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Abstract 

Commercial netting closures near three regional cities of Queensland were implemented in 

2015 to conserve commercially and recreationally important species by reducing commercial 

harvest pressure on fish stocks, increase recreational fishing opportunities, marine-based 

tourism, and resultant economic growth. Understanding the social, ecological, and economic 

effects of the closures can allow for future adjustments to improve recreational catch and effort 

factors. The current study compared the values of the three recently established net-free zones 

(NFZs) with three reference areas of Queensland where commercial net fishing activities 

continue.  

For the social aspect, the study determined and compared the recreational fishers’ satisfaction 

and expectations between a NFZ and a reference site. Recreational fishers were surveyed when 

returning from fishing tackle stores. Along with the graphical summary of Likert scale 

responses, non-parametric tests and regression analyses were carried out to analyse fishes’ 

satisfaction. The underlying relationship among recreational fishers’ satisfaction, overall 

satisfaction, and expectation was identified by developing a structural equation model for a 

NFZ and a reference site. The result suggested that fishing satisfaction and expectations are 

higher in the NFZ than in the reference site. The structural equation modelling (SEM) identified 

the most influential factors that represent latent variable satisfaction and expectation and 

demonstrated the relationship and the strength of their relationship for each of the study sites. 

It is expected that the netting closure might improve the stock structure of the commercially 

and recreationally important fish barramundi (Lates calcarifer) through natural recruitment. 

For the ecological aspect, the study developed and tested autoregressive integrated moving 

average with exogenous input (ARIMAX) models and lagged multiple linear regression (MLR) 

models to predict and establish the relationship between barramundi catch per unit effort 

(CPUE) and some fishery and environmental factors that affect barramundi. The study used 30 

years of time series data from the secondary sources for the three NFZs and three reference 

sites. The finding suggests that the ARIMAX model outperformed the MLR model. The study 

also demonstrated that both fishery and environmental parameters played a role in influencing 

the CPUE, but most scenarios showed that environmental parameters such as rainfall, 

streamflow, and stream water level and fishery parameters such as licences and price are the 

key determinants of CPUE. The study provided valuable insights into the effect of management 

changes in the commercial CPUE to ensure recreational opportunities and sustainable 

management of barramundi. 
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For the economic aspects, the study integrated boat ramp survey data and secondary data to 

develop postcode, zoned, and geographic travel cost method (TCM) models for the six study 

sites. The postcode and zoned models were designed to include fishers of maximum 100 km 

and 300 km distance thresholds, and the geographic model included all of the dataset 

comprising all of the fishers travelling from far distances. The results indicate that the consumer 

surplus of NFZs is higher than the reference sites when considered from the closest visitors 

(i.e., fishers of 100 km and 300 km distance exclusions) in the postcode and zoned models, and 

lower in the geographic model that included all distant fishers. The findings suggest that there 

is potential to increase the consumer surplus in NFZs as more fishers are attracted to fish in 

these recreational fishing areas. 

The outcomes of this study have significant implications for commercial and recreational 

fishing sectors in Queensland. Moreover, the study demonstrated the short-term effect of 

management adjustments to ensure the balance between commercial and recreational fishing. 

The study output could be used to address similar fisheries management issues at the local, 

national, and international levels. 



  

iv 

 

Acknowledgments 

This work came to this stage through the support and cooperation of many entities, institutions, 

and individuals. First and foremost, I would like to express my thankful gratitude to Allah 

(SWT), the Almighty God of mankind, the most merciful, the very gracious, for giving me the 

strength, opportunity, wisdom, and good health to complete this thesis. He had been very kind 

to me always. He provided me everything, all abilities for all things.  

Next, my sincerest gratitude goes to my wonderful supervisors, Dr. Nicole Flint and Professor 

John Rolfe, for everything they have done for me, from accepting me as their Ph.D. student at 

Central Queensland University (CQUniversity) with scholarship support to the final 

submission of my thesis. I am very much indebted to these lovely Aussie persons for their 

expert guidance, continuous encouragement, constructive comments, important suggestions, 

feedback, and support to complete this research. It was always an intensive learning experience 

with pleasure throughout the course of this work under their cordial supervision. Especially, 

their critical comments and timely review feedback along with a friendly attitude were highly 

commendable. I have learnt a lot of invaluable things from them which will greatly help me 

advance my scientific career at home and abroad. I am also grateful to my other supervisors, 

Dr. Emma Jackson and Associate Professor Andrew Irving, for their valuable comments and 

suggestions to improve the rigor of my proposal. May God bless my all supervisors in this life 

and in the hereafter.  

I would like to also express my gratefulness to the authority of CQUniversity, and the people 

and the government of Australia for granting me the scholarship opportunity to pursue my 

higher study in Australia. With those scholarships, I was able to fully concentrate on my study 

in Australia without tension. My sincere gratitude to Professor Susan Kinnear, Dean of 

Graduate Studies, who agreed to extend my IPRA scholarship for 6 more months, which helped 

the successful completion of my thesis. I also thank the authority of Sylhet Agricultural 

University (SAU) in Bangladesh, my employer institution and alma mater, for granting me the 

study leave. The Department of Agriculture and Fisheries (DAF) in Queensland provided 

survey data on recreational fisheries in the region which greatly helped in accomplishing this 

research. I gratefully acknowledge Dr. James Webley, Dr. Jonathan Staunton Smith, Dr. Tyson 

Martin and Jennifer Larkin for their cordial support to get access to the data. I especially thank 

Dr. James Webley for providing constructive comments on Chapter 6 that greatly improved 

this thesis. Their support and cooperation are very gratefully acknowledged.  



  

v 

 

The Bangladeshi community living in Brisbane and Rockhampton were joyous, friendly and 

amicable people whom I always had beside me in my tough and cheerful moments. They made 

me feel like home while I was thousands of miles away from home. My heartfelt gratitude to 

Md. Mejbaul Haque, Sabrina Tabassum Suchi, Md. Ali Hazrat, Mabruka Islam Tinni, Dr. Ali 

Arshad Sweet, Tabassum Ferdous Nita, Professor Mohammad Rasul, Ratna Islam, Associate 

Professor Delwar Akbar, Ummey Safina, Md. Mahmudul Hassan Roni, Dr. Md Mofijur 

Rahman, Dr. Md. Mahbubur Rahman Bipu, Jafrin Sultana Ripa, Dr. Md. Sohel Uddin, Dr. 

Taslima Akhter, Dr. Umme Mumtahina, Md. Mojibul Sajjad, and Selina Sultana Shelly. I am 

very much indebted to them for their continuous help and support. 

I would like to extend my sincere thanks to my friends Tasneem Awan, Mohammad Nasim, 

Raghavendra Vasudevan, and my lovely Australian neighbours, Kathy and David, who shared 

their time and provide support for my lonely life in Australia. I am also thankful to my next 

door neighbours’ dog who gave company to my little daughter, and allowed me to have enough 

free time to study. 

Last but not least, my everlasting gratitude to my loving parents, family members, relatives, 

teachers and friends who always encouraged me and wished my success. Very special thanks 

to my beloved husband Dr. Mohammad Redowan, who motivated me to pursue higher studies 

in Australia. 

 

 

 

 

 

 

 

 



  

vi 

 

 

 

 

 

 

 

 

I would like to dedicate this dissertation to my beloved 

mother, Sufia Begum, and father, Sahidur Rahman, 

for their love, unconditional support, and inspiration 

 



  

vii 

 

Candidate’s statement 

By submitting this thesis for formal examination at CQUniversity Australia, I declare that it 

meets all requirements as outlined in the Research Higher Degree Theses Policy and Procedure. 

Statement authorship and originality 

By submitting this thesis for formal examination at CQUniversity Australia, I declare that all 

of the research and discussion presented in this thesis is original work performed by the author. 

No content of this thesis has been submitted or considered either in whole or in part, at any 

tertiary institute or university for a degree or any other category of award. I also declare that 

any material presented in this thesis performed by another person or institute has been 

referenced and listed in the reference section. 

Copyright statement 

By submitting this thesis for formal examination at CQUniversity Australia, I acknowledge 

that thesis may be freely copied and distributed for private use and study; however, no part of 

this thesis or the information contained therein may be included in or referred to in any 

publication without prior written permission of the author and/or any reference fully 

acknowledged. 

Acknowledgement of financial support  

I gratefully acknowledge the funding received from Australian Government through the 

Research Training Program (RTP) Stipend Scholarship (formerly APA), Central Queensland 

University Tuition Offset Scholarship (formerly IPRA), and School of Health, Medical and 

Applied Sciences Top-Up Scholarship which has supported this research. 

Acknowledgement of other support 

This research was undertaken with in-kind support of survey data provided by the Department 

of Fisheries, Queensland. 

Acknowledgement of professional services 

Professional editor, Mr. John McAndrew, provided copyediting and proof-reading services, 

according to the guidelines laid out in the University-endorsed national guidelines, ‘The editing 

of research theses by professional editors.’ 

Publications included in this thesis 



  

viii 

 

None of the chapters in this thesis prepared as journal articles have been published yet. 

However, of the three relevant chapters, Chapters 4 and 5 are ready to submit, and Chapter 6 

is under review process in the Marine Policy journal.  

Declaration of co-authorship and co-contribution 

1.  Marine, S. S., Flint, N., & Rolfe, J. (2021). Recreational fishers’ satisfaction and 

expectations in fishing sites with reduced commercial fishing: Queensland’s net-free 

zone as a case study. Manuscript in preparation. 

Contributor Statement of contribution 

Sabiha Sultana Marine 
Data processing and analysis (100%)  

Research direction and manuscript writing (75%) 

Nicole Flint Research direction and manuscript review (10%) 

John Rolfe Research direction and manuscript review (15%) 

2. Marine, S. S., Flint, N., & Rolfe, J. (2021). Effect of reduced commercial fishing pressure 

on barramundi catch per unit effort: Implications for Queensland’s net-free fishing 

zones. Manuscript in preparation. 

Contributor Statement of contribution 

Sabiha Sultana Marine 
Data processing and analysis (100%)  

Research direction and manuscript writing (75%) 

Nicole Flint Research direction and manuscript review (10%) 

John Rolfe Research direction and manuscript review (15%) 

3. Marine, S. S., Flint, N., & Rolfe, J. (2021). Economic valuation of recreational fishing: 

Examining the effects of Queensland’s net-free zones. Manuscript submitted for 

publication. 

Contributor Statement of contribution 

Sabiha Sultana Marine 
Data processing and analysis (100%)  

Research direction and manuscript writing (75%) 

Nicole Flint Research direction and manuscript review (10%) 

John Rolfe Research direction and manuscript review (15%) 

 



  

ix 

 

Research involving human or animal subjects 

Human subjects were involved in this research while conducting a questionnaire survey with 

recreational. The research was carried out in accordance with conditions of approval from the 

CQUniversity Human Research Ethics Committee (ethics approval number 0000020847). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

x 

 

Declaration of authorship 

This thesis is composed of my original work and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution of others to jointly-authored works that I have included in my thesis. 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, financial support, and any other original research work used or reported in my thesis. 

The content of my thesis is the result of work I have carried out since the commencement of 

my higher degree by research candidature and does not include a substantial part of work that 

has been submitted to qualify for the award of any other degree or diploma in any university 

or other tertiary institution.  

I acknowledge that the theses completed at CQUniversity are made digitally available on the 

World Wide Web for public access via ACQUIRE, CQUniversity’s Institutional Repository. 

See URL: http://acquire.cqu.edu.au 

I acknowledge that the copyright of all material contained in my thesis resides with the 

copyright holder(s) of that material. Where appropriate I have obtained copyright permission 

from the copyright holder to reproduce material in this thesis and have sought permission from 

co-authors for any jointly authored works included in the thesis. 

 

 

 

 

Sabiha Sultana Marine 

CQUniversity, Australia 

30th June 2021 

 

 

 



  

xi 

 

Table of contents            Page no. 

 Overview of the research context ..................................................................................... 19 

 Knowledge gap and problem statement ............................................................................ 23 

 Significance and contribution to knowledge .................................................................... 25 

 Aim of the study, research questions, and objectives ....................................................... 26 

 Aim ................................................................................................................... 26 

 Research questions ........................................................................................... 26 

 Objectives ......................................................................................................... 26 

 Thesis structure ................................................................................................................. 26 

 Overview ........................................................................................................................... 29 

 Potential effects of a spatial closure ................................................................. 29 

 Definitions of terminologies and concepts related to the title .......................................... 30 

 Different ‘terms’ of effects ............................................................................... 30 

 Closures and MPAs .......................................................................................... 31 

 Social effects .................................................................................................... 31 

 Ecological effects ............................................................................................. 37 

 Economic values and economic effects ........................................................... 40 

 Effects of spatial closures ................................................................................................. 42 

 Social implications ........................................................................................... 42 

 Ecological implications .................................................................................... 45 

 Economic implications ..................................................................................... 51 

 Conclusions ...................................................................................................... 58 

 Overview ........................................................................................................................... 60 

 Study sites ......................................................................................................................... 62 

 Datasets ............................................................................................................................. 63 



  

xii 

 

 Recreational fishers’ satisfaction and expectations data .................................. 63 

 Barramundi CPUE data for forecasting ........................................................... 65 

 Economic valuation data .................................................................................. 66 

 Data processing and analysis ............................................................................................ 68 

 Assessment of recreational fishers’ satisfaction and expectations ................... 68 

 Time series forecasting of barramundi CPUE .................................................. 69 

 Assessment of economic value of recreational fishing .................................... 71 

 Conclusions ...................................................................................................... 73 

 Introduction ....................................................................................................................... 76 

 Research approach ............................................................................................................ 79 

 Study methods................................................................................................................... 81 

 Study sites and data .......................................................................................... 81 

 Statistical analysis ............................................................................................ 83 

 Results ............................................................................................................................... 86 

 Non-parametric test for the categorical variable .............................................. 86 

 Regression analysis .......................................................................................... 91 

 Structural equation modelling (SEM) .............................................................. 94 

 Discussion ....................................................................................................................... 101 

 Conclusion ...................................................................................................................... 105 

 Introduction ..................................................................................................................... 109 

 Review and approach ...................................................................................................... 111 

 Materials and method...................................................................................................... 113 

 Data ................................................................................................................ 113 

 ARIMAX methodology .................................................................................. 120 

 MLR methodology ......................................................................................... 124 

 Forecast evaluation method ............................................................................ 125 

 Results ............................................................................................................................. 126 

 ARIMAX and MLR model ............................................................................ 126 

 Discussion ....................................................................................................................... 135 

 Conclusion ...................................................................................................................... 138 



  

xiii 

 

 Introduction ..................................................................................................................... 142 

 ZTCM methodology ....................................................................................................... 146 

 Identification of zones .................................................................................... 146 

 Calculation of travel cost ................................................................................ 147 

 Addition of other variables ............................................................................. 148 

 Multi-purpose and multi-destination travels .................................................. 148 

 Choice of functional forms ............................................................................. 149 

 Survey sites and data....................................................................................................... 150 

 Application of the zonal travel cost method ................................................................... 154 

 Discussion ....................................................................................................................... 163 

 Conclusions ..................................................................................................................... 167 

 Overview ......................................................................................................................... 170 

 Summary ......................................................................................................................... 171 

 Main findings and outcomes ........................................................................................... 172 

 Study limitations and future research ............................................................................. 174 

 Contribution to knowledge ............................................................................................. 175 

 Concluding remarks ........................................................................................................ 176 



  

xiv 

 

List of figures 

Figure 2-1: Flow diagram showing the potential effects of spatial closures ........................... 30 

Figure 2-2: Total economic value (TEV) chart with some examples ...................................... 41 

Figure 2-3: Consumer surplus .................................................................................................. 53 

Figure 2-4: Summary of non-market valuation methods ......................................................... 54 

Figure 3-1: Overall methodological approach used in this study ............................................ 61 

Figure 3-2: Locations of the areas providing access to the three NFZs and three reference sites 

in Queensland........................................................................................................................... 63 

Figure 3-3: ARIMAX building protocol .................................................................................. 71 

Figure 3-4: Method of ZTCM analysis .................................................................................... 72 

Figure 4-1: Mediators in satisfaction and expectation relationship ......................................... 80 

Figure 4-2: Map showing a NFZ (Rockhampton) and a reference site (Townsville) in 

Queensland, Australia .............................................................................................................. 82 

Figure 4-3: Age groups of recreational fishers interviewed from Rockhampton and Townsville 

in 2018 ..................................................................................................................................... 86 

Figure 4-4: Conceptual framework of SEM ............................................................................ 94 

Figure 4-5: Revised structural equation model for Rockhampton ........................................... 99 

Figure 4-6: Revised structural equation model for Townsville ............................................... 99 

Figure 5-1: Map indicating the fishing grids of the six study sites ........................................ 114 

Figure 5-2: Non-stationary series for dependent variable CPUE for all of the study sites .... 122 

Figure 6-1: Locations of the areas providing access to the three NFZs and three reference sites 

in Queensland......................................................................................................................... 150 

Figure 6-2: Demand curve of Cairns ..................................................................................... 159 

Figure 6-3: Total individual consumer surplus for pooled NFZs and reference sites ........... 163 



  

xv 

 

List of tables 

Table 2-1: Relevant studies dealing with the socio-economic impact of protected areas on 

marine stakeholders ................................................................................................................. 35 

Table 2-2: Summary of studies that used forecasting in fisheries management ...................... 49 

Table 3-1: Survey locations of a NFZs and a reference site conducted in 2018 ..................... 65 

Table 4-1: 7- point Likert scale response. ................................................................................ 87 

Table 4-2: Spearman’s rank correlation test for the statements ............................................... 90 

Table 4-3: Ordered probit regression and backward stepwise regression to determine overall 

satisfaction ............................................................................................................................... 92 

Table 4-4: Negative binomial regression and backward stepwise regression to determine the 

frequency of fishing ................................................................................................................. 93 

Table 4-5: Cronbach’s alpha value for the two constructs of Rockhampton and Townsville . 95 

Table 4-6: Latent variable loadings for expectation and satisfaction from confirmatory factor 

analysis ..................................................................................................................................... 96 

Table 4-7: Correlations between observed and latent variables for Rockhampton and 

Townsville................................................................................................................................ 98 

Table 4-8: Goodness of fit for confirmatory factor analysis .................................................... 98 

Table 4-9: Goodness of fit for SEM for Rockhampton and Townsville................................ 100 

Table 4-10: An overview of hypothesis testing results for Rockhampton and Townsville ... 101 

Table 5-1: Summary of the collated data for analysis in each of the study sites ................... 117 

Table 5-2: List of the variables used to construct the ARIMAX and MLR models .............. 126 

Table 5-3: Ljung-Box test for the ARIMAX and MLR model at different lags.................... 131 

Table 5-4: Result of out-of-sample prediction for the ARIMAX and MLR models ............. 134 

Table 6-1: Functional forms of models used to determine the TGF and demand function ... 149 

Table 6-2: Summary statistics for NFZs ................................................................................ 152 

Table 6-3: Summary statistics for reference sites .................................................................. 153 

Table 6-4: Regression statistics for four functional forms of the TGF for Cairns ................. 155 

Table 6-5: Breusch-Pagan test for heteroscedasticity ............................................................ 156 

Table 6-6: Predicted number of fishers for four functional forms of TGF ............................ 156 

Table 6-7: Demand schedules for Cairns (Postcode model 100 km) ..................................... 157 

Table 6-8: Regression statistics for four functional forms of demand for Cairns ................. 158 

Table 6-9: Predicted number of fishers for four functional forms of the demand function ... 159 

Table 6-10: Consumer surplus of the six study areas ............................................................ 161 



  

xvi 

 

List of acronyms 

ABARES Australian Bureau of Agricultural and Resource Economics and Sciences 

ABS Australian Bureau of Statistics 

ACF Autocorrelation Function 

ADF Augmented Dickey-Fuller 

AIC Akaike Information Criterion 

ANN Artificial Neural Network 

AR Autoregressive 

ARIMA Autoregressive Integrated Moving Average 

ARIMAX Autoregressive Integrated Moving Average with exogenous input 

ATO Australian Taxation Office 

AUD Australian Dollar 

BIC Bayesian Information Criterion 

CFA Confirmatory Factor Analysis 

CFI Comparative Fit Index 

CPUE Catch Per Unit Effort 

CNN Computational Neural Networks 

CS Consumer Surplus 

CV Contingent Valuation 

DAF Department of Agriculture and Fisheries 

FGD Focus Group Discussion 

FMZ Fisheries Management Zone 

GAM Generalized Additive Models 

GARCH Generalised Autoregressive Conditional Heteroscedasticity 

GBR Great Barrier Reef 

GBRMPA Great Barrier Reef Marine Park Authority 

GLMs Generalized Linear Models 

GP Geographic Model 

GVP Gross Value of Production 

HREG Harmonic Regression 

IPA Inshore Potting Agreement 

ITCM Individual Travel Cost Method 

MA Moving Average 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MARS Multivariate Adaptive Regression Splines 

MEY Maximum Economic Yield 

MPAs Marine Protected Areas 

MSY Maximum Sustainable Yield 

MEY Maximum Economic Yield 

MLR Multiple Linear Regression 

NAO North Atlantic Oscillation 

NFS Numerical Fish SurrogateTM 

NFZs Net-free Zones 

NLR Non-Linear Regression 

NMPs National Marine Parks 

NN Neural Network 

OLS Ordinary Least Squares 



  

xvii 

 

 

 

PACF Partial Autocorrelation Function 

PC Postcode Model 

POAMA Predictive Ocean Atmosphere Model for Australia 

RMSE Root Mean Square Error 

RMSEA Root Mean Square Error of Approximation 

RUM Random Utility Model 

SARIMA Seasonal Autoregressive Integrated Moving Average 

SARIMAX Seasonal Auto-Regressive Integrated Moving Average with exogenous input 

SEM Structural Equation Modelling 

SETARMA Self-Exciting Threshold Autoregressive Moving Average 

SPSS Statistical Package for the Social Sciences 

SRMR Standardised Root Mean Square Residual 

SSM Single Site Model 

SSR Sum of Squares of Residuals 

TEV Total Economic Value 

TGF Trip Generation Function 

TCM Travel Cost Method 

TLI Tucker-Lewis Index 

UK United Kingdom 

VAR Vector Auto Regression 

VECM Vector Error Correction Model 

WLS Weighted Least Square 

WTP Willingness-To-Pay 

ZTCM Zonal Travel Cost Method 



 

 

 

 

 INTRODUCTION AND SIGNIFICANCE OF 

THE RESEARCH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No scientific article is associated with this chapter. 



  

19 

 

 Overview of the research context 

Commercial wild-caught marine fisheries in Australia are highly diverse and provide a 

considerable contribution to the country's social, economic, and cultural well-being (Evans et 

al., 2016). Australia’s wild-caught fisheries generated $1.6 billion1 in 2014-15, up from $1.5 

billion in 2013-14, and produced around 151,439 tonnes of seafood to local, domestic, and 

international markets (Flood et al., 2014; Savage, 2015). Marine wild fisheries are also 

important for the state economy in Queensland since they contribute to the provision of local 

fish and seafood supply, revenue, and employment. However, over the past decades, 

Queensland’s commercial fishing sector has observed an overall reduction in the tonnage and 

value of catches and a high latency rate (Savage, 2015). For example, the gross value of 

production (GVP) of wild-caught marine fisheries has been declining since early 2000s 

(Australian Bureau of Agricultural and Resource Economics and Sciences, 2019), declining by 

7% to 19,815 tonnes in 2014-15, with a value of approximately $177 million (Savage, 2015). 

These declines indicate the need for increased certainty about the status of commercially 

important fishes and emphasise the existing risk to their sustainability (Smith et al., 2013).  

Since 2000, the decline in Queensland's GVP and catch tonnage has been driven by a number 

of factors including increased rate of commercial fishing, decrease in fish stocks, reductions in 

catch quotas, increasing total expenditures, increasing fuel and maintenance costs, and a 

substantial increase in the value of the Australian dollar (Moore et al., 2007). The prospects of 

commercial fisheries sectors are likely to vary over time due to changes in various fishing gears 

and methods, which have varying impacts on by-catch species and fish habitats. If fisheries are 

not carefully managed, the trophic structure and productivity of ecosystems may be impacted 

by long-term declines in population of target or non-target species (Smith et al., 2011) or by 

degradation of habitats by commercial fishing (Jennings & Kaiser, 1998), resulting in a 

destructive influence on marine ecosystems and processes (Jackson et al., 2001; Myers et al., 

2007; Halpern et al., 2008). When species or regions are overexploited, increased competition 

for the use of a scarce resource also has social and economic consequences (Sharma & Leung, 

2001).  

Commercial, charter, and recreational fisheries are the three primary sectors of Queensland’s 

marine fishing industry. Queensland’s commercial fisheries include a range of net and line 

 

1 All currency mentioned in this chapter are in Australian dollars. Currently, AUD$1 = US$0.73 
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fisheries targeting finfish, trawl fisheries targeting crustaceans and various by-product species, 

pot and trap fisheries, as well as smaller fisheries for shell, and ornamental species. The charter 

fisheries include game fishing, spear fishing, guided river or coastal fishing, reef fishing are 

categorised as fishing operations where service charges apply. Recreational (non-charter) 

fishing includes gears such as rod and lines, spear guns, some small nets (e.g., cast nets, dilly 

nets, scoop or dip nets, and drag nets), pots and traps with varying restrictions relating to the 

size of gear, fish size limits, daily bag limits, and seasonal and spatial closures (Queensland 

DAF, 2020). Recreational fishers may account for the majority of harvest in certain fisheries 

and are difficult to manage (Brown et al., 2020). Fisheries managers aim to balance the needs 

and values of all fishery sectors and fishery-associated stakeholders, such as seafood 

wholesalers and retailers, tourism operators, tackle shops and the wider community by 

accounting for the “triple-bottom-line” of social, economic, and ecological values. These 

values are stipulated in legislation, including the Queensland Fisheries Act 1994, which defines 

“Fisheries Queensland's responsibilities for the economically viable, socially acceptable, and 

ecologically sustainable development of Queensland's fisheries resources” (Queensland DAF, 

2017a). Recent concerns about the effects of fishing on commercially and recreationally 

important fish species in certain Queensland waters has provided an impetus for the 

development of the Sustainable Fisheries Strategy 2017-2027 (Queensland Government, 

2017a). 

Management and policy actions in accordance with the ecologically sustainable development 

goals have led to the implementation of commercial net fishing closures in November 2015 

and subsequent commercial fishing licence buybacks in three regional cities in Queensland, 

namely Cairns, Mackay, and Rockhampton (Queensland DAF, 2015a). Commercial netting 

closures (which includes fixed mesh nets, seine nets, and drift nets) in Queensland were 

designed to conserve species by reducing pressure on fish stocks from commercial harvest, 

increase recreational fishing opportunities, marine-based tourism, and resultant economic 

growth in regional areas (Brown, 2016; Queensland Government, 2016). The closure areas 

extend from Keppel Bay to the Fitzroy River for Rockhampton, St Helens Beach to Cape 

Hillsborough for Mackay, and Trinity Bay for Cairns (Queensland Government, 2017b). 

Beyond net fisheries, other commercial fishing activities such as commercial crabbing, 

trawling, and line fisheries are still permitted in the areas. Moreover, these net-free zones 

(NFZs) do not affect the commercial netting activities occurring outside of the zone. The 
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implementation of NFZs would potentially lead to a decrease in total fishing pressure and an 

increase in recreational catch rates of species previously targeted by commercial netting.  

There are a number of potential and predicted socio-ecological flow-on effects could result 

from a shift in fishing effort from commercial to recreational, including a decline in retail 

availability of locally caught seafood in the region (which could be offset by local catches from 

other fisheries or catches in nearby regions), decreased commercial fishing value, and increased 

economic and social benefits from recreational fishing and marine-based tourism (Kelleher et 

al., 1995). The recreational fishing effort in the three-NFZs is expected to increase with an 

increase in recreational catch rates of species previously targeted by commercial netting. 

Similar closures are also being introduced in other Australian states (Victorian Fisheries 

Authority, 2018) to benefit recreational fishers by providing more and larger fish (Spelitis, 

2015) and boosting the local economy through increased recreational and charter fishing 

opportunities (Queensland Government, 2016).  

Recreational fishing is a widespread and popular leisure activity in Australia that contributes 

social and economic benefits to the country, particularly in regional areas (Mclnnes et al., 2013; 

Brown et al., 2020). Reduced commercial fishing benefits recreational fishers in a variety of 

ways (Brown, 2016). Firstly, population productivity may be enhanced, which allows 

recreational fishers to catch more fish. Secondly, lower total fishing mortality enhances fish 

size and abundance, and larger fish are a more appealing target for recreational fishers than 

smaller fish. Finally, recreational fisheries may have access and aesthetic advantages if 

commercial fishing is closed.  

However, the total benefits of recreational fishing cannot be quantified only in terms of the 

quantity of fish caught, the number of trips taken per year, or the amount spent on a fishing 

trip. It is also important to evaluate whether fishers are satisfied with their fishing experiences, 

what drives them to go fishing, and what expectations they have for the fishing (Mclnnes et al., 

2013). In addition to the social benefits, economic value and benefits of recreational fishing 

are also important to understand. Management analysts often require the estimate of 

recreational values when assessing the importance of recreation over alternative uses of any 

site or changes to policy settings, such as shifting effort from commercial to recreational fishing 

(Rolfe & Prayaga, 2007; Raguragavan, Hailu, & Burton, 2013). Such recreational values are 

difficult to compare to the gross value of production measures used to evaluate the commercial 

sector. As a result of these constraints, economic valuations of recreational fishing are often 

unavailable (Brown et al., 2020). 
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Spatial fishery closures (a fisheries management technique that prohibits fishing in a certain 

area) are likely to influence the productivity of fish stocks and help to achieve biological 

sustainability (Ocean Studies Board, 1999). Marine Protected Areas (MPAs), no-take or marine 

reserves are important management tools (Hilborn et al., 2004) for fish stocks and have been 

shown to increase yields (Halpern & Warner, 2002) by modifying fishing effort (Chakravorty 

& Nemoto, 2000; Little et al., 2009; Powers & Abeare, 2009) and protecting broodstock and 

ecosystem function. For instance, in the Hvitá River of Iceland, recreational catch rates in the 

'closure' area between 1991 and 2000 were compared to catch rates in the previous ten years 

prior to the introduction of netting closure. Results showed that the recreational catch increased 

by 28-35% following the ten-year closure of commercial netting in that area. Additionally, 

catch rates following closure were compared to catch rates in two other Icelandic rivers that 

were still open for commercial fishing. The findings suggested that post-closure rod catches 

increased significantly, while catches in the two open rivers decreased (Einarsson & 

Gudbergsson, 2003). Similarly, seven years after implementing a seasonal closure area, Beets 

and Friedlander (1999) observed a considerable increase in average size and better sex ratio at 

a grouper spawning aggregation location. Fishery closures are considered an important way of 

administering ecosystem-based management to protect coastal habitats, target and bycatch 

stocks, and ecological processes (Garcia-Charton et al., 2000; Goni et al., 2000; Roberts et al., 

2005; Brown, 2016) 

Fishery closures have been shown to have significant ecological benefits for the local fish 

population and can protect the abundance of a target species with their habitats (Abbott & 

Haynie, 2012). Closures are expected to aid in the management of commercial fishery stocks 

in such a way that a large number of fish remain available to recreational fishers, implying that 

sustainable management of fisheries resources will be achieved. In a fishery, CPUE (catch per 

unit effort) data serve as an indirect measure of the abundance of a species. The CPUE is 

calculated by dividing the total catch by the total fishing effort in a given period (Van Hoof et 

al., 2001). Provided other variables affecting catch and effort are accounted for, a declining 

CPUE may indicate overexploitation, whereas an unchanged CPUE indicates sustainable 

harvest of the stock (Yadav et al., 2016). Modelling and forecasting of commercial CPUE and 

the factors that influence CPUE are used as a useful tool for understanding fishery dynamics 

and providing short-term quantitative guidelines for fisheries management.  

Several previous studies have identified control areas and compared the social, ecological, and 

economic effects between the sites to evaluate and compare the relative effect of fishery 
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closures (Einarsson & Gudbergsson, 2003; Queensland DAF, 2017b; Martin et al., 2019). For 

instance, in order to quantify and compare the effects of the net fishery closure on angling catch 

in Iceland's Hvitá River, two groups of rivers were identified as control sites (Einarsson & 

Gudbergsson, 2003). In the case study of focus, three coastal areas in Queensland, namely 

Townsville, Hinchinbrook, and Hervey Bay, were identified as prospective control or reference 

sites to ascertain any differences in the socio-ecological effect of the NFZs. The three reference 

sites are evenly distributed close to the NFZs and provide opportunities for commercial and 

recreational fishing. Since 2015, Queensland's Department of Fisheries and Agriculture (DAF) 

has been conducting a series of studies to examine the effect of NFZs on recreational fishing 

as part of the monitoring programme of recent management changes (Queensland DAF, 2017b; 

Martin et al., 2019). In addition to three NFZs, DAF used the same sites as reference sites in 

their study. The current study used the same study sites as the DAF for consistency. 

 Knowledge gap and problem statement 

The purpose of commercial netting closures in Queensland is to conserve species by reducing 

commercial fishing pressure on fish stocks, and to increase recreational fishing opportunities, 

marine-based tourism, and resulting economic development in regional areas (Brown, 2016; 

Queensland Government, 2016). If the commercial harvest is large in comparison to the 

recreational harvest, it is expected that the recent management changes would enhance 

recreational catch. Recreational fisheries provide fishers and society with a variety of 

psychological, social, educational, and economic benefits that are not associated with 

commercial fisheries (Food and Agriculture Organization, 2012). An assessment of 

recreational fishers’ satisfaction and expectations are required to understand the social benefits 

of recreational fishing since it is necessary to understand if fishers are satisfied with their 

fishing experiences, what motivates them to go fishing, and what expectations they have for 

the fishing experience (Mclnnes et al., 2013). The measurement of recreational fishers’ 

satisfaction is an important component of assessing views about fishing and has been 

established as an outcome indicator of a high-quality fishing experience (Graefe & Fedler, 

1986; Holland & Ditton, 1992). A good understanding of fishers’ satisfaction and expectations 

could assist fisheries managers to tailor management plans for different groups of recreational 

fishers (Brinson & Wallmo, 2017). Moreover, it could provide knowledge of the motives, 

interests, reactions, and expectations of recreational fishers to different policies (Mclnnes et 

al., 2013). The determination of fishers’ satisfaction and expectations of the newly established 
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NFZs is important to evaluate the effectiveness of the closures. This study has aims to evaluate 

and compare recreational fishers’ satisfaction and expectations between a NFZ and a reference 

site, to identify the change in recreational fishers’ satisfaction and expectations between sites. 

Commercial fishery closures may increase the potential for more desirable stock structures 

which in turn enhances successful reproduction and local recruitment (Bohnsack, 1998; 

Jennings, 2000). Queensland’s iconic species, the barramundi (Lates calcarifer), is one of the 

popular target fish for commercial and recreational fishers and contributes a vital role in the 

regional economy of Queensland (Rose et al., 2009). To achieve the management objectives of 

the barramundi fishery, future catch predictions can be useful for identifying and modelling the 

important factors that influence catch, which may inform the sustainable management of that 

stock. Forecasting is a widely used technique in fishery dynamics that helps to provide 

guidance and support on long-term strategic planning, by formulating an educated estimate of 

future catch.  A good forecast only records the original patterns and trends in the historical data 

but does not repeat past occurrences that will not appear again (Hyndman & Athanasopoulos, 

2018). Functionally, forecasting provides policy analysts with information on sustainable 

management issues, especially before or after the implementation of management regulations. 

The current study will develop a forecasting model of the barramundi population of the NFZs 

and the reference sites and established a relationship between nominal barramundi CPUE 

(catch per unit effort) and both fishery and environmental predictors to understand the effect 

of reduced commercial fishing pressure and make inferences on future recreational barramundi 

catch. 

The recreational fishing sector has the potential to influence economic development (Food and 

Agriculture Organization, 2017). The value of commercial catches can be estimated using 

market data, but the value of recreational fishing is more difficult to quantify and cannot be 

derived directly from market prices. Hence, non-market valuation approaches must be used to 

determine the value of recreational fishing (Gregg & Rolfe, 2013; Brown et al., 2020). The 

expected economic benefits of recreational fishing come from the recreational fishers’ 

participation in fishing, which involves expenses for their travel, boat, fishing gear, services, 

facilities, and other accessories (Gregg & Rolfe, 2013). The determination of economic value 

of recreational fishing is important to justify recreation against other uses of the marine 

environment (Rolfe & Prayaga, 2007). To measure the welfare impact of a particular policy, it 

is necessary to understand the values of recreational fishing (Raguragavan et al., 2013). In 

Australia, a number of studies have been undertaken to estimate the economic values of 
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recreational fishing, but the economic values for newly established fishery closures and other 

non-closure areas in Queensland are little explored. Hence, this study will also evaluate and 

compare the economic values of recreational fishing and assess their implications for the three 

NFZs and three reference sites. 

 Significance and contribution to knowledge 

This project was designed to investigate the expected and actual short-term socio-ecological 

effects of removing commercial net fishing and provide an assessment of the extent to which 

netting closures may enhance the future availability of fish stocks, recreational facilities, and 

regional economic benefits. To determine the effectiveness of the policy change from 

commercial to recreational, this research will explore the recreational fishers’ satisfaction and 

expectations, their inherent causal relationship, and the strength of that relationship. The output 

of the study may have significant implications for understanding the factors that best describe 

satisfaction and expectations for each of the study sites, to inform management bodies when 

planning measures to improve recreational fishing opportunities. 

Commercial fishery closures may have significant ecological benefits for fish populations and 

can reduce the total fishing pressure on target species within the closure area and beyond. To 

understand the effect of reduced commercial fishing pressure on commercial barramundi 

CPUE the study will forecast future barramundi CPUE by identifying and modelling the 

important environmental and fishery parameters that affect barramundi and made inferences 

on future recreational barramundi catch. Modelling and forecasting the barramundi population 

within the study areas could help policy analysts to predict future fish production and 

sustainable management of fisheries resources.   

Policymakers require independent data on the values of recreational activities to support the 

development of beneficial programs. This study will provide an economic evaluation of the 

non-market value of the ecosystem services associated with recreational fishing and assess the 

implications for the three NFZs and three reference sites. By providing data from an actual 

scenario of a closure, the research could help to inform fisheries management decisions on 

present and future closures in Australia or other parts of the world.  
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 Aim of the study, research questions, and objectives 

 Aim 

This study aims to assess the socio-ecological effects of a localised change in commercial 

fishing pressure. 

 Research questions 

1. Do commercial netting closures increase recreational fisher satisfaction and 

expectations?  

2. How do environmental and fishery drivers influence the future prediction of 

barramundi (Lates calcarifer) catch? 

3. Does the value of recreational fishing increase after the establishment of netting 

closures? 

 Objectives 

To achieve the aim and answer the research questions, this study sets the following specific 

objectives to fulfil: 

1. evaluate recreational fishers’ satisfaction and expectations towards NFZs, 

2. develop a best-fitting forecasting model for the barramundi (Lates calcarifer) 

population of NFZs and reference sites, and 

3. estimate the economic values of recreational fishing. 

 Thesis structure 

The structure of the thesis is organised by publication format. Chapters 4, 5, and 6 follow a 

typical publication format that includes a separate introduction, methodology, result and 

discussion, and conclusion. A short description of the thesis chapters is presented below. 

Chapter 1 – Introduction 

This chapter of the dissertation contextualised the research themes by providing background 

information on the research topic. Some relevant acknowledgment of previous studies has been 
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described to identify the research gap. The scope and significance of the research have been 

described along with the research aims, objectives, and research questions.  

Chapter 2 – Literature review 

Literature regarding research themes has been identified, summarised, and critically analysed 

in a systematic way. An explicit focus has been given to national and international literature on 

the social, ecological, and economic effects of special closures. 

Chapter 3 – Research approach 

This chapter provides the comprehensive methodological approach that has been taken to 

address the research problem and the justification of specific methods or techniques used for 

achieving each of the research objectives.  

Chapter 4 – Short-term social effects of the Queensland netting closures 

This chapter described and analysed survey data on various social aspects of recreational 

fishing.  This study compared the satisfaction and expectations between a NFZ and a non-NFZ. 

In particular, the study justified the relationship between satisfaction, overall satisfaction, and 

expectation and the strength of their relationship.  

Chapter 5 – Short-term ecological effects of the Queensland netting closures 

So as to promote the sustainable management of commercial barramundi (Lates calcarifer) 

fishery, this chapter developed best fitting forecasting models to determine the future 

barramundi (Lates calcarifer) CPUE from six study sites and described its implications for 

sustainable management of the barramundi (Lates calcarifer) population. 

Chapter 6 – Short-term economic effects of the Queensland netting closures 

This chapter determined and compared the economic values and benefits of recreational fishing 

in three NFZs and reference sites. The study analysed boat ramp survey data using three models 

of the travel cost method (TCM) and assessed their implications for netting closure.  

Chapter 7 – Conclusions and recommendations 

The overall effects of Queensland’s net fishing closures and how well they align with the 

expected effects were discussed. A refined conceptual model was developed based on the 

results of the study. This chapter also includes concluding remarks and provides 

recommendations and guidelines for further research. 
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 Overview 

This section describes and summarises the available literature on study-related themes, topics, 

terminologies, procedures/methodological approaches, and results. The themes include 

summary texts around recreational fishing values and benefits. Relevant articles and theses 

were downloaded through Central Queensland University Library and digital databases, 

including ScienceDirect, Web of Science, Scopus, Cambridge Scientific Abstracts, Taylor & 

Francis, WorldWideScience, WorldCat, Ingenta connect search, SlideShare to Endnote. Books, 

book chapters, government and institutional reports, and relevant government websites, have 

been accessed. In addition, several locally and internationally published documents were 

collected through direct searching (by using different terms related to this study, e.g., ‘socio-

economic effect of MPAs’, ‘recreational fishers’ satisfaction’, ‘expectations’, ‘economic 

value’, etc.) in Google and Google Scholar. The extensive literature from different sources that 

are considered reliable (e.g., peer-reviewed articles, general websites, and books) were then 

read, synthesised, and presented in this document as a review. 

 Potential effects of a spatial closure 

Spatial tools which include marine reserves and fishery closures are becoming more popular in 

fisheries management to address sustainability issues (Gell & Roberts, 2003; Hilborn et al., 

2004; Sumaila et al., 2007). Closures may benefit people who value the natural environment 

of marine areas for leisure and recreation, visitors who want to see intact marine environments 

and wildlife, divers who want to see flourishing marine habitats including coral reefs, sponges, 

and seagrass beds, and fishers who want long-term yields and revenue from more sustainable 

fish stocks (National Research Council, 2001). Fully protected fishing areas show the 

likelihood of quick recovery of species, habitat, and trophic structures that promote spillover 

and provide a source of recruits to surrounding areas. This greater larval dispersion lead to 

wider fishery benefits for the regional economy (Gell & Roberts, 2002). A number of authors 

have recommended compensation for the most impacted fishers who have limited access to 

other fishing grounds or job opportunities (Roberts & Hawkins, 2000; Gell & Roberts, 2002). 

This financial assistance greatly improves fisher support for establishing protected areas and 

paves the way for successful fisheries management (Gell & Roberts, 2002). The potential 

effects of a spatial closure in social, ecological, and economic contexts are provided in Figure 

2-1. 
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Figure 2-1: Flow diagram showing the potential effects of spatial closures on social, economic, 

and ecological values 

 Definitions of terminologies and concepts related to the title 

Definition and clarification of the terminologies and concepts used in this dissertation may 

facilitate improved understanding of the topic. In the following paragraphs, frequently used 

terms and ideas have been described in detail.  

 Different ‘terms’ of effects 

In environmental studies, a ‘term’ means ‘duration’, ‘time’ or ‘incidence’ related to an event. 

Short-term, medium-term, and long-term are used to distinguish an interval. The timeframes 

are often flexible according to the research question and/or the level of work conducted. 

Short-term impacts are easier to define and conceptualise as the changes occur in a very short 

period, i.e., within months or years (usually less than 3 years) (Halpern & Warner, 2002). Short-

term studies can provide for accurate detection of immediate effects and utilise simple 

measurement techniques. Methods including short-term surveys, interviews, specialised 

environmental monitoring techniques (such as before-after-control-impact studies), direct 
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experimental manipulations, laboratory-based experiments, etc., are well suited for this type of 

study (Ward, 2012). Medium-term changes are denoted as the phenomena which are observed 

in time frames of 3 to 5 years (Heagney et al., 2015). Finally, longer-term impacts extend over 

a relatively long period (more than 5 years). Some phenomena may not be detected unless 

studied over a time frame of decades or much longer than that.  

 Closures and MPAs 

Closures in any waterbody generally prevent people from fishing. This prevention is applicable 

to both recreational and commercial fishers (Primary Industries and Regions South Australia, 

2017). There are various types of closures used to restrict fishing to a certain depth, gear type, 

location, and time of the year (Australian Fisheries Management Authority, 2017). Depending 

on the management scenarios, closure can be permanent, temporary, or seasonal (Primary 

Industries and Regions South Australia, 2017). Authorities introduce such closures to reduce 

fishing pressures and thus protect endangered and other non-target species. They may replenish 

fish stocks by providing a safer environment for growth and activity by protecting their habitats 

and spawning areas. Seasonal closures are mainly declared to protect fishes in their breeding 

season (Primary Industries and Regions South Australia, 2017). 

Closures can take place in MPAs (marine protected areas), and MPAs can take place in any 

large waterbodies, such as seas, oceans, estuaries, or large lakes. Most of the MPAs do not 

restrict fishing but some MPAs (that encompass fewer than 10% of the global MPA area) 

restrict all types of fishing activity and contribute to the protection and conservation of marine 

biodiversity (Day, 2017). MPAs include no-take reserves, marine sanctuaries, marine reserves, 

and marine parks that protect fishes, reefs, lagoons, salt marshes, mangroves, seagrass beds, 

rock platforms, and other systems (Commonwealth Department of Environment and Heritage, 

2013). 

Literature about the social, ecological, and economic effects of closure is limited (Beets & 

Manual, 2007), hence the study has discussed the effects of MPAs alongside the effects of 

closures because the aims of both management measures are similar.   

 Social effects 

The social effect can be defined as the significant, positive, or negative effect of an activity or 

action on the community as a whole and the well-being of individuals. The effect can be 
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evaluated through the collection of relevant information on various variables, such as social 

values, attitude, participation, satisfaction, motivation, perception, and beliefs on particular 

issues (Sutton, 2006). MPAs have social implications for commercial fishers’ livelihood and 

lifestyle to varying degrees (Mayo-Ramsay, 2014). A number of researchers have 

acknowledged that protected areas could negatively impact the livelihood of marginal fishers, 

especially those who do not have any other alternative job opportunities other than fishing 

(Christie et al., 2003; Christie, 2004; Stoffle & Minnis, 2008; Mascia & Claus, 2009). Other 

studies have also revealed that commercial fishers are directly impacted by the establishment 

of MPAs (Badalamenti et al., 2000; Jones, 2008). In addition, the success or failure of MPAs 

partially depends on the fishers’ perception and attitude towards the establishment of MPAs 

(Himes, 2007; Jones, 2008; Charles & Wilson, 2009; Dimech et al., 2009). In some cases, 

conflicts are very common with different stakeholder groups for the same resource use which 

might be crucial for establishing such closure areas (Charles & Wilson, 2009; Jennings, 2009; 

Mascia & Claus, 2009). Recreational fishers can utilise the greater opportunities for fishing, 

while commercial fishers have to contemplate alternative activities or even careers.  

The body of literature on the social implications of MPAs is relatively small but growing 

steadily (Hoagland et al., 1995; Farrow, 1996; Milon, 2000; Sanchirico, 2000). Mangi et al. 

(2011) noted that local communities have a higher awareness of the increasing numbers of no-

take zones. It is widely acknowledged that stakeholder participation is very effective for the 

protection and conservation of marine resources (Pomeroy & Douvere, 2008; Hoelting et al., 

2013) and they are considered an indispensable part of the management of any ecological 

system (Fleming & Jones, 2012; Cárcamo et al., 2014).  

To mitigate the impact of the GBR (Great Barrier Reef) zoning plan on various resource users 

of the GBR region, GBRMPA (Great Barrier Reef Marine Park Authority, an Australian 

Government agency tasked with managing the GBR Marine Park) was meticulous to involve 

stakeholders in the management program (Fernandes et al., 2005). The Australian Government 

also accommodated fishers and fishery-related businesses by providing a structural adjustment 

package as part of managing uncontrolled commercial fishing in that area (Macintosh et al., 

2010). Many recent studies have investigated commercial and charter fishers’ response, 

adaptation, and resilience to the GBR zoning plan five years after its establishment (Lédée et 

al., 2012; Sutton & Tobin, 2012). They found that only a few fishers were not supportive of 

the plan, and some had already started adjusting themselves to the newly implemented plan 

(Lédée et al., 2012; Sutton & Tobin, 2012). Sutton and Tobin (2009) reported that high-
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resilience fishers were supportive and adaptive to the plan and could understand its positive 

impacts on the environment.  

A South Australian spatial closure of the snapper (Pagrus auratus) fishery showed a negative 

impact on commercial fishers (Morison et al., 2013). The study found evidence that some 

fishers had to move to adjacent open areas for fishing, and others did not change their location 

but changed their target species of interest (Morison et al., 2013). Hamilton (2007) observed 

that closures had an impact on social capital and resulted in the loss or alteration of employment 

structure. Furthermore, closures could affect rural livelihoods as commercial fishers have to 

spend more for relatively longer travel to suitable fishing places (Taylor & Buckenham, 2003).  

Social impact studies are dynamic as perceptions can change rapidly with time (Gell & Roberts, 

2002). One of the best examples is the study of Mangi et al. (2011), where they depicted the 

real social impact of the Lyme Bay closure on commercial fishers and fish merchants. Soon 

after the closure, the livelihood of commercial fishers was found to be heavily impacted by the 

closure. However, the situation changed over time, as fishers adjusted to the current rules 

imposed by the government. Gell and Roberts (2002) found that fishers were not willing to 

support the closure as they were aware of other reasons for fisheries degradation, such as poor 

management of coastal waters, habitat degradation, pollution, and other external influences. 

They felt they were unfairly treated and therefore never supported closures. However, effective 

governance requires liaison with fishing communities, and knowledge transfer to fishers to 

address such issues and thus contribute to the effective and efficient management of 

waterbodies (Gell & Roberts, 2002; Jones et al., 2011; McCay & Jones, 2011).  

Commercial fishers have been observed to have a wide range of attitudes and perceptions 

concerning the conservation value of MPAs (Pita et al., 2011). A substantial number of studies 

found that some commercial fishers could understand the benefit of MPAs for conserving 

biodiversity and ecological systems (Blyth et al., 2002; Gelcich et al., 2005; Gelcich et al., 

2008; Jimenez‐Badillo, 2008; Gelcich et al., 2009) and some could not (Oikonomou & Dikou, 

2008; Dimech et al., 2009). Blyth et al. (2002) examined static gear (net and pot) and towed-

gear (dredge and trawl) fishers’ perceptions towards an Inshore Potting Agreement (IPA). The 

study found that towed gear fishers were less satisfied with the IPA establishment than the 

static gear fishers because the towed gear fishers were impacted by the IPA, while the static 

gear fishers were not impacted. Irrespective of this, the two groups of fishers believed that the 

IPA works as a reserve for finfish and scallop species that were previously targeted by towed 

gears. Jimenez‐Badillo (2008) found that Mexican fishers were very supportive of conservation 
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plans for fishery resources and that they could identify the potential cause of resource 

degradation in that area. In another study, Dimech et al. (2009) observed that most of the fishers 

in Malta believed that the Fisheries Management Zone (FMZ) had no beneficial effect to 

commercial fishermen but provide plenty of opportunities for recreational fishers. 

Previous studies have yielded some important insights into the communication between 

management authorities and the fishers for the development of MPA strategies. Fishers’ 

participation in management and decision-making processes was found by some studies to be 

poor (Suman et al., 1999; Himes, 2003; Stump & Kriwoken, 2006; Oikonomou & Dikou, 

2008), but the fisher groups who were already involved in the different management activities 

were highly motivated to obtain empowerment on a greater scale (Gelcich et al., 2009). In most 

cases where consultation has been evaluated, fishers were found not to be satisfied with the 

consultation process (Stump & Kriwoken, 2006) or perceived that there was a strong 

communication gap with the management bodies (Himes, 2003; Oikonomou & Dikou, 2008).      

A number of authors have compared the attitude of fishers and other resource users toward 

several aspects of MPAs. Suman et al. (1999) observed varying attitudes and perceptions 

towards the Florida Keys National Marine Sanctuary while working with the fishers and 

stakeholder groups (divers and environmental group members). Fishers were not supportive of 

the Sanctuary, whereas other stakeholders were highly supportive and cooperative. Mangi and 

Austen (2008) conducted a survey in various Mediterranean countries and evaluated the 

stakeholders’ perceptions in a number of areas such as fisheries management, conservation, 

education, and research and tourism development. The responses of fishers and other 

stakeholder groups (governmental officials, researchers, conservationists, managers of MPAs, 

recreational users, and local inhabitants) vary. Fishers have given more emphasis to 

establishing MPAs for fisheries management and considered that conservation is the less 

important reason for MPA establishment. Other stakeholders’ views were opposite to those of 

the fishers; they give higher priority to conservation than to fisheries management objectives. 

Oikonomou and Dikou (2008) noticed that the management of MPAs in Greece was ineffective 

due to the general conflict between fishers and other resource user groups. Another study 

conducted by McClanahan et al. (2005) and McClanahan et al. (2008) found that stakeholders 

(marine attendants, park services, and fisheries department officials) in both Kenya and 

Tanzania perceived that MPAs are not beneficial to them, rather they are beneficial only to the 

government.  
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The social impact of MPAs is poorly understood with limited studies on this topic (National 

Research Council, 2001; Christie et al., 2003; Mascia, 2004; West et al., 2008). Although there 

is limited evidence of data on the social perspectives of MPAs in Australia (Heagney et al., 

2015), social perspectives are often discussed in conjunction with the economic perspective of 

MPAs. Evaluation of social impacts and evaluation of economic impacts are usually carried 

out individually and use specialised methodologies, but they are complimentary and 

occasionally overlap. For example, demographic changes could be examined by both forms of 

evaluation; however, economic evaluation may focus on employment data, while a social 

evaluation may also be concerned with population change or migration. An integrated approach 

may deliver a complete and cost-effective result by giving information on possible economic 

implications as well as key social values associated with the activity, which guide expected 

attitudes and reactions to the proposed change (Bureau of Rural Sciences, 2005). Some relevant 

studies on the socio-economic impacts of MPAs on marine stakeholders are given in  

Table 2-1.  

Table 2-1: Relevant studies dealing with the socio-economic impact of protected areas on 

marine stakeholders 

Authors Indicator Method Result/ output Study site 

Mascia et 

al. (2010) 

• Food security 

• Resource rights 

• Employment 

• Community 

organization 

• Income 

Literature 

review 

(based 

on 21  

articles) 

In a few older and smaller MPAs, 

food security remained stable or 

improved to some extent. 

Philippines, 

Kenya, 

Egypt, Italy, 

and St. Lucia 

Stakeholders’ control over 

resources had been increased 

with MPA zoning and 

regulations. 

Employment, community 

organisation and income are 

precluded from statistical 

analysis due to their small 

sample size. 

McClana

han 

(2010) 

Income Purposive 

sampling 

Closure and gear restriction 

together result in higher 

individual income through the 

harvesting of bigger-sized fishes 

located in nearby areas.  

Kenya 
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Authors Indicator Method Result/ output Study site 

Lédée et 

al. (2012) 

Fishers’ response 

and adaptation to 

closure 

Face-to-face 

interview 

Fishers were not supportive of 

the new zoning plan for the GBR 

region. However, they have since 

relocated their fishing activities 

and businesses into other areas 

and started adapting themselves 

to the new regulation. 

Queensland, 

Australia 

Rees et al. 

(2013) 

 

 

Social impacts in 

a case study 

Telephone 

interview and 

a face-to-face 

interview 

The respondents were observed 

to support MPAs in their locality. 

They have identified the issues 

involving MPAs and developed 

strategies to overcome and 

maintain a small-scale, profitable 

fishing industry. 

North Devon 

Biosphere 

Reserve, UK 

Bennett 

and 

Dearden 

(2014) 

Social impacts 

(livelihoods, 

governance, and 

management) in 

multiple case 

studies 

Literature 

review and 

face to face 

interview 

The implementation of National 

Marine Parks (NMPs) was found 

to have negatively impacted on 

community livelihood, 

governance, and management 

systems. 

Thailand 

Hattam et 

al. (2014) 

Social impacts in 

a case study 

Face-to-face 

interview 

Mobile gear fishers were not 

likely to support the closure 

because they thought that they 

were being deprived of their 

rights on resource use. On the 

other hand, static gear fishers had 

positive views about the 

establishment of the closure. 

Recreational users and 

recreational service providers 

benefited from improved 

recreational experiences.   

Lyme Bay, 

UK 

Heagney 

et al. 

(2015) 

• Employment 

• Income 

• Housing 

• Business 

development 

• Local 

government 

revenue 

Based on 

secondary 

data 

The study proposed and tested 

three pathways via which 

protected areas could benefit 

local stakeholders. The result 

showed an increased number of 

socio-economic indicators.  

New South 

Wales, 

Australia 
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Authors Indicator Method Result/ output Study site 

Rees et al. 

(2015) 

• Diving 

businesses 

• charter boat 

operator  

• marine fishing 

 

Questionnaire 

survey using 

e-mails, 

online/ web 

surveys, 

postal 

surveys, 

telephone, 

and face to 

face 

interviews 

The study examined the socio-

economic effects of MPAs on the 

provision of beneficial 

ecological services such as 

leisure and recreation. The study 

found an increase in the 

frequency of activity in dive 

businesses both inside and 

outside the MPA, as well as an 

increase in charter boat operators 

and marine fishing inside MPAs 

compared to outside areas. This 

equates to a possible increase in 

the value of the MPA resource of 

£2.2 million (as measured by the 

proportionate spending and 

related turnover of these groups). 

Lyme Bay, 

UK 

 Ecological effects 

An ecological impact describes the cumulative effect on living organisms and their non-living 

environment due to anthropogenic or natural changes. In the literature, the ecological effect of 

fishery closures includes increases in sizes of organisms, increase in fish stocks and production, 

higher species richness, increase in biomass and density of economically important species, as 

well as changes in total ecosystem productivity, high fecundity and longevity, a more vibrant 

benthic ecosystem, and recovery of trophic structure (Selig & Bruno, 2010; Giakoumi & Pey, 

2017). 

Research on the ecological effects of closed areas suggests that the ecological effects are 

diverse (Halpern & Warner, 2002) and fall into two distinct categories such as changes 

occurring inside of the closure and outside the closure (Lester et al., 2009). It is widely accepted 

that spatial closures have positive ecological effects that occur within the closure, particularly 

on target species, stock structure, food webs, biodiversity, and habitats (Francour et al., 2001; 

Roberts et al., 2001; Halpern, 2003). However, the use of no-take reserves as a fisheries 

management tool is still under debate, since demonstrations of their effectiveness are quite 

difficult to implement (Abesamis & Russ, 2005). A study conducted by Pascual et al. (2016) 

reported that the Mediterranean respondents showed a neutral impact of MPAs on industrial 

fishing activities, while Black Sea respondents were negatively impacted in terms of lower 
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catch, landing, and biomass. For artisanal and recreational fishing, Mediterranean stakeholders 

gave positive feedback for the establishment of MPAs, especially increased catch rate and 

biomass. In contrast, Black Sea respondents were neither positively nor negatively impacted 

by the MPAs. Barrett et al. (2007) reported statistically significant increases in abundance of 

bastard trumpeter (Latridopsis forsteri) and other large fish (greater than 300 mm), as well as 

an about ten-fold increase in abundance of large fish and an almost two-fold increase in per-

site species richness of large fish in the Tinderbox Marine Reserve relative to control sites after 

10 years of protection in Tasmanian MPAs.  

The changes outside the closure include both spillover and export of larvae and fishes from the 

reserve to the water outside the reserve (Botsford et al., 2001; Gell & Roberts, 2003; Sale et 

al., 2005). A study conducted in the GBR region showed that no-take reserves benefit the 

overall ecosystem health of a waterbody (McCook et al., 2010) with a spillover effect evident 

in the supply of target fishes in nearby fished areas (Roberts et al., 2001; Russ, 2002; Russ et 

al., 2003; Silva et al., 2015). On the other hand, Williamson et al. (2004) provided empirical 

evidence against the concept of spillover effects when they studied the biomass and density of 

coral trout (Plectropomus leopardus) for about 3-4 years before, and 12-13 years after, the 

establishment of no-take reserves at two islands in the GBR. The result showed that the density 

and biomass of coral trout increased in protected areas but not in the adjacent fished areas 

(Williamson, et al., 2004). More recent research by Buxton et al. (2014) ascertained that the 

spillover benefit is only evident in poorly managed fisheries whereas very little or no spillover 

effect is found in well-managed protected areas.  

Closures help restore the population density and size composition of harvested species, which 

helps to sustain ecosystem biodiversity and the integrity of ecosystem functions (Barrett et al., 

2007; Russ et al., 2008; Lester et al., 2009). In the short term, following 1.5-2 years of rezoning 

of Australia's GBR, the density of the main target of reef line fisheries, coral trout, increased 

significantly in Palm and Whitsunday Island (Russ et al., 2008). Edgar and Barrett (2012) 

conducted a study and discovered that four species increased in biomass while only 2 of the 11 

exploited fish species and none of the 7 exploited invertebrate species showed significant 

indications of population recovery 3 years after the establishment of marine protected areas in 

temperate region of Australia. Several authors have argued that temperate reserves could lead 

to less changes in exploited species than tropical reserves due to two key reasons. First, 

populations in temperate climates are migratory and seem to be less likely to benefit from a 

reserve (Shipp, 2003; Kaiser, 2004). If the majority of fish are outside of reserve boundaries, 
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their populations will not be safeguarded. Second, temperate species usually have longer larval 

stages, have stronger larval dispersion capability, and more gene flow than tropical populations 

(Laurel & Bradbury, 2006; O'Connor et al., 2007). 

MPAs are likely to have a varying effect on individual species, depending on how they are 

exploited or affected by other activities outside the reserve, as well as physical attributes such 

as mobility, dispersal ability, reproductive ability, and life span; the nature of density 

dependence; and indirect effects due to interactions with other species that are directly 

impacted by reserve protection (Gaines et al., 2003; Micheli et al., 2004; Gerber et al., 2005). 

Notwithstanding empirical data showing that MPAs have a strong effect on fish biomass and 

size structure (Edgar & Stuart-Smith, 2009; Harrison et al., 2012; Edgar et al., 2014), its effect 

on benthic invertebrate communities is underrepresented (Micheli et al., 2004). Research 

conducted by Ferrari et al. (2018) found that as a short-term effect of MPA, several ecologically 

important invertebrates, such as massive sponges, brown macroalgae, and octocorals were 

widespread and numerous in no-take reserves. Similarly, Joshua et al. (2018) demonstrated that 

macro-benthic assemblage, richness, and diversity of species were significantly greater inside 

the MPA than outside and located shallower than deeper zones.  

The degree of recovery of fish stocks varies greatly depending on various factors such as 

locations, the magnitude of change, the extent to which power to detect the change in species 

of interest is possible, the amount of time it takes for species to respond the following 

protection, and the amount of confounding that stems from pre-existing spatial and temporal 

patterns, and errors caused by changing the behaviour of individual species (Willis et al., 2003). 

Because of these numerous constraints, it is impossible to provide an accurate assessment of 

geographic patterns associated with the effects of fishing and the suitability of the various size 

and design configurations used in MPAs. Furthermore, the inadequacy of "before" data may 

obfuscate the extent of change predicted as well as the interpretation of observed differences 

between protected and fished areas (Edgar et al., 2004). Before-after-control-impact analysis 

conducted by Edgar and Barrett (1999) in the no-take MPAs of Tasmania demonstrated the 

density of large fish increased in abundance compared to neighbouring areas that were fished. 

Such effects were not detected in the smaller reserves. During the declaration of MPAs, 

anecdotal evidence showed that fishing significantly modified the abundance of many 

Tasmanian inshore fishes with a few remarkable exceptions (Harries & Croome, 1989). 
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 Economic values and economic effects 

The majority of the fisheries management suggestions are based on the conventional method 

to fisheries economics (Clark, 2006), which is based on Schaefer (1954) and Gordon (1954). 

The Gordon- Schaefer model is used to analyse fishery management and policy (Zhang & 

Smith, 2006), particularly in three primary areas: such as monopoly, open access, and 

maximum sustainable yield (MSY). MSY and maximum economic yield (MEY) are 

management targets for fisheries resources. MSY is the largest amount of sustainable catch 

(tonnes) that can be harvested from a fish stock over an indefinite period under constant 

environmental conditions. MEY refers to the sustainable level of catch or effort that creates the 

largest positive difference between total revenues and the total fishing-related costs. In 

economics, marginal cost and marginal revenue are used to identify the level of output and per-

unit price of a product that will maximise profits. In a broader sense, marginal cost is the 

additional cost derived from the production of an additional unit of that good or product, 

whereas marginal revenue is the additional revenue generated from an increase in the sale of 

that product as an additional unit. Similarly, marginal utility is the additional benefit or 

satisfaction derived from consuming one or more units of goods or services. Economists often 

use this concept to measure consumers’ satisfaction, happiness, and pleasure. Measuring the 

marginal utility of recreational fishing is more difficult than for commercial fishing (Frijlink & 

Lyle, 2010).  

The term ‘economic value’ can be described as the welfare (utility) benefits obtained for a good 

or service and usually measured in monetary units (i.e., currency). There are some goods and 

services where the welfare (utility) benefit cannot be measured directly. Various methods have 

been developed for quantifying or estimating economic value (Bergstrom, 1990). 

Total economic value (TEV) is an established structure can assemble a variety of values related 

to coastal ecosystems (International Union for Conservation of Nature, 1998). The TEV of 

MPAs includes components of their use and non-use values. The use-value of MPAs can be 

classified as direct and indirect use values that supply a range of economic values for the 

society, which, subsequently, have a substantial effect on the regional economy (Mayo-

Ramsay, 2014). MPAs have a number of use benefits that can be categorised as direct and 

indirect values that include both market and non-market activities. Another category is the 

option value, which incorporates the value for future generations through the preservation and 

conservation of economically significant marine resources (Akhter & Yew, 2013). Non-use 
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values are associated with the benefits that derive without any physical use and simply relate 

to the benefits of understanding that a natural resource is protected (Abdullah et al., 2011). The 

non-use value is further sub-divided into bequest and existence values. Bequest values are 

related to the benefits derived from the knowledge that future generations will achieve benefits 

from the conservation of marine resources. Existence values are not related to the actual or 

possible use of the resources but are often reflected as the knowledge about marine resources 

which exists independently, regardless of the potential present or future use by the individuals 

(Hageman, 1985; Abdullah et al., 2011). Some of the various components of TEV are 

illustrated in Figure 2-2. 

 

Figure 2-2: Total economic value (TEV) chart with some examples. Source: The Victorian 

Coastal Council (2007)                                                                        

Unlike market goods, most environmental goods or services cannot be traded (Gregg & Rolfe, 

2013). Non-market valuation approaches are the only way to assign their monetary values. 

Mayo-Ramsay (2014) identified that the main uses of MPAs are market activities (e.g., 

commercial fishing, charter operations, whale and dolphin watching, etc.), and non-market 

activities (e.g., recreational fishing, education and research, scuba diving, boating, and 

snorkelling, etc.). Increased interest in recreational assets and the requirement for more efficient 
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management have prompted management personnel to pursue economic valuation of 

recreational benefits.  

The economic impact examines the effect of an event, decision, or policy on the economy in a 

specified region. It generally evaluates changes in economic activity between two scenarios, 

such as before and after of any policy implementation. The establishment of new NFZs in three 

regions might have an overall economic impact on a different group of stakeholders, which is 

related to revenue, wages, employment, and business profiles. Generally, economic impacts 

imply the effects of expenditure on various fishery resource activities filtering down through 

the community (European Inland Fisheries Advisory Commission, 2004). It does not indicate 

the most effective way of utilising a resource. Economic impact analysis depends on the 

consumers’ or producers’ expenditure for the product. The higher the spending on the goods, 

the greater will be the economic impact (European Inland Fisheries Advisory Commission, 

2004). The establishment of the NFZs could have a significant impact on local economies, such 

as the upgrading of recreation-based amenities and the deceleration of commercial seafood 

businesses.  

Economists identify a distinct difference between economic value and economic effect. 

Economic value is the net benefit achieved by society, while economic effects determine the 

flow of various economic actions through their regional economy (Miller & Blair, 1985). To 

implement any decision regarding resources, decision-makers give priority to the economic 

viability of the services. An increased value supports the decision in a positive way, while 

decreased value conversely indicates a negative result of the decision (European Inland 

Fisheries Advisory Commission, 2004). In contrast, economic impacts are not used to 

implement any specific decision or action, but they are instead used to investigate what 

distinctive section of the economy is affected either positively or negatively by a certain policy 

at a certain level.  

 Effects of spatial closures 

 Social implications 

Spatial closures that are specific to commercial fishing will provide increased opportunities for 

recreational fishers (Voyer et al., 2014). Globally, from a social point of view, commercial 

fishing closures will increase recreational fishers’ satisfaction and the opportunity for tourism 
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(Davis & Tisdell, 1996; Agardy et al., 2003; Hargreaves-Allen et al., 2011), and result in an 

increase in recreation facilities (Lynch et al., 2004). The term ‘satisfaction’ is the measure of 

the performance of any product or service (Burns et al., 2003; Oliver, 2010) and is generally 

determined as the basic ‘product’ of the recreational fishing experience (Driver & Tocher, 

1970; Driver & Knopf, 1976; Hendee & Bryan, 1978). The determination of satisfaction is a 

very complex cognitive process (Arlinghaus, 2006), and a number of factors are likely to 

contribute to satisfaction (Holland & Ditton, 1992; Schultz & Dodd, 2008). The factors are 

subjective (e.g., catch related desire, the perception of weather and fishermen, etc.) and 

situational (e.g., weather condition, harvest, and crowding, etc.) in nature where overall 

satisfaction is directly influenced by subjective determinants and indirectly by situational 

determinants (Graefe & Fedler, 1986). According to Ditton and Fedler (1988), satisfaction 

could be estimated by determining the difference between the outcomes one thinks or expects 

should be received (motivation) and the perceived fulfilment of those outcomes.  

Fishers’ satisfaction is a very significant element of recreational fishing, and this is one of the 

preliminary objectives of management officials as it is likely related to subsequent fishing 

events (Graefe & Fedler, 1986; Holland & Ditton, 1992; Radomski et al., 2001; Game, Fish 

and Parks Commission, 2019). The main goal of determining recreational fishers’ satisfaction 

is to obtain a maximum human benefit through providing a quality fishing opportunity to its 

users (Pollock et al., 1994; Weithman, 1999). Feddler & Ditton (1994) concluded that the 

amount of entertainment obtained from a fishing trip is positively related to the size and/or 

number of fish harvested from waterbodies. Graefe and Fedler (1986) studied marine 

recreational fishers’ satisfaction, however, and noted that satisfaction is not solely dependent 

on the size or number of fish caught. It is rather dependent on how fishers’ have evaluated their 

catch considering their expectations and preferences. This view is supported by Holland et al. 

(1992), who assigned priorities to overall benefits that were gained from recreational 

experiences over the entire range of benefits achieved from catching fish. In the literature, 

another broader concept of satisfaction is ‘overall satisfaction’ that refers to fishers’ satisfaction 

with all aspects and experiences associated with fishing (Bitner & Hubbert, 1994). Previous 

observational studies have shown that users perceive these two satisfaction conceptualisations 

differently (Bitner & Hubbert, 1994). However, there is a link between the two concepts, as 

overall satisfaction is dependent on information from past encounters and experiences, it can 

be viewed as a function of all previous satisfaction (Teas, 1993; Parasuraman et al., 1994; Jones 

& Suh, 2000). Satisfaction could be argued to be a predictor of overall satisfaction (Teas, 1993). 
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Sometimes satisfaction is confused with anglers’ motivations; however, the two concepts, 

while related, are mostly independent (Peyton & Gigliotti, 1989; Arlinghaus, 2006). Some 

authors have described the motivations which drive recreational fishers to participate in fishing 

activities (Fedler & Ditton, 1994; Arlinghaus, 2006). Fishing motivations may be divided into 

two categories: fishing-specific elements (e.g., catching fish) and more general psychological 

goals unrelated to the catching process (commonly referred to as activity general aspects) (e.g., 

a desire to be outdoors, enjoying nature, and relaxation). Although the relative relevance of 

catch and non-catch motives varies per fishing community, most studies agree that both catch 

and non-catch motives must be considered (Fedler & Ditton, 1994; Ditton, 2004; Beardmore 

et al., 2011). 

The level of satisfaction depends on some catch and non-catch related outcomes (Holland & 

Ditton, 1992) and the extent to which recreational fishers could achieve a blend of experiences 

that he or she might expect from a fishing trip (Hendee, 1974; Graefe & Fedler, 1986; 

Arlinghaus, 2006). Fedler (1984) suggested that fishing trip satisfaction-related studies should 

include three dimensions of experience: enjoying nature, relaxation, and reflection (nostalgia). 

Similarly, the results of surveys by Holland and Ditton (1992) for American anglers identified 

two important aspects of recreational fishing trip satisfaction: feeling a sense of independence 

and passing quality time with nature. Ormsby (2004) found similar results for fishers in the 

GBR region, who also identified a preference for being outdoors and enjoying nature.  

A large and growing body of literature has investigated angler satisfaction. A recent study 

conducted in New Mexico by Davis Innovations (2015) categorised anglers as very satisfied 

(36.2%), satisfied (72.1%), and not satisfied (10.0%) from a total of 410 respondents. Sutton 

(2006) carried out empirical studies on recreational fishers’ satisfaction from a total of 1,385 

respondents of GBR and non-GBR regions in Queensland and noticed a large number of fishers 

(73% non-GBR; 75% GBR) were moderately or very satisfied with their fishing. This body of 

research implies that the determination of anglers’ satisfaction is very crucial as managers can 

modify policies with respect to different angler types (e.g., commercial and recreational) 

(Brinson & Wallmo, 2017).  

Different fisher groups have different expectations (a strong belief that something will happen 

in the future). The main driving force of satisfaction is related to catch expectations (Hudgins 

& Davies, 1984; Graefe & Fedler, 1986; McMichael & Kaya, 1991; Spencer & Spangler, 1992; 

Arlinghaus, 2006). In terms of the relationship between satisfaction and expectation, 

expectation can be defined as advance estimations made by stakeholders while receiving 
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service (Oliver, 1981; Aksu et al., 2010). Satisfaction with previous performance is likely to 

serve as the basis for expectations of future performance (Ofir & Simonson, 2007). According 

to Graefe and Fedler (1986) satisfaction relies not on the actual number of catches, but on how 

fishers evaluate catches in relation to their expectations and desires. Satisfaction may be 

derived from either catch-related or non-catch-related outcomes (Spencer, 1993) which may 

influence future expectations. It is critical for management bodies to determine fishers' 

expectations in advance, since failure to do so may result in negative disconfirmation (i.e., 

expectations are not met) of expectations (Brunke & Hunt, 2008). Some research suggests that 

fishers’ expectations varies with net-free zones (NFZs), fishing frequency (Martin et al., 2019), 

fishing experience, and age of fishers (Aas, 1996; McCormick & Porter, 2014). According to 

Martin et al. (2019), fishing expectations may be regarded as independent of satisfaction, which 

indicates that an individual might be satisfied without expecting significant change in the 

future. Other studies indicate that satisfaction is frequently defined in terms of expectations 

(Spencer & Spangler, 1992; Manning, 1999), but the literature lacks a study examining an 

alternative theoretical prediction about the relationship between fisher satisfaction, overall 

satisfaction with past performance, and expectations for future performance. 

The evaluation of recreational fishers' satisfaction and expectations are an important 

component of assessing fishers’ feelings towards, and understanding of, existing policies that 

are implemented to benefit recreational fishers (McCormick & Porter, 2014). A comprehensive 

understanding of fishers' satisfaction and expectations can assist managers in tailoring 

management plans for various groups of recreational fishers (Brinson & Wallmo, 2017). 

Additionally, it could provide insight into the motivations, attitudes, interests, and expectations 

of recreational fishers in response to various policies (Mclnnes et al., 2013). Hence, a better 

understanding of the relationship between satisfaction, overall satisfaction, and expectation and 

the strength of their relationship is required to assess the effectiveness of the policy shift from 

commercial to recreational. 

 Ecological implications 

In recent years, fish stock management issues have drawn considerable international attention. 

It is well recognised that the world’s capture fisheries are under increasing threat from 

overexploitation, habitat destruction, and water pollution (Balston, 2009a). For the long-term 

sustainable harvest of fishery resources, quantitative science-based management initiatives 

have been introduced (Geromont & Butterworth, 2014). Among these initiatives, commercial 
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fishery closures are considered a beneficial strategy for managing the effects of commercial 

fishing on certain fish or habitats (Australian Fisheries Management Authority, 2017). Fishery 

closures may help to conserve the abundance of a target species, as well as their habitats 

(Abbott & Haynie, 2012). In a fishery, CPUE (catch per unit effort) data is often used to 

represent an indirect measure of the abundance of a fished species. The CPUE is calculated by 

dividing the total catch by the total fishing effort during a certain time period (Van Hoof et al., 

2001). Assuming other variables affecting catch and effort are accounted for, a declining CPUE 

implies overexploitation of stock, while an unchanged CPUE indicates sustainable harvesting 

of that stock (Yadav et al., 2016). Forecasting of the future CPUE is a widely used approach 

where statistical models describe a particular fishery and underlying fishery dynamics based 

on historical data to predict future catches. The annual CPUE estimate may assist management 

bodies to understand the features of stock assessment to set objectives and thus predict, warn, 

and regulate unforeseen alterations in stock size, yield, and market demand (Alder et al., 2008). 

Modelling and forecasting of future CPUE is an essential tool in terms of understanding the 

fishery dynamic and for making quantitative recommendations for the short-term management 

of fisheries resources (Stergiou & Christou, 1996). In order to achieve accurate and reliable 

forecasts of fish catch, a range of time series models with various levels of complexity have 

been established and evaluated (Mini et al., 2015). Among them, autoregressive integrated 

moving average (ARIMA), vector auto regression (VAR), multiple linear regression (MLR), 

neural network (NN), state space model, exponential smoothing are widely used time series 

models. These models either alone or in a combination have been applied in a range of fishery 

dynamics situations (Stergiou et al., 1997; Tsitsika et al., 2007; Abdelaal & Aziz, 2012). 

However, in Australia, applications are much more limited. For instance, in the Princess 

Charlotte Bay of Queensland, the effect of climate variability on commercial barramundi catch 

has been examined, and a prediction model has been developed by Balston (2007). Eveson et 

al. (2015) developed a seasonal habitat preference model for forecasting the southern bluefin 

tuna of Great Australian Bight.  

Time series is a sequence of data points measured over a period of time at regular time intervals 

(Adhikari & Agrawal, 2013). Time series analysis aims to understand patterns that evolve over 

time and use these patterns to predict future behaviours. The units of time used for time series 

varies with the situation to be modelled and could be years, quarters, month, days, hours, 

minutes, or even microseconds (Bako, 2014). For the time series, equally spaced observations 

are more important than the unit of time (Iffat, 2009), and time lags, delays or steps are more 
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important than the actual time. The lag operator allows models to quantify the connection 

among past, present, and future values (Malik, 2018). Time series models often use the natural 

one-way time order to express values for a given period as they are derived in some way from 

past values rather than future values (Brid, 2018). One of the main objectives of time series 

analysis is modelling and forecasting. Time series forecasting involves three fundamental 

approaches: regression-based methods, heuristic smoothing methods, and general time series 

(Montgomery et al., 2002). Among the most notable are ARIMA models, MLR, harmonic 

regression (HREG), non-linear regression (NLR), dynamic models, smoothing models, 

generalised autoregressive conditional heteroscedasticity (GARCH), Gaussian autoregressive 

models, VAR, and the vector error correction model (VECM) (Raman et al., 2018). The 

regression-based forecasting model is widely used in fisheries management (Raman et al., 

2017). Longer-term forecasting can be carried out by regression analysis using moving average 

models or series containing deterministic patterns (Yaffee & McGee, 1999). 

Prediction of future fish catch is a key component of fish stock management because it plays a 

vital role in strategy development and policy formulation (Stergiou & Christou, 1996). 

Predictions are useful for in-season or post-season accountability, which provides a guideline 

for proposed management measures. The body of knowledge on forecasting applications in 

fisheries management is consistently increasing. Borges et al. (2003) applied time series 

analysis to explore the impact of wind conditions as well as the North Atlantic Oscillation 

(NAO) on sardine (Sardina pilchardus W.) catches. The analysis demonstrated evidence of a 

climate-controlled regime-shift, where recruitment was forced to a lower level when the wind 

exceeded a certain threshold in the winter season. In order to evaluate the interrelationships 

between the ranges of 15 freshwater species and their environment, Leathwick et al. (2006) 

have used two analytical techniques: generalized additive models (GAM) and multivariate 

adaptive regression splines (MARS). The result suggests that there is little difference between 

the performance of the two models. Hanson et al. (2006) assessed the annual landings of 

Atlantic menhaden (Brevoortia tyrannus) using three-time series models and found that 

artificial neural networks and multiple regression might be utilized for this commercial 

menhaden fishery. Sathianandan (2007) used VAR models to forecast the relationship between 

landings of eight commercially significant fishes in Kerala from the year 1960 to 2005. The 

analysis resulted in 16 individual time series models and the relationship and behaviour of each 

time series were extensively examined.  
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Along with other time series models, a number of authors have employed the ARIMA, 

SARIMA (seasonal ARIMA), and SETARMA (self-exciting threshold autoregressive moving 

average models). For example, Prista et al. (2011) used a SARIMA model using monthly catch 

data to identify the future landings of meagre fishery in Portugal. Ghosh et al. (2014) employed 

a very versatile SETARMA model, which describes cyclic fluctuations in the prediction of 

mackerel (Rastrelliger kanagurta) harvest in India. Farmer and Froeschke (2015) compared 

the forecast performance of generalized linear models (GLMs), GAMs, and SARIMA for 

recreational catch in the south-eastern United States. For all stocks of interest, none of the 

models yielded the best results. Mini et al. (2015) applied three univariate forecasting methods 

such as Holt-Winters, ARIMA, and neural network autoregression to model the CPUE (catch 

per unit effort) series along the northeast coast of India. Coro et al. (2016) forecasted skipjack 

tuna (Katsuwonus pelamis) catch from the Indian Ocean using historic catch and effort data. 

