimization, researchers are motivated to extend the use of PSO in 
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MO problems.   In order to apply PSO algorithm in multi-objective optimization problems, 

two main decisions need to be made: the first is how to determine a particle’s personal best 

location; and the second is how to select the best particle among a neighbourhood (gBest or 

lBest).  Up to now, a number of strategies (more than twenty five  [87]) that adopt PSO 

algorithm in MO problems have been proposed. Some examples are: dynamic 

neighbourhood [79], grid method [80], weighted aggregation [81], multi-swarm [82], 

dominated tree [83], fitness sharing [85], maximin strategy [100] and Huo et al [86]. A 

detailed review can be found in [87].  However, most of these approaches are constraint 

free.  How to integrate constraint-handling methods with the multi-objective PSO has 

motivated this research.  

There are mainly two papers that have addressed the constrained multi-objective 

optimization by using PSO algorithm [88] [89]. However, they have some drawbacks as 

stated in Chapter 2. 

 In this chapter, we also adopt the constraint dominance concept, and propose an 

easy-to-implement PSO algorithm for tackling constrained multi-objective optimization 

problems. The proposed approach defines two sets of rules for determining the cognitive 

and social components of the PSO algorithm. The simulation results to the four constrained 

multi-objective optimization problems will be presented.  

The rest of the chapter is organized as follows. Section 4.2 presents the proposed 

approach for constrained multi-objective optimization problems including the selection 

rules and the modified PSO algorithm.    Section 4.3   presents the experiment results to the 

four test functions. Section 4.4 discusses the performance issues of the proposed approach. 

Section 4.5 summarizes the chapter.   
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4.2 PROPOSED APPROACH 

4.2.1 Problem Description and Constraint Dominance  

As stated in Chapter 1, a general multi-objective constrained optimization problem consists 

of a decision vector 1 2( , ,..., )T
nx x x x= , an objective function vector 

1 2( ) ( ,  ,...,  ( ) ( ) ( ))kf x f f fx x x=  and a constraint function vector 1 2( ) ( , ,...,( ) ( ) ( ))mg x g g gx x x= .  

The problem can be stated as to find *x  which 

m in im ize     ( ),                1, 2 , ...
 

sub ject to     ( ) 0 ,          1, 2 , ...
j

i

f x j k

g x i m

= ⎫⎪
⎬

≤ = ⎪⎭  

where k is the total number of objective functions and  m is the total number of constraints.  

From Chapters 2 and 3, the feasibility of a solution can be assessed by its total 

amount of constraint violations, described by 

 

1
  ( ) max(0, ( ))    

m

i
i

x g x
=

Φ =∑  

 

If a solution satisfies all constraints, ( )xΦ  returns a zero; the solution is feasible.  

Otherwise, ( )xΦ  returns a positive number; the solution is infeasible. Considering an 

absolute equality is difficult to achieve in implementation, we can use a feasibility criterion 

ε  to evaluate a solution’s feasibility, that is, a solution x is considered feasible if its

 ( )x εΦ ≤  (ε  is small positive number).  



Constrained Multi-objective Optimization Using PSO Algorithm 

 

85 

 

The constraint dominance concept is adopted in the proposed approach. The 

definition can be found in Chapter 1.  

4.2.2 Selection Rules 

Based on the constraint dominance concept, we propose the selection rules for determining 

pBest and lBest of the PSO algorithm, as follows. 

Rule Set 1:  Personal best particle updating rules 

Suppose a particle’s new location is pNew and its personal best location in the history 

is pBest: 

• If both pNew and pBest are feasible, and if  pNew dominates pBest, update pBest 

with pNew;  

• If  pNew is feasible and pBest is not feasible, update pBest with pNew; 

• If  pNew is not feasible and pBest is feasible, pBest is not updated; 

• If both pNew and pBest are infeasible, and if pNew has a lower constraint violations 

(Φ ) than pBest has, update pBest with pNew.  

 The Rule Set 1 is summarized in Table 4-1. 

   

Table 4-1 Personal best particle updating rules 

pNew    pBest 
pNew dominates   

pBest? 

pNew has lowerΦ  

than pBest? 
 Next  pBest

feasible feasible yes  pNew  

feasible infeasible   pNew 

infeasible feasible   pBest 

infeasible infeasible          yes pNew 
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Rule Set 2:  Local (or global) best particle selection rules: 

Among a neighbourhood, select the best performed k (k is the number of objective 

functions) particles lBesti  (i= 1 to k)  in each objective function: 

• If all lBesti  (i= 1 to k)  are feasible, randomly select one as lBest. In this way, a 

particle may follow lBest1 at a time, and follow lBest2 at another time. All lBesti  

(i= 1 to k)  will get the same probability to be selected as lBest; 

• If there exist feasible particles and infeasible particles in all lBesti  (i= 1 to k), the 

lBest is randomly selected from all the feasible particles.  The infeasible particles 

are disregarded; 

• If there exist no feasible particles in all lBesti (i= 1 to k), the particle with the 

lowest constraint violations is selected as lBest. 

For two objective optimization problems, for example, if lBest1 is the best particle in 

objective f1 and particle lBest2 is the best particle in objective f2.  An arbitrary particle p in 

the same neighbourhood will have its lBest determined by the rules listed in Table 4-2. 

 

Table 4-2 Local best particle selection rules 

lBest1 lBest2 lBest 

feasible feasible 
1 2( , )rand lBest lBest  

feasible infeasible lBest1 

infeasible feasible lBest2 

infeasible infeasible one with the lower Φ  

 

The proposed criterion-based rules for pBest and lBest have the following features: 

• The feasibility is on the top priority; 
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• The pBest evolves towards the bottom-left direction in the objective space 

(assume  all objectives are being minimized) since the Pareto dominance concept 

is adopted; 

• The lBest makes effort to extend the spread along the Pareto-optimal front since 

the best particle in one objective function is followed.  

• The rules can be applied to problems that have any number of objective functions. 

4.2.3 Algorithm 

Table 4-3 is the structure of the proposed PSO algorithm for constrained multi-objective 

optimization problems. 

 

Table 4-3  Structure of the modified PSO algorithm for constrained multi-objective 
optimization problems 

01:    Initialize particles  

02:    Calculate fitness values of particles under each objective 

03:    Calculate constraint violations of each particle 

04:    Set current locations as personal best locations 

05:    Set local best location for each particle according to Rule Set 2 

06:    Do 

07:       For each particle   

08:             Calculate new velocity by PSO formula 

09:             Calculate new location by PSO formula  

10:             Update  personal best location according to Rule Set 1 

11:        End For 

12:     Set local best location for each particle according to Rule Set 2 

13:     End Do 
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4.3 EXPERIMENTS 

4.3.1 Test Functions 

Four functions (taken from [1]),  named BNH, TNK, SRN and OSY have been selected for 

testing the proposed approach.  Function BNH has a continuous convex Pareto-optimal set. 

Function TNK has a discontinuous, convex and nonconvex Pareto-optimal set. Both 

function SRN and function OSY have the continuous linear (can be considered convex or 

nonconvex) Pareto-optimal sets. The TNK and OSY functions are considered difficult 

problems since TNK has a discontinuous Pareto-front and OSY is a high dimensional and 

highly constrained problem. They are described in Equations (4.1) to (4.4), as follows. 

 

BNH: 

2 2
1 1 2

2 2
2 1 2

2 2
1 1 2

2 2
2 1 2

1 2

M inimize     ( ) 4 4 ,

                    ( ) ( 5) ( 5) ,

subject to     ( ) ( 5) 25 0,

                    ( ) 7.7 ( 8) ( 3) 0,
                    0 5,       0 3.

f x x x

f x x x

g x x x

g x x x
x x

⎧ = +
⎪

= − + −

= − + − ≤⎨
= − − − + ≤

≤ ≤ ≤ ≤

⎪
⎪

⎪
⎪
⎪
⎩

 

 

TNK: 

1

2

1 1

2 2

2 2
1 1 2

2 2
2 1 2

1 2

Minimize     ( ) ,
                    ( ) ,

subject to     ( ) 1 0.1cos(16 arctan ) 0,

                    ( ) ( 0.5) ( 0.5) 0.5 0,
                    0 , .

x
x

f x x
f x x

g x x x

g x x x
x x π

⎧ =
⎪ =⎪
⎪ = − − + ≤⎨
⎪

= − + − − ≤⎪
⎪ ≤ ≤⎩

 

 

(4.1)

(4.2)
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SRN: 

2 2
1 1 2

2
2 1 2

2 2
1 1 2

2 1 2

1 2

M inim ize     ( ) 2 ( 2) ( 1) ,

                    ( ) 9 ( 1) ,

subject to     ( ) 225 0,
                    ( ) 3 10 0,
                    -20 , 20.

f x x x

f x x x

g x x x
g x x x

x x

⎧ = + − + −
⎪

= − −⎪
⎪ = + − ≤⎨
⎪ = − + ≤⎪
⎪ ≤ ≤
⎩

 

OSY: 

2 2 2 2 2
1 1 2 3 4 5

2 2 2 2 2 2
2 1 2 3 4 5 6

1 1 2

2 1 2

Minimize     ( ) [25( 2) ( 2) ( 1) ( 4) ( 1) ],

                    ( ) ,
subject to     ( ) 2 0,
                    ( ) 6 0,
                  

f x x x x x x

f x x x x x x x
g x x x
g x x x

= − − + − + − + − + −

= + + + + +
= − − ≤
= − + + ≤

3 1 2

4 1 2
2

5 3 4

2
6 5 6

1 2 6 3 5 4

  ( ) 2 0,
                    ( ) 2 3 0,

                    ( ) 4 ( 3) 0,

                    ( ) 4 ( 3) 0,
                    0 , , 10,    1 , 5,    0 6.

g x x x
g x x x

g x x x

g x x x
x x x x x x

⎧
⎪

= − − + ≤⎨
= − + − ≤

= − + − + ≤

= − − − ≤

≤ ≤ ≤ ≤ ≤ ≤

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎩  

 

4.3.2 Results 

For multi-objective optimization, the number of non-dominated solutions is directly linked 

to the population size.  Therefore, a large size of population is required.     

Twenty independent runs have been performed for each case. PSO parameters are:

1 1.0 ;c =  2 2.0;c = max 0.5  ( )V U L= −i , where U and L are the upper and lower boundary for the 

decision variables; the population size is 200 for BNH and SRN; the population size is 500 

for TNK and OSY; the maximum iteration maxi   for all four cases are 1000; the inertia 

weight 0.1 ;w= 0.63 ;χ=  a potential solution is considered feasible when its 1.0 05EεΦ< = −

 (4.3)

 (4.4)
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; Neighbourhood topology is set to the circular ring local model with the neighbourhood 

size 2.  

