
Using Genetic and Evolutionary Algorithms to 

Solve Boundary Control Problems in 

Soil-Water-Plant Interaction 

by 

David K. Sturgess 

A thesis submitted for the degree of Master of Science 

Central Queensland University 

School of Mathematical & Decision Sciences 

March 2002 

Using Genetic and Evolutionary Algorithms to 

Solve Boundary Control Problems in 

Soil-Water-Plant Interaction 

by 

David K. Sturgess 

A thesis submitted for the degree of Master of Science 

Central Queensland University 

School of Mathematical & Decision Sciences 

March 2002 

S
i
g
n
a
t
u
r
e 
R
e
d
a
c
t
e
d



Abstract 

In this thesis we investigate how modern artificial intelligent techniques, namely 

the genetic algorithm/evolutionary algorithm can be applied to find irrigation strate­

gies for a cropped soil. 

We begin by providing an introductory chapter detailing the work that is to be 

carried out and the results obtained from research. 

In Chapter 2 we introduce some basic concepts of soil physics in order to give an 

understanding of the nature of soil composition and the movement of water within 

a cropped soil. We then summarise background research undertaken by Terry Janz 

in his Masters Thesis which shows how an irrigation schedule can be obtained using 

classical methods to solve the Richards' flow equation with realistic parameters and 

field data. 

Genetic and evolutionary algorithms are introduced in Chapter 3; their algorith­

mic structure is defined and contrasted with classic search techniques. 

In Chapter 4 we apply a genetic algorithm to the problem posed in Chapter 2 to 

obtain a schedule of irrigation defined as a sequence of irrigation on and irrigation 

off switches, to control moisture content at specific levels at certain depths within 

the soil, so that "nutrient uptake" by the root can be maximised. The problem 

posed is the classical optimal control problem in which the tracking of a desired set 

of final states is to be achieved. 

Finally in Chapter 5, we undertake an initial research study into how an evo­

lutionary algorithm can be applied to solve the tracking problem associated with 
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boundary control of a parabolic distributed process. The problem is first trans­

formed into a classical optimal control problem with ordinary differential equations 

as differential constraints, by using the method of semi-discretisation, or method of 

lines. Our results are compared with classical techniques commonly used to solve 

this type of problem, including the finite element method which uses full discreti­

sation of both the state and time variables. It is shown that it is feasible to apply 

evolutionary learning to problems of boundary control which arise in determining 

realistic irrigation strategies. 
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Chapter 1 

Introduction 

This thesis deals with how modern artificial intelligent techniques such as genetic/evolutionary 

algorithms can be put to use to find irrigation strategies for a cropped soil by find-

ing strategies that will keep moisture content within the soil layers at sufficient 

quantities to enable nutrient uptake by plants. 

Chapter two, based on previously published material from other authors, intro­

duces the theory of water flow in soil. Of particular importance is Equation (2.7). 

This equation, modified with a sink term and discretised using the Crank-Nicolson 

method, and given appropriate boundary conditions is employed as the basis of com­

puter simulation of an irrigation period. The information presented in this chapter 

serves as a necessary foundation to understanding the use of the simulation in con­

junction with optimal control techniques. 

Chapter 3 introduces the reader to genetic and evolutionary algorithms, their basic 
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terminology, concepts and mechanics, and how they may be utilised in optimal 

control problems. This chapter concludes the presentation of necessary background 

material started in chapter 2 and leads into our first area of research. 

Chapter 4 details the research carried out in the application of genetic algorithms to 

the learning of an irrigation schedule through optimal control. This had the aim of 

maintaining moisture content around desired values at given depths. We show that 

genetic algorithms can be used to learn a realistic irrigation schedule for a problem 

posed with realistic field data. 

In Chapter 5 we examine how evolutionary algorithms may be applied to boundary 

control of a distributed process which is similar to the control problem tackled in 

Chapter 4 but with a simplified structure compared to the parameter complexity 

of flow equation used in that simulation. This work is undertaken to show that 

the problem of chapter 4 may be solved by another technique without having to 

utilise the classical solution of the flow equations which constantly error checking to 

maintain accuracy. Here we establish that evolutionary algorithms can be applied to 

optimal control problems in distributed parameter systems under semi-discretisation 

with a good measure of success. This particular method has not been applied to 

the irrigation scheduling problem in Chapter 4 as the time taken to undertake this 

extra study would have exceeded the maximum completion time for the masters. 

Chapter 6 summarises the research carried out over the duration of this masters 

program and highlights the research results obtained and future directions for re­

search. 
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Chapter 2 

Modelling water flow in soil. 

2.1 Introduction 

The content of this chapter is a summary taken from previously published material 

found in [14] [18] [29] and [28]. 

We first take a look at soil physics, the theory of water flow in soil, Richards' 

flow equation and evapotranspiration introducing basic concepts and terminology 

necessary for understanding of the work that is to follow. The reader is invited to 

reference [14] should a deeper understanding be desired. 

Next we review the work carried out in the masters thesis of Terry Janz [18] which 

introduces the concepts related to irrigation scheduling and the processes and ter­

minology incumbent to the analysis of the state of water flow in soils. The model 

for simulating the flow of water through the soil is derived and a method for its 
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solution presented. A clear understanding of this is essential as it forms the basis of 

the optimisation problem which is presented in later chapters. 

Water flow in unsaturated soils is modelled using the Richards' equation in conjunc­

tion with an empirical sink term which is used to represent water uptake by plant 

roots. The sink term introduced by the authors is different from those typically 

used. It incorporates a notion of an "evaporation front" that encapsulates the effect 

of drying in the upper layers of the soil. This drying in the upper layers essentially 

renders water uptake by plant roots useless. A finite difference approach utilising the 

Crank-Nicolson method is used to solve the Richards' equation numerically and the 

results produced via computer simulation are compared to real life data to validate 

the model. 

In producing a computer simulation to model the flow of water through a cropped 

soil, via the developed finite difference equations and sink term, problems are en­

countered and solutions presented. Among these are the consideration given to the 

boundary conditions arising at the surface due to both infiltration and evaporation 

events. Of particular significance is the switching event from infiltration to evapora­

tion and the difficulty this produces in respect to use of the Crank-Nicolson method. 

This is of enormous importance in a simulation of an irrigation scheduling cycle. 
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2.2 A brief introduction to soil physics 

"Soil Physics" is the branch of soil science dealing with the physical properties of soil, 

as well as with the description, measurement, and control of the physical processes 

taking place in the soil such as the state and movement of matter and the fluxes 

and transformation of energy. 

Soil itself is a heterogeneous, polyphasic, particulate, disperse and porous system 

with a possibly enormously large interfacial area per unit volume. Being a disperse 

system combined with its related interfacial activity means the several phenomena 

manifest, for example swelling, dispersion, aggregation, adhesion, adsorption and ion 

exchange to name a few. Soil actually contains all three natural phases of matter in 

the form of solid particles, soil water (with dissolved particles) hereto referred to as 

the soil solution, and soil air. 

The solid matrix of soil consists of particles differing in chemical and mineralogical 

composition as well as size, shape and orientation whose mutual organisation de­
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Volume Relations Mass Relations 

Figure 2.1: The 3 phase soil system 

volume of soil (including pores) is defined as: 

An index of the relative pore volume in the soil, referred to as porosity, is expressed 

by the following equation: 

f = Vj = Va + Vw 
VI, Vs + Va + Vw ' 

and is normally in the range of 0.3 to 0.6. Course textured soils tend to be less 

porous than fine soils. The porosity of clay soils varies greatly as the soil swells, 

shrinks, aggregates, disperses, compacts and cracks . 

• Volume wetness B: 
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Usually called the volumetric water content, e is usually used more often than 

w since it is more directly adaptable to computation of fluxes and quantities 

added or subtracted from soils. The typical ranges for e in saturated soils 

are, sandy 40% to 50%, medium textured soils approximately 50% and clay 

type soils approximately 60%. It should be noted that the water volume at 

saturation for clay type soils may exceed porosity of the dry soil since clay 

soils swell when wet. 

Also 

e = WPb , 
Pw 

where Pw is the density of water. Since, generally, Pb > Pw it can be seen that 

e >w . 

• Degree of saturation es : 

Often referred to as just saturation es represents the volume of water present 

in a soil relative to the volume of the pores. It ranges from 0% for dry soils to 

100% for complete saturation, though 100% is rarely obtained due to trapped 

air pockets. It is not a good index for soils that swell, such as clay soils. 
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Of the measures defined, the most commonly used in mathematical models of soil -

water, and thus the ones of most interest to us are porosity f, bulk density Pb, and 

volume wetness e. 

2.3 The state of water in the soil 

In terms of energy distribution the Kinetic energy of water in the soil is negligible 

whilst it is the Potential energy of water in the soil that is of primary importance. 