Lawer (2016) evaluated the performance of three time series models (ARIMA, artificial neural 

network, and exponential smoothing) for the prediction of annual fish catch in Ghana. The 

results show that none of the models are ideal for modelling all of the fish catch. The study also 

recommended comparing different methods before choosing a suitable one for use. 

Karunarathna and Karunarathna (2017) and Ogunbadejo et al. (2018) found the ARIMA (1,1,1) 

model was the best-fitting and parsimonious model for forecasting fish production in Sri Lanka 

and Nigeria. Raman et al. (2017) found ARIMA with log-transformed data had a better fit than 

the intervention model based on the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC). A recent study by Sydeman et al. (2018) predicted herring biomass 

using population and environmental parameters. Their model offers management scenarios 

which can inform harvest control rules. In Australia, a barramundi catch prediction was made 

by Balston (2009a) for the Princess Charlotte Bay of Queensland, where the author used a 

forward stepwise ridge regression model to predict the catch. Some relevant studies that used 

forecasting in fisheries management are presented in Table 2-2. 
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Table 2-2: Summary of studies that used forecasting in fisheries management 

Authors Method employed Research interest Study site The output of the study 

Monteiro 

(2002) 

Growth model To study fish 

population growth 

in coastal waters 

Tagus 

estuary of 

Portugal 

The growth model 

provides the basis for 

developing a model of 

fish movement in the 

coastal environment 

based on their 

environmental 

preference 

Haque et al. 

(2005) 

ARIMA model Forecasting 

marine and inland 

fish production  

Bangladesh Result estimated that the 

annual fish production 

for the year 2000-01 to 

2004-05 were 

respectively 1763, 1867, 

1974, 2085, and 2199 

thousand tons 

Komontree et 

al. (2006) 

One-way analysis 

of variance, 

multiple linear 

regression, and time 

series model 

Forecasting the 

number of various 

varieties of fish 

landings, allowing 

for seasonality 

and trend 

Thailand Result found evidence of 

decreased catch rates for 

Mackerel, squid, shrimp, 

and crab but increased 

for scads catch only 

Godwin et al. 

(2007) 

Numerical fish 

surrogateTM (NFS) 

Designed fish 

bypasses and 

instructive 

structures at 

hydroelectric 

facilities through 

combing three 

sorts of modelling 

approaches 

Snake and 

Columbia 

rivers in the 

Pacific 

Northwest 

Predicted fish behaviour 

and trajectories 

Gutiérrez-

Estrada et al. 

(2007) 

Various models of 

computational 

neural networks 

(CNN) and ARIMA 

One-month ahead 

forecast of 

anchovy catch 

North area of 

Chile 

Recurrent neural 

networks and seasonal 

hybrid CNN + ARIMA 

models recorded the 

general trend of the 

historical data 

Chesoh and 

Choonpradub 

(2011) 

Regression model To cluster fish 

community 

structures using 

monthly fish catch 

data 

Songkhla 

Lake of 

Thailand 

The model was found 

efficient in clearly 

separating fish 

community clusters with 

no overlap in between 

freshwater and marine 

water clusters 

Sankar (2011) ARIMA model Forecasting fish 

product export  

Tamilnadu of 

India 

ARIMA (0,1,2) model 

predicted that the fish 

export has increased 
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Authors Method employed Research interest Study site The output of the study 

    114,695 tons in 2015 

from 74,549 tons in 2008 

Hobday et al. 

(2016) 

Predictive ocean 

atmosphere model 

for Australia 

(POAMA) 

Seasonal forecast-

ing of aquaculture 

and marine fisher-

ies 

Australia Depending on the season 

and region of interest, 

forecast factors include 

rainfall, air, and water 

temperature are regarded 

as useful for up to about 

4 months in the future 

Raman et al. 

(2018) 

Seasonal auto-

regressive 

integrated moving 

average with 

exogenous input 

(SARIMAX) model 

Forecasting of 

monthly total fish 

landings with the 

influence of three 

external physicoc-

hemical factors 

Chilika 

lagoon 

of India 

Result found a positive 

influence of temperature 

and salinity on fish catch, 

contributing more than 

26% to the total annual 

catch  

Mahalingaray 

et al. (2018) 

ARIMA and 

artificial neural 

network (ANN) 

Forecasting of tot-

al fish production  

India The ANN model produc-

ed the best forecast for 

future fish production  

The barramundi (Lates calcarifer), an emblematic species in Queensland, is an important fin-

fish species for commercial, recreational, and indigenous fisheries in Australia (Balston, 

2009a), and contributes a vital role in the regional economy of coastal Queensland (Rose et al., 

2009). In terms of stock status, Queensland's barramundi is estimated to be composed of seven 

genetically different populations. According to the status of the Australian Fish Stocks report 

in 2016, stocks in the southern Gulf of Carpentaria account for more than half of Queensland's 

annual commercial barramundi catch and were recognised as the most decreasing stock in 

comparison to others (Saunders et al., 2016). Since 1981, several management programmes 

have been implemented to reduce fishing pressures on this population. More stringent access 

to the sea has been imposed on the Gulf of Carpentaria's Inshore Fin Fish Fishery, resulting in 

a reduction in the number of commercial licences from 109 in 1998 to 85 in 2015 (Queensland 

Government, 2017c).  

In 2015, a new restriction on the use of nets in commercial net fishing for barramundi was 

implemented in three regional Queensland cities on the grounds that fish population (including 

barramundi) will be conserved, recreational fishing will be increased, and spending on local 

fishing tourism-related businesses will be increased (Queensland Government, 2016). The 

resulting shift in fishing pressure was considered likely to improve the barramundi stock 
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structure. No prior research has used forecasting applications to assess the ecological effect of 

netting closures on CPUE, particularly in Queensland. 

 Economic implications 

There is a growing body of literature that examines the economic implications of spatial 

closures (Farrow, 1996; Milon, 2000; Sanchirico et al., 2002). Closure areas have the potential 

to improve coastal economies through enhancing recreational and charter fisheries, although a 

decrease in profitability from the commercial fishery is also evident (Brown, 2016). Pascoe et 

al. (2014) suggest that the closure areas can boost regional economies through supporting 

recreation-related businesses, such as fishing tackle shops, tourism, recreational and charter 

fishing, whose economic value can outweigh the loss in the commercial fishery. The economic 

implications of spatial closures are broadly described in the following sub-sections. 

 Economic effects 

Spatial closures have some influential economic impacts on both commercial and recreational 

fishers. Recent studies in protected areas of the GBR have shown that ‘no-take’ reserves serve 

as an area of increased tourism that in turn broadens the local economy (Kenchington, 2003). 

Mclnnes et al. (2013) also argued in support of this viewpoint, stating that closures negatively 

impact commercial seafood business but alternatively strengthen the local economy by offering 

some businesses or job opportunities such as tackle shops, tourism-based industries, and 

accommodation providers, etc.  

The economic effect can be determined by assessing the implicit linkage among different 

economic activities, and it is expected that the total effect will exceed the initial expenses and 

the activity-specific differences may occur which varies over time (Reid, 2008). The total effect 

is the sum of the direct, indirect, and induced economic effects that underpin the impacts 

(wages, income, and employment) perceived by the demand for goods or services (Kirkley, 

2009). The direct effect is the effect that emerges directly from an initial expenditure (e.g., 

purchase) that results in an increase in local income (wages, income, and employment) and 

inputs. The impact that emerged from the purchase of locally produced inputs in following 

spending rounds is often termed as an indirect effect. Induced effects are the economic activity 

that is created as a result of personal consumption expenditures by workers in all of the directly 
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and indirectly impacted industries, including accountants, wholesalers, and other workers in 

these sectors who spend their income. 

In order to fully predict the effects of fisheries management on the economy, an economic 

impact study is often performed in connection with proposed legislation or regulatory changes. 

The novel economic impact assessment process consists of four steps (Stoeckl et al., 2010). 

The first involves determination of expenditure patterns of each visitor category and the sectors 

in which most of the money was spent. The second involves conducting multiple regression 

tests to examine the drivers of expenditure, especially to check whether nature-related trip 

motives and activities are statistically significant determinants for each visitor category, after 

controlling for other determinants. In the third, data collected from participants is used to 

determine the effect that different hypothetical scenarios including environmental deterioration 

and/or higher pricing might have had on their choice to visit the location and/or the duration of 

their stay. In the fourth step the test will identify responses to hypothetical bias, which must be 

controlled. Once this has been completed, the controlled responses will be integrated with the 

expenditure data to estimate the reduction in visitor expenditure that would result from each 

hypothetical scenario (Stoeckl et al., 2010).  

Spatial commercial fishing closures have an immediate economic impact on the livelihood of 

commercial fishers, as they decrease the profitability of commercial fishing operations (Brian 

et al., 2005). At the same time, charter fishing and related tourism industries may generate new 

economic opportunities based on a commercial fishing closure (Brown, 2016). Moreover, 

closures can affect a number of other stakeholders, such as recreational fishers, bait and tackle 

retailers, seafood retailers, and seafood consumers. Young et al. (2016) suggested that 

recreational-only fishing areas could strengthen the coastal economy by providing a range of 

supporting amenities (e.g., bait and tackle shops, tourism-based industries, etc.) through which 

the economic value of the recreational sector could exceed the change in the value of the 

commercial sector. Morison et al. (2013) has summarised some economic consequences of 

spatial closures on a commercial snapper fishery (Chrysophrys auratus). A reduction in catch 

rate following the closures lowered the income of commercial fishers, and some had to relocate 

their fishing business to other areas due to the negative impact of the closure on their 

businesses.  
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 Economic values 

Economic valuation is considered one of many feasible ways to outline and measure values. 

The appropriate measures for assessing these values incorporate the determination of consumer 

and producer surplus (NSW Marine Parks Authority, 2004). Consumer surplus is the difference 

between the amount of money consumers pay for a good and the maximum amount that they 

would be willing to pay for the service. Consumer surplus (CS) is the area under the demand 

curve and situated above the price line. From Figure 2-3, line BA describes the demand curve 

for a good X that indicates how much an individual is willing to pay for each unit of X. When 

the price is P, the customer purchases the Q amount from good X. The customer’s willingness 

to pay for that good is at P1 for Q1 and P2 for Q2 which is greater than the actual price P*. 

Hence, the difference between the money that the customer has already paid and what they are 

willing-to-pay for that good is termed as consumer surplus. In the figure, C1, C2, and C are the 

equilibrium points where the supply and demand are equal. If the price changes from P1 to P2 

then the consumer surplus (the triangular area in the figure) also changes from BP1C1 to 

BP2C2. 

 

 

Figure 2-3: Consumer surplus. Modified from European Inland Fisheries Advisory 

Commission (2004) 

Where market information is not available it becomes difficult to estimate consumer surplus 

amounts. There are two widely used approaches to estimate the economic values of a non-

market outcome: revealed preference and stated preference techniques (see Figure 2-4). 

Revealed preference techniques use data on choices that have been made by people in the 

course of their normal life to evaluate statistical models of recreation demand. The model 
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captures tradeoffs for recreational fishing trips in terms of expected catch, trip cost, 

environmental conditions, management rules, and other factors deemed significant in 

explaining recreational site choice (Hicks, 2002). Stated preference techniques are much more 

flexible (researchers may enquire about circumstances that are rare or do not yet exist), but 

they are potentially hindered by social desirability bias/hypothetical bias. In contrast, revealed 

preference techniques are less flexible (researchers can only consider behaviours that occur in 

the "real" world), but they generally do not suffer from social desirability bias and are seldom 

influenced by hypothetical bias. 

 

Figure 2-4: Summary of non-market valuation methods 

The travel cost method (TCM) and hedonic pricing approach are two extensively used revealed 

preference techniques. TCM has been widely used over the past four decades for valuing site-

specific recreational opportunities (Ward & Beal, 2000; Haab & McConnell, 2002). The 

fundamental concept is that visitors must travel to the recreational site and incur the cost to 

cover the distance from their original location to the site (Haab & McConnell, 2002). The 

model can represent consumer choice and preferences as it is based on consumer theory, and it 

uses data from the real market situation (Haab & McConnell, 2002). Depending on the 

definition of a dependent variable, TCM has two basic variants: the zonal travel cost method 

(ZTCM) and the individual travel cost method (ITCM) (Ward & Beal, 2000; Stoeckl & Mules, 

2006). ZTCM is applied to the areas with very low individual visitation patterns where 

recreational visitors are divided into the different zones they came from. ITCM is useful for 

the areas that have high individual visitation rates (Bateman, 1993; Bennett, 1996; Prayaga et 

al., 2006). ITCM relates the number of visits made by an individual over a specific period of 

time to the related travel cost. Parsons (2017) categorised TCM into two distinctive models: 
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single site model (SSM) and random utility model (RUM). SSM can be used to value the 

recreational function of an entire recreational site and is suitable to measure the values of some 

closing areas due to pollution or contamination. RUM allows visitors to identify a suitable site 

from a number of alternatives (Rolfe & Prayaga, 2007). 

The hedonic pricing approach is used to estimate the implicit price for a set of attributes that 

make up the good (Baker & Ruting, 2014). The calculation employed in this method is simple 

and mostly used for valuing environmental facilities that influence the price of market goods 

(Akhter & Yew, 2013). The approach is often used in the valuation of properties, such as 

houses, and accounts for economic expenses or advantages that may impact the total value of 

the asset. If non-environmental elements are adjusted for (kept constant) while running this sort 

of model, any residual price variances will indicate changes in the goods’ external 

surroundings. The hedonic pricing model has some advantages such as it is generally simple to 

use when evaluating properties since it is based on real market values and comprehensive, 

readily accesible data sets. At the same time, the technique is adaptable enough to account for 

linkages between other market commodities and external factors. Hedonic pricing also has 

important limitations, such as its capacity to only capture customers' willingness to pay for 

what they perceive to be environmental differences and the repercussions of those changes. 

Furthermore, hedonic pricing does not always account for external factors or regulations (e.g., 

taxes and interest rates), which may have a substantial influence on prices (Marshall, 2021). 

Stated preference techniques require information from people about how much they value a 

constructed non-market outcome. Data collection involves a survey that asks people about their 

willingness to pay for a non-market service (Baker & Ruting, 2014). Contingent valuation 

creates a hypothetical market scenario that might involve non-marketed goods. The contingent 

valuation method works by directly asking a sample of individuals from a population to make 

choices about the amount they are willing-to-pay (WTP) for some environmental goods (Boyle, 

2003). WTP is the maximum sum of money an individual is willing to hand over for a product 

or service (Job, 2009). The direct survey approach offers an open-ended question that asks 

consumers’ maximum willingness to pay for the products or services.  

Regardless of some biases associated with this Contingent Valuation (CV) method, it has 

several advantages. Firstly, it can estimate both use and non-use values. Secondly, it is possible 

to get useful information even if the consumer’s past behavioural data had not been collected. 

Thirdly, the method is capable of providing valid and reliable data for the study (Hoevenagel, 

1994). Among various question formats, six broad types of formats viz. open-ended, close-
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ended, referendum, payment card, payment ladder, and bidding or bargaining formats are used 

to determine the WTP for different hypothetical scenarios (Frew et al., 2003). The choice of 

question format is very important for CV studies as the WTP is sensitive to the different 

question formats (Uehleke, 2017). Many studies found that the response rate is higher in a 

closed-ended format than the open-ended format as it is easier for respondents to provide 

monetary assessment when they are driven by a price (Whynes et al., 2003). In the referendum 

format, a status quo alternative and a single improvement in the hypothetical scenario that 

incurs an extra cost are presented to the respondents (Rolfe & Dyack, 2010). The payment card 

format comprises a set of values where the respondents are asked to identify the highest amount 

they would like to pay for the goods or services. The payment ladder is the discrepancy between 

the amount that respondents are willing to pay (for sure) and the amount they would not pay 

(for sure) for a good or service. Lastly, the bidding format is like an auction, where the 

respondents are asked to nominate a certain amount for a hypothetical good or service. 

Depending on their responses, they are further asked for lower/higher bids and through this 

process, the maximum WTP is determined (Sakashita et al., 2012).  

Choice modelling is one of the stated preference approaches which is widely used to measure 

consumer preferences. It is considered as the most scientifically sound tool for investigating 

and comprehending decision-making processes. In this method, a direct survey approach (e.g., 

conjoint analysis and discrete choice analysis) determines WTP by evaluating customers’ 

choice from a number of alternatives including a ‘none’ choice option (Breidert et al., 2006). 

Choice modelling is a method that offers individuals a choice from multiple options that are 

made up of the number of characteristics that describe a particular policy outcome (Baker & 

Ruting, 2014). There are four basic variants of choice modelling viz. contingent ranking, 

contingent rating, paired comparisons, and choice experiments. The contingent ranking method 

allows respondents to identify and rank a number of alternative options, which are defined by 

a variety of scenarios provided at various levels across options (Slothuus et al., 2002). In the 

contingent rating format, respondents are introduced to some objects or scenarios to which they 

rate their preferences on a numerical scale (Ahmad, 2009). In the paired comparisons method, 

respondents select the most preferred answer from a set of two choice options on a numerical 

scale (Hanley et al., 2001). Lastly, from a set of alternative options provided in a choice 

experiment method, respondents are asked to select a single preferred combination of scenarios 

(Yacob et al., 2008). 
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 Recreational fishing values in Queensland 

There is a growing body of research focused on the economic valuation of protected areas 

(Ambrey & Fleming, 2012). Akhter and Yew (2013) identified approximately 17 studies 

dealing with the economic valuation in MPAs in Southeast Asia from 1998 to 2009. However, 

in Australia little research has been done on the economic valuation of recreational fishing 

(Rolfe & Gregg, 2012; Yamazaki et al., 2013), especially in the field of spatial fishery closures. 

Some notable studies are reported as follows. 

Swait et al. (2004) and Pascoe et al. (2014) evaluated recreational fishing values in Western 

Australia and Queensland by using revealed preference techniques, whilst Yamazaki et al. 

(2013) and Wheeler and Damania (2001) used stated preference techniques to estimate 

recreational values of fishing in Tasmania and New Zealand. Rolfe and Prayaga (2007) and 

Prayaga et al. (2010) used both techniques to calculate recreational fishing values in the GBR 

region and three Queensland freshwater impoundments.  

Rolfe and Prayaga (2007) used TCM and CV to value recreational fishing in three freshwater 

impoundments of Queensland. The consumer surplus per fishing group per trip for the frequent 

anglers was estimated at $543.36, $958.30, and $1,776.30 respectively at the three dams, or 

$220.88, $358.92, and $440.77 per person per trip, respectively. The CV value for occasional 

anglers travelling on longer trips was found $191.49, $1,006.34, and $3,436.74 per group per 

trip, respectively, or $59.65, $348.22, and $904.40 per person per trip, respectively.  

Prayaga et al. (2010) used TCM to estimate the values of recreational fishing trips off the 

Capricorn Coast of Central Queensland. Values were recorded as $385.34 per group/trip and 

$166.82 per individual/trip. The average length of the trip was for 1.54 days, this translates to 

$108.32 per individual fisher per day. 

Pascoe et al. (2014) also used TCM to estimate recreational fishing value in Moreton Bay of 

Queensland. The value was found to increase between $1.3m to $2.5m per year with a current 

total annual value of around $20m. The average consumer surplus per person per trip ranged 

from $60 to $110. 

Windle et al. (2017) used TCM to identify the economic value of beach, other land-based, and 

fishing (land and water) in the Gladstone Harbour area of Queensland. The study estimated the 

recreational value of fishing was $143 per trip per household. 
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A more recent study conducted by Farr and Stoeckl (2018) used TCM to identify the 

recreational fishing values under the condition of uncertainty in Townsville, Queensland.  

 Conclusions 

Spatial closures are an example of a highly contested conservation tool that also have non-

conservation benefits, such as increased opportunities for recreational fishing, nature-based 

tourism, a flourishing charter industry, and resulting economic growth. The introduction of the 

new closures may have a number of potential and predicted socio-ecological flow-on effects. 

The effects might come from social, ecological, and economic perspective. In terms of the 

social aspect, the implementation of closures could result in an increase in recreational catch 

rates of species previously targeted by commercial netting, as well as higher recreational 

fishers' satisfaction and expectations. In terms of the ecological aspect, the closures help to 

achieve sustainability by reducing fishing mortality, increasing the spillover effect, which 

allows more fish for commercial harvest outside of the closure, and maintaining an abundant 

fish population for recreational harvests. In terms of the economic aspect, spatial closures have 

significant economic effects on both commercial and recreational fishers. Closure may serve 

as an area of increased tourism which broadens the local economy and helps to increase the 

economic value of recreational fishing, which may surpass the loss in commercial fishing. 

The newly established commercial netting closures near three regional areas in Queensland is 

expected to widen recreational fishing opportunities, improve stock structure of recreationally 

and commercially important fish species, and boost recreation-based economic growth.  

However, the existing literature has done little to investigate the actual social, ecological, and 

economic consequences of changes in commercial fishing pressure in these areas. Hence, the 

study has attempted to identify some research approaches to deal with the research gaps 

indicated by the literature review. 
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 Overview 

The purpose of this study was to develop an understanding of the short-term effects of 

removing net fishing pressures (from the Cairns, Mackay, and Rockhampton) and assess the 

extent to which netting closures may enhance ecological diversity and social, and economic 

benefits. To determine and compare the social, ecological, and economic values and benefits 

of netting closures, the study considered three non-closure areas (reference sites) along with 

three closure areas where commercial net fishing is permitted to operate.  

To assist management bodies in taking further steps to enhance recreational fishing 

opportunities and guiding overall fisheries management, it was necessary to examine the social, 

ecological, and economic effects of the recent management change.  This could not be achieved 

in a single study, so each analysis required a different assessment and modelling approach. The 

study employed three different modelling approaches to quantify the social, ecological, and 

economic effects of commercial netting closures. Improved methodological approaches allow 

the incorporation of an increasing amount of socio-economic and ecological realism in 

modelling that helped to achieve desirable outcomes. The socio-ecological implications of 

commercial net fishing closures are important to identify when designing, implementing, and 

evaluating the effect of new closures. This case study offers a broader and more in-depth 

methodological approach in order to assess the social, ecological, and economic effects of 

Queensland’s NFZs using both field survey and secondary data. It is expected that this 

empirical study will help to inform management decisions by providing critical insight into the 

ability of the NFZs to achieve fisheries management goals. The overall methodological 

approach employed in this research is demonstrated in Figure 3-1. After the demonstration of 

the overall methodological approach, the following sections provide an in-detail description of 

study areas, dataset, and data processing and analysis methods employed in this study to 

address the literature gap
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Figure 3-1: Overall methodological approach used in this study 
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 Study sites 

In November 2015, the Queensland Government implemented net fishing closures to conserve 

species by lowering commercial harvest pressure on fish stocks, increase recreational fishing 

opportunities, marine-based tourism, and the resulting economic growth in three regional areas 

of Queensland (Brown, 2016; Queensland Government, 2016). The closure areas extend from 

Keppel Bay to the Fitzroy River for Rockhampton, St Helens Beach to Cape Hillsborough for 

Mackay, and Trinity Bay for Cairns (Queensland Government, 2017b). To understand the 

social, ecological, and economic effect of newly established net-free zones (NFZs), this study 

employed these three NFZs as study sites, alongside three reference sites located in Townsville, 

Hinchinbrook, and Hervey Bay in Queensland (Figure 3-2).  

Trinity Bay is a large bay in the Coral Sea, and presently about 85.58 square kilometres 

(16º46.517' -16º52.263' S; 145º41.686' -145º50.933' E) area is demarcated as a net-free-fishing 

zone (Queensland DAF, 2015a). It includes an inlet, which is the main estuary system of 

Cairns. It supports a long-colonised mangroves system and is used as a fish habitat reserve and 

a breeding and nursery ground for many juvenile fishes. 

The second NFZ at Mackay is 147.47 square kilometres (20º46.746' - 20º56.205' S; 

148º53.131’- 149º2.669’ E) in size, extending from St Helens Beach to Cape Hillsborough 

(Queensland DAF, 2015a). This region is known as a unique location for fishing as it works as 

a junction of southern and northern fish species on the east coast of Australia. 

The third NFZ in Rockhampton extends between Keppel Bay and the Fitzroy River, covering 

2,013.05 square kilometres (22º56.676'- 23º34.414' S; 150º45 - 151º1.065' E). This area also 

includes a part of the Capricorn Coast and Yeppoon. The Fitzroy River is the estuary of the 

largest river basin that flows into the GBR (the Fitzroy Basin).  

Recent closures may produce more varied survey results than longer-term closures to which 

people have become habituated. Reference sites are areas that are not affected by recent policy 

action changes and are often used to benchmark the efficacy of different programs (Einarsson 

& Gudbergsson, 2003). This study included three reference sites (Townsville, Hinchinbrook, 

and Hervey Bay) as they provide opportunities for commercial and recreational fishing. They 

are evenly distributed across the NFZs and located along the north-eastern coast of Queensland, 

and their distance from the state capital Brisbane is, respectively, 1114 km, 1240 km, and 290 

km. The three reference sites are also being used as reference sites by the Queensland 

Department of Agriculture and Fisheries (DAF) for their boat ramp surveys. 
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Figure 3-2: Locations of the areas providing access to the three NFZs and three reference sites 

in Queensland. Map shape file source: DIVA-GIS (http://diva-gis.org/) 

 Datasets 

 Recreational fishers’ satisfaction and expectations data 

In order to assess the recreational fishers’ satisfaction and expectations, no secondary data 

could be identified that would be appropriate to conduct the analysis. Therefore, primary data 

needed to be collected. 

A number of basic data collection methods can be used to collect fishers’ information. Many 

authors have found that face-to-face interviews, telephone interviews, mail surveys, postal 

surveys, and focus group discussions (FGD) to be suitable for studying fisher satisfaction 

(Sutton, 2006; Brinson & Wallmo, 2013; Henderson & Gigliotti, 2015; Brinson & Wallmo, 

2017). Pollock et al. (1994) described some methods of socio-economic data collection from 

recreational fishers with their potential limitations. Telephone interviews and mail surveys are 

easier, cheaper, and quicker than the other interview methods (Sutton, 2006), but both are 
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highly subjected to recall bias (Pollock et al., 1994). Additionally, mail surveys are vulnerable 

to non-response bias (Griffiths et al., 2007). Likewise, postal returned surveys are cost-

effective, require less time and labour, but the response rate is relatively lower. FGD is suitable 

to obtain group perceptions, values, attitudes, and feelings. However, it is not effective in 

revealing in-depth information about a particular topic. Sometimes the participants are 

unwilling to share their personal thoughts with other people. A face-to-face survey using a 

structured questionnaire is well suited for surveys that cover a small range of the population. It 

is more expensive and laborious, but the response rate is higher than for other methods. 

Moreover, the questionnaire survey gives more accurate information on demographics and 

keeps respondents engaged in each session. By considering the relative implications of 

different data collection methods, this research has chosen to use a survey approach with the 

members of the recreational fishing community to elicit perceived improvements in 

recreational fishing values.  

The recreational fisher’s satisfaction data analysed in this study were collected by the 

Queensland Department of Agriculture and Fisheries (DAF) from a NFZ (Rockhampton) and 

a reference site (Townsville) in October 2018. The DAF surveyed a total of 293 recreational 

fishers from both sites, 163 from Rockhampton and 130 from Townsville. The survey 

questionnaire was organised into five broad sections: (a) catch orientation, (b) motivation, (c) 

centrality to lifestyle, (d) expectations, and (e) satisfaction. Each of the sections contained a set 

of questions regarding theme areas. The survey questionnaire was tested in a NFZ 

(Rockhampton) and a reference site (Townsville). Most of the questions involve a 7-point 

Likert scale (e.g., strongly disagree, disagree, somewhat disagree, neutral, somewhat agree, 

agree, strongly agree) which is used to allow the respondents to express how much they agree 

or disagree with a particular statement. A few questions are organised into closed-ended and 

multiple-choice formats. For analysis, the Likert-scale responses from each statement were 

coded as 1 for strongly disagree, 7 for strongly agree, and 4 for neutral. The questionnaire 

contained some positively and some negatively worded questions. Negatively worded 

questions have been reverse-scored before analysis. For closed-ended questions, ‘yes’ and ‘no’ 

responses have been coded as 1 and 2. For multiple-choice questions, each of the categories 

was coded as 1, 2, 3, 4, and so forth. The responses from the survey were edited where 

necessary. After data entry, the raw data were analysed using SPSS 24 (https://www-

01.ibm.com/support/docview.wss?uid=swg24041224) and STATA SE 12 (https://www.stata.c 

om/ stata12/) for quantitative data analysis. 

https://www.stata/
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The recreational fishers were approached in fishing tackle shops located in Rockhampton, and 

Townsville (Table 3-1). The surveyors attended outside at the tackle store and approached its 

customers when they left the store. The recreational fishers were asked a set of questions related 

to their recalled avidity from the past 12 months (i.e., how many times they went fishing in the 

last 12 months), awareness of NFZs, fishing experience, motivation (i.e., which aspect drives 

them to go fishing), catch orientation (i.e.,  how important is catching a fish rather than other 

aspects), centrality to lifestyle (i.e., how deeply engrained fishing is in their lifestyle), 

expectations (i.e., over the next 12 months, what they expect from the site), satisfaction (i.e., 

are they really satisfied with their fishing from the past 12 months) and some demographic 

questions including their age, gender, and residential information (Appendix A, Table A 2 and 

Appendix A, Table A 3). The survey was conducted in accordance with conditions of approval 

from the CQUniversity Human Research Ethics Committee (ethics approval number 

0000020847). 

Table 3-1: Survey locations of a NFZs and a reference site conducted in 2018 

Sites Fishing tackle stores 

Rockhampton (NFZ) BCF, Rockhampton 

Barra Jacks, Rockhampton 

Townsville (Reference site) Akwa Pro Tackle, Townsville 

The Fishing Warehouse, Townsville 

 Barramundi CPUE data for forecasting 

In Australia, there is a variety of fish that are both recreationally and economically important 

such as barramundi, bream, threadfin, whiting, tuna, cod, trout, anchovy, herring, and sardine, 

etc. Among them, barramundi (Lates calcarifer) is an iconic species of Queensland, loved by 

both recreational and commercial fishers due to its delicious flesh (Fisheries Research and 

Development Corporation, 2018). 

For the forecasting of commercial barramundi CPUE, the relevant secondary data that could 

be used for analysis were identified. A total of 30 years (1990-2019) of time series data from 

relevant websites were collected to conduct this analysis. In particular, data on commercial 

barramundi fishery parameters (catch, effort, and licence) were collected from the QFish 
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website (http://qfish.fisheries.qld.gov.au/) for the fishing grid areas associated with the six 

study areas. Another fishery parameter, the price of annual barramundi production in 

Queensland were extracted from the annual fisheries statistics publication of the Australian 

Bureau of Agricultural and Resource Economics and Sciences (ABARES) (website: 

http://www.agriculture.gov.au/abares/).  

Previous research indicates that environmental variables (such as rainfall, temperature, 

streamflow, and stream water level) have a significant effect on marine fish populations. 

(Benson & Trites, 2002; Morrongiello et al., 2014). Rainfall and temperature have a significant 

impact on the biological processes of fish such as growth, recruitment, and population 

productivity (Morrongiello et al., 2014). Balston (2007) revealed tangible evidence that 

climatic variability has an influence on the north-east Queensland barramundi fisheries. Heavy 

precipitation has a significant positive effect on barramundi spawning and early life stages, 

which improves fishing in the following year (Balston, 2009a). Similarly, optimum water 

temperature is important for the survival of new recruits as well as the growth rates of juvenile 

fish (Agcopra et al., 2005). Streamflow and stream water level was expected to have an impact 

on barramundi catch. Previous observation has revealed increased recruitment of barramundi 

after the strong river flows in the Fitzroy area from December to February (Sawynok, 1998). 

The same study identified a correlation between river flows and barramundi catch in the 

Gladstone and Central Queensland region. 

Regardless of fishery parameters used in this study, four environmental parameters were also 

considered depending on their effect on the barramundi population. Annual rainfall and 

temperature data were accumulated from the Bureau of Meteorology database 

(http://www.bom.gov.au/climate/data/). Interpolated maximum and minimum annual 

temperatures were considered for the analysis. Streamflow and stream water level data were 

collected from the Queensland Government Water Monitoring Information Portal 

(https://water-monitoring.information.qld.gov.au/). Stream discharge volume in megalitres and 

mean stream water level in metres were extracted for the analysis. 

 Economic valuation data 

To assess the economic value of recreational fishing, suitable primary field and secondary data 

were identified for the project. The field survey was conducted by DAF and the secondary data 

were collected from relevant websites. 

http://qfish.fisheries.qld.gov.au/
http://www.agriculture.gov.au/abares/
http://www.bom.gov.au/climate/data/
https://water-monitoring.information.qld.gov.au/
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The study surveyed recreational fishers at 14 boat ramps located in three NFZs and three 

reference sites in Queensland. The survey included a set of questions on fishers’ residential 

area, ramp details, whether fishing is the main purpose of travel or not, postcode, and distance 

(km) travelled to reach the site. This study also involved the collection of data from secondary 

sources. Travel distance (kilometres) data were collected using Google maps (Google, n.d.) 

from the centroid of statistical division to the particular fishing sites. Census data (2016) on 

population and income was extracted from the Australian Bureau of Statistics (ABS) website 

(https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/3

?opendocument) for each of the postcodes and zones. 

The DAF’s staff collected data from a total of 24,624 fishers (11,151 from the three NFZs and 

13,473 from the three reference sites) from November 2015 to June 2017. Among them, 12,344 

observations (6,142 from the three NFZs and 6,202 from the three reference sites) were used 

for analysis. The rest of the observations were not used in the study since recreational fishing 

was assumed to be the sole aim of the visit, and visitors with undefined purposes were excluded 

from this analysis. 

Travel cost method (TCM) and contingent valuation (CV) approaches are widely used to 

estimate economic benefits from different sites (Rolfe & Dyack, 2010). Both methods are 

inexpensive to apply, and the results are easily interpretable. However, the application of the 

TCM is more problematic when multi-destination and multi-purpose trips are involved. CV 

methods are an alternative (Rolfe & Dyack, 2010), but sample selection and limitations of 

biases can be challenging. Raguragavan et al. (2013) and Schuhmann and Schwabe (2004) used 

a random utility model to determine the economic values of recreational fishing. The random 

utility model gives precise results but is expensive and complicated to calculate and explain 

(Vieira et al., 2009). This study used TCM because of data availability and the potential to 

provide an accurate estimate of consumer preferences. 

The selection of the appropriate TCM model depends on factors such as the type of visitation 

data to be collected and the nature of the recreational area to be assessed for economic values. 

To fit an individual travel cost method (ITCM), the study requires data on individual visitation 

rates, demographics (age, sex, residential area, etc.), and fishing trip-related information (e.g., 

the number of trips made per individual fisher over a specific time period, total travel costs per 

individual, total time spent on-site, total travelling time, etc.) (Stoeckl & Mules, 2006; Farr & 

Stoeckl, 2018). The zonal travel cost method (ZTCM) is suitable for sites with very low 

visitation rates and ITCM is appropriate for higher visitation patterns (Bateman, 1993; Bennett, 

https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/3?opendocument
https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/3?opendocument
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1996; Prayaga et al., 2006). This study used DAF’s boat ramp survey data, which was suitable 

to employ ZTCM but not ITCM. 

 Data processing and analysis 

 Assessment of recreational fishers’ satisfaction and expectations 

The purpose of the data collection was to allow testing of two broad hypotheses. The 

hypotheses were:  

❖ the responses of Rockhampton (NFZ) and Townsville (reference site) fishers are different 

and the satisfaction and expectations from fishing will be higher in the Rockhampton than 

in Townsville,  

❖ there is a relationship among satisfaction, overall satisfaction, and expectation, and more 

particularly,    

o hypothesis: Past satisfaction has a direct positive effect on past overall satisfaction; 

o hypothesis: Past satisfaction has a direct positive effect on future expectation; and 

o hypothesis: Past overall satisfaction has a direct positive effect on future expectation. 

 Statistical analysis 

Likert scale data are at the ordinal level and require non-parametric analysis (Shah & Madden, 

2004; Mircioiu & Atkinson, 2017). To identify any difference between the two distributions of 

Rockhampton and Townsville respondent data, a Mann-Whitney U test was employed 

(McIntosh et al., 2010). Similarly, to examine the correlations between overall satisfaction and 

expectations, a non-parametric correlation test (Spearman rank correlation) was carried out for 

both study areas (McIntosh et al., 2010). In addition to this non-parametric analysis, a 

proportion test was presented graphically to observe the relative percentage of responses for 

the variables of interest. 

To evaluate the relationship between overall satisfaction and other variables, ordered probit 

regression and backward stepwise regression were conducted. Since it is important to know the 

information about recreational fishing visits per year (avidity) and the factors that influence 

fishers to go fishing, a negative binomial regression test was undertaken where avidity (days 

of fishing in that area) was regressed against all other variables. Additionally, backward 

regression with the same set of dependent and independent variables was performed to observe 
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and compare the results between the tests and sites. These analyses are more likely to generate 

more robust insight than the Mann-Whitney U test and Spearman rank correlation tests because 

regression analysis can determine which factors are most important, which factors may be 

ignored, and how these variables interact with one another. Furthermore, it is an effective 

mathematical tool for examining the relationship between two or more variables of interest 

(Bewick et al., 2003). 

Structural equation modelling (SEM) is a multivariate statistical analysis technique that is used 

to examine structural relationships between measured variables and latent constructs (Tarka, 

2018). A latent variable is one that cannot be measured directly but should be inferred from 

other variables that are observed (directly measured). Two structural equation models were 

developed for two study sites to identify the structural relationship and strength of the 

relationship between an observed variable (overall satisfaction) and two of the latent variables 

(satisfaction and expectations). The output of this model has useful implications for 

understanding the components that influence satisfaction and expectations, both of which 

contribute to successful fishing experiences.  

 Time series forecasting of barramundi CPUE 

The use of time series models to analyse fish CPUE is undoubtedly the most efficient technique 

for fisheries management and decision making since it can identify hidden trends and seasonal 

patterns (Koutroumanidis et al., 2006). Forecasting is used to account for in-season or post-

season predictions and provides a basis for predicting the effect of management actions (Farmer 

& Froeschke, 2015). Time series forecasting involves three fundamental approaches: 

regression-based methods, heuristic smoothing methods, and general time series (Montgomery 

et al., 2002). Among them, autoregressive integrated moving average (ARIMA), multiple 

linear regression (MLR), vector auto regression (VAR), neural network (NN), state-space 

model, exponential smoothing are widely used time series models. These models either alone 

or in a combination have been applied in a range of fishery dynamics situations (Stergiou et 

al., 1997; Tsitsika et al., 2007; Abdelaal & Aziz, 2012). The research employed by Stergiou 

(1989, 1991), Stergiou et al. (1997), and Romilly (2005) showed that the validation error of the 

ARIMA model is significantly lower than other models.  

The ARIMAX model is an extension of the ARIMA model, which also includes other 

exogenous variables. The addition of exogenous variables in the model makes the process 
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complex in relation to capturing the influence of external elements and management 

controllable (Andrews et al., 2013). This study focuses on the forecasting of barramundi stocks 

and catches using multiple linear regression (MLR) and ARIMAX modelling approaches. In 

the MLR model, the dependent variable (CPUE) was regressed against a set of independent 

variables including both fishery and environmental parameters. In the MLR models, 

environmental variables were lagged for three years. The use of lagged environmental variables 

was limited to 3 years since young barramundi spend up to 2-3 years in freshwater habitats 

before reaching legal size (580-999 mm) and migrating to the estuary to spawn. (Food and 

Agriculture Organization, 2019). Within that time span, recruits are quite likely to mature into 

adult barramundi, migrate to brackish water, and become vulnerable to commercial fishing. 

(Robinson et al., 2019).  

On the other hand, ARIMAX modelling was more complicated because of the ability to identify 

inherent patterns in time series data and measure the potential effect of external influences 

(Andrews et al., 2013). The final fitting ARIMAX model incorporates the addition of highly 

correlated and highly significant predictor variables that better describe the dependent variable. 

The validation of the constructed model is necessary to provide insight into its 

accuracy/precision in forecasting. There are a number of cross-validation techniques widely 

used in time series analysis. Among them, the walk-forward or sliding window approach 

provides the most realistic assessment of time series data and produces accurate forecasts at 

each time step (Brownlee, 2016). The study used a series of walk-forward validation or sliding 

window approaches which generated out-of-sample results up to the year 2019 (more details 

are in chapter 5). Then the performance of each model was compared and evaluated in a 

systematic way. The ARIMAX model building algorithm is depicted in Figure 3-3. 
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Figure 3-3: ARIMAX building protocol (modified from Andrews et al., 2013) 

 Assessment of economic value of recreational fishing 

The study employed three ZTCM models: the postcode model, the zoned model, and the 

geographic model. The postcode model includes fishers up to two distinct distance thresholds 

of 100 and 300 kilometres, and the zones were identified by postcode. Using the same distance 

thresholds, the zoned model analysed pooled postcode data for three NFZs and three non-NFZs 
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(reference sites). No distance threshold was applied for the geographic model because it 

includes people from remote areas, and geographical regions were employed as zones.  

There are three basic approaches or options to consider when determining travel costs 

(Bateman 1993; Bennett 1996; Rolfe and Prayaga 2007): fuel costs only (option 1), total car 

costs including fuel, insurance, and maintenance cost (option 2), or the cost estimated by the 

respondents (option 3). Option 2 was used for this study since data on respondents' one-way 

travel distance (km) from home to fishing sites was available. The travel cost for each trip was 

calculated by multiplying the two-way travel cost by a standard vehicle cost per kilometre.  

The algebraic form of a relationship between a dependent variable and explanatory variables 

is referred to as a functional form. The choice of functional form is essential for developing the 

best fitting model for determining consumer surplus (Crooker & Kling, 2000; Rolfe et al., 

2005). The economic theory remains ambiguous on the optimal functional form for either of 

the two functions that must be calculated (Hanley & Spash, 1993). It is crucial to select the 

suitable functional form in order to obtain accurate and reliable estimations of consumer 

surplus, regardless of whether travel costs are precisely calculated or not (Stoeckl, 2003a, 

2003b). The trip generated functions (TGF) and demand functions should be chosen in light of 

pre-existing economic theory, predictability, and statistical specification (Prayaga et al., 2006). 

Bateman (1993) and Hanley and Spash (1993) used four functional forms such as linear, 

quadratic, semi-log, and double log to specify TGF and the demand function. However, the 

method of ZTCM analysis employed in the study is demonstrated in Figure 3-4. 

Step 6: Construction of 
demand function for the 

visits with a set of 
hypothetical increase in 

travel cost

Step 7:  Second stage of 
regression  for four 

functional forms of demand

Step 8: Selection of the best 
model

Step 9: Prediction of 
consumer surplus

Step 4: Calculation of total 
travel cost (2* one way 

distance travelled* mileage 
cost)

Step 5: Regression analysis to 
get the trip generation 

function from four functional 
forms

Step 3: Calculation of visit 
rate (visitors/population) for 

each of the postcodes

Step 2: Count of visitors from 
each of the postcodes

Step 1: Setting up the zones 
(eg: postcodes/ LGAs)

 

Figure 3-4: Method of ZTCM analysis 
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 Conclusions 

This chapter has provided a brief overview of the research sites, data, and data analysis. More 

details about the research methods and findings are presented in the following three chapters 

(chapter 4, 5, and 6). Each of the three chapters is aimed at evaluating a different type of effect 

(e.g., social, ecological, and economic). The chapters are designed as stand-alone, but some 

discussion of methodologies will be repeated in the chapters. 
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 SHORT-TERM SOCIAL EFFECTS OF THE 

QUEENSLAND NETTING CLOSURES 
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Abstract 

Queensland’s newly designed net-free-zones (NFZs), which prohibit commercial net fishing in 

coastal areas near Cairns, Mackay, and Rockhampton, were implemented to support recreational 

fisheries by conserving recreationally important fishes and thereby improve fishing satisfaction, 

support tourism, and stimulate local recreation-based businesses. Although some investigations 

on the effectiveness of establishing NFZs have been carried out by the Queensland Department of 

Agriculture and Fisheries (DAF), the analysis of recreational fishers’ fishing satisfaction and 

expectations from a NFZ relative to a non-NFZ (reference site) is yet to be explored. In this study, 

recreational fishers were surveyed at fishing tackle stores located in the regional cities of 

Rockhampton (NFZ) and Townsville (reference site). A total of 163 recreational fishers from 

Rockhampton and 130 fishers from Townsville were sampled in 2018 and completed a survey 

where fishers rated their responses on a 7-point Likert scale. The findings suggest that the 

satisfaction and expectations of fishers are higher in the NFZ compared to the reference site. 

Furthermore, the study demonstrated the inherent causal relationship between satisfaction and 

expectation components and also the strength of their relationship. These results have significant 

implications for understanding the factors that best describe satisfaction and expectation for each 

of the study sites. The output of this study will help management bodies to take further measures 

to improve recreational fishing opportunities and guide overall fisheries management. 

 

Keywords: recreational fishing, satisfaction, expectations, structural equation modelling 

(SEM), net-free zones (NFZs), resource allocation, fisheries management 
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 Introduction 

Recreational fishing is a popular outdoor activity in Australia, leading to the development of a 

sector with significant economic and social value. In the 12 months prior to November 2013, 

approximately 642,000, or 15% of Queenslanders aged 5 years or older, went recreational 

fishing in the east coast Australian state of Queensland (Webley et al., 2015). Recreational 

fishing plays a significant role in providing non-monetary social benefits to society (McManus 

et al., 2011; Schmidt et al., 2016; Arlinghaus et al., 2019). These include the physical stimulus 

and mental serenity gained from practicing nature-based recreational activities (Kaplan & 

Kaplan, 2011; Young et al., 2016). If recreational fishing is managed in a sustainable manner, 

improved access to, and involvement in, recreational fishing would probably result in these 

non-monetary social benefits being transferred to more members of the society (Queensland 

DAF, 2017b).  

The measurement of recreational fishers’ satisfaction is an important component of assessing 

fishers’ views about fishing and has been adopted widely as an outcome indicator of quality 

fishing experience. According to the literature, satisfaction with an activity is a complex 

process that varies across time between persons and circumstances (Peyton & Gigliotti, 1989) 

and is regarded as the main product of recreational fishing (Graefe & Fedler, 1986; Holland & 

Ditton, 1992). Satisfaction is based on the relationship between the results (motivations) one 

expects and the achievement of those results (Ditton et al., 1981; Holland & Ditton, 1992). The 

driver of satisfaction varies from person to person. For example, catching a smaller number of 

fish than expected might result in dissatisfaction and vice-versa. On the other hand, a number 

of people believe that even without catching fish, a fishing trip could be successful (Mclnnes 

et al., 2013). Therefore, satisfaction should not only be measured by the number, size, or variety 

of fish caught (Queensland DAF, 2017b) but also the satisfaction from trip and environment as 

most fishers consider these two dimensions differently (Hudgins & Davies, 1984; Fedler & 

Ditton, 1994; Arlinghaus, 2006). As an end product of recreational fishing, fisheries managers 

would like to learn whether fishers are satisfied with their fishing experiences and the relative 

contributions of each dimension (Holland & Ditton, 1992). In literature, another broader 

concept of satisfaction is ‘overall satisfaction’ that includes all aspects and experiences 

associated with fishing (Bitner & Hubbert, 1994). Previous observational studies indicate that 

users perceive these two satisfaction conceptualisations differently (Bitner & Hubbert, 1994). 

Though there is a link between the two concepts, overall satisfaction depends on information 
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from past encounters and experiences and can be considered as a function of all previous 

satisfaction (Teas, 1993; Parasuraman et al., 1994; Jones & Suh, 2000). Satisfaction could be 

claimed as a predictor of overall satisfaction (Teas, 1993). 

Understanding the reasons driving anglers to go fishing has been a frequent motivation for 

research into the human aspect of recreational fishing (Ditton, 2004; Arlinghaus, 2006). 

Recreational fishing can be viewed as a goal-oriented behavioural system in which fishers 

select activities to yield psychologically desired outcomes (Manfredo et al., 1996; Beardmore 

et al., 2011). Fishers can be asked either what inspired them or what satisfaction they received 

(Holland & Ditton, 1992). The motivations for fishing can be classified as either to fishing-

specific aspects (e.g., to catch fish) or to more general psychological outcomes that are not 

specifically related to the catching process, usually referred to as activity general aspects (e.g., 

a desire to be outdoors, enjoying nature and relaxation). Although the relative importance of 

catch and non-catch motivations differs among fisher communities, most researchers have 

concluded that both catch and non-catch related motivations are important to consider (Fedler 

& Ditton, 1994; Ditton, 2004; Beardmore et al., 2011). Previous research suggests that 

motivation has a strong link with satisfaction (Spencer, 1993) notwithstanding the fact that 

some exceptions were evident (Fedler & Ditton, 1986; Aas & Kaltenborn, 1995). 

In relation to the different aspects of the catch or non-catch-related outcomes, satisfaction and 

overall satisfaction may also vary with the degree of catch orientation (Arlinghaus, 2006; 

Mostegl, 2011). Catch orientation is a measure of how fishers prioritise catching fish during 

each trip (Martin et al., 2019). Fedler and Ditton (1986) and Arlinghaus (2006) categorised 

catch-oriented fishers into low, medium, and high catch orientation groups, where the analysis 

found that fishers with high catch orientation would be better suited to meeting their need for 

activity-specific motivations such as catching a fish, catching a trophy size fish, catching many 

or some types of fish, etc. For low catch-oriented fishers, activity-general components (e.g., to 

be outdoors, close to nature, for relaxation, being with friends and family, etc.) of motivation 

tended to be related to increased levels of satisfaction (Graefe & Fedler, 1986; Arlinghaus, 

2006; Mcilgorm et al., 2016).  

Avidity is one of the ways of measuring the degree of fishing commitment (Hawkins et al., 

2009; Mcilgorm et al., 2016). Researchers have used commitment as one of the primary tools 

in creating and optimising a 'specialisation index', with preliminary findings showing that 

commitment could be used as a representative for specialisation levels (that means more avid 
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fishers are more inclined to be highly specialised) (Hawkins et al., 2009; Mcilgorm et al., 2016). 

This finding was supported by studies that explored the importance of commitment in 

specialisation indexes. These studies revealed that fishing plays an important role in the life of 

a highly specialised fisher, and they were more inclined to spend a significant amount of money 

and time in fishing (Salz et al., 2001; Schroeder et al., 2006). Recreational fishers, however, 

can be broadly categorised as avid and non-avid fishers (Tink, 2015). Graefe (1980) suggested 

that fishing participation be classified according to participation level such as avid or non-avid 

fishers where avid fishers fish more frequently than non-avid fishers (Fisher, 1997; Salz et al., 

2001). According to the literature, variables such as motivation and the centrality of fishing in 

one's lifestyle have been identified as significant determinants of avidity (Sutton, 2006; Tink, 

2015) 

Another indicator of ‘specialisation’ is the centrality of fishing to lifestyle, which measures 

how closely a particular recreational activity is linked to one's social network and overall 

lifestyle (Kim et al., 1997; Beardmore et al., 2015). Centrality has proven to be an important 

psychological element in outdoor recreation studies and is sometimes used as a surrogate for 

specialisation in recreational fishing (Sutton & Ditton, 2001; Dorow et al., 2010; Dorow & 

Arlinghaus, 2012). According to the literature, fishers who are more central to fishing in their 

lifestyle, have a high level of avidity (Mcilgorm et al., 2016) and expectations in fishing 

(Queensland DAF, 2015b). This would have an effect on a fisher's level of satisfaction in 

fishing (Queensland DAF, 2015b). In a variety of surveys, the centrality of the lifestyle scale 

has served to understand the difference between how the recreational fishing population reacts 

to management decisions (Mcilgorm et al., 2016). A study conducted by Li et al. (2010) found 

that more centralised fishers of Central Queensland are more likely to be accessible to scientific 

communication and are more involved in management actions. Most fishers believed that, 

although fishing is enjoyable, other forms of recreation are also pleasant, and that socialising 

with friends is not solely dependent on fishing (Teixeira et al., 2021).  

The term "expectation" refers to a strong belief that something will happen in the future. 

Various types of fisher groups have different expectations. The main driving force of 

satisfaction is related to catch expectations (Hudgins & Davies, 1984; Graefe & Fedler, 1986; 

McMichael & Kaya, 1991; Spencer & Spangler, 1992; Arlinghaus, 2006). In regard to the 

relationship between satisfaction and expectation, expectation can be described as advance 

estimations made by stakeholders while receiving service (Oliver, 1981; Aksu et al., 2010). 

Satisfaction with past performance is likely to serve as the foundation for expectations of future 
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performance (Ofir & Simonson, 2007). Graefe and Fedler (1986) reported that satisfaction 

relies not on the actual number of catches, but on how fishers assess catches in the context of 

their expectations and preferences. Satisfaction can be achieved through catch or non-catch-

related outcomes (Spencer, 1993) which might have an effect on future expectations. It is 

important for management bodies to determine fishers' expectations in advance, as failing to 

reach satisfaction could result negative disconfirmation (i.e., expectations are not met) of 

expectations (Brunke & Hunt, 2008). Some research suggests that fishers’ expectations vary 

with net-free zones (NFZs), fishing frequency (Martin et al., 2019), fishing experience, and age 

of fishers (Aas, 1996; McCormick & Porter, 2014). According to Martin et al. (2019), fishing 

expectations can be considered independent of satisfaction, which means a person can be 

satisfied without expecting much change in the future. Other studies indicate that satisfaction 

is often characterised in terms of expectations (Spencer & Spangler, 1992; Manning, 1999), 

but a study on an alternative theoretical prediction about the relationship among fishers’ 

satisfaction, overall satisfaction with past performance, and expectations of future performance 

is inadequate in the literature.  

 Research approach 

The establishment of three new NFZs in Queensland (near the regional cities of Cairns, 

Mackay, and Rockhampton) came into effect on 1st November 2015. The aim of Queensland’s 

commercial net fishing closures in these zones was to improve recreational fishing 

opportunities, thereby promoting tourism and economic growth by reducing the pressure on 

fish stocks arising from commercial fishing (Queensland Government, 2016). Subsequent to 

the closures, the Queensland Department of Agriculture and Fisheries (DAF) collected 

recreational fishers’ satisfaction and expectations data on an annual basis to identify any 

changes in satisfaction and expectations towards NFZs following their implementation. 

Monitoring conducted by Martin et al. (2019) suggests that satisfaction with fishing in the 

newly established NFZs is increasing. In the 2018 DAF survey, fishers in NFZs are reporting 

quality fishing opportunities with more exciting fights with fish and greater satisfaction with 

the number and size of fish caught, compared to the survey data collected in 2015 and 2016. 

However, comparisons of recreational fishers’ satisfaction and expectations between a NFZ 

and a non-NFZ (reference sites) have not been explored. In particular, the relationship between 

satisfaction, overall satisfaction, and expectation and the strength of their relationship is yet to 

be identified. 
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The present study is set out to evaluate two broad categories of hypotheses. The first hypothesis 

is that the responses of Rockhampton (NFZ) and Townsville (reference site) fishers are 

different. It is anticipated that the satisfaction and expectations from fishing will be higher in 

the Rockhampton than in Townsville. The study also has investigated the conceptual 

relationship among satisfaction, overall satisfaction, and expectation by setting three 

hypotheses. The hypotheses that were tested are as follows: hypothesis 2a: Past satisfaction has 

a direct positive effect on past overall satisfaction; hypothesis 2b: Past satisfaction has a direct 

positive effect on future expectation; and hypothesis 2c: Past overall satisfaction has a direct 

positive effect on future expectation. Jones and Suh (2000) hypothesised the three models 

where it was tested that satisfaction might have an influence on overall satisfaction and Aksu 

et al. (2010) found there is a positive and strong relationship exists between satisfaction and 

expectation. In order to illustrate the relationships among expectation, satisfaction, and overall 

satisfaction, the theory, and the measurement model were formulated for the exogenous 

variable and the endogenous variables, as depicted in Figure 4-1. Exogenous variables are 

variables in a model that are not determined by other variables and variables that are determined 

by other variables are referred to as endogenous variables. 

 

  

Figure 4-1: Mediators in satisfaction and expectation relationship 
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 Study methods 

 Study sites and data 

The study was conducted in a NFZ (Rockhampton) and a reference site (Townsville) in 

Queensland (Figure 4-2). The two study areas were chosen as both of the fishing areas are 

geographically similar to each other, being rivers and coasts located in close proximity to 

regional cities. The distance between two sites are 720 kilometres. The research was conducted 

in accordance with conditions of approval from the CQUniversity Human Research Ethics 

Committee (ethics approval number 0000020847). The DAF surveyed a total of 293 

recreational fishers from the Rockhampton and Townsville zones in October 2018, where 163 

surveys were from Rockhampton and 130 were from Townsville. The survey collection 

locations were near fishing tackle stores in the two zones, and a face-to-face questionnaire 

survey was undertaken by DAF’s survey staff. Fishers were asked to participate in a structured 

questionnaire survey when they were returning from the fishing tackle stores. Recreational 

fishers who had fished at least once in the past 12 months at any of the fishing sites were 

identified as eligible to participate in this survey. The respondents were selected randomly 

when they were leaving the tackle stores. To avoid bias in the wording of social survey 

questions, a social scientist reviewed the questions prior to data collection and the interviewers 

received training on how to ask such questions in an unbiased way (DAF, 2017, 2019). 
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Figure 4-2: Map showing a NFZ (Rockhampton) and a reference site (Townsville) in 

Queensland, Australia. Map shape file source: DIVA-GIS (http://diva-gis.org/) 

The survey questionnaire consisted of several sections, with a number of statements in each 

that were either positively or negatively worded, and some background and demographic 

questions. Depending on the type of statement, participants were asked to rate their level of 

agreement or disagreement, important or not important, satisfied or dissatisfied on a 1-7-point 

Likert scale, ranging from 1= strongly disagree/ not important/ very dissatisfied to 7= strongly 

agree/ very important/very satisfied. The different concepts tested in the survey were 

motivation, catch orientation, the centrality of fishing to fisher’s lifestyle, expectations, and 

satisfaction (Appendix A, Table A 2 and Appendix A, Table A 3). For satisfaction-related 

questions, fishers were asked about their satisfaction with fishing in this area over the previous 

12 months. There were 5 questions about satisfaction with catch-related aspects (e.g., 

satisfaction with the number, size, and variety of fish caught) and 2 about non-catch-related 

aspects (e.g., satisfaction in number of uncrowded fishing spots and satisfaction in access to 

parking sites and boat ramps). There was also a question about overall satisfaction with fishing 

in the previous 12 months. In addition to satisfaction, fishers were asked about their 

expectations with fishing over the next 12 months and beyond. There were 12-13 questions 

about various aspects of expectations.  

 



  

83 

 

 Statistical analysis 

The data analysis was conducted using SPSS 24 and STATA SE 12. At the beginning of the 

data analysis, missing data were replaced by the mean imputation method as the amount of 

missing data were less than 10% of the sample for each variable (Raymond, 1986). From the 

survey, the results for the eight negatively worded questions were reversed before analysis. For 

example, when a positively worded question is scored, the Likert response 1 indicates strongly 

disagree/ not important/ very dissatisfied, and the Likert response 7 indicates strongly agree/ 

very important/very satisfied; when a negatively worded question is scored, the Likert response 

7 indicates strongly disagree/ not important/ very dissatisfied, and the Likert response 1 

indicates strongly agree/ very important/very satisfied. (Suárez Álvarez et al., 2018). An 

example of a negatively worded question is “When you go fishing, you’re just as happy even 

if you don’t catch a fish”. 

 Non-parametric test for categorical variables 

The aim of Queensland’s NFZs is to conserve recreationally important species and improve 

recreational opportunities, allowing anglers to catch more and bigger fish and provide 

recreational fishers with a higher degree of fishing experience and satisfaction (Martin et al., 

2019). The study collected ordinal data and tested if there were differences in the responses 

between Rockhampton and Townsville respondents. In order to deal with ordinal data, non-

parametric statistical tests were required (Shah & Madden, 2004; Mircioiu & Atkinson, 2017). 

A Mann-Whitney U test was employed to identify any difference between the two distributions 

of Rockhampton and Townsville. The study also used Spearman rank correlation tests to 

identify the correlation between overall satisfaction and components of satisfaction and 

expectation. 

 Regression analysis 

The study conducted regression analysis to understand the most influencing factors that affect 

fishing frequency (avidity) and overall satisfaction in both study sites. Other alternative options 

determining motivation, expectations, catch orientation, and centrality of fishing to lifestyle 

were available to quantify the difference between responses of two sites. However, the study 

only evaluated the factors that affect avidity and overall satisfaction. The data here used are 
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ordinary and this study used regression analysis, as regression is flexible and can handle ordinal 

data (DeYoreo & Kottas, 2020). 

Factors that influence overall satisfaction were examined and compared between sites using 

ordered probit regression and backward stepwise regression. Negative binomial regression was 

used to identify the extent to which avidity (days of fishing in that area) could be predicted by 

other variables. In addition, backward stepwise regression was performed with the same 

dependent and independent variables to observe and compare the results between the tests and 

sites. These analyses are likely to provide more robust insight than the Mann-Whitney U test 

and Spearman rank correlation tests as the significance of regression analysis is that it can 

decide which variables matter most, which variables can be ignored, and how these variables 

interact with each other. Moreover, it is a useful mathematical tool for investigating the 

relationship between two or more variables of interest (Bewick et al., 2003). For the dependent 

variable avidity, the mid-value of the responses was considered instead of taking the whole 

range for each of the responses. For example, if a recreational fisher goes fishing 3-12 days in 

the last 12 months, then the value would be the mid-value of this range (i.e., 7.5) (Appendix A, 

Table A 2). The regression tests were evaluated at p = .05. 

 Structural equation modelling (SEM) 

Structural equation modelling (SEM) is a multivariate statistical analysis technique that is used 

to analyse structural relationships between measured variables and latent constructs. A latent 

variable is one that cannot be measured directly but should be inferred from other variables 

that are observed (directly measured). In a factor analysis, the "factors" are latent variables. A 

structural equation model contains two elements: first, a measurement model, which describes 

the relationship between latent and observable variables based on the pre-existing measurement 

theory, which is then validated with confirmatory factor analysis (CFA) to concentrate on the 

“validity” of the latent constructs; and, second, the structural model describes the relationship 

of endogenous and exogenous latent variables and/or observed variables which helps the 

investigator to determine the nature and magnitude of the effects among these variables (Tarka, 

2018). To test the hypothesis that rationale in past fishing satisfaction influences fishers’ 

expectations, the study developed SEM models for both study sites. Measurement parameters 

and full SEM models were evaluated using maximum likelihood estimation by using software 

STATA SE 12.  
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Based on the insights obtained from the reliability test, a confirmatory factor analysis (CFA) 

was employed to evaluate and confirm latent variables that best represent the group of indicator 

variables. The outcome of the CFA is related to the measurement component of the SEM 

model, which explains the loading of indicator variables on the corresponding latent variables. 

Then the study extracted the measurement component and structural component of the SEM 

model, which provides an overall assessment of the interrelation among the variables (Dragan 

& Topolšek, 2014).  

 Fitting accuracy of SEM 

Based on the early literature on SEM, the chi-square estimate of the entire model was the most 

important fit statistic for SEM. However, it is worth noting that the chi-square value reflects 

the ‘low-fitness’, as a high chi-square value represents a large difference between the models 

and the data, and a significant test statistic could cast doubt on the model specification (Aas & 

Vitters, 2000). Experts have cautioned against selecting models only based on the chi-square 

test (Bentler & Bonett, 1980; Jöreskog & Sörbom, 1993). The test consistently rejects the best-

fitting models as it is highly sensitive to the sample size and the number of variables used in 

the model (MacCallum et al., 1996). Considering the limitation of the chi-square model fit test, 

it is recommended that an alternative ‘goodness-of-fit’ test should be reported along with chi-

square test statistics (Aas & Vitters, 2000). The ‘goodness-of-fit’ index evaluates the fit 

between the proposed model and the observed covariance matrix. In case of model fit, the 

values for the chi-square test should be above 0.05, CFI (comparative fit index) and TLI 

(Tucker-Lewis index) should be above 0.90, RMSEA (root mean square error of 

approximation) and the SRMR (standardised root mean square residual) should be as low as 

possible. RMSEA and SMRM values of 0.05-0.08 indicate a fair fit, 0.08-0.10 indicates a 

moderate fit, and above 0.10 indicates a poor fit (MacCallum et al., 1996). If the model 

demonstrates a poor fit, some additional modifications of the model must be made (Dragan & 

Topolšek, 2014).  
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 Results 

 Non-parametric test for the categorical variable 

From the survey, most (> 90%) of the participants were local and recorded as male with ages 

ranging between 35-44 years for Rockhampton and 45-54 for Townsville. Female participants 

were 3.7% in Rockhampton and 2.3% in Townsville. Fishers interviewed in Townsville were 

slightly older than Rockhampton, with most Townsville participants in the 45-54 years bracket 

and Rockhampton participants in the 35-44 years bracket (Figure 4-3).  

 

Figure 4-3: Age groups of recreational fishers interviewed from Rockhampton and 

Townsville in 2018 

From the raw responses of the survey, it is evident that the satisfaction and expectations of 

Rockhampton fishers (one of the NFZs) are higher than the Townsville fishers (reference site) 

(Table 4-1). There was no statistical difference between the two sites for two questions related 

to catching a fish (Table 4-1). Rockhampton has greater expectations for an increase in fish 

number, size, variety, new species, increased satisfaction, quality fishing, the involvement of 

more people, catch, and abundance of more fish than Townsville. Similarly, Rockhampton 

outperforms Townsville in terms of satisfaction in fish number, size, variety, exciting fights, 

and overall satisfaction Table 4-1). 
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Table 4-1: 7- point Likert scale response for catch-related statements for Rockhampton and 

Townsville. 

Concepts Responses 

Motivation:  

To catch fish* 

 

Catch orientation:  

The main reason you 

go fishing is to catch a 

fish*  

 

 

Expectations:  

Increase of variety of 

species 

 

Increase in the number 

of species 

 

Decrease of the size of 

fish 

 

Target new species 

 

Townsville

Roockhampton

Not important Low importance Slightly important
Neural Moderately important Important
Very important

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree
Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree
Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree
Neutral Somewhat agree Agree
Strongly agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree

Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree

Neutral Somewhat agree Agree
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Concepts Responses 

Increase in fishing 

satisfaction 

 

Quality fishing 

opportunities for the 

future generation 

 

  

More people will go 

fishing 

 

Catch more fish 

 

Availability of more 

sea life 

 

Satisfaction:  

Number of fish 

 

  

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree

Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree

Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree

Neutral Somewhat agree Agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree
Neutral Somewhat agree Agree
Strongly agree

Townsville

Roockhampton

Strongly disagree Disagree Somewhat disagree
Neutral Somewhat agree Agree
Strongly agree

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Very satisfied
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Concepts Responses 

Variety of fish* 

 

Number of big fish 

 

Size of fish 

 

Number of exciting 

fights 

 

Overall satisfaction 

 

Note 1: the response of 1 indicates not important/strongly disagree/very dissatisfied and 7 indicates 

very important/ strongly agree/ very satisfied. Note 2: An asterix (*) in the statement indicates that the 

differences are not statistically significant between the two populations. 

A Mann- Whitney U test indicates that the mean rank value of Rockhampton respondents was 

greater for satisfaction and expectations-related statements than those of Townsville 

respondents (p-value is < .05) (Appendix A, Table A 1). That means the distributions of 

Rockhampton and Townsville are different, and there is a significant difference between the 

mean ranks for both satisfaction and expectations-related statements. However, there is no 

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Very satisfied

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Very satisfied

Townsville

Roockhampton

Very dissatisfied Dissatisfied Somewhat dissatisfied

Neutral Somewhat satisfied Satisfied

Very satisfied
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significant difference between the mean ranks of the two sites while considering the three 

statements viz. (a) to catch fish (U=9839.0, p= .274), (b) the main reason you go fishing is to 

catch a fish (U=10008.50, p = .409), and (c) the variety of fish you have caught (U=10275.00, 

p=.648). 

The Spearman’s rank correlation test suggests that the overall satisfaction for Rockhampton 

has a positive and moderately strong correlation with expectation components compared to 

Townsville (Table 4-2). In addition, fishers of Rockhampton and Townsville have a similar 

positive and highly strong correlation with overall satisfaction and satisfaction, especially in 

terms of the number, size, variety, and number of exciting fights with fish (Table 4-2). 

Table 4-2: Spearman’s rank correlation test for the statements 

Spearman’s rho Overall satisfaction 

in the past 12 

months 

(Rockhampton) 

Overall satisfaction 

in the past 12 

months 

(Townsville) 

You expect the variety of species you catch to 

increase over the next 12 months 

.441** .241** 

You expect the number of fish you catch to increase 

over the next 12 months 

.433** .198* 

You expect the size of the fish you catch to decrease 

over the next 12 months 

.214** .208* 

You expect to be able to target new species of fish 

you have not targeted before over the next 12 months 

.193* .076 

Your satisfaction with fishing in this area will 

increase over the next 12 months  

.438** .383** 

You expect future generations will have quality 

fishing opportunities in this area 

.527** .444** 

In the future, you expect that more people will go 

recreational fishing in this area 

.494** .194* 

In the future, you expect recreational fishers to catch 

more fish in this area 

.456** .223* 

In the future, you expect there to be more sea life of 

all kinds within this area 

.405** .299** 

The number of fish you have caught .509** .689** 
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Spearman’s rho Overall satisfaction 

in the past 12 

months 

(Rockhampton) 

Overall satisfaction 

in the past 12 

months 

(Townsville) 

The variety of fish you have caught .538** .561** 

The number of big fish you have caught .519** .604** 

The size of the fish you have caught .520** .657** 

The number of exciting fights with fish you have had .570** .524** 

Note: Coefficients represent correlation statistics, ** and * = significant at the 1% and 5% level respectively 

 Regression analysis 

To identify the relationship between overall satisfaction and other influencing factors, an 

ordered probit regression and backward stepwise regression was performed where ‘overall 

satisfaction’ was considered as the dependent variable against contributing variables. Though 

the presence of significant variables is different in both analyses, more motivation and 

satisfaction related variables have a positive and significant effect in Rockhampton than in 

Townsville ( 

Table 4-3). In order to keep the results concise, the study only reported positive or negative 

signs to indicate the significant positive or negative effect for each variable on each site. 
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Table 4-3: Ordered probit regression and backward stepwise regression to determine overall 

satisfaction 

Statements Rockhampton Townsville 

Ordered probit regression: 

To enjoy nature + + 

To catch fish +  

To be with family or friends + − 

To be outdoors  + 

You usually have a good time fishing even if no fish are caught   +  

The main reason you go fishing is to catch a fish +  

The number of fish you have caught + + 

The variety of the fish you have caught +  

The number of big fish you have caught +  

The size of the fish you have caught +  

The number of uncrowded fishing spots + + 

The number of exciting fights with fish you have had +  

Access to parking spaces and boat ramps +  

Age of the participants  + 

Backward stepwise regression: 

To enjoy nature + + 

The number of fish you have caught + + 

The size of fish you have caught +  

The number of uncrowded fishing spots + + 

Note: here ‘+’ indicates the variable was found to have a positive and statistically significant effect 

at a significance level of .05, ‘−’ indicates a negative and statistically significant effect and a blank 

indicates not significant. 

 

To evaluate the relationship between frequency of recreational fishing (avidity) and other 

influencing factors, negative binomial regression and backward stepwise regression analysis 

were performed where ‘avidity’ was considered as a dependent variable against all other 

independent variables (Table 4-4). Rockhampton's avidity is favourably influenced by more 

satisfaction and expectations-based elements than Townsville (Table 4-4). Negative binomial 

regression showed that ‘fishing experience' and ‘satisfaction with the size of fish caught' had a 

strongly negative relationship with avidity in Townsville, but positive in Rockhampton.
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Table 4-4: Negative binomial regression and backward stepwise regression to determine the 

frequency of fishing (avidity) 

Statements Rockhampton Townsville 

Negative binomial regression: 

Fishing experience + − 

To catch fish +  

To be outdoor +  

To be with family or friends  − 

To get away from other people +  

You are getting more involved in fishing these days  + 

Other people would probably say you spend most of your free 

time fishing 

 + 

When you go fishing, you enjoy other parts of the experience 

more than catching fish 

+  

Many of your friends go fishing +  

Other leisure activities do not interest you as much as fishing +  

Going fishing is one of the most enjoyable things you do +  

You are getting more involved in fishing these days +  

The number of fish you have caught +  

The variety of the fish you have caught +  

The number of big fish you have caught +  

The size of the fish you have caught + − 

The number of exciting fights with fish you have had + + 

Overall satisfaction +  

Age of participants +  

Backward stepwise regression:   

Fishing experience +  

To catch fish +  

To be outdoors +  

When you go fishing, you are just as happy even if you don’t 

catch a fish 

−  

Other people would probably say you spend most of your free 

time fishing 

+ + 

How much would you miss fishing if you could not go anymore? +  

The number of the fish you have caught +  

The number of exciting fights with fish you have had + + 

The number of uncrowded fishing spots +  

Note: here ‘+’ indicates the variable was found to have a positive and statistically significant effect 

at a significance level of .05, ‘−’ indicates a negative and statistically significant effect and a blank 

indicates not significant. 
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 Structural equation modelling (SEM) 

Statistical methods have been used to evaluate the accuracy and validity of the survey and to 

achieve insight into the influence of past satisfaction on recreational fishers’ future 

expectations. To develop an SEM, the minimum sample size requirement is 100, where the 

model should contain five or fewer latent variables (variables that cannot be measured directly 

but should be inferred from other variables that are observed) with more than three indicator 

variables (items or observed variables) and the items should have higher communalities (0.6 or 

higher) (Hair et al., 2010). The conceptual framework of SEM for this study is presented in 

Figure 4-4. 

 

Figure 4-4: Conceptual framework of SEM 

 Reliability test  

To measure the consistency of variables in a construct, a reliability test was performed using 

Cronbach’s alpha. Variables with the item-total correlation value less than 0.3 were removed 

from the test to improve the internal consistency (Nurosis, 2005; Cristobal et al., 2007). Table 

4-5 represents the Cronbach’s alpha value after deleting a few variables from the two constructs 

(e.g., expectation and satisfaction) for the two study sites. The deleted variables are reported in 

Appendix A, Table A 4. 
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Table 4-5: Cronbach’s alpha value for the two constructs of Rockhampton and Townsville 

 

Constructs 

Rockhampton  Townsville 

Cronbach’s alpha  Cronbach’s alpha 

Expectation 0.873  0.837 

Satisfaction 0.921  0.927 

 Confirmatory factor analysis (CFA) 

Confirmatory Factor Analysis (CFA) was employed to confirm the validity of the constructs.  

Convergent validity is the proof of the existence of a construct determined by the correlations 

displayed by the associated independent measures of the construct (Wantara, 2013). To 

evaluate convergent validity, the reliability of each construct and factor loadings were 

investigated using the software STATA SE 12. The standardised factor loadings less than 0.6 

were removed from the analysis (Guadagnoli & Velicer, 1988). The deleted variables are 

reported in Appendix A, Table A 5. Table 4-6 represents the factor loadings above 0.6 that 

were used to run the CFA. Confirmatory factor analysis showed that the three variables (one 

observed variable: overall satisfaction and two latent variables: satisfaction and expectation) 

are positively correlated with each other (Table 4-7). The correlation between satisfaction and 

overall satisfaction for both sites are highly correlated and the correlation between satisfaction 

and expectation; and overall satisfaction and expectation were found to be moderately 

correlated (Table 4-7). A multicollinearity test did not identify multicollinearity among the 

satisfaction and expectation components (Appendix A, Table A 6 and Appendix A, Table A 

7).  
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Table 4-6: Latent variable loadings for expectation and satisfaction from confirmatory factor 

analysis 

Sites Variables in CFA Question 

abbreviation 

Standardised 

factor 

loadings 

Rockhampton Latent variable 1: Expectation 

Q9a You expect the variety of 

species you catch to increase 

over the next 12 months 

Species 

variety 

0.66 

Q9b You expect the number of 

fish you catch to increase 

over the next 12 months 

Fish number 0.76 

Q9e Your satisfaction with fishing 

in this area will increase over 

the next 12 months 

Satisfaction 

increase 

0.60 

Q9i You expect future 

generations will have quality 

fishing opportunities in this 

area 

Quality 

fishing 

0.67 

Q9j In the future, you expect that 

more people will go 

recreational fishing in this 

NFZ 

More people 0.69 

Q9k In the future, you expect 

recreational fishers to catch 

more fish in this NFZ 

Catch more 

fish 

0.82 

Q9l In the future, you expect 

there to be more sea life of all 

kinds within this NFZ 

More sea life 0.75 

Q9m In the future, you expect that 

the NFZs will benefit local 

businesses 

Benefit 

businesses 

0.67 

Latent variable 2: Satisfaction 

Q10a The number of fish you have 

caught 

Number of 

fish caught 

0.82 

Q10b The variety of the fish you 

have caught 

Variety of 

fish caught 

0.76 

Q10c The number of big fish you 

have caught 

Number of 

big fish 

caught 

0.93 
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Sites Variables in CFA Question 

abbreviation 

Standardised 

factor 

loadings 

 Q10d The size of the fish you have 

caught 

Size of fish 

caught 

0.92 

Q10e The number of exciting fights 

with fish you have had 

Exciting 

fights 

0.73 

Townsville Latent variable 1: Expectation 

Q8a You expect the variety of 

species you catch to increase 

over the next 12 months 

Species 

variety 

0.67 

Q8b You expect the number of 

fish you catch to increase 

over the next 12 months 

Fish number 0.72 

Q8e Your satisfaction with fishing 

in this area will increase over 

the next 12 months 

Satisfaction 

increase 

0.75 

Q8k In the future, you expect 

recreational fishers to catch 

more fish in this area 

Catch more 

fish 

0.65 

Q8l In the future, you expect 

there to be more sea life of all 

kinds within this area 

More sea life 0.63 

Latent variable 2: Satisfaction 

Q9a The number of fish you have 

caught 

Number of 

fish caught 

0.85 

Q9b The variety of the fish you 

have caught 

Variety of 

fish caught 

0.78 

Q9c The number of big fish you 

have caught 

Number of 

big fish 

caught 

0.90 

Q9d The size of the fish you have 

caught 

Size of fish 

caught 

0.90 

Q9e The number of exciting fights 

with fish you have had 

Exciting 

fights 

0.81 
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Table 4-7: Correlations between observed (overall satisfaction) and latent variables 

(satisfaction and expectation) for Rockhampton and Townsville 

Covariances Rockhampton Townsville 

Coefficient p-value Coefficient p-value 

Satisfaction   Overall Satisfaction .6937533 .000 1.095016 .000 

Satisfaction  Expectation .5640234 .000 .4982039 .003 

Overall Satisfaction   Expectation .5633263 .000 .554337 .000 

The fit statistics for the primary model were not at an acceptable level. So, the model was 

modified by linking the errors of closely related indicator variables that have a theoretical 

background in order to provide an acceptable fit. The Goodness of fit statistics is provided in 

Table 4-8. 

Table 4-8: Goodness of fit for confirmatory factor analysis for Rockhampton and Townsville 

 

Goodness of fit 

Rockhampton  Townsville 

Values  Values 

N 163  130 

Chi 2 140.18  55.11 

p-value .00  .06 

RMSEA 0.07  0.05 

CFI 0.95  0.98 

TLI 0.94  0.97 

SRMR 0.04  0.04 

 Structural equation model  

A structural model fitted to the expectation, satisfaction, and overall satisfaction data according 

to the model structure is demonstrated in Figure 4-5 and Figure 4-6. According to the findings, 

satisfaction is the most powerful predictor of overall satisfaction, and overall satisfaction is 

also a strong determinant of expectation at both study sites. Furthermore, satisfaction was found 

to be an important predictor of expectation in Rockhampton but not in Townsville. 
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Figure 4-5: Revised structural equation model for Rockhampton 

 

Figure 4-6: Revised structural equation model for Townsville 

Three paths (satisfaction to overall satisfaction, satisfaction to expectation, and overall 

satisfaction to expectation) are demonstrated where all of the standardised coefficients are 
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positive and significant at a .05 level. The goodness of fit values for the structural model is 

provided in Table 4-9. The goodness of fit statistics for CFA and SEM for Rockhampton, 

demonstrated by the p-value for chi2 statistics, is below .05 (Table 4-8 and Table 4-9). As the 

chi2 statistic is highly sensitive to the sample size and the number of variables used in the model 

(MacCallum et al., 1996), the decision has been made on the basis of ‘goodness-of-fit’ 

statistics. From both sites, the CFI and TLI values were more than 0.9, and RMSEA and SMRM 

values were less than 0.08 which was reported as a good model by Kline (2015) and Hooper et 

al. (2007). 

Table 4-9: Goodness of fit for SEM for Rockhampton and Townsville 

 

Goodness of fit 

Rockhampton  Townsville 

Values  Values 

Chi 2 140.18  55.11 

p-value .00  .06 

RMSEA 0.07  0.05 

CFI 0.95  0.98 

TLI 0.94  0.97 

SRMR 0.04  0.04 

 

The regression output of SEM presented in Table 4-10 shows that the regression weight of 

satisfaction to overall satisfaction, satisfaction to expectation, and overall satisfaction to 

expectation has a positive and direct effect. The results show that the recreational fishers’ 

satisfaction has a positive and significant effect on overall satisfaction for both study sites 

(coefficient = 0.59, p-value = .00 < .05 for Rockhampton and coefficient = 0.55, p-value = .00 

< .05 for Townsville), as suggested in hypothesis 2a. Similarly, as proposed in hypothesis 2b, 

satisfaction is positively and significantly related to expectation in Rockhampton but not in 

Townsville (coefficient = 0.35, p-value = .00 < .05 for Rockhampton and coefficient = 0.03, p-

value = .06 > .05 for Townsville). This analysis further shows that overall satisfaction is 

positively related to expectation at both sites (coefficient = 0.22, p-value = .00 < .05 for 

Rockhampton and coefficient = 0.40, p-value = .00 < .05 for Townsville), as indicated by 

hypothesis 2c (Table 4-10).  
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Table 4-10: An overview of hypothesis testing results for Rockhampton and Townsville 

Sites Path  Standardis-

ed β value 

Stan-

dard 

error 

p-

value 

Results 

Rockhampton Satisfaction → Overall 

satisfaction  

0.589 0.067 .000 Supported 

Satisfaction→ Expectation 0.350 0.079 .000 Supported 

Overall satisfaction → 

Expectation 

0.219 0.073 .003 Supported 

Townsville Satisfaction → Overall 

satisfaction  

0.554 0.063 .000 Supported 

Satisfaction→ Expectation 0.031 0.105 .768 Not 

Supported 

Overall satisfaction → 

Expectation 

0.399 0.132 .003 Supported 

  Discussion 

This study explored various viewpoints of satisfaction and expectations by comparing a NFZ 

and a reference site for the year 2018 (three years after the implementation of the NFZ). While 

the findings are specific to the research, they are instructive in a number of ways to consider 

recreational fishers' satisfaction and expectations and to compare to those reported by Martin 

et al. (2019). This study found that recreational fishers’ satisfaction and expectations vary 

across sites, with a stronger positive relationship in Rockhampton than in Townsville. This 

finding corroborates that of Martin et al. (2019), who reported that satisfaction and expectations 

towards NFZs have increased over time, and the performance of Rockhampton and Cairns were 

higher in the 2018 survey compared to those of 2015 and 2016 surveys.  