Figures 4.1 to Figure 4.8 illustrate the theoretical Pareto-optimal fronts and the 

simulated Pareto-optimal fronts from the best runs for the four test cases.  The best run 

means that the Pareto-optimal front has a small Spacing/Spread (S/D) value. The 

theoretical Pareto-optimal fronts are deliberately included for a visual comparison because 

there are not many research data available for constrained multi-objective test problems. 

156 out of 200 non-dominated solutions are found for BHN function. 111 out of 500 

non-dominated solutions are found for TNK function. 161 out of 200 non-dominated 

solutions are found for SRN function and 56 out of 500 non-dominated solutions are found 

for OSY function.  The algorithm achieved a reasonably good number of non-dominated 

solutions for the first three functions. However, the number of non-dominated solutions 

found for the last function (OSY) is small due to the complexity of the problem.  

By observing the simulated Pareto-optimal fronts and the theoretical Pareto-optimal 

fronts [1], the proposed approach is able to converge to the Pareto-optimal solutions 

effectively.  The final solution curves are reasonably dispersed. 
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4.4 PERFORMANCE EVALUATION 

Three metrics can be used for evaluating the performance of a multi-objective optimization 

algorithm, as follows.    

Spacing (SP) (as cited in [1]) measures how well distributed (spaced) the solutions in 

the  non-dominated set found.  The formula is presented in Equation (4.5), 

 

21
1

( )n
in i

S d d
=

= −∑  

  

where n is the number of solutions in the obtained non-dominated set, 

1
min | |M i k

i k n k i m mm
d f f∈ ∧ ≠ =
= −∑  and d is the mean value of the above distance measure 

1
/n

ii
d d n

=
= ∑ ; M is the number of objective functions. When the solutions are near 

uniformly spaced, the corresponding distance measure will be small. Thus, an algorithm 

finding a set of non-dominated solutions having a smaller spacing S is better.  

 Maximum Spread [61] gives a value which represents the maximum extension 

between the farthest solutions in the non-dominated set found. The formula is presented in 

Equation (4.6). A bigger value indicates better performance. 

 

  1   1

  2
  1

 (max  min  )
i i

M n i n i
m mm

D f f
= ==

= −∑  

    

        mf is the m-th objective function value. 

(4.5)

(4.6)
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Generational Distance (as cited in [1]) is a metric to find the average distance of the 

non-dominated set of solutions from the real Pareto optimal set. The formula is given in 

Equation (4.7), 

 

2
1

n
ii

d
GD

n
==

∑
 

 

where id is the Euclidean distance between solution i from the set of n non-dominated 

solutions found and the closest element from the real Pareto optimal set.  A smaller value 

indicates the solutions found are closer to the real Pareto front. 

Experiments have been conducted based on the first two metrics, that is, “Spacing” 

and “Spread”.  Table 4-4 presents the experiment results for the four test cases. Since a 

smaller “Spacing” value and a larger “Spread” value are expected, the minimum S and the 

maximum D are listed in the table. The average values and the standard deviations are also 

included.  

The “Generational Distance” is not evaluated at this stage because of the lack of the 

real Pareto-optimal front data. 

Due to the complexity and different user demands, there are not many data available 

for performance comparison. We include the “Spacing” data (EM-MOPSO) from [89] in 

Table 4-5 for a brief comparison. No “Max Spread” data available from [89]. The NSGA-II 

data in Table 4-5 is also taken from [89].  

 

(4.7)
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Table 4-4 Spacing and Maximum Spread for testing cases based on 20 runs 

Criteria Item BNH TNK SRN OSY

S 

Min. 0.599672 0.004032 1.089612 1.040084

Avg. 0.979688 0.012609 1.587708 2.943298

Std. 0.258917 0.003361 0.423624 1.057702

D 

Max. 143.5117 1.403277 302.6255 225.3124

Avg. 136.9071 1.362672 276.0655 155.4652

Std. 3.775605 0.031040 16.26418 21.64976

 

 

Table 4-5  Statistic results by different approaches 

  This approach NSGA-II EM-MOPSO

BNH 

Min. 0.599672 0.6408 0.6357

Avg. 0.979688 0.7756 0.6941

Std. 0.258917 0.0727 0.0385

SRN 

Min. 1.089612 1.3402 1.0768

Avg. 1.587708 1.5860 1.2439

Std. 0.423624 0.1337 0.1055
 

 

According to Table 4-5, the proposed approach obtained the best “Spacing” value in 

function BNH.  For function SRN, the proposed approach outperformed NSGA-II in the 

best “Spacing” value but slightly worse than EM-MOPSO. For algorithm consistency, the 

proposed approach did not outperform the other two approaches in both functions but the 

standard deviation values obtained are less than 0.5.  

It is realized that the “Spacing” value can only be applied in consecutive solutions 

which may not be suitable for those problems that have discontinuous solutions such as 

function TNK. In such cases, other performance metrics may be taken into consideration.  
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4.5 SUMMARY   

Population-based evolutionary techniques have been a popular choice for multi-objective 

optimization problems. The presence of constraints brings difficulties since the search 

space has to be restricted in a feasible region.  Most existing multi-objective PSO proposals 

did not consider the constraints. Integrating constraint-handling mechanisms with 

multi-objective PSO is a challenging topic.      

This chapter has proposed a modified PSO algorithm for solving constrained 

multi-objective optimization problems. Based on the constraint dominance concept, the 

proposed approach defines two sets of rules for determining the cognitive and social 

components of the PSO algorithm. The advantages of the proposed approach are: it can be 

applied in solving problems that have any number of objective functions; it is simple to 

understand and easy-to-implement; it is relatively computationally inexpensive since no 

external archive is used. 

The simulation results to the four constrained multi-objective optimization problems 

have demonstrated the proposed approach is able to find the Pareto-optimal solutions 

effectively.  Performance evaluation has shown the proposed approach achieved reasonably 

good results in two metrics -“Spacing” and “Spread”.  

The proposed approach is one of the few attempts that using PSO in constrained 

multi-objective optimization problems.    
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Chapter 5                                                         

PROGRAM DESIGN, IMPLEMENTATION AND 

MORE RESULTS  
 

5.1 INTRODUCTION 

This chapter consists of two parts. The first part describes the design and implementation 

issues for the proposed approaches in Chapters 3 and 4. The second part presents the 

simulation results for three engineering design optimization problems. A special case, that 

is, when a predefined goal is known, the optimization task is to identify the design variables 

that achieve the goal, will be discussed. 

A basic advantage of all EAs lies in the inherent parallelism of the algorithms. 

Parallel implementations of EAs are easily scalable to large populations, thus providing a 

good potential to exploit even massively hardware [101].  Parallel computing involves 

using multiple processing elements simultaneously to solve parallel execution problems. 

Multithreaded programming principle is able to simulate the parallel processes in a single 

processing element. In order to improve the computing performance, the multithreaded 

object-oriented programming principles are adopted in the program design and 

implementation which will be presented in the first part of this chapter.   
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In some real world applications, it is often that the optimization problems have 

predefined targets (or goals) and the optimization task is to identify the decision variables 

that are needed to attain the predefined targets.  For example, in a budget allocation 

application, the total budget is pre-specified; an optimization task could be used to find a 

rational money allocation to different budgetary items which minimize the deviations from 

the total budget. A simple scenario is: Suppose you have a total budget T, you are going to 

allocate this budget T to the budgetary items 1 2, ,..., nx x x  . The objective is to find 

1 2( , ,... ) nx x x x=  to achieve 
1

n
iT x=∑ or to minimize 

1
| |n

iT x−∑  subject to satisfying a 

number of constraints such as 1 3 1  x x T+ ≤  . That is, if a solution with the desired target 

exists, the optimization task is to identify that particular solution.  If there exists no solution 

which achieves pre-specified targets, the optimization task is to find solutions which 

minimize deviations from the targets. This is referred to as goal programming principle [1]. 

The goal programming generally involves multiple goals that need to be achieved.  

When the multiple goals conflict with each other, the optimization is related to the 

multi-objective optimization.  Consider the goal programming as a constraint satisfaction 

process, if one goal is picked up as the objective function and other goals to be treated as 

constraints, a goal programming problem can be transformed into a single objective 

constrained optimization problem. The proposed multi-objective constraint-handling 

method in Chapters 3 should be applicable.   

By modifying the algorithm proposed in chapter 3, the second part of this chapter 

will present a goal-oriented multi-objective constraint-handling method incorporated with 

the PSO algorithm for tackling optimization problems that have predefined goals. The 
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simulation results to the three well known engineering design optimization problems will 

be presented and discussed. 

The rest of the chapter is organized as follows: Section 5.2 presents a multithreaded 

Object-Oriented approach for PSO implementation including UML modelling. Section 5.3 

presents the goal-oriented multi-objective constraint-handling method and simulation 

results to the three engineering design optimization problems. Section 5.4 is the summary 

of the chapter.  

  

5.2 A MULTITHREADED OBJECT-ORIENTED APPROACH FOR 

PSO IMPLMENTATION 

5.2.1 Parallel Computing and Evolutionary Algorithms 

Generally, two types of parallelization exist for evolutionary algorithms – individual 

parallelization and population parallelization. For individual parallelization, all individuals 

evolve simultaneously according to some artificial rules such as operators in GAs or 

mathematical formulas in PSO algorithm. The individuals may or may not need to 

communicate with the others during evolution. Population parallelization involves multiple 

populations (population contains individuals) that evolve simultaneously. The 

co-evolution model [102], the multi-swarm model [103]  and the multiple-independent-run 

are typical examples for population parallelization.  

Two main parallel models have been followed for parallel computing.  In 

fine-grained model, few individuals (or populations) are assigned to single processors and 

information exchange among the processors is frequent. On the contrary, in coarse-grained 
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model, larger subpopulations are assigned to single processors and information exchange is 

rather rare. Research on parallel EAs has quickly shown that fine-grained parallelization 

results in a very significant communication overhead. Therefore, the focus has mostly 

turned to coarse-grained parallelization schemes [27].     

5.2.2 Multithreaded Object-Oriented Programming in Brief 

In computer science contexts, threads are a way for a program to split itself into two or 

more simultaneously running tasks. The multiple threads can be distributed to a 

multiprocessor (multiple CPUs) system such as a supercomputer or a cluster computing 

system. Moreover, multithreading allows a single-processor system to act like a 

multiprocessor system in order to allow a computer with a single CPU to simulate 

concurrency. This feature greatly benefits computing tasks that can be easily split into 

multiple tasks and execution simultaneously.  Multithreaded programs often run faster and 

are more user-friendly than those programs written in sequential and single-threaded 

programs. 