Differences in potential energy between points in the soil gives rise to water flow 

from areas of high potential energy to low. Water moves constantly in the direction 

of decreasing potential. The rate of decrease of potential energy with distance is the 

moving force causing flow. It is the relative levels of potential energy in different 

regions that is important. 

Soil Water Potential expresses the specific potential energy of soil water relative to 

that of water in a standard reference state. 

N .B. The standard reference state is a hypothetical reservoir of pure- free water at 

atmospheric pressure and at the same temperature as soil water and given constant 

elevation. Since elevation is arbitrary, potential is not absolute. 

The force acting on soil water, directed from a zone of higher to lower potential, is 

equivalent to the negative potential gradient -d¢ / dx, the change of energy potential 

¢ with distance x. The negative sign indicates that it acts in the direction of 
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decreasing potential. 

The possible values of soil-water potential are continuous excepting for possible 

abrupt changes at changes of phase. 

When soil is saturated, the hydrostatic pressure is greater than atmospheric pressure 

and water will want to move from the soil to the 'reference reservoir'. This is where 

soil water potential is positive. The soil water potential is negative when the soil is 

unsaturated and the hydrostatic pressure is less than atmospheric pressure resulting 

in water tending to move from the 'reservoir' to the soil. 

Soil water potential at any point in the soil depends upon these factors: 

• hydrostatic pressure. 

• elevation (relative to reference elevation). 

• concentration of solutes. 

• temperature. 

The total potential of soil water is defined as the amount of work that must be done 

per unit quantity of pure water in order to transport reversibly and isothermally an 

infinitesimal quantity of water from a pool of pure water at a specified elevation at 

atmospheric pressure to the soil water (at the point under consideration). 

In practice it is measured by a related property such as hydrostatic pressure, vapour 

pressure, elevation etc. The specification of an infinitesimal amount is so stated as 
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to ensure that neither the reference state or soil water potential are changed. Soil 

water is subject to force fields causing its potential to differ from pure, free water. 

Force fields are caused by: 

• the attraction of the solid matrix for water, 

• the presence of solutes, 

• the action of external gas pressure, and 

• gravitation. 

The total potential is the sum of these factors: 

where t is the total, 9 is gravitational, p is pressure, 0 is osmotic and ... is to account 

for additional theoretically possible terms. 

Thermodynamically speaking in the classical sense of equilibrium states and re­

versible processes, equilibrium states occur only rarely in nature and spontaneous 

processes tend to be irreversible. However, approaching the subject classically, the 

potential concept depends on 2 laws. 

1. The energy conservation law where the heat dQ added to the system is equal 

to the sum of the change in internal energy of the system dU, the work of 
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expansion done by the system PdV, and all other work done dW by the 

system on its surroundings. Expressed mathematically this is: 

dQ = dU + PdV + dW. 

2. The direction of change of an isolated system is always toward equilibrium, 

which rests on the properties of absolute temperature T always being positive 

and entropy S (the measure of internal disorder or randomness of a system) 

where: 

dQ = TdS for reversible processes, 

dQ < TdS for irreversible processes, 

and dQ is the heat input into the system. The second law is stated as: 

dU = TdS - PdV. 

In a system of variable composition, the total differential of the internal energy can 

be expressed as a function of S, V and ni where ni is the number of moles in a given 

component. 

dU = (au) dS (au) dV (au) dni' 
as V,ni + aV s,ni + ani S,v,nj 

Gibbs free energy of the system is: 

G=U+PV-TS. 

Chemical potential of a component is /ti which is defined as the partial molal Gibbs 

free energy of that component Gi : 
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The Total differential of the chemical potential is: 

dll- = (afJ,i) dT _ (afJ,i) dP _ (afJ,i) dn-
,...2 aT aP an- 2' 

~~ ~~ 2 ~~~ 

The chemical potential is an expression of the potential energy state of a component 

in a mixed system in the absence of external forces, that is, when temperature, 

pressure and composition are the only effective variables. 

The difference in chemical potential between water in the soil and pure free water 

at the same temperature has been called moisture potential. 

The Total Potential of soil water comprises of the following components, each dis-

cussed separately: 

Gravitational Potential - Dependent only upon elevation, the gravitational poten-

tial at each point in the soil is calculated relative to a reference level positioned 

such that gravitational potential can always be taken as positive or zero. 

At height z above reference, the gravitational potential energy Eg of mass M 

of water, occupying a volume V is: 

Eg = Mgz = PwVgz. 

Gravitational potential in terms of potential energy per unit mass is: 
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¢g = gz, 

and in terms of potential energy per unit volume is: 

Pressure Potential - Commonly known as tension or suction, the pressure potential 

is positive when soil water hydrostatic pressure is greater than atmospheric 

pressure and negative when the reverse is true. 

Positive pressure potential occurring below ground water level is termed sub­

mergence potential. 

The hydrostatic pressure P of water with respect to atmospheric pressure is: 

P = pgh, 

where h is the submergence depth below the free water surface. 

The potential energy of this water is: 

E = PdV, 

and the submergence potential or potential energy per unit volume is: 

Negative Pressure Potential, which is also called matric potential or capillary 

potential, results from capillary and adsorptive forces due to the soil matrix 
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which attract and bind water in the soil and lower its potential energy below 

that of bulk water. 

The equation of capillarity for an unsaturated, 3-phase, soil system is: 

Po - Pc = P = I (~l + ~J ' 
where Po is the atmospheric pressure, usually taken as zero, Pc is the pressure of 

soil water, which can be less than the atmospheric pressure, P is the pressure 

deficit or subpressure of soil water, I is the surface tension of the water and 

Rl and R2 are the principle radii of curvature of a point on the meniscus. 

Adsorption is the formation of hydration envelopes over the particle surfaces 

and is highly important in clayey soils and relatively negligible in sandy soils. 

Both capillarity and adsorption are interrelated and changing one affects the 

other. 

Soil may exhibit either matric potential or positive pressure potentials but 

not both simultaneously. Unsaturated soil has only matric potential which is 

expressible in negative pressure units. 

Dealing only in pressure potential, CPP' both negative and positive, allows use 

of a continuous potential from a saturated region to the unsaturated region. 

Pneumatic Potential which results from the change in atmospheric pressure is 

negligible in practice. 

Osmotic Potential The presence of solutes in the soil affects the thermodynamic 
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properties of the soil and lowers both the potential energy and the vapour 

pressure in the soil. Osmotic potential is important in the interaction between 

plant roots and the soil and in vapour diffusion. 

There are three quantitative ways in which soil water potential is expressed. These 

are: 

1. Energy per unit mass L 2T- 2
. 

2. Energy per unit volume, which is in a direct proportion to mass since water is 

practically incompressible, M L -IT-2 . 

3. Energy per unit weight or hydraulic head is the height of a liquid column 

corresponding to the given pressure. Therefore instead of ¢ = ¢g + ¢p we 

could have 

(2.1) 

pF is a logarithmic scale for pressure head in cm such that a pF of 1 = 10cm 

H20 and a pF of 3 = lOOOcm H20 etc ... 

To convert between different methods for expressing soil water potential, defin-

ing ¢ to designate potential in terms of unit mass, we use 

¢= ~ and 
Pw 

H= ~ = <to 
Pwg 9 
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For a saturated soil at equilibrium, with free water at the same elevation, the hy-

draulic pressure and suction equal zero. 

If a slight suction is applied to water in a saturated soil no outflow may occur until 

the suction increases past the critical value at which the largest pore of entry begins 

to empty. This critical value is called air-entry suction and is more distinct in coarse 

textured soils as the pores are more uniform. 

As suction increases, increasingly smaller pores empty, until at very high suction 

only very narrow pores retain water. Increases in suction also result in decreases in 

the thickness of hydration envelopes covering particle surfaces and thus a decrease 

in soil wetness. The amount of water in soil at equilibrium is a function of the sizes 

and volumes of the water filled pores and hence a function of the matric suction. 

This function is usually measured experimentally. 

Empirical relations are used to predict the matric suction versus wetness relationship 

from basic soil properties as the complexities prohibit a theoretical model. 

Two such empirical equations are the one proposed by Visser [34] in 1966: 

where 'ljJ is the matric suction, f is the porosity and e is the volumetric wetness. a,b 

and c are constants which in practice are hard to evaluate. 

The other was proposed by Gardner [10] in 1970: 

'ljJ = ae-b, 
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but only fits a small range of the characteristic curve but may be useful in analyzing 

the processes in which the water content range is narrow, for example redistribution 

or internal drainage. 

Water retention by the soil at low suction is affected by soil structure (the capillary 

effect and pore size distribution). At high suction it is affected by the texture and 

specific surface area of the soil material and adsoption is the main factor. 

The greater the clay content the greater the water content in the soil at any given 

suction. 