Some responses did not vary between the sites, such as catch motivation, the main reason for 

going fishing and the variety of fish caught in both areas did not show any significant 

difference. However, the majority of the satisfaction and expectations-related responses 

showed significant differences for these two sites. So, it is reasonable to assume that the main 

difference was found in satisfaction and expectations-related outcomes. Fishers of 

Rockhampton are more satisfied with their previous fishing experience and have positive 

expectations towards recreational fishing opportunities and long-term management of fisheries 
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resources. A similar finding was reported by Martin et al. (2019), who confirmed that 

Rockhampton had the highest level of expectations in 2018, despite the fact that their study did 

not compare the level of expectations with either of the comparison sites. 

The literature widely accepts that a number of factors including motivation, catch orientation, 

satisfaction, and age of the participants influence overall fishing satisfaction (Hunt & Grado, 

2010; McCormick & Porter, 2014). This study also confirms the existence of similar types of 

influencing factors for overall satisfaction where fishers of Rockhampton are tended to be more 

highly motivated and highly satisfied than Townsville. Previous research suggests that older 

fishers were less satisfied in fishing than their younger counterparts (Mostegl, 2011; 

McCormick & Porter, 2014). This study, however, found a significant positive relationship 

between fishers’ age and overall satisfaction in Townsville, where the majority of fishers were 

slightly older than Rockhampton and the ages range lies between 45-54 years. While the 

justification for such a relationship is unclear, it is rational to believe that fishing motivations 

and satisfactions change with age (Aas, 1996; McCormick & Porter, 2014). The study found 

that both catch-related and non-catch-related motivation and satisfaction components appeared 

to affect overall satisfaction in both locations, but Rockhampton had a greater effect on overall 

satisfaction than Townsville. One potential explanation for these findings is that owing to the 

improved opportunity of recreational fishing in Rockhampton, fishers appear to be more 

focused, highly motivated, and satisfied with fishing than those in Townsville. Similar findings 

were reported by Martin et al. (2019). 

The study conducted by Brinson and Wallmo (2013) proposed avidity as a determinant of 

satisfaction. However, research on the reverse relationship between satisfaction and frequency 

of fishing (avidity) has not been well discussed. However, this study revealed that the variables 

affecting avidity in Rockhampton are different than those of Townsville, and the majority of 

the components of satisfaction, motivation, and centrality of fishing to lifestyle were found to 

be the most contributing factors of avidity in Rockhampton, although only a few of them were 

found to affect the avidity of Townsville fishers. Research conducted by Tink (2015) described 

that motivation other than competition was the important determinant of avidity, while Sutton 

(2006) found that fishers who have a higher centrality of fishing to their lifestyle have higher 

avidity. Fishing experience and satisfaction in the size of fish were found to have a positive 

effect on avidity in Rockhampton but a negative effect in Townsville. This could be interpreted 

as the increased level of satisfaction and experience in Rockhampton influencing fishers to 

engage more in fishing activities in Rockhampton than Townsville. 
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The structural model confirmed the hypothesis and demonstrated that past satisfaction and past 

overall satisfaction were positively and directly related to future expectation in Rockhampton, 

despite the fact that there is little empirical evidence in the recreational fishing literature to 

support those conceptualisations. However, while there was no evidence of a relationship 

between past satisfaction and future expectations for Townsville, there was a strong positive 

and direct relationship between past overall satisfaction and future expectations. 

As anticipated, satisfaction, overall satisfaction, and expectations are highly/moderately 

correlated due to the various dimensions and attributes involved with the behavioural and 

cognitive aspects of fishers’ expectations associated with satisfaction. Similar findings were 

also reported by Aksu et al. (2010) where they identified a strong correlation between tourist 

satisfaction and expectations in Turkey. As an alternative theoretical prediction of concepts, 

future expectations were found to be influenced by past satisfaction (significant in 

Rockhampton only) and past overall satisfaction (significant in both sites). However, previous 

studies confirmed that catch expectation is the primary predictor of satisfaction (Hampton & 

Lackey, 1976; Arlinghaus, 2006), and fishers with more realistic expectations would have 

higher levels of fishing satisfaction (Spencer & Spangler, 1992). The explanation for this 

conceptual difference can be described by the fact that this study hypothesised the relationship 

in a different way to address the temporal inconsistency between 12 months prior to 

satisfaction, and 12 months ahead of expectations. The study also found a significant positive 

and direct effect of satisfaction towards overall satisfaction. This concept is also supported by 

Teas (1993), Parasuraman et al. (1994), and Jones and Suh (2000). 

The structural equation modelling approach enables several multiple regression equations to 

be calculated simultaneously in a single framework and estimates relationships through setting 

causal hypotheses. The number of indicator variables under the latent variable ‘expectation’ is 

different between sites though the satisfaction components are the same with varying 

significant positive beta (β) values. For the Rockhampton, the latent variable expectation 

represents eight observed variables including expectations on variety and the number of fishes 

caught will increase over the next 12 months, expectations on quality fishing opportunities, 

availability of more sea life in the future, more people will go fishing, and will catch more fish 

from this site. They also expect the satisfaction with fishing in this area will be increased and 

the increased level of recreational fishing will, in turn, benefit local businesses. On the other 

hand, the expectations of Townsville fishers are limited to only five expectation components. 
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Considering the expectation components of Rockhampton, fishers of Townsville expect a 

smaller number of fish with low-quality fishing opportunities, and few people are expected to 

go fishing over the next 12 months.  

These findings support the idea that fishers of Rockhampton have higher expectations of future 

recreational fishing opportunities than those of Townsville. The insignificant relationship 

between satisfaction and expectation in Townsville may be clarified by the fact that the 

components of satisfaction have no causal relationship with the components of expectation 

owing to its limited scope than Rockhampton. But surprisingly, the relationship between 

overall satisfaction and expectation is stronger in Townsville than in Rockhampton. This can 

be described as the overall satisfaction involves all aspects and experiences associated with 

fishing. Regression analysis other than SEM revealed that along with the satisfaction 

components, certain non-catch-related motivations are significant determinants of overall 

satisfaction in Townsville, and these non-catch-related aspects of overall satisfaction were 

found to have a strong causal relationship with given expectation components in Townsville. 

Furthermore, on the other two hypotheses, the regression weight between variables indicates 

that Rockhampton has a stronger effect of satisfaction on overall satisfaction (0.59) and 

expectation (0.35) than Townsville. This finding may be attributed to a higher degree of 

satisfaction and expectations in Rockhampton than in Townsville. 

The findings of the study are limited to the fishers who have visited the tackle shop during the 

data collection in October 2018. They might not be representative of the case at all times of the 

year, or of fishers who are not frequent to those fishing tackle shops. Furthermore, the survey 

participants were self-selected and usually from an undefined recreational fishing population 

with no sampling frame. There is no empirical data in the recreational fishing literature to 

endorse certain conceptualisations of past satisfaction and past overall satisfaction influencing 

future expectations. The findings indicate that fishers' satisfaction and overall satisfaction in 

Rockhampton have a positive and significant effect on their expectations.  

It is speculated that the findings of the study could be biased by some other factors. First, there 

might have a fundamental flaw in the way the survey questionnaire was structured. Participants 

in Rockhampton were questioned about NFZs prior to questioning about their satisfaction and 

expectations of fishing. The ways in which the questions were presented to the Rockhampton 

participants may have conditioned them to the concept of NFZs and their purposes, thereby 

influencing their responses and introducing bias into the results. Second, there is no replication 
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of experimental units in this study and the geographical scope is very limited. Third, the study 

did not include all of the variables in non-parametric test but evaluated only few variables 

related to catch. Fourth, over the study period, a growing number of fishers travelled further 

afield to fish in Rockhampton but not in the other regions, which included the remaining two 

NFZs and three reference sites. According to Martin et al. (2019), Rockhampton offered 

extensive publicity and advertising in relation to the other sites. Because of the level of 

community involvement and promotion by local organisations, the reputation and appeal of 

Rockhampton as a NFZ were strong enough to attract more remote fishes of further afield. 

Fifth, the study did not consider other contributing variables that may have a direct or indirect 

effect on satisfaction and expectation in the structural equation model.  

 Conclusion 

Returning to the question posed at the beginning of this study, the study set out to examine and 

compare the relationship between recreational fishers’ satisfaction and expectations in fishing 

between a NFZ implemented in 2015 (Rockhampton) and a reference site (Townsville). The 

results of this investigation showed that the satisfaction and expectations of fishers in 

Rockhampton are higher than those of Townsville. These findings have significant implications 

for the understanding of the factors that influence satisfaction and expectation, both of which 

contribute to achieve successful fishing experiences. The present study has demonstrated, for 

the first time, the underlying causal relationship, and the strength of that relationship, between 

satisfaction and expectation components of recreational fishing. The findings of the study are 

relevant to recreational fisher communities, policy analysts, and interested groups (e.g., 

national fish and wildlife agencies, aquatic resource management association, recreational 

fishing and boating organisation, recreational fisheries and environmental protection 

association, and tourism industry) to identify the relationship between satisfaction and 

expectation that received little attention in the literature. Understanding recreational fishers’ 

attitudes, motivation, preferences, catch orientation, lifestyle centrality, expectations, and 

satisfaction with recreational fishing management improves overall satisfaction and 

expectations and can contribute to greater fishing participation and higher social benefits. 

The outputs presented in this study can be helpful when considering management measures to 

improve recreational fishing opportunities. One of the strengths of this study is that it represents 

a comprehensive examination of the relationship between satisfaction and expectation 

components in the field of fisheries science. This study can be replicated with other NFZs and 
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reference sites by including a greater variety of variables affecting fishers' satisfaction and 

expectations in fishing. Along with other analyses used in this study, future work could employ 

similar approach to investigate causal relationships proposed by the theories and could be 

conducted in other regions where recreational fishing is considered socially or economically 

important. 
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Abstract 

The Queensland state government introduced commercial net fishing closures in Cairns, 

Mackay, and Rockhampton in November 2015 which may increase the recreational fishing 

opportunities, nature-based tourism, and economic benefits in these three regional areas. This 

management change is likely to improve the potential for more desirable stock structures 

through natural recruitment. Barramundi (Lates calcarifer) is one of the popular target fish for 

recreational and commercial fishers in Northern Australia. However, it is difficult to predict 

the relationship between reduced commercial fishing pressure and fish stocks. In this research, 

an autoregressive integrated moving average with exogenous input (ARIMAX) model and a 

lagged multiple linear regression (MLR) model were developed using 30 years of commercial 

catch per unit effort (CPUE) data to identify the influence of some of the exogenous variables 

that affect commercial barramundi CPUE. The walk-forward or sliding window approach was 

used to generate out-of-sample forecasts and the model accuracy was compared using mean 

absolute error, mean absolute percent error, and root mean square error. The results indicate 

that ARIMAX models provide the best forecast for all of the study sites except two samples of 

Cairns. Overall, the study suggests the ARIMAX model should be applied due to its accuracy 

and flexibility, especially considering the limited data availability. The study also suggested 

that both environmental and fishery parameters are equally important for prediction. 

Environmental parameters such as rainfall, streamflow, and stream water level and fishery 

parameters such as licences and prices are the most important determinant of CPUE for most 

of the study sites. This study provides valuable insights into the effect of management changes 

in the commercial CPUE to ensure sustainable management of fisheries resources. The study 

output as a whole will inform the management of fisheries resources in Queensland, where the 

potential for increased recreational allocation is high. 

 

Keywords: barramundi, ARIMA model, ARIMAX model, MLR model, fishery management  
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 Introduction 

Overfishing is one of the most damaging anthropogenic disruptions to the sustainable 

management of wild fisheries in the world. The marine environment and the economically 

important fishing community are adversely affected by the depletion of stocks through 

overfishing (Myers & Worm, 2003). In recent years, the commercial catch and nominal CPUE 

(catch per unit effort) have substantially declined in Australia due to overfishing (Moore et al., 

2007; Gaughan & Santoro, 2020).  Measures show that 17.5% of the fish stocks in Australia 

are overfished or too heavily fished, and the status of 16.5% of fish is unknown (Australian 

Marine Conservation Society, 2020). The entire aquatic ecosystem can be impacted by 

significant declines in stock abundance. It may alter the genetic structure of the population 

(Conover & Munch, 2002; Mora et al., 2009), damage the recovery potential of stocks 

(Hutchings, 2000; Mora et al., 2009), create imbalances that can damage the food web and 

contribute to the destruction of other aquatic life (Pauly et al., 2002; World Wildlife Fund Inc., 

2020), and decrease food and economic security (Pauly et al., 2005), and disrupt hunger 

mitigation efforts (Pauly et al., 2005; World Health Organization, 2005). 

Given the significant ecological and socio-economic consequences of overfishing on global 

fisheries, a range of management procedures has been undertaken to combat overexploitation 

and improve sustainable exploitation of marine fisheries resources. Among the initiatives, 

commercial fishery closure is a useful and substantial means of managing the impacts of 

commercial fishing on certain fishery or habitat (Australian Fisheries Management Authority, 

2017). Fishery closure can protect the abundance of a target species with their habitats (Abbott 

& Haynie, 2012). In a fishery, CPUE data represents an indirect measure of the abundance of 

a species. The CPUE is determined by dividing the total catch by the total fishing effort in a 

given period (Van Hoof et al., 2001). A declining CPUE indicates overexploitation of stock 

and an unchanged CPUE indicates sustainable harvest of that stock (Yadav et al., 2016). 

Modelling and forecasting of the CPUE are used as a useful tool for the understanding of the 

underpinning factors that affect fishery dynamics and provide short-term quantitative 

guidelines for fisheries management (Stergiou & Christou, 1996). 

Queensland’s iconic species, barramundi (Lates calcarifer), is a valuable fin-fish species for 

commercial, recreational, and indigenous fisheries in Australia (Balston, 2009a), and 

contributes a vital role in the regional economy of coastal Queensland (Rose et al., 2009). In 

2013-14, the commercial wild harvest of barramundi from Queensland waters was recorded at 
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826 tonnes, which contributed more than $7.58 million in the wholesale product (Mobsby & 

Koduah, 2017). In relation to stock status, Queensland’s barramundi is thought to be made up 

of seven genetically distinct populations. According to the status of the Australian Fish Stocks 

report in 2016, stocks of southern Gulf of Carpentaria account for more than half of 

Queensland's annual commercial barramundi catch and was designated as the most depleting 

stock relative to others (Saunders et al., 2016). To reduce the fishing pressures in this stock, 

several management plans have been introduced since 1981. More restrictive access to the 

water has been applied to the Gulf of Carpentaria's Inshore Fin Fishery, which resulted in 

reductions from the number of commercial permits from 109 in 1998 to 85 in 2015 (Queensland 

Government, 2017c).  In November 2015, a new restriction on the use of nets on commercial 

barramundi fishing was implemented in the three regional cities of Queensland, Cairns, 

Mackay, and Rockhampton, on the grounds that fish species will be conserved, recreational 

fishing and expenditure on local fishing tourism-related businesses will be increased 

(Queensland Government, 2016). The resultant change in fishing pressure is likely to improve 

the stock structure of barramundi. No previous study has evaluated the ecological effect of 

commercial netting closure on barramundi fishery, especially in those areas.  This indicates a 

need to understand the original effect of reduced commercial fishing pressure on future 

barramundi catch. 

The life cycle of barramundi involves fresh, brackish, and marine stages. Spawning occurs in 

brackish water environments at the start of the wet season with the strongest tidal activity 

(Government of Western Australia, 2011). The complex life cycle provides the opportunity to 

survive in a wide range of environmental conditions. Several studies suggest that the 

barramundi population is highly influenced by some environmental parameters (e.g., rainfall 

and/or streamflow) that particularly influence recruitment, productivity, and catchability 

(Dunstan, 1959; Davis, 1985; Russell & Garrett, 1985; Griffin, 1987; Russell & Rimmer, 

2004). Sawynok (1998) found a significant positive relationship between the growth rate of the 

barramundi in the Fitzroy River, Rockhampton, and the amount of freshwater flow. Other 

studies have identified that catch rate and recruitment are significantly positively correlated 

with river discharge (Staunton-Smith et al., 2004; Robins et al., 2005; Balston, 2009b; Halliday 

et al., 2010). Balston (2009a) found a significant positive correlation with two years later 

barramundi catch and warm sea surface temperature, low evaporation, high rainfall, and high 

freshwater flow. Along with environmental parameters, some studies have reported that 

fishery-dependent parameters are also important to describe CPUE (Walters, 2003; Maunder 
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et al., 2006; Petrere Jr. et al., 2010; Sweke et al., 2015) that could be useful to understand the 

potential barramundi harvest. 

 Review and approach 

Analysis of fish CPUE using time series models is arguably the most efficient tool for fisheries 

management and decision making as it can identify hidden trends and seasonal patterns 

(Koutroumanidis et al., 2006). Forecasting is used to account for in-season or post-season 

predictions and provide a basis for the predictions of the effects of management measures 

(Farmer & Froeschke, 2015). Time series forecasting involves three fundamental approaches: 

regression-based methods, heuristic smoothing methods, and general time series (Montgomery 

et al., 2002). Among them, the regression-based forecasting autoregressive integrated moving 

average model (ARIMA) is widely used in fisheries management (Raman et al., 2017). The 

research employed by Stergiou (1989, 1991), Stergiou et al. (1997) and Romilly (2005) showed 

that the validation error of the ARIMA model is significantly lower than other models. To date, 

a limited number of studies have used forecasting applications in fisheries management 

(Farmer & Froeschke, 2015). A barramundi catch model was developed by Balston (2009a) 

for Princess Charlotte Bay in Far North Queensland, where the author used a forward stepwise 

ridge regression model to predict the commercial barramundi catch. Some notable examples of 

ARIMA models are available in the literature for other fish species. Tsitsika et al. (2007) used 

univariate and multivariate ARIMA models to forecast pelagic fish production, whilst Prista et 

al. (2011) used a SARIMA (seasonal ARIMA) model using monthly landing data to identify 

the future landings of meagre fishery in Portugal. A number of studies have compared several 

time series models and provided insights into the best fitting models. Saila et al. (1980) tested 

monthly averages, harmonic regression analysis, and ARIMA models to forecast monthly 

catches and found ARIMA to be the most suitable model for forecasting 12 months ahead of 

production. Likewise, Hanson et al. (2006) suggested that while multiple-regression and 

artificial neural network models performed equally well for both Atlantic and Gulf menhaden 

catches, the ARIMA only predicted well for Atlantic samples whilst the State Space model 

only predicted well for Gulf menhaden samples. Raman et al. (2017) found that an ARIMA 

model with log-transformed data had a better fit than an intervention model based on Akaike 

information criterion (AIC) and Bayesian information criterion (BIC). 

The Fitzroy River system that passes through the regional city of Rockhampton and the Mary 

River near Hervey Bay are home to the largest breeding populations of barramundi on the east 
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coast of Queensland (Radosevic, 2018). In this study, along with the three NFZs (Net-free-

zones), three reference sites (Townsville, Hinchinbrook, and Hervey Bay) were also chosen 

considering their prominent commercial fishing and availability of the barramundi population. 

Very little work has been done in these areas for annual CPUE prediction of barramundi using 

either the ARIMA (autoregressive integrated moving average) or MLR (multiple linear 

regression) models. Moreover, the influence of environmental and fishery parameters to 

determine the effect of reduced commercial fishing pressure on future barramundi catch is little 

explored.   

Time series forecasting of future catches involves the modelling of all the factors that influence 

the fish catch (Ward et al., 2014). To achieve the management objectives of a barramundi 

fishery, it is first necessary to obtain the future catch predictions through identifying the 

important factors that are responsible for the prediction and then identifying the factors that 

might be helpful for the sustainable management of fishery stocks. Hence, this study took a 

broad exploratory approach to understand the influence of environmental and fishery predictors 

of the annual barramundi catch. An exploratory analysis was required for this study as both 

environmental and fishery drivers are likely to affect fish and marine life (Sydeman et al., 2014; 

Sydeman et al., 2018). In this study, two different types of empirical statistical catch prediction 

models were investigated for the six study sites separately and two pooled sites; one for the 

three NFZs together and another for the three reference sites together using the pooled average 

data for each variable for each year. Here, the study included MLR and ARIMAX models for 

predicting the barramundi CPUE. For the MLR model, the study tested a general hypothesis 

based on the barramundi growth rate where lagged environmental parameters might have an 

influence on barramundi catch as well as in the prediction. This study assessed the accuracy of 

each technique for each of the study sites, including pooled sites, and established a relationship 

between nominal CPUE and both fishery and environmental predictors to understand the effect 

of reduced commercial fishing pressure and made inferences on future recreational barramundi 

catch.  
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 Materials and method 

 Data 

 Study sites and barramundi data 

The study sites were Queensland’s three net-free zones (NFZs), namely Cairns, Mackay, and 

Rockhampton, and three reference sites, namely Townsville, Hinchinbrook, and Hervey Bay. 

To understand the actual ecological effects of netting closure, a four-year post-closure period 

may be insufficient to compare and draw conclusions about the change. To address this issue, 

this study considered three similar sites as reference sites where commercial fishing activities 

are still in place and being used as reference sites by the Queensland Department of Agriculture 

and Fisheries (DAF). There may be some spatial-temporal heterogeneity associated with the 

sites and they may not adhere to the same standard as NFZs. The exact grid squares of study 

areas were identified from commercial fishing logbook maps of Queensland. Figure 5-1 

indicates the fishing grids of the six study sites in Queensland. Commercial barramundi fishery 

parameters such as catch, effort, and licence data of the inshore net fishery were collected from 

the QFish website (http://qfish.fisheries.qld.gov.au/) for the grid squares of the six study areas, 

namely Cairns (G15, H16, H17), Mackay (N24, O24, O25), Rockhampton (R28, R29, R30, 

S29), Townsville (J21, k21), Hinchinbrook (I19, I20), and Hervey Bay (V33, V34, W33, W34) 

for the years 1990 to 2019. This study did not use recreational catch data due to the inadequate 

spatiotemporal record and the complexity of assuming post-release survival. 

Commercial barramundi catch data were recorded in tonnes per year, whereas effort data were 

recorded as the number of net fishing days (i.e., the number of days when net is set to catch 

barramundi). Then nominal CPUE was estimated by diving catch and effort data (Ghosn et al., 

2012). Commercial fisheries licence data were recorded as numbers of fishing permits in a 

year. Another fishery parameter, the price of yearly barramundi production (per tonne) in 

Queensland was collected from the annual fisheries statistics publication of the Australian 

Bureau of Agricultural and Resource Economics and Sciences (ABARES) (website: 

http://www.agriculture.gov.au/abares/), and the price was adjusted for yearly inflation to 2019 

using an online consumer price index inflation calculator (website: 

https://www.abs.gov.au/Price-Indexes-and-Inflation) 

 

http://www.agriculture.gov.au/abares/
https://www.abs.gov.au/Price-Indexes-and-Inflation
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Figure 5-1: Map indicating the fishing grids of the six study sites. Map shape file source: 

DIVA-GIS (http://diva-gis.org/) 

 Environmental parameters 

Evidence from previous research suggests that environmental parameters (e.g., rainfall, 

temperature, streamflow, and stream water level) have a significant effect on marine fish 

populations (Benson & Trites, 2002; Morrongiello et al., 2014). Several studies found that there 

is a strong relationship between environmental parameters (Lun et al., 2011; Cong & Brady, 

2012; Yang et al., 2012; Nkuna & Odiyo, 2016; Bui et al., 2019). For example, Lun et al. (2011) 

reported a positive relationship between rainfall and stream water level. On the other hand, 

rainfall and temperature demonstrated a negative relationship (Cong & Brady, 2012; Nkuna & 

Odiyo, 2016). Similarly, streamflow is negatively related to temperature but positively related 

to rainfall (Yang et al., 2012) and stream water level (Kumar et al., 2020). However, 

environmental parameters such as rainfall, terrestrial temperature, streamflow, and stream 

water level are always the external factors that affect and influence the dynamic process of fish 

(Jobling, 2002). 
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 Rainfall and terrestrial temperature 

Rainfall and temperature play important role in the biological processes of fish such as growth, 

recruitment, and population productivity (Morrongiello et al., 2014). Balston (2007) found 

concrete evidence that climate variability impacts on barramundi fishery of north-east 

Queensland. Heavy rainfall has a significant positive correlation with spawning and early life 

stages of barramundi that ultimately improves the catch for the following year (Balston, 2009a). 

Similarly, water temperature is important for the survival of new recruits and the growth rates 

of young fish (Agcopra et al., 2005). For the study, the yearly rainfall and temperature data for 

each case study area were extracted from the Bureau of Meteorology database 

(http://www.bom.gov.au/climate/data/). Considerable spatial heterogeneities are associated 

with rainfall; particularly in the tropics and thus weather stations that capture rainfall in the 

areas of catchments that generate most streamflow for barramundi were averaged. For the 

temperature data, interpolated maximum and minimum yearly average of terrestrial 

temperature were extracted for the six study sites. Total annual rainfall for Cairns was averaged 

from the following stations, namely Cairns Severin St, Parramatta Park, Cairns Racecourse, 

Cairns Aero, Mt Sheridan. For Mackay, rainfall data were averaged from Mackay Alert, 

Mackay Aero, Ooralea Racecourse, Mackay M.O., and Farleigh Co-Op Sugar Mill stations. 

For Rockhampton, Townsville, and Hinchinbrook only one station in each area such as 

Rockhampton Aero, Townsville Aero, and Cardwell Marine Pde was selected as the nearby 

stations are located 10.3 km, 12.1 km, and 26.6 km away from the study site. For Hervey Bay, 

data from Hervey Bay Airport and Urangan Hibiscus St were averaged. Interpolated maximum 

and minimum yearly average temperature data were extracted from Cairns Racecourse and 

Cairns Aero for Cairns; Mackay Aero, Ooralea Racecourse, and Mackay M.O for Mackay; 

Rockhampton Aero for Rockhampton; Townsville Aero for Townsville, Cardwell Marine Pde 

for Hinchinbrook; and Hervey Bay Airport and Maryborough for Hervey Bay.  

 Streamflow and stream water level 

Streamflow and stream water level were expected to influence barramundi catch. Previous 

monitoring has identified higher recruitment of barramundi following good river flows in the 

months of December to February in the Fitzroy region (Sawynok, 1998). The same study found 

a correlation between river flows and barramundi catch in the Gladstone region, also in Central 

Queensland. For this analysis, streamflow and stream water level data for each study site were 

http://www.bom.gov.au/climate/data/
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extracted from the Queensland Government Water Monitoring Information Portal 

(https://water-monitoring.information.qld.gov.au/). Most of the stations within the study sites 

do not have enough data from the year 1990 to 2019. To overcome this problem, this study has 

opted for the nearby stations that have available data. Stream discharge volume (megalitres) 

and mean stream water level (metres) for the six study locations were extracted for Barron 

River at Myola (Cairns), Sandy Creek at Homebush (Mackay), Fitzroy River at The Gap 

(Rockhampton), Burdekin River at Clare (Townsville), Gowrie Creek at Abergowrie 

(Hinchinbrook), and Gregory River at Isis Highway (Hervey Bay).  

 Data preparation 

Before further analysis, data were cleaned and pre-processed by replacing outliers (Kwak & 

Kim, 2017), and missing values were replaced by generating values using the linear 

interpolation technique (Fleig et al., 2011; Hamzah et al., 2020). The analysis was repeated 

three times for each site for successive three-year periods using two different models: 

autoregressive integrated moving average with exogenous input (ARIMAX) and a lagged 

multiple linear regression (MLR). This involved using a walk-forward validation or sliding 

window approach from 2011 through 2019 which generated out-of-sample results up to 2019. 

For example, the first model was built using yearly data from 1990 to 2010 (1st training dataset) 

and tested out-of-sample from the period of 2011 to 2013. The second model used data from 

the year 1992 to 2013 (2nd training dataset) and forecasted for the year 2014-2016 and the last 

model used data from 1994 to 2016 (3rd training dataset) to forecast out-of-sample data for the 

year 2017 to 2019. All the statistical analyses were performed using modelling and forecasting 

software EViews 10, STATA SE 12, IBM SPSS Statistics 25, and Microsoft excel.  A summary 

of the dataset collated for the ARIMAX and MLR analyses is shown in Table 5-1. 

  

 

https://water-monitoring.information.qld.gov.au/
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Table 5-1: Summary of the collated data for analysis in each of the study sites 

Sites Variables N1 Minimum Maximum Mean  Std. Dev. 

Cairns CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.05 0.03 0.01 

Licences  30 6.0 20.0 12.0 3.80 

Price/tonne of 

Fish (AUD)2 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 721.0 3425.60 2106.09 581.88 

Temperature (℃) 30 24.35 26.05 25.14 0.35 

Streamflow 

(gigalitres) 

30 106151.98 1827060.42 680912.99 493862.38 

Stream Water 

Level (metres) 

30 0.35 1.18 0.69 0.23 

Mackay CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.07 0.05 0.01 

Licences 30 16 28 21.97 3.06 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 830.67 2953.67 1535.46 544.18 

Temperature (℃) 30 22.65 24.62 23.78 0.54 

Streamflow 

(gigalitres) 

30 7771.75 627070.98 184386.02 180790.50 

Stream Water 

Level (metres) 

30 0.43 1.23 0.69 0.20 

Rockha

mpton 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.10 0.04 0.02 

Licences 30 5 52 34.73 13.15 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 203.10 1424.00 735.02 289.70 

Temperature (℃) 30 22.20 23.95 23.12 0.49 

Streamflow 

(gigalitres) 

30 357504.13 12355838.0

0 

3099440.9

5 

2890299.61 

Stream Water 

Level (metres) 

30 1.14 6.89 4.82 1.68 
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Sites Variables N1 Minimum Maximum Mean  Std. Dev. 

Pooled 

NFZs 

data 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0 .07 0.04 0.01 

Licences  30 10 31 22.90 5.47 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 650.93 2397.72 1458.86 354.05 

      

Temperature (℃) 30 23.37 24.81 24.01 0.38 

Streamflow 

(gigalitres) 

30 171992.33 4768500.73 1321579.9

9 

1066400.56 

Stream Water 

Level (metres) 

30 0.69 3.00 2.07 0.61 

Townsvi

lle 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.08 0.05 0.02 

Licences  30 14 34 23.33 4.95 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 397.60 2399.80 1121.53 555.13 

Temperature (℃) 30 24.00 25.85 24.77 0.45 

Streamflow 

(gigalitres) 

30 540507.06 38758859.9

2 

9251417.9

6 

9955919.56 

Stream Water 

Level (metres) 

30 1.29 2.82 1.85 0.48 

Hinchin

brook 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.07 0.04 0.01 

Licences  30 10 32 20.93 5.49 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 1149.50 3322.70 2053.49 583.00 

Temperature (℃) 30 23.70 25.20 24.25 0.40 

Streamflow 

(gigalitres) 

30 18240.02 367455.95 157082.86 94054.10 

Stream Water 

Level (metres) 

30 0.90 1.32 1.10 0.13 
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Sites Variables N1 Minimum Maximum Mean  Std. Dev. 

Hervey 

Bay 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.06 0.04  0.01 

Licences  30 19 44 31.27 6.66 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 579.30 1635.85 1037.32 272.69 

Temperature (℃) 30 20.90 22.15 21.50 0.34 

Streamflow 

(gigalitres) 

30 939.90 234500.69 69286.70 80270.67 

Stream Water 

Level (metres) 

30 0.91 1.87 1.48 0.22 

Pooled 

referenc

e sites 

data 

CPUE 

(tonnes/net 

fishing days) 

30 0.02 0.07 0.04 0.01 

Licences  30 14 33 25.18 5.12 

Price/tonne of 

Fish (AUD) 

30 9182.54 22183.47 11410.7 2881.57 

Rainfall (mm) 30 887.93 2260.72 1404.11 367.01 

Temperature (℃) 30 22.90 24.25 23.51 0.32 

Streamflow 

(gigalitres) 

30 251387.37 13078352.6

9 

3159262.5

1 

3343467.31 

Stream Water 

Level (metres) 

30 1.22 1.95 1.48 0.21 

1 The data are annual and represent the 30 years from 1990-2019 

2 All currency mentioned in this chapter are in Australian dollars. Currently, AUD$1 = US$0.73 
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 ARIMAX methodology 

The ARIMA model has been selected to predict future fish CPUE over time because this model 

provides relatively accurate and unbiased forecasts and has proven effective in making short-

term predictions. The application is simple and straightforward, and in a short run application, 

the ARIMA model typically outperforms other complex structural models (Meyler et al., 1998). 

Box and Jenkins (1970) use the notation ARIMA (p, d, q), where p refers to the orders of 

autoregressive part, d is the number of differencing to remove non-stationary trends, and q is 

the moving average part (Saila et al., 1980), which can be defined as follows:  

𝑦𝑡 = 𝜇 + ∑ 𝜑𝑗

𝑝

𝑗=1
𝑦𝑡−𝑗 + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1
+  𝜀𝑡………………………………………Eq (5.1) 

where, 

yt= value at time t, 

μ=intercept, 

φ= coefficient of the autoregressive parameter, 

θ= coefficient of moving average parameter, and 

εt= random error at time t. 

A basic assumption of time series analysis is that some features of the past values will continue 

to appear in the future (Raman et al., 2017) and that a set of exogenous variables could affect 

the forecasting of the dependent variable. The ARIMAX model is a logical extension of the 

pure ARIMA model, which includes other predictor variables (Andrews et al., 2013). The 

ARIMAX methodology has two basic phases: the first phase is to run a statistically sound 

regression model and the second stage is to use the errors from the regression to identify the 

potential AR (autoregressive) and MA (moving average) terms to remove any serial correlation 

that persists in the residual time series (Andrews et al., 2013). This study has followed the 

widely used Box and Jenkins (1970) method, with limited data of 30 annual observations, 

noting that Box-Jenkins methodology recommended using at least 50 observations. Recent 

research by Watson and Nicholls (1992) provided evidence that a small dataset (between 30 or 

20 observations) does not affect the model, and it is still statistically feasible to build a good 

and effective ARIMAX model below the Box-Jenkins limit. ARIMAX includes four distinct 

steps of estimation: identification, estimation, diagnostic checking, and forecasting. The 
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ARIMAX equation modified from Box and Jenkins (1970) with a predictor variable is given 

in Equation 5.2. 

    𝑦𝑡 = 𝜇 + β𝑥𝑡 + ∑ 𝜑𝑗

𝑝

𝑗=1
𝑦𝑡−𝑗 + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1
+  𝜀𝑡……………………………….Eq (5.2) 

where, 

yt= value at time t, 

μ=intercept, 

β= coefficient of the predictor variable, 

xt= predictor variable at time t, 

φ= coefficient of the autoregressive parameter, 

θ= coefficient of moving average parameter, and 

εt= random error at time t. 

 ARIMAX Identification 

The first stage of data preparation is to check for seasonality, trend, and stationarity. The 

stationary process is a stochastic process whose statistical properties, such as mean and 

variance, do not change over time (Karunarathna & Karunarathna, 2017). In this case study, 

time series data do not show seasonality, but a steady positive/negative secular trend of CPUE 

data were evident in all of the sites Figure 5-2. An augmented Dickey-Fuller (ADF) test was 

used to check whether the series was stationary or not. The ADF unit root test statistics value 

was greater than the 5% significance level and indicates that all of the series were non-

stationary. Therefore, non-stationary variables were converted to first-order differencing to 

make them stationary (details are in Appendix).  

The next step was to employ a Granger causality test of the variables and remove any 

independent variables that showed any significant evidence of reverse causality. Any variable 

with a p-value below .05 led to the rejection of the null hypothesis, thus eliminating this 

variable as a candidate for inclusion in the model. In the analysis, none of the variables 

displayed reverse causality. The presence of multicollinearity is problematic since it 

undermines the statistical significance of an independent variable (Allen, 2004).  
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Figure 5-2: Non-stationary series for dependent variable CPUE for all of the study sites 
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A multicollinearity test was conducted to remove highly correlated independent variables from 

the pool. Some of the samples found the presence of multicollinearity between streamflow and 

stream water level. To remove highly correlated variables from the model, two separate 

regression models were built: one including all the predictor variables except stream water 

level and another model including all variables except streamflow. The model with improved 

R2 value and significant p-value was chosen to proceed for further analysis. 

Then, forward or backward regressions were employed to remove insignificant variables at the 

significant-level threshold of .05. A structural break was considered for all the NFZs and 

pooled NFZs samples for the known break in the year 2015 when the netting closure was 

implemented. A dummy variable was created and interacted with other independent variables 

to test the significance of structural break. A standard regression model was then built that 

included only highly significant independent variables and/or dummy interacted independent 

variables. It was assumed that the residuals of regression were white noise. White noise is a 

stochastic process where no correlation exists between its values at different times, and the 

values are identically distributed with a mean of zero (Shao, 2011). Afterward, the stationarity 

of regression residuals was tested by the ADF test, where it was found that the residuals were 

stationary.  

The next step was to perform the Ljung-Box test to observe whether the model had a serial 

correlation or not. The correlogram (contains ACF and PACF plots) had displayed significant 

spikes at different lags that indicated whether to consider AR and/or MA terms to the model. 

The study found a maximum of four significant spikes in both ACF (autocorrelation function) 

and PACF (partial autocorrelation function) plots for Cairns 1994-2016 samples. 

 Estimation 

From a number of models fitted with various combinations of p, d, and q, the best ARIMAX 

model can be identified using some statistical criteria based on forecast accuracy and 

assumptive constancy. In this analysis, ACF and/or PACF spikes were evident in some samples 

of Cairns, Mackay, Hervey Bay, and pooled reference sites and resultant AR and MA terms 

were considered during model building. If any insignificant independent variable was present 

in the final ARIMAX model, then the variable was removed, and the model re-estimated using 

standard regression analysis.  
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 Diagnostic Reports 

It is important in time series modelling to incorporate analysis of residuals to confirm the 

accuracy and validity of a model. The Ljung-Box test at different lags indicated the residuals 

were flat and the model did not contain any serial correlation (Table 5-3). The residuals were 

not heteroscedastic, and the residual plot indicated a normal distribution (Appendix B, Table 

B 2).  

 Forecasting 

Selected ARIMAX (p, d, q) models for six study sites were used to predict the future fish CPUE 

with a 95% prediction interval. The complete audit trail for this method is provided in 

Appendix B, Table B 3. 

 MLR methodology 

Multiple linear regression (MLR) is a technique for modelling the relationship between a 

dependent variable and two or more independent variables. MLR aims at modelling the linear 

relationship between explanatory and response variables (Uyanık & Güler, 2013). In this study, 

MLR analysis was performed to provide an alternative test to ARIMAX that identifies the 

relationship between the barramundi CPUE and a group of fishery and environmental predictor 

variables that affect barramundi. A study conducted by Meynecke et al. (2006) found that 80% 

of the CPUE variation of barramundi is explained by the lagged effect of climate parameters 

such as rainfall and streamflow. Environmental variables were lagged for 3 years in the MLR 

models. The assessment of lagged environmental variables was carried out for 3 years only 

because the juvenile barramundi remains in freshwater habitats for up to 2-3 years before it 

reaches a legal size (580-999 mm) and migrates to the estuary for spawning (Food and 

Agriculture Organization, 2019). Within that time frame recruits are very likely to grow to 

adult barramundi, move into brackish water and become subject to harvest by commercial 

fishers (Robinson et al., 2019).  

A multicollinearity test was conducted to remove highly correlated independent variables. 

Similar to the ARIMAX model, for all of the NFZs and Pooled NFZs samples, a structural 

break was considered for the year 2015, and then a dummy variable was created and interacted 

with significant independent variables. The statistical significant-level threshold of .05 was 

considered for this analysis. Insignificant dummy and/or interacted dummy variables were 
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removed and re-estimated the model. The diagnostic checking of the MLR regression residuals 

was performed, where the residuals were shown to have no serial correlation at different lags 

(Table 5-3), were not heteroscedastic and followed a normal distribution (Appendix B, Table 

B 2). 

The MLR equation with a set of predictor variables is given in Equation 5.3: 

    𝑦 = 𝜇 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑛𝑋𝑛 + Ɛ𝑖……………………..………….…Eq (5.3) 

Here, i=1,2,3,4....n 

where, 

y = expected or predicted value of the dependent variable, 

μ = intercept, 

X1 through Xn are n distinct independent variables, 

β1 through βn are the estimated regression coefficients for each of the independent variables, 

and 

Ɛ = random error. 

 Forecasting  

Significant predictors were used to forecast future CPUE with a 95% prediction interval. The 

complete audit trails for MLR models are provided in Appendix B, Table B 3. 

 Forecast evaluation method 

Three criteria have been used to compare the forecasting ability of ARIMAX time series 

models and MLR models. The first criterion is the mean absolute error (MAE). MAE is the 

average of all absolute errors, while absolute error is the discrepancy between the actual and 

expected values. The second criterion is the mean absolute percentage error (MAPE%) which 

is similar to MAE, but the error is calculated in percentage terms. The third criterion is the root 

mean square error (RMSE) which is used to determine the overall performance of a model. The 

formula is given in equations (5.4 - 5.6). 

   MAE =
1

n
∑ |𝐴𝑖 − 𝑃𝑖 |

n
i=0 …………………………………………………….………..Eq (5.4) 

   MAPE (%) = (
1

n
∑

|𝐴𝑖−𝑃𝑖|

𝐴𝑖

n
i=0 ) × 100……………………………………………...…Eq (5.5) 
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   RMSE = √
1

𝑛
∑ (𝐴𝑖 − 𝑃𝑖)2𝑛

𝑖=0 ………………………………………………..……..…Eq (5.6) 

Here n is the number of predictions, Ai is the actual CPUE, Pi is the predicted CPUE. 

In addition, the independent sample t-test was used to determine the significant difference 

between the mean of two models and also two different groups of study sites (Audit trails are 

presented in Appendix B, Table B 4). 

 Results 

 ARIMAX and MLR model 

The steps in fitting time series data in the ARIMAX model were described previously. 

Selection and identification of appropriate ARIMAX model were done by computing and 

inspecting the auto-correlation functions. In the final model, insignificant intercept, AR and 

MA terms were not excluded from the model as the exclusion may harm the model and violates 

the assumption of non-zero intercept (Brooks, 2019). On the other hand, the ARIMAX model 

with two orders of differencing does not usually have a constant term (Nau, 2020). A list of the 

variables used to construct the ARIMAX and MLR models are provided in Table 5-2. The 

remaining variables that were not used in the MLR model construction are listed in Appendix 

B, Table B 1. 

Table 5-2: List of the variables used to construct the ARIMAX and MLR models for all of the 

study sites 

Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

Cairns ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.14 Intercept 0.000234 .89 

Streamflow 0.00000000601 .05 

ARIMAX 

(0,2,0) 

1992-2013 0.43 Licences 0.001608 .00 

Rainfall 0.00000537 .01 

ARIMAX 

(4,1,4) 

1994-2016 0.72 Licences 0.001751 .00 

Rainfall 0.00000448 .00 

AR (4) -0.707865 .02 

MA (4) -0.109640 .81 
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Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

 MLR  1990-2010 0.01 Intercept -0.048518 .72 

Licences -0.001098 .04 

1992-2013 0.14 Intercept 0.028749 .77 

Price 0.0000000803 .04 

1994-2016 0.56 Intercept 0.020117 .77 

Licences -0.000814 .04 

Price 0.000000124 .00 

Stream 

water level 

0.017270 .02 

Mack

ay 

ARIMAX ARIMAX 

(2,1,0) 

1990-2010 0.15 Intercept 0.000712 .72 

Price 0.0000000581 .04 

AR (2) -0.308852 .31 

ARIMAX 

(0,1,0) 

1992-2013 0.26 Intercept 0.000280 .90 

Price 0.0000000681 .01 

ARIMAX 

(0,1,0) 

1994-2016 0.31 Intercept 0.001387 .52 

Price 0.0000000777 .00 

MLR  1990-2010 0.22 Intercept 0.076576 .49 

Price 0.0000000765 .02 

1992-2013 0.67 Intercept 0.165160 .06 

Price 0.000000112 .00 

1994-2016 0.77 Intercept 0.088337 .35 

Price 0.000000114 .00 

Rockh

ampto

n 

ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.52 Intercept -0.000315 .83 

Price 0.0000000301 .00 

Stream 

water level 

0.003304 .01 

ARIMAX 

(0,1,0) 

1992-2013 0.65 Intercept -0.000161 .92 

Licences -0.000580 .03 

Price 0.0000000607 .00 

ARIMAX 

(0,1,0) 

1994-2016 0.66 Intercept 0.002668 .09 

Price 0.0000000396 .00 

MLR  1990-2010 0.77 Intercept 0.130760 .09 
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Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

    Price 0.0000000561 .00 

1992-2013 0.97 Intercept 0.113970 .18 

Licences -0.000418 .04 

Price 0.0000000745 .00 

1994-2016 0.97 Intercept 0.185985 .05 

Licences -0.000494 .04 

Price 0.0000000787 .00 

Dummy 

Licences 

0.008238 .00 

Dummy 

Price 

-0.0000000092 .00 

Poole

d 

NFZs 

ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.06 Intercept 0.000397 .77 

Stream 

water level 

0.004150 .05 

ARIMAX 

(0,1,0) 

1992-2013 0.12 Intercept 0.000673 .58 

Price 0.0000000383 .05 

AR (2) -0.322216 .39 

ARIMAX 

(0,1,0) 

1994-2016 0.24 Intercept 0.001188 .39 

Price 0.0000000396 .01 

MLR  1990-2010 0.27 Intercept 0.002052 .99 

Streamflow 0.00000000489 .04 

1992-2013 0.82 Intercept 0.096471 .43 

Price 0.0000000747 .00 

1994-2016 0.91 Intercept 0.184945 .04 

Licences -0.001358 .00 

Price 0.0000000749 .00 

Town

sville 

ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.10 Intercept 0.002106 .27 

Licences -0.000777 .05 

ARIMAX 

(0,1,0) 

1992-2013 0.32 Intercept 0.000586 .76 

Streamflow 0.00000000089 .00 

ARIMAX 

(0,1,0) 

1994-2016 0.33 Intercept 0.000767 .67 

Streamflow 0.00000000087 .00 
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Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

MLR  1990-2010 0.90 Intercept 0.178083 .25 

Licences -0.001237 .00 

Price 0.0000000658 .00 

1992-2013 0.88 Intercept -0.089768 .11 

Licences -0.001969 .00 

Price 0.0000000924 .00 

Rainfall -0.0000103 .00 

Streamflow 0.00000000085 .00 

1994-2016 0.90 Intercept -0.111578 .13 

Licences 0.002070 .00 

Price 0.0000001 .00 

Rainfall -0.0000097 .03 

Temperatur

e 

0.007105 .02 

Streamflow 0.00000000084 .00 

Hinch

inbroo

k 

ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.27 Intercept 0.000626 .79 

Licences -0.001446 .05 

Streamflow  0.0000000651 .02 

ARIMAX 

(0,1,0) 

1992-2013 0.28 Intercept -0.000302 .90 

Streamflow 0.0000000769 .00 

ARIMAX 

(0,1,0) 

1994-2016 0.23 Intercept 0.000234 .92 

Streamflow 0.0000000671 .01 

MLR  1990-2010 0.67 Intercept 0.152382 .26 

Licences -0.002269 .00 

Rainfall -0.0000116 .05 

1992-2013 0.71 Intercept 0.037856 .70 

Licences -0.002499 .00 

Price 0.0000000676 .00 

1994-2016 0.61 Intercept 0.045559 .62 

Price 0.0000000496 .04 

Stream 

water level 

0.079889 .01 
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Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

Herve

y Bay 

ARIMAX ARIMAX 

(0,1,0) 

1990-2010 0.06 Intercept 0.001229 .52 

ARIMAX 

(0,1,0) 

1992-2013 0.05 Stream 

water level 

-0.012688 .04 

Stream 

water level 

-0.013646 .16 

ARIMAX 

(1,1,0) 

1994-2016 0.36 Intercept 0.001016 .44 

Streamflow -0.0000000547 .05 

AR (1) -0.469464 .03 

MLR  1990-2010 0.33 Intercept 0.005335 .97 

Licences -0.000958 .04 

1992-2013 0.47 Intercept -0.017038 .89 

Price 0.0000000625 .00 

1994-2016 0.68 Intercept -0.130502 .15 

Licences -0.000850 .00 

Price 0.0000000648 .00 

Streamflow -0.0000000697 .03 

Stream 

water level 

0.038942 .01 

Poole

d 

refere

nce 

site 

ARIMAX ARIMAX 

(2,1,0) 

1990-2010 0.32 Intercept 0.001326 .18 

Rainfall 0.0000163 .00 

Streamflow 0.00000000132 .03 

Stream 

water level 

-0.039680 .01 

AR (2) -0.519450 .14 

ARIMAX 

(0,1,0) 

1992-2013 0.21 Intercept 0.000321 .86 

Streamflow 0.00000000194 .02 

ARIMAX 

(0,1,0) 

1994-2016 0.20 Intercept 0.000673 .69 

Streamflow 0.00000000185 .02 

MLR  1990-2010 0.72 Intercept -0.038104 .80 

Licences -0.001849 .00 

Price 0.0000000771 .00 

1992-2013 0.77 Intercept -0.033425 .78 
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Sites Models Suitable 

models 

Years Adjus

ted R2 

Variables Regression 

coefficients 

p- 

level 

    Licences -0.001719 .00 

Price 0.000000077 .00 

1994-2016 0.78 Intercept -0.059318 .50 

Licences -0.001380 .00 

Price 0.0000000818 .00 

 Diagnostic reports 

A maximum of second differenced series of original data were used to remove trend and non-

stationary characteristics. Ljung-Box test statistics at different lags are reported in Table 5-3 

shows that there is no serial correlation in the final model and the probability is greater than 

5%. This means that the residuals of the estimated models are in ‘white noise’ meaning that 

the residuals are independently distributed from each other. The residual of the ARIMAX and 

MLR models were tested for normality and heteroscedasticity. Appendix B, Table B 2 shows 

that the probabilities are greater than the significance level of .05, which means the residuals 

are not heteroskedastic and follow a normal distribution. 

Table 5-3: Ljung-Box test for the ARIMAX and MLR model at different lags 

Sites Year Lag ARIMAX model MLR model 

Obs*R-

squared 

Probability Obs*R-

squared  

Probability 

Cairns 1990-

2010 

2 4.509 0.10 0.368 0.83 

4 4.629 0.32 3.160 0.53 

8 6.198 0.62 8.618 0.37 

1992-

2013 

2 4.488 0.10 0.451 0.79 

4 8.476 0.07 3.777 0.43 

8 10.759 0.21 5.978 0.64 

1994-

2016 

2 4.678 0.09 0.720 0.69 

4 4.819 0.10 0.825 0.93 

8 11.477 0.17 5.834 0.66 

Mackay 1990-

2010 

2 4.818 0.06 7.266 0.08 

4 8.888 0.06 9.268 0.06 

8 10.672 0.22 6.536 0.06 

1992-

2013 

2 4.148 0.06 1.751 0.41 

4 3.401 0.07 7.528 0.11 
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Sites Year Lag ARIMAX model MLR model 

Obs*R-

squared 

Probability Obs*R-

squared  

Probability 

  8 11.874 0.15 9.440 0.30 

1994- 

2016 

2 6.970 0.06 0.559 0.75 

4 7.783 0.09 2.623 0.62 

8 9.225 0.32 13.66 0.09 

Rockhampton 1990-

2010 

2 1.303 0.52 3.826 0.15 

4 1.766 0.77 5.250 0.26 

8 5.519 0.70 7.272 0.07 

1992-

2013 

2 4.241 0.11 1.771 0.41 

4 4.885 0.29 3.741 0.44 

8 5.824 0.66 6.719 0.57 

1994-

2016 

2 0.235 0.88 1.731 0.42 

4 2.315 0.67 2.267 0.69 

8 5.765 0.67 7.526 0.06 

Pooled NFZs 1990-

2010 

2 3.928 0.14 2.054 0.36 

4 4.363 0.35 6.056 0.19 

8 8.937 0.34 14.847 0.06 

1992-

2013 

2 7.973 0.06 3.304 0.19 

4 10.478 0.06 8.480 0.07 

8 12.408 0.13 15.899 0.06 

1994-

2016 

2 7.355 0.06 0.941 0.62 

4 9.218 0.06 7.211 0.12 

8 9.868 0.27 17.81 0.06 

Townsville 1990-

2010 

2 5.177 0.07 2.932 0.23 

4 10.580 0.06 8.076 0.09 

8 10.095 0.06 10.099 0.26 

1992-

2013 

2 1.978 0.37 3.293 0.19 

4 4.590 0.33 4.940 0.29 

8 7.397 0.49 8.769 0.36 

1994-

2016 

2 1.063 0.58 9.610 0.08 

4 4.418 0.35 13.374 0.09 

8 9.449 0.30 13.824 0.08 

Hinchinbrook 1990-

2010 

2 5.181 0.07 9.081 0.06 

4 6.088 0.19 9.517 0.06 

8 14.992 0.06 13.807 0.08 

1992-

2013 

2 5.457 0.06 3.125 0.20 

4 6.125 0.19 4.882 0.29 

8 7.128 0.52 10.96 0.20 
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Sites Year Lag ARIMAX model MLR model 

Obs*R-

squared 

Probability Obs*R-

squared  

Probability 

 1994-

2016 

2 6.953 0.06 3.111 0.21 

4 7.552 0.10 3.204 0.52 

8 8.297 0.40 4.495 0.80 

Hervey Bay 1990-

2010 

2 5.624 0.06 0.198 0.90 

4 8.578 0.07 2.516 0.64 

8 14.604 0.06 11.528 0.17 

1992-

2013 

2 5.363 0.06 0.649 0.72 

4 6.334 0.17 1.923 0.74 

8 9.278 0.31 11.003 0.20 

1994-

2016 

2 5.885 0.06 8.055 0.06 

4 7.879 0.09 11.509 0.06 

8 8.615 0.37 14.228 0.07 

Pooled 

Reference Sites 

1990-

2010 

2 6.748 0.06 1.303 0.52 

4 8.360 0.07 1.358 0.85 

8 10.02 0.26 14.625 0.06 

1992-

2013 

2 5.269 0.07 1.419 0.49 

4 7.2719 0.12 3.455 0.48 

8 11.448 0.17 9.406 0.30 

1994-

2016 

2 5.718 0.06 1.741 0.41 

4 9.289 0.06 1.956 0.74 

8 11.915 0.15 13.330 0.10 

 Forecasting Evaluation 

Out-of-sample forecast for the ARIMAX and MLR models from the year 1990-2016 are 

presented in Table 5-4. Considering the estimate of MAE, MAPE%, the ARIMAX model 

outperformed the MLR model. The greater accuracy of the ARIMAX models is evident in all 

of the study sites except for 1992-2013 and 19994-2016 samples of Cairns. Table 5-4 also 

demonstrates the rejection of the null hypothesis that the mean prediction of CPUE levels of 

ARIMAX and MLR are equal. That indicates that the CPUE prediction between the two models 

is statistically different from each other, and the prediction performed by ARIMAX models are 

superior to the MLR models. Furthermore, both models show that the mean CPUE prediction 

of NFZs and reference sites are not statistically different from each other, implying that the 

null hypothesis is accepted. 
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Table 5-4: Result of out-of-sample prediction for the ARIMAX and MLR models from the year 

1990-2016 

Site Year ARIMAX MLR 

MAE1 MAPE%2 RMSE3 MAE MAPE% RMSE 

Cairns 1990-

2010 

0.002 7.540 0.003 0.096 261.913 0.096 

1992-

2013 

0.012 39.631 0.012 0.003 13.704 0.008 

1994-

2016 

0.019 65.047 0.023 0.006 21.082 0.006 

Mackay 1990-

2010 

0.008 12.834 0.009 0.042 68.881 0.042 

1992-

2013 

0.009 14.002 0.010 0.138 195.700 0.138 

1994-

2016 

0.007 14.598 0.009 0.055 99.490 0.055 

Rockhampton 1990-

2010 

0.029 32.381 0.032 0.101 117.103 0.101 

1992-

2013 

0.020 25.877 0.022 0.063 74.455 0.065 

1994-

2016 

0.041 135.874 0.042 0.196 624.843 0.196 

Pooled NFZs 1990-

2010 

0.022 35.980 0.023 0.075 119.471 0.075 

1992-

2013 

0.007 12.273 0.008 0.060 97.060 0.061 

1994-

2016 

0.016 42.651 0.017 0.138 355.134 0.138 

Townsville 1990-

2010 

0.012 24.342 0.017 0.114 184.139 0.114 

1992-

2013 

0.003 7.801 0.004 0.160 329.263 0.160 

1994-

2016 

0.014 18.518 0.017 0.018 23.916 0.019 

Hinchinbrook 1990-

2010 

0.005 11.936 0.006 0.027 61.589 0.029 

1992-

2013 

0.008 19.267 0.009 0.027 67.141 0.028 
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Site Year ARIMAX MLR 

MAE1 MAPE%2 RMSE3 MAE MAPE% RMSE 

 1994-

2016 

0.005 10.211 0.007 0.095 196.111 0.095 

Hervey Bay 1990-

2010 

0.008 17.598 0.009 0.078 150.529 0.078 

1992-

2013 

0.008 16.379 0.009 0.047 86.675 0.0471 

1994-

2016 

0.006 13.490 0.007 0.131 270.658 0.132 

Pooled 

reference 

sites 

1990-

2010 

0.012 22.436 0.014 0.109 201.051 0.109 

1992-

2013 

0.023 37.651 0.024 0.094 196.647 0.094 

1994-

2016 

0.006 11.001 0.007 0.119 205.997 0.119 

T value For model comparison, MAE= -6.737**, MAPE= -4.985**, RMSE= -

6.702** 

T value For comparison between NFZs and reference sites, ARIMAX model: MAE 

=1.921*, MAPE=1.810*, RMSE=1.802*; MLR model: MAE=-0.182*, 

MAPE= 0.111*, RMSE=-0.173* 

1Mean Absolute Error 

2Mean Absolute Percent Error 

3Root Mean Square Error 

** Indicates the null hypothesis of the equal mean for the prediction of CPUE level for the ARIMAX 

and MLR model rejected at a 5% level of significance 

*Indicates the null hypothesis of the equal mean for the prediction of CPUE level for the NFZs and 

reference sites of ARIMAX and MLR model accepted at a 5% level of significance 

  Discussion  

This study aimed to access the effect of netting closure on commercial barramundi catch per 

unit effort (CPUE) through identifying the most important fishery and environmental 

parameters that influence future barramundi CPUE and provide insight for the recreational 

fishing opportunities in Queensland. Two modelling approaches were employed to determine 

the most suitable model for each of the study sites. The model was also tested for two pooled 

sites, where the pooled average data for the three NFZs and three reference sites were employed 

to get more consistent and homogenous predictions. For validation, a walk-forward or sliding 
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window approach was undertaken to generate out-of-sample forecasts. This study found that 

the ARIMAX model is more suitable and statistically superior to the MLR model. The 

ARIMAX model presented a good fit with the lowest validation error values in MAE, MAPE%, 

RMSE for all of the years and all of the study sites excluding 1992-2013 and 1994-2016 

samples of Cairns (Table 5-4). One of the possible explanations for the best performance of the 

ARIMAX model over the lagged MLR model is that MLR model only deals with the observed 

data whilst the ARIMAX incorporates unobserved variables, such as the lagged error terms in 

the moving average (MA) part. This result seems to be consistent with other research, which 

found ARIMA performs well in terms of forecast accuracy with a minimal error percentage 

(Saila et al., 1980; Stergiou, 1991; Romilly, 2005; Prista et al., 2011; Farmer & Froeschke, 

2015). In both models, the mean value of the prediction error for the ARIMAX and MLR are 

statistically different from each other. Such widespread application can particularly render 

ARIMAX models helpful for the management of data-poor fisheries. It is therefore important 

to note that over a certain period of time, both the model fit and the prediction might fail, even 

though the model's parameters are updated and adjusted annually and other factors might have 

to be taken into consideration on a timely basis (Dement’Eva, 1987).  

Here are some caveats to note for all models built here. Firstly, the CPUE and other fishery-

related data used in this study are derived from nearby grid squires, while the environmental 

data are derived from the closest or available stations to that grid squares. Secondly, the sites 

being compared are not of the same standard, thirdly, the study was unable to account for 

recreational catch due to the absence of sufficient spatiotemporal record and the complexity of 

assuming post-release survival, fourthly, for lagged MLR model, the CPUE and other 

parameters were assumed to have a linear relationship. However, it is well established that 

environmental parameters affect a large number of biological processes that possibly operate 

across a range of time scales. Additionally, non-linear relationships allow a biological variable 

to respond ‘optimally’ to an environmental variable (Roy et al., 1992; Stergiou & Christou, 

1996). 

According to the findings of the study, both fishery and environmental parameters play an 

equal role in influencing the CPUE. In both models, most scenarios demonstrated that 

environmental parameters such as rainfall, temperature, streamflow, and stream water level 

have a positive relationship with CPUE. Rainfall, streamflow, and stream water level, in 

particular, were found to be the most important determinants of CPUE. These findings are 

consistent with previous observational studies, which showed that after adequate rainfall and 
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freshwater flow in the summer season, the catchability of barramundi has been considerably 

improved (Balston, 2007, 2009a). The MLR model of Townsville and Hinchinbrook also 

showed two distinct cases in which rainfall has a negative interaction with CPUE. This could 

be due to the heavy rainfall that triggered many flood events during the summer months of 

study period (Bureau of Meteorology, 2019), resulting in death and decomposition of 

underwater vegetation, which causes low concentrations of dissolved oxygen and the death of 

fish and other aquatic organisms, resulting in lower CPUE for those two areas. Similar fish kill 

events in Eastern Australia during the flood recession phase were reported by Steffe et al. 

(2007), Kroon and Ludwig (2010), Wong et al. (2010), and Wong et al. (2018). The streamflow 

and stream water level at the Hervey Bay sample has a surprisingly negative relationship with 

the CPUE, although all other sites have positive relationships. There might be other factors 

associated with this change. A study revealed that the population of Hervey Bay increased 

rapidly since 2006 due to inflow of retirees and high tourist pressure from Southeast 

Queensland (Queensland Government, 2011). Fish population decline as a consequence of 

overfishing by a large number of visitors and insufficient recruitment to replace those fish 

populations as a consequence of area avoidance and the subsequent modification of spawning 

and feeding areas, as well as harvesting of broodfish during spawning season (Dines, 2010). 

This could explain the negative relationship between streamflow/ stream water level and CPUE 

in this region.  

In population dynamics, fishing mortality is considered the biggest issue for the declining fish 

population in an ecosystem (Beddington et al., 2007). The raw CPUE data from the reference 

sites showed a steady fluctuation in the early years with a sudden increase in the CPUE during 

the years of 2008 to 2012 for Townsville, Hinchinbrook, Hervey Bay, and pooled reference 

sites (Figure 5-2). The raw data for those periods suggests that there might be a possibility of 

overexploitation for those years that leads to a significant reduction in the CPUE for the 

following years and after that, the trend is gradually increasing with some small fluctuations. 

This observation suggests that the upward trend will continue unless management measures to 

combat overexploitation are implemented. 

As shown in this study and others, not all closures have the same effect (Edgar et al., 2014; 

Cresswell et al., 2019). It varies according to the type of harvesting regulations employed, level 

of enforcement undertaken, neighbouring habitats, age, and area covered by the closure, etc. 

(Edgar et al., 2014). The CPUE trend in NFZs shows that commercial fishing pressure was 

comparatively high during pre-closure periods and has been slowly declining since 2016 (after 
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closure) (Figure 5-2), which is expected to increase recreational fishing opportunities. In the 

ARIMAX model, insignificant dummy variable (which was used to identify a known structural 

break in 2015 when the closure was established) in three NFZs and pooled NFZs sample 

indicate that the implementation of closure in those areas did not affect commercial CPUE very 

much. But the MLR model applied for Rockhampton found dummy variable of structural break 

is significant as the CPUE was usually high for a few successive years starting from 2011 to 

2015 and then had a sudden drop after 2016. This abrupt change of CPUE was noticed after a 

series of floods in 2010, 2011, and 2013. A five-fold increase in commercial catch was 

observed in Fitzroy catchments due to the movement of stocks from the nearby impoundments. 

This contributed to the increased CPUE from the year 2011 to 2015 (Saunders et al., 2018).  

The research found no statistical difference between NFZs and reference sites in both models 

because CPUE in three NFZs did not change abruptly after closure, but rather has been steadily 

declining since 2016. Both fisheries and environmental parameters are major determinants 

CPUE in reference sites and NFZs, but fishery parameter price is more relevant in Mackay 

NFZ. Considering the best model for each of the sites, the high positive relationship between 

the price of fish and CPUE most clearly demonstrates that CPUE will increase if prices rise. 

The study found an inverse relationship between the commercial fishing licences and CPUE 

for most of the sites except Cairns and Townsville. The presence of a negative licence 

coefficient in the model could be explained by the fact that some commercial fishing licence 

boat holders operate their boats for a longer period of time. The study suggests that by 

considering the effects of fisheries and environmental variables in each study site, it is possible 

to improve both forecast and sustainable management of future barramundi CPUE. 

 Conclusion 

To conclude, this study has discussed the application of two forecasting approaches such as the 

ARIMAX and the MLR to identify the effect of reduced commercial fishing pressure on 

commercial barramundi CPUE through identifying the most important fishery and 

environmental factors that influence CPUE. The predictive ability of each model was also 

compared using MAE, MAPE%, and RMSE. The study suggests that the ARIMAX model 

outperformed the MLR model in terms of dealing with the unobserved error terms and 

preventing overfitting of input data, providing higher accuracy, and the best prediction of future 

CPUE. In relation to forecasting models, this study demonstrated that both fishery and 

environmental parameters played an equal role in influencing the CPUE, but most scenarios 
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showed that environmental parameters such as rainfall, streamflow, and stream water level and 

fishery parameters such as licences and price are the key determinants of CPUE. The study 

also emphasised the changes that occurred after the introduction of closures in NFZs in 

comparison to the reference site and drew conclusions regarding the recreational opportunities 

in those regions. 

The reliability of a prediction depends on the accuracy and consistency of the historical data. 

Along with other limitations discussed earlier, the most important limitation lies in the fact that 

the ARIMAX models were developed using yearly time series data, with only 30 observations. 

However, the fitting accuracy of the ARIMAX model did not restrict the construction of a 

comparatively strong and accurate model using smaller data sets below the Box-Jenkins limit. 

The study suggests more sophisticated time series analysis may be used on a regular basis by 

reviewing yearly data and carefully analysing the effect of reduced commercial fishing pressure 

on barramundi CPUE. 
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Abstract 

The Queensland state government introduced net fishing closures in November 2015 near the 

regional areas of Cairns, Mackay, and Rockhampton to provide increased opportunities for 

recreational fishing and regional economic development. This management change presented 

a unique opportunity to study the effects of commercial fishing closures on regional 

communities. This study compared the recreational fishing values and benefits of the three net-

free zones with three reference sites that still involve commercial fishing. Data were collected 

from 14 boat ramps across six study sites from November 2015 to June 2017 and analysed 

using different models of the travel cost method to assess the economic value of recreational 

fishing across sites and models. Results demonstrated strong evidence of variation in economic 

values across sites and models and that the net-free zones have higher economic values than 

the reference sites for closer fishers, but lower values when more distant fishers are included. 

Outputs of this study have implications for government, non-governmental organisations, 

decision-makers and management authorities, as well as resource economists who are working 

with them to develop economic monitoring and evaluation programmes. 

 

Keywords: travel cost method, consumer surplus, net-free zones, recreational fishing, 

Queensland 
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 Introduction 

Recreational fishing is a widespread and popular activity in Australia (Kearney, 2002), and the 

economic contribution of recreational fishing is important for regional economies (Voyer et 

al., 2016). It was estimated that approximately 642,000 Queenslanders aged over 5 years fish 

at least once a year (Webley et al., 2015), and the resultant value of catch and fishing 

expenditure was estimated at around $73 million2 in 2013-14 (AgTrends, 2014). Many aquatic 

systems that sustain recreational fisheries, however, are under threat from a variety of 

processes, including overfishing, habitat loss, shifts in species abundance and distribution, and 

changes in ecosystem functions (Cooke & Cowx, 2004; Worm et al., 2006; Yamazaki et al., 

2013).  

Commercial fishing mortality could have a significant effect on coastal fish stocks, causing 

commercial fishers to compete with recreational fisheries (Townhill et al., 2019). In 

Queensland, wild-caught commercial finfish production was 8,224 tonnes in 2014-15, with a 

value of about $60 million (Australian Bureau of Agricultural and Resource Economics and 

Sciences, 2018). To minimise commercial fishing pressure, increase recreational fishing 

opportunities, and long-term management of fisheries resources to enable economic growth, 

the Queensland Government implemented commercial netting closures in three areas near 

Cairns, Mackay, and Rockhampton in 2015 (Queensland Government, 2016). It is expected 

that restricting access to a limited number of users to a scarce resource will result in benefits 

for those who are allowed access due to lower competition (Brown, 2016). As a result of the 

shift in fishing pressure from commercial to recreational, benefits would be generated for 

recreational fishers both the short and long term (Rolfe & Prayaga, 2007). The commercial 

benefits of recreational fishing are much more evident and quantifiable. Short-term commercial 

benefits include employment and revenue in a business, while long-term commercial benefits 

include introducing new business to regions as well as the profitability of established 

businesses (Rolfe & Prayaga, 2007). Recreational fishing has a direct effect on fishing and 

tourism industries and boosts coastal economies by supporting charter vessels, travel guide 

services, accommodation, fishing tackle and bait shops, and storage industries that may surpass 

the importance of commercial fishing (Brown, 2016). 

 

2 All currency mentioned in this chapter are in Australian dollars. Currently, AUD$1 = US$0.73 



  

143 

 

It is expected that the three new net-free zones (NFZs) in Queensland will attract distant 

recreational fishers to a location where they can expect to have an improved recreational fishing 

experience (Queensland DAF, 2017b). This requires people to be aware of the areas and choose 

that site over others. However, it is more challenging to evaluate the importance of recreation 

over alternative uses of any site or changes to policy settings such as shifting from commercial 

to recreational (Rolfe & Prayaga, 2007; Raguragavan, Hailu, & Burton, 2013). The value of 

commercial catches can be determined from market statistics, but the value of recreational 

fishing is more difficult to determine and cannot be calculated directly from market prices. 

Non-market valuation techniques must be used to determine the value of recreational 

sites/activities and environmental services (Gregg & Rolfe, 2013). 

There are two widely used approaches to estimate the economic values of a non-market 

outcome: stated preference and revealed preference techniques. The stated preference 

techniques are based on the fisher's responses to hypothetical scenarios. For instance, the 

researcher might explain a hypothetical fishing trip to a fisher and enquire whether or not the 

fisher will participate in the trip (Hicks, 2002). Revealed preference techniques use data on 

choices that have been made in the course of normal life for people to evaluate statistical 

models of recreation demand. The model captures tradeoffs for recreational fishing trips in 

terms of expected catch, trip cost, environmental conditions, management rules, and other 

considerations deemed important in describing recreational site choice (Hicks, 2002). Stated 

preference techniques are flexible (researchers may enquire about circumstances that are rare 

or do not yet exist) but this means they are potentially hindered by social desirability 

bias/hypothetical bias. On the other hand, revealed preference techniques are less flexible 

(researchers can only consider behaviours that occur in the "real" world), but they generally do 

not suffer from social desirability bias and are seldom influenced by hypothetical bias. 

Revealed preference methods have also been widely used in fisheries valuation due to the 

discrete nature of fishing events and the ability to utilise the travel cost method (TCM) that is 

well-established as a robust approach to generating data on revealed preferences (Czajkowski 

et al., 2019). 

The TCM has been widely used over the past four decades for valuing site-specific recreational 

opportunities (Ward & Beal, 2000; Haab & McConnell, 2002). The model can estimate 

consumer choice and preference as it is based on consumer theory and use data from the real 

market situation (Haab & McConnell, 2002). Depending on whether the visit rate as a 

dependent variable is described as a population group or as an individual, TCM has two basic 
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variants: the zonal travel cost method (ZTCM) and the individual travel cost method (ITCM) 

(Ward & Beal, 2000; Stoeckl & Mules, 2006). The ZTCM is more often used in areas with 

very low individual visitation patterns, where a set of zones are identified, and data is collected 

from the number of visitors in each zone. The ITCM is useful for areas that have high individual 

visitation rates and is similar to the zonal approach, but instead of using data from each zone, 

it analyses survey data from individual visitors. (Bateman, 1993; Bennett, 1996; Prayaga et al., 

2006). From an economic point of view, the amount of money people are willing to spend on 

a particular activity, including all direct and indirect costs, will serve as a reliable basis for 

estimating its value. 

The TCM is designed to determine the consumer surplus (values in currency units) for site 

users based on their travel expenditures to the sites. Conceptually the TCM is simple and easy 

to apply in practical situations (Jiang, 2015) and can provide realistic and consistent outcomes 

(Bennett, 1996). Internationally, it has been widely used to value recreational fishing (e.g., 

Johnston et al. 2006), but there has been a more limited application in Australia, especially in 

the field of spatial fishery closures. Some notable examples include the research of Rolfe and 

Prayaga (2007), where TCM was used to estimate consumer surplus (consumer surplus is the 

discrepancy between the maximum amount a consumer is willing to pay for a service and the 

price they already paid) from two groups of recreational fishers in three freshwater 

impoundments in Queensland. In other studies, Prayaga et al. (2010) used TCM to estimate the 

consumer surplus of recreational fishing trips off the Capricorn Coast in Central Queensland 

at $385.34 per group/trip and $166.82 per individual/trip, while Windle et al. (2017) assessed 

the consumer surplus per household for recreational fishing trips in the Gladstone Harbour at 

$143 per trip. Pascoe et al. (2014) also used TCM to estimate the economic values of 

recreational fishing in Moreton Bay in south-east Queensland. In these more urbanised areas, 

the average consumer surplus per person per trip ranged from $60 to $110. Farr and Stoeckl 

(2018) used TCM to identify the recreational fishing values under condition of uncertainty in 

Townsville, Queensland. 

The ZTCM models require limited secondary or primary data, which are very simple and easy 

to collect and require less time and effort than data for the ITCM (Kowuor, 2005). In Australia, 

only a few studies have applied the ZTCM for valuing recreational fishing and sites (Herath, 

1999; Prayaga et al., 2006; Rolfe & Prayaga, 2007; Fleming & Cook, 2008; Ezzy & 

Scarborough, 2011), with more researchers applying the ITCM (Lockwood & Tracy, 1995; 

Bennett, 1996; Whitten & Bennett, 2002; Rolfe & Prayaga, 2007; Rolfe & Dyack, 2011; Pascoe 
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et al., 2014; Zhang et al., 2015). In cases where data on the visit, fishing success, various 

socioeconomic and site quality variables (e.g., age, gender, education, income, employment 

status, and group size, etc.) are available, the ITCM analysis gives more precise results than 

ZTCM (Ezebilo, 2016; Farr et al., 2011; Farr & Stoeckl, 2018). Prayaga et al. (2006) used 

ZTCM to estimate the consumer surplus of Gemfest (a special and annual event in Central 

Queensland) by comparing the values for the yearly data from 1998 and 2002. Stoeckl and 

Mules (2006) used ZTCM to determine economic values of Australian Alps. Rolfe and Prayaga 

(2007) determined the recreational fishing values of three freshwater dams in Australia, using 

ZTCM to calculate the consumer surplus for frequent and occasional anglers. A more recent 

study by Ezzy and Scarborough (2011) also used ZTCM to estimate the recreational fishing 

value associated with southern bluefin tuna (Thunnus maccoyii) in Portland, Australia.  

As stated earlier, a small number of studies have been conducted in Australia to quantify the 

economic value of recreational fishing (Galeano et al., 2004; Rolfe & Prayaga, 2007; Ezzy & 

Scarborough, 2011; Raguragavan et al., 2013; Yamazaki et al., 2013; Pascoe et al., 2014); 

however, in the light of changing management settings from commercial to recreational, the 

values of newly established commercial fishery closures and other non-closure areas in 

Queensland are rarely explored. To address this gap, this study has applied three models of 

zonal TCM, namely the postcode model, zoned model, and geographic model. The postcode 

model included fishers from up to two individual distance thresholds of 100 km and 300 km 

and the zones were identified by postcode. The zoned model analysed combined postcode data 

for three NFZs and three non-NFZs (reference sites) separately, using the same distance 

thresholds. For the geographic model, no distance threshold was used as it includes all of the 

participants from distant areas and geographical regions were used as zones. The study 

evaluated and compared the economic values between models and sites and assessed their 

implications for the three NFZs and three reference sites. The objectives of the study were to: 

a.  estimate the recreational fishing values of three NFZs and three reference sites using the 

travel cost method,   

b. estimate recreational fishing values by using a postcode, zoned, and geographic TCM model,  

c. compare the results of the different TCM models,  

d. assess the implications of the results for commercial netting closures, and 

e. provide recommendations for future studies. 
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 ZTCM methodology 

The ZTCM involves two fundamental steps (Read et al., 1999). The first is to determine a ‘trip 

generation function’ (TGF) based on the travel cost and other socioeconomic and site quality 

variables associated with visits, such as income, education, gender, age, occupation, the 

attractiveness of substitute sites, and recreational fishing success, etc. available data about 

visitation (Blackwell, 2007; Carpio et al., 2008; du Preez & Hosking, 2011; Farr & Stoeckl, 

2018). 

The study has used travel cost, income, and population data for analysis, allowing the TGF to 

be written as: 

 Vij /Ki = f (TCi , MWPIi) …………………………………………...……………….Eq 6.1) 

here Vij /Ki is visit rate, and Vij = visits from zone i to site j, Ki= population of zone i, TCi = 

travel cost from zone i, and MWPIi = median weekly personal income of zone i. The visit rate 

Vij /Ki is frequently expressed as visits per 1,000 people in each zone.  

The second step is to generate the demand function for additional price increases from the trip 

generation function using a hypothetical set of increased trip costs. This function is written as 

follows: 

 Q = α + βP……………………………………………………...………………….Eq (6.2) 

where Q = number of visits, and P = additional travel cost 

Once the demand curve is defined, it is just a short step to estimating the consumer surplus, 

which is the area under the demand curve and above the current price line (Layard & Walters, 

1978). However, before conducting travel cost analysis of the recreational fishing sites, there 

are a few methodological issues that need to be addressed. The most significant ones are 

discussed in the following sub-sections. 

 Identification of zones 

The commonly used method of identifying zones involves creating hypothetical concentric 

circles (e.g., 50 km, 100 km, or 150 km width) around the study sites (Herath, 1999), or 

demarcating sites by geographical/statistical divisions (Beal, 1995). An alternative approach is 

to use postcode clusters as a zone, as was applied by Lockwood and Tracy (1995) and Lansdell 
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and Gangadharan (2003). Bateman (1993) concluded that there is no single rule to identify the 

zones and the process varies depending on the availability of population data.  

The present study used two distinct methods to identify a zone. In the first method, the postcode 

model, fishers’ residential postcodes have been used as zones where 100 km and 300 km 

distance thresholds were applied to limit fishers from further away (model 1). In this research, 

recreational fishing was assumed to be the main objective of the visit to the study sites. Because 

of the existence of more distant visitor in the study, there is a possibility of multi-purpose or 

multi-destination trips. To address this issue, more distant travellers were omitted from the 

postcode and the zoned model by only considering fishers travelling up to 100 km or 300 km. 

In this method, fishers from each postcode area were grouped together, then the travel cost 

from their postcode to the fishing site was estimated. The dependent variable, visit rate, was 

calculated as the visits per 1000 people to the sites predicted by fishers from that postcode. 

In the second method, referred as a geographic model, statistical divisions have been used as 

zones where no distance thresholds were applied (model 3). In this method, fishers from any 

statistical division were grouped together, and the travel cost and visit rate were measures for 

analysis. The geographic model has been calculated for all the study sites for comparative 

purposes. These allocate fishers to regional zones rather than postcodes, and hence all data has 

been sampled (no distance thresholds were applied). A total of sixteen zones were identified 

for the geographic model (Appendix C, Table C 1). Google map (Google, n.d.) was used to 

calculate the distance of zones to the study sites and ABS 2016 census data 

(https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/0

36) were used to generate population and income data for each zone. In addition, a zoned 

analysis using postcode data were performed (model 2), in which all data were pooled together 

based on the two predetermined distance thresholds (e.g., 100 km and 300 km), and dummy 

variables for each of the sites were used to identify the source case studies.  

 Calculation of travel cost 

The next topic to address is the concept and management of travel and time expenses. Several 

issues underpin these concepts, including the subjectivity of options, the varying nature of 

expenditure in durable products used for travel, and the controversy about the inclusion and 

treatment of opportunity costs (Randall, 1994). For calculating travel costs, there are three 

different methods or options to consider (Bateman 1993; Bennett 1996; Rolfe and Prayaga 
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2007): fuel costs only (option 1), total car costs including fuel, insurance, and maintenance cost 

(option 2), or the cost estimated by the respondents (option 3). Option 2 was chosen for this 

study because data were available on respondents’ one-way travel distance (km) from home to 

fishing sites. The travel cost for each trip was calculated by multiplying the two-way travel 

distance by a standard vehicle cost per kilometre. According to the Australian Taxation Office 

(ATO), in 2016, the full car cost for standard vehicles per kilometre was $0.66 (Australian 

Taxation Office, 2017).  

The measurement of opportunity cost for time can be problematic due to the different 

opportunity costs of individuals and the participation of unemployed fishers on the site, which 

can lead the estimation to be inaccurate (Wheatley, 2020). Although the majority of the 

researchers agree that opportunity costs should be included with travel costs, the calculation of 

the opportunity cost is contentious (Prayaga et al., 2006). In the current study, the opportunity 

cost of time was not considered when calculating total travel cost because, generally, people 

choose to travel to recreational areas when they are on holiday, so there is no loss of work time 

and income (Ward & Beal, 2000). The travel cost has been estimated by using the following 

formula: 

     TC = One-way distance travelled * 2 * $0.66 ………………………………….……Eq (6.3) 

 Addition of other variables 

Several studies have found that the inclusion of other relevant variables (e.g., respondents’ 

perception, onsite purchases, income, socio-demographic characters, etc.) could improve the 

specification of recreational demand models (McKean et al., 1996; Siderelis et al., 2000). Due 

to the unavailability of other data, the current study has used ABS 2016 census data to include 

the median weekly personal income of the relevant zone in the model as an additional 

independent variable. 