Figure 5.1 illustrates how multithreading executes in a multiprocessor system and in 

a single-processor system. With a multi-processor system, the multiple threads are 

distributed to each processor. Each thread is independent of others. In a single-processor 

system, the multiple threads share the CPU time. The CPU devotes a small amount of time 

to one task, and then devotes a small amount of time to another task. In Java programming 

language, the multiple threads are scheduled by the Java Virtual Machine (JVM) which 

interprets compiled Java binary code for a computer processor so that it can perform a Java 

program instructions [104] .   





Program Design, Implementation and More Results  

 

104 

 

 

Figure 5.2  The goals, principles, and techniques of object-oriented design 

 

5.2.3 System Design and Implementation 

5.2.3.1 Design Objectives 

Several objectives need to be considered in system design. 

• The system should be applicable to different optimization problems.  

• The programs should be easily adapted to different strategies in order to compare 

with other approaches. 

• When generating individuals (particles for PSO) randomly, the individuals that lie 

on the variable boundary should be included. It is emphasized here since many 

random functions such as Java’s Random function generating numbers that include 

the lower boundary value but exclude the upper boundary values.  

• The multiple-independent-run can be executed in parallel. The coarse-grained 

parallel model would suffice since there is no information exchange between 

populations.   
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5.2.3.2 UML Modelling 

Unified Modelling Language (UML) [106] is a standardized general-purpose modelling 

language in the field of software engineering which  has been widely used in 

object-oriented design.  To help understanding, a few UML notations are listed in Table 

5-1.  

Figure 5.3 illustrates the class structure in UML model. Six Java classes and one Java 

interface have been defined for the system.  Two important interfaces “Runnable” and 

“Comparable” from the Java Application Programming Interface (API) [107] are also 

included in the UML model for easy illustration. Other Java classes from Java API are 

omitted in the UML model since they are considered trivial. The main responsibilities for 

each class or interface are specified as follows: 

 
Table 5-1 UML relationship notations 

Relationship          Symbol                      Meaning 

Interface  

Implementation  

Denotes one class must implement all 

methods defined by the interface 

Aggregation 
 

Denotes that objects of one class contain 

references to objects of another class 

Dependency  
Denotes methods of one class uses an object 

of the other class in some way 

 

• StartMain: This class is the entry point where the program starts to run. It 

creates objects of the application (that is, which optimization problem to run), 

generates multithreads for multiple independent runs, and starts building swarms to 

evolve for computation. 
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• ApplicationInterface: This interface defines common methods that an 

application must implement. It uses interface types to make code more reusable.   

• TheApplication: This is the class for a specific optimization problem. Since 

each problem has different dimension, it contains problem attributes like the 

number of dimensions and the boundary constraints.  This class implements the 

“ApplicationInterface” interface.  

• Randoms: Like any population-based computation, PSO needs to uniformly 

generate particles randomly. The “Randoms” class provides methods to generate 

double values between a lower boundary constraint and an upper boundary 

constraint.  

• BoundaryConstraint: “BoundaryConstraint” class is simply the limits 

to (the minimum and maximum of) a number range. Its “boundaryType” 

attribute indicates how a value that exceeds the boundaries is to be modified such 

that it is again within the boundaries. 

• Particle: This class represents particle objects. A particle has its ID, velocity, 

coordinators (that is, location in a D-dimensional space), fitness and constraint 

violations.  Each particle object also contains a reference to its best local particle of 

the neighbourhood. The class aggregates “TheApplication” and 

“BoundaryConstraint” classes. It also implements “Comparable” interface 

to define how to compare particles. 

• Swarm: The “Swarm” class contains the main routine of PSO algorithm. It 

implements the “Runnable” interface since multiple swarms will be used to 

achieve multiple-independent-run which is always needed for any evolutionary 
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algorithms (that is, we should never report results by one run). The “Swarm” class 

initializes particles, determines particles’ behaviours, calculates particles next 

positions, and conducts other necessary functions such as output data.    

• Runnable: It is a standard Java interface from Java API. The “Runnable” 

interface should be implemented by any class whose instances are intended to be 

executed by a thread. Comparable: The “Comparable” interface imposes a 

total ordering on the objects of each class that implements it. By implementing its 

“comparTo” method, the objects can be sorted according to the rules specified. 

Since it is often that particles need to be compared in PSO algorithm, adopting this 

approach will make the comparison a lot easier.  
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5.2.4 Discussion  

There are a number of benefits of using a Multithreaded Object-Oriented approach for EA 

implementation. Firstly, it is easy to extend to different applications. Object-Oriented 

design is modular. The structure imposed by modularity enables software reusability. For 

example, in the model illustrated in Figure 5.3, the TheApplication class is the only 

class that needed to be replaced for different applications. The implementation to the 

TheApplication class is simple since the pattern has been specified in the 

ApplicationInterface interface.  Secondly, it is easy to adapt to different 

computing strategies.  For example, if the comparison criteria for particles are changed, the 

user only needs to modify the comparTo method in the Particle class; if the user 

wants to change the random strategy such as uniform distribution or normal distribution, 

the Randoms class needs to be modified only. Lastly, since Java offers some advantages 

such as platform independent, friendly graphical user interface and multithreading, the 

approach can make the parallel execution in any platform more convenient.   

However, compared with other traditional scientific programming languages like 

FORTRAN [108] or C [109], Java is not considered a high performance programming 

language in numerical computing [110]. For those problems that need intensive 

computation (e.g., execution takes months or years), approaches other than Java-based may 

perform better.  
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5.3 ENGINEERING DESIGN OPTIMIZATION 

5.3.1 Problem Transformation and Formulation 

Let’s take a goal programming problem that has two objective functions as an example to 

illustrate the idea. Suppose 1 ( ) f x  has a predefined target 1  T , and 2( ) f x has a predefined 

target 2  T , the optimization task can be stated as to find 1 2* ( , ,..., ) nx x x x= that satisfy

1 1 2 2( )   and  ( ) f x T f x T= =     

 

or    

1 1 1

2 2

minimize      ( )  | ( ) |
subject to      ( )           and
                     ( ) 0,            1, 2,..., ;i

F x f x T
f x T
g x i m

= −⎧
⎪ =⎨
⎪ ≤ =⎩

  

 

Recall the single objective constrained problems as in Equation (1.2), the only difference in 

Equation (5.1) from Equation (1.2) is that one more equality constraint is added. This 

constraint can be merged into other constraints as in ( )ig x  which make a total 1 m+  

number of constraints, and then a goal programming problem can be rewritten as  

 

minimize      ( )  | ( ) |
subject to      ( ) 0,            1,2,..., 1;i

F x f x T
g x i m

= −⎧
⎨ ≤ = +⎩

 

 

Recall the multi-objective constraint-handling method, Equation (5.2) can be transformed 

into  

 

(5.1) 

(5.2) 
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1

minimize     '( )  ( ( ), ( )) 

where          ( )  ( ) -     and    ( ) max(0,  ( )) 

goals            ( ) - T    and  ( )   

m

i
i

F x F x x

F x f x T x g x

f x x ε
=

= Φ⎧
⎪⎪ = Φ =⎨
⎪
⎪ ≤ Δ Φ ≤⎩

∑  

 

Where Δ  and ε  are two small positive numbers which indicate how close a solution 

to the predefined targets. Please note there is no need to use | ( ) -T |   f x ≤ Δ because any 

better-than-target solutions (that is, f (x) < T) are allowed to be found for the model.  

Figure 5.5 illustrates the expected solution area (goal area) for the model in Equation 

(5.3) in the objective space.  

 

Figure 5.5   The goal area for a bi-objective constraint-handling optimization problem 

     

      In terms of the PSO algorithm, the particles should fly toward the goal area. Once the 

goals are achieved, no more evolution is needed. In case there is no solution satisfying both 

goals, the priority is given to  ( )x εΦ ≤ , the solution is found from all particles where their

 ( )x εΦ ≤ .   

(5.3) 
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5.3.2 A Goal-Oriented Multi-objective Constraint-handling Method 

with PSO Algorithm 

Figure 5.6 illustrates the goal-oriented multi-objective constraint-handling method with the 

PSO algorithm.  It is modified from the multi-objective constraint-handling method with 

PSO algorithm proposed in Chapter 3.  PSO variant adopted in this section is the same as 

the one in Chapter 3, that is, as in Equation (3.2) and Equation (3.3).  The selection rules are 

the same as the ones in Chapter 3. The modified parts are highlighted in Figure 5.6. 

Compared with the previous multi-objective constraint-handling PSO with no 

predefined goals, the goal-oriented multi-objective constraint-handling method via PSO 

algorithm has the following differences: 

• Whenever calculating fitness, both objectives ( ) ( )  F x f x T= −  and  ( ) xΦ need 

to be evaluated. The first objective function now becomes ( )f x T−  rather than

( )f x . 

• After each iteration, check whether the goal is obtained; if obtained, the iteration 

ends. This means that the particles do not need to go through the maximum 

iterations. Once the target is met, it stops evolving.  
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Figure 5.6   Pseudo code of the goal-oriented multi-objective constraint-handling method 

with PSO algorithm 
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5.3.3 Results 

Three engineering optimization examples are selected for simulation. The neighbourhood 

topology is set to ring topology with the neighbour size of 2. For each case, 30 independent 

runs (note: it is generally a convention to run programs 30 times to evaluate the 

consistency) have been performed. PSO parameters are: 0w= ; 1 2 2c c= = ; 0.63χ = ; 

max 0.5  ( )V U L= −i , where U and L are the upper and lower limits for decision variable  ;x  

0.1%p = ; number of particles is 100;  the maximum iteration is set to 10000. The 

feasibility tolerance allowed  1.0 09Eε = − . 

In order to see the improvement made from different approaches, results from three 

other recent approaches are included in this section. The three approaches, CPSO [78], 

HPW-PSO [74] and Coello and Montes [69] are selected for comparison. The reasons for 

choosing these three approaches are: both CPSO and HPW-PSO are based on PSO 

algorithm as we adopted. However, they use different constraint handling methods. CPSO 

adopted a penalty function method and HPW-PSO adopted a preserving and searching for 

feasibility method. The Coello and Montes’ approach uses the similar multi-objective 

constraint handling method as we adopted, but their implementation is through genetic 

algorithm. Therefore, we can evaluate the algorithm in different aspects.    

5.3.3.1 Results for Welded Beam Design Problem 

The Welded Beam Design problem (E01) is described in Appendix II.     The goal value for 

this problem is set to 1.724852 which is best-known. The best solution found from our 

simulation and the other three approaches are listed in Table 5-2. In our approach, the best 

result found is 1.724852321, which is close to the best-known result 1.724852; the mean 

result for 30 independent runs is 1.724861948; and the standard deviation is 2.05462E-05. 
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According to Table 5-2, the solution found from our approach is better than those achieved 

by the other three approaches (the result presented in CPSO [78] seems incorrect because 

they used max 13,000 psiτ =  rather than max 13,600 psiτ = ).  The statistics data demonstrate 

our approach performs excellently in both quality search and consistency. 