Water in an unsaturated soil, where the soil water is at sub atmospheric pressure, 

will not tend to seep into the atmosphere. To flow spontaneously out of the soil 

and into the atmosphere, soil water pressure must exceed atmospheric pressure. 

Similarly, for a fine textured soil to drain into the large pores of an initially dry 

coarse textured layer, soil water must be at nearly atmospheric pressure. The slope 

of the soil moisture characteristic curve (change of water content per unit change of 

matric potential) is termed the differential (or specific) water capacity: 

de 
c(e) = Cg =­

d¢p 
or 

where Cg depends on wetness range, texture and hysteresis effect. 

(2.2) 

Hysteresis is an effect observed when the functional relationship between two vari-

ables, in this case matric suction and water content, is not generally unique and 

single-valued. In the cases of desorption, when the soil is drying, the function of 
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matric suction to water content is a continuous curve. Sorption, when the soil is 

wetting, also produces a continuous curve, but this curve is not necessarily identi-

cal to the one for desorption. Hysteresis is a property common to many physical 

systems and is commonly observed in magnetism. 

2.4 Richards' flow equation 

For the case of a soil at saturation point, hydraulic pressure is positive. The gravita-

tional potential reference level is chosen arbitrarily such that gravitational potential 

is always greater than or equal to zero. The soil water potential gradient is driven 

by the hydraulic potentials which can be expressed in terms of hydraulic head. 

Therefore, movement of water within the soil can be defined by the hydraulic head 

gradient. The discharge rate of water through an area of soil, termed the flux q, 

is proportional to the hydraulic head gradient 6H / L where 6H = H2 - HI in 

Figure 2.2 below. 

Thus the flux is represented as: 

= K (D:..H) 
q L' (2.3) 

where K is a constant for a given soil type known as hydraulic conductivity. Equa-

tion (2.3) is known as Darcy's Law. Application of Darcy's law to the situation 

of vertical flow where the hydraulic head is composed of both gravitational and 

pressure heads is straight forward. Figure 2.3 illustrates the situation. 
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Figure 2.2: Hydraulic Head in Horizontal Flow 

For L:.H, the change in pressure head, to be determined, the head at the soil surface 

and at the base of the soil column must be known. For a column of height L cm 

the gravitational head is L cm. If there is h cm of water maintained above the 

column, the pressure head is h cm. Choosing the reference level at the base of the 

column ensures that both the pressure and gravitational heads at the base are zero. 

Therefore: 

L:.H = Hsurface - Hbase = (h + L) - 0 = (h + L). 

Substitution into (2.3) gives flux as: 

q = K (L:.H) = K (h + L) = K h + K. 
L L L 

Since Darcy's Equation (2.3) relies upon constancy of flux q and head gradient, 

which does exist for steady state flow but not for transient flow, a continuity equa-
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Figure 2.3: Hydraulic Head in Vertical Flow. 

tion, embodying the principle of conservation of matter, is introduced to overcome 

this difficulty of fully describing water movement. For one dimensional flow, the 

relationship that the rate of change of flux in a particular direction increases as the 

volume of stored water decreases over time is expressed as: 

ae 
at 

where e is the volumetric water content. 

aq 
az' 

(2.4) 

The combination of Darcy's Equation (2.3), which written in differential form is: 

and Equation (2.4) yields the equation for one dimensional flow in saturated soils: 
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Oe = ~ (KOH) . 
ot oz oz 

In unsaturated soils, as is normally the case in nature, the driving force of water 

movement in the soil is due to the negative pressure of matric suction 'IjJ. Addi-

tionally, hydraulic conductivity, K is not a constant in an unsaturated soil, but is 

dependent on the value of e, thus K(e). For a given pressure head Hp , matric suc-

tion'IjJ = -Hp. Bearing this relationship in mind, from Equations (2.4) and (2.3) 

we have: 

Oe oq 
ot oz 

- :z ( -K('IjJ) 0;:) . 
Now breaking down the hydraulic head H into it's individual components of matric 

suction 'IjJ and gravitational head z, H = 'IjJ - z in the case of a vertical column, and 

substituting we have: 

oe 
ot 

~ (K('IjJ)O('IjJ - z)) 
oz oz 

~ (K('IjJ) O'IjJ) _ ~ (K('IjJ) oz) 
oz oz oz oz 

~ (K('IjJ) o'IjJ) _ oK('IjJ). 
oz oz oz 

This is known as the potential form of Richards' flow equation since it is based upon 

the mat ric potential 'IjJ. 

Another form of this equation exists which is known as the dijJusivity form, as it 

parallels known solvable diffusivity differential equations. To arrive at the diffusivity 
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form of Richards' equation, we exploit the dependence relationship between 'ljJ and 

e (assuming no hysteresis1
). This gives: 

Oe 
ot ~ (K°'ljJ - K) oz oz 

~ (K°'ljJ.oe _ K). oz oe oz 

(2.5) 

Recalling Equation (2.2) and defining a soil-water diffusivity function D( e) such 

that: 

D(e) = K(e) 
c(e) , 

substitution into Equation (2.5) gives: 

Oe = ~ (D(e) oe _ K(e)) , ot oz oz 

which is the diffusivity form of Richards' equation. 

(2.6) 

Since e represents volumetric water content, a volumetric water uptake term S(e, t) 

can be introduced into Equation (2.6) representing water lost due to plant root 

action. This makes the flow equation: 

oe 8 (oe ) - = - D(e)- - K(8) - S(8, t). ot oz oz (2.7) 

1 "The relation of conductivity to volumetric wetness K(B) is affected by hysteresis to a much 

lesser degree than is the K('IjJ) function" - Hillel cf [14] 
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2.5 Evapotranspiration 

In a cropped soil, water can be lost through the upper boundary by the action of 

two processes: 

l. Evaporation - loss directly from the upper surface of the soil. 

2. Transpiration - loss through evaporation through a plant's leaf surface. 

Since these two processes are so closely related, they are encompassed by the term 

evapotranspiration. The exact proportioning of water loss between either evapora­

tion or transpiration is dependant on the stage of growth and density of a crop in 

the soil. 

2.6 Modeling water flow in cropped soils 

The aim behind producing models to simulate the movement of water through 

cropped soils is a simple one. It is, simply put, to provide some deeper under­

standing of the state of water in the soil and thus guide management practices to 

aid the conservation of water. 

Water content within the soil is governed by either the gain of water to the soil or the 

loss of water from it. In the area of particular interest to us that is the root zone of a 

crop, water may be sourced from infiltration at the soil surface or, due to the effect 

of capillary action, from the rising of water from a water table. Loss of water from 
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the root zone may be due to water uptake by plant roots, surface evaporation, or by 

percolation of water deeper into the soil due to gravity. The particular characteristics 

of the soil determine the rate of change of the water content. Water uptake by roots, 

which occurs in the upper soil zone where, due to evapotranspiration, drying can 

occur quickly, is of particular interest in [29]. 

Richards' equation, also referred to as the classic flow equation, defines the way in 

which water redistribution occurs within a particular soil. It is a combination of 

Darcy's law and the continuity equation. Darcy's Law states that the volumetric 

flux of water is proportional to the driving force set up by the potential gradient. In 

examining cropped soils it is necessary to enhance the Richards' flow equation for 

once dimensional flow under gravity with a volumetric sink term: 

80 8 80 
8t = 8)D(0) 8z - K(O)]- S(z, t), 

where 0 is the volumetric water content, z is the vertical distance positive down-

wards, K is the Conductivity of the soil, D is the Diffusivity of the soil, S is a sink 

term accounting for water loss with depth and t is time. 

Other sinks and sources of water are included in the mathematical formulation of 

the model as upper and lower boundary conditions. 
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2.7 Defining the sink term 

Models for sink terms have ranged widely and include forms that are wholly empirical 

such as [21] and many that are fairly mechanistic like those presented in [9], [22], [6], [12], 

and [13]. 

The model of Molz and Remson [21] uses as its basis a 40% : 30% : 20% : 10% 

uptake pattern for plant transpiration requirements with the 40% taking place in 

the upper soil level, 30% the next level down etc. Based on this format, the sink 

term presented looks as follows: 

Os z S v, (2.8) 

where S is the moisture extraction rate per unit volume of soil, T is the transpiration 

rate per unit area of soil surface and v is the vertical length of the root system. 

For most crops in soils where soil moisture is maintained at a high level, greater root 

development occurs at the surface layers. Thus, this extraction pattern approximates 

the pattern inherent to most crops. 

In [21], Molz and Remson noted that this particular model failed when drying oc-

curred in the upper layers and that the 40% assumption for uptake in the uppermost 

layer could not be obtained due to insufficient moisture in the zone. To deal with this 

situation Stonier and Janz [29] introduced an 'evaporation or drying front' which 

they describe as "The depth below the surface of the soil, above which, the soil 
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wetness is less than some critical water content where water uptake is inhibited." 