 Multi-purpose and multi-destination travels 

The TCM requires some assumptions to calculate costs for multi-purpose and multi-destination 

trips. One of the principal assumptions is that people only visit one single site per trip. If people 

visit multiple sites in one trip, then the assumption will no longer be valid for that analysis 

(Haspel & Johnson, 1982). Other research showed that in most cases, visiting a site is not the 

only reason for the trip (Bennett, 1996). This concern is similar to the multiple-destination 
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issue. When visitors have travelled for multiple purposes, their expenses should be allocated to 

the various events they participated in along the way (Whitten & Bennett, 2002). Casey et al. 

(1995) argued that multi-purpose and multi-destination trip data are rarely used in demand 

models as the data are difficult to collect and cost shares cannot be properly allocated to all 

relevant recreational activities. 

In this research, recreational fishing was assumed to be the sole aim of the visit to the study 

sites. To guard against the possibility that multi-purpose or multi-destination trips may be 

involved, more distant travellers were excluded from the postcode model and the zoned model 

by only including fishers travelling a maximum distance of 100 km or 300 km. 

 Choice of functional forms 

The choice of functional form is important to develop the best fitting model for consumer 

surplus determination (Crooker & Kling, 2000; Rolfe et al., 2005). The economic theory 

remains ambiguous on the optimal functional form for any of the two functions that must be 

calculated (Hanley & Spash, 1993). It is critical to choose the appropriate functional form in 

order to achieve precise and reliable calculations of consumer surplus, regardless of whether 

travel costs are accurately calculated or not (Stoeckl, 2003a, 2003b). The TGF and demand 

functions should be chosen in light of pre-existing economic theory, predictability, and 

statistical specification (Prayaga et al., 2006).   

Four functional forms, linear, quadratic, semi-log, and double log can be used to specify TGF 

and the demand function (Bateman, 1993; Hanley & Spash, 1993). The functional forms used 

in this study are provided in the following table, Table 6-1. 

Table 6-1: Functional forms of models used to determine the TGF and demand function 

Models Functional forms 

Linear Visit rate= a+ b (Travel cost) + c (Income) 

Semi-log Independent Visit rate = a+ b (LN Travel cost) + c (Income) 

Semi-log Dependent LN Visit rate = a+ b (Travel cost) + c (Income) 

Double log LN Visit rate = a+ b (LN Travel cost) + c (Income) 

Note: Here, LN indicates ‘natural log’ 
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 Survey sites and data  

To evaluate the economic values of recreational fishing in Queensland, this study used data 

collected by DAF from 14 boat ramps (2 in Cairns, 2 in Mackay, 4 in Rockhampton, 2 in 

Townsville, 2 in Hinchinbrook, and 2 in Hervey Bay). The boat ramps were selected based on 

their proximity to the city and the availability of a larger number of respondents. DAF collected 

data from a total of 24,624 fishers (11,151 from the three NFZs and 13,473 from the three 

reference sites). Among them, 12,344 data (6,142 from the three NFZs and 6,202 from the three 

reference sites) were used for TCM analysis, and the rest of them were removed as their reason 

for fishing was unknown. The data collection sites were the three NFZs (Cairns, Mackay, and 

Rockhampton) and three reference sites (Townsville, Hinchinbrook, and Hervey Bay) (Figure 

6-1).  

 

Figure 6-1: Locations of the areas providing access to the three NFZs and three reference sites 

in Queensland. Map shape file source: DIVA-GIS (http://diva-gis.org/) 
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The survey data were collected from November 2015 to June 2017 and include information 

regarding fishers’ residential area (postcodes and town ID), boat ramp details, whether fishing 

is the main purpose of the trip or not, and distance travelled by the participants to reach the 

fishing sites. For the geographic model, respondents’ travel distance was calculated from the 

centroid of the zone provided using the shortest road route to the particular fishing site (km) 

using Google map (Google, n.d.).  

Census data on population and income was sourced from the Australian Bureau of Statistics 

(ABS) 2016 website (https://quickstats.censusdata.abs.gov.au/census_services/getproduct\cen 

sus/2016/quickstat/3?opendocument) for each of the postcodes and zones. Data analysis was 

conducted using MS Excel, Software STATA SE 12, and SPSS 24. A summary of the main 

data and variables used in the postcode model (model 1) and geographic model (model 3) are 

provided in Table 6-2 and Table 6-3. 

https://maps.google.com/
https://quickstats.censusdata.abs.gov.au/census_services/
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Table 6-2: Summary statistics for NFZs 

 Cairns Mackay Rockhampton 

PC 

100 km 

PC 

300 km 

GP PC 

100 km 

PC 

300 km 

GP 

 

PC  

100 km 

PC  

300 km 

GP 

Total number of respondents 1,045 1,045 1,050 1,984 2,038 2,094 2,799 2,888 2,998 

Average of one-way travel 

distance to reach in the fishing 

sites (km) 

11.3 11.3 17.46 36.36 41.18 71.60 23.63 28.70 51.26 

Average of visit rate (Dependent 

variable) 

0.0028 0.0028 0.0013 0.02 0.015 0.00085 0.026 0.016 0.0027 

Average of total travel cost ($) 

(Independent variable) 

57.42 57.42 931.08 72.49 125.02 1550.18 45.76 153.53 1272.67 

Average of weekly income ($) 

(Independent variable) 

612.71 612.71 631.33 645.38 716.58 638.64 606.64 667.88 722.16 

Note that the geographic models include all data, whereas the postcode models exclude anglers more than 100 or 300 km from home. Here, PC = 

postcode model and, GP =geographic model (statistical regions model) 
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Table 6-3: Summary statistics for reference sites 

 Townsville      Hinchinbrook Hervey Bay 

PC 

100 km 

PC 

300 km 

GP PC 

100 km 

PC 

300 km 

GP 

 

PC 

 100 km 

PC  

300 km 

GP 

Total number of respondents 2,002 2,018 2,034 1,484 1,669 1,909 2,013 2,127 2,259 

Average of one-way travel 

distance to reach the fishing 

sites (km) 

11.31 12.0 19.71 16.86 37.75 289.37 17 27 62.12 

Average of visit rate 

(Dependent variable) 

0.0082 0.0064 0.0024 0.0053 0.0045 0.00097 0.0079 0.001 0.00062 

Average of total travel cost 

($) (Independent variable) 

24.89 80.58 939.6 18.64 70.05 2092.92 52.17 286.3 989.7 

Average of weekly income 

($) (Independent variable) 

658.5 634.6 676.5 648 640.25 647.01 462 627.55 616.84 

Note that the geographic models include all data, whereas the postcode models exclude anglers more than 100 or 300 km from home. Here, PC 

= postcode model and, GP =geographic model (statistical regions model) 
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 Application of the zonal travel cost method 

The ZTCM has been developed in three phases. The TGF is measured in the first phase, then 

it is used in the second phase to quantify the demand for visits at a hypothetical set of increases 

in travel cost. In the third phase, the estimated demand curve is used to calculate the consumer 

surplus. For brevity, the analysis for the cairns (Postcode model 100 km) is shown in detail (the 

result of other sites and models are reported in Appendix C, Table C 2), and then the consumer 

surplus of the other models and sites is presented for comparison. 

Phase 1 

The first phase of the analysis was to calculate the TGF, where four functional forms were 

tested. Ordinary least squares (OLS) regression was used, where the dependent variable visit 

rate (V/N) was regressed against the travel cost and income (independent variables). 

Coefficients and statistics for all the functional forms tested are demonstrated in Table 6-4. The 

presence of all negative travel cost coefficients in the analysis indicates that fishers with lower 

travel costs are more inclined to visit fishing sites than those with higher travel costs. 

The best model for the TGF was chosen based on three criteria. The first criterion is that the 

functional forms should be theoretically consistent, and the coefficients should be statistically 

significant at the levels of interest (Ward & Beal, 2000). This study has used the 5% 

significance level. The second criterion is to choose the two functional forms that predict 

closest to the actual number of visits (Crooker & Kling, 2000). In the third criterion, the best 

model from the final two models should be chosen based on higher R2 values. R2 values should 

only be considered when the dependent variables are exactly the same and the number of 

independent variables is also the same in both models (Hanley & Spash, 1993). If the models 

do not satisfy the two conditions together, then Rao and Miller (1971) suggested to do an 

equivalence test3. If the test shows that the two models are equivalent, then the R2 value could 

be used to choose the best model. On the other hand, if the two models were not equivalent, 

then the functional form that has the lowest sum of squares of residuals (SSR) should be 

selected as the best model in TGF.  

 

3 It is a non-parametric test, d = 
T

2
|log

∑𝑒1𝑡∗2

∑𝑒2𝑡∗2
| where d follows the chi-squared distribution with one degree of freedom, T= sample size, ∑e1t

*2 

and ∑e2t
*2 = residual sum of squares of two estimated equations 
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Heteroscedasticity is a major problem in regression analysis and is relevant in a TCM when 

observations are grouped under different zones or postcodes that do not have an equal number 

of observations. To remove heteroscedasticity from this stage of analysis, Kacapyr (2015) 

suggested to apply weighted least square (WLS) analysis and then re-calculate the model. Tests 

revealed no substantial evidence of heteroscedasticity in this study, so the best model from the 

TGF was used to calculate the demand function.  

Considering the first criterion, the F statistics of each of the models are highly significant at 

the .05 level and all the coefficients except the income coefficient of the semi-log independent 

model are significant at the .05 level (Table 6-4). Therefore, the semi-log independent model 

was rejected and not considered for further analysis. 

Table 6-4: Regression statistics for four functional forms of the TGF for Cairns (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(p-value) 

Linear 0.0019281*  

(-1.34) 

-.0000443*** 

(-2.75) 

0.0000119*  

(1.47) 

0.7491 16.42  

(.0005) 

Semi-log 

independent 

.0102822* 

(1.90) 

  -.002741*** 

(-5.08) 

0.00000431 

(0.71) 

0.8736 38.03 

(.0000) 

Semi-log 

dependent 

11.1223***  

(-5.20) 

-.017889**  

(-2.94) 

.0088817**  

(2.92) 

0.8500 31.16  

(.0000) 

Double log  

 

7.58737**  

(-2.97) 

-0.950748*** 

(-3.74) 

  .0071597** 

(2.49) 

0.8823 41.21  

(.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Except for the semi-log independent model, which predicts significantly higher values than the 

others, all models come close to predicting the actual number of trips (Table 6-6). This is 

because the data did not fit well with the semi-log independent model and the model exhibited 

a flat tail problem in TGF. However, according to the second criterion, the linear and double 

log models predict the closest number of fishers to the actual (Table 6-6). As the two models 

do not have exactly the same dependent variables (e.g., ‘visit rate’ is the dependent variable in 
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the linear model, and ‘LN visit rate’ is the dependent variable in the double log model) then an 

equivalence test is required. In the analysis, the sample size was 14 and the residual sums of 

squares for the linear and the double log model were 0.000031 and 3.467902 respectively, 

generating a d value of - 81.375. The value is smaller than the critical chi-square value at a 5% 

level of significance (22.68), indicating that the two equations are equivalent. Using the third 

step in the evaluation process, the double log model is selected as it has a higher R2 value than 

the linear model. A Breusch-Pagan test was conducted to detect heteroscedasticity from the 

regression residual of the double log model. The result indicates no sign of heteroscedasticity 

(Table 6-5). 

Table 6-5: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         chi2(1)      =     2.24 

         Prob > chi2 = 0.1345 

 

Table 6-6: Predicted number of fishers for four functional forms of TGF 

Phase 2 

The second phase of the analysis was to estimate the demand function. The travel cost was 

increased by a set of hypothetical values, and, consecutively, the number of visits was 

calculated for each of the increased levels of cost from the chosen trip generation function. 

Hypothetical values should be increased up to the level when the number of visits falls to zero. 

Model Predicted no. of fishers 

Linear 909 

Semi-log (I) 211110 

Semi-log (D) 878 

Double log 1054 

Actual 1045 
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The total expected visits for each degree of increase in travel cost are outlined in Table 6-7 that 

provides data for the calculation of the demand function. 

Table 6-7: Demand schedules for Cairns (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1054 

50 231 

100 136 

300 53 

500 33 

1000 17 

3000 6 

5000 3 

10000 2 

30000 0 

To determine the demand functions, OLS regressions were used, where again four functional 

forms were tested. In the regression analysis, the number of estimated visits (Q) was regressed 

against the hypothetical increase in travel cost (P) values. The best model from the demand 

function was identified by applying similar criteria used to select the best model in TGF. The 

regression statistics for the demand function are demonstrated in Table 6-8. 

Considering the first the F statistics, and coefficients of all the models except the linear model 

are highly significant at the at the .05 level (Table 6-8). Therefore, the linear model was rejected 

and not considered for further analysis. 
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Table 6-8: Regression statistics for four functional forms of demand for Cairns (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P- value) 

Linear 246.9864***  

(3.75) 

-.0167472  

(-1.45) 

0.1155 2.09  

(0.1676) 

Semi-log independent 662.484*** 

(8.34) 

  -87.71773 *** 

(-6.33) 

0.7147 40.08 

(0.0000) 

Semi-log dependent 4.828109 ***  

(13.45) 

-.0002911 ***  

(-4.61) 

0.5710 21.30 

(0.0003) 

Double-log  

 

8.279693 ***  

(35.59) 

-.7947134 *** 

(-19.58) 

0.9599 383.35 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

According to the second criterion, the semi-log dependent and double log models predict the 

closest number of fishers to the actual (Table 6-9). As the two models have exactly the same 

dependent variables, then the final model can be identified on the basis of higher R2 values. 

Based on economic theory, predictive ability, and statistical specification, the double-log 

model was chosen for the estimation of consumer surplus. The double-log demand function 

can be written as:  

    Log (Q) = 8.279693 - 0.7947134 Log P……………………………….……………Eq (6.4) 

The demand curve for the Cairns (postcode model 100 km) is demonstrated in Figure 6-2. After 

the inversion of the equation, it becomes:  

    Log P = 10.35 - 1.25 Log Q ….……………...……………………………………….Eq (6.5) 
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Table 6-9: Predicted number of fishers for four functional forms of the demand function 

 

 

Figure 6-2: Demand curve of Cairns (postcode model 100 km) 

 

In the case of the zoned model (model 2), the first step of analysis (the determination of TGF) 

is different from the other two models; (e.g., postcode model and geographic model), however, 

the second and third steps are almost alike. Here all data from the six sites were pooled, 

according to the distance threshold of 100 km or 300 km. To determine the TGF, a set of 

dummy variables for all of the study sites was created and treated as independent variables 

along with the travel cost and income variable. OLS regressions have been run and tested for 

four functional forms. For example, to test the effect of dummy site Cairns, all dummy sites 

except Cairns were used as independent variables along with the travel cost and income 

Model Predicted no. of fishers 

Linear 246 

Semi-log (I) 0 

Semi-log (D) 124 

Double log 3942 

Actual 1045 
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variable. The best models from the functional forms have been selected on the basis of the 

higher number of significant (5% level) coefficients, and dummy sites with the higher R2 

values.  

Phase 3 

The third phase of the analysis was to calculate consumer surplus, which is demarcated as the 

area under the demand curve and above the price line. The demand functions for Cairns 

(Postcode model 100 km) were calculated based on the additional travel costs that fishers 

would be able to pay in addition to the travel cost they had already paid, so the whole area 

under the demand curve is customer surplus.  

The total consumer surplus was calculated for different models of six study areas, with a 

bootstrapping method used to estimate 95% confidence intervals. The individual consumer 

surplus has been calculated by dividing the total consumer surplus by the total number of 

fishers in each case study.   

The results of all three modelling approaches are provided in Table 6-10 and Figure 6-3. 
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Table 6-10: Consumer surplus of the six study areas  

Sites (NFZs) Models Data Total consumer 

surplus ($) (values in 

bracket shows 95% 

confidence interval) 

Individual consumer 

surplus ($) (values in 

bracket shows 95% 

confidence interval) 

Cairns Postcode 

model 

100 km 159,111.17  

(58,270 - 436,552) 

152.26  

(55.76 - 417.75) 

300 km 159,111.17  

(58,270 - 436,552) 

152.26  

(55.76 - 417.75) 

Zoned 

model 

100 km 67,287 

(59,898-75,093) 

64.39 

(57.32 - 71.86) 

300 km 110,765  

(6,899 - 273,385) 

105.99 

(6.60 - 261.61) 

Geographic 

model 

Whole 

dataset 

14,878  

(46,556- 85,754) 

74.02 

(44.34 – 81.67) 

Mackay Postcode 

model 

100 km 37,765 

(26,845 -49,200) 

19.03 

(13.53 - 24.80) 

300 km 205,571 

(29,867– 389,274) 

100.87 

(14.65 – 191.01) 

Zoned 

model  

100 km 114,298 

(28,193 -339,043) 

57.61 

(14.21 - 170.89) 

300 km 239,100  

(125,914 - 358,039) 

117.32 

(61.78 - 175.68) 

Geographic 

model 

Whole 

dataset 

118,156  

(28,282- 442,674) 

56.43  

(13.51 – 211.40) 

Rockhampton Postcode 

model 

100 km 149,890 

(19,540 -204,118) 

53.55 

(6.98 -72.92) 

300 km 204,132 

(165,716 -241,671) 

70.68 

(57.38 - 83.68) 

Zoned 

model  

100 km 153,026 

(143,768 – 162,434) 

54.67 

(51.36 -58.03) 

300 km 253,920 

(245,308 -262,094) 

87.92 

(84.94 -90.75) 

Geographic 

model 

Whole 

dataset 

263,685  

(79,826 – 521,434) 

87.95  

(26.63 - 173.93) 
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Sites 

(reference 

sites) 

Models Data Total consumer 

surplus ($) (values in 

bracket shows 95% 

confidence interval) 

Individual consumer 

surplus ($) (values in 

bracket shows 95% 

confidence interval) 

Townsville Postcode 

model 

100 km 52,053 

(4,899 -55,913) 

14.48 

(2.45 - 27.93) 

300 km 72,053  

(15,231-149,276) 

20.05 

(7.54 – 73.97) 

Zoned 

model  

100 km 40,091  

(12,234- 158,454) 

20.02 

(6.11 - 79.14) 

300 km 296,226 

(103,100 – 357,206) 

146.79 

(51.09 -177.01) 

Geographic 

model 

Whole 

dataset 

211,831  

(54,476– 467,694) 

104.14 

(26.78-229.94) 

Hinchinbrook Postcode 

model 

100 km 58,047  

(36,424 – 77,573) 

39.11 

(24.54 - 52.27) 

300 km 242,938  

(192,120 -293,538) 

145.56 

(115.11 -175.88) 

Zoned 

model  

 

100 km 85,600  

(72,522 – 97,078) 

57.68 

(48.87 - 65.42) 

300 km 199,518 

(176,660 -224,973) 

119.54 

(105.85 -134.79) 

Geographic 

model 

Whole 

dataset 

1,229,705  

(1,130,458 -1,274,972) 

644.50 

(592.48 - 668.22) 

Hervey Bay Postcode 

model  

100 km 21,533  

(9,240 - 77,154) 

10.70 

(4.59 - 38.33) 

300 km 105,913  

(34,639 – 324,870) 

49.79 

(16.28 - 152.74) 

Zoned 

model 

100 km 75,329 

(35,922 – 125,601) 

37.42 

(17.84 - 62.39) 

300 km 94,000  

(84,513-136,347) 

44.19 

(39.73 - 64.10) 

Geographic 

model 

Whole 

dataset 

540,771  

(89,787-1,241,395) 

239.38 

(39.75 - 549.53) 
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Figure 6-3: Total individual consumer surplus for pooled NFZs and reference sites 

 Discussion 

This study’s aim was to assess the economic values of recreational fishing in three net-free and 

three reference sites in Queensland. Three approaches to modelling the data were employed, 

using postcode, zoned, and geographic zone models, with two distance thresholds of 100 km 

and 300 km applied in the postcode model and zoned model. The study compared the consumer 

surplus between sites and models.  

The results of the travel cost analysis demonstrated strong evidence of variation in economic 

values across sites and models. The lower value of $10.70 in the postcode model of Hervey 

Bay with the 100 km set, $20.02 in a zoned model of Townsville with the 100 km set, and 

$56.43 in the geographic model of Mackay indicate a higher number of local visitors who 

travelled short distances that generated lower consumer surplus. The postcode models 

generated more conservative values, with maximums of $152.26 /trip for the 100 km and 300 

km set in Cairns, compared with the geographic models, which had a maximum of $644.50 for 

Hinchinbrook. The highest values for Cairns and Hinchinbrook using postcode and geographic 

model indicate the presence of more distant fishers and tourists in those regions. This is 

potentially because these the sites serve as a gateway to the Great Barrier Reef, and thousands 

of national and international tourists visit on a daily basis to participate in charter and 

recreational fishing activities. The average individual consumer surplus ranged from roughly 
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$144.57 to $603.22 depending on travel distances and trip expenditures. Similar findings were 

also reported in recent recreational fishing valuation studies in Australia (Prayaga et al., 2010; 

Ezzy & Scarborough, 2011; Pascoe et al., 2014). Further studies are required to determine the 

reasons for other variations in economic values.  

The most striking result to emerge from the analysis is that with the exception of the geographic 

model, the economic value of recreational fishing in the three NFZs with 100 km and 300 km 

exclusions are currently higher than in three reference sites where commercial net fishing still 

occurs. In terms of the geographic model, more than four times higher consumer surplus was 

observed in reference sites than the NFZs. These differences were most pronounced in 

Hinchinbrook and Hervey Bay samples, where their individual consumer surplus was $644.50 

and $239.38, respectively. This is because the three reference sites had a substantially higher 

number of distant fishers who travelled from more than 300 km away. It is possible that this 

model may contain more multi-purpose or multi-destination travellers as there were no data to 

identify the multi-purpose and multi-destination trips. Future research may identify the value 

for multi-purpose or multi-destination fishers, as well as values for potential improvements in 

the recreational fishing experience. 

There are certain drawbacks associated with the data that was used to underpin the application 

of the model. The surveys only collected data on respondents’ residential postcodes, boat ramp 

details, whether fishing was the main purpose of the trip or not, and distance travelled by the 

participants to reach the fishing sites. Ideally, future surveys should gather more information 

in order to refine the analysis. For example, the location of visitors’ home (from where they 

have travelled to the site), the length of the trip, frequency of visits in a year or season, the 

amount of time spent in each site, overall travel expenses that includes all perceived cost by 

the travellers, personal income, socio-economic data (to allow an estimation of the value of 

their time), other locations visited during the same trip and the amount of time spent in each 

site, other reason for travel such as visiting a friend or relative, fishing success or experience 

at each site, perception of environmental quality or facilities at the fishing site, and alternative 

sites that the travellers may visit instead of this site. 

There was also an issue with determining travel costs. The majority of studies that employ the 

travel cost method estimate demand functions using cross-sectional data from one season or 

year (Peterson et al., 1985; Cooper & Loomis, 1990). This is sufficient for making decisions 

with short timescales, but it is insufficient for making long-term decisions. Intertemporal data 

may be used to identify trends and assess behavioural stability (Hellerstein, 1993). 
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Furthermore, the results were sensitive to a number of factors. The exclusion of multi-purpose 

and multi-destination travellers from the models might have the potential to make a significant 

difference in consumer surplus estimates. The calculation of travel cost was only limited to the 

use of full car cost (option 2) but could be different if calculated more precisely using the 

perceived cost estimated by the respondents (option 3) (Bennett, 1996). The overall consumer 

surplus estimates might produce more specific values if the opportunity cost of time, onsite or 

offsite purchases, accommodation cost, other spendings could be added to the calculation. 

The application of postcode models (model 1) can be more relevant and interpretable than 

geographic models (model 3) because the geographic model (model 3) is more applicable to 

large areas, such as regional Australia, where the population is not evenly distributed. 

Furthermore, the aggregation of the larger set of data in a geographic model results in the 

formation of fewer zones, that result in a loss of information. Postcode data, on the other hand, 

divides larger zones into smaller zones, allowing the study to use smaller observations to 

provide more accurate estimates, and the findings are more straightforward for application by 

government decision-makers. Chotikapanich and Griffiths (1998) corroborated similar 

conclusions. The study, however, acknowledges the possible bias emerging from the postcode 

model that did not address the zero visit problem as many postcodes near the sites have no 

fishers to the site. This suggested that a fisher from a postcode with a small population with a 

far distance from the site was giving much greater weight than a fisher from a postcode with a 

larger population. This results in a bias with increased travel cost which may lead to an increase 

in the consumer surplus estimate. 

The zoned models (model 2) generate more accurate predictions for individual outcomes by 

pooling the whole dataset. The consumer surplus of zoned (model 2) and postcode models 

(model 1) are somewhat similar, but in most cases, the zoned models (model 2) show more 

precise results than the postcode models (model 1). A possible interpretation for this might be 

the tradeoffs between more data in the zoned model and heterogeneity from combining data 

from different sites. The inclusion of all highly significant coefficients with higher R2 values 

in the models leads to improved outputs from zoned models, indicating that there are not 

substantial disparities across the sites. The study suggests that it is worth running a zoned model 

(using postcode data) instead of geographic models (model 3), especially for the similar studies 

where the number of respondents is high and the ensuing large dataset is influenced by multi-

visit travellers who are on long, interstate driving holidays.  
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The application of geographic models (model 3) for the whole dataset has been affected by the 

large proportion of fishers visiting from distant areas, reflected in higher consumer surplus for 

the reference sites. Bateman (1993) claimed that respondents who reside closest to the site incur 

the lowest travel costs and obtain the least recreational value from accessing the site. The study, 

however, acknowledges that there is a possibility of misspecification bias as a result of 

participants providing their home postcode rather than the postcode from where they stayed 

and travelled throughout their trip, (e.g., they might have been staying with their friends or 

relatives while travelling). Tests of overlapping confidence intervals between the postcode, and 

the geographic models indicate no difference for the NFZs case study, but a large difference 

for the reference site case study.  

One of the expectations of Queensland’s NFZs is that they will support and strengthen the 

regional economy by increasing the economic value of recreational fishing (Queensland 

Government, 2016). This study suggests that currently the economic value of recreational 

fishing in NFZs is relatively higher when only the closest visitors (100 km and 300 km distance 

thresholds) were considered in the postcode and zoned models, and lower when distant visitors 

were included in the geographic model. However, as fishers from other areas become more 

aware of the improved fishing experience in the NFZs, there is a possibility that NFZs will 

attract distant visitors from far distances. There are some similarities between the attitudes 

expressed by Martin et al. (2019) in their study evaluating the performance of Queensland’s 

NFZs. They found that the fishers of NFZs were more likely to travel long distances, and when 

compared to the reference sites in 2018, fishers of Cairns and Rockhampton exhibited an 

increase in travel distances over the last 3 years. The findings of the current study are in line 

with those from previous research by Pascoe et al. (2014). Their study showed an increase in 

the economic value and benefit of recreational fishing after rezoning in Moreton Bay, Southeast 

Queensland. The present study was, however, conducted in the very early stages after the net-

free status was introduced, hence the effect of the visitation may not have been fully recorded, 

because any change in a management scheme requires adequate time for adjustment before its 

effects are identified (Queensland Government, 2014). Beets and Manual (2007) suggested that 

the evaluation of a fisheries management change requires several years to take effect and 

identified a significant improvement in fish growth and recruitment 7 years after the 

establishment of seasonal closures. This study used data collected during the 2 years 

immediately following the establishment of new net-free fishing zones in 2015. It is possible 

that the lag time between the management change and visitor response is longer than 2 years. 
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It is expected that in the longer term, the NFZs will be able to attract more distant travellers 

whose sole purpose of the visit would be recreational fishing.  

 Conclusions 

The present study was designed to determine the economic value of recreational fishing 

following the introduction of NFZs at three sites in Queensland. The study has compared 

recreational fishing values between three new NFZs and three reference sites. The consumer 

surplus for net-free and reference sites varies between the three different models tested: 

postcode (model 1), zoned (model 2), and geographic (model 3). Considering the closest 

visitors (100 km and 300 km distance exclusions), the study indicates that, currently, the NFZs 

have higher economic values than the reference sites although the geographic model is showing 

a contrasting result as it also includes all of the distant visitors. There is potential for consumer 

surplus in NFZs to increase as more anglers are attracted from more distant areas. Among the 

three models, the zoned models (model 2) using postcode data are the most appropriate to apply 

for this type of dataset.  

The generalisability of these results is subject to certain limitations. For instance, no sampling 

frames were chosen to obtain data from boat ramps; rather, boat ramps were chosen based on 

the availability of a larger number of respondents and proximity to the city. Information on 

multi-purpose and multi-destination trips, perceived travel cost by the fishers, fishing success, 

availability of recreationally-valued fish species, site facilities, the opportunity cost of time, 

substitute sites, and other variables were undetermined and therefore, could not be included in 

the model. The study was also influenced by the timing of data collection, shortly after the 

establishment of the NFZs. Mis-specification bias might exist as a consequence of individuals 

providing their home postcode rather than the postcode from where they stayed and travelled 

throughout their trip. Furthermore, while the cross-sectional data used in the study is adequate 

for making short-term decisions, the use of intertemporal data is more useful for identifying 

trends and making long-term decisions. 

Until recently, there has been little focus on the value of recreational fishing in Australia, and 

this research presents a novel study comparing recreational fishing values between sites and 

through different TCM models, which serves as a foundation for future research in similar 

situations. To better assess the effectiveness of NFZs as mechanisms for improving recreational 

fishing values in Queensland, it is recommended that data on recreational fishing continues to 
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be collected at the three NFZs and three reference sites for several more years with updated 

survey questionnaires, when recreational fishing is more likely to have improved and 

awareness of the NFZs has increased. 

The results presented in this study would be useful when considering management actions 

aimed at improving recreational fishing opportunities. The main contribution of this study is 

the inclusion of three models of ZTCM that compare the economic values among the models 

and the sites. In terms of future studies, it is suggested that the study be replicated with more 

advanced data that overcome present limitations in order to produce result to support long-term 

decisions on fisheries management.
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 Overview 

Commercial netting closures were implemented in Queensland in 2015 to conserve species by 

reducing commercial harvest pressure on fish stocks, and to increase recreational fishing 

opportunities, marine-based tourism, and resultant economic growth in regional areas (Brown, 

2016; Queensland Government, 2016). In this study, the social, ecological, and economic 

effects of commercial net fishing closures in three areas of Queensland were assessed using 

three different statistical procedures. Along with the three net-free zones (NFZs), three 

reference sites were selected to provide a complementary analysis. 

To assess and compare the social effects, the study analysed data of recreational fishers’ 

satisfaction and expectations collected from a NFZ (Rockhampton) and a reference site 

(Townsville) in October 2018. The output of this study revealed that the recreational fishers’ 

satisfaction and expectations vary across sites, with a stronger positive relationship in 

Rockhampton than in Townsville. This result supports the findings of Martin et al. (2019), who 

reported that satisfaction and expectations for NFZs have increased over time, and the 

performance of Rockhampton and Cairns in the 2018 survey was higher than in the 2015 and 

2016 surveys. 

To evaluate and compare the ecological effects of the closure, the study used 30 years (1990-

2019) of time series data from secondary sources for six study sites. The study developed two 

forecasting models, namely ARIMAX (autoregressive integrated moving average with 

exogenous input) and MLR (multiple linear regression) using fishery and environmental 

parameters that influence commercial barramundi CPUE (catch per unit effort). Except for two 

samples from Cairns, the results show that ARIMAX models provide the best forecast for all 

of the study sites. The study also revealed that both environmental and fishery parameters are 

important for prediction. For the majority of the study sites, the most significant predictors of 

CPUE were environmental parameters such as rainfall, streamflow, and stream water level, as 

well as fishery parameters such as licences and prices. These findings are consistent with 

previous observational studies, which found that after adequate rainfall and freshwater flow 

during the summer season, the catchability of barramundi improved significantly (Balston, 

2007, 2009a). The study also highlighted the changes that occurred after the implementation 

of closures in NFZs in contrast to the reference site and made inferences about the recreational 

opportunities in those regions.  
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To determine and compare the economic value of recreational fishing, the study integrated 

secondary data and boat ramp survey data collected from 6 study sites from November 2015 to 

June 2017. The study developed three models (postcode, zoned, and geographic) of the TCM 

(travel cost method). The results showed that the consumer surplus for net-free and reference 

sites varies across the three models tested. According to the study, NFZs currently have higher 

economic values than reference sites when considering the postcode and zoned model that 

includes all of the closest visitors, though the geographic model shows a contrasting result 

because it includes all of the distant visitors. Consumer surplus in NFZs has the potential to 

increase as more fishers are attracted from further away. Among the three models, the zoned 

models based on pooled postcode data are the most appropriate to apply for this type of dataset. 

There are some similarities between the attitudes expressed by Martin et al. (2019) in their 

study evaluating the performance of Queensland’s NFZs. They revealed that the fishers are 

likely to travel from long distances, and particularly fishers in Cairns and Rockhampton have 

increased their travel distances over the last three years when compared to the reference sites 

in 2018. The findings of the current study are consistent with previous research by Pascoe et 

al. (2014). Their research revealed an increase in the economic value and benefit of recreational 

fishing following rezoning in Moreton Bay, Southeast Queensland.  

The evidence in this study supports the concept that the removal of commercial net fishing had 

substantial positive effects on recreational fishers and the commercial barramundi population 

from a socio-economic and ecological standpoint. This chapter of the thesis, however, draws 

conclusions from the findings of the analysis through providing summary statements, main 

findings and outcomes, study limitations and future research directions, contribution to 

knowledge, and concluding statements. 

 Summary 

The net-free zones (NFZs) near Cairns, Mackay, and Rockhampton were introduced by the 

Queensland Government in November 2015 to conserve species by reducing commercial 

fishing pressure on fish stocks, enhance recreational fishers' participation and deliver economic 

benefit through recreational and charter fishing and tourism. The newly designed closure areas 

of Queensland have not been thoroughly assessed for their social, ecological, and economic 

effects though some early social surveys were conducted by the Queensland Department of 

Agriculture and Fisheries (DAF). To assess and compare the effects of three netting closures 

in Queensland, three reference sites (non-NFZs) were identified which were not under the 
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management scheme. The study collected data from both primary and secondary sources to 

quantify the original effect of netting closure. To identify the social effect, the study analysed 

and compared recreational fishers' satisfaction and expectation in fishing between a NFZ and 

a reference site. The study also developed two structural equation models (SEMs) to identify 

the causal relationship among satisfaction, overall satisfaction, and expectations and the 

strength of their relationship. To assess and compare the ecological effects of the closure on 

the barramundi population, the study developed two forecasting models (ARIMAX and MLR) 

for three NFZs and reference sites using fishery and environmental parameters that influence 

commercial barramundi CPUE. The study also demonstrated the changes that occurred after 

the implementation of closures in NFZs in comparison to the reference site and provided 

inferences about the recreational opportunities in those regions. To determine and compare the 

economic values of recreational fishing in three NFZs and reference sites, the study determined 

the consumer surplus using the TCM. Overall, the models and methods used in this study to 

identify the change after the implementation of netting closure were found to be highly accurate 

and acceptable. 

Policy analysts often require data to evaluate the effectiveness of any beneficiary program. The 

study presented in this thesis is one of the first investigations to explore the effect of newly 

implemented NFZs in Queensland from social, ecological, and economic perspectives. The 

main purpose of this study was achieved by addressing the three research objectives which are 

described in the following section.  

 Main findings and outcomes 

Objective 1: To evaluate recreational fishers’ satisfaction and expectations towards NFZs (see 

Chapter 4) 

This objective evaluated recreational fishers’ satisfaction and expectations with fishing at a 

NFZ and a reference site. Along with the graphical presentation of the Likert scale responses, 

non-parametric tests and regression analyses were carried out to assess satisfaction. The results 

showed that the fishers in the NFZ were more satisfied and had higher expectations than fishers 

in the reference site. The study also developed two structural equation models (SEMs) to 

identify the underlying structural relationship and the strength of the relationship among 

satisfaction, overall satisfaction, and expectation. The SEM identified the most influential 

factors for latent variable satisfaction and expectation and demonstrate the relationship and the 
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strength of their relationship for each of the study sites. The positive social effects of the netting 

closures in Queensland identified in this study are relevant to recreational fisher communities, 

policy analysts, and interested groups in identifying the relationship between satisfaction and 

expectation that has received little attention in the literature.                                                                                     

Objective 2: To develop a best-fitting forecasting model for barramundi (Lates calcarifer) in 

net-free zones and reference sites (see Chapter 5) 

Reduced commercial fishing can improve natural fish recruitment and stock structure, 

potentially leading to higher catches in subsequent years. There are some fishery and 

environmental parameters that contribute to the prediction of future CPUE. The CPUE forecast 

has recently been used as an effective tool for providing accurate information on potential catch 

and effort, as well as advice on fisheries management. In this study, 30 years (1990-2019) of 

historical commercial barramundi CPUE data were analysed for the six study sites using 

ARIMAX and MLR models to identify the exogenous variables that affect barramundi CPUE. 

The results showed that the ARIMAX model outperformed the MLR model at most sites. In 

relation to forecasting models, this study demonstrated that both fishery and environmental 

parameters played an equal role in influencing the CPUE; however, the majority of scenarios 

revealed that environmental parameters such as rainfall, streamflow, and stream water level, as 

well as fishery parameters such as licences and price, are the primary determinants of CPUE. 

The research provided useful insights into the effect of management changes in the commercial 

CPUE on the provision of recreational opportunities and the long-term management of 

barramundi in the region.  

Objective 3: To estimate the economic values of recreational fishing (see Chapter 6) 

The objective of the study was to determine the economic value of recreational fishing in the 

three NFZs and three reference sites. Three models (postcode, zoned, and geographic) of the 

TCM were tested to investigate the economic values of the six study sites. The postcode and 

zoned models assessed economic values for the fishers up to 100 km and 300 km distance 

thresholds, but the geographic model included all of the fishers travelling from distant 

locations. The results indicate that the performance of the zoned models is similar to the 

postcode models and offers more accurate results as the model includes highly significant travel 

cost coefficients and dummy sites with higher R2 values. The consumer surplus of NFZs was 

relatively higher when only the closest visitors (100 km and 300 km distance thresholds) were 

considered in the postcode and zoned models, and lower when distant visitors were included 
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in the geographic model. However, as fishers from other areas become more aware of the 

improved fishing experience in the NFZs, there is a possibility that NFZs will attract distant 

visitors from far distances.  

 Study limitations and future research 

Although individual chapters have outlined some limitations and future research directions, 

some key limitations of this study and future research options are noted, as follows. 

The principal limitation of this study is the extrapolation of the results established here to other 

areas with different environmental conditions. The results of this research are specific to these 

case study sites and if used elsewhere may vary in terms of the influencing factors, data 

availability, and timing of data collection. That means that in order to obtain a complete socio-

ecological assessment of any management measures, this approach needs to be modified or 

applied independently for every distinct scenario. Unlike other objectives, in objective 1, the 

study was unable to evaluate recreational fishers’ satisfaction for all of the study sites, as 

sufficient survey data were only able to be collected at priority sites (Rockhampton and 

Townsville). Further studies assessing all of the study sites, or other sites with different 

management situations, would improve and justify the global applicability of the models 

developed here.  

The second most important limitation of the study is the small sample size, which is a common 

constraint. Acquiring a sufficient dataset for objective 1 was challenging and for objective 2, 

only 30 years of barramundi commercial CPUE data were available to include in the time series 

analysis. Due to a lack of sufficient spatiotemporal data and the complexities of assuming post-

release survival, the study was unable to account for the recreational catch in objective 2. In 

time series analysis, however, more data is always preferable because a larger dataset captures 

all of the information and provides more accurate forecasts with negligible bias. 

In addition, acquiring a dataset with various parameters related to TCM for objective 3 was 

difficult as the data collected by DAF included limited parameters. Future investigations using 

TCM with updated and additional data are important to determine the economic values of 

recreational fishing in those areas.  

One of the caveats of this study is that it is primarily concerned with the changes to policy 

settings, such as shifting fishing efforts from commercial to recreational rather than with 

identifying the management issues. However, it might be reasonable to consider the overall 
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fishing pressure, rather than closing commercial netting and provide open access for recreation. 

This is another area in which future study may be conducted. 

The survey results were only based on fishers who recreationally fished or went to the fishing 

tackle stores during the data collection period. The findings might be different if an appropriate 

sample frame was used or if the data were obtained at a different period of the year. It is 

expected that the above-mentioned limitations should be considered in future research.   

 Contribution to knowledge 

The statistical approaches and models presented in this research provide a fundamental 

framework for evaluating the localised change in fishing pressure in Queensland. The study 

has successfully integrated field survey data and secondary data to generate the more accurate 

and reliable information required for the effective and efficient management of fisheries 

resources. The study has evaluated recreational fishers’ satisfaction and expectations towards 

a NFZ and a reference site and revealed explicit relationships between satisfaction and 

expectations. In addition, the study developed models to forecast future barramundi CPUE and 

established the relationship with catch and some fishery and environmental parameters that 

affect barramundi. The study has also tested different models of TCM to identify the economic 

value of recreational fishing through sites. The approaches and models applied in this thesis 

support existing approaches practiced in the field of fisheries research to inform management 

decisions more accurately and efficiently. 

The key contributions of this thesis to the body of scientific knowledge are summarised as it: 

• being the first identified effort to develop a structural equation model that evaluated the 

underlying causal relationship and the strength of the relationship between recreational 

fishers’ satisfaction, overall satisfaction, and expectation that received little attention to 

the literature, 

• identifying an explicit relationship between barramundi CPUE and environmental and 

fishery parameters, 

• developing fish CPUE forecasting models in a data-poor fishery for the sustainable 

management of barramundi, 

• being the first identified effort to develop and compare several different models of the 

travel cost method (TCM) to determine the economic values of recreational fishing, and  
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• providing the fundamental basis to employ zoned TCM using pooled postcode data for 

similar studies. 

 Concluding remarks 

The evaluation of the socio-ecological effect of netting closures in Queensland has become an 

emerging issue to be addressed. The existing literature has done little to explore the social, 

ecological, and economic effects of a change in commercial fishing pressure in these areas. In 

response, this thesis has provided comprehensive approaches to determine the socio-economic 

and ecological effects of the closures using both field survey and secondary data. The study 

compared the change to three reference sites. Several models were developed as part of the 

study to assess the change. To understand the social change, the study found that the 

satisfaction and expectations in recreational fishing have increased in a NFZ than a reference 

site. The study also developed SEMs to determine the relationship among three concepts 

discussed in the study: satisfaction, overall satisfaction, and expectation. The study developed 

and compared CPUE prediction models (ARIMAX and MLR) to examine the effects of netting 

closure in commercial barramundi CPUE and found that in most sites, the ARIMAX model 

outperformed the MLR model. For most of the study sites, environmental parameters such as 

rainfall, streamflow, and stream water level, as well as fishery parameters such as licences and 

prices, are the most important determinants of CPUE. The study provided valuable insights for 

increased recreational opportunities and sustainable management of barramundi in the study 

areas. For the economic aspect, the study developed three models (postcode, zoned, and 

geographic) of TCM and found that the economic value of recreational fishing is higher in 

NFZs when considered from the closest visitors (100 km and 300 km distances thresholds) in 

the postcode and zoned models and lower when considered from the distant visitors (travelled 

more than 300 km or beyond) in the geographic model. 

This study has explicitly identified and addressed fishery management issues related to the 

implementation of netting closures in Queensland. The approaches and models established in 

this study have previously been tested in other applications and are methodologically sound 

and scientifically acceptable. As regards one possible application of the approaches and models 

developed, newly implemented management measures often require effective monitoring, 

review, and evaluation of whether they achieved the expected outcomes. Periodic follow-up 

could help managers to tailor policy decisions for these and other net-free areas where 
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necessary. A successful management policy applied in these areas could be used as an 

influential paradigm for managing other areas where resource allocation is an issue. 

To conclude, this study can be used as a baseline for researchers, academics, interested groups, 

policymakers, and fisheries management authorities. Finally, the approaches employed in this 

thesis can be used (with relevant modification) to address similar fisheries management 

concerns at the local, national, and international levels.
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Appendices 

Appendix A 

Table A 1: Mann- Whitney test for the survey responses of Rockhampton and Townsville 

Statements Name of the 

sites 

N Mean 

Rank 

Mann-

Whitney 

U 

Wilcoxo

n W 

Z Asymp. 

Sig. (2-

tailed) 

To catch fish* Rockhampton 163 142.36 9839.0 

 

23205.0 

 

-1.093 

.274 

.274 

Townsville 130 152.82 

The main reason 

you go fishing is to 

catch a fish* 

Rockhampton 163 143.40 10008.5 

 

23374.5 

 

-.826 

 

.409 

Townsville 130 151.51 

You expect the 

variety of species 

you catch to 

increase over the 

next 12 months 

Rockhampton 163 190.48 3507.0 

 

12022.0 

 

-10.021 

 

.000 

Townsville 130 92.48 

You expect the 

number of fish you 

catch to increase 

over the next 12 

months 

Rockhampton 163 191.13 3401.50 

 

11916.5 

 

-10.203 

 

.000 

Townsville 130 91.67 

You expect the size 

of the fish you 

catch to decrease 

over the next 12 

months 

Rockhampton 163 174.89 6049.5 

 

14564.5 

 

-6.473 

 

.000 

Townsville 130 112.03 

You expect to be 

able to target new 

species of fish you 

have not targeted 

before over the next 

12 months 

Rockhampton 163 159.32 8587.50 

 

17102.5 

 

-2.829 

 

.005 

Townsville 130 131.56 

Your satisfaction 

with fishing in this 

area will increase 

over the next 12 

months 

Rockhampton 163 184.78 4437.0 

 

12952.0 

 

-8.740 

 

.000 

Townsville 130 99.63 

You expect future 

generations will 

have quality fishing 

opportunities in this 

area 

Rockhampton 163 185.64 4296.0 

 

12811.0 -8.981 

 

.000 

Townsville 130 98.55 
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Statements Name of the 

sites 

N Mean 

Rank 

Mann-

Whitney 

U 

Wilcoxo

n W 

Z Asymp. 

Sig. (2-

tailed) 

In the future, you 

expect that more 

people will go 

recreational fishing 

in this Net Free 

Zone 

Rockhampton 163 164.09 7810.0 

 

16325.0 

 

-4.020 

 

.000 

Townsville 130 125.58 

In the future, you 

expect recreational 

fishers to catch 

more fish in this 

Net Free Zone 

Rockhampton 163 199.34 2063.000 

 

10578.0 

 

-12.053 

 

.000 

Townsville 130 81.37 

In the future, you 

expect there to be 

more sea life of all 

kinds within this 

Net Free Zone 

Rockhampton 163 191.91 3274.000 

 

11789.0 

 

-10.404 

 

.000 

Townsville 130 90.68 

The number of fish 

you have caught 

Rockhampton 163 162.04 8143.50 

 

16658.5 

 

-3.485 

 

.000 

Townsville 130 128.14 

The variety of fish 

you have caught* 

Rockhampton 163 145.04 10275.0 

 

23641.0 

 

-.457 

 

.648 

Townsville 130 149.46 

The number of big 

fish you have 

caught 

Rockhampton 163 167.95 7180.50 

 

15695.5 

 

-4.810 

 

.000 

Townsville 130 120.73 

The size of the fish 

you have caught 

Rockhampton 163 166.37 7437.000 

 

15952.0 -4.470 

 

.000 

Townsville 130 122.71 

The number of 

exciting fights with 

fish you have had 

Rockhampton 163 158.59 8706.0 17221.0 -2.692 .007 

Townsville 130 132.47 

Overall, how would 

you rate your 

overall satisfaction 

with recreational 

fishing in the Net 

Free Zone in the 

last 12 months? 

Rockhampton 163 167.29 7288.0 

 

15803.0 

 

-4.770 

 

.000 

Townsville 130 121.56 

Note: An asterix (*) in each statement indicates that there are no significant differences between the mean 

ranks of two sites 
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Table A 2: Satisfaction survey questionnaire for NFZ (Rockhampton) 
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Table A 3: Satisfaction survey questionnaire for reference site (Townsville) 
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Table A 4: Deleted variables in the reliability test that had low corrected item-total correlation 

values 

Deleted variables Corrected item-

total correlation 

for Rockhampton 

Corrected item-

total correlation 

for Townsville 

Construct: Expectation 

You expect to be able to target new species of fish 

you have not targeted before over the next 12 

months 

.322 - 

Your enjoyment of fishing in this area will not 

improve over the next 12 months 

.267 - 

You expect the boat ramp in the area will become 

overcrowded over the next 12 months 

-.003 -.039 

You expect fishing spots in this area will not 

become overcrowded over the next 12 months 

.059 -.173 

In the future, you expect that more people will go 

recreational fishing in this area 

- .257 

Construct: Satisfaction 

The number of crowded fishing spots .224 .300 

Access to parking spaces and boat ramps .161 .219 

Note: Corrected item-total correlation values smaller than .4 for each question were removed from 

the test. 

Table A 5:  Deleted variables in the confirmatory factor analysis test that had low factor 

loadings 

Deleted variables Low factor 

loadings for 

Rockhampton 

Low factor 

loadings for 

Townsville 

Construct: Expectation 

You expect the size of the fish you catch to 

decrease over the next 12 months 

.46  

You expect the size of the fish you catch to 

decrease over the next 12 months 

 .48 

You expect to be able to target new species of fish 

you have not targeted before over the next 12 

months 

 .50 

Your enjoyment of fishing in this area will not 

improve over the next 12 months 

 .55 
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You expect future generations will have quality 

fishing opportunities in this area 

 .54 

Note: Low factor loading values smaller than .6 for each question were removed from the test. 

Table A 6: Multicollinearity test result for satisfaction and expectation components of 

Rockhampton 

Statements Coefficients Sig. Tolerance VIF 

Latent variable: Satisfaction 

The number of fish you have caught .020 .81 .321 3.113 

The variety of fish you have caught .170 .03 .387 2.584 

The number of big fish you have caught -.006 .95 .190 5.272 

The size of the fish you have caught .104 .31 .198 5.058 

The number of exciting fights with fish you have 

had 

.288 .00 .488 2.050 

Latent variable: Expectation 

You expect the variety of species you catch to 

increase over the next 12 months 

.135 .09 .430 2.323 

You expect the number of fish you catch to increase 

over the next 12 months 

-.019 .84 .357 2.802 

Your satisfaction with fishing in this area will 

increase over the next 12 months 

.056 .44 .616 1.623 

You expect future generations will have quality 

fishing opportunities in this area 

.303 .00 .556 1.797 

In the future, you expect that more people will go 

recreational fishing in this Net Free Zone 

.205 .02 .452 2.214 

In the future, you expect recreational fishers to catch 

more fish in this area 

.040 .74 .302 3.315 

In the future, you expect there to be more sea life of 

all kinds within this area 

.005 .96 .369 2.713 

In the future, you expect that the Net Free Zones 

will benefit local 

-.005 .95 .531 1.883 
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Table A 7: Multicollinearity test result for satisfaction and expectation components of 

Townsville 

Statements Coefficients Sig. Tolerance VIF 

Latent variable: Satisfaction 

The number of fish you have caught .285 .00 .294 3.403 

The variety of fish you have caught .103 .19 .376 2.657 

The number of big fish you have caught -.005 .95 .230 4.340 

The size of the fish you have caught .134 .14 .236 4.241 

The number of exciting fights with fish you have 

had 

.019 .79 .378 2.647 

Latent variable: Expectation 

You expect the variety of species you catch to 

increase over the next 12 months 

.039 

 

.59 

 

.546 

 

1.831 

 

You expect the number of fish you catch to increase 

over the next 12 months 

-.055 

 

.46 

 

.494 

 

2.022 

 

Your satisfaction with fishing in this area will 

increase over the next 12 months 

.260 

 

.00 

 

.642 

 

1.557 

 

In the future, you expect recreational fishers to catch 

more fish in this area 

.042 

 

.59 

 

.596 

 

1.676 

 

In the future, you expect there to be more sea life of 

all kinds within this area 

.089 .18 .665 1.504 
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Appendix B 

Table B 1: Variables of MLR model with their regression coefficients, standard error, and p-

level 

Sites Models Years 
Adjuste

d R2 
Variables 

Regression 

coefficients 

p- 

level 

Cairns MLR 1990-2010 0.01 Price 5.89E-08 0.16 

Rainfall -2.04E-06 0.58 

Temperature 0.003621 0.51 

Stream water 

level 
0.005764 0.57 

1992-2013 0.14 Licences -0.000845 0.15 

Rainfall -5.45E-06 0.14 

Temperature 0.000368 0.92 

Stream water 

level 
0.014348 0.17 

1994-2016 

 

0.56 Rainfall -4.17E-06 0.09 

Temperature 0.000227 0.93 

Mackay MLR 1990-2010 0.22 Licences -0.000326 0.64 

Rainfall -9.65E-07 0.89 

Temperature -0.001498 0.72 

Streamflow -2.32E-08 0.25 

1992-2013 0.67 Licences -0.000832 0.14 

Rainfall -5.30E-06 0.39 

 Temperature -0.004982 0.15 

 Streamflow 1.94E-08 0.32 

1994-2016 0.77 Licences -0.000684 0.24 

 Rainfall -2.20E-06 0.73 

 Temperature -0.002068 0.57 

 Streamflow 1.30E-08 0.50 

Rockhampt

on 

MLR 1990-2010 0.77 Licences -0.000332 0.11 

Rainfall -5.73E-06 0.33 

Temperature -0.004320 0.17 

Streamflow -1.74E-10 0.83 

1992-2013 0.97 Rainfall -7.11E-06 0.28 

Temperature -0.003561 0.30 

Streamflow 1.92E-10 0.69 

Stream water 

level 
-0.000611 0.46 
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Sites Models Years Adjuste

d R2 
Variables 

Regression 

coefficients 

p- 

level 

  1994-2016 

 

0.97 Rainfall -1.47E-05 0.07 

Temperature -0.006863 0.08 

Streamflow 1.58E-10 0.77 

Stream water 

level 
0.001482 0.27 

Pooled 

NFZs 

MLR 1990-2010 0.27 Licences -0.000299 0.50 

Price 1.67E-08 0.52 

Rainfall 5.48E-06 0.43 

Temperature 0.001516 0.78 

Stream water 

level 
0.000463 0.83 

1992-2013 0.82 Licences -0.000808 0.07 

 Rainfall -1.93E-07 0.96 

 Temperature -0.002095 0.67 

 Streamflow 1.06E-09 0.43 

 Stream water 

level 
-0.002604 0.39 

1994-2016 0.91 Rainfall -1.57E-06 0.66 

Temperature -0.005469 0.11 

Streamflow 1.53E-09 0.15 

Stream water 

level 
0.000950 0.73 

Townsville MLR 1990-2010 0.90 Rainfall -4.33E-07 0.96 

Temperature -0.005114 0.41 

Streamflow 8.00E-10 0.39 

1992-2013 0.88 Temperature 0.006293 0.37 

1994-2016 0.90 - - - 

Hinchinbro

ok 

MLR 1990-2010 0.67 Price 2.65E-08 0.24 

Temperature -0.003364 0.52 

Stream water 

level 
0.034699 0.24 

1992-2013 0.71 Rainfall -8.60E-06 0.24 

Temperature 0.002230 0.59 

Streamflow 4.80E-08 0.34 

1994-2016 

 

0.61 Licences -0.001103 0.07 

Rainfall -9.80E-06 0.08 

Temperature -0.002017 0.62 

Streamflow -6.45E-08 0.13 
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Sites Models Years Adjuste

d R2 
Variables 

Regression 

coefficients 

p- 

level 

Hervey Bay MLR 1990-2010 0.33 Price 2.84E-08 0.28 

Rainfall 5.88E-06 0.60 

Temperature 0.002942 0.67 

Streamflow 1.65E-09 0.98 

Stream water 

level  
-0.008797 0.65 

1992-2013 0.47 Licences -0.000853 0.08 

Rainfall 3.70E-06 0.72 

Temperature 0.001810 0.75 

Streamflow -6.04E-08 0.32 

Stream water 

level  
0.018203 0.40 

1994-2016 0.68 Rainfall -6.99E-06 0.29 

Temperature 0.006312 0.10 

Pooled 

reference 

site 

MLR 1990-2010 0.72 Rainfall 3.00E-07 0.95 

Temperature 0.004562 0.46 

Streamflow -1.10E-09 0.11 

1992-2013 0.77 Rainfall -5.40E-06 0.25 

Temperature 0.004413 0.36 

Streamflow 8.39E-10 0.30 

1994-2016 0.78 Rainfall -5.26E-06 0.24 

Temperature 0.005381 0.14 

Streamflow 1.00E-09 0.30 

Stream water 

level  
-0.005337 0.70 
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Table B 2: Normality and heteroscedasticity test result for the residual of the ARIMAX and MLR model 

Sites Year ARIMAX MLR 

Normality test: Jarque-

Bera 

Heteroscedasticity test: 

Breusch-Pagan-Godfrey 

Normality test: Jarque-

Bera 

Heteroscedasticity test: 

Breusch-Pagan-Godfrey 

Jarque-

Bera 

Probability Obs*R-

squared 

Probability Jarque-

Bera 

Probability Obs*R-

squared 

Probability 

Cairns 1990-2010 2.403 0.301 0.010 0.92 3.208 0.201 4.021 0.55 

1992-2013 0.943 0.624 0.129 0.94 3.040 0.219 0.392 0.99 

1994-2016 0.743 0.689 1.256 0.53 1.426 0.490 0.204 0.99 

Mackay 1990-2010 0.886 0.642 4.267 0.07 0.822 0.663 5.279 0.38 

1992-2013 1.980 0.371 2.320 0.13 0.466 0.792 6.359 0.27 

1994-2016 1.344 0.510 1.112 0.29 1.669 0.434 0.337 0.99 

Rockhampton 1990-2010 1.226 0.542 0.703 0.70 0.571 0.751 7.290 0.29 

1992-2013 4.475 0.107 1.029 0.59 1.872 0.392 6.937 0.33 

1994-2016 1.021 0.599 0.102 0.75 2.939 0.230 8.444 0.39 

Pooled NFZs 1990-2010 0.283 0.868 3.617 0.06 1.612 0.446 9.385 0.15 

1992-2013 2.127 0.345 0.448 0.50 5.402 0.067 9.414 0.15 

1994-2016 0.638 0.727 0.551 0.46 1.542 0.462 6.069 0.41 
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Sites Year  ARIMAX   MLR  

Normality test: Jarque-

Bera 

Heteroscedasticity test: 

Breusch-Pagan-Godfrey 

Normality test: Jarque-

Bera 

Heteroscedasticity test: 

Breusch-Pagan-Godfrey 

Jarque-

Bera 

Probability Obs*R-

squared 

Probability Jarque-

Bera 

Probability Obs*R-

squared 

Probability 

Townsville 1990-2010 1.440 0.487 0.303 0.58 0.455 0.796 1.123 0.06 

1992-2013 1.242 0.537 0.052 0.82 0.106 0.948 9.402 0.09 

1994-2016 1.440 0.487 0.087 0.77 0.422 0.809 6.121 0.29 

Hinchinbrook 1990-2010 2.240 0.326 0.049 0.97 0.685 0.709 1.567 0.90 

1992-2013 1.439 0.487 0.013 0.91 0.862 0.649 4.218 0.52 

1994-2016 1.215 0.545 0.000 0.98 0.464 0.793 6.647 0.35 

Hervey Bay 1990-2010 0.565 0.754 0.187 0.66 1.762 0.414 2.550 0.86 

1992-2013 0.689 0.708 0.077 0.78 0.731 0.694 3.822 0.15 

1994-2016 4.695 0.096 0.551 0.46 0.805 0.669 3.728 0.71 

Pooled 

reference sites 

1990-2010 0.588 0.745 0.702 0.87 1.019 0.601 7.054 0.22 

1992-2013 2.510 0.285 0.029 0.86 0.243 0.885 7.773 0.07 

1994-2016 2.732 0.255 0.068 0.79 1.745 0.418 8.294 0.06 
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Table B 3: Audit trail for ARIMAX and MLR model for all of the study sites 

1. Cairns: 

Data cleaning and processing:  

For outlier detection: Analyze> Descriptive statictics> Explore> provide variables> statistics 

tab, select outliers and percentiles, unselect Descriptives > Plots tab, select Histogram and 

Normality plots with test, unselect stem-and-leaf > continue> ok 

 

 

 

 

Extreme Values 

 Case Number Value 

cpue Highest 1 6 .047783 

Percentiles 

 

Percentiles 

5 10 25 50 75 90 95 

Weighted 

Average(Definitio

n 1) 

cpue .02352581 .02399902 .02984943 .03409168 .03889317 .04431021 .04630746 

licence 6.00 7.00 9.50 11.50 16.00 17.00 18.90 

price 47376.708

78 

56621.417

50 

84478.940

00 

115450.83

000 

158401.36

250 

191548.83

624 

202566.89

300 

rainfall 1080.1362

5 

1421.2800

0 

1701.4500

0 

2051.1500

0 

2472.7083

3 

2948.8650

0 

3178.9525

0 

temperature 24.57000 24.85000 24.85000 25.10000 25.27500 25.81000 25.95375 

streamflow 109305.27

850 

118523.26

600 

309825.83

750 

553090.58

500 

936464.24

000 

1603204.1

2200 

1740377.1

8600 

streamwaterl

evel 

.3523 .4110 .4658 .6750 .8585 1.0103 1.0965 

Tukey's Hinges cpue   .02991936 .03409168 .03810170   

licence   10.00 11.50 16.00   

price 
  

87194.150

00 

115450.83

000 

157420.27

000 
  

rainfall 
  

1710.3500

0 

2051.1500

0 

2408.9000

0 
  

temperature   24.85000 25.10000 25.25000   

streamflow 
  

315049.79

000 

553090.58

500 

920250.69

000 
  

streamwaterl

evel 
  

.4680 .6750 .8520 
  



  

226 

 

2 19 .045100 

3 20 .044357 

4 22 .043890 

5 17 .043810 

Lowest 1 28 .023460 

2 3 .023580 

3 27 .023821 

4 29 .025600 

5 13 .026969 

licence Highest 1 2 20 

2 1 18 

3 3 17 

4 4 17 

5 9 16a 

Lowest 1 30 6 

2 29 6 

3 28 7 

4 21 7 

5 27 8b 

price Highest 1 19 206831.670 

2 17 199077.530 

3 9 191824.820 

4 1 189064.982 

5 4 177223.510 

Lowest 1 28 46817.348 

2 29 47834.368 

3 27 56566.053 

4 30 57119.702 

5 13 71565.650 

rainfall Highest 1 11 3425.600 

2 29 2977.150 

3 22 2949.850 

4 15 2940.000 

5 21 2815.500 

Lowest 1 13 721.000 

2 27 1373.975 

3 14 1407.333 

4 3 1546.800 

5 24 1579.933 

temperature Highest 1 21 26.050 
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2 27 25.875 

3 9 25.850 

4 28 25.450 

5 16 25.400 

Lowest 1 8 24.350 

2 11 24.750 

3 25 24.850 

4 22 24.850 

5 10 24.850c 

streamflow Highest 1 22 1.827E+6 

2 11 1.669E+6 

3 19 1.607E+6 

4 10 1.569E+6 

5 30 1.158E+6 

Lowest 1 13 106151.980 

2 14 111885.250 

3 27 114981.230 

4 3 150401.590 

5 4 190384.180 

streamwaterlevel Highest 1 22 1.18 

2 11 1.03 

3 19 1.01 

4 10 1.00 

5 30 .97 

Lowest 1 14 .35 

2 13 .36 

3 27 .41 

4 3 .45 

5 5 .45 

a. Only a partial list of cases with the value 16 are shown in the table of upper 

extremes. 

b. Only a partial list of cases with the value 8 are shown in the table of lower 

extremes. 

c. Only a partial list of cases with the value 24.850 are shown in the table of lower 

extremes. 

 

Easy method to determine outliers using box plot is: Any asteric marks (*) below or above the 

box is outlier. 

In Cairns sample, no outlier and missing values was found. 
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Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Select variables>Quick>graph>provide variables>ok>check options>ok 
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Figure: Line graph of all the variables 

 

 

Unit root test:  

Quick> series statistics> unit root test> Provide variable> ok> if the prob is greater than .05 

then, there is unit root in the series (null: there is a unit root, if p value is less than .05 then 

reject the null hypothesis). 
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CPUE doesn’t have unit root 

Licences has unit root 

Price+Rainfall+Temp+ streamflow+ streamwaterlevel have no unit root 

 

As licence has unit root, natural log does not work to remove unit root, so 1st difference of the 

series was used. Now the series is stationary.  

 

Lag selection:  

Stata command: varsoc dcpue dlicences dprice drainfall dtemperature dstreamflow 

dstreamwaterlevel  

 

 

Selected lag 4 for the granger causality test. 

Granger Causality test: Screen for reverse causality in EViews. 

Granger causality is sensitive to lag selection. Granger causality considers whether the lags of 

other variables have predictive power once the lags of the dependent variable itself are 

accounted for. 

 

Select and open all the variables of interest (differenced series)>Quick>Group 

statistics>Granger causality test>all the variables come in a window and press ok> lags to 

include (4)> ok 
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Causality with Dependent Variable to Independent Variable and Independent Variable 

to Dependent Variable: Here, screening for reverse causality was done. Reverse causality is 

if independent variable X effects on dependent variable Y and Y has also effect on X, this 

condition is called reverse causality. Any variable with a p-value below .05 led to the rejection 

of the null hypothesis, thus eliminating it as a candidate for inclusion in the model. Here, all 

the variables passed the test as they did not show any sort of reverse causality. 

No reverse causality was found. 

Test for multicollinearity: SPSS 

 

Criteria for no multi collinearity: Tolerance should be higher than 0.1, VIF should be less than 

10 and condition index should be less than 15. 

Analyse> regression> linear> DV (dcpue), IV (all independent variables)> Method 

(Enter)>statistics (select collinearity diagnosis, unselect others)>continue>ok 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .436 2.296 

lnprice .591 1.691 

drainfall .201 4.974 

lntemperature .785 1.274 

dstreamflow .113 8.812 
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dstreamwaterlevel .107 9.350 

a. Dependent Variable: dcpue 

 

 

 

Here, multicollinearity is absent among independent variables. Tolerance is higher than 0.1, 

VIF should be less than 10 and condition index is less than 15. 

 

Multiple Regression Test: SPSS 

Backward Regression:  

Analyse> regression>Linear>Provide variables> Method (backward)> Statistics (select 

Confidence interval, R square change and descriptives)>continue>ok 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .280 .784 

dlicence .001 .001 .321 .901 .384 

dprice 1.748E-8 .000 .106 .346 .735 

drainfall 3.919E-6 .000 .364 .693 .500 

dtemperature .000 .004 .009 .035 .973 

dstreamflow 3.981E-9 .000 .286 .409 .689 

dstreamwaterlevel -.005 .024 -.155 -.215 .833 

2 (Constant) .001 .002  .295 .772 

dlicence .001 .001 .322 .940 .363 

dprice 1.753E-8 .000 .106 .360 .724 

Collinearity Diagnosticsa 

Mod

el 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Constan

t) 

dlicenc

e lnprice 

drainfa

ll 

lntemperat

ure 

dstreamfl

ow 

dstreamwat

erlevel 

1 1 3.175 1.000 .00 .00 .01 .02 .03 .01 .01 

2 1.521 1.445 .09 .14 .12 .01 .00 .00 .00 

3 .967 1.812 .67 .01 .07 .00 .13 .00 .00 

4 .710 2.114 .22 .02 .00 .02 .79 .00 .00 

5 .432 2.709 .01 .25 .68 .00 .02 .04 .01 

6 .134 4.874 .00 .49 .04 .93 .02 .04 .13 

7 .061 7.211 .00 .09 .09 .02 .01 .90 .85 

a. Dependent Variable: dcpue 
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drainfall 3.927E-6 .000 .365 .721 .483 

dstreamflow 3.985E-9 .000 .286 .425 .677 

dstreamwaterlevel -.005 .023 -.160 -.235 .817 

3 (Constant) .001 .002  .326 .749 

dlicence .001 .001 .331 1.002 .332 

dprice 1.441E-8 .000 .087 .317 .755 

drainfall 3.685E-6 .000 .342 .712 .487 

dstreamflow 2.271E-9 .000 .163 .397 .697 

4 (Constant) .001 .002  .335 .742 

dlicence .001 .001 .382 1.362 .192 

drainfall 4.114E-6 .000 .382 .848 .409 

dstreamflow 2.387E-9 .000 .172 .431 .672 

5 (Constant) .001 .002  .338 .740 

dlicence .001 .001 .442 1.865 .080 

drainfall 5.875E-6 .000 .546 2.303 .034 

6 
(Constant) .001 .002  .129 .898 

dstreamflow 6.01E-09 2.96E-09 .442 2.033 .055 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dtemperature .009b .035 .973 .010 .785 

3 dtemperature .021c .082 .936 .022 .818 

dstreamwaterlevel -.160c -.235 .817 -.063 .111 

4 dtemperature .018d .075 .941 .019 .818 

dstreamwaterlevel -.094d -.147 .885 -.038 .120 

dprice .087d .317 .755 .082 .639 

5 dtemperature -.005e -.022 .983 -.005 .862 

dstreamwaterlevel .092e .234 .818 .058 .295 

dprice .094e .353 .729 .088 .641 

dstreamflow .172e .431 .672 .107 .287 

6 
dtemperature -.006f -.012 .883 -.008 .662 

dstreamwaterlevel .090f .134 .718 .358 .745 

dprice .094f .453 .629 .288 .541 

dlicences .162f .461 .872 .407 .567 

drainfall .006 .345 .678 .106 .287 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dprice, drainfall, dstreamflow 
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c. Predictors in the Model: (Constant), dlicence, dprice, drainfall, dstreamflow 

d. Predictors in the Model: (Constant), dlicence, drainfall, dstreamflow 

e. Predictors in the Model: (Constant), dlicence, drainfall 

f. Predictors in the Model: (Constant), dstreamflow 

 

Regression in Eviews: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/11/21   Time: 21:16 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000232 0.001794 0.129195 0.8986 

DSTREAMFLOW 6.01E-09 2.96E-09 2.033034 0.0551 

     
     R-squared 0.186743     Mean dependent var 0.000180 

Adjusted R-squared 0.141562     S.D. dependent var 0.008657 

S.E. of regression 0.008021     Akaike info criterion -6.718901 

Sum squared resid 0.001158     Schwarz criterion -6.619328 

Log likelihood 69.18901     Hannan-Quinn criter. -6.699463 

F-statistic 4.133227     Durbin-Watson stat 2.596456 

Prob(F-statistic) 0.057067    

     
     
 

 

Unit root test for the residuals of regression model (including dcpue c dstreamflow): 

Getting residuals in EViws:  

Quick> estimate equation>Provide variables (dcpue dstreamflow)> ok> view tab> Actual, 

fitted, residual> Actual, fitted, residual table>save residual as variable ‘R’> unit root test for 

variable ‘R’ 

 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -6.524201  0.0000 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  
     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 
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Method: Least Squares 

Date: 03/15/21   Time: 23:42 

Sample (adjusted): 1992 2010 

Included observations: 19 after adjustments 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.423292 0.218156 -6.524201 0.0000 

C -0.000334 0.001628 -0.204904 0.8401 
     
     R-squared 0.714598     Mean dependent var -0.001083 

Adjusted R-squared 0.697810     S.D. dependent var 0.012876 

S.E. of regression 0.007078     Akaike info criterion -6.964225 

Sum squared resid 0.000852     Schwarz criterion -6.864810 

Log likelihood 68.16014     Hannan-Quinn criter. -6.947400 

F-statistic 42.56520     Durbin-Watson stat 1.836766 

Prob(F-statistic) 0.000005    
     
      
 

The residuals have no unit root. 

 

Serial correlation test:  

Quick>estimate equation> dcpue c dstreamflow>ok>view tab> residual 

diagnostics>correlogram and Q-statistics (Ljung-Box test) >lag selection (12)> ok. 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

 
 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/11/21   Time: 21:20 

Sample: 1991 2010  

Included observations: 20 

     

     
Variable Coefficient Std. Error t-Statistic Prob.   

     

     
C 0.000232 0.001794 0.129195 0.8986 

DSTREAMFLOW 6.01E-09 2.96E-09 2.033034 0.0551 

     

     
R-squared 0.186743     Mean dependent var 0.000180 

Adjusted R-squared 0.141562     S.D. dependent var 0.008657 

S.E. of regression 0.008021     Akaike info criterion -6.718901 

Sum squared resid 0.001158     Schwarz criterion -6.619328 

Log likelihood 69.18901     Hannan-Quinn criter. -6.699463 

F-statistic 4.133227     Durbin-Watson stat 2.596456 

Prob(F-statistic) 0.057067    
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Correlogram plot: 

 
 

Ther ACF and PACF plot is flat. 

 

Diagnostic reports: 

Normality test of residuals: 

 

Quick>estimate equation> dcpue c dstreamflow >ok>view tab> residual diagnostics> 

Histogram- Normality test 

0

1

2

3

4

5

6

-0.02 -0.01 0.00 0.01

Series: Residuals

Sample 1991 2010

Observations 20

Mean       5.20e-19

Median   0.002436

Maximum  0.010570

Minimum -0.017893

Std. Dev.   0.007807

Skewness  -0.843312

Kurtosis   2.800562

Jarque-Bera  2.403730

Probability  0.300633 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution. 
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Breusch-Godfrey Serial Correlation LM Test: 

Lag (2) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.328696     Prob. F(2,16) 0.1295 

Obs*R-squared 4.509177     Prob. Chi-Square(2) 0.1049 
     
      

Lag (4) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.054235     Prob. F(4,14) 0.4149 

Obs*R-squared 4.629691     Prob. Chi-Square(4) 0.3274 
     
      

Lag (8) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.561426     Prob. F(8,10) 0.7875 

Obs*R-squared 6.198715     Prob. Chi-Square(8) 0.6250 
     
      

Heteroscedasticity test:  

Quick>estimate equation> dcpue c dstreamflow >ok>view tab> residual diagnostics>Breusch-

Pagan-Godfrey test>ok 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.009411     Prob. F(1,18) 0.9238 

Obs*R-squared 0.010451     Prob. Chi-Square(1) 0.9186 

Scaled explained SS 0.008013     Prob. Chi-Square(1) 0.9287 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/04/21   Time: 23:14 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 5.79E-05 1.78E-05 3.253977 0.0044 

DSTREAMFLOW -2.85E-12 2.94E-11 -0.097010 0.9238 

     
     R-squared 0.000523     Mean dependent var 5.80E-05 

Adjusted R-squared -0.055004     S.D. dependent var 7.75E-05 

S.E. of regression 7.96E-05     Akaike info criterion -15.94425 

Sum squared resid 1.14E-07     Schwarz criterion -15.84467 

Log likelihood 161.4425     Hannan-Quinn criter. -15.92481 

F-statistic 0.009411     Durbin-Watson stat 1.754946 

Prob(F-statistic) 0.923791    

     
     
 

Probability is greater than 5%, so the model is not heteroscedastic. 
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ARIMAX (0,1,0) Forecasting:  

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dstreamflow from 2010-2013>Quick >estimate equation> dcpue c dstreamflow > Forecast> 

Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  1st differenced series has unit root; hence 2nd difference of the series has taken 

and the final series has no unit root 

Lag selection: Varsoc ddcpue ddlicences ddprice ddrainfall ddtemperature ddstreamflow 

ddstreamwaterlevel 

Lag 4 was selected. 

Granger Causality test 

 

No reverse causality detected. 

Test for multicollinearity: 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 ddlicence .317 3.152 

ddprice .396 2.524 

ddrainfall .180 5.562 

ddtemperature .607 1.649 
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ddstreamflow .097 10.353 

ddseamwaterlevel .083 12.116 

a. Dependent Variable: ddcpue 

 

 

Here, multicollinearity is present between streamflow and stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .691a .477 .290 .009832567 .477 2.554 5 14 .076 

a. Predictors: (Constant), ddstreamflow, ddlicence, ddtemperature, ddprice, ddrainfall 

 

Result of including stream water level and excluding streamflow in the model:  

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

Collinearity Diagnosticsa 

Mod

el 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Constan

t) 

ddlicen

ce ddprice 

ddrainf

all 

ddtemperat

ure 

ddstreamfl

ow 

ddseamwat

erlevel 

1 1 3.358 1.000 .00 .00 .02 .01 .02 .01 .01 

2 1.450 1.522 .01 .14 .06 .02 .00 .00 .00 

3 .996 1.836 .97 .00 .00 .00 .00 .00 .00 

4 .746 2.121 .01 .01 .08 .02 .60 .00 .00 

5 .293 3.384 .02 .12 .62 .00 .25 .08 .02 

6 .108 5.577 .00 .62 .11 .93 .06 .04 .11 

7 .049 8.280 .00 .11 .12 .02 .07 .87 .87 

a. Dependent Variable: ddcpue 
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1 .681a .463 .271 .009962003 .463 2.416 5 14 .089 

a. Predictors: (Constant), ddseamwaterlevel, ddlicence, ddtemperature, ddprice, ddrainfall 

 

Model with streamflow gives better R2 than streamwaterlevel. So, I have deleted 

streamwaterlevel from the analysis. 

Regression Test:  

Forward Stepwise: 

 

Coefficientsa,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 ddlicence .002 0.000 .474 3.441 .003 

 ddrainfall 5.37E-6 1.73E-6 .448 3.109 .006 

a. Dependent Variable: ddcpue 

b. Linear Regression through the Origin 

 

 

Excluded Variablesa,b 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 ddprice 7.224E-8c .000 .476 2.357 .829 

ddtemperature -.120c -.570 .576 -.133 .952 

ddstreamflow .243c .990 .335 .227 .678 

a. Dependent Variable: ddcpue 

b. Linear Regression through the Origin 

c. Predictors in the Model: ddlicence, ddrainfall 

 

Eviews: ddcpue ddlicences ddrainfall 

 

Dependent Variable: DDCPUE 

Method: Least Squares 

Date: 03/09/21   Time: 12:29 

Sample: 1994 2013  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DDLICENCES 0.001608 0.000467 3.441423 0.0029 

DDRAINFALL 5.37E-06 1.73E-06 3.109179 0.0061 

     
     R-squared 0.457497     Mean dependent var -0.000813 

Adjusted R-squared 0.427358     S.D. dependent var 0.011671 

S.E. of regression 0.008832     Akaike info criterion -6.526259 
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Sum squared resid 0.001404     Schwarz criterion -6.426686 

Log likelihood 67.26259     Hannan-Quinn criter. -6.506821 

Durbin-Watson stat 2.512024    

     
     
 

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 4 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.679735  0.0004 

Test critical values: 1% level  -3.959148  

 5% level  -3.081002  

 10% level  -2.681330  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 15 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/09/21   Time: 12:31 

Sample (adjusted): 1999 2013 

Included observations: 15 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -4.000816 0.704402 -5.679735 0.0003 

D(R(-1)) 2.035804 0.536595 3.793933 0.0043 

D(R(-2)) 1.454829 0.384332 3.785347 0.0043 

D(R(-3)) 1.072281 0.238207 4.501469 0.0015 

D(R(-4)) 0.522137 0.161299 3.237084 0.0102 

C -0.000219 0.001027 -0.213061 0.8360 

     
     R-squared 0.935038     Mean dependent var -0.000507 

Adjusted R-squared 0.898948     S.D. dependent var 0.012119 

S.E. of regression 0.003852     Akaike info criterion -7.991084 

Sum squared resid 0.000134     Schwarz criterion -7.707864 

Log likelihood 65.93313     Hannan-Quinn criter. -7.994100 

F-statistic 25.90853     Durbin-Watson stat 1.165891 

Prob(F-statistic) 0.000043    

     
     
 

The residual has no unit root. 

Serial correlation test: EViews 
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The residuals are flat and no serial correlation. 

Diagnostic Checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

-0.02 -0.01 0.00 0.01

Series: Residuals

Sample 1994 2013

Observations 20

Mean      -0.000489

Median  -0.002663

Maximum  0.011436

Minimum -0.021539

Std. Dev.   0.008582

Skewness  -0.522540

Kurtosis   2.801306

Jarque-Bera  0.943059

Probability  0.624047 

 

 

Breusch-Godfrey Serial Correlation LM Test: 
 
 Lag (2) 
 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.314721     Prob. F(2,16) 0.1309 

Obs*R-squared 4.488189     Prob. Chi-Square(2) 0.1060 
     
     
     
 

Lag (4) 
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Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.574380     Prob. F(4,14) 0.0836 

Obs*R-squared 8.476191     Prob. Chi-Square(4) 0.0756 
     
      

Lag (8) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.455362     Prob. F(8,10) 0.2839 

Obs*R-squared 10.75909     Prob. Chi-Square(8) 0.2157 
     
      

 

    
 

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.055590     Prob. F(2,17) 0.9461 

Obs*R-squared 0.129949     Prob. Chi-Square(2) 0.9371 

Scaled explained SS 0.101255     Prob. Chi-Square(2) 0.9506 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/09/21   Time: 13:56 

Sample: 1994 2013  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 7.04E-05 2.36E-05 2.986256 0.0083 

DDLICENCES -2.27E-07 5.57E-06 -0.040817 0.9679 

DDRAINFALL 5.89E-09 2.06E-08 0.285652 0.7786 

     
     R-squared 0.006497     Mean dependent var 7.02E-05 

Adjusted R-squared -0.110385     S.D. dependent var 9.99E-05 

S.E. of regression 0.000105     Akaike info criterion -15.34255 

Sum squared resid 1.88E-07     Schwarz criterion -15.19319 

Log likelihood 156.4255     Hannan-Quinn criter. -15.31339 

F-statistic 0.055590     Durbin-Watson stat 1.755817 

Prob(F-statistic) 0.946098    

     
     
 

Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (0,2,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in ddlicences and ddrainfall from 2013-2016>Quick >estimate 

equation> ddcpue ddlicences ddrainfall > Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 
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Sample 1994-2016: 

Unit root test: All variables have unit root; 1st difference did not remove unit root. So 2nd 

difference of all variables was taken. 

Lag selection: Lag 4 was selected for granger causality test 

 

Granger causality test 

 
 

Pairwise Granger Causality Tests 

Date: 03/10/21   Time: 22:09 

Sample: 1996 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DDLICENCES does not Granger Cause DDCPUE  17  1.40950 0.3142 

 DDCPUE does not Granger Cause DDLICENCES  2.13250 0.1681 

    
     DDPRICE does not Granger Cause DDCPUE  17  0.09332 0.9818 

 DDCPUE does not Granger Cause DDPRICE  1.41820 0.3117 

    
     DDRAINFALL does not Granger Cause DDCPUE  17  0.41164 0.7960 

 DDCPUE does not Granger Cause DDRAINFALL  0.71170 0.6066 

    
     DDTEMPERATURE does not Granger Cause DDCPUE  17  0.39016 0.8103 

 DDCPUE does not Granger Cause DDTEMPERATURE  1.66329 0.2502 

    
     DDSTREAMFLOW does not Granger Cause DDCPUE  17  0.57434 0.6894 

 DDCPUE does not Granger Cause DDSTREAMFLOW  0.71239 0.6062 

    
     DDSTREAMWATERLEVEL does not Granger Cause DDCPUE  17  0.39222 0.8090 

 DDCPUE does not Granger Cause DDSTREAMWATERLEVEL  0.71005 0.6075 

 

 

No reverse causality was found. 