 

Table 5-2 Optimal solution of welded beam design 

Design 

variables 

Best solution found 

Proposed  CPSO  HPW-PSO Coello and Montes

1x  0.205729642 0.202369 0.24436898 0.205986

2x  3.470488637 3.544214 6.21751974 3.471328

3x  9.036623843 9.048210 8.29147139 9.020224

4x  0.205729643 0.205723 0.244436898 0.206480

1( )g x  -1.67E-09 -12.839796 -5741.1769331 -0.103050

2( )g x  -1.32E-05 -1.247467 -0.00000067 -0.231748

3( )g x  -6.08E-10 -0.001498 0.00000000 -0.000495

4( )g x  -3.43298378 -3.429347 -3.02295458 -3.430043

5( )g x  -8.07E-02 -0.079381 -0.11936898 -0.080986

6( )g x  -2.36E-01 -0.235536 -0.23424083 -0.235514

7( )g x  -2.47E-04 -11.681355 -0.00030900 -58.64688

( )f x  1.724852321  1.728024 2.3809565827 1.728226

 

      

It needs to be mentioned that our solutions are generated based on 100 particles and 

10,000 maximum iterations, which forms a total maximum number of 1,000,000 function 

evaluations. In fact, since a goal oriented programming concept is adopted in the program, 
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the total number of function evaluations, in most cases, is less than this maximum number 

setting. An experiment result will be presented later in this section.  

Table 5-3  Statistic results for different approaches (welded beam design) 

Case Approach Best Mean Std. Dev. 

Case 1 
Proposed  1.72485231 1.73612022 2.46E-02

CPSO 1.72802400 1.74883100 1.29E-02

Case 2 
Proposed 1.72485231 1.73612022 2.46E-02

HES-PSO 1.72485084 NA NA 

Case 3  
Proposed 1.72485747 1.76521069 4.40E-02

Coello and Montes    1.72822600 1.79265400 7.47E-02

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations 

     

To compare with others, we simulated our approach by adjusting the total maximum 

number of function evaluations to 200,000 (to match CPSO[78]), 30,000 (to match 

HPW-PSO[74]) and 80,000 (to match Coello and Montes[69]) respectively, based on the 

30 independent runs, the simulation results are listed in Table 5-3. 

From Table 5-3, the proposed approach performs better in quality search (best 

solution found) than any of the other three approaches. The mean results obtained by our 

approach are also better than HPW-PSO and Coello and Monster’s. In consistency 

(Standard Dev.), our approach performs better than Coello and Montes’s approach and 

slightly worse than the other two. However, they are still small and acceptable. 

5.3.3.2 Results for Pressure Vessel Design Problem 

The Pressure Vessel Design problem (E02) is described in Appendix II.     The goal value 

for this problem is set to 6059.946. The best solution found from our approach and the 

other three approaches are listed in Table 5-4. The best result found from our approach is 
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5971.4003, which is a better solution than any other solution (the best-known result is 

6059.94634 before this research); the mean result for 30 independent runs is 6049.1590; 

and the standard deviation is 22.841537. As we can see, our approach performs well in 

quality search and reasonable consistency.  Same as before, the best results are generated 

with a particle size of 100 and the maximum iteration is 10000. 

Again, Table 5-5 is a collection of data obtained by comparing with other 

approaches.  

From Table 5-5, the proposed approach in this chapter performs better in quality 

search than the other three. The mean results and standard deviations obtained by our 

approach are not better than the others. By looking up the much better solution generated 

from the original setting (100 particles, 10000 maximum iterations), it looks like our 

approach need more iterations to achieve more consistent results for this problem. 

 

Table 5-4 Optimal solution of pressure vessel design 

Design 

variables 

Best solution found 

Proposed CPSO  HPW-PSO Coello and Montes 

1x  0.79641436 0.812500 0.81250000 0.812500

2x  0.39944943 0.437500 0.43750000 0.437500

3x  41.0039194 42.091266 42.0984456 42.097398

4x  190.801191 176.746500 176.636595 176.654047

1( )g x  -5.04E-03 -0.000139 0.00000000 -0.000020

2 ( )g x  -8.27E-03 -0.035949 -0.03588083 -0.035891

3 ( )g x  -595.450105 -116.382700 0.00000000 -27.886075

4 ( )g x  -49.1988089 -63.253500 -63.3634042 -63.345953

( )f x  5971.4003 6061.0777 6059.7143 6059.94634
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Table 5-5  Statistic results for different approaches (pressure vessel design) 

Case Approach Best Mean Std. Dev.

Case 1  
Proposed 5990.105542 6160.11071 145.152

CPSO 6061.077700 6147.13320 86.4545

Case 2 
Proposed 5990.105542 6160.11071 145.152

HES-PSO 6059.131300 NA NA

Case 3  
Proposed 6035.857686 6362.82540 266.134

Coello and Montes 6059.946300 6177.25330   130.930

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations  

   

5.3.3.3 Results for Spring Design Problem 

The Spring Design problem (E03) is described in Appendix II. The goal value for this 

problem is set to 0.012665. The best solution found from our approach and other three 

approaches are listed in Table 5-6. The best result found from our approach is 

0.012665236, which is very close to the best-known solution 0.012665 and better than any 

of the three comparing approaches; the mean result from our approach is 0.012714543; and 

the standard deviation is 6.28E-05. These data demonstrate our approach performs really 

well in both quality search and consistency.  

Table 5-7 is a collection of data obtained by comparing with the other approaches.  

The data from Table 5-7 indicate the proposed approach in this research performs better 

than or very similar in quality search to the three other approaches (note the HPW-PSO[74] 

has second constraint nearly broken up). The mean results and the standard deviations 

obtained by our approach are slightly worse than the others. However, they are fairly small 

and in an acceptable range. 
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Table 5-6  Optimal solution of tension/compression string design 

Design 

variables 

Best solution found 

Proposed CPSO HPW-PSO Coello and Montes

1x  0.051702169 0.051728 0.05169040 0.051989

2x  0.357033166 0.357644 0.35674999 0.363965

3x  11.27049760 11.244543 11.2871260 10.890522

1( )g x  -4.07E-8 -0.000845 -0.0000045 -0.000013

2( )g x  5.14E-9 -1.26E-05 0.00000009  -0.000021

3( )g x  -4.05440797 -4.051300 -4.0538266 -4.061338

4( )g x  -0.72750978 -0.727090 -0.7277064 -0.722698

( )f x  0.012665236 0.0126747 0.01266528 0.012681

 
 

Table 5-7  Statistic results for different approaches (tension/compression string design) 

Case Approach Best Mean StD. Dev.

 

Case 1 

Proposed 0.012666062 0.012812823 2.28E-04

CPSO [78] 0.012674700 0.012730000 5.20E-05

 

Case 2 

Proposed 0.012667195 0.013350094 7.50E-04

HPW-PSO[74] 0.012665281 0.012702330 4.12E-05

 

Case 3  

Proposed 0.012666626 0.012964163 3.67E-04

Coello and Montes[69] 0.012681000 0.012742000 5.90E-05

Case 1 and Case 2: 40 particles, 5000 iterations; Case 3: 40 particles, 2000 iterations 

 

5.3.4 Discussion 

As mentioned before, the best solutions generated from our approach are based on 100 

particles and 10,000 maximum iterations, which form a total number of 1,000,000 function 

evaluations. Although the maximum number of function evaluation looks larger, the actual 
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numbers of function evaluation are less than this maximum because a goal oriented 

programming concept is adopted in the program. That is, once the goal is reached, 

evolution stops. This approach suits the real world applications better. Therefore, we have 

performed an experiment to illustrate how many minimum iterations/generations are 

needed to reach the best-known solutions or to achieve even better solutions. Table 5-8 is a 

summary of the experiment results based on 30 independent runs and with a particle 

population size of 100. In Table 5-8, a goal result is the existing best-known result. The 

minimum tolerance allowed Δ indicates how close a solution is to a goal solution.   If a 

solution is less than the goal solution (better than the best-known) or if its f goal− ≤ Δ  

(close enough to the goal), evolution stops. Since the problem E02 has a larger magnitude 

than E01 and E03, the Δ is set to a relative larger value. 

According to the Table 5-8, the lowest number of iterations needed to reach the goal 

solution for the E01, E02 and E03 problems are 610, 680 and 183 respectively; the average 

number of iterations needed are 1597, 4210 and 1158 respectively. This mechanism makes 

the computation cost more reasonable. Under our multithreaded Java programming 

implementation, the computation costs to these three engineering problems are not a big 

issue. The feasibility tolerance   ε impacts on the results. A larger  ε can sometime make 

the constraints not fully satisfied but the search will be easier. We used a fairly small 

1.0 09Eε = −  to ensure the constraints are fully satisfied. 
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Table 5-8  Iterations needed to reach the best-known solution 

Problem 
Goal 

(Best-Known) 

Tolerance 

allowed Δ
Lowest* Average* Highest*

E01 1.724852   1.0E-04
610  

(61000)

1597 

(159700) 

3324 

(332400)

E02 6059.946   1.0E-01
680 

(68000)

4210 

(421000) 

9998 

(999800)

E03 0.012665   1.0E-04
183 

(18300)

1158  

(115800) 

4590 

(459000)

* indicate lowest iteration, average iteration and highest iteration needed (number in brackets indicates the 

number of function evaluation) 

    

There is an issue in applying the goal-oriented multi-objective constraint-handling 

method via PSO algorithm in goal programming discipline.  The goal programming 

problems normally involve multiple goals to be satisfied. How to pick up one goal acting 

on the objective function and treat other goals as constraints is crucial for optimization 

success.  Referring to Equation (5.1), if 2 2( )  f x T=  or 2 2| ( ) - |    f x T δ≤ is treated as a 

constraint, there is a possibility that this constraint can never be satisfied if the equality 

tolerance   δ is small.  In practice, some high level knowledge like preference (or priority) 

may help in choosing objective function and constraint functions.  Otherwise, 

multi-objective optimization techniques should be used. 
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5.4 SUMMARY 

This chapter has presented a multithreaded object-oriented approach for PSO 

implementation. Based on the multithreading concept and the object-oriented 

programming principles, the UML modelling has been introduced.  The 

multiple-independent-run has been implemented in the coarse-grained parallel execution 

process. The proposed multithreaded object-oriented approach has a number of 

advantages, for example, it is easy to extend to different applications, and easy to adapt to 

different computing strategies.  

This chapter has also presented the engineering design applications using the 

proposed goal-oriented multi-objective constraint-handling method via PSO algorithm. By 

picking up one goal as the objective and treating other goals as constraints, a goal 

programming problem can be transferred into a single objective constrained problem. The 

simulation results to the three well-known engineering design problems demonstrate that 

the proposed approach is effective and efficient in finding the consistent solutions for the 

three engineering design optimization problems.  