The following Figure 2.4 illustrates the idea of the evaporation front e produced by 

extended evapotranspiration. An assumption is made the water uptake of the root 

system adjusts to remove the plants entire transpiration demand from the zone v - e 

containing sufficient moisture. 
< e critical c- Surface 

I e 

40% 

Rooting 
30% 

Depth 

l ____________________ 
20% 

10% 

Figure 2.4: Extraction pattern of root system after substantial evapotranspiration 

To allow for the roots not being effective in the upper zone, the following sink term 

was derived which takes into account the evaporation front: 

S 
-1.6T (1.8v - 0.2e)T = z + """"'------;----,-.::-'--

(v-e)2 (v-e)2' 
(2.9) 

where e is the evaporation front. 

The derivation of this equation can be obtained from [18]. 
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2.8 Numerical model 

In order to determine soil water content profiles at any time, the Richards' equation 

incorporating the above sink term needs to be solved. Whilst an analytical solution 

would enable the physics of the problem to be well developed as in [15], a solution of 

this nature would require that the diffusivity function, and initial boundary condi­

tions, have restrictive assumptions made about them. These restrictive assumptions 

would be most inappropriate given that the model has been developed with the aim 

of simulating a range of field processes with application to field management prac­

tices. Thus a numerical solution to the problem has been pursued. 

By use of the method of finite differences, no restrictive assumptions need be made 

in order to find a solution. However, problems can be encountered in getting the 

finite difference method to handle the rapid changes that occur at the surface at 

the start of infiltration events as noted by Hogarth and Watson [15]. A macroscopic 

approach to water redistribution is taken with the following model which operates 

with a time frame of one day. Thus, the monitoring of precise surface water content 

changes is avoided. 

To express all equations in finite difference form, the Crank-Nicolson method, the full 

details of which can be found in [18], was used. It was chosen because it guarantees 

second order correctness for both the time t and depth z independent variables and 

also because it is stable for all ratios of 6.z to 6.t. The depth steps are defined as 

Zi = (i - 1/2)6.z where i = 1,2,'" ,N, and tj = j6.t, j = 1,2",' ,M. 
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An implicit central difference approximation was employed with the derivatives eval-

uated about the point Zi, t j +l/2' The nonlinearity arising from the product of ae / az 

and D( e) was taken care of by formulating the first derivative of the space deriva-

tive at the points Zi±1/2, t j +l/2' Thus, by writing D(e{) as D{ the finite difference 

equation is formed: 

+26 (KH1/2 _ Kj+l/2) + 26 2 Sj+l/2 z i+l/2 i-l/2 Z i , (2.10) 

and 

sj _ -1.6Tj . /. (1.8v(j6t) - 0.2ej) . 
i - (v(j6t) _ ej)2(2 -1 2)6z + (v(j6t) _ ej)2 TJ , 

(2.11) 

where A = 26z2 / 6t. 

Surface flux is given by Darcy's Law. Thus, evaporation at the soil surface gives the 

derivative boundary condition: 

de 
q(t) = -D(e) dz + K(e), (2.12) 

where q is the volumetric surface flux. 

By using the finite difference formulation of Darcy's law for water flux under gravity, 

the imaginary above-ground points in Equation (2.10) can be eliminated to yield: 
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_Dj+l/26 (..J+1 _ KJ+1)/DH1 + 26 (KH1/2 _ Kj+l/2) 
1/2 Z lJ1/2 1/2 1/2 Z 3/2 1/2 

(2.13) 

where eo at the (j + 1 )st time step is: 

e j+1 = eH1 + 6z (..J+1 _ K(eH1 )) 
o 1 D(eH1) lJ1/2 1/2· 

1/2 
(2.14) 

The equation set formed from Equation (2.13), over all depth and time steps, is 

tridiagonal in form. Solution of this set of equations can be undertaken utilising 

Thomas' algorithm. 

An assumption is now made that the water contents on the lower boundary are 

known and are not represented by a flux condition. Thus at i = N + 1/2 the values 

of the water contents are denoted by eL . By evaluating Equation( 2.10) at i = N, 

eN +1 is eliminated to obtain: 

DH1/2 eH1 _ (D j+l/2 + 2nJ,+l/2 + A)eH1 _ 
N-1/2 N-l N-l/2 N+1/2 N-

D H1/2 ej (D j+1/ 2 D H1/2 A)ej D H1/2 e j 
- N-l/2 N-l + N-l/2 + N+l/2 - N - N+l/2 N+l 

_ 2nJ,+1/2 eH1 + 26 (KHI/2 _ KJ+1/2 ) + 26 2 SH1/2 
N+l/2 L Z N+l/2 N-1/2 Z N , (2.15) 
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where 

(2.16) 

It can be seen in Equation (2.15) that Diffusivity D and Conductivity Kneed 

to be evaluated at points Zi, t j +l/2 . This is a consequence of the Crank-Nicolson 

requirements. To do this ef+l/2 must first be found and D and K calculated using 

the following empirical relationships, [4]: 

D(e) -K(e)dw jde bw K (e )-(b+3)eb+2 
s s s , 

where b,es, w sand Ks are parameters particular to unique soil types. The s subscript 

signifies that the values are at a saturated water content. 

A two term Taylor series is employed to project the water contents a half time step 

ahead: 

with an approximation for (8ej8t)i using tz[D(e)~~ - K(e)]- S(z, t) evaluated at 

What follows is the algorithm for determining the moisture content profile in the 

soil: 

• Initialise the system by: 
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- loading the preliminary soil moisture content profile. 

- loading the evapotranspiration data. 

- loading the lower boundary profile. 

- setting depth, depthsize and time of simulation. 

- setting e = O. 

• Repeat until Number of time steps = N. 

- Estimate moisture contents one-half time step ahead. 

- Use the estimates to evaluate water contents at all depths and each time 

step by solving the finite difference formulation with boundary conditions. 

- Update new moisture contents, monitor and update the evaporation front 

if necessary. 

2.9 Comparison with field data 

Results from the computer simulation were compared with results obtained from 

Olsen and Rose [23] which consisted of experimental data comprising an initial soil 

moisture profile and 18 days of evapotranspiration data. The type of soil described 

in [23] was approximated for use in the computer simulation by use of appropriate 

soil parameters of the types given in [4]. The parameters chosen for the soil reflected 

a uniform silty clay with a 49% fraction of clay and the rooting depth was set as 

120cm. 
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A suitable degree of accuracy for the Crank-Nicolson method was determined by 

choosing arbitrary initial values and halving them through each successive program 

completion until an accuracy of two decimal places was achieved in both the time 

and the depth steps. The values arrived at were I day for the time step and lOcm 

for the depth step. 

Results obtained with the depth step set to 4cm instead of 10cm yielded the same 

results, all be it with slightly more resolution of the contours. 

A graph of the results obtained is reproduced below as Figure 2.5. 

The variation of the simulation result from the actual profile beginning at around 20 

cm was attributed to the nature of the split layered soil in which the original data 

was gathered. This layered nature of the original soil accounted for the 'humps' in 

the original profile. 

The following were noted as limitations of the simulation model: 

• It would be preferred to replace the wholly empirical modified sink term, in­

corporating the evaporation front, with a mechanistic model if such a model 

existed for a broad range of crop types and proved to be accurate . 

• There are a number of disadvantages inherent in using the diffusivity-form of 

the flow equation regarding water content: 

1. The relationship between water content and soil potentials is not unique 

and single valued in many soils. 
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2. It is stated in [15] that water contents are discontinuous across the layer 

interface in non homogeneous soils (e.g. layered soils). Since pressure 

head is continuous in these types of soils it would be preferable to use the 

soil potential form of the flow equation . 

• There is a high degree of variance in the parameters for the empirical functions 

of D, K and B. This is the result of these functions being developed as power 

curves from measured data, [4]. 
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Simulating the irrigation cycle 

120 

Being able to model the moisture profile within soil at a particular point in time 

with respect to the plant root zone would present invaluable assistance in terms of 
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water conservation. Traditionally, the irrigation cycle has consisted of relatively long 

periods of evapotranspiration followed by brief periods of infiltration. It is during 

the transpiration events that the status of water in the soil is monitored in order to 

determine the timing and amount of the next irrigation. 

Taking the model developed above based on the classic Richards' equation and 

modified sink term (allowing for the evaporation front) some additional work is 

done to account for a variation in conditions at the upper and lower boundaries that 

may be encountered in the field. The various conditions that may occur are: 

Dirichlet conditions - The dependent variable, in this case e is specified at all 

depths initially and at the boundaries. 

Neumann conditions - The dependent variable is specified at all depths initially 

and it's derivative is specified at the boundaries. 

Mixed conditions - A mixture of both Dirichlet and Neumann conditions. 