Test for multicollinearity: 

 

 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 ddlicence .402 2.485 

ddprice .347 2.882 

ddrainfall .234 4.277 

ddtemperature .544 1.837 

ddstreamflow .097 10.266 

ddstreamwaterlevel .082 12.256 

a. Dependent Variable: ddcpue 
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Here multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

 

Result of including streamflow and excluding stream water level in the model: 

 

Result of including stream water level and excluding streamflow in the model:  

 

 

So I will take streamflow and delete streamwaterlevel from the analysis 

 

Regression Test :  

Forward regression:  

 

Coefficientsa,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 ddlicence .002 .000 .415 4.185 .000 

 ddrainfall 5.92E-6 1.56E-6 .457 3.781 .001 

a. Dependent Variable: ddcpue 

b. Linear Regression through the Origin 

 

 

Excluded Variablesa,b 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity Statistics 

Tolerance 

1 ddprice 4.71E-7c .107 .915 .137 .807 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .774a .600 .474 .008843318 .600 4.791 5 16 .007 

a. Predictors: (Constant), ddstreamflow, ddlicence, ddtemperature, ddprice, ddrainfall 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

1 .754a .569 .434 .009173304 .569 4.226 5 16 .012 

a. Predictors: (Constant), ddstreamwaterlevel, ddlicence, ddtemperature, ddprice, ddrainfall 
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ddtemperature -.154c -.795 .436 -.179 .929 

ddstreamflow .142c .562 .581 .128 .558 

a. Dependent Variable: ddcpue 

b. Linear Regression through the Origin 

c. Predictors in the Model: ddlicence, ddrainfall 

 

 

Regression Eviews: ddcpue ddlicences ddrainfall 

 

 

Dependent Variable: DDCPUE 

Method: Least Squares 

Date: 03/11/21   Time: 13:04 

Sample: 1996 2016  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DDLICENCES 0.002083 0.000498 4.185305 0.0005 

DDRAINFALL 5.92E-06 1.56E-06 3.780882 0.0013 

     
     R-squared 0.552148     Mean dependent var -0.001084 

Adjusted R-squared 0.528577     S.D. dependent var 0.012226 

S.E. of regression 0.008394     Akaike info criterion -6.632131 

Sum squared resid 0.001339     Schwarz criterion -6.532653 

Log likelihood 71.63738     Hannan-Quinn criter. -6.610542 

Durbin-Watson stat 2.459192    

     
     
 

Created a dummy variable and interacted with DDlicences and DDrainfall from 2015: 

ddcpue ddlicences ddrainfall  dummyddlicences dummyddrainfall   
 

Dependent Variable: DDCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 00:23 

Sample: 1996 2016  

Included observations: 21 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DDLICENCES 0.002173 0.000536 4.053180 0.0008 

DDRAINFALL 6.04E-06 1.66E-06 3.640201 0.0020 

DUMMYDDLICENCES -0.004544 0.003944 -1.152115 0.2652 

DUMMYDDRAINFALL 1.68E-05 1.74E-05 0.964796 0.3482 
     
     R-squared 0.584619     Mean dependent var -0.001084 

Adjusted R-squared 0.511317     S.D. dependent var 0.012226 

S.E. of regression 0.008547     Akaike info criterion -6.516921 

Sum squared resid 0.001242     Schwarz criterion -6.317964 

Log likelihood 72.42767     Hannan-Quinn criter. -6.473742 

Durbin-Watson stat 2.384817    
     
      

Here ‘dummy’ variable was omitted as the variables is collinear, In the regression, the 

interacted dummy term for ddlicences and ddrainfall are not significant, hence dummy terms 

will be removed from the regression and rerun the model. 
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Dependent Variable: DDCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 00:24 

Sample: 1996 2016  

Included observations: 21 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DDLICENCES 0.002083 0.000498 4.185305 0.0005 

DDRAINFALL 5.92E-06 1.56E-06 3.780882 0.0013 
     
     R-squared 0.552148     Mean dependent var -0.001084 

Adjusted R-squared 0.528577     S.D. dependent var 0.012226 

S.E. of regression 0.008394     Akaike info criterion -6.632131 

Sum squared resid 0.001339     Schwarz criterion -6.532653 

Log likelihood 71.63738     Hannan-Quinn criter. -6.610542 

Durbin-Watson stat 2.459192    
     
      

Unit root test of residual 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 4 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -5.275888  0.0008 

Test critical values: 1% level  -3.920350  

 5% level  -3.065585  

 10% level  -2.673459  
     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 16 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/15/21   Time: 22:44 

Sample (adjusted): 2001 2016 

Included observations: 16 after adjustments 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -4.288994 0.812943 -5.275888 0.0004 

D(R(-1)) 2.376983 0.650827 3.652249 0.0044 

D(R(-2)) 1.749649 0.521327 3.356146 0.0073 

D(R(-3)) 1.268770 0.350618 3.618664 0.0047 

D(R(-4)) 0.535634 0.200796 2.667562 0.0236 

C 1.13E-05 0.001131 0.010023 0.9922 
     
     R-squared 0.916359     Mean dependent var -0.000677 

Adjusted R-squared 0.874539     S.D. dependent var 0.012433 

S.E. of regression 0.004404     Akaike info criterion -7.732691 

Sum squared resid 0.000194     Schwarz criterion -7.442970 

Log likelihood 67.86153     Hannan-Quinn criter. -7.717855 

F-statistic 21.91174     Durbin-Watson stat 1.896630 

Prob(F-statistic) 0.000043    
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Residual does not have unit root. 

 

Serial correlation test: EViews 

Quick>estimate equation> ddcpue ddlicences ddrainfall >ok>view tab> residual 

diagnostics>correlogram and Q-statistics (Ljung-Box test) >lag selection (12)> ok. 

 

Selection of MA and AR term: 

ddcpue ddlicences  ddrainfall ar(4) ma(4) 
 

Dependent Variable: DDCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/11/21   Time: 13:09 

Sample: 1996 2016  

Included observations: 21 

Convergence achieved after 25 iterations 

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DDLICENCES 0.001751 0.000423 4.138181 0.0008 

DDRAINFALL 4.48E-06 1.01E-06 4.444770 0.0004 

AR(4) -0.707865 0.283873 -2.493597 0.0240 

MA(4) -0.109640 0.465917 -0.235321 0.8169 

SIGMASQ 3.14E-05 1.44E-05 2.182308 0.0443 

     
     R-squared 0.779751     Mean dependent var -0.001084 

Adjusted R-squared 0.724689     S.D. dependent var 0.012226 

S.E. of regression 0.006415     Akaike info criterion -6.892905 

Sum squared resid 0.000658     Schwarz criterion -6.644209 

Log likelihood 77.37550     Hannan-Quinn criter. -6.838932 

Durbin-Watson stat 2.368970    

     
     Inverted AR Roots  .65-.65i      .65-.65i   -.65+.65i -.65+.65i 

Inverted MA Roots       .58      .00-.58i   -.00+.58i      -.58 
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Serial correlation test: 

The residuals are flat and no serial correlation. 

 

Diagnostic Checking: 

Normality test of residuals: 

 

0

1

2

3

4

5

-0.015 -0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1996 2016

Observations 21

Mean      -0.000695

Median   4.17e-05

Maximum  0.008957

Minimum -0.013703

Std. Dev.   0.005693

Skewness  -0.417700

Kurtosis   2.610674

Jarque-Bera  0.743283

Probability  0.689601 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag (2) 
 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 2.436706     Prob. F(2,17) 0.1174 

Obs*R-squared 4.678815     Prob. Chi-Square(2) 0.0964 
     
      

Lag (4) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.293814     Prob. F(4,15) 0.1399 

Obs*R-squared 4.819977     Prob. Chi-Square(4) 0.1036 
     
      

Lag (8) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.657339     Prob. F(8,11) 0.2148 

Obs*R-squared 11.47765     Prob. Chi-Square(8) 0.1761 
     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.572965     Prob. F(2,18) 0.5738 

Obs*R-squared 1.256900     Prob. Chi-Square(2) 0.5334 

Scaled explained SS 0.665655     Prob. Chi-Square(2) 0.7169 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/11/21   Time: 13:17 

Sample: 1996 2016  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 3.09E-05 9.70E-06 3.189922 0.0051 

DDLICENCES -2.43E-06 2.64E-06 -0.922140 0.3687 

DDRAINFALL 1.60E-09 8.28E-09 0.193713 0.8486 

     
     R-squared 0.059852     Mean dependent var 3.14E-05 

Adjusted R-squared -0.044608     S.D. dependent var 4.34E-05 

S.E. of regression 4.44E-05     Akaike info criterion -17.07712 

Sum squared resid 3.54E-08     Schwarz criterion -16.92790 

Log likelihood 182.3098     Hannan-Quinn criter. -17.04474 

F-statistic 0.572965     Durbin-Watson stat 1.117942 

Prob(F-statistic) 0.573805    

     
     
 

ARIMAX (4,1,4) Forecasting: Extend workfile size (from 1996-2019) by double clicking the 

range> provide original values in ddlicences and ddrainfall from 2017-2019>Quick >estimate 

equation> ddcpue ddlicences ddrainfall ar(4) ma(4) > Forecast> Forecast sample (1996-

2019)>ok> 

 



  

250 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .518 1.930 

price .676 1.479 

rainfall .289 3.460 

temperature .742 1.348 

streamflow .054 18.417 

streamwaterlevel .089 11.267 

a. Dependent Variable: cpue 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) licence price rainfall 

temperat

ure 

streamfl

ow 

streamwat

erlevel 

1 1 6.525 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .361 4.254 .00 .00 .03 .00 .00 .03 .00 

3 .052 11.208 .00 .01 .60 .02 .00 .03 .00 

4 .036 13.403 .00 .31 .16 .22 .00 .01 .00 

5 .021 17.423 .00 .16 .06 .43 .00 .00 .15 

6 .004 39.371 .00 .49 .14 .32 .00 .92 .84 

7 5.651E-5 339.823 1.00 .03 .02 .02 1.00 .01 .00 

a. Dependent Variable: cpue 
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Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .541a .292 -.003 .006208518 

a. Predictors: (Constant), streamflow, price, temperature, licence, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .547a .300 .008 .006175941 

a. Predictors: (Constant), streamwaterlevel, licence, price, temperature, 

rainfall 

 

MLR: 

regress cpue licences price rainfall temperature streamwaterlevel  

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/22/21   Time: 22:04 

Sample: 1993 2010  

Included observations: 18 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.001098 0.000607 -1.808567 0.0456 

PRICE 5.89E-08 4.00E-08 1.471868 0.1668 

RAINFALL -2.04E-06 3.63E-06 -0.561568 0.5847 

TEMPERATURE 0.003621 0.005431 0.666676 0.5176 

STREAMWATERLEVEL 0.005764 0.010081 0.571714 0.5781 

C -0.048518 0.136467 -0.355532 0.7284 
     
     R-squared 0.299734     Mean dependent var 0.035762 

Adjusted R-squared 0.007957     S.D. dependent var 0.006201 

S.E. of regression 0.006176     Akaike info criterion -7.075109 

Sum squared resid 0.000458     Schwarz criterion -6.778319 

Log likelihood 69.67598     Hannan-Quinn criter. -7.034186 

F-statistic 1.027270     Durbin-Watson stat 2.058828 

Prob(F-statistic) 0.444462    
     
      

Diagnostic checking:  

 

Normality test:  
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0

1

2

3

4

5

-0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2010

Observations 18

Mean      -2.12e-18

Median  -0.000639

Maximum  0.013561

Minimum -0.006842

Std. Dev.   0.005189

Skewness   0.964754

Kurtosis   3.745228

Jarque-Bera  3.208777

Probability  0.201012 

 
 

Breusch-Godfrey Serial Correlation LM Test:   

Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.094178     Prob. F(2,9) 0.9110 

Obs*R-squared 0.368990     Prob. Chi-Square(2) 0.8315 
     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.372747     Prob. F(4,7) 0.8214 

Obs*R-squared 3.160735     Prob. Chi-Square(4) 0.5313 
     
      
Lag(8) 
 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.344533     Prob. F(8,3) 0.8986 

Obs*R-squared 8.618921     Prob. Chi-Square(8) 0.3755 
     
      

 

    
 

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 0.690328     Prob. F(5,12) 0.6403 

Obs*R-squared 4.020900     Prob. Chi-Square(5) 0.5464 

    

Scaled explained SS 2.452953     Prob. Chi-Square(5) 0.7836 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/22/21   Time: 22:52 

Sample: 1993 2010  

Included observations: 18 
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Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.000590 0.001005 -0.586706 0.5683 

LICENCES -1.89E-06 4.47E-06 -0.422642 0.6800 

PRICE -3.55E-10 2.94E-10 -1.207143 0.2506 

RAINFALL 9.61E-09 2.67E-08 0.359982 0.7251 

TEMPERATURE 2.83E-05 4.00E-05 0.708604 0.4921 

STREAMWATERLEVEL -6.46E-05 7.42E-05 -0.870597 0.4011 
     
     R-squared 0.223383     Mean dependent var 2.54E-05 

Adjusted R-squared -0.100207     S.D. dependent var 4.34E-05 

S.E. of regression 4.55E-05     Akaike info criterion -16.89771 

Sum squared resid 2.48E-08     Schwarz criterion -16.60092 

Log likelihood 158.0794     Hannan-Quinn criter. -16.85678 

F-statistic 0.690328     Durbin-Watson stat 2.257637 

Prob(F-statistic) 0.640323    
     
     
 

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .505 1.982 

price .852 1.174 

rainfall .363 2.756 

temperature .937 1.067 

streamflow .058 17.202 

streamwaterlevel .065 15.463 

a. Dependent Variable: cpue 

 

Collinearity Diagnosticsa 

M

o

d

e

l 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

licenc

e price rainfall 

temperat

ure 

streamfl

ow 

streamwat

erlevel 

1 1 6.508 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .363 4.237 .00 .00 .03 .00 .00 .03 .00 

3 .067 9.875 .00 .01 .57 .05 .00 .04 .00 

4 .039 12.856 .00 .33 .39 .10 .00 .01 .00 

5 .019 18.428 .00 .10 .00 .82 .00 .00 .07 

6 .004 42.968 .01 .54 .00 .02 .01 .91 .92 
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Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .591a .349 .099 .006067745 .349 1.394 5 13 .289 

a. Predictors: (Constant), streamflow, price, temperature, licence, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .618a .383 .145 .005909553 .383 1.611 5 13 .226 

a. Predictors: (Constant), streamwaterlevel, licence, temperature, price, rainfall 

 

MLR: 

regress cpue licences price rainfall temperature streamwaterlevel  

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/22/21   Time: 22:11 

Sample: 1995 2013  

Included observations: 19 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000845 0.000563 -1.501174 0.1572 

PRICE 8.03E-08 3.57E-08 2.249503 0.0424 

RAINFALL -5.45E-06 3.52E-06 -1.549445 0.1453 

7 9.955E-

5 

255.695 .99 .02 .00 .00 .99 .00 .00 

a. Dependent Variable: cpue 
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TEMPERATURE 0.000368 0.003783 0.097162 0.9241 

STREAMWATERLEVEL 0.014348 0.009983 1.437291 0.1743 

C 0.028749 0.097132 0.295978 0.7719 
     
     R-squared 0.382539     Mean dependent var 0.036103 

Adjusted R-squared 0.145054     S.D. dependent var 0.006391 

S.E. of regression 0.005910     Akaike info criterion -7.172404 

Sum squared resid 0.000454     Schwarz criterion -6.874160 

Log likelihood 74.13784     Hannan-Quinn criter. -7.121929 

F-statistic 1.610791     Durbin-Watson stat 1.761983 

Prob(F-statistic) 0.225677    
     
      

Diagnostic Checking: 

Normality test: 

0

2

4

6

8

10

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean       2.87e-18

Median   0.000432

Maximum  0.008935

Minimum -0.005316

Std. Dev.   0.003246

Skewness   0.686420

Kurtosis   4.398612

Jarque-Bera  3.040639

Probability  0.218642 

 

 

Breusch-Godfrey Serial Correlation LM Test: 
 
Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.133767     Prob. F(2,11) 0.8762 

Obs*R-squared 0.451131     Prob. Chi-Square(2) 0.7981 
     
      
Lag (4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.558431     Prob. F(4,9) 0.6987 

Obs*R-squared 3.777977     Prob. Chi-Square(4) 0.4369 
     
      
Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.286961     Prob. F(8,5) 0.9426 

Obs*R-squared 5.978611     Prob. Chi-Square(8) 0.6496 
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Heteroscedasticity Test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 0.054886     Prob. F(5,13) 0.9976 

Obs*R-squared 0.392795     Prob. Chi-Square(5) 0.9955 

Scaled explained SS 0.312477     Prob. Chi-Square(5) 0.9974 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/22/21   Time: 22:58 

Sample: 1995 2013  

Included observations: 19 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000142 0.000375 0.379695 0.7103 

LICENCES -5.86E-07 2.03E-06 -0.288313 0.7777 

PRICE 4.13E-11 1.45E-10 0.285171 0.7800 

RAINFALL 2.54E-09 1.27E-08 0.200468 0.8442 

TEMPERATURE -5.25E-06 1.45E-05 -0.363377 0.7222 

STREAMWATERLEVEL -6.10E-06 3.54E-05 -0.172346 0.8658 
     
     R-squared 0.020673     Mean dependent var 9.98E-06 

Adjusted R-squared -0.355991     S.D. dependent var 1.89E-05 

S.E. of regression 2.20E-05     Akaike info criterion -18.35756 

Sum squared resid 6.30E-09     Schwarz criterion -18.05932 

Log likelihood 180.3968     Hannan-Quinn criter. -18.30709 

F-statistic 0.054886     Durbin-Watson stat 2.188735 

Prob(F-statistic) 0.997613    
     
      

Sample 1994-2016:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .529 1.889 

price .724 1.381 

rainfall .386 2.591 

temperature .872 1.146 

streamflow .063 15.772 

streamwaterlevel .064 15.648 

a. Dependent Variable: cpue 

 

Collinearity Diagnosticsa 

Variance Proportions 
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Mode

l 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

(Consta

nt) licence price rainfall 

temperatu

re 

streamflo

w 

streamwate

rlevel 

1 1 6.501 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .371 4.186 .00 .01 .04 .00 .00 .03 .00 

3 .066 9.961 .00 .02 .44 .03 .00 .05 .00 

4 .038 13.163 .00 .48 .50 .06 .00 .01 .00 

5 .021 17.567 .00 .06 .01 .91 .00 .01 .04 

6 .004 41.253 .00 .41 .00 .00 .00 .89 .95 

7 8.885E-5 270.490 .99 .02 .00 .00 .99 .00 .00 

a. Dependent Variable: cpue 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .778a .605 .463 .004429200 .605 4.281 5 14 .014 

a. Predictors: (Constant), streamflow, licence, temperature, price, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .821a .674 .557 .00402373

2 

.674 5.780 5 14 .004 

a. Predictors: (Constant), streamwaterlevel, licence, temperature, price, rainfall 

 

MLR: 
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regress cpue licences price rainfall temperature streamwaterlevel  

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/22/21   Time: 22:38 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000814 0.000365 -2.228720 0.0427 

PRICE 1.24E-07 2.46E-08 5.040874 0.0002 

RAINFALL -4.17E-06 2.30E-06 -1.810349 0.0918 

TEMPERATURE 0.000227 0.002643 0.085956 0.9327 

STREAMWATERLEVEL 0.017270 0.006397 2.699745 0.0173 

C 0.020117 0.068441 0.293931 0.7731 
     
     R-squared 0.673672     Mean dependent var 0.035272 

Adjusted R-squared 0.557126     S.D. dependent var 0.006046 

S.E. of regression 0.004024     Akaike info criterion -7.949889 

Sum squared resid 0.000227     Schwarz criterion -7.651169 

Log likelihood 85.49889     Hannan-Quinn criter. -7.891576 

F-statistic 5.780316     Durbin-Watson stat 1.948757 

Prob(F-statistic) 0.004241    
     
      

Created a dummy variable and interact with licences, price and streamwaterlevel from 2015: 

 
 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 00:46 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000763 0.000456 -1.673530 0.1224 

PRICE 1.09E-07 2.71E-08 4.018093 0.0020 

RAINFALL -4.24E-06 2.45E-06 -1.728628 0.1118 

TEMPERATURE 4.83E-05 0.002716 0.017796 0.9861 

STREAMFLOW -4.22E-09 7.30E-09 -0.578299 0.5747 

STREAMWATERLEVEL 0.024408 0.016536 1.476102 0.1680 

DUMMYLICENCES -0.002957 0.002384 -1.240452 0.2406 

DUMMYPRICE 2.98E-07 2.62E-07 1.139306 0.2788 

C 0.024452 0.069884 0.349899 0.7330 
     
     R-squared 0.735318     Mean dependent var 0.035272 

Adjusted R-squared 0.542822     S.D. dependent var 0.006046 

S.E. of regression 0.004088     Akaike info criterion -7.859264 

Sum squared resid 0.000184     Schwarz criterion -7.411185 

Log likelihood 87.59264     Hannan-Quinn criter. -7.771795 

F-statistic 3.819916     Durbin-Watson stat 2.199096 

Prob(F-statistic) 0.021704    
     
      

 

Here ‘dummy’ variable itself and its interaction dummy term ‘dummystreamwaterlevel’ were 

omitted as the variables are exactly collinear.  In the regression, dummylicences and 
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dummyprice are not significant, hence the interacted dummy terms will be removed from the 

regression and rerun the model. 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/22/21   Time: 22:38 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000814 0.000365 -2.228720 0.0427 

PRICE 1.24E-07 2.46E-08 5.040874 0.0002 

RAINFALL -4.17E-06 2.30E-06 -1.810349 0.0918 

TEMPERATURE 0.000227 0.002643 0.085956 0.9327 

STREAMWATERLEVEL 0.017270 0.006397 2.699745 0.0173 

C 0.020117 0.068441 0.293931 0.7731 
     
     R-squared 0.673672     Mean dependent var 0.035272 

Adjusted R-squared 0.557126     S.D. dependent var 0.006046 

S.E. of regression 0.004024     Akaike info criterion -7.949889 

Sum squared resid 0.000227     Schwarz criterion -7.651169 

Log likelihood 85.49889     Hannan-Quinn criter. -7.891576 

F-statistic 5.780316     Durbin-Watson stat 1.948757 

Prob(F-statistic) 0.004241    
     
     
 

Diagnostic Checking: 

Normality Test: 

0

1

2

3

4

5

6

7

8

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean      -3.12e-18

Median   0.000134

Maximum  0.009134

Minimum -0.005522

Std. Dev.   0.003454

Skewness   0.523099

Kurtosis   3.785294

Jarque-Bera  1.426015

Probability  0.490168 

 

 
 

Breusch-Godfrey Serial Correlation LM Test: 
 
Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.224324     Prob. F(2,12) 0.8023 
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Obs*R-squared 0.720798     Prob. Chi-Square(2) 0.6974 
     
     
     
Lag (4) 
 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.107686     Prob. F(4,10) 0.9771 

Obs*R-squared 0.825912     Prob. Chi-Square(4) 0.9349 
     
      

Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.308938     Prob. F(8,6) 0.9359 

Obs*R-squared 5.834870     Prob. Chi-Square(8) 0.6657 
     
     
 

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 0.028957     Prob. F(5,14) 0.9995 

Obs*R-squared 0.204718     Prob. Chi-Square(5) 0.9991 

Scaled explained SS 0.139699     Prob. Chi-Square(5) 0.9996 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/22/21   Time: 22:40 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000124 0.000383 0.323519 0.7511 

LICENCES -2.73E-07 2.04E-06 -0.133847 0.8954 

PRICE -8.21E-12 1.37E-10 -0.059764 0.9532 

RAINFALL -2.54E-10 1.29E-08 -0.019693 0.9846 

TEMPERATURE -4.08E-06 1.48E-05 -0.276051 0.7865 

STREAMWATERLEVEL -7.09E-06 3.58E-05 -0.198175 0.8458 
     
     R-squared 0.010236     Mean dependent var 1.13E-05 

Adjusted R-squared -0.343251     S.D. dependent var 1.94E-05 

S.E. of regression 2.25E-05     Akaike info criterion -18.32359 

Sum squared resid 7.08E-09     Schwarz criterion -18.02487 

Log likelihood 189.2359     Hannan-Quinn criter. -18.26528 

F-statistic 0.028957     Durbin-Watson stat 2.379836 

Prob(F-statistic) 0.999494    
     
      

 

2. Mackay: 

Data cleaning and processing: Box plot shows no outlier is detected. 
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Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test: CPUE and licences do not have unit root. All other variable has unit root, 1st 

difference of all the series has made them stationary.  

 

 

Lag selection: Lag 4 selected for the granger causality test for granger causality test. 

 

Granger Causality test:  

 

Pairwise Granger Causality Tests 

Date: 03/11/21   Time: 16:17 

Sample: 1991 2010 

Lags: 4  
    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     DLICENCES does not Granger Cause DCPUE  16  0.46952 0.7575 

 DCPUE does not Granger Cause DLICENCES  0.66924 0.6336 
    
     DPRICE does not Granger Cause DCPUE  16  0.71826 0.6057 

 DCPUE does not Granger Cause DPRICE  0.18576 0.9385 
    
     DRAINFALL does not Granger Cause DCPUE  16  0.48611 0.7467 

 DCPUE does not Granger Cause DRAINFALL  0.89309 0.5155 
    
     DTEMPERATURE does not Granger Cause DCPUE  16  0.41318 0.7946 

 DCPUE does not Granger Cause DTEMPERATURE  0.61924 0.6632 
    
     DSTREAMFLOW does not Granger Cause DCPUE  16  0.41468 0.7936 

 DCPUE does not Granger Cause DSTREAMFLOW  1.93181 0.2100 
    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  0.69364 0.6196 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.07055 0.4381 
    
     

No reverse causality was found. 

Test for multicollinearity: SPSS 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .496 2.017 

dprice .468 2.138 

drainfall .198 5.055 

dtemperature .630 1.588 

dstreamflow .063 15.968 

dstreamwaterlevel .051 19.540 
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a. Dependent Variable: dcpue 

 

 

 

 

Here, multicollinearity is present in streamflow and streamwaterlevel. Tolerance is less 

than 0.1 and VIF is more than 10. 

 

So, run the analysis two-times: first time, with all the variables excluding stream water 

level and for the second time, with all the variable excluding streamflow. Then compared 

results of the two models, specifically R squares and P values. Model including all other 

variables excluding streamflow showed improved result than the other. So, I deleted 

streamflow from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

 

 

 

 

 

 

 

 

 

 

Result of including stream water level and excluding streamflow in the model: 

 

 

Model Summary 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenva

lue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicen

ce dprice 

drainf

all 

dtemperat

ure 

dstreamfl

ow 

dstreamw

aterlevel 

1 1 2.973 1.000 .00 .00 .00 .02 .02 .01 .01 

2 1.805 1.283 .01 .09 .11 .00 .06 .00 .00 

3 1.053 1.680 .71 .01 .02 .00 .03 .00 .00 

4 .643 2.151 .06 .36 .04 .00 .34 .01 .00 

5 .373 2.823 .13 .08 .49 .09 .51 .00 .00 

6 .123 4.919 .04 .41 .34 .80 .04 .10 .04 

7 .030 9.977 .05 .04 .00 .08 .01 .88 .95 

a. Dependent Variable: dcpue 

Model Summary 

Mod

el R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .567a .321 .079 .0108407

23 

.321 1.326 5 14 .309 

a. Predictors: (Constant), dstreamflow, dprice, dlicence, dtemperature, drainfall 
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M

od

el R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .534a .286 .030 .0111231

40 

.286 1.119 5 14 .394 

a. Predictors: (Constant), dstreamwaterlevel, dlicence, dtemperature, dprice, drainfall 

 

Model with streamflow gives better R2 than streamwaterlevel. So, I have deleted 

streamwaterlevel from the analysis. 

 

Multiple Regression Test: SPSS 

 

Forward stepwise: 

 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardi

zed 

Coefficien

ts 

t Sig. 

95.0% Confidence 

Interval for B 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Consta

nt) 

.001 .002 
 

.392 .700 -.004 .006 

dprice 5.599E-8 .000 .458 2.185 .042 .000 .000 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.157b -.613 .548 -.147 .693 

drainfall -.140b -.656 .520 -.157 .999 

dtemperature -.037b -.155 .879 -.037 .800 

dstreamwaterlev

el 

-.208b -.988 .337 -.233 .991 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

 

Regression in Eviws: dcpue c dprice 
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Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/11/21   Time: 18:11 

Sample: 1991 2010  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DPRICE 5.60E-08 2.56E-08 2.184867 0.0424 

C 0.000905 0.002310 0.391766 0.6998 
     
     R-squared 0.209613     Mean dependent var 0.001139 

Adjusted R-squared 0.165702     S.D. dependent var 0.011297 

S.E. of regression 0.010318     Akaike info criterion -6.215167 

Sum squared resid 0.001916     Schwarz criterion -6.115594 

Log likelihood 64.15167     Hannan-Quinn criter. -6.195730 

F-statistic 4.773644     Durbin-Watson stat 2.730524 

Prob(F-statistic) 0.042366    
     
      

 

Unit root test for the residuals of regression model (including dcpue c dprice): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -6.866076  0.0000 

Test critical values: 1% level  -3.857386  

 5% level  -3.040391  

 10% level  -2.660551  
     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 18 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/15/21   Time: 20:53 

Sample (adjusted): 1993 2010 

Included observations: 18 after adjustments 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -2.335413 0.340138 -6.866076 0.0000 

D(R(-1)) 0.614240 0.208154 2.950888 0.0099 

C -0.000593 0.001806 -0.328523 0.7471 
     
     R-squared 0.831258     Mean dependent var -0.001082 

Adjusted R-squared 0.808759     S.D. dependent var 0.017509 

S.E. of regression 0.007657     Akaike info criterion -6.755405 

Sum squared resid 0.000879     Schwarz criterion -6.607010 

Log likelihood 63.79865     Hannan-Quinn criter. -6.734944 

F-statistic 36.94655     Durbin-Watson stat 2.156211 

Prob(F-statistic) 0.000002    
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The residual has no unit root. 

Serial correlation test:  

 

Correlogram plot: 

 
 

Selection of MA and AR term: 

There is a spike in lag 2 of PACF plot. So I have to take AR(2)   

Dcpue c dprice AR(2) 

 

Dependent Variable: DCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/11/21   Time: 18:15 

Sample: 1991 2010  

Included observations: 20 

Convergence achieved after 20 iterations 

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000712 0.001975 0.360481 0.7232 

DPRICE 5.81E-08 2.56E-08 2.272685 0.0372 

AR(2) -0.308852 0.297883 -1.036825 0.3152 

SIGMASQ 8.69E-05 3.74E-05 2.325114 0.0335 
     
     R-squared 0.283271     Mean dependent var 0.001139 

Adjusted R-squared 0.148884     S.D. dependent var 0.011297 

S.E. of regression 0.010422     Akaike info criterion -6.102967 

Sum squared resid 0.001738     Schwarz criterion -5.903821 

Log likelihood 65.02967     Hannan-Quinn criter. -6.064092 

F-statistic 2.107878     Durbin-Watson stat 2.852502 

Prob(F-statistic) 0.139440    
     
     Inverted AR Roots -.00+.56i     -.00-.56i 
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Here, constant and AR(2) is not significant but we will include these parameters while 

forecasting as deleting this parameter will harm the analysis. 

 

Significance Test of the ARIMAX model: 

Here all of the variables are significant.  

Serial correlation test: 

 

The residuals are not flat and no serial correlation i.e. in white noise. 

Diagnostic Checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

-0.01 0.00 0.01 0.02

Series: Residuals

Sample 1991 2010

Observations 20

Mean       0.000187

Median  -0.001377

Maximum  0.020135

Minimum -0.014422

Std. Dev.   0.009562

Skewness   0.329724

Kurtosis   2.207126

Jarque-Bera  0.886268

Probability  0.642021 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution 
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Breusch-Godfrey Serial Correlation LM Test: 
 
Lag (2) 
 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 3.309486     Prob. F(2,16) 0.0955 

Obs*R-squared 4.818606     Prob. Chi-Square(2) 0.0622 
     
      

Lag (4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.799590     Prob. F(4,14) 0.0672 

Obs*R-squared 8.888166     Prob. Chi-Square(4) 0.0640 
     
      
Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.430381     Prob. F(8,10) 0.2925 

Obs*R-squared 10.67297     Prob. Chi-Square(8) 0.2209 
     
     
     
 

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 4.882169     Prob. F(1,18) 0.0603 

Obs*R-squared 4.267226     Prob. Chi-Square(1) 0.0689 

Scaled explained SS 1.685340     Prob. Chi-Square(1) 0.1942 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/11/21   Time: 18:23 

Sample: 1991 2010  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 8.90E-05 2.02E-05 4.403612 0.0003 

DPRICE -4.95E-10 2.24E-10 -2.209563 0.0403 
     
     R-squared 0.213361     Mean dependent var 8.69E-05 

Adjusted R-squared 0.169659     S.D. dependent var 9.90E-05 

S.E. of regression 9.02E-05     Akaike info criterion -15.69341 

Sum squared resid 1.47E-07     Schwarz criterion -15.59384 

Log likelihood 158.9341     Hannan-Quinn criter. -15.67397 

F-statistic 4.882169     Durbin-Watson stat 2.496829 

Prob(F-statistic) 0.040332    
     
     
 

Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (2,1,0) Forecasting:  
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Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dstreamflow from 2010-2013>Quick >estimate equation> dcpue c dprice ar(2) > Forecast> 

Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  The series has unit root, hence 1st difference of the series has taken and the 

final series has no unit root 

Lag selection: Lag 4 was selected. 

Granger Causality test 

 

Pairwise Granger Causality Tests 

Date: 03/12/21   Time: 21:54 

Sample: 1993 2013 

Lags: 4  
    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     DLICENCES does not Granger Cause DCPUE  17  0.42408 0.7876 

 DCPUE does not Granger Cause DLICENCES  1.95944 0.1940 
    
     DPRICE does not Granger Cause DCPUE  17  0.57869 0.6867 

 DCPUE does not Granger Cause DPRICE  0.16124 0.9522 
    
     DRAINFALL does not Granger Cause DCPUE  17  2.74199 0.1048 

 DCPUE does not Granger Cause DRAINFALL  1.68256 0.2460 
    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.10722 0.9766 

 DCPUE does not Granger Cause DTEMPERATURE  0.10576 0.9772 
    
     DSTREAMFLOW does not Granger Cause DCPUE  17  1.89616 0.2046 

 DCPUE does not Granger Cause DSTREAMFLOW  1.11422 0.4136 
    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  1.42392 0.3101 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.43622 0.3066 
 

 

No reverse causality detected. 

Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .590 1.696 

dprice .443 2.257 

drainfall .239 4.177 

dtemperature .601 1.665 
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dstreamflow .089 11.190 

dstreamwaterlevel .077 13.053 

a. Dependent Variable: dcpue 

 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .670a .449 .265 .01038012

9 

.449 2.443 5 15 .083 

a. Predictors: (Constant), dstreamflow, dlicence, dtemperature, dprice, drainfall 

 

Result of including stream water level and excluding streamflow in the model:  

 

Model Summary 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenv

alue 

Condition 

Index 

Variance Proportions 

(Const

ant) 

dlicen

ce dprice 

drainf

all 

dtempera

ture 

dstreamf

low 

dstreamw

aterlevel 

1 1 2.851 1.000 .00 .00 .01 .02 .00 .01 .01 

2 1.840 1.245 .00 .09 .09 .00 .10 .00 .00 

3 1.036 1.659 .80 .01 .00 .00 .05 .00 .00 

4 .713 2.000 .08 .49 .02 .00 .24 .00 .00 

5 .368 2.783 .10 .07 .53 .13 .39 .01 .00 

6 .146 4.419 .01 .20 .32 .79 .20 .11 .06 

7 .044 8.011 .00 .14 .03 .05 .00 .87 .93 

a. Dependent Variable: dcpue 
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Mod

el R 

R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .625a .391 .187 .01091434

4 

.391 1.923 5 15 .150 

a. Predictors: (Constant), dstreamwaterlevel, dlicence, dtemperature, dprice, drainfall 

 

Model with streamflow gives better R2 than streamwaterlevel. So, I have deleted 

streamwaterlevel from the analysis. 

Regression Test :  

Forward Stepwise: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .002  .122 .904 

dprice 6.811E-8 .000 .544 2.823 .011 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.200b -.898 .381 -.207 .753 

drainfall -.132b -.661 .517 -.154 .963 

dtemperature -.127b -.553 .587 -.129 .728 

dstreamflow -.278b -1.438 .168 -.321 .940 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

 
Regression Eviews: dcpue c dprice 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/12/21   Time: 22:11 

Sample: 1993 2013  

Included observations: 21 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000280 0.002287 0.122266 0.9040 
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DPRICE 6.81E-08 2.41E-08 2.822754 0.0109 
     
     R-squared 0.295460     Mean dependent var 0.000924 

Adjusted R-squared 0.258379     S.D. dependent var 0.012108 

S.E. of regression 0.010427     Akaike info criterion -6.198414 

Sum squared resid 0.002066     Schwarz criterion -6.098936 

Log likelihood 67.08335     Hannan-Quinn criter. -6.176825 

F-statistic 7.967941     Durbin-Watson stat 2.932335 

Prob(F-statistic) 0.010871    
     
      

 

Unit root test of residual: 

 
 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -6.536478  0.0000 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  
     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/12/21   Time: 22:12 

Sample (adjusted): 1995 2013 

Included observations: 19 after adjustments 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -2.354515 0.360212 -6.536478 0.0000 

D(R(-1)) 0.549979 0.206306 2.665848 0.0169 

C 0.001310 0.001825 0.717695 0.4833 
     
     R-squared 0.833523     Mean dependent var -1.03E-05 

Adjusted R-squared 0.812713     S.D. dependent var 0.018278 

S.E. of regression 0.007910     Akaike info criterion -6.697418 

Sum squared resid 0.001001     Schwarz criterion -6.548296 

Log likelihood 66.62547     Hannan-Quinn criter. -6.672180 

F-statistic 40.05464     Durbin-Watson stat 1.692710 

Prob(F-statistic) 0.000001    
     
     
The residual has no unit root. 

Serial correlation test: EViews 
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The residuals are flat and no serial correlation. 

Diagnostic Checking: 

Normality test of residuals: 

0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2013

Observations 21

Mean       0.000562

Median  -0.001598

Maximum  0.016030

Minimum -0.007697

Std. Dev.   0.006598

Skewness   0.716984

Kurtosis   2.545415

Jarque-Bera  1.980049

Probability  0.371568 

 

 

 

Breusch-Godfrey Serial Correlation LM Test: 
 
Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 6.561478     Prob. F(2,17) 0.0707 

Obs*R-squared 4.148573     Prob. Chi-Square(2) 0.0603 
     
      

Lag (4) 
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Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 4.453987     Prob. F(4,15) 0.0643 

Obs*R-squared 3.40101     Prob. Chi-Square(4) 0.0724 
     
      

Lag (8) 

 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.789306     Prob. F(8,11) 0.1829 

Obs*R-squared 11.87478     Prob. Chi-Square(8) 0.1569 
     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 2.360275     Prob. F(1,19) 0.1409 

Obs*R-squared 2.320465     Prob. Chi-Square(1) 0.1277 

Scaled explained SS 1.211505     Prob. Chi-Square(1) 0.2710 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/12/21   Time: 22:34 

Sample: 1993 2013  

Included observations: 21 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 4.36E-05 1.22E-05 3.582113 0.0020 

DPRICE -1.98E-10 1.29E-10 -1.536319 0.1409 
     
     R-squared 0.110498     Mean dependent var 4.18E-05 

Adjusted R-squared 0.063682     S.D. dependent var 5.74E-05 

S.E. of regression 5.56E-05     Akaike info criterion -16.66803 

Sum squared resid 5.86E-08     Schwarz criterion -16.56856 

Log likelihood 177.0144     Hannan-Quinn criter. -16.64644 

F-statistic 2.360275     Durbin-Watson stat 2.135903 

Prob(F-statistic) 0.140946    
     
      
 
 

Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in dprice from 2013-2016>Quick >estimate equation> dcpue  c 

dprice> Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 
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Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

Lag selection: Lag 4 was selected for granger causality test 

 

Granger causality test: 

 
 

Pairwise Granger Causality Tests 

Date: 03/13/21   Time: 11:15 

Sample: 1995 2016 

Lags: 4  
    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     DLICENCES does not Granger Cause DCPUE  18  0.67163 0.6280 

 DCPUE does not Granger Cause DLICENCES  3.14087 0.0710 
    
     DPRICE does not Granger Cause DCPUE  18  1.20935 0.3714 

 DCPUE does not Granger Cause DPRICE  2.43133 0.1235 
    
     DRAINFALL does not Granger Cause DCPUE  18  0.47905 0.7509 

 DCPUE does not Granger Cause DRAINFALL  3.66689 0.0489 
    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.17975 0.9432 

 DCPUE does not Granger Cause DTEMPERATURE  0.36632 0.8268 
    
     DSTREAMFLOW does not Granger Cause DCPUE  18  0.36694 0.8264 

 DCPUE does not Granger Cause DSTREAMFLOW  2.36478 0.1304 
    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  0.46876 0.7578 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.85016 0.2036 
    
     

No reverse causality was found. 

 

Test for multicollinearity: 

 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .590 1.694 

dprice .331 3.025 

drainfall .226 4.426 

dtemperature .483 2.069 

dstreamflow .076 13.119 

dstreamwaterlevel .065 15.281 

a. Dependent Variable: dcpue 

 

Here multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 
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Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Mod

el R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .703a .495 .337 .00976744

4 

.495 3.133 5 16 .037 

a. Predictors: (Constant), dstreamflow, dlicence, dtemperature, dprice, drainfall 

 

Result of including stream water level and excluding streamflow in the model:  

 

Model Summary 

Mod

el R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .671a .451 .279 .0101837

09 

.451 2.625 5 16 .064 

a. Predictors: (Constant), dstreamwaterlevel, dlicence, dtemperature, dprice, drainfall 

So I will take streamflow and delete streamwaterlevel from the analysis 

 
Regression Test :  

Forward Stepwise: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .649 .524 

dprice 7.773E-8 .000 .579 3.174 .005 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.234b -1.184 .251 -.262 .837 

drainfall -.091b -.448 .659 -.102 .831 

dtemperature -.098b -.433 .670 -.099 .683 
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dstreamflow -.271b -1.421 .171 -.310 .871 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

 
Regression Eviws: dcpue c dprice  

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/13/21   Time: 11:24 

Sample: 1995 2016  

Included observations: 22 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.001387 0.002137 0.648849 0.5238 

DPRICE 7.77E-08 2.45E-08 3.174201 0.0048 
     
     R-squared 0.335008     Mean dependent var 0.001490 

Adjusted R-squared 0.301758     S.D. dependent var 0.011994 

S.E. of regression 0.010022     Akaike info criterion -6.281581 

Sum squared resid 0.002009     Schwarz criterion -6.182395 

Log likelihood 71.09739     Hannan-Quinn criter. -6.258216 

F-statistic 10.07555     Durbin-Watson stat 2.611284 

Prob(F-statistic) 0.004769    
     
      

 

Create a dummy variable and interact with price from 2015: 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 16:59 

Sample: 1995 2016  

Included observations: 22 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DPRICE 8.13E-08 2.65E-08 3.063723 0.0067 

DUMMY 0.005994 0.023285 0.257411 0.7998 

DUMMYPRICE 2.24E-08 3.22E-07 0.069548 0.9453 

C 0.000976 0.002352 0.415025 0.6830 
     
     R-squared 0.346462     Mean dependent var 0.001490 

Adjusted R-squared 0.237540     S.D. dependent var 0.011994 

S.E. of regression 0.010473     Akaike info criterion -6.117138 

Sum squared resid 0.001974     Schwarz criterion -5.918767 

Log likelihood 71.28852     Hannan-Quinn criter. -6.070408 

F-statistic 3.180804     Durbin-Watson stat 2.641838 

Prob(F-statistic) 0.049066    
     
      

 

In the regression, variable dummy and dummyprice are not significant, hence the dummy 

variable and interacted dummy terms will be removed from the regression and rerun the model. 

 

Dependent Variable: DCPUE 

Method: Least Squares 
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Date: 03/28/21   Time: 17:01 

Sample: 1995 2016  

Included observations: 22 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DPRICE 7.77E-08 2.45E-08 3.174201 0.0048 

C 0.001387 0.002137 0.648849 0.5238 
     
     R-squared 0.335008     Mean dependent var 0.001490 

Adjusted R-squared 0.301758     S.D. dependent var 0.011994 

S.E. of regression 0.010022     Akaike info criterion -6.281581 

Sum squared resid 0.002009     Schwarz criterion -6.182395 

Log likelihood 71.09739     Hannan-Quinn criter. -6.258216 

F-statistic 10.07555     Durbin-Watson stat 2.611284 

Prob(F-statistic) 0.004769    
     
     
 

 

Unit root test of residual 

Residual does not have unit root. 
 
 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -8.959945  0.0000 

Test critical values: 1% level  -3.788030  

 5% level  -3.012363  

 10% level  -2.646119  
     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/15/21   Time: 21:55 

Sample (adjusted): 1996 2016 

Included observations: 21 after adjustments 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.454208 0.162301 -8.959945 0.0000 

C -0.001206 0.001583 -0.761564 0.4557 
     
     R-squared 0.808623     Mean dependent var -0.000984 

Adjusted R-squared 0.798551     S.D. dependent var 0.016163 

S.E. of regression 0.007255     Akaike info criterion -6.923953 

Sum squared resid 0.001000     Schwarz criterion -6.824475 

Log likelihood 74.70151     Hannan-Quinn criter. -6.902364 

F-statistic 80.28062     Durbin-Watson stat 2.662321 

Prob(F-statistic) 0.000000    
     
     
 

Serial correlation test: EViews 
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Selection of MA and AR term: 

The residuals are flat and no serial correlation i.e. in white noise. 

 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

-0.01 0.00 0.01 0.02

Series: Residuals

Sample 1995 2016

Observations 22

Mean      -7.89e-20

Median  -0.002046

Maximum  0.023864

Minimum -0.014314

Std. Dev.   0.009780

Skewness   0.582658

Kurtosis   2.670033

Jarque-Bera  1.344603

Probability  0.510532 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 4.173681     Prob. F(2,18) 0.0624 

Obs*R-squared 6.970032     Prob. Chi-Square(2) 0.0607 
     
      

Lag(4) 
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Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.190143     Prob. F(4,16) 0.1164 

Obs*R-squared 7.783851     Prob. Chi-Square(4) 0.0998 
     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.083223     Prob. F(8,12) 0.4346 

Obs*R-squared 9.225262     Prob. Chi-Square(8) 0.3237 
     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 1.065098     Prob. F(1,20) 0.3144 

Obs*R-squared 1.112369     Prob. Chi-Square(1) 0.2916 

Scaled explained SS 0.767642     Prob. Chi-Square(1) 0.3809 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/13/21   Time: 11:30 

Sample: 1995 2016  

Included observations: 22 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 9.17E-05 2.57E-05 3.566827 0.0019 

DPRICE -3.04E-10 2.95E-10 -1.032036 0.3144 
     
     R-squared 0.050562     Mean dependent var 9.13E-05 

Adjusted R-squared 0.003090     S.D. dependent var 0.000121 

S.E. of regression 0.000121     Akaike info criterion -15.12190 

Sum squared resid 2.91E-07     Schwarz criterion -15.02271 

Log likelihood 168.3409     Hannan-Quinn criter. -15.09853 

F-statistic 1.065098     Durbin-Watson stat 1.240630 

Prob(F-statistic) 0.314375    
     
      
 

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1996-2019) by double clicking the 

range> provide original values in dprice from 2017-2019>Quick >estimate equation> dcpue  c 

dprice > Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

MLR model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  
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Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .322 3.110 

price .423 2.366 

rainfall .135 7.402 

temperature .284 3.520 

streamflow .067 14.890 

streamwaterlevel .058 17.324 

a. Dependent Variable: cpue 

 

 

Collinearity Diagnosticsa 

Mo

del 

Dimen

sion 

Eigen

value 

Conditio

n Index 

Variance Proportions 

(Cons

tant) 

licen

ce price 

rainf

all 

temper

ature 

strea

mflow 

streamw

aterlevel 

1 1 6.375 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .517 3.511 .00 .00 .00 .00 .00 .06 .00 

3 .069 9.634 .00 .00 .47 .00 .00 .00 .01 

4 .021 17.605 .00 .02 .03 .44 .00 .18 .00 

5 .013 21.742 .00 .35 .00 .22 .00 .05 .00 

6 .005 37.158 .00 .07 .28 .18 .00 .39 .67 

7 8.046

E-5 

281.498 1.00 .56 .22 .16 1.00 .33 .32 

a. Dependent Variable: cpue 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamwaterlevel showed improved result than the other. So, I deleted streamwater 

from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

R Change Statistics 
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Mod

el 

R 

Squar

e 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .669a .448 .217 .0067677

92 

.448 1.945 5 12 .160 

a. Predictors: (Constant), streamflow, licence, price, temperature, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

 

Model Summary 

Mod

el R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Chang

e df1 df2 

Sig. F 

Change 

1 .626a .391 .138 .0071044

00 

.391 1.543 5 12 .249 

a. Predictors: (Constant), streamwaterlevel, price, licence, temperature, rainfall 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 11:03 

Sample: 1993 2010  

Included observations: 18 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000326 0.000681 -0.478984 0.6406 

PRICE 7.65E-08 2.80E-08 2.726408 0.0184 

RAINFALL -9.65E-07 7.06E-06 -0.136714 0.8935 

TEMPERATURE -0.001498 0.004185 -0.357939 0.7266 

STREAMFLOW -2.32E-08 1.93E-08 -1.205619 0.2512 

C 0.076576 0.108511 0.705700 0.4938 
     
     R-squared 0.447619     Mean dependent var 0.045230 

Adjusted R-squared 0.217460     S.D. dependent var 0.007651 

S.E. of regression 0.006768     Akaike info criterion -6.892082 

Sum squared resid 0.000550     Schwarz criterion -6.595292 

Log likelihood 68.02874     Hannan-Quinn criter. -6.851159 

F-statistic 1.944823     Durbin-Watson stat 2.438029 

Prob(F-statistic) 0.160127    
     
     
Diagnostic checking:  

 

Normality test:  
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0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2010

Observations 18

Mean       8.67e-19

Median  -0.000795

Maximum  0.013398

Minimum -0.009640

Std. Dev.   0.005686

Skewness   0.523133

Kurtosis   2.964257

Jarque-Bera  0.821963

Probability  0.662999 

 
 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 3.384857     Prob. F(2,10) 0.0754 

Obs*R-squared 7.266364     Prob. Chi-Square(2) 0.0764 
     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 2.122978     Prob. F(4,8) 0.1694 

Obs*R-squared 9.268447     Prob. Chi-Square(4) 0.0647 
     
     
     
 
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 5.648517     Prob. F(8,4) 0.0660 

Obs*R-squared 6.53623     Prob. Chi-Square(8) 0.0653 
     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 0.996035     Prob. F(5,12) 0.4602 

Obs*R-squared 5.279282     Prob. Chi-Square(5) 0.3828 

Scaled explained SS 2.304415     Prob. Chi-Square(5) 0.8056 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 11:05 

Sample: 1993 2010  
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Included observations: 18 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.000192 0.000706 -0.271799 0.7904 

LICENCES 6.54E-06 4.43E-06 1.476218 0.1656 

PRICE 2.82E-11 1.83E-10 0.154313 0.8799 

RAINFALL -8.75E-08 4.60E-08 -1.903151 0.0813 

TEMPERATURE 7.24E-06 2.72E-05 0.265825 0.7949 

STREAMFLOW 2.08E-10 1.25E-10 1.658947 0.1230 
     
     R-squared 0.293293     Mean dependent var 3.05E-05 

Adjusted R-squared -0.001168     S.D. dependent var 4.40E-05 

S.E. of regression 4.41E-05     Akaike info criterion -16.96073 

Sum squared resid 2.33E-08     Schwarz criterion -16.66394 

Log likelihood 158.6466     Hannan-Quinn criter. -16.91981 

F-statistic 0.996035     Durbin-Watson stat 2.365197 

Prob(F-statistic) 0.460225    
     
      

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .391 2.555 

price .605 1.653 

rainfall .133 7.522 

temperature .565 1.771 

streamflow .060 16.761 

streamwaterlevel .043 23.340 

a. Dependent Variable: cpue 

 

 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

licenc

e price rainfall 

temperat

ure 

streamfl

ow 

streamwat

erlevel 

1 1 6.416 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .471 3.690 .00 .00 .00 .00 .00 .05 .00 

3 .080 8.956 .00 .00 .77 .00 .00 .00 .00 

4 .017 19.563 .00 .06 .00 .48 .00 .19 .00 

5 .013 22.454 .00 .47 .00 .31 .00 .04 .00 

6 .003 44.310 .00 .09 .04 .15 .00 .71 .94 

7 .000 237.013 .99 .38 .17 .05 .99 .00 .06 

a. Dependent Variable: cpue 
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Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamwaerlevel showed improved result than the other. So, I deleted 

streamwaterlevel from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .872a .760 .667 .005460661 

a. Predictors: (Constant), streamflow, temperature, price, licence, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .864a .746 .649 .005613274 

a. Predictors: (Constant), streamwaterlevel, temperature, price, licence, 

rainfall 

 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 11:44 

Sample: 1995 2013  

Included observations: 19 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000832 0.000533 -1.559291 0.1429 

PRICE 1.12E-07 1.90E-08 5.856767 0.0001 

RAINFALL -5.30E-06 6.02E-06 -0.880325 0.3947 

TEMPERATURE -0.004982 0.003262 -1.527277 0.1507 

STREAMFLOW 1.94E-08 1.88E-08 1.033984 0.3200 

C 0.165160 0.083186 1.985441 0.0686 
     
     R-squared 0.759781     Mean dependent var 0.048444 
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Adjusted R-squared 0.667389     S.D. dependent var 0.009468 

S.E. of regression 0.005461     Akaike info criterion -7.330404 

Sum squared resid 0.000388     Schwarz criterion -7.032161 

Log likelihood 75.63884     Hannan-Quinn criter. -7.279930 

F-statistic 8.223464     Durbin-Watson stat 2.283158 

Prob(F-statistic) 0.001076    
     
      

 

Diagnostic Checking: 

Normality test: 

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean       7.60e-18

Median   0.000926

Maximum  0.008155

Minimum -0.008568

Std. Dev.   0.004641

Skewness  -0.071055

Kurtosis   2.246191

Jarque-Bera  0.465835

Probability  0.792219 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.558343     Prob. F(2,11) 0.5876 

Obs*R-squared 1.751058     Prob. Chi-Square(2) 0.4166 
     
      

Lag (4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.476710     Prob. F(4,9) 0.2873 

Obs*R-squared 7.528756     Prob. Chi-Square(4) 0.1104 
     
      

Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.617241     Prob. F(8,5) 0.7411 

Obs*R-squared 9.440665     Prob. Chi-Square(8) 0.3065 
     
      

Heteroscedasticity Test:  
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Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 1.308079     Prob. F(5,13) 0.3197 

Obs*R-squared 6.359519     Prob. Chi-Square(5) 0.2728 

Scaled explained SS 1.855062     Prob. Chi-Square(5) 0.8688 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 11:48 

Sample: 1995 2013  

Included observations: 19 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000376 0.000342 1.098498 0.2919 

LICENCES 7.96E-07 2.19E-06 0.362834 0.7226 

PRICE -4.30E-11 7.83E-11 -0.549252 0.5921 

RAINFALL -4.33E-08 2.48E-08 -1.748848 0.1039 

TEMPERATURE -1.33E-05 1.34E-05 -0.989057 0.3407 

STREAMFLOW 9.76E-11 7.73E-11 1.262244 0.2290 
     
     R-squared 0.334712     Mean dependent var 2.04E-05 

Adjusted R-squared 0.078831     S.D. dependent var 2.34E-05 

S.E. of regression 2.25E-05     Akaike info criterion -18.31771 

Sum squared resid 6.56E-09     Schwarz criterion -18.01946 

Log likelihood 180.0182     Hannan-Quinn criter. -18.26723 

F-statistic 1.308079     Durbin-Watson stat 2.429493 

Prob(F-statistic) 0.319687    
     
      
 
 

Sample 1994-2016:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .425 2.353 

price .645 1.551 

rainfall .142 7.022 

temperature .671 1.490 

streamflow .056 17.940 

streamwaterlevel .044 22.688 

a. Dependent Variable: cpue 

 

Collinearity Diagnosticsa 

Mode

l 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) licence price rainfall 

temperat

ure 

streamflo

w 

streamwate

rlevel 
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1 1 6.523 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .371 4.191 .00 .00 .00 .00 .00 .05 .00 

3 .076 9.260 .00 .00 .94 .00 .00 .00 .00 

4 .015 21.120 .00 .16 .00 .37 .00 .15 .00 

5 .012 23.312 .00 .45 .00 .48 .00 .08 .00 

6 .003 46.879 .00 .08 .02 .14 .00 .71 1.00 

7 .000 244.362 1.00 .31 .04 .00 .99 .01 .00 

a. Dependent Variable: cpue 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding stream water level showed improved result than the other. So, I deleted stream water 

level from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .911a .830 .769 .005859217 

a. Predictors: (Constant), streamflow, temperature, price, licence, rainfall 

 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .908a .825 .762 .005947268 

a. Predictors: (Constant), streamwaterlevel, temperature, price, licence, 

rainfall 

 

Create a dummy variable and interact with price from 2015: 
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Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 17:09 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000665 0.000491 -1.353933 0.2007 

PRICE 1.07E-07 1.51E-08 7.035766 0.0000 

RAINFALL -3.33E-06 5.70E-06 -0.584179 0.5699 

TEMPERATURE -0.002264 0.003115 -0.726698 0.4813 

STREAMFLOW 1.46E-08 1.71E-08 0.851450 0.4112 

DUMMY 0.037200 0.030070 1.237101 0.2397 

DUMMYPRICE -7.75E-08 8.44E-08 -0.917280 0.3771 

C 0.094944 0.079623 1.192428 0.2561 
     
     R-squared 0.891016     Mean dependent var 0.051710 

Adjusted R-squared 0.827443     S.D. dependent var 0.012196 

S.E. of regression 0.005066     Akaike info criterion -7.443222 

Sum squared resid 0.000308     Schwarz criterion -7.044929 

Log likelihood 82.43222     Hannan-Quinn criter. -7.365471 

F-statistic 14.01548     Durbin-Watson stat 2.543590 

Prob(F-statistic) 0.000065    
     
      

In the regression, variable dummy and dummyprice are not significant, hence the dummy 

variable and interacted dummy terms will be removed from the regression and rerun the model. 
 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 17:10 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000684 0.000562 -1.216448 0.2439 

PRICE 1.14E-07 1.67E-08 6.821269 0.0000 

RAINFALL -2.20E-06 6.29E-06 -0.349627 0.7318 

TEMPERATURE -0.002068 0.003584 -0.577118 0.5730 

STREAMFLOW 1.30E-08 1.91E-08 0.677027 0.5094 

C 0.088337 0.091683 0.963505 0.3516 
     
     R-squared 0.829941     Mean dependent var 0.051710 

Adjusted R-squared 0.769206     S.D. dependent var 0.012196 

S.E. of regression 0.005859     Akaike info criterion -7.198276 

Sum squared resid 0.000481     Schwarz criterion -6.899557 

Log likelihood 77.98276     Hannan-Quinn criter. -7.139963 

F-statistic 13.66492     Durbin-Watson stat 1.888361 

Prob(F-statistic) 0.000058    
     
     
 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 11:55 



  

289 

 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LICENCES -0.000684 0.000562 -1.216448 0.2439 

PRICE 1.14E-07 1.67E-08 6.821269 0.0000 

RAINFALL -2.20E-06 6.29E-06 -0.349627 0.7318 

TEMPERATURE -0.002068 0.003584 -0.577118 0.5730 

STREAMFLOW 1.30E-08 1.91E-08 0.677027 0.5094 

C 0.088337 0.091683 0.963505 0.3516 
     
     R-squared 0.829941     Mean dependent var 0.051710 

Adjusted R-squared 0.769206     S.D. dependent var 0.012196 

S.E. of regression 0.005859     Akaike info criterion -7.198276 

Sum squared resid 0.000481     Schwarz criterion -6.899557 

Log likelihood 77.98276     Hannan-Quinn criter. -7.139963 

F-statistic 13.66492     Durbin-Watson stat 1.888361 

Prob(F-statistic) 0.000058    
     
      
 
 

Diagnostic Checking: 

Normality Test: 

0

1

2

3

4

5

6

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean      -2.43e-18

Median  -0.001095

Maximum  0.011369

Minimum -0.006043

Std. Dev.   0.005030

Skewness   0.676021

Kurtosis   2.581224

Jarque-Bera  1.669492

Probability  0.433985 

 

Breusch-Godfrey Serial Correlation LM Test: 
 
 
Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.172721     Prob. F(2,12) 0.8434 

Obs*R-squared 0.559627     Prob. Chi-Square(2) 0.7559 
     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 0.377424     Prob. F(4,10) 0.8198 

Obs*R-squared 2.623344     Prob. Chi-Square(4) 0.6227 
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Laag(8) 

Breusch-Godfrey Serial Correlation LM Test: 
     
     F-statistic 1.617085     Prob. F(8,6) 0.2875 

Obs*R-squared 13.66309     Prob. Chi-Square(8) 0.0910 
     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
     
     F-statistic 0.048063     Prob. F(5,14) 0.9983 

Obs*R-squared 0.337516     Prob. Chi-Square(5) 0.9969 

Scaled explained SS 0.130754     Prob. Chi-Square(5) 0.9997 
     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 11:56 

Sample: 1997 2016  

Included observations: 20 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000142 0.000560 0.252953 0.8040 

LICENCES -1.37E-06 3.44E-06 -0.398526 0.6963 

PRICE 2.07E-11 1.02E-10 0.202278 0.8426 

RAINFALL -5.47E-09 3.84E-08 -0.142246 0.8889 

TEMPERATURE -3.75E-06 2.19E-05 -0.171221 0.8665 

STREAMFLOW 2.66E-11 1.17E-10 0.227457 0.8234 
     
     R-squared 0.016876     Mean dependent var 2.40E-05 

Adjusted R-squared -0.334240     S.D. dependent var 3.10E-05 

S.E. of regression 3.58E-05     Akaike info criterion -17.39325 

Sum squared resid 1.80E-08     Schwarz criterion -17.09453 

Log likelihood 179.9325     Hannan-Quinn criter. -17.33494 

F-statistic 0.048063     Durbin-Watson stat 1.473038 

Prob(F-statistic) 0.998285    
     
      

 

3. Rockhampton 

Data cleaning and processing:  

For outlier detection: No outlier detected 

Treatment for missing values: 

Tsset time 

ipolate cpue time, gen (newcpue) epolate 
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ipolate streamflow time, gen (newstreamflow) epolate 

ipolate streamwaterlevel time, gen (newstreamwaterlevel) epolate 

Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test: The series has unit root, so I will take 1st difference of all the series. Now the 

series is stationary.  

 

Lag selection: Lag 4 was selected for the granger causality test. 

 

Granger Causality test:  

 

Pairwise Granger Causality Tests 

Date: 03/13/21   Time: 23:03 

Sample: 1991 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  0.33632 0.8455 

 DCPUE does not Granger Cause DLICENCES  0.07284 0.9882 

    
     DPRICE does not Granger Cause DCPUE  16  1.27129 0.3657 

 DCPUE does not Granger Cause DPRICE  1.26683 0.3672 

    
     DRAINFALL does not Granger Cause DCPUE  16  2.40463 0.1468 

 DCPUE does not Granger Cause DRAINFALL  0.22240 0.9175 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  0.86823 0.5275 

 DCPUE does not Granger Cause DTEMPERATURE  0.74310 0.5921 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  2.30305 0.1581 

 DCPUE does not Granger Cause DSTREAMFLOW  0.62081 0.6622 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  5.00191 0.0618 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  2.13127 0.1798 

    
     

No reverse causality was found. 

Test for multicollinearity: SPSS 

 

Coefficientsa 
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Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .637 1.569 

dprice .503 1.986 

drainfall .459 2.179 

dtemperature .739 1.354 

dstreamflow .501 1.995 

dstreamwaterlevel .613 1.632 

a. Dependent Variable: dcpue 

 

Here, there is no multicollinearity. Tolerance is more than 0.1 and VIF is less than 10. 

 

Multiple Regression Test: SPSS 

Forward Stepwise regression: 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B Std. Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) .001 .002  .328 .747 -.003 .004 

dprice 3.626E-8 .000 .607 3.241 .005 .000 .000 

2 (Constant) .000 .001  -.222 .827 -.003 .003 

dprice 3.010E-8 .000 .504 3.108 .006 .000 .000 

dstreamwaterle

vel 

.003 .001 .466 2.873 .011 .001 .006 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 
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Tolerance 

1 dlicence -.220b -1.003 .330 -.236 .728 

drainfall .082b .384 .706 .093 .812 

dtemperature .098b .477 .639 .115 .871 

dstreamflow -.082b -.390 .701 -.094 .834 

dstreamwaterlevel .466b 2.873 .011 .572 .951 

2 dlicence -.176c -.945 .359 -.230 .722 

drainfall -.298c -1.445 .168 -.340 .553 

dtemperature .111c .646 .528 .159 .870 

dstreamflow -.334c -1.898 .076 -.429 .701 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

c. Predictors in the Model: (Constant), dprice, dstreamwaterlevel 

 

Regression Test : Eviws: dcpue c dprice dstreamwaterlevel 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/13/21   Time: 23:13 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 3.01E-08 9.68E-09 3.107781 0.0064 

DSTREAMWATERLEVEL 0.003304 0.001150 2.872619 0.0106 

C -0.000315 0.001421 -0.221558 0.8273 

     
     R-squared 0.574886     Mean dependent var 0.001106 

Adjusted R-squared 0.524872     S.D. dependent var 0.008965 

S.E. of regression 0.006180     Akaike info criterion -7.197584 

Sum squared resid 0.000649     Schwarz criterion -7.048224 

Log likelihood 74.97584     Hannan-Quinn criter. -7.168427 

F-statistic 11.49462     Durbin-Watson stat 1.647383 

Prob(F-statistic) 0.000696    
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Unit root test for the residuals of regression model (including dcpue c dprice 

dstreamwaterlevel): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.037712  0.0069 

Test critical values: 1% level  -3.857386  

 5% level  -3.040391  

 10% level  -2.660551  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 18 

     

 

The residual has no unit root. 

 

Serial correlation test: EViews 

 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

Correlogram plot: 
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The residuals are flat and no serial correlation i.e. residuals are in white noise 

Diagnostic checking: 

Normality test of residuals: 

 

Quick>estimate equation> dcpue c dprice dstreamwaterlevel >ok>view tab> residual 

diagnostics> Histogram- Normality test 

0

1

2

3

4

5

6

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1991 2010

Observations 20

Mean      -3.25e-19

Median   0.000712

Maximum  0.013282

Minimum -0.014819

Std. Dev.   0.005845

Skewness  -0.294087

Kurtosis   4.060647

Jarque-Bera  1.225767

Probability  0.541786 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution. 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.522965     Prob. F(2,15) 0.6032 

Obs*R-squared 1.303670     Prob. Chi-Square(2) 0.5211 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.314870     Prob. F(4,13) 0.8630 

Obs*R-squared 1.766516     Prob. Chi-Square(4) 0.7786 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.428799     Prob. F(8,9) 0.8764 

Obs*R-squared 5.519367     Prob. Chi-Square(8) 0.7009 
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Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.309763     Prob. F(2,17) 0.7377 

Obs*R-squared 0.703227     Prob. Chi-Square(2) 0.7036 

Scaled explained SS 0.777529     Prob. Chi-Square(2) 0.6779 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/13/21   Time: 23:23 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 3.12E-05 1.39E-05 2.241051 0.0387 

DPRICE 7.16E-11 9.48E-11 0.755148 0.4605 

DSTREAMWATERLEVEL 5.55E-07 1.13E-05 0.049314 0.9612 

     
     R-squared 0.035161     Mean dependent var 3.25E-05 

Adjusted R-squared -0.078349     S.D. dependent var 5.83E-05 

S.E. of regression 6.05E-05     Akaike info criterion -16.45021 

Sum squared resid 6.22E-08     Schwarz criterion -16.30085 

Log likelihood 167.5021     Hannan-Quinn criter. -16.42106 

F-statistic 0.309763     Durbin-Watson stat 1.818508 

Prob(F-statistic) 0.737675    

     
      

Probability is greater than 5%, so the model is not heteroscedastic. 

 

ARIMAX (0,1,0) Forecasting:  

 

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in  

dprice and dstreamwaterlevel from 2010-2013>Quick >estimate equation> dcpue c dprice 

dstreamwaterlevel > Forecast> Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

 

Year 1992-2013: 
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Unit root test:  The series has unit root, hence 1st difference of the series has taken and the 

final series has no unit root 

Lag selection: Lag 4 selected for the granger causality test. 

Granger Causality test 

 

Pairwise Granger Causality Tests 

Date: 03/14/21   Time: 20:47 

Sample: 1993 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  0.10908 0.9759 

 DCPUE does not Granger Cause DLICENCES  0.51731 0.7260 

    
     DPRICE does not Granger Cause DCPUE  17  3.02982 0.0852 

 DCPUE does not Granger Cause DPRICE  3.68846 0.0549 

    
     DRAINFALL does not Granger Cause DCPUE  17  2.19976 0.1592 

 DCPUE does not Granger Cause DRAINFALL  0.47511 0.7537 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.74472 0.5879 

 DCPUE does not Granger Cause DTEMPERATURE  1.36111 0.3284 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  1.63036 0.2576 

 DCPUE does not Granger Cause DSTREAMFLOW  0.45470 0.7672 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  0.83535 0.5393 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.32861 0.3384 

    
     

No reverse causality detected. 

Test for multicollinearity 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .705 1.418 

dprice .605 1.652 
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drainfall .450 2.221 

dtemperature .772 1.296 

dstreamflow .509 1.963 

dstreamwaterlevel .500 2.000 

a. Dependent Variable: dcpue 

 

 

Collinearity Diagnosticsa 

Mod

el 

Dimen

sion 

Eigenv

alue 

Conditio

n Index 

Variance Proportions 

(Const

ant) 

dlice

nce 

dpric

e 

drainf

all 

dtemper

ature 

dstream

flow 

dstream

waterlev

el 

1 1 2.497 1.000 .01 .01 .03 .04 .03 .05 .04 

2 1.266 1.404 .06 .26 .12 .01 .01 .02 .03 

3 1.148 1.475 .11 .01 .04 .05 .30 .03 .05 

4 .978 1.598 .49 .20 .01 .05 .00 .01 .00 

5 .540 2.151 .14 .04 .12 .00 .60 .26 .06 

6 .315 2.814 .19 .15 .50 .09 .03 .31 .46 

7 .256 3.123 .00 .33 .17 .75 .03 .33 .35 

a. Dependent Variable: dcpue 

 

 

Here, There is no multicollinearity among the independent variables. Tolerance is more than 

0.1, VIF is less than 10. 

Regression Test :  

Forward stepwise regression: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 
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1 (Constant) 8.374E-5 .002  .047 .963 

dprice 5.243E-8 .000 .772 5.293 .000 

2 (Constant) .000 .002  -.101 .921 

dprice 6.073E-8 .000 .894 6.306 .000 

dlicence -.001 .000 -.328 -2.312 .033 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.328b -2.312 .033 -.479 .861 

drainfall -.045b -.295 .771 -.069 .971 

dtemperature -.021b -.130 .898 -.031 .881 

dstreamflow -.049b -.295 .772 -.069 .822 

dstreamwaterlevel .169b 1.163 .260 .264 .991 

2 drainfall .000c .002 .998 .001 .951 

dtemperature .031c .214 .833 .052 .859 

dstreamflow -.156c -1.035 .315 -.244 .756 

dstreamwaterlevel .160c 1.228 .236 .285 .990 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

c. Predictors in the Model: (Constant), dprice, dlicence 

 

Regression in Eviws: dcpue c dlicences dprice  

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/14/21   Time: 21:43 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     C -0.000161 0.001596 -0.101062 0.9206 

DLICENCES -0.000580 0.000251 -2.312073 0.0328 

DPRICE 6.07E-08 9.63E-09 6.306149 0.0000 

     
     R-squared 0.688416     Mean dependent var 0.002677 

Adjusted R-squared 0.653796     S.D. dependent var 0.011919 

S.E. of regression 0.007013     Akaike info criterion -6.950466 

Sum squared resid 0.000885     Schwarz criterion -6.801248 

Log likelihood 75.97989     Hannan-Quinn criter. -6.918082 

F-statistic 19.88468     Durbin-Watson stat 2.495451 

Prob(F-statistic) 0.000028    

     
     
Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.510783  0.0000 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/14/21   Time: 21:45 

Sample (adjusted): 1994 2013 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.370857 0.210552 -6.510783 0.0000 

C 0.000660 0.001355 0.487371 0.6319 

     
     R-squared 0.701939     Mean dependent var 0.000141 

Adjusted R-squared 0.685380     S.D. dependent var 0.010782 

S.E. of regression 0.006048     Akaike info criterion -7.283557 

Sum squared resid 0.000658     Schwarz criterion -7.183984 
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Log likelihood 74.83557     Hannan-Quinn criter. -7.264119 

F-statistic 42.39030     Durbin-Watson stat 2.359043 

Prob(F-statistic) 0.000004    

     
      

The residual has no unit root. 

Serial correlation test: EViews 

 

The residuals are flat and no serial correlation. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

8

-0.010 -0.005 0.000 0.005 0.010 0.015 0.020

Series: Residuals

Sample 1993 2013

Observations 21

Mean       8.26e-20

Median   2.84e-05

Maximum  0.018686

Minimum -0.010395

Std. Dev.   0.006653

Skewness   0.879331

Kurtosis   4.421765

Jarque-Bera  4.475017

Probability  0.106724 

 

 

Breusch-Godfrey Serial Correlation LM Test: 
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Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.024904     Prob. F(2,16) 0.1645 

Obs*R-squared 4.241734     Prob. Chi-Square(2) 0.1199 

     
     
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.061185     Prob. F(4,14) 0.4118 

Obs*R-squared 4.885767     Prob. Chi-Square(4) 0.2992 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.479799     Prob. F(8,10) 0.8449 

Obs*R-squared 5.824826     Prob. Chi-Square(8) 0.6668 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.463793     Prob. F(2,18) 0.6362 

Obs*R-squared 1.029150     Prob. Chi-Square(2) 0.5978 

Scaled explained SS 1.293615     Prob. Chi-Square(2) 0.5237 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/14/21   Time: 21:48 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 4.50E-05 1.87E-05 2.405456 0.0271 

DLICENCES 2.66E-06 2.94E-06 0.905640 0.3771 

DPRICE -7.24E-11 1.13E-10 -0.641856 0.5291 

     
     R-squared 0.049007     Mean dependent var 4.22E-05 

Adjusted R-squared -0.056659     S.D. dependent var 7.99E-05 

S.E. of regression 8.21E-05     Akaike info criterion -15.84462 

Sum squared resid 1.21E-07     Schwarz criterion -15.69540 
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Log likelihood 169.3685     Hannan-Quinn criter. -15.81223 

F-statistic 0.463793     Durbin-Watson stat 1.534936 

Prob(F-statistic) 0.636202    

     
      

Probability is greater than 5%, so the model is not heteroscedastic. 

 

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in dprice from 2013-2016>Quick >estimate equation> dcpue  c 

dlicences dprice> Forecast> Forecast sample (1994-2016)>ok> 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

Lag selection: Lag 4 was selected for the granger causality test. 

Granger causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/14/21   Time: 23:16 

Sample: 1995 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  0.30459 0.8678 

 DCPUE does not Granger Cause DLICENCES  1.59035 0.2583 

    
     DPRICE does not Granger Cause DCPUE  18  1.66479 0.2410 

 DCPUE does not Granger Cause DPRICE  2.89372 0.0855 

    
     DRAINFALL does not Granger Cause DCPUE  18  0.66986 0.6291 

 DCPUE does not Granger Cause DRAINFALL  0.84362 0.5315 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.88705 0.5093 

 DCPUE does not Granger Cause DTEMPERATURE  0.53803 0.7120 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  1.81282 0.2106 

 DCPUE does not Granger Cause DSTREAMFLOW  1.43006 0.3003 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  0.14044 0.9628 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.50382 0.7345 
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No reverse causality was found. 

 

Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .590 1.694 

dprice .331 3.025 

drainfall .226 4.426 

dtemperature .483 2.069 

dstreamflow .076 13.119 

dstreamwaterlevel .065 15.281 

a. Dependent Variable: dcpue 

 

Here multicollinearity is present between streamflow and Stream water level. Tolerance is 

more than 0.1, VIF is less than 10. 

 

 

Regression Test :  

Forward Stepwise: 

 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardiz

ed 

Coefficient

s 

t Sig. 

95.0% Confidence 

Interval for B 

B Std. Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constan

t) 

.003 .002 
 

1.742 .097 -.001 .006 

dprice 3.961E-8 .000 .823 6.469 .000 .000 .000 
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a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.252b -1.576 .131 -.340 .591 

drainfall .008b .065 .949 .015 .998 

dtemperature -.053b -.393 .699 -.090 .924 

dstreamflow .022b .157 .877 .036 .894 

dstreamwaterlevel .149b 1.176 .254 .260 .993 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

 

Regression in Eviws: dcpue c dprice  

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/14/21   Time: 23:19 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 3.96E-08 6.12E-09 6.468703 0.0000 

C 0.002668 0.001532 1.741553 0.0969 

     
     R-squared 0.676606     Mean dependent var 0.002036 

Adjusted R-squared 0.660437     S.D. dependent var 0.012307 

S.E. of regression 0.007171     Akaike info criterion -6.950960 

Sum squared resid 0.001029     Schwarz criterion -6.851774 

Log likelihood 78.46056     Hannan-Quinn criter. -6.927595 

F-statistic 41.84412     Durbin-Watson stat 1.982525 

Prob(F-statistic) 0.000003    

     
      
 

Create a dummy variable and interact with DPrice from 2015: 
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dcpue dprice dummy dummyprice  c 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 18:57 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 4.94E-08 7.87E-09 6.277880 0.0000 

DUMMY 0.000964 0.006912 0.139428 0.8907 

DUMMYPRICE -2.17E-08 1.46E-08 -1.486120 0.1546 

C 0.001994 0.001553 1.283591 0.2156 

     
     R-squared 0.729744     Mean dependent var 0.002036 

Adjusted R-squared 0.684701     S.D. dependent var 0.012307 

S.E. of regression 0.006910     Akaike info criterion -6.948642 

Sum squared resid 0.000860     Schwarz criterion -6.750271 

Log likelihood 80.43506     Hannan-Quinn criter. -6.901912 

F-statistic 16.20116     Durbin-Watson stat 2.327583 

Prob(F-statistic) 0.000024    

     
      

In the regression, the dummy variable and interacted dummy term for dprice are not significant, 

hence dummy terms will be removed from the regression and rerun the model. 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 18:59 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 3.96E-08 6.12E-09 6.468703 0.0000 

C 0.002668 0.001532 1.741553 0.0969 

     
     R-squared 0.676606     Mean dependent var 0.002036 

Adjusted R-squared 0.660437     S.D. dependent var 0.012307 

S.E. of regression 0.007171     Akaike info criterion -6.950960 

Sum squared resid 0.001029     Schwarz criterion -6.851774 

Log likelihood 78.46056     Hannan-Quinn criter. -6.927595 

F-statistic 41.84412     Durbin-Watson stat 1.982525 
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Prob(F-statistic) 0.000003    

     
      

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.899327  0.0009 

Test critical values: 1% level  -3.788030  

 5% level  -3.012363  

 10% level  -2.646119  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/14/21   Time: 23:33 

Sample (adjusted): 1996 2016 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.104106 0.225359 -4.899327 0.0001 

C -0.000552 0.001506 -0.366197 0.7183 

     
     R-squared 0.558175     Mean dependent var -5.11E-05 

Adjusted R-squared 0.534921     S.D. dependent var 0.010097 

S.E. of regression 0.006886     Akaike info criterion -7.028278 

Sum squared resid 0.000901     Schwarz criterion -6.928799 

Log likelihood 75.79692     Hannan-Quinn criter. -7.006688 

F-statistic 24.00341     Durbin-Watson stat 1.748331 

Prob(F-statistic) 0.000100    

     
     

Residual does not have unit root. 

Serial correlation test: EViews 
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Quick>estimate equation> dcpue c dprice >ok>view tab> residual diagnostics>correlogram 

and Q-statistics (Ljung-Box test) >lag selection (12)> ok. 

 

Selection of MA and AR term: 

The residuals are flat and no serial correlation i.e. in white noise. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1995 2016

Observations 22

Mean      -1.58e-19

Median  -0.000265

Maximum  0.016292

Minimum -0.012152

Std. Dev.   0.006998

Skewness   0.525029

Kurtosis   2.889546

Jarque-Bera  1.021919

Probability  0.599920 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.097531     Prob. F(2,18) 0.9075 

Obs*R-squared 0.235854     Prob. Chi-Square(2) 0.8888 
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Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.470549     Prob. F(4,16) 0.7566 

Obs*R-squared 2.315618     Prob. Chi-Square(4) 0.6779 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.532706     Prob. F(8,12) 0.8110 

Obs*R-squared 5.765486     Prob. Chi-Square(8) 0.6735 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.093920     Prob. F(1,20) 0.7624 

Obs*R-squared 0.102829     Prob. Chi-Square(1) 0.7485 

Scaled explained SS 0.080289     Prob. Chi-Square(1) 0.7769 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/14/21   Time: 23:35 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 4.70E-05 1.44E-05 3.273933 0.0038 

DPRICE 1.76E-11 5.74E-11 0.306463 0.7624 

     
     R-squared 0.004674     Mean dependent var 4.68E-05 

Adjusted R-squared -0.045092     S.D. dependent var 6.58E-05 

S.E. of regression 6.72E-05     Akaike info criterion -16.28996 

Sum squared resid 9.04E-08     Schwarz criterion -16.19078 

Log likelihood 181.1896     Hannan-Quinn criter. -16.26660 

F-statistic 0.093920     Durbin-Watson stat 1.134888 

Prob(F-statistic) 0.762419    
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1996-2019) by double clicking the 

range> provide original values in dprice from 2017-2019>Quick >estimate equation> dcpue  c 

dprice > Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .496 2.018 

price .669 1.495 

rainfall .451 2.217 

temperature .627 1.595 

streamflow .394 2.540 

streamwaterlevel .587 1.704 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables.   