In order to evaluate the algorithm performance, the population size and the maximum 

number of iterations have been adjusted to match three existing approaches for 

comparison. In relation to the search quality, the proposed approach has achieved better or 

very similar results on the three well-known engineering problems compared with existing 

approaches. Remarkably, a best ever solution has been found for the pressure vessel design 

problem.  In relation to the algorithm consistency, the proposed approach performs better 

or similar in two (E01 and E03) out of three engineering design problems than the 

compared approaches.  For E02 (pressure vessel design problem), the mean results and 
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standard deviations obtained by the proposed approach are not better than the others. 

However, if the population and maximum number of iterations increase to the original 

values proposed (that is, 100 particles and 10000 maximum iterations), much better results 

can be achieved. 

Since the goals can be used as the exit criteria, each particle does not need to go 

through the whole number of iterations. This will make the computation cost more 

reasonable.  

Goal programming problems can be regarded as constraint satisfaction problems. In 

applying the proposed approach in goal programming discipline, one crucial task is to pick 

up one goal as objective function and treat other goals as constraints.  If not properly 

selected, there is a possibility that the constraints can never be satisfied.  Some high level 

knowledge like preference (or priority) may help in choosing the objective function and 

constraint functions.  Otherwise, multi-objective optimization techniques should be 

considered for goal programming problems. 
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Chapter 6                                                        

POWER GENERATION UNIT LOADING 

OPTIMIZATION 
 

6.1 INTRODUCTION 

In December 2008, the Australian government introduced a national Emission Trading 

Scheme (ETS) in order to reduce carbon pollution which is causing climate change and is 

resulting in higher temperatures, more droughts, rising sea levels and more extreme 

weather [111] .   Many companies and organizations have responded in compliance with 

the ETS.  Since the largest source of greenhouse gas emissions (69.6% in 2006) [111] is 

contributed by the energy sector,  power generation unit efficiency will be of great 

importance in the evolving carbon constrained economy.   

Power plant efficiency improvement activities can be classified into two categories – 

plant modification (often irreversible) and operational improvement (often reversible).   

Traditional performance improvement activities have been often linked to plant 

modifications and large capital investment. Those performance improvement modifications 

are not, as people think, risk free. Even successfully done, they do not always materialize 

the promised benefits.  For example, when a unit is upgraded to suit higher load, it will not 
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be as efficient when load demand is low. Frequent changes in market strategy often require 

reversible changes such as operational changes rather than irreversible plant modifications. 

On the other hand, operational improvement is low-risk, low-cost and often with instant 

benefits. However, due to the various reasons, efficiency improvement through optimal 

operations has not been given the necessary attention.  

The research on power generation unit loading optimization is to improve the 

operations to address the issue. It must be noted that any improvement gains including plant 

modification can only be materialized through operation. Optimal operation is the key to 

power generation performance.  

The unit loading optimization problem has been studied in a branch called 

“Economic Load Dispatch” over the years. Many of the models only consider one 

objective, that is, heat consumption (as production cost), and using traditional deterministic 

approaches [112-115].  Due to public awareness of environmental protection, society 

demands adequate and secure electricity not only at the cheapest possible price but also at 

minimum levels of pollution [116]. Minimizing atmospheric pollution will be one of the 

major challenges for electric utilities. Several attempts have been made in using the 

stochastic metaheuristic methods for this application [116-118].  Zhao and Cao [117] 

proposed to use PSO algorithm and fuzzy rules to solve this multi-objective optimization 

problem.  Basu et al [116, 118] reported their approach of using evolutionary programming 

and fuzzy satisfying method for this problem. Both approaches demonstrated the 

capabilities of using metaheuristics for the multi-objective load dispatch optimization 

problem. 
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As an example, this chapter presents two PSO-based approaches for solving the 

power generation unit loading optimization problem. The first approach (Model 1) treats 

emission as additional constraints and considers the application a single objective 

optimization problem. The second approach (Model 2) treats emission as an additional 

objective and considers the application as a multi-objective optimization problem. For 

evaluation purpose, two constraint-handling mechanisms, that is, multi-objective 

constraint-handling method and preserving feasibility constraint-handling method, are 

compared for the first model. The simulation results based on a coal-fired power plant is 

performed and the results will be presented and discussed. 

The rest of the chapter is organized as follows. The problem modelling is presented 

in Section 6.2. It consists of problem description, specification and model formulation. 

Section 6.3 presents the proposed approach for the Model 1 including two 

constraint-handling mechanisms incorporating with the PSO algorithm. Section 6.4 

presents the approach for the Model 2. The simulation results and a comparison study of 

the two different constraint-handling methods will be presented in Section 6.5.  Section 6.6 

is a summary of the chapter.  

6.2 MODELLING 

6.2.1 General Description 

A typical coal-fired power generation unit mainly consists of three components - a boiler, a 

steam turbine and a generator. The boiler burns fuel (coal) to produce heat. The heat turns 

water into steam. The turbine is driven by the steam to transform heat into mechanical 
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energy. The generator converts mechanical energy into electrical energy. Figure 6.1 

illustrates this typical coal-fired power generation unit. 

 

 

Figure 6.1   A typical coal-fired power generation unit 

 (image from: http://www.tva.gov/power/images/coalart.gif) 

   

A power generation plant usually has a number of units that work together.  

Generally, a power generation company has a m-year (or m-month) overhaul system, that 

is, each time, a unit goes through a major overhaul in turn and every m years (or m-months) 

the plant completes an overhaul cycle. The unit which was overhauled most recently would 

have the highest thermal efficiency and the one close to an overhaul will have the lowest 

thermal efficiency. Units with higher thermal efficiency will consume less fuel and cause 

less environmental harm while units with lower thermal efficiency will consume more fuel 

and lead to higher environmental harm. In the normal operation range, unit thermal 

efficiency increases (or heat rate decreases) as load increases. The thermal efficiency for 

each unit is different depending on when the unit is last overhauled, what kind of problems 
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it developed, what modifications it went through, and what operation mode a unit is 

operating under (such as mill pattern). The optimized loading can be achieved based on the 

units’ thermal efficiency and emission characteristics, that is, heat rate/NOx vs. load, for a 

given plant condition. 

The generation of electricity from fossil fuel release several contaminants, such as 

SO2, NOx and CO2, into the atmosphere.   Among these contaminants, nitrogen oxides NOx 

are contributed largely by the power stations and they are strongly requested to be reduced 

by the Environmental Protection Agency [119].  In this research, NOx emission is taken as 

a selected index for environment conservation. However, the methodology can be easily 

extended to other contaminates such as CO2. 

There are two objectives for the power generation loading optimization problem. 

One is to minimize the total heat consumption (fuel consumption) and another is to 

minimize the total NOx emission.  It is desirable that the unit with higher thermal efficiency 

(lower heat rate) receives higher workload and the unit with lower thermal efficiency 

(higher heat rate) receives lower workload.  

 

6.2.2 Specification 

Table 6-1 introduces the nomenclature of the power generation loading optimization 

problem. A specification to these terms is followed. 
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Table 6-1  Nomenclature of power generation loading optimization 

Symbol                                              Meaning 

totalM      total power demand by the market, total workload (MW) 

minM      lowest workload (MW) 

maxM      highest workload (MW) 

 Q     Total NOx emission for all units at a given load (g/m3) 

 F      total units heat consumption (MJ / h) 

 a      coefficients of the polynomial to heat rate function 

 b      coefficients of the polynomial to emission curve function 

 f      unit heat rate, is the heat consumption for generating per unit  electricity 
    (KJ/KW.h) 
 

 g      output demand constraint function (MW) 

 h      heat consumption per hour to a unit at a given load (MJ / h) 

  i      generation unit index (subscript) 

 k       order of polynomial function (superscript) 

 n      number of generation unit 

 P      maximum NOx emission license limit to each unit (g/m3) 

 q      NOx emission level to a unit at a given load (g/m3) 

 r      NOx emission constraint function (g/m3) 

 x      workload allocated to a unit (MW) 

 δ      minimum error criterion for equality constraint 

 
 

Specification: 

 
• For a given condition, a unit’s heat rate  if is a function of the unit load   ix which 

can be expressed by a polynomial format. This function is obtained from field testing 

and unit modelling. The general expression for the heat rate function for unit   i is 
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( 1)

( 1) 1 0( ) ...    k k

i i k i i k i i i iif x a x a x a x a−

−
= + + + +  

 

• A unit’s heat consumption   ih at a given load  ix is calculated by 

 

( )   i i i ih x f x=              

 

• Each unit has its own NOx emission curve  q . It is generally a linear function in the 

normal operation range, which is obtained from the field testing and unit modelling. 

 

1 0  ( )  i i i iiq x b x b= +          

 

• The total heat consumption is the sum of all units’ heat consumption, which can be 

expressed as the following 

 

1 1

( ) ( )  
n n

i i
i i

i iF h x f xx
= =

= =∑ ∑  

 

• The total workload is the total power generated by all units at a given time. 

 

1

   
n

total i
i

M x
=

= ∑  

 

• The NOx gas emission for each unit has to be restricted within a license limit P.  

 

 ( )         (   1,2,...  )  i iq x P i n≤ =   

(6.4) 

(6.5) 

(6.6) 

(6.1) 

(6.2) 

(6.3) 
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6.2.3 Formulation 

Several constraints should be taken into consideration. The first one is that the total power 

generated should meet the market demand at a given time. Considering that the data types 

have to be implemented in double precision, this constraint can be rewritten as 

 

1
1

| |    .( )
n

i total
i

g x Mx δ
=

= − <∑  

     

The second set of constraints is the NOx gas emission. For countries like Australia, 

there is an environmental licence limit applied in practice. The licence specifies the 

maximum amount of NOx gas emission allowed for each thermal unit.  In this case, the 

constraints can be written as 

 

  ( )  =  ( ) 0     (   1,2,...  ) .i i ir x q x P i n− ≤ =  

 

If there is no environmental licence applied, these constraints can be disregarded.          

The third constraint is the unit capacity constraint which can be modelled as the 

boundary constraint in the optimization. 

The objective for the power generation loading optimization is to find the optimal 

unit load distribution so as to minimize the total heat consumption ( )F x and the total NOx 

gas emission  ( )Q x . The optimization problem can take two different models – the single 

objective constrained model and the multi-objective constrained model, as described in 

Equations (6.11) and (6.12). 

 

(6.9) 

(6.10) 
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Model 1 – Single objective constrained model 

1 1

1
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Model 2 – Multi-objective constrained model 

1 1

1

1

1
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                 ( )  =   ( )  
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      The difference between the Model 1 and Model 2 is that the Model 2 has an additional 

objective – minimizing NOx gas emission.   