In the situation considered for simulation, mixed conditions apply with the upper 

boundary consisting of Neumann conditions, due to infiltration and evapotranspira­

tion, and the lower boundary having Dirichlet conditions. In the case of the lower 

boundary it was assumed that the water contents could be measured at any time. 

Another assumption was that the initial distribution of water at all depths was 

known. 

In the case of evapotranspiration, the nonlinear flux condition is the direct result of 
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Neumann conditions - The dependent variable is specified at all depths initially 

and it's derivative is specified at the boundaries. 
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boundary consisting of Neumann conditions, due to infiltration and evapotranspira­
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In the case of evapotranspiration, the nonlinear flux condition is the direct result of 
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application of Darcy's Law. In the case of infiltration an assumption was made that 

the upper surface became instantaneously saturated the moment infiltration began. 

This last assumption whilst clearly not accurate was considered acceptable due to 

the macroscopic nature of the simulation. 

2.11 Modifications to the numerical model 

Incorporating the boundary conditions into the finite difference equations resulted 

in the formation of two sets of equations: 

1. Where a derivative boundary condition exists, representative of an evaporation 

event. 

2. Where the boundary condition is a constant, representative of an infiltration 

event. 

The finite difference equations before the boundary conditions are taken into account 

are given in Equations (2.10) and (2.11). 

For i = 1 with an Evaporation event: 

_DH1/ 26 (r3+l _ KH1)/Dj+l + 26 (Kj+l/2 _ KH1/2) 
1/2 Z lf1/2 1/2 1/2 Z 3/2 1/2 

(2.17) 
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where eo at the jth time step is as follows: 

(2.18) 

For i = 1 with and Infiltration event: 

_(2DJ+1/2 + DJ+1/2 + A)eJ+1 + DJ+1/2ej+1 -
1/2 3/2 1 3/2 2 -

2 A (KJ+1/2 _ KJ+1/2) _ 4Dj+1/2e + 2 A 2SJ+1/2 
u.Z 3/2 1/2 1/2 s u.Z 1 . (2.19) 

For i = N: 

D j+1/2 eJ+1 _ (DJ+1/2 + 2Dj+1/2 + A)eJ+1 _ 
N+1/2 N-1/2 N-1/2 N+1/2 N-

D
j+1/2 ej (D j+1/2 DJ+1/2 A)ej D j+1/2 e j 

- N-1/2 N-1 + N-1/2 + N+1/2 - N - N+1/2 N+1 

_2DJ+1/2 eJ+1 + 26 (Kj+1/2 _ KJ+1/2 ) + 26 2SJ+1/2 
N+1/2 N+1/2 Z N+1/2 N-1/2 Z N , (2.20) 

The method of solution of the equations remains unchanged from that presented 

earlier. The only difference from this point is in the programming of the computer 

simulation and the incorporation of the boundary condition equations when switch-

ing between drying and wetting. 
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2.12 Switching between drying and wetting 

The approach taken to simulate an entire cropping period was to merge together 

a series of evaporation events and a series of infiltration events with the choice of 

whether or not to irrigate being given to the user. On first inspection it seemed that 

to simply switch between no irrigation and irrigation would simply be a matter of 

calling the appropriate set of finite difference equations for either drying or wetting. 

In developing the full simulation however, problems arose with the Crank-Nicolson 

method in that, in order to maintain second order correctness in respect to time, it 

is necessary that approximate water content values one half a time step ahead be 

known. In the previous simulation a Taylor series expansion, using only the water 

content values of the prior time step, provides a projection of current water content 

values. 

In using this projection method a major flaw is presented. In switching from one 

event to another no allowance is made for the surface condition, which impacts on the 

state of the surface layers, when projecting one half time step forward. Considering 

the two types of events separately: 

Evaporation --t Infiltration Since the critical area of the top surface is assumed 

saturated under an infiltration event, projected values are not required. During 

the chosen time step the layers immediately underneath the surface layer will 

be affected by this assumption. Yet, in solving the tridiagonal system the first 

time following the switch, these upper layers soon adjust to realistic values. 
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The imposition of the surface condition has virtually no immediate affect of 

the lower soil layers and the Taylor series projection is performed as usual. 

Infiltration -+ Evaporation Approximating realistic intermediate values in this 

case represented the major problem, since the effect of the boundary condition 

was not incorporated until the tridiagonal set was formed. To overcome this 

difficulty, in the event of such a switch occurring, the half time step projection 

is not performed. Rather, using the present values of e (averaged in depth 

to provide half depth step values) as an approximation of the half time step 

projections, a tridiagonal set is formed and solved. Thus, a new profile is 

formed integrating the affects of evaporation, gravity and sink terms, and the 

surface conditions are enforced. By averaging the known values of e at j with 

the provisional j set, a second approximation of the half-step forward projected 

profile is achieved. The formation and solution at this point of the tridiagonal 

set provides the foundation for further approximation using the usual method. 

2.13 The simulation algorithm 

Using the parameters for a silty clay soil with an arbitrary initial wetness profile, 

a root zone extending to a depth of 120cm and evapotranspiration data in keeping 

with a soil of this type, the simulation was developed according to the following 

algorithm: 

• Setup initial conditions in the soil and at the boundary. 
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• Loop the following for N time steps. 

- At the end of each time step irrigation can be switched off or on at the 

users discretion. 

* If irrigation is implemented (or continued), engage the infiltration 

boundary conditions. 

* If irrigation changed from on to off, use the estimated e's to solve 

for water contents at all depths, using the results to update water 

contents, then use these values to proceed. 

* If irrigation already off and staying off, project forward values of e 

using Taylor's approximation. 

Use estimates to solve for water content profile. 

Upgrade water contents. 

- Display profile. 

Running this algorithm and simulating 7 days of evaporation the appearance of the 

evaporation front in contrast to the initial profile is evident in Figure 2.6. 

The decision was then made to turn on irrigation at the end of day 7 for three full 

days. The formation of the wetting front can easily be seen in Figure 2.7. 
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Figure 2.6: Water content profiles for days 0, 7 and 8. z in cm. e in cm3/cm3
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Figure 2.7: Day 10 profile following 3 days of max. infiltration. z in cm. e in 
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Following the termination of irrigation at the end of day 10, the surface begins to 

dryas the front deepens as shown in Figure 2.8. 
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Figure 2.8: Content profiles representing 8 days after day 10. z in cm. e in cm3 /cm3 . 
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2.14 Summary 

The concepts presented and work undertaken which has been covered in this chap­

ter is vital to the understanding of the remainder of this thesis. The computer 

simulation of an irrigation period, based upon the validated mathematical model 

with modified sink term, is to be combined with an evolutionary approach to op­

timisation. This leads us into the next chapter which presents an introduction to 

evolutionary algorithms. 
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Chapter 3 

Introduction to evolutionary 

algorithms 

3.1 Introduction 

In this chapter we introduce the theory of genetic/evolutionary algorithms and ex­

plore the implementation of these algorithms in computer simulations. In particular 

focusing on the theory and developments necessary to our combination of these 

search algorithms with the problem of irrigation scheduling. In Chapters 4 and 5 we 

will be using both Genetic Algorithms (GAs) and Evolutionary Algorithms (EAs). 

The difference between the two being small but important. First, some background 

and explanation of these algorithms is required. 

Genetic algorithms are based on the process of natural selection common to all 
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branches of biology and, although used for many years by biologists simulating 

genetic systems, their first inclusion in research literature dealing with artificial 

problems only took place in the 1960's due to John Holland. The aim of Holland 

was to develop genetic algorithms in order to imbue programs and machines with 

an unlimited capacity to adapt to arbitrary environments. In doing so he followed 

a population approach recognizing the concept of survival of the fittest. 

The term Genetic Algorithm arose obviously from the fact the algorithms mimic the 

process of genetic evolution and survival of the fittest displayed by living creatures. 

Genetic algorithms these days are primarily used as search methods for optimisation 

problems although this was not initially their function. They do not, as do classical 

mathematical search methods, require assumptions of continuity across the search 

space nor rely on the existence of derivatives of the objective function. They are 

also computationally simple. 

Indeed, compared to traditional search methods, genetic algorithms can be identified 

by possessing the following characteristics: 

• They use a coding of the parameter space rather than the parameter space 

itself. 

• They use a population of points rather than a single point for search problems. 

They therefore bave characteristics of parallel searching. 

• They use an objective function only to refine the points in the population 

rather than derivatives as used in calculus based techniques for optimisation. 
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• The selection of new points in the search space is probabilistic rather than 

deterministic. 

3.2 Robustness 

The biological process of genetics is a very robust one. So too is the genetic algo­

rithm approach to searching for the best individual. This has been proven through 

numerous studies on the subject and in the major reference "Adaption in Natu­

ral and Artificial Systems" by Holland (1975) [16]. Evolutionary algorithms, which 

will be investigated more fully in a later section, provide robust searches even in a 

complex space. 