 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 12:09 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     LICENCES -0.000332 0.000193 -1.721416 0.1131 

PRICE 5.61E-08 8.59E-09 6.530599 0.0000 

RAINFALL -5.73E-06 5.66E-06 -1.012394 0.3331 

TEMPERATURE -0.004320 0.002969 -1.454984 0.1736 

STREAMFLOW -1.74E-10 8.19E-10 -0.212776 0.8354 

STREAMWATERLEVEL 0.000115 0.000659 0.173891 0.8651 

C 0.130760 0.072581 1.801571 0.0991 

     
     R-squared 0.853831     Mean dependent var 0.034495 

Adjusted R-squared 0.774102     S.D. dependent var 0.007662 

S.E. of regression 0.003642     Akaike info criterion -8.107490 

Sum squared resid 0.000146     Schwarz criterion -7.761235 

Log likelihood 79.96741     Hannan-Quinn criter. -8.059746 

F-statistic 10.70922     Durbin-Watson stat 2.641540 

Prob(F-statistic) 0.000478    

     
      
 

Diagnostic checking:  

 

Normality test:  

 

0

1

2

3

4

5

6

7

8

9

-0.005 0.000 0.005

Series: Residuals

Sample 1993 2010

Observations 18

Mean       3.08e-17

Median  -0.000102

Maximum  0.006898

Minimum -0.006444

Std. Dev.   0.002929

Skewness   0.097356

Kurtosis   3.850664

Jarque-Bera  0.571156

Probability  0.751580 

 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 1.214730     Prob. F(2,9) 0.3412 

Obs*R-squared 3.826101     Prob. Chi-Square(2) 0.1476 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.720671     Prob. F(4,7) 0.6044 

Obs*R-squared 5.250427     Prob. Chi-Square(4) 0.2626 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 8.904364     Prob. F(8,3) 0.0795 

Obs*R-squared 7.272581     Prob. Chi-Square(8) 0.0674 

     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.248141     Prob. F(6,11) 0.3542 

Obs*R-squared 7.290840     Prob. Chi-Square(6) 0.2948 

Scaled explained SS 3.880913     Prob. Chi-Square(6) 0.6928 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 12:10 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000122 0.000269 -0.454631 0.6582 

LICENCES 9.44E-07 7.15E-07 1.319883 0.2137 

PRICE -2.16E-11 3.18E-11 -0.678075 0.5117 

RAINFALL -1.57E-08 2.10E-08 -0.750411 0.4688 

TEMPERATURE 5.07E-06 1.10E-05 0.460521 0.6541 

STREAMFLOW 1.48E-12 3.04E-12 0.488170 0.6350 

STREAMWATERLEVEL -2.48E-06 2.44E-06 -1.015840 0.3315 

     
     R-squared 0.405047     Mean dependent var 8.10E-06 
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Adjusted R-squared 0.080527     S.D. dependent var 1.41E-05 

S.E. of regression 1.35E-05     Akaike info criterion -19.30236 

Sum squared resid 2.00E-09     Schwarz criterion -18.95610 

Log likelihood 180.7212     Hannan-Quinn criter. -19.25461 

F-statistic 1.248141     Durbin-Watson stat 1.707868 

Prob(F-statistic) 0.354212    

     
      
 

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .522 1.916 

price .525 1.905 

rainfall .352 2.841 

temperature .488 2.049 

streamflow .501 1.997 

streamwaterlevel .487 2.055 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables.  

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 12:14 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000418 0.000190 -2.198872 0.0482 

PRICE 7.45E-08 4.31E-09 17.27261 0.0000 
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RAINFALL -7.11E-06 6.31E-06 -1.126243 0.2821 

TEMPERATURE -0.003561 0.003337 -1.067019 0.3070 

STREAMFLOW 1.92E-10 4.69E-10 0.408634 0.6900 

STREAMWATERLEVEL -0.000611 0.000809 -0.755860 0.4643 

C 0.113970 0.081136 1.404669 0.1855 

     
     R-squared 0.978839     Mean dependent var 0.043858 

Adjusted R-squared 0.968259     S.D. dependent var 0.022246 

S.E. of regression 0.003963     Akaike info criterion -7.946159 

Sum squared resid 0.000188     Schwarz criterion -7.598208 

Log likelihood 82.48851     Hannan-Quinn criter. -7.887272 

F-statistic 92.51370     Durbin-Watson stat 1.451333 

Prob(F-statistic) 0.000000    

     
      
 

Diagnostic Checking: 

Normality test: 

 

0

1

2

3

4

5

6

7

8

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean      -2.90e-18

Median   0.000127

Maximum  0.007673

Minimum -0.004423

Std. Dev.   0.003236

Skewness   0.767156

Kurtosis   3.100462

Jarque-Bera  1.871662

Probability  0.392260 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.514089     Prob. F(2,10) 0.6130 

Obs*R-squared 1.771407     Prob. Chi-Square(2) 0.4124 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
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     F-statistic 0.490386     Prob. F(4,8) 0.7436 

Obs*R-squared 3.741320     Prob. Chi-Square(4) 0.4421 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.273606     Prob. F(8,4) 0.9439 

Obs*R-squared 6.719849     Prob. Chi-Square(8) 0.5671 

     
      

Heteroscedasticity Test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.150319     Prob. F(6,12) 0.3922 

Obs*R-squared 6.937728     Prob. Chi-Square(6) 0.3266 

Scaled explained SS 2.906413     Prob. Chi-Square(6) 0.8205 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 12:15 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000170 0.000295 -0.577469 0.5743 

LICENCES 1.63E-07 6.91E-07 0.235537 0.8178 

PRICE 8.22E-12 1.57E-11 0.523993 0.6098 

RAINFALL -5.85E-09 2.29E-08 -0.254835 0.8032 

TEMPERATURE 8.53E-06 1.21E-05 0.702887 0.4955 

STREAMFLOW 1.63E-12 1.71E-12 0.955967 0.3580 

STREAMWATERLEVEL -5.72E-06 2.94E-06 -1.944934 0.0756 

     
     R-squared 0.365144     Mean dependent var 9.92E-06 

Adjusted R-squared 0.047715     S.D. dependent var 1.48E-05 

S.E. of regression 1.44E-05     Akaike info criterion -19.17924 

Sum squared resid 2.49E-09     Schwarz criterion -18.83128 

Log likelihood 189.2027     Hannan-Quinn criter. -19.12035 

F-statistic 1.150319     Durbin-Watson stat 1.932598 

Prob(F-statistic) 0.392227    
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Sample 1994-2016:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .438 2.282 

price .806 1.241 

rainfall .441 2.269 

temperature .489 2.046 

streamflow .394 2.541 

streamwaterlevel .522 1.917 

a. Dependent Variable: cpue 

Here, multicollinearity is absent among variables. 

Create a dummy variable and interact with Dlicences and DPrice from 2015: 

cpue licences price rainfall temperature streamflow streamwaterlevel dummylicences 

dummyprice  c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:07 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000494 0.000220 -2.250865 0.0458 

PRICE 7.87E-08 4.79E-09 16.42592 0.0000 

RAINFALL -1.47E-05 7.49E-06 -1.963497 0.0754 

TEMPERATURE -0.006863 0.003570 -1.922215 0.0808 

STREAMFLOW 1.58E-10 5.43E-10 0.290234 0.7770 

STREAMWATERLEVEL 0.001482 0.001287 1.151357 0.2740 

DUMMYLICENCES 0.008238 0.001599 5.152320 0.0003 

DUMMYPRICE -9.25E-09 1.89E-09 -4.901979 0.0005 

C 0.185985 0.087400 2.127969 0.0568 

     
     



  

317 

 

R-squared 0.982021     Mean dependent var 0.050774 

Adjusted R-squared 0.968946     S.D. dependent var 0.026036 

S.E. of regression 0.004588     Akaike info criterion -7.628565 

Sum squared resid 0.000232     Schwarz criterion -7.180485 

Log likelihood 85.28565     Hannan-Quinn criter. -7.541095 

F-statistic 75.10402     Durbin-Watson stat 1.981277 

Prob(F-statistic) 0.000000    

     
      

Here ‘dummy’ variable was omitted as the variables is collinear. In the regression, the dummy 

variable and interacted dummy term for dlicences and dprice is significant. Hence all 

significant variables will be used to determine the future cpue. 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel dummylicences 

dummyprice  c 

 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:16 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000494 0.000220 -2.250865 0.0458 

PRICE 7.87E-08 4.79E-09 16.42592 0.0000 

RAINFALL -1.47E-05 7.49E-06 -1.963497 0.0754 

TEMPERATURE -0.006863 0.003570 -1.922215 0.0808 

STREAMFLOW 1.58E-10 5.43E-10 0.290234 0.7770 

STREAMWATERLEVEL 0.001482 0.001287 1.151357 0.2740 

DUMMYLICENCES 0.008238 0.001599 5.152320 0.0003 

DUMMYPRICE -9.25E-09 1.89E-09 -4.901979 0.0005 

C 0.185985 0.087400 2.127969 0.0568 

     
     R-squared 0.982021     Mean dependent var 0.050774 

Adjusted R-squared 0.968946     S.D. dependent var 0.026036 

S.E. of regression 0.004588     Akaike info criterion -7.628565 

Sum squared resid 0.000232     Schwarz criterion -7.180485 

Log likelihood 85.28565     Hannan-Quinn criter. -7.541095 

F-statistic 75.10402     Durbin-Watson stat 1.981277 

Prob(F-statistic) 0.000000    
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Diagnostic Checking: 

 

Normality Test: 

0

1

2

3

4

5

6

7

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean       1.16e-18

Median  -0.000289

Maximum  0.009291

Minimum -0.005696

Std. Dev.   0.003491

Skewness   0.830630

Kurtosis   3.875791

Jarque-Bera  2.938997

Probability  0.230041 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.426542     Prob. F(2,9) 0.6653 

Obs*R-squared 1.731608     Prob. Chi-Square(2) 0.4207 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.223828     Prob. F(4,7) 0.9167 

Obs*R-squared 2.267955     Prob. Chi-Square(4) 0.6866 

     
      

Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.657740     Prob. F(8,3) 0.2273 
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Obs*R-squared 7.526996     Prob. Chi-Square(8) 0.0651 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.004808     Prob. F(8,11) 0.4832 

Obs*R-squared 8.444448     Prob. Chi-Square(8) 0.3913 

Scaled explained SS 3.673026     Prob. Chi-Square(8) 0.8854 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/28/21   Time: 19:17 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000227 0.000383 0.593273 0.5650 

LICENCES -2.94E-07 9.63E-07 -0.304886 0.7661 

PRICE 2.21E-11 2.10E-11 1.053897 0.3145 

RAINFALL -3.46E-08 3.28E-08 -1.052034 0.3153 

TEMPERATURE -9.71E-06 1.57E-05 -0.619896 0.5480 

STREAMFLOW 2.86E-12 2.38E-12 1.203234 0.2541 

STREAMWATERLEVEL 4.86E-06 5.64E-06 0.861690 0.4073 

DUMMYLICENCES -1.82E-06 7.01E-06 -0.260140 0.7996 

DUMMYPRICE 6.00E-13 8.28E-12 0.072453 0.9435 

     
     R-squared 0.422222     Mean dependent var 1.16E-05 

Adjusted R-squared 0.002021     S.D. dependent var 2.01E-05 

S.E. of regression 2.01E-05     Akaike info criterion -18.48725 

Sum squared resid 4.45E-09     Schwarz criterion -18.03917 

Log likelihood 193.8725     Hannan-Quinn criter. -18.39978 

F-statistic 1.004808     Durbin-Watson stat 2.226766 

Prob(F-statistic) 0.483181    

     
     
4. Pooled NFZs site: 

Data Preparation: Average value of all the variables were extracted from the three NFZs.  

Year: 1990-2010 
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Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test: All variable has unit root, so I took1st difference of all the series. Now the series 

is stationary.  

 

Lag selection: Lag 4 was selected for the granger causality test. 

 

Granger Causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/17/21   Time: 15:45 

Sample: 1990 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  0.06724 0.9899 

 DCPUE does not Granger Cause DLICENCES  0.41425 0.7939 

    
     DPRICE does not Granger Cause DCPUE  16  1.87555 0.2196 

 DCPUE does not Granger Cause DPRICE  0.37496 0.8199 

    
     DRAINFALL does not Granger Cause DCPUE  16  0.29277 0.8738 

 DCPUE does not Granger Cause DRAINFALL  0.14669 0.9587 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  0.80943 0.5569 

 DCPUE does not Granger Cause DTEMPERATURE  0.34465 0.8400 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  1.05063 0.4461 

 DCPUE does not Granger Cause DSTREAMFLOW  0.19200 0.9350 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  2.94451 0.1011 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.02101 0.4583 

    
    
No reverse causality was found. 

Test for multicollinearity: SPSS 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .571 1.753 

dprice .451 2.218 
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drainfall .318 3.141 

dtemperature .606 1.650 

dstreamflow .501 1.996 

dstreamwaterlevel .326 3.071 

a. Dependent Variable: dcpue 

 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1 and VIF is less 

than 10. 

 

Multiple Regression Test: SPSS 

 

Stepwise (backward) regression: SPSS 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -3.903E-5 .002  -.025 .980 

Collinearity Diagnosticsa 

Mode

l 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfal

l 

dtemperat

ure 

dstreamfl

ow 

dstreamwat

erlevel 

1 1 2.396 1.000 .00 .00 .03 .04 .03 .05 .02 

2 1.598 1.224 .03 .13 .06 .00 .05 .01 .04 

3 1.078 1.491 .52 .05 .03 .00 .06 .02 .01 

4 .784 1.748 .24 .15 .00 .01 .31 .02 .05 

5 .619 1.968 .00 .11 .17 .05 .05 .27 .08 

6 .398 2.455 .08 .17 .21 .22 .19 .30 .01 

7 .128 4.330 .13 .39 .50 .67 .31 .33 .80 

a. Dependent Variable: dcpue 
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dlicence -2.825E-6 .001 -.001 -.005 .996 

dprice 1.533E-8 .000 .159 .444 .664 

drainfall 4.320E-7 .000 .032 .075 .941 

dtemperature .000 .005 -.024 -.078 .939 

dstreamflow -2.021E-9 .000 -.481 -1.418 .180 

dstreamwaterlevel .007 .005 .575 1.368 .194 

2 (Constant) -3.734E-5 .001  -.026 .980 

dprice 1.524E-8 .000 .158 .581 .570 

drainfall 4.410E-7 .000 .033 .085 .934 

dtemperature .000 .004 -.024 -.083 .935 

dstreamflow -2.018E-9 .000 -.480 -1.605 .131 

dstreamwaterlevel .007 .005 .575 1.534 .147 

3 (Constant) -4.305E-5 .001  -.031 .976 

dprice 1.537E-8 .000 .159 .608 .552 

drainfall 6.551E-7 .000 .048 .150 .883 

dstreamflow -2.004E-9 .000 -.477 -1.666 .116 

dstreamwaterlevel .007 .004 .562 1.688 .112 

4 (Constant) -7.178E-5 .001  -.054 .958 

dprice 1.692E-8 .000 .175 .757 .460 

dstreamflow -1.990E-9 .000 -.473 -1.712 .106 

dstreamwaterlevel .007 .003 .591 2.241 .040 

5 (Constant) 7.424E-5 .001  .057 .955 

dstreamflow -1.678E-9 .000 -.399 -1.564 .136 

dstreamwaterlevel .007 .003 .551 2.159 .045 

6 (Constant) .000 .001  .297 .770 

dstreamwaterlevel .004 .003 .333 1.499 .051 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 
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Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dlicence -.001b -.005 .996 -.001 .571 

3 dlicence .005c .018 .986 .005 .615 

dtemperature -.024c -.083 .935 -.022 .654 

4 dlicence -.005d -.019 .985 -.005 .654 

dtemperature -.036d -.149 .884 -.038 .864 

drainfall .048d .150 .883 .039 .477 

5 dlicence .092e .417 .682 .104 .984 

dtemperature -.079e -.347 .733 -.087 .932 

drainfall .129e .444 .663 .110 .572 

dprice .175e .757 .460 .186 .874 

6 dlicence .133f .587 .565 .141 1.000 

dtemperature .013f .058 .954 .014 1.000 

drainfall .026f .088 .931 .021 .602 

dprice .035f .152 .881 .037 1.000 

dstreamflow -.399f -1.564 .136 -.355 .702 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dprice, dtemperature, dstreamflow, drainfall 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dprice, dstreamflow, drainfall 

d. Predictors in the Model: (Constant), dstreamwaterlevel, dprice, dstreamflow 

e. Predictors in the Model: (Constant), dstreamwaterlevel, dstreamflow 

f. Predictors in the Model: (Constant), dstreamwaterlevel 

 

Regression Test : Eviws: dcpue c dstreamwatrelevel 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/17/21   Time: 15:58 

Sample (adjusted): 1991 2010 

Included observations: 20 after adjustments 
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     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000397 0.001338 0.296946 0.7699 

DSTREAMWATERLEVEL 0.004150 0.002769 1.498872 0.0512 

     
     R-squared 0.110963     Mean dependent var 0.000808 

Adjusted R-squared 0.061572     S.D. dependent var 0.006047 

S.E. of regression 0.005858     Akaike info criterion -7.347542 

Sum squared resid 0.000618     Schwarz criterion -7.247969 

Log likelihood 75.47542     Hannan-Quinn criter. -7.328105 

F-statistic 2.246618     Durbin-Watson stat 2.214506 

Prob(F-statistic) 0.151241    

     
      

 

Unit root test for the residuals of regression model (including dcpue c dstreamwaterlevel): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.878685  0.0013 

Test critical values: 1% level  -3.857386  

 5% level  -3.040391  

 10% level  -2.660551  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 18 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 16:00 

Sample (adjusted): 1993 2010 

Included observations: 18 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.898580 0.389158 -4.878685 0.0002 

D(R(-1)) 0.379930 0.230889 1.645506 0.1207 

C -0.000458 0.001159 -0.395326 0.6982 
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     R-squared 0.701701     Mean dependent var -0.000477 

Adjusted R-squared 0.661928     S.D. dependent var 0.008449 

S.E. of regression 0.004912     Akaike info criterion -7.643127 

Sum squared resid 0.000362     Schwarz criterion -7.494732 

Log likelihood 71.78815     Hannan-Quinn criter. -7.622666 

F-statistic 17.64256     Durbin-Watson stat 1.796315 

Prob(F-statistic) 0.000115    

     
      
 

The residual has no unit root. 

 

Serial correlation test: EViews 

 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

Correlogram plot: 

 

 

The residuals are not flat and no serial correlation i.e. in white noise. 

 

Diagnostic checking: 

Normality test of residuals: 
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-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1991 2010

Observations 20

Mean       2.60e-19

Median  -0.001126

Maximum  0.010899

Minimum -0.010154

Std. Dev.   0.005701

Skewness   0.094068

Kurtosis   2.448085

Jarque-Bera  0.283338

Probability  0.867909 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution. 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.955501     Prob. F(2,16) 0.1739 

Obs*R-squared 3.928484     Prob. Chi-Square(2) 0.1403 

     
     Lag(4) 

 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.976714     Prob. F(4,14) 0.4512 

Obs*R-squared 4.363533     Prob. Chi-Square(4) 0.3590 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.009905     Prob. F(8,10) 0.4842 

Obs*R-squared 8.937586     Prob. Chi-Square(8) 0.3476 

     
     
Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 3.975240     Prob. F(1,18) 0.0616 

Obs*R-squared 3.617927     Prob. Chi-Square(1) 0.0572 

Scaled explained SS 2.121822     Prob. Chi-Square(1) 0.1452 
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Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 16:02 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 2.76E-05 8.10E-06 3.404258 0.0032 

DSTREAMWATERLEVEL 3.34E-05 1.68E-05 1.993800 0.0616 

     
     R-squared 0.180896     Mean dependent var 3.09E-05 

Adjusted R-squared 0.135391     S.D. dependent var 3.81E-05 

S.E. of regression 3.54E-05     Akaike info criterion -17.56226 

Sum squared resid 2.26E-08     Schwarz criterion -17.46269 

Log likelihood 177.6226     Hannan-Quinn criter. -17.54283 

F-statistic 3.975240     Durbin-Watson stat 1.705341 

Prob(F-statistic) 0.061550    

     
      
 

Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (0,1,0) Forecasting:  

 

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dstreamwaterlevel from 2010-2013>Quick >estimate equation> dcpue c dstreamwaterlevel > 

Forecast> Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

 

Year 1992-2013: 

Unit root test:  The series has unit root, 1st difference removed unit root from the series and 

the final series has no unit root 

Lag selection: Lag 4 selected for the granger causality test for granger causality test. 

Granger Causality test: 
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Pairwise Granger Causality Tests 

Date: 03/17/21   Time: 16:58 

Sample: 1992 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  0.09413 0.9816 

 DCPUE does not Granger Cause DLICENCES  0.61196 0.6659 

    
     DPRICE does not Granger Cause DCPUE  17  0.66573 0.6334 

 DCPUE does not Granger Cause DPRICE  0.11357 0.9741 

    
     DRAINFALL does not Granger Cause DCPUE  17  0.47333 0.7548 

 DCPUE does not Granger Cause DRAINFALL  0.18774 0.9382 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.39335 0.8082 

 DCPUE does not Granger Cause DTEMPERATURE  0.35607 0.8331 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  1.40336 0.3160 

 DCPUE does not Granger Cause DSTREAMFLOW  0.29912 0.8706 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  1.04475 0.4417 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.80282 0.5563 

    
     

No reverse causality detected. 

 

Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 ddlicence .743 1.346 

ddprice .540 1.851 

ddrainfall .533 1.875 

ddtemperature .697 1.435 

ddstreamflow .537 1.861 

ddstreamwaterlevel .424 2.357 

a. Dependent Variable: ddcpue 
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Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

ddlicen

ce 

ddpric

e 

ddrainf

all 

ddtemper

ature 

ddstreamf

low 

ddstream

waterlevel 

1 1 2.206 1.000 .02 .00 .02 .06 .03 .07 .05 

2 1.692 1.142 .00 .13 .11 .01 .07 .00 .03 

3 1.083 1.427 .53 .00 .01 .02 .14 .00 .00 

4 .786 1.675 .01 .48 .02 .10 .06 .08 .05 

5 .670 1.815 .20 .06 .02 .11 .24 .28 .01 

6 .343 2.535 .09 .17 .47 .37 .43 .05 .09 

7 .219 3.171 .14 .15 .35 .32 .03 .52 .76 

a. Dependent Variable: ddcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test: SPSS 

Backward stepwise regression: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -2.882E-5 .002  -.018 .986 

dlicence -.001 .001 -.241 -.970 .349 

dprice 5.625E-8 .000 .605 2.073 .057 

drainfall -5.303E-6 .000 -.319 -1.087 .296 

dtemperature -.004 .004 -.244 -.949 .359 

dstreamflow -2.170E-9 .000 -.426 -1.455 .168 

dstreamwaterlevel .009 .005 .561 1.702 .111 
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2 (Constant) .000 .002  -.166 .871 

dlicence -.001 .001 -.239 -.963 .351 

dprice 6.445E-8 .000 .694 2.514 .024 

drainfall -3.766E-6 .000 -.227 -.821 .425 

dstreamflow -2.012E-9 .000 -.395 -1.362 .193 

dstreamwaterlevel .008 .005 .497 1.545 .143 

3 (Constant) .000 .002  -.068 .947 

dlicence -.001 .001 -.228 -.929 .366 

dprice 6.113E-8 .000 .658 2.440 .027 

dstreamflow -1.968E-9 .000 -.386 -1.346 .197 

dstreamwaterlevel .006 .004 .349 1.324 .204 

4 (Constant) 7.550E-5 .002  .049 .961 

dprice 4.994E-8 .000 .537 2.282 .036 

dstreamflow -1.577E-9 .000 -.309 -1.131 .274 

dstreamwaterlevel .005 .004 .333 1.269 .221 

5 (Constant) .000 .002  .202 .842 

dprice 3.923E-8 .000 .422 1.973 .064 

dstreamwaterlevel .003 .003 .159 .742 .468 

6 (Constant) .001 .001  .382 .707 

dprice 3.749E-8 .000 .403 1.922 .050 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dtemperature -.244b -.949 .359 -.246 .697 

3 dtemperature -.151c -.620 .545 -.158 .783 

drainfall -.227c -.821 .425 -.207 .599 

4 dtemperature -.153d -.630 .537 -.156 .783 
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drainfall -.212d -.772 .451 -.190 .601 

dlicence -.228d -.929 .366 -.226 .745 

5 dtemperature -.125e -.511 .616 -.123 .791 

drainfall -.206e -.741 .469 -.177 .601 

dlicence -.133e -.553 .588 -.133 .813 

dstreamflow -.309e -1.131 .274 -.265 .594 

6 dtemperature -.134f -.557 .584 -.130 .794 

drainfall -.024f -.113 .911 -.027 .998 

dlicence -.153f -.652 .523 -.152 .826 

dstreamflow -.106f -.469 .645 -.110 .906 

dstreamwaterlevel .159f .742 .468 .172 .986 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dprice, dstreamflow, drainfall 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dprice, dstreamflow 

d. Predictors in the Model: (Constant), dstreamwaterlevel, dprice, dstreamflow 

e. Predictors in the Model: (Constant), dstreamwaterlevel, dprice 

f. Predictors in the Model: (Constant), dprice 

 

Regression Eviws: dcpue c dprice 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/17/21   Time: 17:03 

Sample (adjusted): 1993 2013 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000565 0.001478 0.382271 0.7065 

DPRICE 3.75E-08 1.95E-08 1.922128 0.0507 

     
     R-squared 0.162796     Mean dependent var 0.001301 

Adjusted R-squared 0.118732     S.D. dependent var 0.006968 

S.E. of regression 0.006542     Akaike info criterion -7.130864 

Sum squared resid 0.000813     Schwarz criterion -7.031386 
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Log likelihood 76.87407     Hannan-Quinn criter. -7.109275 

F-statistic 3.694577     Durbin-Watson stat 2.617714 

Prob(F-statistic) 0.069715    

     
      

 

Unit root test of residual: 

 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.242512  0.0001 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 17:05 

Sample (adjusted): 1994 2013 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.381734 0.221343 -6.242512 0.0000 

C 0.000397 0.001369 0.290379 0.7748 

     
     R-squared 0.684038     Mean dependent var -8.18E-05 

Adjusted R-squared 0.666485     S.D. dependent var 0.010584 

S.E. of regression 0.006112     Akaike info criterion -7.262446 

Sum squared resid 0.000672     Schwarz criterion -7.162873 

Log likelihood 74.62446     Hannan-Quinn criter. -7.243009 

F-statistic 38.96895     Durbin-Watson stat 2.387014 

Prob(F-statistic) 0.000007    
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The residual has no unit root. 

 

Serial correlation test: EViews 

 

Selection of AR and MA term: 

dcpue c dprice ar(2)  

Dependent Variable: DCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/17/21   Time: 17:06 

Sample: 1993 2013  

Included observations: 21 

Convergence achieved after 5 iterations 

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000673 0.001218 0.552620 0.5877 

DPRICE 3.83E-08 1.86E-08 2.061029 0.0549 

AR(2) -0.322216 0.372483 -0.865049 0.3991 

SIGMASQ 3.44E-05 1.16E-05 2.959830 0.0088 

     
     R-squared 0.256638     Mean dependent var 0.001301 

Adjusted R-squared 0.125456     S.D. dependent var 0.006968 

S.E. of regression 0.006517     Akaike info criterion -7.048833 

Sum squared resid 0.000722     Schwarz criterion -6.849876 

Log likelihood 78.01274     Hannan-Quinn criter. -7.005654 

F-statistic 1.956353     Durbin-Watson stat 2.884433 



  

334 

 

Prob(F-statistic) 0.158889    

     
     Inverted AR Roots -.00+.57i     -.00-.57i 

     
      

Serial correlation test: 

 

The residuals are flat and no serial correlation. 

Unit root test of the residual: 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -7.228139  0.0000 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 17:08 

Sample (adjusted): 1994 2013 
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Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.474394 0.203980 -7.228139 0.0000 

C 0.000218 0.001217 0.178684 0.8602 

     
     R-squared 0.743758     Mean dependent var 0.000108 

Adjusted R-squared 0.729522     S.D. dependent var 0.010468 

S.E. of regression 0.005444     Akaike info criterion -7.493850 

Sum squared resid 0.000534     Schwarz criterion -7.394277 

Log likelihood 76.93850     Hannan-Quinn criter. -7.474412 

F-statistic 52.24599     Durbin-Watson stat 2.462178 

Prob(F-statistic) 0.000001    

     
      

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2013

Observations 21

Mean      -7.57e-05

Median  -0.000443

Maximum  0.013838

Minimum -0.010489

Std. Dev.   0.006008

Skewness   0.760847

Kurtosis   3.339923

Jarque-Bera  2.127212

Probability  0.345209 

 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 5.203288     Prob. F(2,17) 0.0573 

Obs*R-squared 7.973929     Prob. Chi-Square(2) 0.0586 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
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     F-statistic 3.734357     Prob. F(4,15) 0.0766 

Obs*R-squared 10.47805     Prob. Chi-Square(4) 0.0631 

     
      
Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.985890     Prob. F(8,11) 0.1445 

Obs*R-squared 12.40853     Prob. Chi-Square(8) 0.1339 

     
      

Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.414788     Prob. F(1,19) 0.5272 

Obs*R-squared 0.448655     Prob. Chi-Square(1) 0.5030 

Scaled explained SS 0.338199     Prob. Chi-Square(1) 0.5609 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 17:09 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 3.23E-05 1.23E-05 2.639049 0.0162 

DPRICE 1.04E-10 1.62E-10 0.644040 0.5272 

     
     R-squared 0.021365     Mean dependent var 3.44E-05 

Adjusted R-squared -0.030143     S.D. dependent var 5.34E-05 

S.E. of regression 5.42E-05     Akaike info criterion -16.71630 

Sum squared resid 5.59E-08     Schwarz criterion -16.61682 

Log likelihood 177.5212     Hannan-Quinn criter. -16.69471 

F-statistic 0.414788     Durbin-Watson stat 1.715698 

Prob(F-statistic) 0.527248    

     
      

Probability is greater than 5%, so the model is not heteroscedastic. 
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ARIMAX (2,1,0) Forecasting: Extend workfile size (from 1992-2016) by double clicking the 

range> provide original values in dprice from 2013-2016>Quick >estimate equation> dcpue c 

dprice ar(2)> Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

Lag selection: Lag 4 was selected for the granger causality test 

 

Granger causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/17/21   Time: 21:36 

Sample: 1994 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  0.01216 0.9996 

 DCPUE does not Granger Cause DLICENCES  0.22835 0.9156 

    
     DPRICE does not Granger Cause DCPUE  18  1.41628 0.3043 

 DCPUE does not Granger Cause DPRICE  0.61491 0.6628 

    
     DRAINFALL does not Granger Cause DCPUE  18  0.34439 0.8415 

 DCPUE does not Granger Cause DRAINFALL  0.62599 0.6559 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.84762 0.5294 

 DCPUE does not Granger Cause DTEMPERATURE  0.25641 0.8986 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  0.92173 0.4922 

 DCPUE does not Granger Cause DSTREAMFLOW  1.12828 0.4019 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  0.87129 0.5172 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.67141 0.6281 

    
     
 

No reverse causality was found. 

 

Test for multicollinearity: 
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Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .526 1.900 

dprice .427 2.343 

drainfall .518 1.932 

dtemperature .713 1.402 

dstreamflow .584 1.711 

dstreamwaterlevel .464 2.154 

a. Dependent Variable: dcpue 

 

 

Here multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

 

Regression Test: 

Forward Stepwise:  

Collinearity Diagnosticsa 

Mode

l 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfal

l 

dtemperat

ure 

dstreamfl

ow 

dstreamwat

erlevel 

1 1 2.117 1.000 .01 .02 .00 .07 .00 .06 .08 

2 1.981 1.034 .02 .06 .08 .01 .09 .02 .00 

3 .985 1.466 .73 .01 .04 .02 .02 .00 .00 

4 .761 1.668 .14 .03 .01 .06 .42 .18 .02 

5 .635 1.826 .00 .25 .01 .12 .11 .28 .10 

6 .296 2.677 .00 .07 .23 .62 .35 .00 .45 

7 .225 3.069 .10 .55 .63 .09 .01 .46 .36 

a. Dependent Variable: dcpue 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .001  .867 .396 

dprice 3.961E-8 .000 .523 2.745 .012 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.095b -.382 .707 -.087 .607 

drainfall -.024b -.124 .902 -.028 .999 

dtemperature -.147b -.686 .501 -.156 .809 

dstreamflow -.165b -.834 .415 -.188 .940 

dstreamwaterlevel .117b .601 .555 .137 .995 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dprice 

 

Regression Test : Eviws: dcpue c dprice 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/17/21   Time: 22:02 

Sample (adjusted): 1995 2016 

Included observations: 22 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001188 0.001371 0.866636 0.3964 

DPRICE 3.96E-08 1.44E-08 2.745460 0.0125 

     
     R-squared 0.273719     Mean dependent var 0.000960 

Adjusted R-squared 0.237405     S.D. dependent var 0.007349 



  

340 

 

S.E. of regression 0.006417     Akaike info criterion -7.173098 

Sum squared resid 0.000824     Schwarz criterion -7.073913 

Log likelihood 80.90408     Hannan-Quinn criter. -7.149733 

F-statistic 7.537550     Durbin-Watson stat 2.557683 

Prob(F-statistic) 0.012470    

     
      
 

Create a dummy variable and interact with DPrice from 2015: 

dcpue dprice dummy dummyprice  c 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:22 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 3.82E-08 2.08E-08 1.837903 0.0826 

DUMMY 0.001160 0.007038 0.164822 0.8709 

DUMMYPRICE 6.91E-09 3.83E-08 0.180427 0.8588 

C 0.001171 0.001523 0.768992 0.4519 

     
     R-squared 0.275254     Mean dependent var 0.000960 

Adjusted R-squared 0.154463     S.D. dependent var 0.007349 

S.E. of regression 0.006757     Akaike info criterion -6.993397 

Sum squared resid 0.000822     Schwarz criterion -6.795025 

Log likelihood 80.92736     Hannan-Quinn criter. -6.946666 

F-statistic 2.278767     Durbin-Watson stat 2.574422 

Prob(F-statistic) 0.114175    

     
      

 

In the regression, the dummy variable and interacted dummy term for dprice are not significant. 

significant, hence dummy terms will be removed from the regression and rerun the model. 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:25 

Sample: 1995 2016  

Included observations: 22 
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Variable Coefficient Std. Error t-Statistic Prob.   

     
     DPRICE 3.96E-08 1.44E-08 2.745460 0.0125 

C 0.001188 0.001371 0.866636 0.3964 

     
     R-squared 0.273719     Mean dependent var 0.000960 

Adjusted R-squared 0.237405     S.D. dependent var 0.007349 

S.E. of regression 0.006417     Akaike info criterion -7.173098 

Sum squared resid 0.000824     Schwarz criterion -7.073913 

Log likelihood 80.90408     Hannan-Quinn criter. -7.149733 

F-statistic 7.537550     Durbin-Watson stat 2.557683 

Prob(F-statistic) 0.012470    

     
     
Unit root test of residual 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.926914  0.0001 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 22:03 

Sample (adjusted): 1997 2016 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.922655 0.324394 -5.926914 0.0000 

D(R(-1)) 0.420923 0.176958 2.378662 0.0294 

C -0.000490 0.001020 -0.480288 0.6371 

     
     R-squared 0.766602     Mean dependent var 0.000521 

Adjusted R-squared 0.739143     S.D. dependent var 0.008852 

S.E. of regression 0.004521     Akaike info criterion -7.822691 
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Sum squared resid 0.000347     Schwarz criterion -7.673331 

Log likelihood 81.22691     Hannan-Quinn criter. -7.793534 

F-statistic 27.91844     Durbin-Watson stat 1.937354 

Prob(F-statistic) 0.000004    

     
      

Residuals do not have unit root. 

Serial correlation test: EViews 

 

Selection of MA and AR term: 

 

Residual is flat and in white noise. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1995 2016

Observations 22

Mean       9.86e-20

Median  -0.001026

Maximum  0.013815

Minimum -0.010934

Std. Dev.   0.006263

Skewness   0.388700

Kurtosis   2.696962

Jarque-Bera  0.638168

Probability  0.726815 
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Breusch-Godfrey Serial Correlation LM Test 

 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 4.520867     Prob. F(2,18) 0.0757 

Obs*R-squared 7.355969     Prob. Chi-Square(2) 0.0653 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.885052     Prob. F(4,16) 0.0665 

Obs*R-squared 9.218687     Prob. Chi-Square(4) 0.0659 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.220193     Prob. F(8,12) 0.3647 

Obs*R-squared 9.868507     Prob. Chi-Square(8) 0.2744 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.514169     Prob. F(1,20) 0.4816 

Obs*R-squared 0.551410     Prob. Chi-Square(1) 0.4577 

Scaled explained SS 0.511298     Prob. Chi-Square(1) 0.4746 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 13:56 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 4.71E-05 1.73E-05 2.719229 0.0132 

DSTREAMFLOW 1.46E-10 2.04E-10 0.717056 0.4816 

     
     R-squared 0.025064     Mean dependent var 4.72E-05 

Adjusted R-squared -0.023683     S.D. dependent var 8.04E-05 
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S.E. of regression 8.13E-05     Akaike info criterion -15.91036 

Sum squared resid 1.32E-07     Schwarz criterion -15.81117 

Log likelihood 177.0139     Hannan-Quinn criter. -15.88699 

F-statistic 0.514169     Durbin-Watson stat 1.791815 

Prob(F-statistic) 0.481631    

     
      

 

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1995-2019) by double clicking the 

range> provide original values in dprice from 2017-2019>Quick >estimate equation> dcpue  c 

dprice > Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .466 2.144 

price .543 1.843 

rainfall .160 6.267 

temperature .246 4.059 

streamflow .278 3.596 

streamwaterlevel .539 1.856 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables. 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 
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Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:47 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000299 0.000434 -0.688945 0.5051 

PRICE 1.67E-08 2.55E-08 0.653361 0.5269 

RAINFALL 5.48E-06 6.81E-06 0.804964 0.4379 

TEMPERATURE 0.001516 0.005363 0.282789 0.7826 

STREAMFLOW -4.89E-09 2.66E-09 -1.841787 0.0426 

STREAMWATERLEVEL 0.000463 0.002147 0.215450 0.8334 

C 0.002052 0.134500 0.015258 0.9881 

     
     R-squared 0.525728     Mean dependent var 0.038495 

Adjusted R-squared 0.267035     S.D. dependent var 0.004646 

S.E. of regression 0.003978     Akaike info criterion -7.930837 

Sum squared resid 0.000174     Schwarz criterion -7.584582 

Log likelihood 78.37754     Hannan-Quinn criter. -7.883093 

F-statistic 2.032243     Durbin-Watson stat 2.381818 

Prob(F-statistic) 0.145951    

     
      

Diagnostic checking:  

Normality test:  

 

0

1

2

3

4

5

6

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1993 2010

Observations 18

Mean      -1.93e-19

Median   6.77e-05

Maximum  0.007690

Minimum -0.004134

Std. Dev.   0.003200

Skewness   0.731385

Kurtosis   2.897185

Jarque-Bera  1.612701

Probability  0.446485 
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Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.579917     Prob. F(2,9) 0.5796 

Obs*R-squared 2.054856     Prob. Chi-Square(2) 0.3579 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.887397     Prob. F(4,7) 0.5182 

Obs*R-squared 6.056406     Prob. Chi-Square(4) 0.1950 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.766262     Prob. F(8,3) 0.3475 

Obs*R-squared 14.84765     Prob. Chi-Square(8) 0.0622 

     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.997386     Prob. F(6,11) 0.1516 

Obs*R-squared 9.385431     Prob. Chi-Square(6) 0.1530 

Scaled explained SS 3.324867     Prob. Chi-Square(6) 0.7671 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:49 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000110 0.000399 0.275634 0.7879 

LICENCES 1.60E-06 1.29E-06 1.240888 0.2405 

PRICE -1.34E-10 7.57E-11 -1.774673 0.1036 

RAINFALL 1.25E-08 2.02E-08 0.621139 0.5472 

TEMPERATURE -4.65E-06 1.59E-05 -0.292441 0.7754 
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STREAMFLOW -1.34E-11 7.87E-12 -1.703415 0.1165 

STREAMWATERLEVEL -1.46E-06 6.36E-06 -0.230049 0.8223 

     
     R-squared 0.521413     Mean dependent var 9.67E-06 

Adjusted R-squared 0.260365     S.D. dependent var 1.37E-05 

S.E. of regression 1.18E-05     Akaike info criterion -19.57387 

Sum squared resid 1.53E-09     Schwarz criterion -19.22762 

Log likelihood 183.1649     Hannan-Quinn criter. -19.52613 

F-statistic 1.997386     Durbin-Watson stat 2.346309 

Prob(F-statistic) 0.151591    

     
      

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .588 1.702 

price .383 2.609 

rainfall .258 3.879 

temperature .343 2.915 

streamflow .500 2.002 

streamwaterlevel .282 3.552 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables.  

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:52 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     LICENCES -0.000808 0.000406 -1.988070 0.0701 

PRICE 7.47E-08 1.36E-08 5.486018 0.0001 

RAINFALL -1.93E-07 4.93E-06 -0.039219 0.9694 

TEMPERATURE -0.002095 0.004801 -0.436298 0.6704 

STREAMFLOW 1.06E-09 1.32E-09 0.803213 0.4375 

STREAMWATERLEVEL -0.002604 0.002962 -0.879068 0.3966 

C 0.096471 0.117120 0.823689 0.4262 

     
     R-squared 0.879845     Mean dependent var 0.042802 

Adjusted R-squared 0.819767     S.D. dependent var 0.009997 

S.E. of regression 0.004244     Akaike info criterion -7.809331 

Sum squared resid 0.000216     Schwarz criterion -7.461379 

Log likelihood 81.18864     Hannan-Quinn criter. -7.750444 

F-statistic 14.64512     Durbin-Watson stat 1.875979 

Prob(F-statistic) 0.000068    

     
      
 

 

Diagnostic Checking: 

Normality test: 
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-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean      -1.10e-17

Median   0.000187

Maximum  0.009909

Minimum -0.006314

Std. Dev.   0.003465

Skewness   0.909255

Kurtosis   4.875431

Jarque-Bera  5.402511

Probability  0.067121 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 1.052807     Prob. F(2,10) 0.3847 

Obs*R-squared 3.304803     Prob. Chi-Square(2) 0.1916 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.612343     Prob. F(4,8) 0.2617 

Obs*R-squared 8.480510     Prob. Chi-Square(4) 0.0755 

     
      

Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.564322     Prob. F(8,4) 0.1895 

Obs*R-squared 15.89980     Prob. Chi-Square(8) 0.0638 

     
      

Heteroscedasticity Test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.964215     Prob. F(6,12) 0.1505 

Obs*R-squared 9.414244     Prob. Chi-Square(6) 0.1516 

Scaled explained SS 7.276638     Prob. Chi-Square(6) 0.2960 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:55 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 2.60E-05 0.000552 0.047067 0.9632 

LICENCES 3.13E-07 1.92E-06 0.163637 0.8727 

PRICE -7.78E-12 6.42E-11 -0.121034 0.9057 

RAINFALL 8.67E-09 2.32E-08 0.373305 0.7154 

TEMPERATURE 9.63E-07 2.26E-05 0.042523 0.9668 

STREAMFLOW 2.67E-12 6.24E-12 0.427416 0.6766 

STREAMWATERLEVEL -2.96E-05 1.40E-05 -2.121342 0.0554 
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R-squared 0.495487     Mean dependent var 1.14E-05 

Adjusted R-squared 0.243230     S.D. dependent var 2.30E-05 

S.E. of regression 2.00E-05     Akaike info criterion -18.52288 

Sum squared resid 4.81E-09     Schwarz criterion -18.17493 

Log likelihood 182.9674     Hannan-Quinn criter. -18.46400 

F-statistic 1.964215     Durbin-Watson stat 1.935008 

Prob(F-statistic) 0.150536    

     
      
 

Sample 1994-2016:  

 

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .581 1.722 

price .635 1.574 

rainfall .357 2.799 

temperature .491 2.036 

streamflow .454 2.203 

streamwaterlevel .342 2.925 

a. Dependent Variable: cpue 

 

Create a dummy variable and interact with Dlicences and DPrice from 2015: 

cpue licences price rainfall temperature streamflow streamwaterlevel dummylicences 

dummyprice  c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:29 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     LICENCES -0.000916 0.000271 -3.382284 0.0061 

PRICE 8.18E-08 8.32E-09 9.835388 0.0000 

RAINFALL -2.82E-06 3.29E-06 -0.857646 0.4094 

TEMPERATURE -0.005532 0.002740 -2.018781 0.0686 

STREAMFLOW 3.94E-10 8.70E-10 0.453178 0.6592 

STREAMWATERLEVEL 0.002359 0.002408 0.979385 0.3484 

DUMMYLICENCES 0.002338 0.001166 2.006092 0.0701 

DUMMYPRICE -1.07E-07 6.28E-08 -1.708772 0.1155 

C 0.173384 0.066913 2.591196 0.0251 

     
     R-squared 0.970097     Mean dependent var 0.045918 

Adjusted R-squared 0.948349     S.D. dependent var 0.012103 

S.E. of regression 0.002751     Akaike info criterion -8.651774 

Sum squared resid 8.32E-05     Schwarz criterion -8.203694 

Log likelihood 95.51774     Hannan-Quinn criter. -8.564304 

F-statistic 44.60670     Durbin-Watson stat 2.864614 

Prob(F-statistic) 0.000000    

     
      

 

Here ‘dummy’ variable was omitted as the variables is collinear. In the regression, the dummy 

variable and interacted dummy term for dlicences and dprice are not significant, hence dummy 

terms will be removed from the regression and rerun the model. 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/28/21   Time: 19:31 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001358 0.000262 -5.182234 0.0002 

PRICE 7.49E-08 7.99E-09 9.364375 0.0000 

RAINFALL -1.57E-06 3.50E-06 -0.448351 0.6613 

TEMPERATURE -0.005469 0.003266 -1.674871 0.1178 

STREAMFLOW 1.53E-09 1.01E-09 1.511834 0.1545 

STREAMWATERLEVEL 0.000950 0.002774 0.342425 0.7375 

C 0.184945 0.081505 2.269113 0.0409 

     
     R-squared 0.941527     Mean dependent var 0.045918 

Adjusted R-squared 0.914539     S.D. dependent var 0.012103 
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S.E. of regression 0.003538     Akaike info criterion -8.181173 

Sum squared resid 0.000163     Schwarz criterion -7.832666 

Log likelihood 88.81173     Hannan-Quinn criter. -8.113141 

F-statistic 34.88741     Durbin-Watson stat 1.635004 

Prob(F-statistic) 0.000000    

     
      

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:58 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001358 0.000262 -5.182234 0.0002 

PRICE 7.49E-08 7.99E-09 9.364375 0.0000 

RAINFALL -1.57E-06 3.50E-06 -0.448351 0.6613 

TEMPERATURE -0.005469 0.003266 -1.674871 0.1178 

STREAMFLOW 1.53E-09 1.01E-09 1.511834 0.1545 

STREAMWATERLEVEL 0.000950 0.002774 0.342425 0.7375 

C 0.184945 0.081505 2.269113 0.0409 

     
     R-squared 0.941527     Mean dependent var 0.045918 

Adjusted R-squared 0.914539     S.D. dependent var 0.012103 

S.E. of regression 0.003538     Akaike info criterion -8.181173 

Sum squared resid 0.000163     Schwarz criterion -7.832666 

Log likelihood 88.81173     Hannan-Quinn criter. -8.113141 

F-statistic 34.88741     Durbin-Watson stat 1.635004 

Prob(F-statistic) 0.000000    

     
      

 

Diagnostic Checking: 

Normality Test: 
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Series: Residuals

Sample 1997 2016

Observations 20

Mean       3.04e-17

Median   0.000292

Maximum  0.004674

Minimum -0.007114

Std. Dev.   0.002927

Skewness  -0.657480

Kurtosis   3.348654

Jarque-Bera  1.542232

Probability  0.462497 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.271734     Prob. F(2,11) 0.7670 

Obs*R-squared 0.941602     Prob. Chi-Square(2) 0.6245 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.268919     Prob. F(4,9) 0.3505 

Obs*R-squared 7.211980     Prob. Chi-Square(4) 0.1251 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 5.105348     Prob. F(8,5) 0.0646 

Obs*R-squared 17.81863     Prob. Chi-Square(8) 0.0626 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.944065     Prob. F(6,13) 0.4972 
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Obs*R-squared 6.069730     Prob. Chi-Square(6) 0.4154 

Scaled explained SS 3.011516     Prob. Chi-Square(6) 0.8074 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 13:00 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000452 0.000297 1.518472 0.1528 

LICENCES -1.53E-06 9.56E-07 -1.595136 0.1347 

PRICE 1.92E-11 2.92E-11 0.658447 0.5217 

RAINFALL -1.15E-08 1.28E-08 -0.902767 0.3831 

TEMPERATURE -1.70E-05 1.19E-05 -1.429141 0.1766 

STREAMFLOW 8.17E-13 3.69E-12 0.221479 0.8282 

STREAMWATERLEVEL 5.07E-06 1.01E-05 0.501249 0.6246 

     
     R-squared 0.303487     Mean dependent var 8.14E-06 

Adjusted R-squared -0.017981     S.D. dependent var 1.28E-05 

S.E. of regression 1.29E-05     Akaike info criterion -19.40805 

Sum squared resid 2.17E-09     Schwarz criterion -19.05954 

Log likelihood 201.0805     Hannan-Quinn criter. -19.34002 

F-statistic 0.944065     Durbin-Watson stat 1.915901 

Prob(F-statistic) 0.497188    

     
     

 

5. Townsville 

Data cleaning and processing: Box plot shows no outlier is detected. 

Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test: All variable has unit root, so I took1st difference of all the series. Now the series 

is stationary.  

 

Lag selection: Lag 4 was selected for the granger causality test. 
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Granger Causality test:  

 

Pairwise Granger Causality Tests 

Date: 03/15/21   Time: 15:10 

Sample: 1990 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  1.12710 0.4161 

 DCPUE does not Granger Cause DLICENCES  0.41098 0.7960 

    
     DPRICE does not Granger Cause DCPUE  16  1.10042 0.4263 

 DCPUE does not Granger Cause DPRICE  1.51239 0.2965 

    
     DRAINFALL does not Granger Cause DCPUE  16  0.45234 0.7687 

 DCPUE does not Granger Cause DRAINFALL  0.07793 0.9867 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  1.54185 0.2891 

 DCPUE does not Granger Cause DTEMPERATURE  0.09048 0.9825 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  0.07809 0.9866 

 DCPUE does not Granger Cause DSTREAMFLOW  0.25664 0.8967 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  0.09766 0.9799 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.17250 0.9456 

    
     

No reverse causality was found. 

Test for multicollinearity: SPSS 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .806 1.241 

dprice .643 1.556 

drainfall .296 3.376 

dtemperature .809 1.236 

dstreamflow .086 11.651 

dstreamwaterlevel .062 16.099 
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a. Dependent Variable: dcpue 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicen

ce dprice 

drainfa

ll 

dtemperat

ure 

dstreamfl

ow 

dstreamw

aterlevel 

1 1 2.896 1.000 .00 .00 .03 .02 .03 .01 .01 

2 1.226 1.537 .01 .42 .11 .00 .01 .00 .00 

3 1.106 1.618 .60 .02 .04 .00 .13 .00 .00 

4 .760 1.952 .22 .05 .03 .00 .68 .01 .00 

5 .521 2.357 .03 .06 .05 .33 .08 .04 .00 

6 .456 2.521 .13 .42 .69 .07 .05 .00 .01 

7 .035 9.149 .02 .02 .06 .56 .03 .94 .98 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is present in streamflow and streamwaterlevel. Tolerance is less than 

0.1 and VIF is more than 10. 

 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

 

Model Summary 

Mod

el R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .627a .393 .176 .00798142

4 

.393 1.814 5 14 .175 

a. Predictors: (Constant), dstreamflow, dlicence, dtemperature, drainfall, dprice 
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Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Mode

l R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .636a .405 .192 .00790526

3 

.405 1.903 5 14 .158 

a. Predictors: (Constant), dstreamwaterlevel, dlicence, dtemperature, dprice, drainfall 

 

Model with streamwaterlevel gives better R2 than streamflow. So, I have deleted streamflow 

from the analysis. 

Multiple Regression Test: SPSS 

Stepwise (backward) regression in SPSS 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .630 .539 

dlicence -.001 .000 -.471 -2.083 .056 

dprice 3.078E-8 .000 .343 1.386 .187 

drainfall -9.942E-7 .000 -.079 -.266 .794 

dtemperature .004 .004 .248 1.101 .290 

dstreamwaterlevel .006 .005 .344 1.169 .262 

2 (Constant) .001 .002  .661 .519 

dlicence -.001 .000 -.469 -2.144 .049 

dprice 2.981E-8 .000 .333 1.405 .180 

dtemperature .004 .003 .260 1.220 .241 

dstreamwaterlevel .005 .004 .297 1.298 .214 
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3 (Constant) .001 .002  .774 .450 

dlicence -.001 .000 -.502 -2.274 .037 

dprice 2.839E-8 .000 .317 1.320 .205 

dstreamwaterlevel .004 .004 .221 .988 .338 

4 (Constant) .001 .002  .728 .477 

dlicence -.001 .000 -.539 -2.480 .024 

dprice 3.739E-8 .000 .417 1.920 .072 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 drainfall -.079b -.266 .794 -.071 .483 

3 drainfall -.147c -.503 .622 -.129 .505 

dtemperature .260c 1.220 .241 .301 .876 

4 drainfall .049d .214 .833 .053 .834 

dtemperature .185d .883 .390 .216 .946 

dstreamwaterlevel .221d .988 .338 .240 .821 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dtemperature, dprice 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dprice 

d. Predictors in the Model: (Constant), dlicence, dprice 

 

Regression Test : Eviws: dcpue c dlicences  

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/15/21   Time: 15:39 

Sample (adjusted): 1991 2010 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     C 0.002106 0.001864 1.129904 0.2733 

DLICENCES -0.000777 0.000435 -1.786939 0.0508 

     
     R-squared 0.150669     Mean dependent var 0.002262 

Adjusted R-squared 0.103484     S.D. dependent var 0.008795 

S.E. of regression 0.008327     Akaike info criterion -6.643916 

Sum squared resid 0.001248     Schwarz criterion -6.544343 

Log likelihood 68.43916     Hannan-Quinn criter. -6.624478 

F-statistic 3.193150     Durbin-Watson stat 2.427028 

Prob(F-statistic) 0.090800    

     
      

 

Unit root test for the residuals of regression model (including dcpue c dlicences): 

Getting residuals in EViws:  

Quick> estimate equation>Provide variables (dcpue c dlicences)> ok> view tab> Actual, fitted, 

residual> Actual, fitted, residual table 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 2 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.128781  0.0009 

Test critical values: 1% level  -3.886751  

 5% level  -3.052169  

 10% level  -2.666593  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 17 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/15/21   Time: 15:41 

Sample (adjusted): 1994 2010 

Included observations: 17 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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R(-1) -2.694762 0.525420 -5.128781 0.0002 

D(R(-1)) 1.122522 0.380153 2.952816 0.0112 

D(R(-2)) 0.508743 0.236203 2.153835 0.0506 

C 0.000260 0.001652 0.157061 0.8776 

     
     R-squared 0.794609     Mean dependent var 0.000241 

Adjusted R-squared 0.747211     S.D. dependent var 0.013502 

S.E. of regression 0.006789     Akaike info criterion -6.944778 

Sum squared resid 0.000599     Schwarz criterion -6.748728 

Log likelihood 63.03062     Hannan-Quinn criter. -6.925291 

F-statistic 16.76464     Durbin-Watson stat 1.948780 

Prob(F-statistic) 0.000094    

     
      
 

The residual has no unit root. 

 

Serial correlation test: The probability of Q stat (Ljung-Box test) is more than .05. So, I should 

accept the null hypothesis. (Null: there is no serial correlation).  

 

Correlogram plot: 

 

 

The residuals are not flat and no serial correlation i.e. in white noise. 

 

Significance Test of the ARIMAX model 

Here all of the variables are significant.  

Diagnostic checking: 
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Normality test of residuals: 

 

0
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-0.02 -0.01 0.00 0.01

Series: Residuals

Sample 1991 2010

Observations 20

Mean       5.20e-19

Median   0.000736

Maximum  0.011708

Minimum -0.020380

Std. Dev.   0.008105

Skewness  -0.654806

Kurtosis   3.114857

Jarque-Bera  1.440229

Probability  0.486697 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution. 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.794675     Prob. F(2,16) 0.0910 

Obs*R-squared 5.177877     Prob. Chi-Square(2) 0.0751 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.931730     Prob. F(4,14) 0.0642 

Obs*R-squared 10.58093     Prob. Chi-Square(4) 0.0617 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.847404     Prob. F(8,10) 0.0652 

Obs*R-squared 10.09554     Prob. Chi-Square(8) 0.0673 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
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F-statistic 0.277630     Prob. F(1,18) 0.6047 

Obs*R-squared 0.303792     Prob. Chi-Square(1) 0.5815 

Scaled explained SS 0.260203     Prob. Chi-Square(1) 0.6100 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/15/21   Time: 15:45 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 6.29E-05 2.13E-05 2.961181 0.0084 

DLICENCES 2.61E-06 4.95E-06 0.526906 0.6047 

     
     R-squared 0.015190     Mean dependent var 6.24E-05 

Adjusted R-squared -0.039522     S.D. dependent var 9.31E-05 

S.E. of regression 9.49E-05     Akaike info criterion -15.59203 

Sum squared resid 1.62E-07     Schwarz criterion -15.49245 

Log likelihood 157.9203     Hannan-Quinn criter. -15.57259 

F-statistic 0.277630     Durbin-Watson stat 1.747298 

Prob(F-statistic) 0.604692    

     
      

Probability is greater than 5%, so the model is not heteroscedastic. 

 

ARIMAX (0,1,0) Forecasting: 

  

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dlicences from 2010-2013>Quick >estimate equation> dcpue c dlicences > Forecast> Forecast 

sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  The series has unit root, hence 1st difference of the series has taken and the 

final series has no unit root 

Lag selection: Varsoc dcpue dlicences dprice drainfall dtemperature dstreamflow 

dstreamwaterlevel 

Granger Causality test: 
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Pairwise Granger Causality Tests 

Date: 03/15/21   Time: 16:10 

Sample: 1992 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  0.41963 0.7906 

 DCPUE does not Granger Cause DLICENCES  0.74696 0.5866 

    
     DPRICE does not Granger Cause DCPUE  17  1.37424 0.3245 

 DCPUE does not Granger Cause DPRICE  1.59970 0.2647 

    
     DRAINFALL does not Granger Cause DCPUE  17  1.75517 0.2309 

 DCPUE does not Granger Cause DRAINFALL  0.05749 0.9926 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  1.00790 0.4575 

 DCPUE does not Granger Cause DTEMPERATURE  0.33422 0.8476 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  0.54296 0.7094 

 DCPUE does not Granger Cause DSTREAMFLOW  0.27404 0.8867 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  0.17823 0.9433 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.19829 0.9323 

    
     

No reverse causality detected. 

Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .739 1.354 

dprice .458 2.184 

drainfall .421 2.373 

dtemperature .832 1.202 

dstreamflow .158 6.313 

dstreamwaterlevel .127 7.852 

a. Dependent Variable: dcpue 
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Collinearity Diagnosticsa 

Mode

l 

Dimensio

n 

Eigenvalu

e 

Condition 

Index 

Variance Proportions 

(Constan

t) 

dlicenc

e dprice drainfall 

dtemperatu

re 

dstreamflo

w 

dstreamwat

erlevel 

1 1 3.174 1.000 .00 .00 .03 .03 .02 .01 .01 

2 1.175 1.644 .00 .47 .05 .01 .01 .00 .00 

3 1.005 1.777 .96 .00 .00 .00 .01 .00 .00 

4 .784 2.012 .02 .02 .02 .03 .91 .00 .00 

5 .498 2.525 .01 .11 .22 .47 .02 .04 .00 

6 .290 3.306 .00 .38 .63 .17 .02 .10 .06 

7 .074 6.529 .01 .02 .05 .30 .00 .84 .92 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test : 

Forward stepwise regression: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .305 .764 

dstreamflow 8.859E-10 .000 .597 3.243 .004 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 
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Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.219b -1.205 .244 -.273 1.000 

dprice .128b .535 .599 .125 .619 

drainfall -.164b -.713 .485 -.166 .655 

dtemperature .108b .534 .600 .125 .855 

dstreamwaterlevel .248b .587 .565 .137 .197 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/15/21   Time: 16:20 

Sample (adjusted): 1993 2013 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000586 0.001923 0.304597 0.7640 

DSTREAMFLOW 8.86E-10 2.73E-10 3.243113 0.0043 

     
     R-squared 0.356320     Mean dependent var 0.000712 

Adjusted R-squared 0.322442     S.D. dependent var 0.010705 

S.E. of regression 0.008811     Akaike info criterion -6.535129 

Sum squared resid 0.001475     Schwarz criterion -6.435651 

Log likelihood 70.61885     Hannan-Quinn criter. -6.513540 

F-statistic 10.51778     Durbin-Watson stat 2.120167 

Prob(F-statistic) 0.004279    

     
      

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 
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Augmented Dickey-Fuller test statistic -6.536478  0.0000 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/12/21   Time: 22:12 

Sample (adjusted): 1995 2013 

Included observations: 19 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -2.354515 0.360212 -6.536478 0.0000 

D(R(-1)) 0.549979 0.206306 2.665848 0.0169 

C 0.001310 0.001825 0.717695 0.4833 

     
     R-squared 0.833523     Mean dependent var -1.03E-05 

Adjusted R-squared 0.812713     S.D. dependent var 0.018278 

S.E. of regression 0.007910     Akaike info criterion -6.697418 

Sum squared resid 0.001001     Schwarz criterion -6.548296 

Log likelihood 66.62547     Hannan-Quinn criter. -6.672180 

F-statistic 40.05464     Durbin-Watson stat 1.692710 

Prob(F-statistic) 0.000001    

     
      

The residual has no unit root. 

Serial correlation test: EViews 
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The residuals are flat and no serial correlation. 

Diagnostic reports: 

Normality test of residuals: 

0

1

2

3

4

5

6

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2013

Observations 21

Mean      -4.96e-19

Median   0.003502

Maximum  0.014390

Minimum -0.016138

Std. Dev.   0.008588

Skewness  -0.422911

Kurtosis   2.160641

Jarque-Bera  1.242444

Probability  0.537287 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.883893     Prob. F(2,17) 0.4313 

Obs*R-squared 1.978045     Prob. Chi-Square(2) 0.3719 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 1.049193     Prob. F(4,15) 0.4150 

Obs*R-squared 4.590993     Prob. Chi-Square(4) 0.3319 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.747787     Prob. F(8,11) 0.6524 

Obs*R-squared 7.397598     Prob. Chi-Square(8) 0.4944 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.047471     Prob. F(1,19) 0.8298 

Obs*R-squared 0.052337     Prob. Chi-Square(1) 0.8190 

Scaled explained SS 0.024862     Prob. Chi-Square(1) 0.8747 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/15/21   Time: 16:24 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 7.03E-05 1.73E-05 4.054646 0.0007 

DSTREAMFLOW -5.37E-13 2.46E-12 -0.217878 0.8298 

     
     R-squared 0.002492     Mean dependent var 7.02E-05 

Adjusted R-squared -0.050008     S.D. dependent var 7.75E-05 

S.E. of regression 7.95E-05     Akaike info criterion -15.95213 

Sum squared resid 1.20E-07     Schwarz criterion -15.85266 

Log likelihood 169.4974     Hannan-Quinn criter. -15.93054 

F-statistic 0.047471     Durbin-Watson stat 1.563044 

Prob(F-statistic) 0.829847    

     
      
 

Probability is greater than 5%, so the model is not heteroscedastic. 
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in dstreamflow from 2013-2016>Quick >estimate equation> 

dcpue  c dstreamflow> Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

 

Lag selection: Lag 4 was selected for the granger causality test 

 

Granger causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/15/21   Time: 16:37 

Sample: 1994 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  0.54912 0.7047 

 DCPUE does not Granger Cause DLICENCES  0.59399 0.6760 

    
     DPRICE does not Granger Cause DCPUE  18  0.81429 0.5469 

 DCPUE does not Granger Cause DPRICE  1.36714 0.3189 

    
     DRAINFALL does not Granger Cause DCPUE  18  1.95207 0.1859 

 DCPUE does not Granger Cause DRAINFALL  0.21587 0.9230 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.96242 0.4729 

 DCPUE does not Granger Cause DTEMPERATURE  1.05917 0.4301 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  0.55448 0.7013 

 DCPUE does not Granger Cause DSTREAMFLOW  0.19636 0.9341 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  0.32490 0.8545 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.02039 0.9990 

    
     
 

No reverse causality was found. 
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Test for multicollinearity: 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .717 1.395 

dprice .447 2.235 

drainfall .424 2.357 

dtemperature .838 1.193 

dstreamflow .159 6.283 

dstreamwaterlevel .130 7.707 

a. Dependent Variable: dcpue 

 

 

Here multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

 

Regression Test: 

 

Forward Stepwise:  

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenva

lue 

Condition 

Index 

Variance Proportions 

(Const

ant) 

dlicen

ce dprice 

drainf

all 

dtempera

ture 

dstreamf

low 

dstreamw

aterlevel 

1 1 3.142 1.000 .00 .00 .03 .03 .02 .01 .01 

2 1.284 1.564 .15 .30 .03 .01 .04 .00 .00 

3 .950 1.819 .73 .14 .03 .00 .03 .00 .00 

4 .754 2.041 .11 .01 .03 .00 .90 .00 .00 

5 .489 2.534 .00 .08 .11 .56 .00 .06 .00 

6 .307 3.198 .00 .43 .72 .07 .01 .07 .06 

7 .074 6.502 .00 .03 .07 .32 .00 .86 .92 

a. Dependent Variable: dcpue 



  

371 

 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .433 .670 

dstreamflow 8.673E-10 .000 .601 3.367 .003 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.257b -1.479 .155 -.321 1.000 

dprice .124b .542 .594 .123 .628 

drainfall -.059b -.267 .793 -.061 .678 

dtemperature .083b .424 .676 .097 .875 

dstreamwaterlevel .253b .626 .539 .142 .202 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Regression Test : Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/15/21   Time: 16:42 

Sample (adjusted): 1995 2016 

Included observations: 22 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000767 0.001772 0.432848 0.6698 

DSTREAMFLOW 8.67E-10 2.58E-10 3.367062 0.0031 

     
     R-squared 0.361779     Mean dependent var 0.000725 
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Adjusted R-squared 0.329868     S.D. dependent var 0.010152 

S.E. of regression 0.008311     Akaike info criterion -6.656002 

Sum squared resid 0.001381     Schwarz criterion -6.556816 

Log likelihood 75.21602     Hannan-Quinn criter. -6.632636 

F-statistic 11.33710     Durbin-Watson stat 2.357380 

Prob(F-statistic) 0.003065    

     
      

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.284354  0.0004 

Test critical values: 1% level  -3.788030  

 5% level  -3.012363  

 10% level  -2.646119  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/15/21   Time: 16:43 

Sample (adjusted): 1996 2016 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.216229 0.230157 -5.284354 0.0000 

C -0.000159 0.001820 -0.087362 0.9313 

     
     R-squared 0.595093     Mean dependent var 0.000322 

Adjusted R-squared 0.573783     S.D. dependent var 0.012756 

S.E. of regression 0.008328     Akaike info criterion -6.648039 

Sum squared resid 0.001318     Schwarz criterion -6.548561 

Log likelihood 71.80441     Hannan-Quinn criter. -6.626450 

F-statistic 27.92440     Durbin-Watson stat 1.881762 

Prob(F-statistic) 0.000042    
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Residuals do not have unit root. 

Serial correlation test: EViews 

 

Selection of MA and AR term: 

The residuals are flat and no serial correlation i.e. in white noise. 

Diagnostic reports: 

Normality test of residuals: 

0

1

2

3

4

5

6

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1995 2016

Observations 22

Mean      -1.58e-19

Median   0.003119

Maximum  0.014261

Minimum -0.016360

Std. Dev.   0.008111

Skewness  -0.571267

Kurtosis   2.484618

Jarque-Bera  1.440085

Probability  0.486732 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 0.456952     Prob. F(2,18) 0.6404 

Obs*R-squared 1.063022     Prob. Chi-Square(2) 0.5877 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.005181     Prob. F(4,16) 0.4337 

Obs*R-squared 4.418218     Prob. Chi-Square(4) 0.3524 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.129448     Prob. F(8,12) 0.4098 

Obs*R-squared 9.449836     Prob. Chi-Square(8) 0.3058 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.080097     Prob. F(1,20) 0.7801 

Obs*R-squared 0.087756     Prob. Chi-Square(1) 0.7670 

Scaled explained SS 0.053836     Prob. Chi-Square(1) 0.8165 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/15/21   Time: 16:46 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 6.28E-05 1.71E-05 3.675611 0.0015 

DSTREAMFLOW -7.02E-13 2.48E-12 -0.283015 0.7801 

     
     R-squared 0.003989     Mean dependent var 6.28E-05 

Adjusted R-squared -0.045812     S.D. dependent var 7.83E-05 

S.E. of regression 8.01E-05     Akaike info criterion -15.94054 

Sum squared resid 1.28E-07     Schwarz criterion -15.84135 

Log likelihood 177.3459     Hannan-Quinn criter. -15.91717 

F-statistic 0.080097     Durbin-Watson stat 1.842477 

Prob(F-statistic) 0.780074    
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1996-2019) by double clicking the 

range> provide original values in dstreamflow from 2017-2019>Quick >estimate equation> 

dcpue  c dstreamflow> Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .628 1.593 

price .751 1.331 

rainfall .143 7.017 

temperature .664 1.506 

streamflow .055 18.335 

streamwaterlevel .027 36.383 

a. Dependent Variable: cpue 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamwaterlevel showed improved result than the other. So, I deleted streamwater 

from the model. 

Result of including streamflow and excluding stream water level in the model: 
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Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .942a .886 .839 .005926913 

a. Predictors: (Constant), streamflow, price, licence, temperature, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .941a .886 .839 .005930431 

a. Predictors: (Constant), streamwaterlevel, price, licence, temperature, 

rainfall 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 12:51 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001237 0.000290 -4.265821 0.0008 

PRICE 6.58E-08 6.28E-09 10.48023 0.0000 

RAINFALL -4.33E-07 9.62E-06 -0.045042 0.9647 

TEMPERATURE -0.005114 0.006028 -0.848410 0.4105 

STREAMFLOW 8.00E-10 9.04E-10 0.884199 0.3915 

C 0.178083 0.148224 1.201448 0.2495 

     
     R-squared 0.929980     Mean dependent var 0.050774 

Adjusted R-squared 0.904973     S.D. dependent var 0.026036 

S.E. of regression 0.008026     Akaike info criterion -6.568981 

Sum squared resid 0.000902     Schwarz criterion -6.270262 
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Log likelihood 71.68981     Hannan-Quinn criter. -6.510668 

F-statistic 37.18877     Durbin-Watson stat 1.241932 

Prob(F-statistic) 0.000000    

     
      
 

Diagnostic checking:  

Normality test:  

 

0

1

2

3

4

5

-0.015 -0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean      -8.15e-18

Median   0.000341

Maximum  0.011592

Minimum -0.015908

Std. Dev.   0.006889

Skewness  -0.301776

Kurtosis   2.572939

Jarque-Bera  0.455547

Probability  0.796304 

 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.973276     Prob. F(2,10) 0.4109 

Obs*R-squared 2.932890     Prob. Chi-Square(2) 0.2307 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.627905     Prob. F(4,8) 0.2581 

Obs*R-squared 8.076918     Prob. Chi-Square(4) 0.0888 

     
      
Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.639228     Prob. F(8,4) 0.7269 

Obs*R-squared 10.09991     Prob. Chi-Square(8) 0.2581 
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Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 2.343904     Prob. F(5,14) 0.0595 

Obs*R-squared 1.12369     Prob. Chi-Square(5) 0.0622 

Scaled explained SS 4.057477     Prob. Chi-Square(5) 0.4089 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 12:54 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000191 0.000732 0.261232 0.7977 

LICENCES -1.11E-06 1.43E-06 -0.778564 0.4492 

PRICE 7.08E-12 3.10E-11 0.228259 0.8227 

RAINFALL -1.71E-08 4.75E-08 -0.359412 0.7247 

TEMPERATURE -6.14E-06 2.98E-05 -0.206136 0.8397 

STREAMFLOW 1.34E-11 4.47E-12 3.004434 0.0095 

     
     R-squared 0.656185     Mean dependent var 4.51E-05 

Adjusted R-squared 0.533393     S.D. dependent var 5.80E-05 

S.E. of regression 3.96E-05     Akaike info criterion -17.19054 

Sum squared resid 2.20E-08     Schwarz criterion -16.89182 

Log likelihood 177.9054     Hannan-Quinn criter. -17.13223 

F-statistic 5.343904     Durbin-Watson stat 1.340929 

Prob(F-statistic) 0.005918    

     
      
 

 

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model Collinearity Statistics 
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Tolerance VIF 

1 licence .763 1.311 

price .614 1.628 

rainfall .157 6.375 

temperature .705 1.418 

streamflow .071 14.183 

streamwaterlevel .037 27.154 

a. Dependent Variable: cpue 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamwaerlevel showed improved result than the other. So, I deleted 

streamwaterlevel from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .959a .919 .888 .005400661 

a. Predictors: (Constant), streamflow, licence, temperature, price, rainfall 

 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .944a .892 .850 .006247008 
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a. Predictors: (Constant), streamwaterlevel, licence, temperature, price, 

rainfall 

 

MLR: 

cpue licences price rainfall temperature streamflow c 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/23/21   Time: 13:01 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001969 0.000339 -5.814719 0.0001 

PRICE 9.24E-08 1.15E-08 8.009551 0.0000 

RAINFALL -1.03E-05 3.30E-06 -3.110474 0.0083 

TEMPERATURE 0.006293 0.003766 1.671103 0.1186 

STREAMFLOW 8.51E-10 2.39E-10 3.558546 0.0035 

C -0.089768 0.097513 -0.920576 0.3740 

     
     R-squared 0.919241     Mean dependent var 0.049808 

Adjusted R-squared 0.888180     S.D. dependent var 0.016151 

S.E. of regression 0.005401     Akaike info criterion -7.352502 

Sum squared resid 0.000379     Schwarz criterion -7.054258 

Log likelihood 75.84876     Hannan-Quinn criter. -7.302027 

F-statistic 29.59470     Durbin-Watson stat 2.432065 

Prob(F-statistic) 0.000001    

     
     
Diagnostic Checking: 

Normality test: 
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Series: Residuals

Sample 1995 2013

Observations 19

Mean      -5.02e-18

Median  -0.000679

Maximum  0.008341

Minimum -0.009705

Std. Dev.   0.004590

Skewness   0.142682

Kurtosis   2.770910

Jarque-Bera  0.106016

Probability  0.948373 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.153335     Prob. F(2,11) 0.3510 

Obs*R-squared 3.293591     Prob. Chi-Square(2) 0.1927 

     
     Lag(4) 

 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.790549     Prob. F(4,9) 0.5598 

Obs*R-squared 4.940037     Prob. Chi-Square(4) 0.2935 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.535788     Prob. F(8,5) 0.7938 

Obs*R-squared 8.769878     Prob. Chi-Square(8) 0.3621 

     
     
 

Heteroscedasticity Test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 2.547034     Prob. F(5,13) 0.0810 

Obs*R-squared 9.402240     Prob. Chi-Square(5) 0.0941 

Scaled explained SS 3.897421     Prob. Chi-Square(5) 0.5643 
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Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/23/21   Time: 13:03 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 5.13E-05 0.000412 0.124564 0.9028 

LICENCES -3.66E-06 1.43E-06 -2.555170 0.0240 

PRICE -4.58E-11 4.88E-11 -0.938590 0.3651 

RAINFALL -8.73E-10 1.40E-08 -0.062566 0.9511 

TEMPERATURE 3.36E-06 1.59E-05 0.210865 0.8363 

STREAMFLOW -4.37E-13 1.01E-12 -0.432955 0.6721 

     
     R-squared 0.494855     Mean dependent var 2.00E-05 

Adjusted R-squared 0.300568     S.D. dependent var 2.73E-05 

S.E. of regression 2.28E-05     Akaike info criterion -18.28587 

Sum squared resid 6.77E-09     Schwarz criterion -17.98763 

Log likelihood 179.7158     Hannan-Quinn criter. -18.23540 

F-statistic 2.547034     Durbin-Watson stat 1.543318 

Prob(F-statistic) 0.081012    

     
      
 

Sample 1994-2016:  

 

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .763 1.310 

price .513 1.950 

rainfall .258 3.873 

temperature .678 1.474 

streamflow .076 13.175 

streamwaterlevel .052 19.334 
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a. Dependent Variable: cpue 

 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding stream water level showed improved result than the other. So, I deleted stream water 

level from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .964a .929 .903 .004601674 

a. Predictors: (Constant), streamflow, licence, temperature, price, rainfall 

 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenv

alue 

Condition 

Index 

Variance Proportions 

(Const

ant) 

licenc

e price 

rainfal

l 

tempera

ture 

streamf

low 

streamwa

terlevel 

1 1 6.417 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .418 3.918 .00 .01 .00 .01 .00 .05 .00 

3 .077 9.117 .00 .00 .51 .00 .00 .00 .00 

4 .063 10.064 .00 .00 .00 .60 .00 .10 .00 

5 .021 17.299 .00 .99 .15 .01 .00 .02 .00 

6 .003 47.945 .00 .01 .21 .34 .01 .72 .80 

7 9.157E-

5 

264.729 1.00 .00 .13 .03 .99 .11 .19 

a. Dependent Variable: cpue 
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Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .954a .910 .877 .005181878 

a. Predictors: (Constant), streamwaterlevel, licence, price, temperature, 

rainfall 

 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 11:11 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.002070 0.000253 -8.182282 0.0000 

PRICE 1.00E-07 8.96E-09 11.17291 0.0000 

RAINFALL -9.70E-06 2.78E-06 -3.487834 0.0036 

TEMPERATURE 0.007105 0.002745 2.588287 0.0215 

STREAMFLOW 8.38E-10 1.82E-10 4.617143 0.0004 

C -0.111578 0.069570 -1.603833 0.1311 

     
     R-squared 0.928792     Mean dependent var 0.051258 

Adjusted R-squared 0.903360     S.D. dependent var 0.014803 

S.E. of regression 0.004602     Akaike info criterion -7.681468 

Sum squared resid 0.000296     Schwarz criterion -7.382749 

Log likelihood 82.81468     Hannan-Quinn criter. -7.623155 

F-statistic 36.52115     Durbin-Watson stat 2.913617 

Prob(F-statistic) 0.000000    

     
      
 

Diagnostic Checking: 

Normality Test: 
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Series: Residuals

Sample 1997 2016

Observations 20

Mean       1.46e-17

Median  -0.000659

Maximum  0.008913

Minimum -0.009161

Std. Dev.   0.003950

Skewness   0.162159

Kurtosis   3.633560

Jarque-Bera  0.422150

Probability  0.809713 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 5.550027     Prob. F(2,12) 0.0971 

Obs*R-squared 9.610414     Prob. Chi-Square(2) 0.0820 

     
          

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 5.046294     Prob. F(4,10) 0.1730 

Obs*R-squared 13.37423     Prob. Chi-Square(4) 0.0960 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.679137     Prob. F(8,6) 0.2721 

Obs*R-squared 13.82497     Prob. Chi-Square(8) 0.0864 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.234954     Prob. F(5,14) 0.3443 

Obs*R-squared 6.121280     Prob. Chi-Square(5) 0.2946 

Scaled explained SS 3.949585     Prob. Chi-Square(5) 0.5567 
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Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 11:14 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000258 0.000362 -0.712683 0.4878 

LICENCES -2.02E-06 1.32E-06 -1.536037 0.1468 

PRICE 2.67E-11 4.67E-11 0.572001 0.5764 

RAINFALL -2.79E-10 1.45E-08 -0.019251 0.9849 

TEMPERATURE 1.29E-05 1.43E-05 0.901376 0.3826 

STREAMFLOW -7.31E-13 9.45E-13 -0.773424 0.4521 

     
     R-squared 0.306064     Mean dependent var 1.48E-05 

Adjusted R-squared 0.058230     S.D. dependent var 2.47E-05 

S.E. of regression 2.40E-05     Akaike info criterion -18.19785 

Sum squared resid 8.03E-09     Schwarz criterion -17.89913 

Log likelihood 187.9785     Hannan-Quinn criter. -18.13954 

F-statistic 1.234954     Durbin-Watson stat 0.941947 

Prob(F-statistic) 0.344326    

     
      
 

1. Hinchinbrook: 

Data cleaning and processing: Box plot shows no outlier is detected. 

Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test: All variable has unit root, so I took1st difference of all the series. Now the series 

is stationary.  

Lag selection: Lag 4 was selected for the granger causality test. 

 

Granger Causality test:. 

 

Pairwise Granger Causality Tests 
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Date: 03/16/21   Time: 00:09 

Sample: 1990 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  0.48274 0.7489 

 DCPUE does not Granger Cause DLICENCES  0.32590 0.8523 

    
     DPRICE does not Granger Cause DCPUE  16  1.23702 0.3770 

 DCPUE does not Granger Cause DPRICE  0.99321 0.4701 

    
     DRAINFALL does not Granger Cause DCPUE  16  1.52545 0.2932 

 DCPUE does not Granger Cause DRAINFALL  3.78284 0.0604 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  0.41764 0.7916 

 DCPUE does not Granger Cause DTEMPERATURE  0.30176 0.8680 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  0.86687 0.5281 

 DCPUE does not Granger Cause DSTREAMFLOW  6.59669 0.0659 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  1.02097 0.4583 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  3.50675 0.0710 

    
    
No reverse causality was found. 

Test for multicollinearity: SPSS 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .916 1.092 

dprice .490 2.041 

drainfall .299 3.347 

dtemperature .444 2.251 

dstreamflow .136 7.366 

dstreamwaterlevel .185 5.409 

a. Dependent Variable: dcpue 

 

Collinearity Diagnosticsa 
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Here, multicollinearity is absent among variables. Tolerance is more than 0.1 and VIF is less 

than 10. 