 

(6.11) 

(6.12) 
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6.3 APPROACHES FOR SINGLE OBJECTIVE CONSTRAINED 

MODEL 

In order to evaluate the algorithm performance, two constraint-handling mechanisms, that 

is, the multi-objective constraint-handling method and the preserving feasibility 

constraint-handling method, have been adopted in this application. The following sections 

describe the algorithms. 

6.3.1 Multi-objective Constraint-Handling Method Incorporating with 

PSO Algorithm 

As stated in the earlier chapters, a multi-objective constraint-handling method treats 

constraints as separate objectives in which a constrained optimization problem can be 

transformed into a bi-objective problem. The first objective is to optimize the original 

objective function and the second objective is to minimize  

  
1

( ) max(0, ( ))  
m

i
i

x g x
=

Φ =∑    

By adopting this concept, the power generation loading optimization problem in 

Model 1 can be transformed into 

 

1

1

1

1

1
1

 

( ) ( )

| |  - 

Minimize    ( ) ( ( ), ( ))

where          

max(0,  ( )) max  (0,  ( ))  

                    ( )  

                     ( )  (

                 ( )

n
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i
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x
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x
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(6.13) 
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The problem in Equation (6.13) becomes a bi-objective unconstrained optimization 

problem. The method proposed in Chapter 3 can be applied directly. There is no need to 

mention the algorithm again. 

 

6.3.2 Preserving Feasibility Method Incorporating with PSO Algorithm  

The preserving feasibility method [14] assumes that the constraints are all linear and the 

start points are all feasible. When initializing, particles can be generated within the entire 

search space but only those which are in feasible space (satisfy all the constraints) are kept 

for processing. However, although initial particles are all in the feasible space, during 

flying, they may get out of the feasible space to become infeasible due to improper 

parameter settings. In order to maintain the population size, it would be better to get these 

infeasible particles repaired rather than rejecting them. Unfortunately, there are no standard 

repairing algorithms for every situation. The repairing infeasibility methods lie in their 

problem dependence [37]. In this research, an infeasible particle is repaired by replacing 

the infeasible particles with a closer, first-found feasible particle. The algorithms are 

illustrated Figure 6.3 and Figure 6.4. 

Figure 6.3 is a graphical illustration of the repairing algorithm.  Ps is an infeasible 

particle,  Pr is a feasible reference particle,  Z1, Z2… are those attempt particles between Ps 

and Pr,  Zn is the first-found feasible particle between Ps and Pr.  Zn will be used as a 

repaired particle of Ps.  Figure 6.4 is the repairing algorithm. 

Table 6-2 is the Pseudo code of the preserving feasibility constraint-handling method 

with PSO algorithm. Compared with the original PSO algorithm, two modifications have 

been made: 
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1. All particles are repeatedly initialized until they are feasible, that is, to satisfy all 

constraints.  

2. During flying (iteration), if particles are not feasible, repair them to be feasible. Then 

calculate the fitness. 

 

 

Figure 6.3   The graphic illustration of the repairing algorithm 

 

 

Figure 6.4   The infeasibility repairing algorithm 
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Table 6-2  Pseudo code of the preserving feasibility constraint-handling method with PSO 
algorithm 

01:    For i = 0 to population size     

02:        Do  

03:                Initialize particle  

04:        While particle is not feasible 

05:    End For  

06:    For each particle 

07:        Calculate fitness F 

08:        Calculate constraint violations Φ  

09:        Set current locations as personal best locations 

10:        Set local best location for each particle according selection rule 

11:    End For 

12:    Do 

13:         For each particle   

14:               Calculate new velocity by PSO formula 

15:               Calculate new location by PSO formula 

16:               Repair particle if not feasible  

17:               Update  personal best location according to selection rule 

18:         End For 

19:     Set local best location for each particle according to selection rule 

20:     End Do 
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6.4 APPROACH FOR MULTI-OBJECTIVE CONSTRAINED 

MODEL 

Again, the feasibility of a solution can be evaluated by its constraint violations

1

 = max(0, ( )) 
m

i
i

g x
=

Φ ∑ .  If  εΦ ≤ , where ε  is the tolerance allowed for feasibility, the 

solution is feasible. Otherwise, ε is a positive number indicating how far the solution is 

from the feasible region.  The smaller the constraint violation value, the closer the solution 

to the feasible region.  Model 2 in Equation (6.12) can be rewritten as  

  

1
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The problem in Equation (6.14) is a multi-objective (two objectives) constrained 

(one constraint) optimization problem. The method proposed in Chapter 4 can be applied 

directly.   

 

 

 

 

(6.14) 
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6.5 SIMULATION RESULTS AND DISCUSSION 

6.5.1 Unit Heat Rates and Unit Gas Emission Curves 

A local power plant has four 360MW and a total generation capacity of 1440MW. It has a 

four-year overhaul system, that is, each year, a unit goes through a major overhaul in turn 

and every four year the plant completes an overhaul cycle.  

The boundary constraints min  M and max  M for each unit are 220 (MW) and 360 

(MW). The total load output of the power station ranges from 4 220 880 (MW)× = as the 

minimum to 4 360 1440 (MW) × =  as the maximum. It would be better to simulate a 

series of output (a series of   totalM ) in order to allow the power plant to choose from the 

optimal results according to the market demand. 

The heat rate functions and the NOx emission functions for the four generator units 

are provided from a local power plant setting. The heat rate functions are in the polynomial 

format with the power of two. The NOx emission functions are linear. Table 6-3 lists the 

sample functions.  These functions can be modified when the units’ performance are 

changed.  Due to commercial reasons, the functions have been slightly modified. 

 

Table 6-3  Unit heat rate and NOx emission functions 

Unit No. Heat Rate NO x  Emission 

1 2

1 1 1
( ) 0.0023 3.7835 9021.7f x x x−= +  1 1

( ) 0.0036 0.1717q x x= −  

2 2

2 2 2
( ) 0.0238 9.7773 9432.6f x x x−= +  2 2

( ) 0.0031 0.0226q x x= −  

3 2

3 3 3
( ) 0.0187 5.3678 10240.0f x x x−= +  3 3

( ) 0.0036 0.1252q x x= −  

4 2

4 4 4
( ) 0.0120 5.7450 9231.7f x x x−= +  4 4

( ) 0.0039 0.1706q x x= −  
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6.5.2 Parameter Setting 

The minimum error criterion for equality constraint is selected as 1.0 03Eδ = − . The NOx 

license limits P is 1.3 g/m3. PSO neighbourhood topology is set to static ring topology with 

the neighbour size of 2. PSO parameters are: w = 0; 1 2 2;  c c= = 0.63 ;χ =  

max max min0.5 ( ) ;V M M= × −  population size is 40 for Model 1 and 500 for Model 2; the 

maximum iteration is set to 10,000 for Model 1 and 1000 for Model 2. The feasibility 

tolerance allowed 1.0 08Eε = − , that is, if a total amount of constraint violation     εΦ ≤ , 

the solution is considered feasible.   

For each total load output   totalM , the program runs ten times with the best solution 

recorded. For Model 1, the best solution means the feasible solution that has the lowest heat 

consumption. For Model 2, the best solution is a set of Pareto-optimal solutions that has a 

small “Spacing/Spread” (refer to Chapter 4) value. 

6.5.3 Results 

6.5.3.1 Results for Single Objective Constrained Model (Model 1) 

These results are generated by the multi-objective constraint-handling method 

incorporating with PSO algorithm. The preserving feasibility constraint-handling approach 

will be discussed in section 6.5.4. 

Table 6-4 and Figure 6.5 present the simulation results to the whole range of the 

generation capacity. For each total output demand, the optimal workloads to the four 

generators have been found based on their efficiency functions as listed in Table 6-3.  After 

optimization, the unit with higher thermal efficiency will receive a higher workload (such 
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such a desirable way, that is, we cannot guarantee all four units keep running for a whole 

year without stopping. Assume there is a 50% chance of possible loading optimization, the 

benefits will be halved and fuel savings will be around one million dollars per year. 

In order to compare the two constraint-handling methods for Model 1, two 

experiments have been conducted to evaluate the computation time for each individual run.  

PSO parameters for both approaches are the same. The 40 particles, 10000 maximum 

iterations have been used for both experiments. Based on ten independent runs, the 

minimum time, maximum time and the average time spent for 1000 MWtotalM = are listed 

in Table 6-5.  

 
Table 6-5  Time spent for two constraint-handling approaches for Model 1 

(Based on 10 independent runs)                                  

CPU time spent *Approach I  (ms) **Approach  II  (ms)

Minimum 31 3016 

Maximum 156 4204 

Average 68.9 3925.3 

* Multi-Objective Constraint-Handling with PSO 
                      ** Preserving Feasibility Constraint-handling method with PSO 

 
     

Table 6-5 demonstrates that the multi-objective based constraint-handling method is 

much faster than the preserving feasibility method with PSO. The main reason is that the 

preserving feasibility approach assumes all particles starting at the feasible space which 

require a long initialization process.  In other words, the evolution will not start until all 

particles are in the feasible space. It may be impractically too long or impossible for the 

problems that have large search spaces and with small feasible spaces. The multi-objective 

constraint-handling approach, however, does not require the particles to be in the feasible 
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space at the beginning. The initialization does not need to check if the particles satisfy all 

constraints which make the initialization easier and faster.  

Regarding to the two models, if there is an environment licence limit applied, either 

Model 1 or Model 2 will suffice. Otherwise Model 2 can be adopted.  

 

6.6 SUMMARY 

Power generation unit efficiency will be of greater practical importance in the coming 

pollution constrained economy in terms of fuel saving and minimizing environmental 

harm. This chapter has presented a real world application - Power Generation Unit Loading 

Optimization using PSO algorithm.   

Based on the problem description and specification, the two optimization models, 

that is, the single objective constrained model (Model 1) and the multi-objective 

constrained model (Model 2), have been presented.  The multi-objective 

constraint-handling method incorporating with PSO algorithm (proposed in Chapter 3) has 

been adopted for the single objective constrained model and the selection rules based 

constraint-handling method with PSO algorithm (proposed in Chapter 4) has been adopted 

for the multi-objective constrained model. 

A simulation to a four-unit coal-fired local power plant has been conducted. The 

simulation results reveal the capability, effectiveness and efficiency of applying the 

proposed approaches in the power industry.   The simulation results have also 

demonstrated that the room for loading optimization is significant.       
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In order to compare the two constraint-handling methods, two experiments have been 

conducted to evaluate the computation time. The experiment results have demonstrated 

that the multi-objective constraint-handling based approach is more efficient than the 

preserving feasibility constraint-handling approach in terms of CPU time consumed. The 

main reason is that the preserving feasibility approach assumes all particles starting at the 

feasible space which require a long initialization process. Since the multi-objective 

constraint-handling method has no problem-dependent parameters like those applied in the 

penalty function based constraint-handling approach, it makes it easier to extend to a wide 

variety of applications.  