The use of a genetic algorithm as the search technique of choice for the research in 

Chapter 4 of this Masters Thesis came down to it's suitability for the task at hand 

and its robust performance compared to the following classical search techniques . 

• Hill Climbing Methods So called because, if seeking a maximum, these searches 

seek in the direction of the maximum gradient. Being either Direct (solving 

equations related to the necessary condition that the gradient of the objective 

function be zero for a minima) or Indirect (seek local optima by searching 

point-wise in a direction related to the gradient of the objective function) in 

nature these methods are not robust because they depend on the continuity 

of the objective function within the search space, the existence of its partial 

derivative across the search space and because they are local in nature. These 
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methods are restricted to problems that satisfy optimally necessary conditions 

and the direct methods suffer greatly from the curse of dimensionality. 

• Dynamic Programming An enumerative scheme, this method suffers badly 

from the curse of dimensionality 

• Random Search A brute force approach, completely non intelligent, inelegant 

and requiring a great deal of processing power and time. Since this technique 

is purely random it does not build a picture of the search space over time. 

• Simulated Annealing This approach uses random processes to explore for min­

imum energy states and is essentially a modified version of the hill climbing 

technique which assigns time based probability weightings to random moves 

within the search space. Since this technique deals with only one move at a 

time and does not use information from previous moves to guide move selec­

tion it can sometime be hard to obtain convergence to the global minimum of 

the objective function. 

3.3 The mechanism of a genetic algorithm 

Genetic algorithms, whilst utilising random choice as a tool, do so in conjunction 

with a search mechani.sm that is highly exploitative within the coding of the parame­

ter space. They are a heuristic adaptive search technique that maintain a population 

P(t) = {xL ... x~} of individuals from one iteration in time t to the next t+ 1. Each 
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individual in a given population is a prospective solution to a given problem. As 

originally formulated the structure of each individual in a population consists of a 

binary encoding as referenced in Holland [16J and in Goldberg [11J. Michalewicz [19J 

realises a more modern structure that includes both integer and real encoding. Each 

individual has associated with it a measure of it's fitness for survival which plays an 

important part in the generation of the next population P(t + 1). To accomplish 

this generation two genetic operators, crossover and mutation are used. Crossover 

is the process whereby parts of usually more than one parent selected for mating 

are recombined into a new child. Mutation is the process whereby an individual's 

structure is perturbed, effectively producing a new individual. In line with the prin­

ciples set down by Charles Darwin of natural selection and survival of the fittest, 

over many generations the 'best' individuals (i.e. those with the best solution to the 

problem at hand) make up the bulk of the final population. 

Rather than manipulating the parameters of a problem, genetic algorithms deal with 

a coded parameter space of fixed length. This parameter space consists of a finite 

'alphabet' which is typically the binary bits 0 and 1. The fitness of an individual 

is evaluated by way of an objective function. The algorithm itself is freed from 

assumptions of continuity and derivative existence and the constraints of requiring 

auxiliary information as the search domain is transparent to it. 
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3.3.1 Nomenclature 

Because they are modelled on biological systems, the terminology of genetic algo­

rithms parallels with that of the biological world, although every object name has 

a more mathematical counterpart. 

A chromosome in biological terms is referred to as an individual or string whilst 

a biological structure signifies a population, or package of individuals. Particular 

parameter sets, solution alternatives or points in the solution space are derived from 

the structure. In biology a phenotype is the term referring to the combination of 

chromosomes forming an entire organism and its environment. Each chromosome 

is composed of genes which can take on a number of values called alleles. Genes 

correspond to the bits of a string and the alleles the binary alphabet of 0 and l. 

Where individuals, or strings, are concerned, each has associated with it: 

• It's decoded parameters being the Phenotype. 

• The bit string or artificial chromosomes being the Genotype. 

• It's Fitness Values - which under optimisation is the objective function. 

• Inherent information on it's parents referred to as Auxiliary Information. 

3.3.2 GA algorithm 

In it's simplest form, a genetic algorithm can be expressed in pseudo code as follows: 
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begin 

t = 0 

Create random pet) 

until (finished) repeat 

begin 

Evaluate Fitness of Strings in pet) 

t = t+1 

Create P(t+1) from pet) 

end 

end 

The method for creating a new population P(t+l) is comprised of a selection process 

crossover and mutation, as mentioned earlier. There is a great deal of diversity in 

the way in which these operators do their job. The methods that are of relevance 

for the rest of this thesis are covered below, but for a more comprehensive treatment 

the reader may wish to examine [2] and [3]. 

3.4 Crossover and mutation 

As stated, at crossover the individual members of a population are recombined to 

form members of the new population. Exactly how to recombine the population 

members is a matter of no small importance. A number of schemes exist to de­

termine exactly which strings should be combined and in what way they should 
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be combined or spliced together. In a simple genetic algorithm, it is mostly the 

fittest individuals of a given population that are used to produce the next popula­

tion, although the worst individuals also have a small chance. Presented here are 

some popular techniques for governing this process. In the presented techniques it 

is important that the size of the initial population is an even number. 

Roulette Wheel Selection In Roulette selection, from an initial population of n 

individuals, a new population, also of n individuals, is selected by performing 

a linear search as through a roulette wheel with slots weighted in proportion 

to each individual's fitness. That is, the greater the fitness of an individual, 

the greater the probability that individual will be selected for crossover. In 

this way good individuals, that is, those who have better fitness, will probably 

be selected more than once in a generation and poor ones may not be selected 

at all. 

Tournament Selection Randomly select p < n individuals out of a population 
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used to produce children through crossover and mutation. With a full replace­

ment policy these two children replace their parents in the next generation. 
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Elitism Rather than a completely different technique, this elitist model is more of 

a variation that can be added to an existing selection technique such as either 

Tournament or Roulette selection. In this variation it is ensured that the best 

individual from generation P(t) is brought into generation P(t + 1). This is 

accomplished in one of two ways: 

1. Depending upon the size of the population a number of copies of the 

fittest string, usually two but possibly more, are placed directly into the 

next generation. The remainder of the population is produced in the 

usual manner. 

2. Alternatively, the next generation may be formed as per the established 

technique, the fitness values of the new strings calculated, and the weakest 

individual replaced with the fittest individual from the previous popula­

tion. 

Once the parents are chosen using one of the above techniques, or any other variation, 

the actual splicing together can take place. As with the selection routines, there are 

a number of ways in which the splicing can transpire. The most common technique 

is simply to use a one point crossover operator. In this technique a random mutual 

crossover point is selected for both parents, and the 'tails' of the two parents are 

interchanged. As an example of this process consider two parent bit strings Xl and 

X2 shown below: 
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Xl 10000010 

X2 11110001 

Choosing a crossover point following the fourth bit we have 

Xl 1000 0010 

X2 1111 0001 

and the two children produced, call them CI and C2 are: 

CI 10000001 

C2 11110010 

A variation on this simple one point crossover technique would be a two point 

crossover technique. As can be imagined this involves swapping a section of each 

parent with the other rather than one end. An example is not provided here as it 

is mentioned only as an example of variations which may occur at this stage of the 

crossover process. An alteration to the crossover process is necessary when dealing 

with the strings of evolutionary algorithms as will be seen later. Crossover may 

not necessarily be applied to all pairs within the mating with the probability of it 

occurring being specified by the user. Typically the probability lies within the range 

of 0.6 to 1.0. 

Following the crossover process, a mutation operator is applied to the individuals 

in the new generation. According to a user specified probability, each bit of each 

individual is changed if it mutates. For each individual bit within a string there 

exists a probability Pm that it will mutate and a probability 1 - Pm that it will 
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survive the mutation operation. In the case of a simple binary bit stream a 1 is 

mutated to a 0 and vise versa. In the case of a string composed of real values as 

used in the evolutionary algorithm approach, the mutation operation becomes more 

complex and is covered at the end of this chapter in the section on evolutionary 

algorithms. 

The mutation operator produces periodic variations in the population which can 

have the effect of 'throwing' the string into a new region of the parameter space. 

This can be important for maintaining the robustness of the search algorithm. 

3.5 Genetic algorithms and optimisation 

It is worth noting at this point some of the values of the genetic algorithm as an 

optimisation search technique . 

• The problem of single point searches getting stuck at local maxima is avoided 

due to the fact that the genetic algorithm utilises more than one point in the 

search for optimal values. Indeed, the sampling function is in effect being 

optimised at a number of different places simultaneously . 

• At crossover, the individuals with the better fitness values stand a much better 

chance of being.in the 'mating pool'. This means that, in the mating process, 

there is a reasonable chance that the best qualities of two strings will be 

combined to produce an individual that has the advantages of both. 
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• The advantages of the mutation operator, which is intended to introduce pe­

riodic variations into the population that can move a string into a new area of 

the parameter space, have been debated in the literature on genetic algorithms. 