 

Multiple Regression Test: SPSS 

Stepwise (backward) regression in SPSS 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .003  .126 .902 

dlicence -.001 .001 -.414 -1.857 .086 

dprice 2.934E-8 .000 .324 1.062 .307 

drainfall -3.862E-7 .000 -.022 -.056 .956 

dtemperature .007 .007 .320 1.001 .335 

dstreamflow 8.476E-8 .000 .705 1.218 .245 

dstreamwaterlevel -.024 .048 -.252 -.508 .620 

2 (Constant) .000 .002  .126 .901 

Mode

l 

Dimensio

n 

Eigenvalu

e 

Condition 

Index 

Variance Proportions 

(Constan

t) 

dlicenc

e dprice drainfall 

dtemperatu

re 

dstreamflo

w 

dstreamwat

erlevel 

1 1 3.010 1.000 .00 .01 .02 .03 .00 .01 .01 

2 1.424 1.454 .01 .02 .10 .00 .17 .00 .01 

3 1.061 1.684 .62 .25 .01 .00 .00 .00 .00 

4 .843 1.890 .33 .69 .00 .00 .01 .00 .01 

5 .340 2.977 .03 .03 .79 .03 .41 .03 .01 

6 .243 3.520 .01 .00 .00 .77 .06 .03 .21 

7 .081 6.113 .00 .01 .08 .17 .35 .92 .75 

a. Dependent Variable: dcpue 
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dlicence -.001 .001 -.414 -1.930 .074 

dprice 2.902E-8 .000 .320 1.114 .284 

dtemperature .007 .007 .318 1.039 .317 

dstreamflow 8.279E-8 .000 .689 1.431 .174 

dstreamwaterlevel -.024 .046 -.253 -.529 .605 

3 (Constant) .000 .002  .104 .918 

dlicence -.001 .001 -.412 -1.967 .068 

dprice 2.600E-8 .000 .287 1.048 .311 

dtemperature .005 .005 .233 .917 .374 

dstreamflow 5.613E-8 .000 .467 2.028 .061 

4 (Constant) .001 .002  .234 .818 

dlicence -.001 .001 -.418 -2.007 .062 

dprice 1.259E-8 .000 .139 .632 .536 

dstreamflow 5.786E-8 .000 .481 2.106 .051 

5 (Constant) .001 .002  .271 .790 

dlicence -.001 .001 -.427 -2.093 .052 

dstreamflow 6.508E-8 .000 .541 2.652 .017 

a. Dependent Variable: dcpue 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 drainfall -.022b -.056 .956 -.016 .299 

3 drainfall -.026c -.070 .945 -.019 .299 

dstreamwaterlevel -.253c -.529 .605 -.140 .185 

4 drainfall .024d .065 .949 .017 .306 

dstreamwaterlevel .009d .021 .983 .006 .256 

dtemperature .233d .917 .374 .230 .623 

5 drainfall .059e .164 .872 .041 .314 

dstreamwaterlevel -.028e -.070 .945 -.017 .261 
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dtemperature .076e .368 .718 .092 .956 

dprice .139e .632 .536 .156 .825 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dtemperature, dlicence, dprice, dstreamflow 

c. Predictors in the Model: (Constant), dtemperature, dlicence, dprice, dstreamflow 

d. Predictors in the Model: (Constant), dlicence, dprice, dstreamflow 

e. Predictors in the Model: (Constant), dlicence, dstreamflow 

 

Regression Test: Eviws: dcpue c dlicences dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/16/21   Time: 00:15 

Sample (adjusted): 1991 2010 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DLICENCES -0.001446 0.000691 -2.093428 0.0516 

DSTREAMFLOW 6.51E-08 2.45E-08 2.652481 0.0168 

C 0.000626 0.002312 0.270777 0.7898 

     
     R-squared 0.346871     Mean dependent var 0.001141 

Adjusted R-squared 0.270032     S.D. dependent var 0.012065 

S.E. of regression 0.010308     Akaike info criterion -6.174323 

Sum squared resid 0.001806     Schwarz criterion -6.024963 

Log likelihood 64.74323     Hannan-Quinn criter. -6.145166 

F-statistic 4.514266     Durbin-Watson stat 2.777714 

Prob(F-statistic) 0.026760    

     
      

Unit root test for the residuals of regression model (including dcpue c dlicences 

dstreamflow): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 
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Augmented Dickey-Fuller test statistic -6.850524  0.0000 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/16/21   Time: 00:20 

Sample (adjusted): 1992 2010 

Included observations: 19 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.494054 0.218093 -6.850524 0.0000 

C -0.000127 0.002033 -0.062399 0.9510 

     
     R-squared 0.734083     Mean dependent var -0.001108 

Adjusted R-squared 0.718441     S.D. dependent var 0.016657 

S.E. of regression 0.008838     Akaike info criterion -6.520107 

Sum squared resid 0.001328     Schwarz criterion -6.420692 

Log likelihood 63.94101     Hannan-Quinn criter. -6.503282 

F-statistic 46.92967     Durbin-Watson stat 2.002824 

Prob(F-statistic) 0.000003    

     
     
The residual has no unit root. 

 

Serial correlation test: EViews 

Quick>estimate equation> dcpue c dlicences dstreamflow >ok>view tab> residual 

diagnostics>correlogram and Q-statistics (Ljung-Box test) >lag selection (12)> ok. 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

Correlogram plot: 
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The residuals are not flat and no serial correlation i.e. in white noise. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

-0.02 -0.01 0.00 0.01 0.02 0.03

Series: Residuals

Sample 1991 2010

Observations 20

Mean       7.81e-19

Median  -0.000472

Maximum  0.026133

Minimum -0.015138

Std. Dev.   0.009750

Skewness   0.741253

Kurtosis   3.700197

Jarque-Bera  2.240083

Probability  0.326266 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution. 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.622278     Prob. F(2,15) 0.1055 

Obs*R-squared 5.181201     Prob. Chi-Square(2) 0.0750 
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Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.422298     Prob. F(4,13) 0.2814 

Obs*R-squared 6.088216     Prob. Chi-Square(4) 0.1927 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.368597     Prob. F(8,9) 0.0645 

Obs*R-squared 14.99288     Prob. Chi-Square(8) 0.0693 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.021064     Prob. F(2,17) 0.9792 

Obs*R-squared 0.049439     Prob. Chi-Square(2) 0.9756 

Scaled explained SS 0.048225     Prob. Chi-Square(2) 0.9762 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/16/21   Time: 00:22 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 8.98E-05 3.61E-05 2.489173 0.0235 

DLICENCES -1.59E-06 1.08E-05 -0.147159 0.8847 

DSTREAMFLOW 6.83E-11 3.83E-10 0.178349 0.8606 

     
     R-squared 0.002472     Mean dependent var 9.03E-05 

Adjusted R-squared -0.114884     S.D. dependent var 0.000152 

S.E. of regression 0.000161     Akaike info criterion -14.49567 

Sum squared resid 4.39E-07     Schwarz criterion -14.34631 

Log likelihood 147.9567     Hannan-Quinn criter. -14.46652 

F-statistic 0.021064     Durbin-Watson stat 1.478742 

Prob(F-statistic) 0.979182    
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Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (0,1,0) Forecasting:  

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dlicences and dstreamflow from 2010-2013>Quick >estimate equation> dcpue c dlicences 

dstreamflow > Forecast> Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  The series has unit root, hence 1st difference of the series has taken and the 

final series has no unit root 

Lag selection: Lag 4 was selected. 

Granger Causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/16/21   Time: 00:34 

Sample: 1992 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  0.89701 0.5085 

 DCPUE does not Granger Cause DLICENCES  0.22920 0.9144 

    
     DPRICE does not Granger Cause DCPUE  17  0.84885 0.5324 

 DCPUE does not Granger Cause DPRICE  0.87611 0.5187 

    
     DRAINFALL does not Granger Cause DCPUE  17  4.45237 0.0647 

 DCPUE does not Granger Cause DRAINFALL  0.71732 0.6033 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.16533 0.9501 

 DCPUE does not Granger Cause DTEMPERATURE  0.26991 0.8893 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  0.70236 0.6119 

 DCPUE does not Granger Cause DSTREAMFLOW  6.24127 0.0640 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  1.41601 0.3123 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  3.15876 0.0779 
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No reverse causality detected. 

Test for multicollinearity 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .958 1.044 

dprice .440 2.272 

drainfall .535 1.871 

dtemperature .385 2.596 

dstreamflow .231 4.329 

dstreamwaterlevel .195 5.129 

a. Dependent Variable: dcpue 

Collinearity Diagnosticsa 

Mode

l 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfal

l 

dtemperat

ure 

dstreamfl

ow 

dstreamwat

erlevel 

1 1 2.657 1.000 .00 .00 .03 .05 .00 .03 .02 

2 1.499 1.331 .00 .00 .08 .01 .14 .00 .02 

3 1.077 1.570 .35 .50 .00 .02 .00 .00 .00 

4 .945 1.676 .64 .39 .00 .00 .00 .00 .00 

5 .408 2.551 .01 .10 .00 .87 .00 .11 .05 

6 .308 2.936 .00 .00 .77 .05 .34 .11 .01 

7 .105 5.039 .00 .00 .12 .00 .51 .76 .90 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test: SPSS 

Forward stepwise regression: 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .002  -.127 .900 

dstreamflow 7.685E-8 .000 .564 2.974 .008 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.354b -2.005 .060 -.427 .993 

dprice .201b .944 .357 .217 .795 

drainfall -.057b -.233 .819 -.055 .629 

dtemperature -.068b -.347 .732 -.082 .980 

dstreamwaterlevel -.007b -.020 .984 -.005 .340 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/16/21   Time: 00:39 

Sample (adjusted): 1993 2013 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DSTREAMFLOW 7.69E-08 2.58E-08 2.974056 0.0078 

C -0.000302 0.002373 -0.127180 0.9001 

     
     R-squared 0.317651     Mean dependent var 0.000110 

Adjusted R-squared 0.281738     S.D. dependent var 0.012812 
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S.E. of regression 0.010858     Akaike info criterion -6.117454 

Sum squared resid 0.002240     Schwarz criterion -6.017975 

Log likelihood 66.23326     Hannan-Quinn criter. -6.095864 

F-statistic 8.845008     Durbin-Watson stat 2.596273 

Prob(F-statistic) 0.007797    

     
      
 

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.889217  0.0011 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/16/21   Time: 00:42 

Sample (adjusted): 1995 2013 

Included observations: 19 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.919530 0.392605 -4.889217 0.0002 

D(R(-1)) 0.393760 0.235464 1.672270 0.1139 

C 0.000962 0.002298 0.418682 0.6810 

     
     R-squared 0.718992     Mean dependent var -0.000938 

Adjusted R-squared 0.683866     S.D. dependent var 0.017645 

S.E. of regression 0.009921     Akaike info criterion -6.244416 

Sum squared resid 0.001575     Schwarz criterion -6.095294 

Log likelihood 62.32195     Hannan-Quinn criter. -6.219179 

F-statistic 20.46897     Durbin-Watson stat 1.939250 
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Prob(F-statistic) 0.000039    

     
      

The residual has no unit root. 

Serial correlation test: EViews 

 

The residuals are flat and no serial correlation. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

-0.02 -0.01 0.00 0.01 0.02 0.03

Series: Residuals

Sample 1993 2013

Observations 21

Mean       1.65e-19

Median  -0.001082

Maximum  0.027357

Minimum -0.016693

Std. Dev.   0.010583

Skewness   0.627142

Kurtosis   3.266498

Jarque-Bera  1.438717

Probability  0.487065 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.984950     Prob. F(2,17) 0.0774 

Obs*R-squared 5.457921     Prob. Chi-Square(2) 0.0653 

     



  

399 

 

      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.544180     Prob. F(4,15) 0.2400 

Obs*R-squared 6.125175     Prob. Chi-Square(4) 0.1900 

     
      
Lag (8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.706639     Prob. F(8,11) 0.6822 

Obs*R-squared 7.128717     Prob. Chi-Square(8) 0.5228 

     
      

Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.012439     Prob. F(1,19) 0.9124 

Obs*R-squared 0.013739     Prob. Chi-Square(1) 0.9067 

Scaled explained SS 0.012745     Prob. Chi-Square(1) 0.9101 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/16/21   Time: 00:44 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000107 3.69E-05 2.897855 0.0092 

DSTREAMFLOW -4.48E-11 4.02E-10 -0.111529 0.9124 

     
     R-squared 0.000654     Mean dependent var 0.000107 

Adjusted R-squared -0.051943     S.D. dependent var 0.000165 

S.E. of regression 0.000169     Akaike info criterion -14.44568 

Sum squared resid 5.41E-07     Schwarz criterion -14.34620 

Log likelihood 153.6796     Hannan-Quinn criter. -14.42409 

F-statistic 0.012439     Durbin-Watson stat 1.825009 

Prob(F-statistic) 0.912367    

     
      

Probability is greater than 5%, so the model is not heteroscedastic. 
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in dstreamflow from 2013-2016>Quick >estimate equation> 

dcpue c dstreamflow> Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

Lag selection: Lag 4 selected for the granger causality test for granger causality test. 

 

Granger causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/16/21   Time: 00:56 

Sample: 1994 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  1.08410 0.4197 

 DCPUE does not Granger Cause DLICENCES  1.40041 0.3089 

    
     DPRICE does not Granger Cause DCPUE  18  0.41049 0.7971 

 DCPUE does not Granger Cause DPRICE  0.39272 0.8090 

    
     DRAINFALL does not Granger Cause DCPUE  18  1.77072 0.2187 

 DCPUE does not Granger Cause DRAINFALL  1.33435 0.3291 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.53177 0.7160 

 DCPUE does not Granger Cause DTEMPERATURE  0.37096 0.8237 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  0.69933 0.6115 

 DCPUE does not Granger Cause DSTREAMFLOW  5.96860 0.0625 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  0.86469 0.5206 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  4.95671 0.0617 

    
     
 

No reverse causality was found. 
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Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .843 1.186 

dprice .548 1.825 

drainfall .401 2.496 

dtemperature .501 1.996 

dstreamflow .214 4.673 

dstreamwaterlevel .168 5.955 

a. Dependent Variable: dcpue 

 

 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfa

ll 

dtemperat

ure 

dstreamfl

ow 

dstreamwa

terlevel 

1 1 2.643 1.000 .00 .00 .02 .04 .00 .03 .02 

2 1.535 1.312 .04 .01 .11 .00 .16 .00 .01 

3 1.136 1.525 .25 .44 .01 .01 .02 .00 .00 

4 .893 1.720 .68 .28 .00 .01 .01 .00 .00 

5 .397 2.580 .00 .04 .50 .14 .29 .12 .01 

6 .299 2.972 .01 .16 .35 .65 .25 .07 .01 

7 .097 5.226 .01 .08 .01 .14 .27 .79 .95 

a. Dependent Variable: dcpue 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test: 

 

Forward Stepwise:  
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .002  .101 .920 

dstreamflow 6.706E-8 .000 .517 2.702 .014 

a. Dependent Variable: dcpue 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence -.366b -2.064 .053 -.428 1.000 

dprice .341b 1.700 .106 .363 .833 

drainfall -.150b -.595 .559 -.135 .596 

dtemperature -.084b -.424 .676 -.097 .979 

dstreamwaterlevel .036b .105 .917 .024 .320 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Regression Test : Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/16/21   Time: 01:02 

Sample (adjusted): 1995 2016 

Included observations: 22 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000234 0.002315 0.101242 0.9204 

DSTREAMFLOW 6.71E-08 2.48E-08 2.702179 0.0137 

     
     R-squared 0.267447     Mean dependent var 0.000301 

Adjusted R-squared 0.230819     S.D. dependent var 0.012380 

S.E. of regression 0.010858     Akaike info criterion -6.121410 

Sum squared resid 0.002358     Schwarz criterion -6.022224 
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Log likelihood 69.33551     Hannan-Quinn criter. -6.098045 

F-statistic 7.301770     Durbin-Watson stat 2.751696 

Prob(F-statistic) 0.013712    

     
      

Unit root test of residual: 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.650542  0.0002 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/16/21   Time: 01:04 

Sample (adjusted): 1997 2016 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -2.030113 0.359277 -5.650542 0.0000 

D(R(-1)) 0.455057 0.220224 2.066334 0.0544 

C 0.000658 0.002124 0.309650 0.7606 

     
     R-squared 0.763506     Mean dependent var -4.34E-05 

Adjusted R-squared 0.735683     S.D. dependent var 0.018454 

S.E. of regression 0.009488     Akaike info criterion -6.340176 

Sum squared resid 0.001530     Schwarz criterion -6.190816 

Log likelihood 66.40176     Hannan-Quinn criter. -6.311020 

F-statistic 27.44169     Durbin-Watson stat 2.106158 

Prob(F-statistic) 0.000005    

     
     

Residuals do not have unit root. 

Serial correlation test: EViews 
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Selection of MA and AR term: 

The residuals are flat and no serial correlation i.e. in white noise. 

Normality test of residuals: 

0

1

2

3

4

5

-0.02 -0.01 0.00 0.01 0.02 0.03

Series: Residuals

Sample 1995 2016

Observations 22

Mean       5.91e-19

Median  -0.000110

Maximum  0.027778

Minimum -0.017766

Std. Dev.   0.010596

Skewness   0.543659

Kurtosis   3.378571

Jarque-Bera  1.215110

Probability  0.544681 

 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 4.159628     Prob. F(2,18) 0.0627 

Obs*R-squared 6.953982     Prob. Chi-Square(2) 0.0609 

     
     Lag (4) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 2.090823     Prob. F(4,16) 0.1296 

Obs*R-squared 7.552036     Prob. Chi-Square(4) 0.1094 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.908262     Prob. F(8,12) 0.5403 

Obs*R-squared 8.297173     Prob. Chi-Square(8) 0.4050 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.000290     Prob. F(1,20) 0.9866 

Obs*R-squared 0.000319     Prob. Chi-Square(1) 0.9857 

Scaled explained SS 0.000314     Prob. Chi-Square(1) 0.9859 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/16/21   Time: 01:05 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000107 3.70E-05 2.899401 0.0089 

DSTREAMFLOW 6.75E-12 3.96E-10 0.017034 0.9866 

     
     R-squared 0.000015     Mean dependent var 0.000107 

Adjusted R-squared -0.049985     S.D. dependent var 0.000169 

S.E. of regression 0.000173     Akaike info criterion -14.39603 

Sum squared resid 6.01E-07     Schwarz criterion -14.29684 

Log likelihood 160.3563     Hannan-Quinn criter. -14.37266 

F-statistic 0.000290     Durbin-Watson stat 1.808781 

Prob(F-statistic) 0.986578    

     
      

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1996-2019) by double clicking the 

range> provide original values in dstreamflow from 2017-2019>Quick >estimate equation> 

dcpue  c dstreamflow> Forecast> Forecast sample (1996-2019)>ok> 
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Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .547 1.828 

price .664 1.505 

rainfall .258 3.873 

temperature .839 1.192 

streamflow .033 30.067 

streamwaterlevel .069 14.529 

a. Dependent Variable: cpue 

 

Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamflow showed improved result than the other. So, I deleted streamflow from 

the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .865a .748 .643 .007554832 

a. Predictors: (Constant), streamflow, price, licence, temperature, rainfall 
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Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .878a .770 .675 .007212650 

a. Predictors: (Constant), streamwaterlevel, price, temperature, licence, 

rainfall 

MLR: 

cpue licences price rainfall temperature streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 11:49 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.002269 0.000640 -3.545158 0.0040 

PRICE 2.65E-08 2.17E-08 1.221125 0.2455 

RAINFALL -1.16E-05 5.46E-06 -2.117556 0.0558 

TEMPERATURE -0.003364 0.005120 -0.656991 0.5236 

STREAMWATERLEVEL 0.034699 0.028132 1.233444 0.2410 

C 0.152382 0.128897 1.182197 0.2600 

     
     R-squared 0.770416     Mean dependent var 0.043609 

Adjusted R-squared 0.674756     S.D. dependent var 0.012647 

S.E. of regression 0.007213     Akaike info criterion -6.764759 

Sum squared resid 0.000624     Schwarz criterion -6.467968 

Log likelihood 66.88283     Hannan-Quinn criter. -6.723836 

F-statistic 8.053699     Durbin-Watson stat 3.254106 

Prob(F-statistic) 0.001546    

     
      

Diagnostic checking:  

Normality test:  
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0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1993 2010

Observations 18

Mean      -1.98e-17

Median  -0.000233

Maximum  0.009890

Minimum -0.011388

Std. Dev.   0.006060

Skewness  -0.021416

Kurtosis   2.045050

Jarque-Bera  0.685324

Probability  0.709878 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 5.091855     Prob. F(2,10) 0.0699 

Obs*R-squared 9.081917     Prob. Chi-Square(2) 0.0607 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.244109     Prob. F(4,8) 0.1536 

Obs*R-squared 9.517654     Prob. Chi-Square(4) 0.0694 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.646816     Prob. F(8,4) 0.3312 

Obs*R-squared 13.80774     Prob. Chi-Square(8) 0.0869 

     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.228993     Prob. F(5,12) 0.9426 

Obs*R-squared 1.567850     Prob. Chi-Square(5) 0.9051 

Scaled explained SS 0.364107     Prob. Chi-Square(5) 0.9963 

     
          

Test Equation:  
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Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 11:50 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000179 0.000741 -0.241990 0.8129 

LICENCES 1.77E-07 3.68E-06 0.048201 0.9623 

PRICE 3.58E-11 1.25E-10 0.286516 0.7794 

RAINFALL -2.26E-08 3.14E-08 -0.720869 0.4848 

TEMPERATURE 7.43E-06 2.95E-05 0.252408 0.8050 

STREAMWATERLEVEL 5.97E-05 0.000162 0.369234 0.7184 

     
     R-squared 0.087103     Mean dependent var 3.47E-05 

Adjusted R-squared -0.293271     S.D. dependent var 3.65E-05 

S.E. of regression 4.15E-05     Akaike info criterion -17.08113 

Sum squared resid 2.07E-08     Schwarz criterion -16.78434 

Log likelihood 159.7302     Hannan-Quinn criter. -17.04021 

F-statistic 0.228993     Durbin-Watson stat 1.804265 

Prob(F-statistic) 0.942621    

     
      

Sample 1992-2013:  

Multicollinearity test:  

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .359 2.788 

price .415 2.407 

rainfall .199 9.133 

temperature .577 1.732 

streamflow .049 20.225 

streamwaterlevel .050 19.843 

a. Dependent Variable: cpue 
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Here, multicollinearity is present between streamflow and Stream water level. Tolerance is less 

than 0.1, VIF is more than 10. 

So, run the analysis two-times: first time, with all the variables excluding stream water level 

and for the second time, with all the variable excluding streamflow. Then compared results of 

the two models, specifically R squares and P values. Model including all other variables 

excluding streamwaerlevel showed improved result than the other. So, I deleted 

streamwaterlevel from the model. 

Result of including streamflow and excluding stream water level in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .889a .790 .710 .006518051 

a. Predictors: (Constant), streamflow, price, licence, temperature, rainfall 

Result of including stream water level and excluding streamflow in the model: 

 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .883a .780 .695 .006682584 

a. Predictors: (Constant), streamwaterlevel, temperature, price, licence, 

rainfall 

 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:09 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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LICENCES -0.002499 0.000620 -4.029664 0.0014 

PRICE 6.76E-08 1.98E-08 3.411510 0.0046 

RAINFALL -8.60E-06 7.00E-06 -1.228484 0.2410 

TEMPERATURE 0.002230 0.004112 0.542347 0.5968 

STREAMFLOW 4.80E-08 4.89E-08 0.982521 0.3438 

C 0.037856 0.099065 0.382127 0.7085 

     
     R-squared 0.790462     Mean dependent var 0.046093 

Adjusted R-squared 0.709871     S.D. dependent var 0.012101 

S.E. of regression 0.006518     Akaike info criterion -6.976393 

Sum squared resid 0.000552     Schwarz criterion -6.678150 

Log likelihood 72.27574     Hannan-Quinn criter. -6.925919 

F-statistic 9.808273     Durbin-Watson stat 2.579445 

Prob(F-statistic) 0.000465    

     
     
Diagnostic Checking: 

Normality test: 

0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean      -4.70e-18

Median   0.001709

Maximum  0.008392

Minimum -0.011956

Std. Dev.   0.005539

Skewness  -0.428011

Kurtosis   2.403374

Jarque-Bera  0.861917

Probability  0.649886 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.082700     Prob. F(2,11) 0.3722 

Obs*R-squared 3.125055     Prob. Chi-Square(2) 0.2096 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.778219     Prob. F(4,9) 0.5665 

Obs*R-squared 4.882790     Prob. Chi-Square(4) 0.2995 
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     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.852908     Prob. F(8,5) 0.6003 

Obs*R-squared 10.96499     Prob. Chi-Square(8) 0.2037 

     
      

Heteroscedasticity Test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.742122     Prob. F(5,13) 0.6056 

Obs*R-squared 4.218973     Prob. Chi-Square(5) 0.5183 

Scaled explained SS 1.385893     Prob. Chi-Square(5) 0.9259 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:11 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000198 0.000558 -0.354658 0.7285 

LICENCES 5.51E-06 3.49E-06 1.577030 0.1388 

PRICE -7.29E-11 1.12E-10 -0.653652 0.5247 

RAINFALL -3.28E-08 3.94E-08 -0.832723 0.4200 

TEMPERATURE 7.12E-06 2.32E-05 0.307569 0.7633 

STREAMFLOW 1.59E-10 2.75E-10 0.577281 0.5736 

     
     R-squared 0.222051     Mean dependent var 2.91E-05 

Adjusted R-squared -0.077160     S.D. dependent var 3.54E-05 

S.E. of regression 3.67E-05     Akaike info criterion -17.33446 

Sum squared resid 1.75E-08     Schwarz criterion -17.03621 

Log likelihood 170.6774     Hannan-Quinn criter. -17.28398 

F-statistic 0.742122     Durbin-Watson stat 1.772631 

Prob(F-statistic) 0.605642    

     
      
 

Sample 1994-2016:  
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Multicollinearity test:  

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .573 1.745 

price .533 1.876 

rainfall .182 5.503 

temperature .772 1.295 

streamflow .133 7.541 

streamwaterlevel .148 6.760 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables.   

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:14 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001103 0.000580 -1.902094 0.0795 

PRICE 4.96E-08 2.15E-08 2.309141 0.0380 

RAINFALL -9.80E-06 5.20E-06 -1.885543 0.0819 

TEMPERATURE -0.002017 0.003977 -0.507039 0.6206 

STREAMFLOW -6.45E-08 3.96E-08 -1.625997 0.1279 

STREAMWATERLEVEL 0.079889 0.026666 2.995922 0.0103 

C 0.045559 0.091691 0.496875 0.6276 

     
     R-squared 0.736196     Mean dependent var 0.047273 

Adjusted R-squared 0.614440     S.D. dependent var 0.010095 

S.E. of regression 0.006268     Akaike info criterion -7.037415 

Sum squared resid 0.000511     Schwarz criterion -6.688909 
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Log likelihood 77.37415     Hannan-Quinn criter. -6.969383 

F-statistic 6.046495     Durbin-Watson stat 2.427172 

Prob(F-statistic) 0.003288    

     
      

Diagnostic Checking: 

Normality Test: 

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean       4.38e-18

Median  -0.001380

Maximum  0.008561

Minimum -0.010620

Std. Dev.   0.005185

Skewness   0.078658

Kurtosis   2.270458

Jarque-Bera  0.464150

Probability  0.792887 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.013345     Prob. F(2,11) 0.3945 

Obs*R-squared 3.111595     Prob. Chi-Square(2) 0.2110 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.429314     Prob. F(4,9) 0.7843 

Obs*R-squared 3.204656     Prob. Chi-Square(4) 0.5242 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.181238     Prob. F(8,5) 0.9829 

Obs*R-squared 4.495891     Prob. Chi-Square(8) 0.8098 

     
     
Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 



  

415 

 

     
     F-statistic 1.078685     Prob. F(6,13) 0.4235 

Obs*R-squared 6.647571     Prob. Chi-Square(6) 0.3547 

Scaled explained SS 1.784103     Prob. Chi-Square(6) 0.9384 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:15 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 9.89E-05 0.000427 0.231702 0.8204 

LICENCES 4.01E-06 2.70E-06 1.486250 0.1611 

PRICE 7.10E-11 9.99E-11 0.710441 0.4900 

RAINFALL 7.71E-09 2.42E-08 0.318982 0.7548 

TEMPERATURE -2.57E-06 1.85E-05 -0.138729 0.8918 

STREAMFLOW 1.81E-10 1.85E-10 0.981697 0.3442 

STREAMWATERLEVEL -0.000139 0.000124 -1.121741 0.2823 

     
     R-squared 0.332379     Mean dependent var 2.55E-05 

Adjusted R-squared 0.024246     S.D. dependent var 2.95E-05 

S.E. of regression 2.92E-05     Akaike info criterion -17.77736 

Sum squared resid 1.11E-08     Schwarz criterion -17.42886 

Log likelihood 184.7736     Hannan-Quinn criter. -17.70933 

F-statistic 1.078685     Durbin-Watson stat 2.032282 

Prob(F-statistic) 0.423494    

     
     
2. Hervey Bay: 

Data cleaning and processing: Box plot shows no outlier is detected. 

Treatment for missing values: 

Tsset time 

ipolate streamflow time, gen (newstreamflow) epolate 

ipolate streamwaterlevel time, gen (newstreamwaterlevel) epolate 

Year: 1990-2010 
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Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test:  

All variable has unit root, so I took1st difference of all the series. Now the series is stationary.  

 

Lag selection:  

Lag 4 was selected for the granger causality test. 

Granger Causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/16/21   Time: 23:22 

Sample: 1990 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  0.72192 0.6037 

 DCPUE does not Granger Cause DLICENCES  0.45794 0.7651 

    
     DPRICE does not Granger Cause DCPUE  16  1.54804 0.2876 

 DCPUE does not Granger Cause DPRICE  1.58041 0.2798 

    
     DRAINFALL does not Granger Cause DCPUE  16  1.47314 0.3066 

 DCPUE does not Granger Cause DRAINFALL  1.44439 0.3143 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  1.16339 0.4027 

 DCPUE does not Granger Cause DTEMPERATURE  1.32197 0.3497 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  0.33695 0.8451 

 DCPUE does not Granger Cause DSTREAMFLOW  0.25565 0.8973 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  16  0.33225 0.8481 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.06545 0.4401 

    
     

No reverse causality was found. 

Test for multicollinearity:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 
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1 dlicence .696 1.438 

dprice .297 3.367 

drainfall .313 3.199 

dtemperature .527 1.897 

dstreamflow .282 3.552 

dstreamwaterlevel .233 4.288 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1 and VIF is less 

than 10. 

 

Multiple Regression Test: SPSS 

Stepwise (backward) regression in SPSS 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .563 .583 

dlicence .001 .001 .287 .996 .337 

Collinearity Diagnosticsa 

Mod

el 

Dimensio

n 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfal

l 

dtemperat

ure 

dstreamfl

ow 

dstreamwa

terlevel 

1 1 2.940 1.000 .00 .00 .02 .03 .01 .02 .02 

2 1.386 1.456 .00 .08 .07 .00 .15 .02 .00 

3 1.100 1.635 .32 .30 .00 .00 .04 .00 .01 

4 .971 1.740 .53 .16 .00 .00 .10 .00 .00 

5 .257 3.382 .08 .01 .16 .49 .35 .07 .18 

6 .207 3.769 .06 .40 .08 .41 .26 .53 .05 

7 .138 4.616 .02 .05 .67 .07 .09 .35 .75 

a. Dependent Variable: dcpue 
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dprice 1.997E-9 .000 .033 .074 .942 

drainfall 9.314E-6 .000 .455 1.060 .309 

dtemperature 4.729E-7 .006 .000 .000 1.000 

dstreamflow 1.427E-9 .000 .013 .029 .978 

dstreamwaterlevel -.025 .019 -.677 -1.361 .197 

2 (Constant) .001 .002  .600 .558 

dlicence .001 .001 .287 1.096 .292 

dprice 1.995E-9 .000 .033 .090 .929 

drainfall 9.314E-6 .000 .455 1.111 .285 

dstreamflow 1.425E-9 .000 .013 .031 .976 

dstreamwaterlevel -.025 .018 -.677 -1.428 .175 

3 (Constant) .001 .002  .625 .542 

dlicence .001 .000 .289 1.164 .263 

dprice 2.266E-9 .000 .037 .115 .910 

drainfall 9.441E-6 .000 .462 1.334 .202 

dstreamwaterlevel -.025 .015 -.670 -1.708 .108 

4 (Constant) .001 .002  .677 .508 

dlicence .001 .000 .299 1.325 .204 

drainfall 9.365E-6 .000 .458 1.372 .189 

dstreamwaterlevel -.026 .012 -.692 -2.090 .053 

5 (Constant) .001 .002  .567 .578 

drainfall 6.926E-6 .000 .339 1.031 .317 

dstreamwaterlevel -.022 .012 -.588 -1.789 .091 

6 (Constant) .001 .002  .657 .520 

dstreamwaterlevel -.013 .008 -.337 -1.521 .046 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 
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Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dtemperature .000b .000 1.000 .000 .527 

3 dtemperature -.003c -.009 .993 -.003 .582 

dstreamflow .013c .031 .976 .008 .311 

4 dtemperature -.018d -.078 .939 -.020 .922 

dstreamflow .028d .075 .941 .019 .367 

dprice .037d .115 .910 .030 .483 

5 dtemperature -.014e -.060 .953 -.015 .922 

dstreamflow .170e .481 .637 .120 .410 

dprice .167e .546 .593 .135 .548 

dlicence .299e 1.325 .204 .314 .925 

6 dtemperature -.062f -.268 .792 -.065 .964 

dstreamflow .267f .817 .425 .194 .469 

dprice .105f .347 .733 .084 .568 

dlicence .215f .967 .347 .228 .997 

drainfall .339f 1.031 .317 .243 .455 

7 dtemperature .004g .015 .988 .004 1.000 

dstreamflow -.121g -.516 .612 -.121 1.000 

dprice .281g 1.244 .230 .281 1.000 

dlicence .197g .850 .406 .197 1.000 

drainfall -.095g -.406 .689 -.095 1.000 

dstreamwaterlevel -.337g -1.521 .146 -.337 1.000 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, drainfall, dprice, dstreamflow 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, drainfall, dprice 

d. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, drainfall 

e. Predictors in the Model: (Constant), dstreamwaterlevel, drainfall 

f. Predictors in the Model: (Constant), dstreamwaterlevel 
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Regression Test: Eviws: dcpue c dstreamwatrelevel 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/16/21   Time: 23:43 

Sample (adjusted): 1991 2010 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001229 0.001871 0.656761 0.5196 

DSTREAMWATERLEVEL -0.012688 0.008342 -1.521058 0.0456 

     
     R-squared 0.113895     Mean dependent var 0.001104 

Adjusted R-squared 0.064667     S.D. dependent var 0.008641 

S.E. of regression 0.008357     Akaike info criterion -6.636720 

Sum squared resid 0.001257     Schwarz criterion -6.537146 

Log likelihood 68.36720     Hannan-Quinn criter. -6.617282 

F-statistic 2.313617     Durbin-Watson stat 2.672896 

Prob(F-statistic) 0.145618    

     
      

Unit root test for the residuals of regression model (including dcpue c dstreamwaterlevel): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.289033  0.0001 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 00:19 
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Sample (adjusted): 1992 2010 

Included observations: 19 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.437167 0.228520 -6.289033 0.0000 

C -5.30E-05 0.001769 -0.029978 0.9764 

     
     R-squared 0.699391     Mean dependent var -0.000875 

Adjusted R-squared 0.681709     S.D. dependent var 0.013634 

S.E. of regression 0.007692     Akaike info criterion -6.798020 

Sum squared resid 0.001006     Schwarz criterion -6.698606 

Log likelihood 66.58119     Hannan-Quinn criter. -6.781195 

F-statistic 39.55194     Durbin-Watson stat 2.261752 

Prob(F-statistic) 0.000008    

     
      
 

The residual has no unit root. 

 

Serial correlation test: EViews 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

Correlogram plot: 

 

 

The residuals are not flat and no serial correlation i.e. in white noise. 

 

Diagnostic reports:  

Normality test of residuals: 
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Series: Residuals

Sample 1991 2010

Observations 20

Mean      -2.60e-19

Median  -0.000126

Maximum  0.020299

Minimum -0.013883

Std. Dev.   0.008134

Skewness   0.395274

Kurtosis   3.230617

Jarque-Bera  0.565126

Probability  0.753849 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.129899     Prob. F(2,16) 0.0713 

Obs*R-squared 5.624308     Prob. Chi-Square(2) 0.0601 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.628733     Prob. F(4,14) 0.0793 

Obs*R-squared 8.578391     Prob. Chi-Square(4) 0.0725 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.383234     Prob. F(8,10) 0.0376 

Obs*R-squared 14.60420     Prob. Chi-Square(8) 0.0673 

     
      

Heteroscedasticity test:  

Quick>estimate equation> dcpue c dstreamwaterlevel >ok>view tab> residual 

diagnostics>Breusch-Pagan-Godfrey test>ok 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
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F-statistic 0.169956     Prob. F(1,18) 0.6850 

Obs*R-squared 0.187073     Prob. Chi-Square(1) 0.6654 

Scaled explained SS 0.169002     Prob. Chi-Square(1) 0.6810 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 00:21 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 6.25E-05 2.20E-05 2.833205 0.0110 

DSTREAMWATERLEVEL 4.05E-05 9.83E-05 0.412257 0.6850 

     
     R-squared 0.009354     Mean dependent var 6.29E-05 

Adjusted R-squared -0.045682     S.D. dependent var 9.63E-05 

S.E. of regression 9.85E-05     Akaike info criterion -15.51844 

Sum squared resid 1.75E-07     Schwarz criterion -15.41886 

Log likelihood 157.1844     Hannan-Quinn criter. -15.49900 

F-statistic 0.169956     Durbin-Watson stat 1.381554 

Prob(F-statistic) 0.685019    

     
      
 

Probability is greater than 5%, so the model is not heteroscedastic. 

ARIMAX (0,1,0) Forecasting:  

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

dstreamwaterlevel from 2010-2013>Quick >estimate equation> dcpue c dstreamwaterlevel > 

Forecast> Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  The series has unit root; hence 1st difference of the series has taken and the 

final series has no unit root 

Lag selection: Lag 4 was selected. 

Granger Causality test: 
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Pairwise Granger Causality Tests 

Date: 03/17/21   Time: 12:13 

Sample: 1992 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  1.02843 0.4486 

 DCPUE does not Granger Cause DLICENCES  1.15691 0.3972 

    
     DPRICE does not Granger Cause DCPUE  17  1.02008 0.4522 

 DCPUE does not Granger Cause DPRICE  1.73673 0.2346 

    
     DRAINFALL does not Granger Cause DCPUE  17  0.30859 0.8645 

 DCPUE does not Granger Cause DRAINFALL  0.51081 0.7302 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.40489 0.8005 

 DCPUE does not Granger Cause DTEMPERATURE  1.46621 0.2984 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  1.92379 0.1999 

 DCPUE does not Granger Cause DSTREAMFLOW  0.47461 0.7540 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  1.22786 0.3716 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  1.15293 0.3987 

    
     
 

No reverse causality detected. 

 

Test for multicollinearity: 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .623 1.606 

dprice .287 3.481 

drainfall .353 2.831 

dtemperature .552 1.811 

dstreamflow .565 1.771 

dstreamwaterlevel .225 4.438 

a. Dependent Variable: dcpue 
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Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test: SPSS 

Backward stepwise regression: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .527 .606 

dlicence .001 .001 .351 1.303 .214 

dprice 6.886E-9 .000 .106 .268 .792 

drainfall 1.452E-5 .000 .577 1.613 .129 

dtemperature -.004 .006 -.215 -.752 .464 

dstreamflow -3.953E-8 .000 -.337 -1.193 .253 

dstreamwaterlevel -.020 .019 -.473 -1.056 .309 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicen

ce dprice 

drainfa

ll 

dtemperat

ure 

dstreamfl

ow 

dstreamw

aterlevel 

1 1 2.813 1.000 .00 .01 .02 .03 .00 .04 .02 

2 1.291 1.476 .02 .07 .03 .00 .22 .04 .01 

3 1.099 1.600 .28 .24 .01 .01 .09 .00 .00 

4 .972 1.701 .57 .14 .00 .01 .03 .05 .00 

5 .419 2.592 .06 .12 .02 .07 .03 .86 .07 

6 .283 3.155 .00 .01 .30 .64 .24 .00 .04 

7 .124 4.770 .07 .40 .62 .24 .38 .02 .85 

a. Dependent Variable: dcpue 
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2 (Constant) .001 .002  .620 .544 

dlicence .001 .001 .383 1.647 .120 

drainfall 1.450E-5 .000 .576 1.663 .117 

dtemperature -.005 .004 -.266 -1.290 .217 

dstreamflow -3.965E-8 .000 -.338 -1.236 .236 

dstreamwaterlevel -.023 .015 -.541 -1.523 .149 

3 (Constant) .001 .002  .510 .617 

dlicence .001 .001 .354 1.504 .152 

drainfall 1.297E-5 .000 .515 1.478 .159 

dtemperature -.005 .004 -.260 -1.240 .233 

dstreamwaterlevel -.031 .014 -.716 -2.159 .046 

4 (Constant) .001 .002  .440 .666 

dlicence .001 .001 .351 1.466 .161 

drainfall 1.285E-5 .000 .510 1.443 .167 

dstreamwaterlevel -.030 .014 -.695 -2.066 .054 

5 (Constant) .001 .002  .278 .784 

dlicence .000 .000 .192 .879 .391 

dstreamwaterlevel -.014 .009 -.319 -1.456 .163 

6 (Constant) .000 .002  .182 .858 

dstreamwaterlevel -.014 .009 -.319 -1.466 .045 

a. Dependent Variable: dcpue 

 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dprice .106b .268 .792 .072 .287 

3 dprice .113c .280 .783 .072 .287 

dstreamflow -.338c -1.236 .236 -.304 .565 
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4 dprice .303d 1.028 .319 .249 .517 

dstreamflow -.330d -1.180 .255 -.283 .565 

dtemperature -.260d -1.240 .233 -.296 .995 

5 dprice .297e .975 .343 .230 .518 

dstreamflow -.266e -.918 .371 -.217 .577 

dtemperature -.257e -1.184 .253 -.276 .995 

drainfall .510e 1.443 .167 .330 .361 

6 dprice .348f 1.269 .221 .287 .610 

dstreamflow -.255f -.887 .387 -.205 .578 

dtemperature -.255f -1.183 .252 -.269 .995 

drainfall .272f .840 .412 .194 .457 

dlicence .192f .879 .391 .203 1.000 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dtemperature, dstreamflow, drainfall 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dtemperature, drainfall 

d. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, drainfall 

e. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence 

f. Predictors in the Model: (Constant), dstreamwaterlevel 

 

Eviws: dcpue c dstreamwaterlevel 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/17/21   Time: 12:21 

Sample (adjusted): 1993 2013 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DSTREAMWATERLEVEL -0.013646 0.009311 -1.465652 0.1591 

C 0.000365 0.002008 0.181857 0.0446 

     
     R-squared 0.101576     Mean dependent var 0.000432 

Adjusted R-squared 0.054290     S.D. dependent var 0.009459 

S.E. of regression 0.009199     Akaike info criterion -6.449042 

Sum squared resid 0.001608     Schwarz criterion -6.349564 



  

428 

 

Log likelihood 69.71494     Hannan-Quinn criter. -6.427453 

F-statistic 2.148136     Durbin-Watson stat 2.530464 

Prob(F-statistic) 0.159097    

     
      

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.307707  0.0000 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 12:23 

Sample (adjusted): 1994 2013 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.416072 0.224499 -6.307707 0.0000 

C 0.000781 0.001883 0.414665 0.6833 

     
     R-squared 0.688512     Mean dependent var -0.000224 

Adjusted R-squared 0.671207     S.D. dependent var 0.014632 

S.E. of regression 0.008390     Akaike info criterion -6.628966 

Sum squared resid 0.001267     Schwarz criterion -6.529393 

Log likelihood 68.28966     Hannan-Quinn criter. -6.609528 

F-statistic 39.78717     Durbin-Watson stat 2.080607 

Prob(F-statistic) 0.000006    

     
      

The residual has no unit root. 

 

Serial correlation test: EViews 
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The residuals are flat and no serial correlation. 

Diagnostic checking: 

Normality test of residuals: 

0

1
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-0.01 0.00 0.01 0.02

Series: Residuals

Sample 1993 2013

Observations 21

Mean       1.65e-19

Median  -0.000425

Maximum  0.021173

Minimum -0.014183

Std. Dev.   0.008966

Skewness   0.426691

Kurtosis   2.756194

Jarque-Bera  0.689239

Probability  0.708490 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.915319     Prob. F(2,17) 0.0815 

Obs*R-squared 5.363118     Prob. Chi-Square(2) 0.0685 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 1.619574     Prob. F(4,15) 0.2209 

Obs*R-squared 6.334033     Prob. Chi-Square(4) 0.1756 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.088380     Prob. F(8,11) 0.4361 

Obs*R-squared 9.278303     Prob. Chi-Square(8) 0.3194 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.070380     Prob. F(1,19) 0.7936 

Obs*R-squared 0.077501     Prob. Chi-Square(1) 0.7807 

Scaled explained SS 0.055708     Prob. Chi-Square(1) 0.8134 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 12:25 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 7.67E-05 2.32E-05 3.300470 0.0038 

DSTREAMWATERLEVEL 2.86E-05 0.000108 0.265292 0.7936 

     
     R-squared 0.003691     Mean dependent var 7.66E-05 

Adjusted R-squared -0.048747     S.D. dependent var 0.000104 

S.E. of regression 0.000106     Akaike info criterion -15.36699 

Sum squared resid 2.15E-07     Schwarz criterion -15.26751 

Log likelihood 163.3534     Hannan-Quinn criter. -15.34540 

F-statistic 0.070380     Durbin-Watson stat 1.555680 

Prob(F-statistic) 0.793641    

     
      

 

Probability is greater than 5%, so the model is not heteroscedastic. 
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1994-2016) by double clicking the 

range> provide original values in dstreamwaterlevel from 2013-2016>Quick >estimate 

equation> dcpue  c dstreamwaterlevel> Forecast> Forecast sample (1994-2016)>ok> 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

 

Lag selection: Lag 4 was selected for the granger causality test 

 

Granger causality test: 

Pairwise Granger Causality Tests 

Date: 03/17/21   Time: 12:50 

Sample: 1994 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  3.86507 0.0427 

 DCPUE does not Granger Cause DLICENCES  1.50627 0.2794 

    
     DPRICE does not Granger Cause DCPUE  18  0.42931 0.7843 

 DCPUE does not Granger Cause DPRICE  0.41099 0.7967 

    
     DRAINFALL does not Granger Cause DCPUE  18  0.92562 0.4904 

 DCPUE does not Granger Cause DRAINFALL  0.50237 0.7354 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.78294 0.5639 

 DCPUE does not Granger Cause DTEMPERATURE  1.57044 0.2631 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  1.48093 0.2862 

 DCPUE does not Granger Cause DSTREAMFLOW  1.08359 0.4199 

    
     

No reverse causality was found. 

 

Test for multicollinearity: 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 
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1 dlicence .682 1.467 

dprice .256 3.911 

drainfall .379 2.636 

dtemperature .377 2.654 

dstreamflow .406 2.461 

dstreamwaterlevel .165 6.045 

a. Dependent Variable: dcpue 

 

 

Here multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

 

Regression Test: 

Forward Stepwise:  

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

Collinearity Diagnosticsa 

Mod

el 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfa

ll 

dtemperat

ure 

dstreamfl

ow 

dstreamwa

terlevel 

1 1 2.686 1.000 .00 .01 .02 .04 .00 .03 .02 

2 1.401 1.385 .04 .05 .04 .00 .12 .03 .01 

3 1.143 1.533 .03 .34 .00 .02 .08 .03 .00 

4 .969 1.665 .88 .03 .01 .00 .00 .01 .00 

5 .418 2.534 .01 .33 .09 .02 .06 .47 .03 

6 .296 3.013 .00 .06 .15 .77 .11 .04 .05 

7 .087 5.565 .04 .18 .70 .14 .63 .39 .90 

a. Dependent Variable: dcpue 



  

433 

 

1 (Constant) .001 .002  .520 .609 

dstreamflow -5.776E-8 .000 -.531 -2.801 .011 

a. Dependent Variable: dcpue 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence .175b .911 .374 .205 .983 

dprice .372b 2.046 .055 .425 .937 

drainfall .095b .424 .676 .097 .752 

dtemperature -.176b -.922 .368 -.207 .997 

dstreamwaterlevel -.059b -.219 .829 -.050 .517 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Regression Test : Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/17/21   Time: 12:54 

Sample (adjusted): 1995 2016 

Included observations: 22 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000912 0.001755 0.519958 0.6088 

DSTREAMFLOW -5.78E-08 2.06E-08 -2.800667 0.0110 

     
     R-squared 0.281706     Mean dependent var 0.000899 

Adjusted R-squared 0.245791     S.D. dependent var 0.009477 

S.E. of regression 0.008231     Akaike info criterion -6.675407 

Sum squared resid 0.001355     Schwarz criterion -6.576222 

Log likelihood 75.42948     Hannan-Quinn criter. -6.652042 

F-statistic 7.843736     Durbin-Watson stat 2.935148 

Prob(F-statistic) 0.011041    

     
     
Unit root test of residual: 
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Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.650542  0.0002 

Test critical values: 1% level  -3.808546  

 5% level  -3.020686  

 10% level  -2.650413  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/16/21   Time: 01:04 

Sample (adjusted): 1997 2016 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -2.030113 0.359277 -5.650542 0.0000 

D(R(-1)) 0.455057 0.220224 2.066334 0.0544 

C 0.000658 0.002124 0.309650 0.7606 

     
     R-squared 0.763506     Mean dependent var -4.34E-05 

Adjusted R-squared 0.735683     S.D. dependent var 0.018454 

S.E. of regression 0.009488     Akaike info criterion -6.340176 

Sum squared resid 0.001530     Schwarz criterion -6.190816 

Log likelihood 66.40176     Hannan-Quinn criter. -6.311020 

F-statistic 27.44169     Durbin-Watson stat 2.106158 

Prob(F-statistic) 0.000005    

     
     

Residuals do not have unit root. 

Serial correlation test: EViews 
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Selection of MA and AR term: 

dcpue c dstreamflow ar(1) ma(1) 

 

Dependent Variable: DCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/17/21   Time: 13:28 

Sample: 1995 2016  

Included observations: 22 

Failure to improve objective (non-zero gradients) after 18 iterations 

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001281 0.000311 4.117772 0.0007 

DSTREAMFLOW -3.98E-08 3.16E-08 -1.258616 0.2252 

AR(1) 0.034914 0.315984 0.110494 0.9133 

MA(1) -0.999999 11698.23 -8.55E-05 0.9999 

SIGMASQ 3.29E-05 0.011209 0.002931 0.9977 

     
     R-squared 0.616834     Mean dependent var 0.000899 

Adjusted R-squared 0.526677     S.D. dependent var 0.009477 

S.E. of regression 0.006520     Akaike info criterion -6.891603 

Sum squared resid 0.000723     Schwarz criterion -6.643639 

Log likelihood 80.80763     Hannan-Quinn criter. -6.833190 

F-statistic 6.841803     Durbin-Watson stat 1.988422 

Prob(F-statistic) 0.001796    

     
     Inverted AR Roots       .03  

Inverted MA Roots       1.00  
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Removed the MA term as the MA coefficient is nearly -1. Then re-estimated the model:  

dcpue c dstreamflow ar(1) 

 

Dependent Variable: DCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/17/21   Time: 13:52 

Sample: 1995 2016  

Included observations: 22 

Convergence achieved after 9 iterations 

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001016 0.001310 0.775351 0.4482 

DSTREAMFLOW -5.47E-08 2.64E-08 -2.072434 0.0529 

AR(1) -0.469464 0.200188 -2.345121 0.0307 

SIGMASQ 4.72E-05 1.68E-05 2.805102 0.0117 

     
     R-squared 0.449863     Mean dependent var 0.000899 

Adjusted R-squared 0.358174     S.D. dependent var 0.009477 

S.E. of regression 0.007593     Akaike info criterion -6.748985 

Sum squared resid 0.001038     Schwarz criterion -6.550613 

Log likelihood 78.23883     Hannan-Quinn criter. -6.702254 

F-statistic 4.906377     Durbin-Watson stat 2.213251 

Prob(F-statistic) 0.011544    

     
     Inverted AR Roots      -.47  

     
      

Serial correlation test:  

The residuals are flat and no serial correlation i.e. in white noise. 
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Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.873619  0.0009 

Test critical values: 1% level  -3.788030  

 5% level  -3.012363  

 10% level  -2.646119  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/17/21   Time: 13:54 

Sample (adjusted): 1996 2016 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.116235 0.229036 -4.873619 0.0001 

C 6.73E-05 0.001600 0.042060 0.9669 

     
     R-squared 0.555578     Mean dependent var -8.86E-05 

Adjusted R-squared 0.532187     S.D. dependent var 0.010716 
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S.E. of regression 0.007329     Akaike info criterion -6.903532 

Sum squared resid 0.001021     Schwarz criterion -6.804053 

Log likelihood 74.48708     Hannan-Quinn criter. -6.881942 

F-statistic 23.75216     Durbin-Watson stat 2.035144 

Prob(F-statistic) 0.000105    

     
      

There is no unit root in the residuals of new model. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

-0.010 -0.005 0.000 0.005 0.010 0.015 0.020

Series: Residuals

Sample 1995 2016

Observations 22

Mean      -3.24e-05

Median  -0.001889

Maximum  0.019320

Minimum -0.009654

Std. Dev.   0.007029

Skewness   1.060325

Kurtosis   3.790346

Jarque-Bera  4.694987

Probability  0.095609 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.286881     Prob. F(2,18) 0.0607 

Obs*R-squared 5.885251     Prob. Chi-Square(2) 0.0627 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.232129     Prob. F(4,16) 0.1113 

Obs*R-squared 7.879625     Prob. Chi-Square(4) 0.0961 

     
     Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 0.965461     Prob. F(8,12) 0.5038 

Obs*R-squared 8.615081     Prob. Chi-Square(8) 0.3758 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.514169     Prob. F(1,20) 0.4816 

Obs*R-squared 0.551410     Prob. Chi-Square(1) 0.4577 

Scaled explained SS 0.511298     Prob. Chi-Square(1) 0.4746 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/17/21   Time: 13:56 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 4.71E-05 1.73E-05 2.719229 0.0132 

DSTREAMFLOW 1.46E-10 2.04E-10 0.717056 0.4816 

     
     R-squared 0.025064     Mean dependent var 4.72E-05 

Adjusted R-squared -0.023683     S.D. dependent var 8.04E-05 

S.E. of regression 8.13E-05     Akaike info criterion -15.91036 

Sum squared resid 1.32E-07     Schwarz criterion -15.81117 

Log likelihood 177.0139     Hannan-Quinn criter. -15.88699 

F-statistic 0.514169     Durbin-Watson stat 1.791815 

Prob(F-statistic) 0.481631    

     
      

 

ARIMAX (1,1,0) Forecasting: Extend workfile size (from 1995-2019) by double clicking the 

range> provide original values in dstreamflow from 2017-2019>Quick >estimate equation> 

dcpue  c dstreamflow ar(1)  > Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 
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Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .457 2.186 

price .619 1.615 

rainfall .457 2.190 

temperature .751 1.332 

streamflow .397 2.522 

streamwaterlevel .366 2.729 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables. 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:24 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000958 0.000499 -1.918913 0.0413 

PRICE 2.84E-08 2.54E-08 1.119018 0.2870 

RAINFALL 5.88E-06 1.12E-05 0.525690 0.6095 

TEMPERATURE 0.002942 0.006752 0.435672 0.6715 

STREAMFLOW 1.65E-09 6.92E-08 0.023909 0.9814 

STREAMWATERLEVEL -0.008797 0.019386 -0.453776 0.6588 

C 0.005335 0.143429 0.037197 0.9710 

     
     R-squared 0.567718     Mean dependent var 0.040633 

Adjusted R-squared 0.331929     S.D. dependent var 0.009822 



  

441 

 

S.E. of regression 0.008028     Akaike info criterion -6.526410 

Sum squared resid 0.000709     Schwarz criterion -6.180154 

Log likelihood 65.73769     Hannan-Quinn criter. -6.478666 

F-statistic 2.407730     Durbin-Watson stat 2.102909 

Prob(F-statistic) 0.098092    

     
      
 

Diagnostic checking:  

Normality test:  

 

0

1

2

3

4

5

6

7

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2010

Observations 18

Mean      -4.00e-18

Median  -0.001333

Maximum  0.015622

Minimum -0.011804

Std. Dev.   0.006458

Skewness   0.730489

Kurtosis   3.464135

Jarque-Bera  1.762408

Probability  0.414284 

 

 

Breusch-Godfrey Serial Correlation LM Test:   

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.050264     Prob. F(2,9) 0.9512 

Obs*R-squared 0.198834     Prob. Chi-Square(2) 0.9054 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.284381     Prob. F(4,7) 0.8792 

Obs*R-squared 2.516174     Prob. Chi-Square(4) 0.6417 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     



  

442 

 

F-statistic 0.667967     Prob. F(8,3) 0.7124 

Obs*R-squared 11.52808     Prob. Chi-Square(8) 0.1735 

     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.302726     Prob. F(6,11) 0.9227 

Obs*R-squared 2.550994     Prob. Chi-Square(6) 0.8627 

Scaled explained SS 1.173773     Prob. Chi-Square(6) 0.9782 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:27 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 2.24E-05 0.001309 0.017075 0.9867 

LICENCES -6.91E-07 4.56E-06 -0.151699 0.8822 

PRICE 1.48E-10 2.32E-10 0.639187 0.5358 

RAINFALL -4.12E-08 1.02E-07 -0.403444 0.6944 

TEMPERATURE -4.81E-06 6.16E-05 -0.078029 0.9392 

STREAMFLOW -2.75E-10 6.32E-10 -0.435154 0.6719 

STREAMWATERLEVEL 0.000103 0.000177 0.580077 0.5736 

     
     R-squared 0.141722     Mean dependent var 3.94E-05 

Adjusted R-squared -0.326430     S.D. dependent var 6.36E-05 

S.E. of regression 7.33E-05     Akaike info criterion -15.91946 

Sum squared resid 5.91E-08     Schwarz criterion -15.57321 

Log likelihood 150.2752     Hannan-Quinn criter. -15.87172 

F-statistic 0.302726     Durbin-Watson stat 2.070841 

Prob(F-statistic) 0.922703    

     
      

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 
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Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .640 1.564 

price .878 1.139 

rainfall .383 2.613 

temperature .839 1.191 

streamflow .216 4.625 

streamwaterlevel .193 5.177 

a. Dependent Variable: cpue 

 

Here, multicollinearity is absent among variables.  

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:32 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000853 0.000461 -1.850083 0.0891 

PRICE 6.25E-08 1.70E-08 3.680259 0.0031 

RAINFALL 3.70E-06 1.02E-05 0.362720 0.7231 

TEMPERATURE 0.001810 0.005637 0.321128 0.7536 

STREAMFLOW -6.04E-08 5.88E-08 -1.028408 0.3240 

STREAMWATERLEVEL 0.018203 0.020982 0.867561 0.4027 

C -0.017038 0.127388 -0.133747 0.8958 

     
     R-squared 0.645014     Mean dependent var 0.043639 

Adjusted R-squared 0.467522     S.D. dependent var 0.009880 

S.E. of regression 0.007210     Akaike info criterion -6.749463 

Sum squared resid 0.000624     Schwarz criterion -6.401512 

Log likelihood 71.11990     Hannan-Quinn criter. -6.690576 

F-statistic 3.634031     Durbin-Watson stat 1.840055 

Prob(F-statistic) 0.027229    
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Diagnostic Checking: 

Normality test: 

0

1

2

3

4

5

-0.015 -0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean       1.30e-18

Median   0.001158

Maximum  0.011900

Minimum -0.014051

Std. Dev.   0.006235

Skewness  -0.478141

Kurtosis   3.095064

Jarque-Bera  0.731114

Probability  0.693810 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.177095     Prob. F(2,10) 0.8403 

Obs*R-squared 0.649941     Prob. Chi-Square(2) 0.7225 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.225246     Prob. F(4,8) 0.9167 

Obs*R-squared 1.923237     Prob. Chi-Square(4) 0.7499 

     
          

Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.688050     Prob. F(8,4) 0.6981 

Obs*R-squared 11.00371     Prob. Chi-Square(8) 0.2015 

     
          

Heteroscedasticity Test:  
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Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 2.014624     Prob. F(2,16) 0.1658 

Obs*R-squared 3.822196     Prob. Chi-Square(2) 0.1479 

Scaled explained SS 2.839311     Prob. Chi-Square(2) 0.2418 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:34 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000151 9.57E-05 -1.582304 0.1331 

LICENCES 5.16E-06 2.66E-06 1.937121 0.0706 

PRICE 7.79E-11 1.15E-10 0.677109 0.5080 

     
     R-squared 0.201168     Mean dependent var 3.68E-05 

Adjusted R-squared 0.101314     S.D. dependent var 5.48E-05 

S.E. of regression 5.19E-05     Akaike info criterion -16.74989 

Sum squared resid 4.31E-08     Schwarz criterion -16.60077 

Log likelihood 162.1239     Hannan-Quinn criter. -16.72465 

F-statistic 2.014624     Durbin-Watson stat 1.719435 

Prob(F-statistic) 0.165822    

     
      
 

Sample 1994-2016:  

 

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .880 1.137 

price .903 1.107 

rainfall .454 2.201 
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temperature .775 1.290 

streamflow .305 3.282 

streamwaterlevel .200 4.997 

a. Dependent Variable: cpue 

 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 12:36 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.000850 0.000251 -3.382898 0.0049 

PRICE 6.48E-08 1.19E-08 5.461766 0.0001 

RAINFALL -6.99E-06 6.39E-06 -1.093815 0.2939 

TEMPERATURE 0.006312 0.003566 1.769962 0.1002 

STREAMFLOW -6.97E-08 2.91E-08 -2.397746 0.0322 

STREAMWATERLEVEL 0.038942 0.012931 3.011470 0.0100 

C -0.130502 0.085685 -1.523038 0.1517 

     
     R-squared 0.784782     Mean dependent var 0.046810 

Adjusted R-squared 0.685450     S.D. dependent var 0.008641 

S.E. of regression 0.004846     Akaike info criterion -7.551936 

Sum squared resid 0.000305     Schwarz criterion -7.203430 

Log likelihood 82.51936     Hannan-Quinn criter. -7.483904 

F-statistic 7.900627     Durbin-Watson stat 2.700827 

Prob(F-statistic) 0.000973    

     
      
 

 

Diagnostic Checking: 

Normality Test: 
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0

1

2

3

4

5

6

7

-0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean      -1.16e-17

Median  -0.000531

Maximum  0.007598

Minimum -0.005987

Std. Dev.   0.004009

Skewness   0.304335

Kurtosis   2.228195

Jarque-Bera  0.805135

Probability  0.668601 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.709256     Prob. F(2,11) 0.0687 

Obs*R-squared 8.055495     Prob. Chi-Square(2) 0.0678 

     
     Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.049939     Prob. F(4,9) 0.0760 

Obs*R-squared 11.50934     Prob. Chi-Square(4) 0.0614 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.540810     Prob. F(8,5) 0.3291 

Obs*R-squared 14.22849     Prob. Chi-Square(8) 0.0760 

     
     
Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.496497     Prob. F(6,13) 0.8001 

Obs*R-squared 3.728623     Prob. Chi-Square(6) 0.7133 

Scaled explained SS 0.967414     Prob. Chi-Square(6) 0.9868 
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Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 12:38 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000525 0.000335 1.568115 0.1409 

LICENCES 1.27E-07 9.82E-07 0.129080 0.8993 

PRICE -4.07E-11 4.63E-11 -0.878271 0.3957 

RAINFALL 1.71E-08 2.50E-08 0.684707 0.5056 

TEMPERATURE -2.00E-05 1.39E-05 -1.433422 0.1753 

STREAMFLOW 1.19E-10 1.14E-10 1.045207 0.3150 

STREAMWATERLEVEL -6.69E-05 5.05E-05 -1.323660 0.2084 

     
     R-squared 0.186431     Mean dependent var 1.53E-05 

Adjusted R-squared -0.189062     S.D. dependent var 1.74E-05 

S.E. of regression 1.89E-05     Akaike info criterion -18.64253 

Sum squared resid 4.66E-09     Schwarz criterion -18.29402 

Log likelihood 193.4253     Hannan-Quinn criter. -18.57450 

F-statistic 0.496497     Durbin-Watson stat 1.866501 

Prob(F-statistic) 0.800095    

     
      

 

3. Pooled Reference sites:  

Data Preparation: Average value of all the variables were extracted from the three NFZs.  

Year: 1990-2010 

Check for seasonality and trend: Line diagram showing no seasonality pattern but a steady 

positive secular trend for the dependent variable “cpue”.   

 

Unit root test:  

 

All variable has unit root, so I took 1st difference of all the series. Now the series is stationary.  

 

Lag selection: Stata 

 

Lag 4 was selected for the granger causality test. 
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Granger Causality test:  

 

Pairwise Granger Causality Tests 

Date: 03/18/21   Time: 13:22 

Sample: 1990 2010 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  16  0.07266 0.9883 

 DCPUE does not Granger Cause DLICENCES  0.85684 0.5330 

    
     DPRICE does not Granger Cause DCPUE  16  3.39722 0.0759 

 DCPUE does not Granger Cause DPRICE  1.66554 0.2606 

    
     DRAINFALL does not Granger Cause DCPUE  16  1.15702 0.4051 

 DCPUE does not Granger Cause DRAINFALL  0.55838 0.7005 

    
     DTEMPERATURE does not Granger Cause DCPUE  16  1.15594 0.4054 

 DCPUE does not Granger Cause DTEMPERATURE  0.53828 0.7132 

    
     DSTREAMFLOW does not Granger Cause DCPUE  16  0.62819 0.6578 

 DCPUE does not Granger Cause DSTREAMFLOW  0.14417 0.9599 

    
    
No reverse causality was found. 

Test for multicollinearity:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .700 1.428 

dprice .525 1.904 

drainfall .447 2.236 

dtemperature .588 1.701 

dstreamflow .254 3.930 

dstreamwaterlevel .189 5.279 

a. Dependent Variable: dcpue 

 

Collinearity Diagnosticsa 
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Mod

el 

Dimensi

on 

Eigenva

lue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicen

ce dprice 

drainf

all 

dtempera

ture 

dstreamfl

ow 

dstreamw

aterlevel 

1 1 2.538 1.000 .00 .03 .03 .04 .01 .02 .02 

2 1.437 1.329 .01 .02 .11 .00 .16 .02 .02 

3 1.071 1.539 .44 .20 .03 .02 .02 .01 .00 

4 .982 1.608 .37 .16 .00 .05 .04 .04 .01 

5 .586 2.082 .00 .21 .12 .31 .18 .04 .00 

6 .279 3.016 .18 .37 .72 .15 .55 .05 .00 

7 .107 4.873 .00 .01 .00 .43 .04 .82 .95 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1 and VIF is less 

than 10. 

 

Multiple Regression Test: SPSS 

Stepwise (backward) regression in SPSS 

Analyse> regression>Linear>Provide variables> Method (backward)> Statistics (select 

Confidence interval, R square change and descriptives)>continue>ok 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .002  .287 .779 

dlicence -.001 .001 -.294 -1.199 .252 

dprice 2.361E-8 .000 .325 1.148 .271 

drainfall 1.682E-5 .000 .803 2.618 .021 

dtemperature .006 .005 .296 1.106 .289 

dstreamflow 1.720E-9 .000 .914 2.246 .043 

dstreamwaterlevel -.042 .018 -1.100 -2.333 .036 
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2 (Constant) .001 .002  .544 .595 

dlicence -.001 .001 -.236 -.978 .344 

dprice 1.018E-8 .000 .140 .609 .552 

drainfall 1.502E-5 .000 .718 2.398 .031 

dstreamflow 1.641E-9 .000 .872 2.136 .051 

dstreamwaterlevel -.039 .018 -1.008 -2.155 .049 

3 (Constant) .001 .002  .657 .521 

dlicence -.001 .001 -.193 -.854 .406 

drainfall 1.534E-5 .000 .733 2.511 .024 

dstreamflow 1.774E-9 .000 .943 2.461 .026 

dstreamwaterlevel -.041 .017 -1.060 -2.355 .033 

4 (Constant) .001 .002  .798 .436 

drainfall 1.331E-5 .000 .636 2.385 .030 

dstreamflow 1.748E-9 .000 .929 2.448 .026 

dstreamwaterlevel -.040 .017 -1.031 -2.316 .034 

a. Dependent Variable: dcpue 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

2 dtemperature .296b 1.106 .289 .293 .588 

3 dtemperature .114c .524 .608 .139 .903 

dprice .140c .609 .552 .161 .806 

4 dtemperature .114d .527 .606 .135 .903 

dprice .074d .336 .741 .087 .883 

dlicence -.193d -.854 .406 -.215 .803 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, dprice, drainfall, dstreamflow 

c. Predictors in the Model: (Constant), dstreamwaterlevel, dlicence, drainfall, dstreamflow 

d. Predictors in the Model: (Constant), dstreamwaterlevel, drainfall, dstreamflow 
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Regression Test : Eviws: dcpue c drainfall dstreamflow dstreamwaterlevel 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/18/21   Time: 13:28 

Sample (adjusted): 1991 2010 

Included observations: 20 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001254 0.001572 0.798118 0.4365 

DRAINFALL 1.33E-05 5.58E-06 2.385144 0.0298 

DSTREAMFLOW 1.75E-09 7.14E-10 2.447887 0.0263 

DSTREAMWATERLEVEL -0.039676 0.017128 -2.316474 0.0341 

     
     R-squared 0.355229     Mean dependent var 0.001502 

Adjusted R-squared 0.234335     S.D. dependent var 0.007992 

S.E. of regression 0.006993     Akaike info criterion -6.910924 

Sum squared resid 0.000782     Schwarz criterion -6.711777 

Log likelihood 73.10924     Hannan-Quinn criter. -6.872048 

F-statistic 2.938342     Durbin-Watson stat 2.468034 

Prob(F-statistic) 0.064984    

     
 

Unit root test for the residuals of regression model (including dcpue c drainfall dstreamflow 

dstreamwaterlevel): 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 1 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -5.391547  0.0004 

Test critical values: 1% level  -3.857386  

 5% level  -3.040391  

 10% level  -2.660551  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 18 

     

     

Augmented Dickey-Fuller Test Equation 
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Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/18/21   Time: 13:31 

Sample (adjusted): 1993 2010 

Included observations: 18 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.959029 0.363352 -5.391547 0.0001 

D(R(-1)) 0.531378 0.227935 2.331268 0.0341 

C 0.000184 0.001401 0.131428 0.8972 

     
     R-squared 0.725976     Mean dependent var -0.000552 

Adjusted R-squared 0.689439     S.D. dependent var 0.010617 

S.E. of regression 0.005917     Akaike info criterion -7.271028 

Sum squared resid 0.000525     Schwarz criterion -7.122633 

Log likelihood 68.43925     Hannan-Quinn criter. -7.250566 

F-statistic 19.86985     Durbin-Watson stat 2.146930 

Prob(F-statistic) 0.000061    

     
     
The residual has no unit root. 

 

Serial correlation test: EViews 

 

The probability of Q stat (Ljung-Box test) is more than .05. So, I should accept the null 

hypothesis. (Null: there is no serial correlation).  

Correlogram plot: 
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The residuals are not flat and no serial correlation i.e. in white noise. 

 

Selection of AR and MA term: 

 

dcpue c drainfall dstreamflow dstreamwaterlevel ar(2) 

 

 

Dependent Variable: DCPUE 

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Date: 03/18/21   Time: 13:34 

Sample: 1991 2010  

Included observations: 20 

Convergence achieved after 9 iterations 

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.001326 0.000939 1.412066 0.1798 

DRAINFALL 1.63E-05 4.55E-06 3.575057 0.0030 

DSTREAMFLOW 1.32E-09 7.59E-10 1.740505 0.0337 

DSTREAMWATERLEVEL -0.039680 0.014764 -2.687704 0.0177 

AR(2) -0.519450 0.332248 -1.563441 0.1403 

SIGMASQ 3.02E-05 1.35E-05 2.243039 0.0416 

     
     R-squared 0.502672     Mean dependent var 0.001502 

Adjusted R-squared 0.325054     S.D. dependent var 0.007992 

S.E. of regression 0.006566     Akaike info criterion -6.939120 

Sum squared resid 0.000604     Schwarz criterion -6.640401 

Log likelihood 75.39120     Hannan-Quinn criter. -6.880807 

F-statistic 2.830082     Durbin-Watson stat 2.616022 

Prob(F-statistic) 0.057074    

     
     Inverted AR Roots -.00+.72i     -.00-.72i 

     
      

 

Unit root test of residual:   

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 
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     Augmented Dickey-Fuller test statistic -5.900899  0.0001 

Test critical values: 1% level  -3.831511  

 5% level  -3.029970  

 10% level  -2.655194  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 19 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/18/21   Time: 13:37 

Sample (adjusted): 1992 2010 

Included observations: 19 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.373563 0.232772 -5.900899 0.0000 

C 1.57E-05 0.001267 0.012362 0.9903 

     
     R-squared 0.671945     Mean dependent var -0.000488 

Adjusted R-squared 0.652648     S.D. dependent var 0.009352 

S.E. of regression 0.005512     Akaike info criterion -7.464536 

Sum squared resid 0.000516     Schwarz criterion -7.365121 

Log likelihood 72.91309     Hannan-Quinn criter. -7.447711 

F-statistic 34.82061     Durbin-Watson stat 2.092451 

Prob(F-statistic) 0.000017    

     
      

Serial correlation test: 

Correlogram plot:  
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Diagnostic reports: 

Normality test of residuals: 

0

1

2

3

4

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1991 2010

Observations 20

Mean       3.09e-05

Median  -0.000399

Maximum  0.011908

Minimum -0.008993

Std. Dev.   0.005636

Skewness   0.232677

Kurtosis   2.300477

Jarque-Bera  0.588239

Probability  0.745187 

 

The probability of Jarque-Bera test in more than 5%, so the residual series follows normal 

distribution 

Breusch-Godfrey Serial Correlation LM Test: 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.564892     Prob. F(2,14) 0.0661 

Obs*R-squared 6.748563     Prob. Chi-Square(2) 0.0642 
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Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.154734     Prob. F(4,12) 0.1363 

Obs*R-squared 8.360215     Prob. Chi-Square(4) 0.0792 

     
      
lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.004447     Prob. F(8,8) 0.4976 

Obs*R-squared 10.02219     Prob. Chi-Square(8) 0.2635 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.194232     Prob. F(3,16) 0.8988 

Obs*R-squared 0.702775     Prob. Chi-Square(3) 0.8726 

Scaled explained SS 0.224825     Prob. Chi-Square(3) 0.9735 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/18/21   Time: 13:39 

Sample: 1991 2010  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 2.96E-05 8.51E-06 3.478964 0.0031 

DRAINFALL 1.89E-08 3.02E-08 0.624439 0.5411 

DSTREAMFLOW -6.04E-13 3.87E-12 -0.156193 0.8778 

DSTREAMWATERLEVEL -4.24E-06 9.27E-05 -0.045741 0.9641 

     
     R-squared 0.035139     Mean dependent var 3.02E-05 

Adjusted R-squared -0.145773     S.D. dependent var 3.54E-05 

S.E. of regression 3.79E-05     Akaike info criterion -17.34800 

Sum squared resid 2.29E-08     Schwarz criterion -17.14885 

Log likelihood 177.4800     Hannan-Quinn criter. -17.30912 

F-statistic 0.194232     Durbin-Watson stat 2.007564 

Prob(F-statistic) 0.898782    
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Probability is greater than 5%, so the model is not heteroscedastic. 

 

ARIMAX (2,1,0) Forecasting:  

Extend workfile size (from 1990-2013) by double clicking the range> provide actual value in 

drainfall, dstreamflow, dstreamwaterlevel from 2010-2013>Quick >estimate equation> dcpue 

c drainfall dstreamflow dstreamwaterlevel ar(2)  Forecast> Forecast sample (1990-2013)>ok>  

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2011-2013. 

Year 1992-2013: 

Unit root test:  The series has unit root, 1st difference removed unit root from the series and the 

final series has no unit root. 

Lag selection:  

Lag 4 selected for the granger causality test for granger causality test. 

Granger Causality test: 

Pairwise Granger Causality Tests 

Date: 03/19/21   Time: 12:36 

Sample: 1992 2013 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  17  0.93217 0.4917 

 DCPUE does not Granger Cause DLICENCES  0.72492 0.5990 

    
     DPRICE does not Granger Cause DCPUE  17  1.17317 0.3912 

 DCPUE does not Granger Cause DPRICE  0.62499 0.6579 

    
     DRAINFALL does not Granger Cause DCPUE  17  3.56155 0.0696 

 DCPUE does not Granger Cause DRAINFALL  0.61662 0.6631 

    
     DTEMPERATURE does not Granger Cause DCPUE  17  0.27989 0.8830 

 DCPUE does not Granger Cause DTEMPERATURE  0.46977 0.7572 

    
     DSTREAMFLOW does not Granger Cause DCPUE  17  0.29041 0.8763 

 DCPUE does not Granger Cause DSTREAMFLOW  0.29186 0.8753 

    
     DSTREAMWATERLEVEL does not Granger Cause DCPUE  17  3.97021 0.0661 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.09259 0.9821 
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No reverse causality detected. 

 

Test for multicollinearity: 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .732 1.365 

dprice .482 2.075 

drainfall .512 1.953 

dtemperature .543 1.840 

dstreamflow .374 2.673 

dstreamwaterlevel .307 3.260 

a. Dependent Variable: dcpue 

Collinearity Diagnosticsa 

M

o

d

e

l 

Dimensi

on 

Eigenval

ue 

Condition 

Index 

Variance Proportions 

(Consta

nt) 

dlicenc

e dprice 

drainfa

ll 

dtemperat

ure 

dstreamfl

ow 

dstreamwa

terlevel 

1 1 2.595 1.000 .00 .01 .03 .03 .03 .03 .03 

2 1.328 1.398 .00 .00 .10 .08 .14 .00 .04 

3 1.193 1.475 .13 .34 .00 .03 .00 .05 .01 

4 .970 1.636 .82 .07 .00 .01 .01 .02 .00 

5 .436 2.439 .00 .34 .02 .46 .24 .16 .01 

6 .300 2.943 .03 .24 .84 .06 .55 .04 .00 

7 .179 3.806 .01 .00 .01 .33 .03 .70 .91 

a. Dependent Variable: dcpue 

 

Here, multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test : SPSS 
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Backward stepwise regression: 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .000 .002  .177 .861 

dstreamflow 1.938E-9 .000 .499 2.512 .021 

a. Dependent Variable: dcpue 

 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence .007b .035 .972 .008 .998 

dprice .276b 1.301 .210 .293 .848 

drainfall .139b .656 .520 .153 .901 

dtemperature -.187b -.874 .394 -.202 .874 

dstreamwaterlevel -.114b -.392 .700 -.092 .490 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Regression Eviws: dcpue c dstreamflow 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/19/21   Time: 14:13 

Sample (adjusted): 1993 2013 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000321 0.001811 0.177239 0.8612 

DSTREAMFLOW 1.94E-09 7.72E-10 2.512013 0.0212 

     
     R-squared 0.249315     Mean dependent var 0.000418 
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Adjusted R-squared 0.209805     S.D. dependent var 0.009334 

S.E. of regression 0.008297     Akaike info criterion -6.655392 

Sum squared resid 0.001308     Schwarz criterion -6.555914 

Log likelihood 71.88162     Hannan-Quinn criter. -6.633803 

F-statistic 6.310207     Durbin-Watson stat 2.620444 

Prob(F-statistic) 0.021196    

     
      
 

Unit root test of residual: 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 3 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -3.541518  0.0197 

Test critical values: 1% level  -3.886751  

 5% level  -3.052169  

 10% level  -2.666593  

     
     *MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and 

        may not be accurate for a sample size of 17 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/19/21   Time: 14:14 

Sample (adjusted): 1997 2013 

Included observations: 17 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -3.023875 0.853836 -3.541518 0.0041 

D(R(-1)) 1.384575 0.713204 1.941345 0.0761 

D(R(-2)) 0.829549 0.506548 1.637652 0.1274 

D(R(-3)) 0.466852 0.273517 1.706845 0.1136 

C 0.001889 0.001919 0.984321 0.3444 

     
     R-squared 0.779753     Mean dependent var -0.000229 

Adjusted R-squared 0.706337     S.D. dependent var 0.013922 

S.E. of regression 0.007544     Akaike info criterion -6.696118 
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Sum squared resid 0.000683     Schwarz criterion -6.451055 

Log likelihood 61.91700     Hannan-Quinn criter. -6.671758 

F-statistic 10.62106     Durbin-Watson stat 1.898510 

Prob(F-statistic) 0.000648    

     
      
 

The residual has no unit root. 

 

Serial correlation test: EViews 

 

 

Serial correlation test: 

The residuals are flat and no serial correlation. 

Diagnostic checking: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

-0.01 0.00 0.01 0.02

Series: Residuals

Sample 1993 2013

Observations 21

Mean      -1.65e-19

Median  -0.002077

Maximum  0.020904

Minimum -0.010649

Std. Dev.   0.008087

Skewness   0.844835

Kurtosis   3.118554

Jarque-Bera  2.510412

Probability  0.285017 
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Breusch-Godfrey Serial Correlation LM Test: 

 

Lag (2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.847379     Prob. F(2,17) 0.0858 

Obs*R-squared 5.269495     Prob. Chi-Square(2) 0.0717 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.986096     Prob. F(4,15) 0.1484 

Obs*R-squared 7.271149     Prob. Chi-Square(4) 0.1222 

     
      

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.648051     Prob. F(8,11) 0.2173 

Obs*R-squared 11.44839     Prob. Chi-Square(8) 0.1776 

     
      

Heteroscedasticity test:  

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.026290     Prob. F(1,19) 0.8729 

Obs*R-squared 0.029018     Prob. Chi-Square(1) 0.8647 

Scaled explained SS 0.025162     Prob. Chi-Square(1) 0.8740 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/19/21   Time: 14:17 

Sample: 1993 2013  

Included observations: 21 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 6.24E-05 2.08E-05 2.999575 0.0074 

DSTREAMFLOW -1.44E-12 8.86E-12 -0.162143 0.8729 

     
     R-squared 0.001382     Mean dependent var 6.23E-05 

Adjusted R-squared -0.051177     S.D. dependent var 9.29E-05 

S.E. of regression 9.52E-05     Akaike info criterion -15.58979 
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Sum squared resid 1.72E-07     Schwarz criterion -15.49031 

Log likelihood 165.6928     Hannan-Quinn criter. -15.56820 

F-statistic 0.026290     Durbin-Watson stat 2.186797 

Prob(F-statistic) 0.872905    

     
      
 

Probability is greater than 5%, so the model is not heteroscedastic. 