Regarding to the two models, if there is an environment licence limit applied in 

practice, either Model 1 or Model 2 will suffice. Otherwise Model 2 can be adopted subject 

to disregard the constraints on environment licence limit. 
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Chapter 7                                          

CONCLUSIONS AND FUTURE RESEARCH 
 

7.1 CONCLUSIONS    

The population-based evolutionary algorithms have the ability to capture multiple optimal 

solutions in one single simulation run which leads to a high computing performance. The 

flexible representations make the algorithms appropriate to be used in a wide variety of 

problem domains.  

The original versions of the EAs have no mechanisms to deal with constraints. 

Among a number of constraint-handling methods available, the multi-objective 

constraint-handling method has a number of advantages. Firstly, it has no 

problem-dependent parameters like those applied in the penalty function based approaches, 

which makes the approach applicable for a wide variety of applications. Secondly, the 

multi-objective constraint-handling method does not require that all individuals start 

evolving at the feasible region like those applied in the preserving feasibility methods, 

which makes the initialization a lot faster and ensures that the evolution will start. Thirdly, 

the multi-objective constraint-handling method does not reject the infeasible solutions 

during evolution. Recent research shows that maintaining infeasible solutions during 
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evolution can improve the computing performance [51] and can transform some EA-hard 

problems into EA-easy problems [52].  

To tackle single objective constrained optimization problems, a multi-objective 

constraint-handling method incorporating a dynamic neighbourhood PSO algorithm has 

been proposed in this thesis.  A modified PSO algorithm for tackling multi-objective 

constrained optimization problems has also been proposed.    The simulation results for the 

numerical benchmark functions have demonstrated the proposed approaches are effective 

and efficient in finding the consistent quality solutions.  

As applications, three well-known engineering design optimization problems and the 

power generation loading optimization problem have been investigated. The simulation 

results to the applications have revealed the capability, effectiveness and efficiency of 

applying the proposed approaches in constrained optimization. 

In summary, the overall goal this thesis, that is, to investigate the PSO algorithm in 

constrained optimization and its application in power generation, has been successfully 

achieved. 

The major contributions and results in this thesis can be summarized in the 

following:    

A multi-objective constraint-handling method incorporating PSO algorithm 

has been proposed.  The simulation results to the thirteen well-known benchmark 

functions demonstrate that the proposed approach is effective and efficient in most (eleven 

out of thirteen) functions. The algorithm did not receive satisfactory results for two out of 

thirteen test functions G1 and G2. It seems that the proposed approach needs to be 
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improved for solving high dimensional optimization problems.  This may be explained by 

the “No free lunch” theorem [99]. 

• A novel performance-based dynamic neighbourhood topology has been 

proposed. The proposed performance-based dynamic neighbourhood has proved 

to be able to converge faster than the static neighbourhood topology. The method 

has potential to be adopted in those applications that are computational intensive.  

• An effective multi-objective PSO algorithm has been proposed.  Most existing 

multi-objective PSO proposals do not address the constraints. Integrating 

constraint-handling mechanisms with multi-objective PSO is a challenging topic. 

This thesis is one of the few attempts to integrate constrain-handling methods with 

the multi-objective PSO algorithms.  The simulation results to the four constrained 

multi-objective optimization problems demonstrated the proposed approach is able 

to find the Pareto-optimal solutions effectively.   

• As a variant of the proposed approach, a goal-oriented multi-objective 

constraint-handling method via PSO algorithm has been introduced for 

tackling those problems that have predefined goals. Since the goals can be used 

as the exit criteria, each particle does not need to go through a whole iterations. This 

makes the computation more cost-effective.  

• A real world application, Power Generation Loading Optimization gas been 

presented.  The power generation loading optimization problem is of practical 

importance in the evolving pollution constrained power industry in terms of fuel 

saving and minimizing environmental harm.  This thesis has presented two 

optimization models derived from the practice of power industry, and applies the 
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methods proposed in the thesis in solving these problems. The simulation results 

have shown that there is a large room for loading optimization. The project has 

great commercialisation potential. 

7.2 FUTURE RESEARCH OUTLOOK 

In concluding this thesis, an outlook on future research can be foreseen as follows. 

• Except for GAs, algorithms like PSO, DE and ACO have not been well studied in 

solving constrained multi-objective optimization problems. The multi-objective 

constrained optimization is a fertile area for future research.  

• The multithreading technique makes parallel execution possible which leads to 

high performance computation. Using the multithreading technique to implement 

other parallel processes for EAs, or distributing the parallel processing tasks to 

distributed hardware for large computational-intensive applications will be an 

interesting topic. 

• Extending the proposed method in this thesis for tackling goal programming 

problems should yield useful outcomes. When a goal programming problem is 

regarded as a constraint satisfaction problem, the approach proposed in this thesis 

may be used. The detailed model needs to be identified in the future.  

• For the power generation loading optimization application, minimizing emissions 

from other contaminants such as SO2, and CO2 should be taken into consideration.   

The current work undertaken only considered the emission from NOx. 
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APPENDIX I          CONSTRAINED NUMERICAL 

OPTIMIZATION TEST FUNCTIONS 
 

G1:     Minimize   

 

 s.t. 

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

( ) 2 2 10 0,
( ) 2 2 10 0,
( ) 2 2 10 0,
( ) 8 0,
( ) 8 0,
( ) 8 0,
( ) 2 0,
( ) 2 0,
( ) 2 0.

g x x x x x
g x x x x x
g x x x x x
g x x x
g x x x
g x x x
g x x x x
g x x x x
g x x x x

= + + + − ≤
= + + + − ≤

= + + + − ≤
= − + ≤
= − + ≤
= − + ≤

= − − + ≤
= − − + ≤
= − − + ≤

 

• Number of variables: 13 variables.  

• Search Space: 0 ,    1,2,...,13,     (1,1,...,1,100,100,100,1)i ix u i u≤ ≤ = =  

• The global minima: * (1,1,...,1,3,3,3,1), ( *) 15.x f x= = −   

G2:   Maximize 

4 2
1 1

2
1

cos ( ) 2 cos ( )
( ) ,

nn
i ii i

n
ii

x x
f x

ix
= =

=

−
= ∑ ∏

∑
 

s.t. 

1 1

2 1

( ) 0.75 0,

g ( ) 7.5 0.

n
ii

n
ii

g x x

x x n
=

=

= − + ≤

= − ≤

∏
∑

 

• Number of variables: n variables.  

4 4 132
1 1 5

( ) 5 5 ,i i ii i i
f x x x x

= = =
= − −∑ ∑ ∑
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• Search Space: 0 10,    1,2,... .ix i n≤ ≤ =    

• Best known: at 20, ( *) 0.803619.n f x= =   

G3:   Maximize 

1
( ) ( ) ,nn

ii
f x n x

=
= ∏  

 s.t. 
2

1 1
( ) -1 0.n

ii
h x x

=
= =∑  

• Number of variables: n variables.  

• Search Space: 0 1,    1,2,... .ix i n≤ ≤ =  

• The global minima: at n =10, 0 5 0.5* (1/ ,...1/ ), ( *) 1.x n n f x= =  

G4:   Minimize   
2

3 1 5 1( ) 5 .3578547 0.8356891 37.293239 40792.141,f x x x x x= + + −

 

s.t. 

1 2 5 1 4 3 5

2 2 5 1 4 3 5

2
3 2 5 1 2 3

4

( ) 85.334407 0.0056858 0.0006262 0.0022053 92 0,
( ) 85.334407 0.0056858 0.0006262 0.0022053 0,

( ) 80.51249 0.0071317 0.0029955 0.0021813 -110 0,

( ) 80.5124

g x x x x x x x
g x x x x x x x

g x x x x x x

g x

= + + − − ≤

= − − − + ≤

= + + + ≤

= − 2
2 5 1 2 3

5 3 5 1 3 3 4

6 3 5 1 3 3 4

9 0.0071317 0.0029955 0.0021813 90 0,
( ) 9.300961 0.0047026 0.0012547 0.0019085 25 0,
( ) 9.300961 0.0047026 0.0012547 0.0019085 20 0.

x x x x x
g x x x x x x x
g x x x x x x x

− − − + ≤

= + + + − ≤

= − − − − + ≤

 

• Number of variables: 5 variables.  

• Search Space: ,   1,...,5,i i il x u i≤ ≤ = , 

                            ( )(7 8,  3 3,  2 7 ,  2 7 ,  2 7 ),   1 0 2 ,  4 5,  4 5,  4 5,  4 5 .l u= =    

• The global minima:  

                            * (78,33, 29.995, 45,36.7758),    ( *)  - 30665.539.x f x= =  

G5:   Minimize   

6 3 6 3
1 1 2 2

2( ) 3 10 2 10 ,
3

f x x x x x− −= + + + ×

 s.t. 

1 3 4

2 4 3

( ) 0.55 0,
( ) 0.55 0,  

g x x x
g x x x

= − − ≤
= − − ≤

 



Appendix I 

 

155 

 

1 3 4 1

2 3 3 4 2

3 4 4 3

( ) 1000 [sin( 0.25) sin( 0.25)] 894.8 0,
( ) 1000 [sin( 0.25) sin( 0.25)] 894.8 0,
( ) 1000 [sin( 0.25) sin( 0.25)] 1294.8 0.

h x x x x
h x x x x x
h x x x x

= − − + − − + − =

= − + − − + − =

= − + − − + =

 
• Number of variables: 4 variables.  

• Search Space: ,   1,...,4,i i il x u i≤ ≤ =  

                            ( )(0,0, 0.55, 0.55),   1200,  1200,  0.55,  0.55 .l u= − − =   

• Best known:  

                     * (679.9453,1026,0.118876, 0.3962336),    ( *) 5126.4981.x f x= − =    

G6:    Minimize   
3 3

1 2( ) ( 10) ( 20) ,f x x x= − + −

 s.t. 
2 2

1 1 2
2 2

2 1 2

( ) ( 5 ) ( 5 ) 1 0 0 0 ,

( ) ( 6 ) ( 5 ) 8 2 .8 1 0 .

g x x x

g x x x

= − − − − + ≤

= − + − − ≤
 

• Number of variables: 2 variables.  

• Search Space: 100,   1,2   (13,0).i il x i and l≤ ≤ = =  

• The global minima: * (14.095,0.84296),   ( *) 6961.81388.x f x= = −  

G7:    Minimize 

 
2 2 2 2 2

1 2 1 2 1 2 3 4 5
2 2 2 2 2

6 7 8 9 10

( ) 14 16 ( 10) 4( 5) ( 3)

           2( -1) 5 7( -11) 2( -10) ( -7) 45,

f x x x x x x x x x x

x x x x x

= + + − − + − + − + −

+ + + + + +
 

 s.t. 