• The genetic algorithm approach may be applied to any objective function and 

doesn't require any additional information such as derivative equations. 

• Although random choice is used to guide the search, it is a selective approach 

to randomisation that selects and attempts to improve good individuals in a 

population. 

3.6 Similarity templates 

Although not pertinent to the content of later chapters, similarity templates rate 

a mention. Similarity templates provide a framework in which to compare how 

a string is representative of other string classes with similarities at certain string 

positions. They are important to the mathematical foundation of the science of 

genetic algorithms and deal with the determination of why particular strings all 

have high fitness values. These templates are also referred to as schemata. They are 

mention here as a point of interest and a detailed discussion on similarity templates 

can be found in [11]. 
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3.7 Encoding options 

The next question to be faced is how to encode the particular parameter or pa­

rameters into strings for use in the genetic or evolutionary algorithm. The exact 

method will vary depending, obviously, upon the problem at hand and the exact 

method used in the next two chapters for the encoding of the parameter space will 

be explained at that stage. As a general overview, the concepts involved in encoding 

the parameters are examined below in moderate detail. 

Two questions present themselves immediately: 

1. How do you represent a number range say [0 ... 63] or indeed [-2.57 ... +3.38]7 

2. How do you represent more than one parameter? 

A simple answer to question two is that one string is encoded for each parameter and 

the strings are simply concatenated together, but this is not the only representation 

possible. For example with two variables x and y, let them be represented by the 

bit strings Ul and U2. For x: 

and for y 

with Ul and U2 not necessarily the same length. These two parameters are then 

represented by the one string: 
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where EB is the concatenation operator and the length of the concatenated string is 

This concept of concatenating individual parameter strings together to form an 

individual is, of course, extensible to systems of more than two parameters. 

In answer to question one, let us first examine the integer range [0 ... 63]. In using 

a binary bit string to represent this span of numbers, the answer is self evident, 

because a 6-bit binary representation will represent every integer from ° to 63. In 

the case of the second sample number range, [-2.57 ... + 3.38]' representation of 

the interval may be achieved by the use of a linear map. For example, to span the 

interval [Xmin' xmax], we would map the positive integers in the range [0, 2m 
- 1} by 

using the transformation: 

x = au + b, 

where x E [Xmin, xmax} and u E [0, 2m -1} and the constants a and b are determined 

from the co-ordinate points (0, Xmin) and (2m - 1, xmax). 

The accuracy of the this transformation is dependent on the distance between points 

and can be calculated by 
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According to Goldberg [11], two principles govern the selection of a coding scheme 

for the parameter(s) of a genetic algorithm. These are: 

1. "The user should select a coding so that short, low-order schemata are relevant 

to the underlying problem and relatively unrelated to schemata over other fixed 

positions. " 

That is, that when crossover is performed, it is important that short, low 

order, schema are the objects that are switched. 

2. "The user should select the smallest alphabet that permits a natural expression 

of the problem." 

This is important to ensure that the chance of similarities in different strings 

is increased. 

Moving away from the binary encoding scheme to one utilising real numbers is 

an important step in overcoming the limitation inherent to the binary encoding 

system. That being the problem of the excessive size of strings when encoding for 

multidimensional, high precision numerical problems. This is dealt with in the final 

section of this chapter which explains the concepts and workings of evolutionary 

algorithms. 
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3.8 Objective functions 

When tackling an optimisation problem with a genetic algorithm, it is not necessarily 

true that the function to be maximised and the fitness function are the same. This 

is due to the fact that the probability calculated for use in the selection process 

must be a positive number, if using Roulette selection. 

Let u be a fitness function that takes negative values for some x in it's defined 

domain that we wish to maximise. A new function f may be formed such that only 

positive values are taken: 

{

U(X)+C' 
f(x) = 

0, 

U(x)+c>o, 

otherwise. 

where c is a positive constant which may be determined by mathematical analysis 

or by choice of a sufficiently large value. A more computationally intensive, but 

more certain method for the choice of c is to perform a sort of the population at 

every generation, including generation zero, and set c =1 Umin 1 where Umin is the 

minimum fitness value found. 

Considering the problem of minimisation of U rather than maximisation the classical 

technique of replacing U with -u will not work in the context of the genetic algorithm 

with Roulette selection. A fitness function that may be considered in this case is: 

{ 

-u(x) + d, 
f(x) = 

0, 
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where the positive constant d is chosen, for example, as d =1 U max I, with Umax being 

the maximum fitness value in the population at each generation. 

3.9 Fitness scaling 

When using genetic algorithms a common problem experienced is premature con­

vergence of the algorithm to a local maximum, that is, when a population of strings 

converge to the same string. 

Small populations are particularly problematic in the following regard. When an 

initial population is formed, the existence of some, comparatively, very fit individuals 

will result in these individuals quickly multiplying and outnumbering any alternative 

strings. 

Also, at the later stages of a run, although there may still be a great deal of diversity 

in a population, the increase in the average fitness of the population may stay close 

to the maximum fitness of the best individual. This results in the average and best 

strings in the population propagating in approximately even numbers. 

These two problems are caused by the comparison of relative fitness values between 

the best individual and the remainder of the population 

A simple linear re-scaling of the raw fitness function f can be implemented to solve 

this problem: 

l' = af + b, 
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where l' is the scaled fitness and a and b are constants. 

It is desired that the average fitness of both f and l' be the same. To accomplish 

this we choose: 

so that f:nax is a constant multiple of the average value of 1'. For small population 

sizes in the region of 50 to 100 individuals it has been found that values of 1.2 to 2 

for Cmu1t work well. In order to prevent rescaling producing negative fitness values, 

which can occur when the average fitness value is close to the maximum, Cmult may 

be chosen such that f:nin = 0 when f(x) = fmin. 

The rescaling process is dynamic in nature and is implemented for each generation 

only when needed thus preventing the early domination of extraordinary individuals 

in the population. 

3.10 Evolutionary algorithms 

There is a basic conceptual difference between what is thought of as a traditional 

genetic algorithm and what has now come to be termed an evolutionary algorithm. 

Genetic algorithms, as we have seen, operate on binary strings, requiring an al­

teration of the problem which they are being used to address in the form of the 

encoding of the parameter space for potential solutions. Evolutionary algorithms 

however, modify the chromosome representation of the problem being addressed 
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whilst still applying appropriate 'genetic' operators leaving the original problem 

unchanged. To use the quote coined in Michalewicz [19]: 

"If the mountain will not come to Mohammed, then Mohammed will go 

to the mountain." 

So, unlike genetic algorithms which transform the problem into a form appropriate 

for solution, evolutionary algorithms are themselves a transformed version of the 

genetic algorithm altered to suit the problem. This approach is termed Evolution­

ary Programming, but the names evolutionary program and evolutionary algorithm 

have grown to be synonymous. The genesis of the field of evolutionary program­

ming really represents a move away from the realm of biology into a distinct and 

unique field of algorithmic science. In terms of nomenclature, evolutionary algo­

rithms generally no longer use the biological terminology associated with structures 

as did genetic algorithms. This is because the structures now comprising evolu­

tionary algorithms bear little resemblance to the biological structures from whence 

they sprang. For example chromosomes and genes are now exclusively referred to 

as strings and elements respectively. 

When dealing with the actual mechanics of evolutionary algorithms as compared 

to their genetic progenitors, much remains unchanged. Listed below are the major 

points of relevance. 
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3.10.1 Parameter encoding 

The solution to a problem is represented by a solution vector. Thus, in encoding 

the strings for an evolutionary algorithm, each string is a vector of floating point 

numbers representing a possible solution to the problem. Also, each floating point 

element is selected to lie within a certain domain and the crossover and mutation 

operators are carefully devised to preserve these limitations. 

This floating point representation generally possesses a higher order of precision 

than the binary representation used in genetic algorithms and is capable of symbol­

ising quite large domains without the loss precision that would occur with binary 

representations. 

3.10.2 Crossover 

In noting the differences with the crossover technique it is important to point out 

that the selection techniques prior to the actual occurrence of crossover are com­

pletely unchanged. Roulette and tournament selection, along with the implementa­

tion of elitism, are still applicable and widely used with tournament selection now 

the preferred technique. 

When dealing with the floating point numbers that now comprise the strings of 

evolutionary algorithms it is important to note modifications that must be taken into 

account due to the altered nature of the strings. Due to the parameterisation often 

used in composing strings, individual strings now represent groupings of vectors. 
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Thus, while simple one-point, or even multi-point, crossover is still applicable, it 

must be ensured that the split point only occurs between the vector's groups less a 

vector be created that lies outside the allowed solution space. 

A new type of crossover mechanism is also available, that being arithmetic crossover. 