 

ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1992-2016) by double clicking the 

range> provide original values in dstreamflow from 2013-2016>Quick >estimate equation> 

dcpue c dstreamflow> Forecast> Forecast sample (1994-2016)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2014-2016. 

Sample 1994-2016: 

Unit root test: All variables have unit root, 1st difference of the series made them stationary. 

Lag selection: Lag 4 was selected for the granger causality test. 

 

Granger causality test: 

 

Pairwise Granger Causality Tests 

Date: 03/20/21   Time: 15:03 

Sample: 1994 2016 

Lags: 4  

    
     Null Hypothesis: Obs F-Statistic Prob.  

    
     DLICENCES does not Granger Cause DCPUE  18  1.51967 0.2759 

 DCPUE does not Granger Cause DLICENCES  1.01552 0.4489 

    
     DPRICE does not Granger Cause DCPUE  18  0.72566 0.5962 

 DCPUE does not Granger Cause DPRICE  0.66273 0.6334 

    
     DRAINFALL does not Granger Cause DCPUE  18  3.29953 0.0632 

 DCPUE does not Granger Cause DRAINFALL  0.91962 0.4933 

    
     DTEMPERATURE does not Granger Cause DCPUE  18  0.50759 0.7320 

 DCPUE does not Granger Cause DTEMPERATURE  1.22525 0.3657 

    
     DSTREAMFLOW does not Granger Cause DCPUE  18  0.52745 0.7189 

 DCPUE does not Granger Cause DSTREAMFLOW  0.13090 0.9671 
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     DSTREAMWATERLEVEL does not Granger Cause DCPUE  18  3.73089 0.0468 

 DCPUE does not Granger Cause DSTREAMWATERLEVEL  0.11613 0.9734 

    
     
 

No reverse causality was found. 

 

Test for multicollinearity: 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 dlicence .657 1.521 

dprice .470 2.128 

drainfall .491 2.036 

dtemperature .564 1.773 

dstreamflow .357 2.801 

dstreamwaterlevel .296 3.376 

a. Dependent Variable: dcpue 

Collinearity Diagnosticsa 

Mo

del 

Dimen

sion 

Eigenv

alue 

Conditio

n Index 

Variance Proportions 

(Cons

tant) 

dlice

nce 

dpric

e 

drain

fall 

dtempe

rature 

dstrea

mflow 

dstream

waterlev

el 

1 1 2.652 1.000 .00 .02 .03 .03 .03 .03 .02 

2 1.390 1.381 .06 .01 .07 .05 .12 .01 .04 

3 1.153 1.516 .11 .26 .00 .05 .03 .06 .00 

4 .927 1.691 .78 .05 .02 .01 .01 .03 .01 

5 .411 2.541 .02 .30 .07 .43 .36 .10 .00 

6 .297 2.987 .02 .32 .74 .15 .44 .03 .02 

7 .169 3.957 .00 .03 .06 .28 .02 .75 .90 

a. Dependent Variable: dcpue 
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Here multicollinearity is absent among variables. Tolerance is more than 0.1, VIF is less than 

10. 

Regression Test: 

Forward Stepwise:  

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .002  .401 .692 

dstreamflow 1.847E-9 .000 .492 2.525 .020 

a. Dependent Variable: dcpue 

Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 dlicence .027b .134 .895 .031 1.000 

dprice .341b 1.675 .110 .359 .837 

drainfall .096b .459 .651 .105 .904 

dtemperature -.191b -.927 .366 -.208 .895 

dstreamwaterlevel -.160b -.570 .575 -.130 .497 

a. Dependent Variable: dcpue 

b. Predictors in the Model: (Constant), dstreamflow 

 

Regression Test: Eviws: dcpue c dstreamflow 

 

Dependent Variable: DCPUE 

Method: Least Squares 

Date: 03/20/21   Time: 15:19 

Sample (adjusted): 1995 2016 

Included observations: 22 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000673 0.001678 0.401268 0.6925 

DSTREAMFLOW 1.85E-09 7.31E-10 2.525061 0.0201 
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     R-squared 0.241733     Mean dependent var 0.000642 

Adjusted R-squared 0.203820     S.D. dependent var 0.008821 

S.E. of regression 0.007871     Akaike info criterion -6.764688 

Sum squared resid 0.001239     Schwarz criterion -6.665502 

Log likelihood 76.41157     Hannan-Quinn criter. -6.741323 

F-statistic 6.375931     Durbin-Watson stat 2.802370 

Prob(F-statistic) 0.020125    

     
     
Unit root test of residual 

 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=4) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.685114  0.0000 

Test critical values: 1% level  -3.788030  

 5% level  -3.012363  

 10% level  -2.646119  

     
     *MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(R) 

Method: Least Squares 

Date: 03/20/21   Time: 15:20 

Sample (adjusted): 1996 2016 

Included observations: 21 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     R(-1) -1.403130 0.209889 -6.685114 0.0000 

C 9.04E-05 0.001611 0.056101 0.9558 

     
     R-squared 0.701684     Mean dependent var 1.02E-05 

Adjusted R-squared 0.685983     S.D. dependent var 0.013177 

S.E. of regression 0.007384     Akaike info criterion -6.888645 

Sum squared resid 0.001036     Schwarz criterion -6.789167 

Log likelihood 74.33078     Hannan-Quinn criter. -6.867056 

F-statistic 44.69075     Durbin-Watson stat 2.233790 

Prob(F-statistic) 0.000002    
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Residuals do not have unit root. 

Serial correlation test:  

 

Selection of MA and AR term: 

Residual is flat and in white noise. 

Diagnostic Reports: 

Normality test of residuals: 

0

1

2

3

4

5

6

7

-0.01 0.00 0.01 0.02

Series: Residuals

Sample 1995 2016

Observations 22

Mean      -4.44e-19

Median  -0.001555

Maximum  0.020535

Minimum -0.011371

Std. Dev.   0.007682

Skewness   0.836403

Kurtosis   3.426433

Jarque-Bera  2.731779

Probability  0.255154 

 

Breusch-Godfrey Serial Correlation LM Test:  

  

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 3.161272     Prob. F(2,18) 0.0666 
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Obs*R-squared 5.718809     Prob. Chi-Square(2) 0.0673 

     
      

Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.923140     Prob. F(4,16) 0.0644 

Obs*R-squared 9.289005     Prob. Chi-Square(4) 0.0643 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.772319     Prob. F(8,12) 0.1791 

Obs*R-squared 11.91541     Prob. Chi-Square(8) 0.1550 

     
      

Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 0.062369     Prob. F(1,20) 0.8053 

Obs*R-squared 0.068393     Prob. Chi-Square(1) 0.7937 

Scaled explained SS 0.068574     Prob. Chi-Square(1) 0.7934 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/20/21   Time: 15:23 

Sample: 1995 2016  

Included observations: 22 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 5.63E-05 1.96E-05 2.873502 0.0094 

DSTREAMFLOW -2.13E-12 8.54E-12 -0.249738 0.8053 

     
     R-squared 0.003109     Mean dependent var 5.63E-05 

Adjusted R-squared -0.046736     S.D. dependent var 8.98E-05 

S.E. of regression 9.19E-05     Akaike info criterion -15.66576 

Sum squared resid 1.69E-07     Schwarz criterion -15.56658 

Log likelihood 174.3234     Hannan-Quinn criter. -15.64240 

F-statistic 0.062369     Durbin-Watson stat 2.098835 

Prob(F-statistic) 0.805337    
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ARIMAX (0,1,0) Forecasting: Extend workfile size (from 1995-2019) by double clicking the 

range> provide original values in dstreamflow dprice from 2017-2019>Quick >estimate 

equation> dcpue c dstreamflow > Forecast> Forecast sample (1996-2019)>ok> 

 

Associated excel file to determine MAPE, RAMSE, MAE etc. of the year 2017-2019. 

 

Regression model: 3 years lag of Env. variables 

Sample 1990-2010:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .405 2.468 

price .648 1.542 

rainfall .230 4.353 

temperature .749 1.336 

streamflow .101 9.947 

streamwaterlevel .051 19.646 

a. Dependent Variable: cpue 

 

Here, multicollinearity is present in stream water level, so I will delete this variable from the 

equation. 

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 13:45 

Sample: 1993 2010  

Included observations: 18 
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     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001849 0.000456 -4.057837 0.0016 

PRICE 7.71E-08 2.10E-08 3.667858 0.0032 

RAINFALL 3.00E-07 5.14E-06 0.058457 0.9543 

TEMPERATURE 0.004562 0.006043 0.754854 0.4649 

STREAMFLOW -1.10E-09 6.46E-10 -1.709984 0.1130 

C -0.038104 0.150727 -0.252800 0.8047 

     
     R-squared 0.806071     Mean dependent var 0.043067 

Adjusted R-squared 0.725267     S.D. dependent var 0.011622 

S.E. of regression 0.006092     Akaike info criterion -7.102528 

Sum squared resid 0.000445     Schwarz criterion -6.805737 

Log likelihood 69.92275     Hannan-Quinn criter. -7.061604 

F-statistic 9.975651     Durbin-Watson stat 1.763493 

Prob(F-statistic) 0.000594    

     
      

Diagnostic checking:  

 

Normality test:  

 

0

1

2

3

4

5

-0.010 -0.005 0.000 0.005 0.010 0.015

Series: Residuals

Sample 1993 2010

Observations 18

Mean       2.92e-17

Median  -0.000257

Maximum  0.012785

Minimum -0.010442

Std. Dev.   0.005118

Skewness   0.364659

Kurtosis   3.909322

Jarque-Bera  1.019079

Probability  0.600772 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.390286     Prob. F(2,10) 0.6867 
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Obs*R-squared 1.303299     Prob. Chi-Square(2) 0.5212 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.163302     Prob. F(4,8) 0.9511 

Obs*R-squared 1.358772     Prob. Chi-Square(4) 0.8513 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 2.166733     Prob. F(8,4) 0.2373 

Obs*R-squared 14.62508     Prob. Chi-Square(8) 0.0669 

     
      

Heteroscedasticity test: 

 

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.546926     Prob. F(5,12) 0.2478 

Obs*R-squared 7.054774     Prob. Chi-Square(5) 0.2166 

Scaled explained SS 4.561024     Prob. Chi-Square(5) 0.4718 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 13:46 

Sample: 1993 2010  

Included observations: 18 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000108 0.000997 -0.108244 0.9156 

LICENCES 5.69E-06 3.01E-06 1.888662 0.0833 

PRICE 8.15E-11 1.39E-10 0.586187 0.5686 

RAINFALL -4.92E-08 3.40E-08 -1.445669 0.1739 

TEMPERATURE 1.12E-06 4.00E-05 0.028074 0.9781 

STREAMFLOW -1.68E-12 4.27E-12 -0.394084 0.7004 

     
     R-squared 0.391932     Mean dependent var 2.47E-05 

Adjusted R-squared 0.138570     S.D. dependent var 4.34E-05 

S.E. of regression 4.03E-05     Akaike info criterion -17.13915 

Sum squared resid 1.95E-08     Schwarz criterion -16.84236 



  

473 

 

Log likelihood 160.2523     Hannan-Quinn criter. -17.09822 

F-statistic 1.546926     Durbin-Watson stat 1.460536 

Prob(F-statistic) 0.247776    

     
      
 

Sample 1992-2013:  

Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .685 1.459 

price .474 2.110 

rainfall .192 5.222 

temperature .787 1.271 

streamflow .150 6.675 

streamwaterlevel .079 12.640 

a. Dependent Variable: cpue 

 

Here, multicollinearity is present in stream water level, so I will remove the variable from the 

equation.  

MLR: 

cpue licences price rainfall temperature streamflow c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 13:48 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001719 0.000457 -3.764358 0.0024 

PRICE 7.70E-08 1.92E-08 4.015642 0.0015 

RAINFALL -5.40E-06 4.57E-06 -1.179837 0.2592 
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TEMPERATURE 0.004413 0.004751 0.928926 0.3699 

STREAMFLOW 8.39E-10 7.84E-10 1.069954 0.3041 

C -0.033425 0.117908 -0.283482 0.7813 

     
     R-squared 0.838115     Mean dependent var 0.046513 

Adjusted R-squared 0.775851     S.D. dependent var 0.011853 

S.E. of regression 0.005612     Akaike info criterion -7.275819 

Sum squared resid 0.000409     Schwarz criterion -6.977575 

Log likelihood 75.12028     Hannan-Quinn criter. -7.225345 

F-statistic 13.46077     Durbin-Watson stat 2.226022 

Prob(F-statistic) 0.000094    

     
      
 
 

 

Diagnostic Checking: 

Normality test: 

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1995 2013

Observations 19

Mean      -1.13e-17

Median  -0.000202

Maximum  0.009424

Minimum -0.010267

Std. Dev.   0.004769

Skewness  -0.277042

Kurtosis   2.996758

Jarque-Bera  0.243057

Probability  0.885566 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 
Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.444115     Prob. F(2,11) 0.6524 

Obs*R-squared 1.419586     Prob. Chi-Square(2) 0.4917 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 
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F-statistic 0.500120     Prob. F(4,9) 0.7369 

Obs*R-squared 3.455226     Prob. Chi-Square(4) 0.4847 

     
     Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.612838     Prob. F(8,5) 0.7439 

Obs*R-squared 9.406661     Prob. Chi-Square(8) 0.3092 

     
      

Heteroscedasticity Test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 3.405117     Prob. F(5,13) 0.0784 

Obs*R-squared 7.77368     Prob. Chi-Square(5) 0.0661 

Scaled explained SS 5.035461     Prob. Chi-Square(5) 0.4116 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 13:49 

Sample: 1995 2013  

Included observations: 19 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 4.03E-06 0.000509 0.007918 0.9938 

LICENCES 6.25E-06 1.97E-06 3.169815 0.0074 

PRICE 5.44E-12 8.27E-11 0.065716 0.9486 

RAINFALL -2.64E-08 1.97E-08 -1.336764 0.2042 

TEMPERATURE -4.44E-06 2.05E-05 -0.216294 0.8321 

STREAMFLOW -1.88E-12 3.38E-12 -0.556524 0.5873 

     
     R-squared 0.567036     Mean dependent var 2.15E-05 

Adjusted R-squared 0.400511     S.D. dependent var 3.13E-05 

S.E. of regression 2.42E-05     Akaike info criterion -18.16667 

Sum squared resid 7.63E-09     Schwarz criterion -17.86843 

Log likelihood 178.5834     Hannan-Quinn criter. -18.11620 

F-statistic 3.405117     Durbin-Watson stat 1.442125 

Prob(F-statistic) 0.034778    

     
      

Sample 1994-2016:  
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Multicollinearity test:  

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 licence .932 1.073 

price .602 1.662 

rainfall .358 2.797 

temperature .890 1.123 

streamflow .143 6.970 

streamwaterlevel .117 8.534 

a. Dependent Variable: cpue 

MLR: 

cpue licences price rainfall temperature streamflow streamwaterlevel c 

 

Dependent Variable: CPUE 

Method: Least Squares 

Date: 03/24/21   Time: 13:53 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LICENCES -0.001380 0.000310 -4.447552 0.0007 

PRICE 8.18E-08 1.52E-08 5.397004 0.0001 

RAINFALL -5.26E-06 4.33E-06 -1.215744 0.2457 

TEMPERATURE 0.005381 0.003457 1.556614 0.1436 

STREAMFLOW 1.00E-09 9.32E-10 1.074720 0.3020 

STREAMWATERLEVEL -0.005337 0.013907 -0.383768 0.7074 

C -0.059318 0.085722 -0.691980 0.5011 

     
     R-squared 0.848108     Mean dependent var 0.048447 

Adjusted R-squared 0.778004     S.D. dependent var 0.009922 

S.E. of regression 0.004675     Akaike info criterion -7.624004 

Sum squared resid 0.000284     Schwarz criterion -7.275498 

Log likelihood 83.24004     Hannan-Quinn criter. -7.555972 

F-statistic 12.09787     Durbin-Watson stat 2.135663 

Prob(F-statistic) 0.000115    
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Diagnostic Checking: 

Normality Test: 

0

1

2

3

4

5

6

7

8

9

-0.010 -0.005 0.000 0.005 0.010

Series: Residuals

Sample 1997 2016

Observations 20

Mean       1.26e-18

Median  -0.000256

Maximum  0.007950

Minimum -0.010315

Std. Dev.   0.003867

Skewness  -0.441325

Kurtosis   4.147016

Jarque-Bera  1.745599

Probability  0.417780 

 

 

Breusch-Godfrey Serial Correlation LM Test: 

 

Lag(2) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.524695     Prob. F(2,11) 0.6058 

Obs*R-squared 1.741814     Prob. Chi-Square(2) 0.4186 

     
      
Lag(4) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 0.243911     Prob. F(4,9) 0.9063 

Obs*R-squared 1.956052     Prob. Chi-Square(4) 0.7438 

     
      
Lag(8) 

Breusch-Godfrey Serial Correlation LM Test: 

     
     F-statistic 1.249326     Prob. F(8,5) 0.4208 

Obs*R-squared 13.33094     Prob. Chi-Square(8) 0.1010 

     
      

Heteroscedasticity test:  

Heteroscedasticity Test: Breusch-Pagan-Godfrey 
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F-statistic 3.457318     Prob. F(6,13) 0.0688 

Obs*R-squared 8.29491     Prob. Chi-Square(6) 0.0657 

Scaled explained SS 8.173742     Prob. Chi-Square(6) 0.2256 

     
          

Test Equation:  

Dependent Variable: RESID^2 

Method: Least Squares 

Date: 03/24/21   Time: 13:56 

Sample: 1997 2016  

Included observations: 20 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000282 0.000356 0.791730 0.4427 

LICENCES 4.37E-06 1.29E-06 3.395883 0.0048 

PRICE 1.72E-11 6.29E-11 0.273339 0.7889 

RAINFALL -4.08E-08 1.80E-08 -2.275356 0.0405 

TEMPERATURE -1.96E-05 1.43E-05 -1.363201 0.1960 

STREAMFLOW -6.93E-12 3.87E-12 -1.791960 0.0964 

STREAMWATERLEVEL 0.000106 5.77E-05 1.843137 0.0882 

     
     R-squared 0.614745     Mean dependent var 1.42E-05 

Adjusted R-squared 0.436935     S.D. dependent var 2.59E-05 

S.E. of regression 1.94E-05     Akaike info criterion -18.59328 

Sum squared resid 4.89E-09     Schwarz criterion -18.24478 

Log likelihood 192.9328     Hannan-Quinn criter. -18.52525 

F-statistic 3.457318     Durbin-Watson stat 1.508628 

Prob(F-statistic) 0.028832    

     
      

Table B 4: Result of independent sample t-test 

For comparison between the models:  

 

Analyze> compare Means> Independent Sample T test> Provide variable and groups> ok 

 

If the significance level is less than .05 then reject null hypothesis of equal mean. 

 

 

Group Statistics 

 Models N Mean Std. Deviation Std. Error Mean 

MAE ARIMAX 24 .01258 .009207 .001879 

MLR 24 .08300 .050367 .010281 
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MAPE ARIMAX 24 27.05492 26.966631 5.504541 

MLR 24 167.60633 135.466005 27.651883 

RMSE ARIMAX 24 .01417 .009494 .001938 

MLR 24 .08355 .049815 .010168 

 

Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differenc

e 

Std. 

Error 

Differenc

e 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

MAE Equal 

variances 

assumed 

35.493 .000 -6.737 46 .000 -.070417 .010452 -

.0914

55 

-.049379 

Equal 

variances 

not 

assumed 

  

-6.737 24.535 .000 -.070417 .010452 -

.0919

63 

-.048871 

MAPE Equal 

variances 

assumed 

18.245 .000 -4.985 46 .000 -

140.5514

17 

28.1944

42 

-

197.3

03885 

-

83.7989

48 

Equal 

variances 

not 

assumed 

  

-4.985 24.820 .000 -

140.5514

17 

28.1944

42 

-

198.6

40319 

-

82.4625

14 

RMSE Equal 

variances 

assumed 

34.283 .000 -6.702 46 .000 -.069379 .010351 -

.0902

16 

-.048543 

Equal 

variances 

not 

assumed 

  

-6.702 24.669 .000 -.069379 .010351 -

.0907

13 

-.048045 

 

Since p value is less than the significance level 0.05, hence the null hypothesis of equal mean 

is rejected. So, the mean of two different population is statistically different. 

For comparison between the sites:  

ARIMAX model: 
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Group Statistics 

 Models N Mean Std. Deviation Std. Error Mean 

MAE NFZs 12 .01600 .011045 .003189 

Reference 12 .00917 .005458 .001576 

MAPE NFZs 12 36.55733 35.470055 10.239323 

Reference 12 17.55250 8.085379 2.334048 

RMSE NFZs 12 .01750 .011374 .003283 

Reference 12 .01083 .005906 .001705 

 

 

Independent Samples Test 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differenc

e 

Std. 

Error 

Differenc

e 

95% 

Confidence 

Interval of the 

Difference 

Lower Upper 

MAE Equal 

variances 

assumed 

4.308 .050 1.921 22 .068 .006833 .003557 -

.00054

2 

.0142

09 

Equal 

variances not 

assumed 

  

1.921 16.069 .073 .006833 .003557 -

.00070

4 

.0143

70 

MAPE Equal 

variances 

assumed 

4.869 .038 1.810 22 .084 19.0048

33 

10.5019

77 

-

2.7749

33 

40.78

4600 

Equal 

variances not 

assumed 

  

1.810 12.140 .095 19.0048

33 

10.5019

77 

-

3.8477

63 

41.85

7430 

RMSE Equal 

variances 

assumed 

4.509 .045 1.802 22 .085 .006667 .003700 -

.00100

6 

.0143

39 

Equal 

variances not 

assumed 

  

1.802 16.530 .090 .006667 .003700 -

.00115

6 

.0144

89 

 

In ARIMAX model, since p value is more than the significance level 0.05, hence the null 

hypothesis of equal mean is accepted. So, the mean of two different population is statistically 

same. 
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MLR model: 

 

Group Statistics 

 Models N Mean Std. Deviation Std. Error Mean 

MAE NFZs 12 .08108 .056452 .016296 

Reference 12 .08492 .045930 .013259 

MAPE NFZs 12 170.73633 173.692733 50.140773 

Reference 12 164.47633 90.442318 26.108448 

RMSE NFZs 12 .08175 .055746 .016093 

Reference 12 .08534 .045540 .013146 

 

 

Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differen

ce 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

MAE Equal variances 

assumed 

.266 .611 -.182 22 .857 -.003833 .021009 -

.04740

3 

.039736 

Equal variances 

not assumed   

-.182 21.126 .857 -.003833 .021009 -

.04750

7 

.039841 

MAP

E 

Equal variances 

assumed 

2.243 .148 .111 22 .913 6.26000

0 

56.530949 -

110.97

8013 

123.49801

3 

Equal variances 

not assumed   

.111 16.556 .913 6.26000

0 

56.530949 -

113.25

3757 

125.77375

7 

RMS

E 

Equal variances 

assumed 

.252 .621 -.173 22 .864 -.003592 .020780 -

.04668

6 

.039503 

Equal variances 

not assumed   

-.173 21.158 .864 -.003592 .020780 -

.04678

6 

.039603 

 

In MLR model, since p value is more than the significance level 0.05, hence the null hypothesis 

of equal mean is accepted. So, the mean of two different population is statistically same. 
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Appendix C 

Table C 1: Identification of zones for this study 

Zone 1: South East Queensland 

Zone 2: Darling Downs South West 

Zone 3: Wide Bay-Burnett  

Zone 4: Mackay, Isaac & Whitsunday 

Zone 5: Rockhampton 

Zone 6: Capricorn Coast 

Zone 7: Rest of the Central Queensland 

Zone 8: Townsville  

Zone 9: Rest of the North Queensland  

Zone 10: Far North  

Zone 11: New South Wales (NSW) 

Zone 12: Victoria (VIC) 

Zone 13: Northern Territory (NT) 

Zone 14: South Australia (SA) 

Zone 15: Western Australia (WA) 

Zone 16: Tasmania (TAS) 
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Table C 2: Analysis of travel cost method 

Model 1: Postcode model  

Postcode model 100 km 

Mackay (Postcode model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Mackay (Postcode model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .1045477** 

(2.90) 

-.0007267*** 

(-3.97) 

-.0000493 

(-1.18) 

0.6061 8.46 

(0.0060) 

Semi-log 

independent 

.2244538** 

 (4.07) 

-.0412443***  

(-4.51) 

-.0000506  

(-1.32) 

0.6639 10.87 

(0.0025) 

Semi-log 

Dependent 

-.2633003*  

(-0.09) 

-.0463015**  

(-3.00) 

-.002115* 

(-0.60) 

0.4854 5.19 

(0.0259) 

Double log  

 

5.877769*  

(1.12) 

-2.35807**  

(-2.71) 

  -.0016175* 

(-0.44) 

0.4380 4.29 

(0.0420) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.65 

         Prob > chi2 = 0.4194 
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Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Mackay (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1838 

50 181 

100 17 

300 0 

 

Table: Regression statistics for four functional forms of demand for Mackay (Postcode model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P- value) 

Linear 969.7308*** 

(4.91) 

-7.895299***  

(-3.70) 

0.5778 13.69 

(0.0041) 

Semi-log independent 1863.97***   

(18.89) 

  -393.4136*** 

(-16.07) 

0.9627 258.17 

(0.0000) 

Semi-log dependent 7.440689*** 

(48.93) 

-.0451355***  

(-27.45) 

0.9869 753.27 

(0.0000) 

Double log  

 

9.599424***  

(7.84) 

-1.467346 *** 

(-4.83) 

0.6999 23.33 

(0.0007) 

Model Predicted no. of fishers 

Linear 3295 

Semi-log (I) 154136 

Semi-log (D) 1838 

Double log 2074 

Actual 1984 
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Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The double-log demand function can be written as: 

Log Q = 7.440689 - 0.0451355 P 

After the inversion of equation, it becomes:  

P = 164.81 - 22.15 Log Q 

 

Rockhampton (Postcode model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Rockhampton (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .1392637 

(1.23) 

-.0004383 

(-0.96) 

-.0001527  

(-0.91) 

0.1907 0.59 

(0.5893) 

Semi-log 

independent 

.0892185 

 (0.64) 

-.0031977  

(-0.19) 

-.0000843  

(-0.49) 

0.0467 0.12 

(0.8873) 

Model Predicted no. of fishers 

Linear 969 

Semi-log (I) 0 

Semi-log (D) 1703 

Double log 14756 

Actual 1984 
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Semi-log 

Dependent 

-.3624732*  

(-0.07) 

-.0131938*  

(-0.62) 

-.005443* 

(-0.69) 

0.1037 0.29 

(0.7605) 

Double log  

 

-3.101724*  

(-0.49) 

.1105269*  

(0.14) 

  -.002578* 

(-0.34) 

0.0393 0.10 

(0.9047) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.86 

         Prob > chi2 = 0.3537 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Rockhampton (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 2064 

50 1067 

100 551 

300 39 

500 2 

Model Predicted no. of fishers 

Linear 4016 

Semi-log (I) 124677 

Semi-log (D) 2064 

Double log 1532 

Actual 2799 
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Table: Regression statistics for four functional forms of demand for Rockhampton (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1324.475*** 

(6.99) 

-2.724979***  

(-4.25) 

0.6440 18.09 

(0.0017) 

Semi-log independent 2457.28 ***   

(14.59) 

   -391.4943*** 

(-10.81) 

0.9212 116.85 

(0.0000) 

Semi-log dependent 7.492952 *** 

(45.93) 

-.0119947***  

(-21.75) 

0.9793 473.16 

(0.0000) 

Double log  

 

10.22028***  

(8.36) 

-1.195436 *** 

(-4.55) 

0.6741 20.68 

(0.0007) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q = 7.492952 - 0.0119947 P  

After the inversion of equation, it becomes:  

P = 624.68 - 83.37 Log Q 

 

Model Predicted no. of fishers 

Linear 1324 

Semi-log (I) 0 

Semi-log (D) 1795 

Double log 27454 

Actual 2799 
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Townsville (Postcode model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Townsville (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear -.0074464 

 (-0.63) 

-.0001273  

(-1.42) 

.0000286*  

(1.84) 

0.6634 6.90 

(0.0221) 

Semi-log 

independent 

.0003439 

(0.02) 

-.0031514  

(-1.07) 

.0000262  

(1.34) 

0.6272 5.89 

(0.0316) 

Semi-log 

Dependent 

-6.603373 *  

(-4.05) 

-.0360969*  

(-2.90) 

.0035569* 

(1.66) 

0.7957 13.63 

(0.0039) 

Double log  

 

-4.778443*  

(-1.42) 

-.8323552*  

(-1.72) 

.0031977* 

(0.99) 

0.6838 7.57 

(0.0178) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.52 

         Prob > chi2 = 0.4712 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 1948 
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Table 6 6: Demand schedules for Townsville (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1872 

50 307 

100 50 

300 0 

Table: Regression statistics for four functional forms of demand for Townsville (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1069.107*** 

(5.40) 

-6.750701***  

(-3.87) 

0.6243 14.96 

(0.0038) 

Semi-log independent 1968.211***   

(17.99) 

    -390.9949*** 

(-14.71) 

0.9600 216.24 

(0.0000) 

Semi-log dependent 7.554326*** 

(174.70) 

-.0366867***  

(-96.16) 

0.9990 9246.37 

(0.0000) 

Double log  

 

9.750001***  

(7.41) 

-1.420914*** 

(-4.44) 

0.6870 19.75 

(0.0016) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

Semi-log (I) 192995 

Semi-log (D) 1872 

Double log 1838 

Actual 2002 

Model Predicted no. of fishers 

Linear 1069 
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The Semi-log dependent demand function can be written as: 

Log Q = 7.554326 -.0366867 P  

After the inversion of equation, it becomes:  

P = 205.85 - 27.25 log Q 

 

Hinchinbrook (Postcode model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Hinchinbrook (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0228915 

 (1.48) 

-.0000349  

(-0.24) 

-.0000261*  

(-1.17) 

0.0236 0.69 

(0.5068) 

Semi-log 

independent 

.0213443 

(1.28) 

.0001932  

(0.07) 

-.0000254  

(-1.14) 

0.0227 0.66 

(0.5201) 

Semi-log 

Dependent 

-7.994606*  

(-7.21) 

.4196994*  

(2.19) 

-.0010328* 

(-0.70) 

0.0888 2.78 

(0.0705) 

Double log  

 

-7.994606*  

(-7.21) 

.4196994*  

(2.19) 

-.0010328* 

(-0.70) 

0.0888 2.78 

(0.0705) 

Semi-log (I) 0 

Semi-log (D) 908 

Double log 17154 

Actual 2002 
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Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.04 

         Prob > chi2 = 0.8428 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Townsville (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 608 

50 390 

100 150 

300 30 

500 0 

 

Table: Regression statistics for four functional forms of demand for Hinchinbrook (Postcode 

model 100 km) 

Model Coefficients Test statistics 

Model Predicted no. of fishers 

Linear 7210 

Semi-log (I) 1284975 

Semi-log (D) 608 

Double log 582 

Actual 1484 
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Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 434.0722*** 

(8.86) 

-1.185121***  

(-5.21) 

0.6932 27.11 

(0.0002) 

Semi-log independent 776.2138***   

(12.24) 

    -123.4659*** 

(-8.85) 

0.8670 78.25 

(0.0000) 

Semi-log dependent 6.449168*** 

(38.68) 

-.0109279***  

(-14.11) 

0.9432 199.15 

(0.0000) 

Double log  

 

8.149657***  

(9.11) 

-.7958822*** 

(-4.04) 

0.5765 16.34 

(0.0016) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q = 6.449168 -.0109279 P  

After the inversion of equation, it becomes:  

P = 590.09 -91.5 Log Q 

 

 

 

Model Predicted no. of fishers 

Linear 157 

Semi-log (I) 0 

Semi-log (D) 230 

Double log 1463 

Actual 1484 
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Hervey Bay (Postcode model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Hervey Bay (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0838172 

(0.59) 

-.0003122  

(-1.02) 

-.0001291*  

(-0.46) 

0.3770 0.61 

(0.6230) 

Semi-log 

independent 

.1678623 

(1.47) 

-.0183444  

(-2.07) 

-.0001986  

(-1.04) 

0.6978 2.31 

(0.3022) 

Semi-log 

Dependent 

5.729908*  

(0.31) 

-.035289 *  

(-0.91) 

-.0210638* 

(-0.58) 

0.2930 0.41 

(0.7070) 

Double log  

 

13.16709*  

(0.73) 

-1.881016*  

(-1.34) 

-.0260026* 

(-0.86) 

0.4755 0.91 

(0.5245) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.04 

         Prob > chi2 = 0.8391 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 1209 
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Table 6 6: Demand schedules for Hervey Bay (Postcode model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 940 

50 70 

100 28 

300 5 

500 2 

1000 0 

Table: Regression statistics for four functional forms of demand for Hervey Bay (Postcode 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 187.8943 

(2.64) 

-.4070015**  

(-1.51) 

0.1396 2.27  

(0.1539) 

Semi-log independent 646.1581***   

(7.59) 

    -123.9608*** 

(-6.58) 

0.7555 43.26 

(0.0000) 

Semi-log dependent 4.714192*** 

(15.85) 

-.0074844***  

(-6.64) 

0.7588 44.04 

(0.0000) 

Double log  

 

8.071375***  

(21.67) 

-1.081957*** 

(-13.13) 

0.9249 172.37 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

 

 

Semi-log (I) 108422 

Semi-log (D) 528 

Double log 940 

Actual 2013 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The Double-log dependent demand function can be written as: 

Log Q = 8.071375   -1.081957   Log P  

After the inversion of equation, it becomes:  

Log P = 7.42   - 0.92 Log Q 

 

Postcode model 300 km 

Cairns (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Cairns (Postcode model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear -.0019281 

(-0.34) 

-.0000443** 

(-2.75) 

.0000119  

(1.47) 

0.7491 16.42 

(0.0005) 

Semi-log 

independent 

.0102822* 

 (1.90) 

-.002741***  

(-5.08) 

4.31e-06  

(0.71) 

0.8736 38.03 

(0.0000) 

Model Predicted no. of fishers 

Linear 187 

Semi-log (I) 0 

Semi-log (D) 111 

Double log 3201 

Actual 2013 
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Semi-log 

Dependent 

-11.12237***  

(-5.20) 

-.017889**  

(-2.94) 

.0088817** 

(2.92) 

0.8500 31.16 

(0.0000) 

Double log  

 

-7.587371**  

(-2.97) 

-.950748 **  

(-3.74) 

   .0071597** 

(2.49) 

0.8823 41.21 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

able: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     2.24 

         Prob > chi2 = 0.1345 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Cairns (Postcode model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1054 

50 231 

100 136 

300 53 

500 33 

Model Predicted no. of fishers 

Linear 909 

Semi-log (I) 211110 

Semi-log (D) 878 

Double log 1054 

Actual 1045 
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1000 17 

3000 6 

5000 3 

10000 2 

30000 0 

 

Table: Regression statistics for four functional forms of demand for Cairns (Postcode model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 246.9864*** 

(3.75) 

-.0167472  

(-1.45) 

0.1155 2.09  

(0.1676) 

Semi-log independent 662.484***   

(8.34) 

-87.71773*** 

(-6.33) 

0.7147 40.08 

(0.0000) 

Semi-log dependent 4.828109 *** 

(13.45) 

-.0002911***  

(-4.61) 

0.5710 21.30 

(0.0003) 

Double log  

 

8.279693***  

(35.59) 

-.7947134 *** 

(-19.58) 

0.9599 383.35 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

Model Predicted no. of fishers 

Linear 246 

Semi-log (I) 0 

Semi-log (D) 124 

Double log 3942 

Actual 1045 
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The double-log demand function can be written as: 

Log Q = 8.279693 -.7947134 Log P  

After the inversion of equation, it becomes:  

Log P= 10.35 - 1.25 Log Q 

Mackay (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Mackay (Postcode model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0180296  

(1.08) 

-.0001289** 

(-2.41) 

.0000177  

(0.72) 

0.2582 2.96 

(0.0790) 

Semi-log 

independent 

.1035887*** 

 (4.44) 

-.0218061***  

(-4.33) 

.0000144  

(0.78) 

0.5276 9.49 

(0.0017) 

Semi-log 

Dependent 

-6.343177***  

(-4.50) 

-.0117782**  

(-2.60) 

.0031303 * 

(1.50) 

0.2897 3.47 

(0.0546) 

Double log  

 

.5637332*  

(0.26) 

-1.754016***  

(-3.77) 

.0025813* 

(1.51) 

0.4592 7.22 

(0.0054) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.46 

         Prob > chi2 = 0.4984 
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Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Mackay (Postcode model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 2469 

50 528 

100 256 

300 66 

500 31 

1000 10 

3000 1 

5000 0 

 

Table: Regression statistics for four functional forms of demand for Mackay (Postcode model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 700.7327** 

(3.04) 

-.2086762  

(-1.51) 

0.1714 2.27  

(0.1597) 

Model Predicted no. of fishers 

Linear 3426 

Semi-log (I) 192142 

Semi-log (D) 1366 

Double log 2469 

Actual 2038 
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Semi-log independent 1937.42***   

(9.34) 

-284.6575*** 

(-7.52) 

0.8371 56.53 

(0.0000) 

Semi-log dependent 5.708544*** 

(11.65) 

-.0014757***  

(-5.01) 

0.6955 25.12 

(0.0004) 

Double log  

 

9.618768***  

(17.33) 

-1.039212*** 

(-10.26) 

0.9054 105.32 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q = 5.708544 -.0014757P   

After the inversion of equation, it becomes:  

P= 3868.33 - 677.64 Log Q 

Rockhampton (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Rockhampton (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Model Predicted no. of fishers 

Linear 700 

Semi-log (I) 0 

Semi-log (D) 301 

Double log 15044 

Actual 2038 
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Linear .0410049 

(1.66) 

-.0000883* 

(-1.91) 

-.0000176  

(-0.48) 

0.2759 2.29 

(0.1441) 

Semi-log 

independent 

.0666077** 

 (2.14) 

-.0084715  

(-1.58) 

-.0000187  

(-0.48) 

0.2179 1.67 

(0.2289) 

Semi-log 

Dependent 

-5.420695***  

(-3.45) 

-.011253***  

(-3.83) 

.0025933* 

(1.10) 

0.5502 7.34 

(0.0083) 

Double log  

 

-2.33799*  

(-1.03) 

-1.025014 **  

(-2.63) 

.0023532* 

(0.84) 

0.3660 3.46 

(0.0650) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2272 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

 

Model Predicted no. of fishers 

Linear 3970 

Semi-log (I) 277962 

Semi-log (D) 2376 

Double log 3634 

Actual 2888 
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Table 6 6: Demand schedules for Rockhampton (Postcode model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 2376 

50 1353 

100 771 

300 81 

500 8 

1000 0 

 

Table: Regression statistics for four functional forms of demand for Rockhampton (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1459.942** 

(6.87) 

-2.876537***  

(-4.10) 

0.5839 16.84 

(0.0015) 

Semi-log independent 2897.205***   

(14.48) 

-458.4523*** 

(-10.90) 

0.9083 118.84 

(0.0000) 

Semi-log dependent 7.642508*** 

(86.83) 

-.0102264***  

(-35.20) 

0.9904 1239.31 

(0.0000) 

Double log  

 

10.15256***  

(9.27) 

-1.043069*** 

(-4.53) 

0.6310 20.52 

(0.0007) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

Model Predicted no. of fishers 

Linear 1459 

Semi-log (I) 0 

Semi-log (D) 2084 
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The Semi-log dependent demand function can be written as: 

Log Q=7.642508 -.0102264 P  

After the inversion of equation, it becomes:  

P= 747.28 - 97.78 Log Q 

Townsville (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Townsville (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear -.0163843* 

 (-2.05) 

-.0000175  

(-1.58) 

.0000382***  

(3.25) 

0.7043 11.91 

(0 .0023) 

Semi-log 

independent 

-.0033349   

(-0.27) 

-.0021812*  

(-1.90) 

.0000278*  

(1.95) 

0.7288 13.43 

(0.0015) 

Semi-log 

Dependent 

-7.651391***  

(-5.37) 

-.0130627***  

(-6.60) 

.0044048* 

(2.11) 

0.8904 40.62 

(0.0000) 

Double log  

 

-.2167622*  

(-0.09) 

-1.378634**  

(-5.95) 

-.0011512* 

(0.40) 

0.8707 33.67 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

Double log 25656 

Actual 2888 
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         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.53 

         Prob > chi2 = 0.4646 

 

Table: Predicted number of fishers for four functional forms of TGF 

Table 6 6: Demand schedules for Townsville (Postcode model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1902 

50 214 

100 100 

300 26 

500 14 

1000 5 

3000 1 

5000 0 

 

Table: Regression statistics for four functional forms of demand for Townsville (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Model Predicted no. of fishers 

Linear 1893 

Semi-log (I) 225975 

Semi-log (D) 1695 

Double log 1902 

Actual 2018 
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Linear 361.1299** 

(2.29) 

-.1433922  

(-1.31) 

0.1173 1.73  

(0.2114) 

Semi-log independent 1256.037***   

(6.68) 

-190.319*** 

(-5.85) 

0.7245 34.18 

(0.0001) 

Semi-log dependent 4.719281*** 

(10.17) 

-.0015756***  

(-4.91) 

0.6498 24.13 

(0.0003) 

Double log  

 

8.830447***  

(24.73) 

-1.019893*** 

(-16.49) 

0.9544 272.00 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q = 4.719281 -.0015756 P  

After the inversion of equation, it becomes:  

P = 2995.23 -634.68 Log Q 

Hinchinbrook (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Hinchinbrook (Postcode 

model 300 km) 

Model Coefficients Test statistics 

Model Predicted no. of fishers 

Linear 361 

Semi-log (I) 0 

Semi-log (D) 112 

Double log 6839 

Actual 2018 
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Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0210532 

 (1.66) 

-.00002  

(-0.74) 

-.0000237   

(-1.26) 

0.0261 0.98 

(0.3806) 

Semi-log 

independent 

.0218785  

(1.58) 

-.0008127  

(-0.50) 

-.0000234   

(-1.24) 

0.0222 0.83 

(0.4400) 

Semi-log 

Dependent 

-7.002618***  

(-7.63) 

.0029519*  

(1.50) 

-.0012548* 

(-0.92) 

0.0448 1.71 

(0.1875) 

Double log  

 

-7.647277***  

(-7.80) 

.255711**  

(2.22) 

-.0011095* 

(-0.83) 

0.0778 3.08 

(0.0400) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.53 

         Prob > chi2 = 0.4685 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 7027 

Semi-log (I) 1515403 

Semi-log (D) 753 

Double log 752 

Actual 1669 
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Table 6 6: Demand schedules for Hinchinbrook (Postcode model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 752 

50 564 

100 410 

300 306 

500 200 

1000 50 

3000 0 

 

Table: Regression statistics for four functional forms of demand for Hinchinbrook (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 553.2277*** 

(10.84) 

-.372747***  

(-5.16) 

0.7272 26.66 

(0.0004) 

Semi-log independent 922.1196***   

(16.24) 

-114.2276*** 

(-10.11) 

0.9108 102.15 

(0.0000) 

Semi-log dependent 6.601658*** 

(68.13) 

-.0030862***  

(-22.52) 

0.9807 507.23 

(0.0000) 

Double log  

 

8.166217***  

(8.75) 

-.6190047*** 

(-3.33) 

0.5262 11.11 

(0.0076) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

Model Predicted no. of fishers 

Linear 553 
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The Semi-log dependent demand function can be written as: 

Log Q=6.601658 -.0030862 P  

After the inversion of equation, it becomes:  

P= 2143.9 - 324.02 Log Q 

Hervey Bay (Postcode model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Hervey Bay (Postcode 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0048848* 

(1.85) 

-.000024**  

(-3.24) 

4.84e-06  

(0.89) 

0.2311 6.61 

(0.0031) 

Semi-log 

independent 

.0243164*** 

(6.40) 

-.0048796***  

(-6.08) 

5.74e-06  

(1.46) 

0.4831 20.56 

(0.0000) 

Semi-log 

Dependent 

-6.159047***  

(-8.93) 

-.0091347***  

(-4.69) 

.0003053* 

(0.21) 

0.4553 18.39 

(0.0000) 

Double log  

 

-.6213533*  

(-0.56) 

-1.380572***  

(-5.88) 

-.0005687* 

(-0.49) 

0.5419 26.02 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Semi-log (I) 0 

Semi-log (D) 736 

Double log 3520 

Actual 1669 
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Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.90 

         Prob > chi2 = 0.1683 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Hervey Bay (POSTCODE MODEL300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 831 

50 209 

100 138 

300 62 

500 39 

1000 19 

3000 5 

5000 2 

10000 1 

30000 0 

 

Table: Regression statistics for four functional forms of demand for Hervey Bay (Postcode 

model 300 km) 

Model Predicted no. of fishers 

Linear 1168 

Semi-log (I) 976318 

Semi-log (D) 358 

Double log 831 

Actual 2127 
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Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 217.8879*** 

(3.96) 

-.0271315**  

(-2.22) 

0.2348 4.91  

(0.0416) 

Semi-log independent 554.6474***   

(9.94) 

-69.86538*** 

(-8.00) 

0.8001 64.03 

(0.0000) 

Semi-log dependent 4.762578*** 

(13.80) 

-.0005369***  

(-6.99) 

0.7533 48.86 

(0.0000) 

Double log  

 

8.254781***  

(24.68) 

-.8371668*** 

(-15.99) 

0.9411 255.71 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Double log dependent demand function can be written as: 

Log Q=8.254781 -.8371668 Log P  

After the inversion of equation, it becomes:  

Log P = 9.82 -1.19 Log Q 

 

 

Model Predicted no. of fishers 

Linear 217 

Semi-log (I) 0 

Semi-log (D) 117 

Double log 3845 

Actual 2127 
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Model 2: Zoned model 

Zoned model 100 km 

Cairns (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Cairns (Zoned model 100 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .024**  

(2.13) 

-.0001**  

(-2.14) 

-0.000023  

(-.135) 

0.125 3.775 

(0.007) 

Semi-log 

independent 

0.20 

 (1.58) 

-.002  

(-.945) 

-1.596E-5  

(-.973) 

0.095 2.767 

(0.031) 

Semi-log 

Dependent 

-5.648803***  

(-6.08) 

-.0087265*  

(-1.44) 

.0000315* 

(0.03) 

0.3438 11.00 

(0.0000) 

Double log  

 

-8.007627*  

(-8.14) 

.2183* 

(1.45) 

.0000363* 

(0.03) 

0.3228 10.01 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     3.19 

         Prob > chi2 = 0.0828 

 

Table: Predicted number of fishers for four functional forms of TGF 
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Table 6 6: Demand schedules for Cairns (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 580 

50 370 

100 235 

300 38 

500 6 

1000 0 

 

Table: Regression statistics for four functional forms of demand for Cairns (Zoned model 100 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 426.8649*** 

(13.04) 

-.6490789***  

(-5.49) 

0.7510 30.16 

(0.0003) 

Semi-log independent 717.329***   

(14.33) 

-99.4623 *** 

(-8.37) 

0.8752 70.13 

(0.0000) 

Semi-log dependent 6.310482*** 

(118.26) 

-.0082113***  

(-42.62) 

0.9945 1816.23 

(0.0000) 

Model Predicted no. of fishers 

Linear 2591 

Semi-log (I) 210843 

Semi-log (D) 580 

Double log 142 

Actual 1045 
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Double log  

 

8.578601***  

(8.57) 

-.8955436*** 

(-3.77) 

0.5871 14.22 

(0.0037) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q = 6.310482 - .0082113 P  

After the inversion of equation, it becomes:  

 P= 768.49 -121.78 Log Q 

 

Mackay (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Mackay (Zoned model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .029934**  

(2.39) 

-.0001285*  

(-1.63) 

-.0000168  

(-1.00) 

0.0505 1.90 

(0.1342) 

Model Predicted no. of fishers 

Linear 426 

Semi-log (I) 0 

Semi-log (D) 550 

Double log 5316 

Actual 1045 
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Semi-log 

independent 

.0286122* 

(1.96) 

-.0012542  

(-0.58) 

-.000012  

(-0.72) 

0.0600 1.69 

(0.1576) 

Semi-log 

Dependent 

-5.015125***  

(-5.47) 

-.0046199*  

(-0.80) 

.000419* 

(0.34) 

0.3479 14.14 

(0.0000) 

Double log  

 

-5.752703***  

(-5.43) 

.0778043* 

(0.50) 

.0007705* 

(0.64) 

0.3454 13.98 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for linear model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     2.19 

         Prob > chi2 = 0.0921 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Mackay (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1749 

50 994 

Model Predicted no. of fishers 

Linear 1749 

Semi-log (I) 77135 

Semi-log (D) 357 

Double log 1341 

Actual 1984 
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100 238 

300 0 

Table: Regression statistics for four functional forms of demand for Mackay (Zoned model 100 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1745.21*** 

(376.63) 

-15.00222***  

(-228.09) 

0.9998 52025.60 

(0.0000) 

Semi-log independent 2221.216***   

(8.20) 

-375.1949*** 

(-5.36) 

0.7234 28.77 

(0.0002) 

Semi-log dependent 8.413868*** 

(11.72) 

-.0394352***  

(-3.87) 

0.5766 14.98 

(0.0026) 

Double log  

 

8.885992***  

(5.78) 

-.7734674*** 

(-1.95  ) 

0.2566 3.80  

(0.0473) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q=8.413868 -.0394352P  

After the inversion of equation, it becomes:  

Model Predicted no. of fishers 

Linear 1745 

Semi-log (I) 0 

Semi-log (D) 4509 

Double log 7229 

Actual 1984 
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 P= 213.29 -25.35 Log Q 

 

Rockhampton (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Rockhampton (Zoned 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0328913**  

(2.63) 

-.0001197  

(-1.53) 

-.0000165  

(-0.99) 

0.0772 2.22 

(0.0719) 

Semi-log 

independent 

.0286122* 

(1.96) 

-.0012542  

(-0.58) 

-.000012  

(-0.72) 

0.0600 1.69 

(0.1576) 

Semi-log 

Dependent 

-5.015125***  

(-5.47) 

-.0046199*  

(-0.80) 

.000419* 

(0.34) 

0.3479 14.14 

(0.0000) 

Double log  

 

-5.752703***  

(-5.43) 

.0778043* 

(0.50) 

.0007705* 

(0.64) 

0.3454 13.98 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     4.47 

         Prob > chi2 = 0.0834 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 
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Table 6 6: Demand schedules for Rockhampton (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 761 

50 593 

100 461 

300 169 

500 62 

1000 5 

3000 0 

Table: Regression statistics for four functional forms of demand for Rockhampton (Zoned 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 580.4754*** 

(11.01) 

-.5608709 ***  

(-5.85) 

0.7568 34.24 

(0.0001) 

Semi-log independent 996.1427***   

(13.01) 

-132.9376*** 

(-8.59) 

0.8703 73.79 

(0.0000) 

Semi-log dependent 6.609176*** 

(212.39) 

-.0048634***  

(-85.96) 

0.9985 7389.53 

(0.0000) 

Double log  

 

8.853109***  

(9.05) 

-.8527719*** 

(-4.31) 

0.6284 18.60 

(0.0012) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Linear 2456 

Semi-log (I) 123866 

Semi-log (D) 761 

Double log 260 

Actual 2799 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q =6.609176 -.0048634   P  

After the inversion of equation, it becomes:  

 P=1358.97 -205.62 Log Q 

 

Townsville (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Townsville (Zoned model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0244637**  

(2.13) 

-.0001612*  

(-2.14) 

-.0000231  

(-1.41) 

0.1247 3.78 

(0.0065) 

Semi-log 

independent 

.0142887* 

(1.10) 

.0000562  

(0.03) 

-.0000111 

(-0.67) 

0.0462 1.73 

(0.1657) 

Semi-log 

Dependent 

-5.015125***  

(-5.47) 

-.0046199*  

(-0.80) 

.000419* 

(0.34) 

0.3479 14.14 

(0.0000) 

Model Predicted no. of fishers 

Linear 580 

Semi-log (I) 0 

Semi-log (D) 741 

Double log 6996 

Actual 2799 



  

519 

 

Double log  

 

-5.752703***  

(-5.43) 

.0778043* 

(0.50) 

.0007705* 

(0.64) 

0.3454 13.98 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     4.47 

         Prob > chi2 = 0.0834 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Townsville (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 2346 

50 1827 

100 1422 

300 523 

500 192 

1000 15 

3000 0 

Model Predicted no. of fishers 

Linear 1172 

Semi-log (I) 192320 

Semi-log (D) 2346 

Double log 1510 

Actual 2002 
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Table: Regression statistics for four functional forms of demand for Townsville (Zoned model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1588.777*** 

(6.32) 

-1.183442***  

(-3.49) 

0.5749 12.17 

(0.0068) 

Semi-log independent 2931.808***   

(12.02) 

-395.7242*** 

(-8.48) 

0.8887 71.86 

(0.0000) 

Semi-log dependent 7.545879*** 

(48.79) 

-.0040925***  

(-19.60) 

0.9771 384.06 

(0.0000) 

Double log  

 

9.8673***  

(8.29) 

-.8791885*** 

(-3.86) 

0.6234 14.90 

(0.0038) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 7.545879   - .0040925 P  

After the inversion of equation, it becomes:  

P = 1243.83 -244.35 Log Q 

Model Predicted no. of fishers 

Linear 1588 

Semi-log (I) 0 

Semi-log (D) 1892 

Double log 19289 

Actual 2002 
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Hinchinbrook (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Hinchinbrook (Zoned 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0244637**  

(2.13) 

-.0001612*  

(-2.14) 

-.0000231  

(-1.41) 

0.1247 3.78 

(0.0065) 

Semi-log 

independent 

.0204902* 

(1.58) 

-.001871  

(-0.94) 

-.000016  

(-0.97) 

0.0945 2.77 

(0.0312) 

Semi-log 

Dependent 

-7.680069***  

(-8.61) 

-.0058919*  

(0.347) 

.000124* 

(0.10) 

0.3647 8.45 

(0.0000) 

Double log  

 

-8.007627***  

(-8.14) 

.2183* 

(1.45) 

.0000363* 

(0.03) 

0.3228 10.01 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     3.40 

         Prob > chi2 = 0.0920 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 11483 
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Table 6 6: Demand schedules for Hinchinbrook (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 514 

50 380 

100 282 

300 84 

500 25 

1000 1 

3000 0 

Table: Regression statistics for four functional forms of demand for Hinchinbrook (Zoned 

model 100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 352.1185*** 

(9.91) 

-.4134008***  

(-5.45) 

0.6644 29.70 

(0.0001) 

Semi-log independent 675.9219***   

(14.85) 

-95.28298*** 

(-10.55) 

0.8812 111.31 

(0.0000) 

Semi-log dependent 6.185011*** 

(86.46) 

-.005696***  

(-37.29) 

0.9893 1390.69 

(0.0000) 

Double log  

 

8.676396***  

(9.31) 

-.8948035*** 

(-4.84) 

0.6096 23.42 

(0.0002) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Semi-log (I) 1285021 

Semi-log (D) 514 

Double log 677 

Actual 1484 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 6.185011   -.005696 P  

After the inversion of equation, it becomes:  

P = 1085.84   -175.56 Log Q 

 

Hervey Bay (Zoned model 100 km):  

Table: Regression statistics for four functional forms of the TGF for Hervey Bay (Zoned model 

100 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .024**  

(2.13) 

-.0001**  

(-2.14) 

-0.000023  

(-.135) 

0.125 3.775 

(0.007) 

Semi-log 

independent 

0.20 

 (1.58) 

-.002  

(-.945) 

-1.596E-5  

(-.973) 

0.095 2.767 

(0.031) 

Semi-log 

Dependent 

-7.208***  

(-8.064) 

.001*  

(.133) 

.000124* 

(0.282) 

0.310 9.416 

(0.000) 

Model Predicted no. of fishers 

Linear 352 

Semi-log (I) 0 

Semi-log (D) 485 

Double log 5862 

Actual 1484 
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Double log  

 

-5.752703***  

(-5.43) 

.0778043* 

(0.50) 

.0007705* 

(0.64) 

0.3454 13.98 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     2.17 

         Prob > chi2 = 0.1411 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Hervey Bay (Zoned model 100 km) 

Increase in travel cost in ($) (P) Number of visits 

0 703 

50 388 

100 287 

300 93 

500 0 

Table: Regression statistics for four functional forms of demand for Hervey Bay (Zoned model 

100 km) 

Model Predicted no. of fishers 

Linear 1817 

Semi-log (I) 107527 

Semi-log (D) 86 

Double log 703 

Actual 2013 
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Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 477.0808*** 

(12.69) 

-1.132205***  

(-6.55) 

0.8111 42.93 

(0.0001) 

Semi-log independent 791.87 ***   

(18.69) 

-115.9516 *** 

(-12.30) 

0.9380 151.29 

(0.0000) 

Semi-log dependent 6.636753*** 

(23.79) 

-.010154***  

(-7.92) 

0.8625 62.73 

(0.0000) 

Double log  

 

8.011977***  

(7.26) 

-.6934619*** 

(-2.82) 

0.4436 7.97  

(0.0181) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 6.636753   -.010154 P  

After the inversion of equation, it becomes:  

P = 653.58 -98.48 Log Q 

 

 

Model Predicted no. of fishers 

Linear 477 

Semi-log (I) 0 

Semi-log (D) 762 

Double log 3016 

Actual 2013 
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Zoned model 300 km 

Cairns (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Cairns (Zoned model 300 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .014**  

(2.27) 

-2.685E-5**  

(-2.68) 

-1.024E-5 

(-.112) 

0.103 5.165 

(0.001) 

Semi-log 

independent 

0.20** 

 (2.93) 

-.002*  

(-2.505) 

-1.362E-5  

(-1.495) 

0.099 4.919 

(0.001) 

Semi-log 

Dependent 

-6.512***  

(-11.459) 

-.006**  

(-6.217) 

.0001* 

(0.135) 

0.328 17.509 

(0.0000) 

Double log  

 

-5.699** 

(-7.384) 

 -.162* 

(-1.699) 

-.001* 

(-.798) 

.318 11.77 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for linear model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.27 

         Prob > chi2 = 0.2616 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 
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Table 6 6: Demand schedules for Cairns (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1341 

50 1059 

100 777 

300 0 

 

Table: Regression statistics for four functional forms of demand for Cairns (Zoned model 300 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1334.294*** 

(173.23) 

-5.453776 ***  

(-81.08) 

0.9989 6573.28 

(0.0000) 

Semi-log independent 1730.954 ***   

(6.93) 

-232.8606*** 

(-3.61) 

0.6501 13.01 

(0.0087) 

Semi-log dependent 7.833457*** 

(13.83) 

-.0228036***  

(-4.61) 

0.7523 21.25 

(0.0025) 

Double log  

 

8.892809***  

(5.36) 

-.8036683* 

(-1.87) 

0.3336 3.50 

(0.0134) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Linear 1341 

Semi-log (I) 211166 

Semi-log (D) 505 

Double log 224 

Actual 1045 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 7.833457 - 0.0228036 P  

After the inversion of equation, it becomes:  

 P = 343.497 -43.85 Log Q 

 

Mackay (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Mackay (Zoned model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .019**  

(2.971) 

-4.320E-5*  

(-3.715) 

-5.457E-6  

(-.598) 

0.081 3.944 

(0.004) 

Semi-log 

independent 

.036*** 

 (4.158) 

-.002***  

(-2.318) 

-1.362E-5*  

(-1.492) 

0.102 3.36 

(0.004) 

Semi-log 

Dependent 

-5.026***  

(-8.41) 

-.004***  

(-3.749) 

-6.484E-5* 

(-.079) 

0.355 19.66 

(0.0000) 

Model Predicted no. of fishers 

Linear 1334 

Semi-log (I) 0 

Semi-log (D) 2523 

Double log 7279 

Actual 1045 
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Double log  

 

-4.582***  

(-6.255) 

-.146* 

(-1.550) 

-.001* 

(-.721) 

0.313 16.316 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2268 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Mackay (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 826 

50 676 

100 553 

300 248 

500 111 

1000 15 

3000 0 

Model Predicted no. of fishers 

Linear 2022 

Semi-log (I) 191828 

Semi-log (D) 826 

Double log 498 

Actual 2038 
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Table: Regression statistics for four functional forms of demand for Mackay (Zoned model 300 

km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 563.0205*** 

(6.66) 

-.272254***  

(-3.09) 

0.4880 9.53  

(0.0115) 

Semi-log independent 1065.482***   

(12.22) 

-136.8104*** 

(-8.08) 

0.8671 65.22 

(0.0000) 

Semi-log dependent 6.329598*** 

(29.85) 

-.0023554***  

(-10.65) 

0.9190 113.46 

(0.0000) 

Double log  

 

8.637374***  

(9.68) 

-.7468761*** 

(-4.31) 

0.6501 18.58 

(0.0015) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 6.329598 -.0023554 P  

After the inversion of equation, it becomes:  

P= 2687.29 - 424.56 Log Q 

Model Predicted no. of fishers 

Linear 563 

Semi-log (I) 0 

Semi-log (D) 560 

Double log 5638 

Actual 2038 
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Rockhampton (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Rockhampton (Zoned 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .019***  

(2.971) 

-4.320E-5***  

(-3.715) 

-5.457E-6  

(-.598) 

0.081 3.944 

(0.004) 

Semi-log 

independent 

.036*** 

(4.158) 

-.002**  

(-2.318) 

-1.362E-5  

(-1.492) 

0.102 3.36 

(0.004) 

Semi-log 

Dependent 

-5.026***  

(-8.411) 

-.004*  

(-3.749) 

-6.484E-5* 

(-.079) 

0.355 19.66 

(0.0000) 

Double log  

 

-4.582***  

(-6.255) 

-.146* 

(-1.550) 

-.001* 

(-.721) 

0.313 16.316 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2268 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 2188 
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Table 6 6: Demand schedules for Rockhampton (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1009 

50 826 

100 676 

300 304 

500 136 

1000 18 

3000 0 

Table: Regression statistics for four functional forms of demand for Rockhampton (Zoned 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 721.6052*** 

(10.14) 

-.6018774***  

(-4.97) 

0.6384 24.71 

(0.0002) 

Semi-log independent 1342.058***   

(13.72) 

-174.7019*** 

(-9.16) 

0.8569 83.85 

(0.0000) 

Semi-log dependent 6.892557*** 

(446.67) 

-.0038887 ***  

(-148.09) 

0.9994 21931.22 

(0.0000) 

Double log  

 

8.931727***  

(9.86) 

-.7164157*** 

(-4.06) 

0.5404 16.46 

(0.0012) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Semi-log (I) 278327 

Semi-log (D) 1009 

Double log 801 

Actual 2888 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 7.073234-0.0089995 P  

After the inversion of equation, it becomes:  

 P=785.907 – 111.11 Log Q 

Townsville (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Townsville (Zoned model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .014**  

(2.269) 

-2.685E-5*  

(-2.683) 

-1.024E-5  

(-1.119) 

0.103 5.165 

(0.001) 

Semi-log 

independent 

.020*  

(2.933) 

-.002  

(-2.505) 

-1.362E-5  

(-1.495) 

0.099 4.919 

(0.001) 

Semi-log 

Dependent 

-5.026***  

(-8.411) 

-.004*  

(-3.749) 

-6.484E-5* 

(-.079) 

0.355 19.66 

(0.0000) 

Model Predicted no. of fishers 

Linear 721 

Semi-log (I) 0 

Semi-log (D) 984 

Double log 7568 

Actual 2888 
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Double log  

 

-4.582***  

(-6.255) 

-.146* 

(-1.55) 

-.001* 

(-.721) 

0.313 16.316 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2268 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Townsville (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1190 

50 974 

100 798 

300 358 

500 161 

1000 21 

3000 0 

Model Predicted no. of fishers 

Linear 1261 

Semi-log (I) 225060 

Semi-log (D) 1190 

Double log 739 

Actual 2018 
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Table: Regression statistics for four functional forms of demand for Townsville (Zoned model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 822.5864*** 

(7.80) 

-.6758266 ***  

(-4.39) 

0.5974 19.29 

(0.0007) 

Semi-log independent 1570.368***   

(13.41) 

-211.2421*** 

(-9.68) 

0.8781 93.66 

(0.0000) 

Semi-log dependent 6.984521*** 

(132.67) 

-.0036537***  

(-47.56) 

0.9943 2261.91 

(0.0000) 

Double log  

 

8.967069***  

(10.01) 

-.7276056*** 

(-4.35) 

0.5932 18.96 

(0.0008) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q =   6.984521 -.0036537P  

After the inversion of equation, it becomes:  

P= 1911.59-273.69 Log Q 

Model Predicted no. of fishers 

Linear 822 

Semi-log (I) 0 

Semi-log (D) 1079 

Double log 7840 

Actual 2018 
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Hinchinbrook (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Hinchinbrook (Zoned 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .014**  

(2.269) 

-2.685E-5*  

(-2.683) 

-1.024E-5  

(-1.12) 

0.103 5.165 

(0.001) 

Semi-log 

independent 

.020*  

(2.93) 

-.002  

(-2.505) 

-1.362E-5  

(-1.495) 

0.099 4.919 

(0.001) 

Semi-log 

Dependent 

-7.197***  

(-13.32) 

-.005*  

(-5.085) 

.000124* 

(0.138) 

0.361 16.76 

(0.0000) 

Double log  

 

-6.594***  

(-10.345) 

-.247* 

(-3.258) 

-.001* 

(-.764) 

0.309 13.29 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2268 

 

Table: Predicted number of fishers for four functional forms of TGF 

Model Predicted no. of fishers 

Linear 8961 
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Table 6 6: Demand schedules for Hinchinbrook (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 1004 

50 782 

100 609 

300 224 

500 82 

1000 6 

3000 0 

Table: Regression statistics for four functional forms of demand for Hinchinbrook (Zoned 

model 300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 750.7339 *** 

(8.50) 

-.6974937***  

(-4.91) 

0.7280 24.09 

(0.0008) 

Semi-log independent 1270.638 ***   

(11.85) 

-171.6926*** 

(8.18) 

0.8814 66.86 

(0.0000) 

Semi-log dependent 6.855158*** 

(113.82) 

-.0047674***  

(-49.20) 

0.9963 2420.56 

(0.0000) 

Double log  

 

8.945032***  

(8.25) 

-.8579596*** 

(-4.04) 

0.6447 16.33 

(0.0029) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Semi-log (I) 1517332 

Semi-log (D) 1004 

Double log 608 

Actual 1669 
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Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q=6.855158 - 0.0047674 P  

After the inversion of equation, it becomes:  

P= 1437.86 -209.75 Log Q  

Hervey Bay (Zoned model 300 km):  

Table: Regression statistics for four functional forms of the TGF for Hervey Bay (Zoned model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .014**  

(2.27) 

-2.685E-5**  

(-2.68) 

-1.024E-5 

(-1.12) 

0.103 5.165 

(0.001) 

Semi-log 

independent 

0.20 

 (2.933) 

-.002  

(-2.505) 

-1.362E-5  

(-1.495) 

0.099 4.919 

(0.001) 

Semi-log 

Dependent 

-7.054***  

(-13.12) 

-.005*  

(5.46) 

-.000124* 

(-0.171) 

0.350 19.28 

(0.000) 

Model Predicted no. of fishers 

Linear 750 

Semi-log (I) 0 

Semi-log (D) 948 

Double log 7669 

Actual 1669 
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Double log  

 

-6.594***  

(-10.34) 

-.247* 

(3.258) 

-.001* 

(-0.764) 

0.309 13.29 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi-log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.46 

         Prob > chi2 = 0.2268 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Hervey Bay (Zoned model 300 km) 

Increase in travel cost in ($) (P) Number of visits 

0 264 

50 206 

100 160 

300 59 

500 21 

1000 1 

3000 0 

 

Model Predicted no. of fishers 

Linear 12082 

Semi-log (I) 975700 

Semi-log (D) 264 

Double log 197 

Actual 2127 



  

540 

 

Table: Regression statistics for four functional forms of demand for Hervey Bay (Zoned model 

300 km) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 180.7148*** 

(8.22) 

-.1895888***  

(-5.13) 

0.6690 26.27 

(0.0002) 

Semi-log independent 341.7533***   

(12.90) 

-47.63511*** 

(-9.71) 

0.8788 94.29 

(0.0000) 

Semi-log dependent 5.385463*** 

(30.72) 

-.0043903***  

(14.88) 

0.9446 221.54 

(0.0000) 

Double log  

 

7.569573***  

(8.60) 

-.7967879*** 

(-4.89) 

0.6475 23.88 

(0.0003) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The semi-log dependent demand function can be written as: 

Log Q= 5.385463 - 0.0043903 P  

After the inversion of equation, it becomes:  

P= 1370.64 -227.77 Log Q 

Model Predicted no. of fishers 

Linear 180 

Semi-log (I) 0 

Semi-log (D) 218 

Double log 1938 

Actual 2127 
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Model 3: Geographic model  

Cairns (Geographic model):  

Table: Regression statistics for four functional forms of the TGF for Cairns (Geographic 

model)  

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0023358  

(0.34) 

-7.08e-07 ** 

(-2.75) 

-1.86e-06  

(-1.47) 

0.8541 16.42 

(0.0005) 

Semi-log 

independent 

.0027674 * 

 (1.90) 

-.0003328***  

(-5.08) 

-4.80e-07  

(-0.71) 

0.8736 37.09 

(0.0000) 

Semi-log 

Dependent 

4.403845 ***  

(5.20) 

-.0043442 **  

(-2.94) 

-.0173035 ** 

(-2.92) 

0.9080 31.16 

(0.0000) 

Double log  

 

7.05026 **  

(2.97) 

-2.041023**  

(-3.74) 

   -.0088182** 

(-2.49) 

0.9123 41.21 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.50 

         Prob > chi2 = 0.1573 

 

Table: Predicted number of fishers for four functional forms of TGF 
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Table 6 6: Demand schedules for Cairns (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

0 200 

50 59 

100 29 

300 8 

500 4 

1000 2 

3000 0 

 

Table: Regression statistics for four functional forms of demand for Cairns (Geographic model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 65.25489*** 

(4.18) 

-.035962 **  

(-2.20) 

0.2445 4.85  

(0.0436) 

Semi-log independent 182.7499 ***   

(13.32) 

-28.90276*** 

(-10.73) 

0.8847 115.06 

(0.0000) 

Semi-log dependent 3.617642 *** 

(10.98) 

-.0017222***  

(-5.00) 

0.6249 24.99 

(0.0002) 

Double log  6.817123 ***  -.8713376*** 0.8960 129.19 

(0.0000) 

Model Predicted no. of fishers 

Linear 212 

Semi-log (I) 3669948 

Semi-log (D) 200 

Double log 200 

Actual 201 
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 (17.47) (-11.37) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The double-log demand function can be written as: 

Log Q= 6.817123-.8713376 Log P  

After the inversion of equation, it becomes:  

Log P= 7.84 - 1.15 Log Q 

Mackay (Geographic model):  

Table: Regression statistics for four functional forms of the TGF for Mackay (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear -.0228953 

(1.78) 

-1.82e-06** 

(-0.92) 

.000042  

(1.87) 

0.4324 2.67 

(0.1377) 

Semi-log 

independent 

.0056142*** 

 (0.819) 

-.0031705***  

(-1.69) 

.0000273  

(1.21) 

0.5479 4.24 

(0.0621) 

Model Predicted no. of fishers 

Linear 65 

Semi-log (I) 0 

Semi-log (D) 37 

Double log 913 

Actual 201 
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Semi-log 

Dependent 

-15.55069***  

(-3.21) 

-.0020208**  

(-3.23) 

.011259 * 

(1.58) 

0.6945 7.96 

(0.0158) 

Double log  

 

5.438618*  

(0.96) 

-2.511396***  

(-5.55) 

.0010916* 

(0.20) 

0.8590 21.32 

(0.0011) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     4.24 

         Prob > chi2 = 0.0873 

 

Table: Predicted number of fishers for four functional forms of TGF 

Table 6 6: Demand schedules for Mackay (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

0 531 

50 262 

100 164 

300 59 

500 35 

1000 17 

Model Predicted no. of fishers 

Linear 238 

Semi-log (I) 17771375 

Semi-log (D) 251 

Double log 531 

Actual 2094 
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3000 3 

5000 1 

10000 0 

 

Table: Regression statistics for four functional forms of demand for Mackay (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 196.8739** 

(4.84) 

-.0401172  

(-2.48) 

0.2661 6.16  

(0.0238) 

Semi-log independent 517.0425***   

(14.85) 

-67.85065*** 

(-11.64) 

0.8885 135.51 

(0.0000) 

Semi-log dependent 4.83744*** 

(17.00) 

-.0008411***  

(-7.43) 

0.7648 55.27 

(0.0000) 

Double log  

 

8.296586***  

(18.21) 

-.8327836*** 

(-10.92) 

0.8752 119.19 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The double log dependent demand function can be written as: 

Log Q=8.296586 - 0.8327836 Log P  

Model Predicted no. of fishers 

Linear 196 

Semi-log (I) 0 

Semi-log (D) 126 

Double log 4010 

Actual 2094 
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After the inversion of equation, it becomes:  

Log P= 9.95 - 1.2 Log Q  

Rockhampton (Geographic model):  

Table: Regression statistics for four functional forms of the TGF for Rockhampton 

(Geographic model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0338864 

(1.13) 

-1.81e-06  

(-0.68) 

-.0000377  

(-0.79) 

0.1721 1.04 

(0.3890) 

Semi-log 

independent 

.0560817** 

 (2.67) 

-.0077859  

(-3.10) 

  2.25e-06  

(0.06) 

0.5584 6.32 

(0.0168) 

Semi-log 

Dependent 

-7.157001***  

(-1.08) 

-.0011981***  

(-2.05) 

-.0021034 * 

(-0.20) 

0.3748 3.00 

(0.0055) 

Double log  

 

2.612668*  

(0.77) 

-2.553089**  

(-6.33) 

.0058684* 

(1.03) 

0.8224 23.15 

(0.0002) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     1.25 

         Prob > chi2 = 0.2638 

 

Table: Predicted number of fishers for four functional forms of TGF 
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Table 6 6: Demand schedules for Rockhampton (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

0 1009 

50 826 

100 676 

300 304 

500 136 

1000 18 

3000 0 

 

Table: Regression statistics for four functional forms of demand for Rockhampton (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 1078.947** 

(2.47) 

-.2333352***  

(-1.44) 

0.1141 2.06 

 (0.1705) 

Semi-log independent 3509.494***   

(6.06) 

-495.7472*** 

(-5.25) 

0.6329 27.59 

(0.0001) 

Semi-log dependent 5.55114 *** 

(11.18) 

-.0009837***  

(-5.32) 

0.6387 28.29 

(0.0001) 

Model Predicted no. of fishers 

Linear 101158 

Semi-log (I) 20506643 

Semi-log (D) 730 

Double log 6165 

Actual 2998 
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Double log  

 

9.772588***  

(14.75) 

-1.022751*** 

(-9.47) 

0.8487 89.73 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q= 5.55114 - 0.0009837 P  

After the inversion of equation, it becomes:  

P= 5643.12 - 1016.57 Log Q  

Townsville (Geographic model):  

Table: Regression statistics for four functional forms of the TGF for Townsville (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear .0002546* 

 (0.02) 

-1.21e-06  

(-0.97) 

3.72e-06***  

(0.25) 

0.1787 0.65 

(0.5540) 

Semi-log 

independent 

.017639*  

(2.66) 

-.0020856*  

(-4.68) 

-4.57e-06*  

(-0.60) 

0.7288 13.43 

(0.0015) 

Model Predicted no. of fishers 

Linear 1078 

Semi-log (I) 0 

Semi-log (D) 257 

Double log 17546 

Actual 2998 
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Semi-log 

Dependent 

-12.14391*  

(-1.67) 

-.0024462***  

(-2.82) 

.0058403* 

(0.56) 

0.6367 5.26 

(0.0480) 

Double log  

 

-.6285831*  

(-0.09) 

-1.966402**  

(-3.98) 

.0032238* 

(0.38) 

0.7674 9.90 

(0.0126) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for double log model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.01 

         Prob > chi2 = 0.9678 

 

Table: Predicted number of fishers for four functional forms of TGF 

Table 6 6: Demand schedules for Townsville (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

0 4252 

50 206 

100 120 

300 37 

500 24 

1000 13 

Model Predicted no. of fishers 

Linear 1765 

Semi-log (I) 17475351 

Semi-log (D) 184 

Double log 4252 

Actual 2034 
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3000 4 

5000 2 

10000 0 

 

Table: Regression statistics for four functional forms of demand for Townsville (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(P-value) 

Linear 610.1154** 

(2.16) 

-.1008319  

(-1.08) 

0.0683 1.17  

(0.2949) 

Semi-log independent 2212.745***   

(5.31) 

-323.165*** 

(-4.60) 

0.5693 21.15 

(0.0003) 

Semi-log dependent 5.020444*** 

(11.80) 

-.0007226***  

(-5.16) 

0.6242 26.58 

(0.0001) 

Double log  

 

9.379304***  

(46.64) 

-1.005954*** 

(-29.66) 

0.9821 879.49 

(0.0000) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Model Predicted no. of fishers 

Linear 610 

Semi-log (I) 0 

Semi-log (D) 151 

Double log 11840 

Actual 2034 
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Log Q=5.020444 - 0.0007226 P  

After the inversion of equation, it becomes:  

P= 6947.74 -1383.89 Log Q  

Hinchinbrook (Geographic model): 

Table: Regression statistics for four functional forms of the TGF for Hinchinbrook (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(P-value) 

Linear -.0124044  

(-0.59) 

-1.44e-06  

(-0.97) 

.0000275  

(0.86) 

0.1014 0.73 

(0.4992) 

Semi-log 

independent 

.0218785  

(1.58) 

-.0008127  

(-0.50) 

-.0000234   

(-1.24) 

0.0222 0.83 

(0.4400) 

Semi-log 

Dependent 

-7.002618***  

(-7.63) 

.0029519*  

(1.50) 

-.0012548* 

(-0.92) 

0.0448 1.71 

(0.1875) 

Double log  

 

-7.647277***  

(-7.80) 

.255711**  

(2.22) 

-.0011095* 

(-0.83) 

0.0778 3.08 

(0.0400) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for semi- log dependent model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     3.17 

         Prob > chi2 = 0.0751 
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Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Hinchinbrook (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

0 1206 

50 1145 

100 1088 

300 886 

500 721 

1000 432 

3000 55 

5000 7 

10000 0 

 

Table: Regression statistics for four functional forms of demand for Hinchinbrook (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(p-value) 

Linear 1008.895*** 

(11.14) 

-.1678365***  

(-5.33) 

0.7397 28.42 

(0.0003) 

Semi-log independent 1612.365 ***   

(12.02) 

-166.755*** 

(-7.17) 

0.8371 51.37 

(0.0000) 

Model Predicted no. of fishers 

Linear 25904 

Semi-log (I) 22716994 

Semi-log (D) 1206 

Double log 797 

Actual 1908 
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Semi-log dependent 7.036556*** 

(99.85) 

-.0009271***  

(-37.85) 

0.9931 1432.74 

(0.0000) 

Double log  

 

9.110952***  

(9.15) 

-.6756549*** 

(-3.91) 

0.6047 15.30 

(0.0029) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

 

The Semi-log dependent demand function can be written as: 

Log Q=7.036556 -.0009271 P  

After the inversion of equation, it becomes:  

P= 7589.84 -1078.63 Log Q 

Hervey Bay (Geographic model):  

Table: Regression statistics for four functional forms of the TGF for Hervey Bay (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Travel cost  

(t statistic) 

Personal income 

(t statistic) 

R2 F 

(p-value) 

Linear .0186052* 

(5.08) 

-4.30e-07*  -.0000276 ***  0.8131 13.05 

(0.0065) 

Model Predicted no. of fishers 

Linear 1032 

Semi-log (I) 0 

Semi-log (D) 1197 

Double log 91118 

Actual 1908 
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(-0.99) (-4.65) 

Semi-log 

independent 

.0202329*** 

(5.34) 

-.0005285  

(-1.07) 

-.0000254***  

(-3.83) 

0.8175 13.44 

(0.0061) 

Semi-log 

Dependent 

2.469161 

(0.53) 

-.0016917***  

(-3.08) 

-.0179484 * 

(-2.39) 

0.7657 9.80 

(0.0129) 

Double log  

 

8.662176*   

(1.86) 

-1.991114***  

(-3.28) 

-.0097627* 

(-1.20) 

0.5419 26.02 

(0.0000) 

Note- *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

Table: Breusch-Pagan test for heteroscedasticity 

Heteroscedasticity test result for linear model  

         Null hypothesis (Ho): Constant variance (no heteroscedasticity in residual) 

         Variables: fitted values of ln_visit rate 

         Chi2(1)      =     0.33 

         Prob > chi2 = 0.5651 

 

Table: Predicted number of fishers for four functional forms of TGF 

 

Table 6 6: Demand schedules for Hervey Bay (Geographic model) 

Increase in travel cost in ($) (P) Number of visits 

Model Predicted no. of fishers 

Linear 3065 

Semi-log (I) 19195377 

Semi-log (D) 1091 

Double log 1168 

Actual 2259 
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0 3065 

50 2653 

100 2240 

300 590 

500 0 

 

Table: Regression statistics for four functional forms of demand for Hervey Bay (Geographic 

model) 

Model 

Coefficients Test statistics 

Constant  

(t statistic) 

Increase in travel cost  

(t statistic) 

R2 F 

(p-value) 

Linear 3058.256 *** 

(415.99) 

-8.17515 **  

(-220.02) 

0.9998 48410.30 

(0.0000) 

Semi-log independent 4004.301***   

(8.19) 

-506.3903*** 

(-4.84) 

0.6612 23.42 

(0.0004) 

Semi-log dependent 8.851896 *** 

(14.42) 

-.0129262 ***  

(-4.17) 

0.5912 17.35 

(0.0013) 

Double log  

 

9.505462***  

(6.26) 

-.6089762*** 

(-1.87) 

0.2262 3.51 

(0.0857) 

Note: *** significant at 1% level, ** significant at 5% level, and * significant at 10% level 

 

Table: Predicted number of fishers for four functional forms of demand function 

Model Predicted no. of fishers 

Linear 3058 

Semi-log (I) 0 

Semi-log (D) 6987 

Double log 13432 

Actual 2259 
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The semi- log dependent demand function can be written as: 

Log Q= 8.851896 - .0129262 P  

After the inversion of equation, it becomes:  

  P = 684.78 -77.36 Log Q 
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