1 1 2 7 8

2 1 2 7 8

3 1 2 9 10
2 2 2

4 1 2 3 4
2 2

5 1 2 3 4
2 2 2

6 1 2 5 6

7

( ) 4 5 3 9 105 0,
( ) 10 8 17 2 0,
( ) 8 2 5 2 12 0,

( ) 3( 2) 4( 3) 2 7 120 0,

( ) 5 8 ( 6) 2 40 0,

( ) 0.5( 8) 2( 4) 3 30 0,

( )

g x x x x x
g x x x x x
g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x x

= + − + − ≤
= − − + ≤
= − + + − − ≤

= − + − + − − ≤

= + + − − − ≤

= − + − + − − ≤

= 2 2
1 2 1 2 5 6

2
8 1 2 9 10

2( 2) 2 14 6 0,

( ) 3 6 12( 8) 7 0,

x x x x x

g x x x x x

+ − − + − ≤

= − + + − − ≤
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• Number of variables: 10 variables.  

• Search Space: 10 10,  1,2,...,10.ix i− ≤ ≤ =  

• The global minima: 

 

 

 

G8:   Maximize 
3

1 2
3

1 1 2

sin (2 )sin(2 )( ) ,
( )
x xf x

x x x
π π

=
+

 

s.t. 
2

1 1 2
2

2 1 2

( )  1 0 ,

( )  1 ( 4 ) 0 .

g x x x

g x x x

= − + ≤

= − + − ≤
 

• Number of variables: 2 variables.  

• Search Space: 0 10,  1,2.ix i≤ ≤ =  

• The global minima: * (1.2279713,  4.2453733),    ( *) 0.095825.x f x= =  

G9:   Minimize 
2 2 4 2 6

1 2 3 4 5
2 4

6 7 6 7 6 7

( ) ( 10) 5( 12) 3( 11) 10

            +7 4 10 8 ,

f x x x x x x

x x x x x x

= − + − + + − +

+ − − −
 

s.t. 
2 4 2

1 1 2 3 4 5

2
2 1 2 3 4 5

2 2
3 1 2 6 7

2 2 2
4 1 2 1 2 3 6 7

( ) 2 3 4 5 127 0,

( ) 7 3 10 282 0,

( ) 23 6 8 196 0,

( ) 4 3 2 5 11 0.  

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x x x x

= + + + + − ≤

= + + + − − ≤

= + + − − ≤

= + − + + − ≤

 

• Number of variables: 7 variables.  

• Search Space: 10 10,  1,2,...,7.ix i− ≤ ≤ =  

• The global minima:  

* (2.330499,  1.951372,  0.4775414, 4.365726,
         0.6244870,  1.038131,  1.594227),

( *) 680.6300573.

x

f x

= −
−
=

 

* (2.171996,   2.363683,  8.773926,  5.095984,  0.9906548,
        1.430574,1.321644,  9.828726,  8.280092,  8.375927),

( *) 24.3062091.

x

f x

=

=
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G10:  Minimize  

1 2 3( ) ,f x x x x= + +  

s.t. 

1 4 6

2 4 5 7

3 5 8

4 1 1 6 4

5 2 4 2 7 4 5

6 3 5 3 8 5

( ) 1 0.0025( ) 0,
( ) 1 0.0025( ) 0,
( ) 1 0.01( ) 0,
( ) 100 833.33252 83333.333 0,
( ) 1250 1250 0,
( ) 2500 1250000 0.

g x x x
g x x x x
g x x x
g x x x x x
g x x x x x x x
g x x x x x x

= − + + ≤
= − + − + + ≤
= − + − + ≤
= − + − ≤
= − − + ≤
= − − + ≤

 

• Number of variables: 8 variables.  

• Search Space:   ,   1,...,8,i i il x u i≤ ≤ =   

                         
(100,  1000,  1000,  10,  10,  10,  10,  10),
(10000,  10000,  10000,  1000,  1000,  1000,  1000,  1000).

l
u
=
=

 

• The global minima:  

            
* (579.3167,  1359.943,5110.071,  182.0174,

         295.5985,  217.9799,  286.4162,  395.5979),
( *) 7049.3307. 

x

f x

=

=

 

G11:  Minimize 
2 2

1 2( )  ( 1) ,f x x x= + −  

s.t. 
2

1 2 1( ) 0 .h x x x= − =  

• Number of variables: 2 variables.  

• Search Space: 1 1,   1,2.ix i− ≤ ≤ =  

• The global minima:  0.5* (1/ 2 ,1/ 2),    ( *) 0.75.x f x=± =   

G12:   Maximize 
2 2 2

1 2 3( ) 1 0.01 [( 5) ( 5) ( 5) ],f x x x x= − − + − + −  

 s.t. 

 

2 2 2
, , 1 2 3( ) ( ) ( ) ( ) 0.0625 0,

where ,  ,  1,2,...,9.
i j kg x x i x j x k

i j k

= − + − + − − ≤

=
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• Number of variables: 3 variables.  

• Search Space: 0 10,   1,2,3.ix i≤ ≤ =  

• The global minima: * (5,5,5),    ( *) 1.x f x= =   

G13:  Minimize 

          1 2 3 4 5    ( ) ,x x x x xf x e=  

s.t. 
2 2 2 2 2

1 1 2 3 4 5

2 2 3 4 5

3 3
3 1 2

( ) 10 0,
( ) 5 0,

( ) 1 0.

h x x x x x x
h x x x x x

h x x x

= + + + + − =

= − =

= + + =

 

• Number of variables: 5 variables.  

• Search Space:  ,   1,...,5,i i il x u i≤ ≤ =   

                        ,   (2.3,  2.3,  3.2,  3.2,  3.2).l u u= − =  

• The global minima:  

           
( )* 1.717143,  1.595709,1.827247,  0.7636413, 0.763645 ,  

( *) 0.0539498.
x
f x
= − − −

=
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APPENDIX II         ENGINEERING DESIGN 

OPTIMIZATION PROBLEMS 
E01: Welded Beam Design Problem 

As shown in Figure I, a welded beam is designed for minimum cost subject to constraints 

of shear stress (τ ), bending stress in the beam (σ ), buckling load on the bar (Pc), end 

deflection of the beam (δ ), and side constraints. There are four design variables: the 

thickness of the weld 1 h x= , the length of the welded joint 2 l x= , the width of the beam

3  t x= and the thickness of the beam 4 b x= .  

     Please note the welded beam problem included in this chapter is not exactly the same as 

the original version proposed by Reklaitis et al in 1983 [120]. There are five constraints in 

the original version. For some reason, many researchers have studied another version of 

this problem as following with seven constraints. We include this version for comparison 

purposes.  

 

Figure I   Welded beam design 
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The formal statement of the problem is the following: 

minimize 

   2
1 2 3 4 2( ) 1.10471 0.04811 (14.0 )f x x x x x x= + +         

subject to    

1 max

2 max

3 1 4

( ) ( ) 0
( ) ( ) 0
( ) 0

g x x
g x x
g x x x

τ τ
σ σ

= − ≤

= − ≤
= − ≤

 

2
4 1 3 4 2

5 1

6 max

7

( ) 0.10471 0.04811 (14 ) 5 0
( ) 0.125 0
( ) ( ) 0
( ) ( ) 0c

g x x x x x
g x x
g x x
g x P P x

δ δ

= + + − ≤
= − ≤
= − ≤
= − ≤

 

where: 

   
2 22

1 2

( ) ( ') 2 ' '' ( '')
2

'
2

xx
R

P
x x

τ τ τ τ τ

τ

= + +

=

 

  

2

2
21 32

'' ,     ( )
2

( )
4 2

xMR M P L
J

x xxR

τ = = +

+
= +

  

   
22

1 31 2 22
12 22

x xx x xJ
⎧ ⎫⎡ ⎤+⎪ ⎪⎛ ⎞= +⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
  

   
3

3 2
3 4 4 3

4 6( ) ,       ( )PL PLx x
Ex x x x

δ σ= =  

   
2 6

3 4 3
2

4.013 ( ) / 36
( ) 1

2 4c

EGx x x EP x
L L G

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

6 6

max max max

6000 ,  14 .,   30 10  ,  12 10  
13,600 ,   30,000 ,   0.25 .

P lb L in E psi G psi
psi psi inτ σ δ

= = = × = ×
= = =
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   The ranges for the design variables are given as follows: 

           
1 2

3 4

0.1 2.0,    0.1 10,
0.1 10,     0.1 2.0.

x x
x x

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

 

 

E02: Pressure Vessel Design Problem 

The pressure vessel design problem, shown in Figure II, is a cylindrical vessel capped at 

both ends by hemispherical heads. The objective is to minimize the total cost, including the 

cost of the materials forming the welding. There are four design variables: Thickness of the 

shell 1 sT x= , thickness of the head 2 hT x= , the inner radius 3 R x= , and the length of the 

cylindrical section of the vessel 4 L x= ,   sT and  hT are discrete values which are 

integer multiples 0.0625 (inch), in accordance with the available thickness of rolled steel 

plates,  R and   L are continuous.  

 

Figure II   Pressure vessel design 

 

The optimization problem can be expressed as follows: 

    minimize 

2 2 2
1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x= + + +  
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    subject to 

   

1 3 1

2 3 2

2 3
3 3 4 3

4 4

( ) 0 .0193 0
( ) 0 .00954 0

4( ) 1296000 0
3

( ) 240 0

g x x x
g x x x

g x x x x

g x x

π π

= − ≤
= − ≤

= − − ≤

= − ≤

 

    where the design variables have to be in the following ranges: 

   1 2

3 4

0.0625 6.1875,     0.0625 6.1875,
10 200,                 10 200.   

x x
x x
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
 

 

E03: Spring Design Problem 

As shown in Figure III, this problem consists of minimizing the weight of a 

tension/compression spring, subject to constraints of minimum deflection, shear stress, 

surge frequency, and limits on outside diameter and on design variables. The three design 

variables are: the wire diameter 1 d x= , the mean coil diameter 2  D x= and the number 

of active coils 3 N x= . 

 

 

Figure III   Spring design 

 

The formal statement of the problem is as follows:     



Appendix II 

 

163 

 

     minimize  

 2
3 2 1( ) ( 2)f x x x x= +  

     subject to 

    

3
2 3

1 4
1

2
2 1 2

2 3 4 2
2 1 1 1

1
3 2

2 3

2 1
4

( ) 1 0
71785

4 1( ) 1 0
12566( ) 5108

140.45( ) 1 0

( ) 1 0
1.5

x xg x
x

x x xg x
x x x x

xg x
x x

x xg x

= − ≤

−
= + − ≤

−

= − ≤

+
= − ≤

 

    The boundaries of the design variables are as follows: 

1 2 30.05 2,     0.25 1.3,     2 15.x x x≤ ≤ ≤ ≤ ≤ ≤  
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