It is defined as a linear combination of two vectors. For example, let ~~ and ~~ be 

vectors contained within a mating pair of strings. The children produced would 

possess the vectors 

and 

where a is either a constant or a random variable with a E [O,lJ. In the case where 

a is a constant, the process is referred to as uniform arithmetic crossover. Where 

a is a variable, its value may be chosen appropriate to the age of the population or 

just randomly, and it is referred to as non-uniform arithmetic crossover. Variations 

on the theme of arithmetic crossover also exist in that the operation may be applied 

to the whole string of vectors or just selected vectors within the strings. 

3.10.3 Mutation 

The mutation operators that exist for the space of real numbers signify the greatest 

departure from what we are already familiar with from the binary representation of 

genetic algorithms. They are generally divided into two classes, as with the crossover 
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operators discussed above, being uniform and non-uniform mutation. Once again, 

the distinguishing factor between the two types is usually whether or not their action 

is dependent upon the population age. 

Uniform operators are similar to what we are already familiar with in that each 

element of a string has an equally likely chance of being mutated. The actual 

mutation that takes place alters the particular element to a random value bounded 

by the domain of the corresponding parameter space. 

Non-uniform operators are often utilised in fine tuning the search. The means by 

which this is accomplished is best explained mathematically. Let v t = (el, e2,··., en) 
~l 

be a string composed of n elements. If element k is chosen for mutation where lk S 

ek S Uk defines the range of element k. The mutated element e~ = ek ± D..(t, Uk -lk) 

where the probability of addition or subtraction is 0.5. The function D..(t, y) is chosen 

such that the value returned by it has a higher probability of being closer to zero, 

the larger the value of t. This effectively helps to restricts the search from uniform 

to very local as time or the generation number increases. 

As an alternative to only mutating one element of string, the non-uniform mutation 

operator is sometimes applied to every element of a string. 

3.11 Summary 

This chapter on genetic and evolutionary algorithms has now presented the reader 

with enough information and background to enable an understanding of the applica-

77 

operators discussed above, being uniform and non-uniform mutation. Once again, 

the distinguishing factor between the two types is usually whether or not their action 

is dependent upon the population age. 

Uniform operators are similar to what we are already familiar with in that each 

element of a string has an equally likely chance of being mutated. The actual 

mutation that takes place alters the particular element to a random value bounded 

by the domain of the corresponding parameter space. 

Non-uniform operators are often utilised in fine tuning the search. The means by 

which this is accomplished is best explained mathematically. Let v t = (el, e2,··., en) 
~l 

be a string composed of n elements. If element k is chosen for mutation where lk S 

ek S Uk defines the range of element k. The mutated element e~ = ek ± D..(t, Uk -lk) 

where the probability of addition or subtraction is 0.5. The function D..(t, y) is chosen 

such that the value returned by it has a higher probability of being closer to zero, 

the larger the value of t. This effectively helps to restricts the search from uniform 

to very local as time or the generation number increases. 

As an alternative to only mutating one element of string, the non-uniform mutation 

operator is sometimes applied to every element of a string. 

3.11 Summary 

This chapter on genetic and evolutionary algorithms has now presented the reader 

with enough information and background to enable an understanding of the applica-

77 



tions of genetic and evolutionary algorithms as applied to the optimisation problems 

associated with water flow in soils as presented in the next two chapters. In con­

junction with the theory of water flow in soil presented in Chapter one, and the 

mathematical modelling of such in a cropped soil as explored by Terry Janz and ex­

amined in Chapter two, this concludes the background material necessary to discuss 

the remaining research. 
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Chapter 4 

Application of genetic algorithms 

to the model for water flow in soil 

4.1 Introduction 

The work of Terry J anz in modelling water flow through soils covered in Chapter 

2 is merged with the material presented in Chapter 3 in order to find an optimal 

irrigation strategy. A genetic algorithm is defined to learn the irrigation cycle for the 

simulated water flow in cropped soils. It is shown that genetic learning provides an 

appropriate method for defining irrigation on and irrigation off switching to maintain 

a desired moisture content at predetermined depths in the soil. 

An irrigation cycle traditionally consists of a brief period of infiltration followed by 

a period of evapotranspiration. During the drying period, the moisture content of 
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the soil is monitored to ascertain the appropriate time and quantity of the next 

irrigation event. By utilising the research of Terry Janz, soil water content profiles 

with respect to a growing root are determined numerically by computer simulation. 

By the unique use of a genetic algorithm and appropriate choice of cost and fitness 

functions, the decision of whether or not to irrigate is handled by the computer. 

4.2 Water flow model 

For the benefit of the reader, a summary of the relevant concepts and equations 

covered in Chapter 2 are reproduced in the next few sections. We have already seen 

the classic Richards' flow equation for one dimensional flow under gravity in cropped 

soils which is expressed as: 

f}() f} f}() 
- = -[D(())- - K(())] - S(z), 
f}t f}z f}z 

where () is the volumetric water content, z is the vertical distance positive down-

wards, D is the Diffusivity of the soil, K is the Conductivity of the soil, and S is a 

sink term accounting for water loss with depth. 

The sink term, incorporating the concept of the evaporation front developed by 

Stonier and J anz and. discussed in Chapter 2 is expressed as: 

S 
-1.6T (1.8v - 0.2e)T 

(v_e)2 z + (v-e)2 ' 
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where S is the moisture extraction rate per unit volume of soil, v is the vertical 

length of the root system, T is the transpiration rate per unit area of soil surface, 

and where e is the evaporation front, see [29]. 

4.3 Numerical model 

Based on the following assumptions: 

• That the initial water profile within the soil and at the lower boundary is 

known, 

• That evaporation at the upper boundary is represented by a non-linear flux 

condition, 

• That, for an infiltration event, the upper surface of the soil is held instantly 

at saturated water content, 

it is possible to express all equations in finite difference form having all finite differ­

ences written half way between known and unknown time steps at any depth about 

Zi, t j +l/2 ' The finite difference values are resolved by use of the Crank Nicolson 

method. 

The boundary condit~ons give rise to the formation of two sets of equations: 

1. Where evaporation is occurring at the surface and a derivative boundary con­

dition is set for this. 
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2. Where. infiltration is taking place and the boundary condition is a constant. 

The set of equations across all depth steps Xi, formed at each time step t j , are 

tridiagonal in form. The finite difference equations, which have been reproduced 

below, are solved using the Thomas' Algorithm where the depth steps are defined 

as Zi = (i - 1/2)6z with i = 1,2, ... ,N. 

For 2 ::; i ::; (N - 1): 

+26 (Kj+l/2 _ Kj+l/2) + 26 2 SH1/2 
Z i+1/2 i-1/2 Z t , (4.1) 

where A = 26z2 / 6t and the finite discrete form of the sink term is given by: 

SJ' -1.6Tj (. /) /\ (1.8v(j6t) - O.2ej)r 
' = '/, - 1 2 u-Z + '. 
t (v(j6t)-ej)2 (v(j6t)-ej)2 J 

(4.2) 

For i = 1 with an Evaporation event: 

_(DH1/2 + A)eHl + Dj+l/2eHl _ 
3/2 1 3/2 2 -

_Dj +l/26 (,)+1 _ KH1)/Dj+l + 26 (KH1/2 _ Kj+l/2) 1/2 Z lJ.1/2 1/2 1/2 Z 3/2 1/2 

(4.3) 

where eo at the jth time step is as follows: 

( 4.4) 
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For i = 1 with an Infiltration event: 

_(2Dj+1/2 + Dj+1/2 + A)aj+1 + Dj+1/2aj+1 -
1/2 3/2 1 3/2 2 -

2 /\ (Kj+1/2 _ Kj+1/2) _ 4Dj+1/2a + 2/\ 2Sj+1/2 
L.::;Z 3/2 1/2 1/2 s L.::;Z 1 . (4.5) 

For i = N: 

d,+1/2 aj+1 _ (d,+1/2 + 2Dj+1/2 + A)aj+1 -
N+1/2 N-1/2 N-1/2 N+1/2 N-

D
j+1/2 aj (Dj+1/2 D j+1/2 A)aj Dj+1/2 aj 

- N-1/2 N-1 + N-1/2 + N+1/2 - N - N+1/2 N+1 

_2d,+1/2 aj+1 + 2D. (Kj+1/2 _ Kj+1/2 ) + 2D. 2Sj+1/2 
N+1/2 N+l/2 Z N+l/2 N-1/2 Z N , (4.6) 

Root depth was set at 120cm, that of a mature plant, and the initial water con-

tent profile of the soil was randomly set. The diffusivity D and conductivity K 

parameters were calculated empirically cf. [4] for the chosen silty clay soil type 

with evapotranspiration data also corresponding to the soil type. The ae and as 

parameters representing critical moisture content and saturated moisture content 

respectively were chosen as ae = 0.21 and as = 0.5. 

4.4 Switchi~g between drying and wetting 

As covered previously, there is an issue with the change from an Infiltration event 

to an Evaporation event due to the surface condition and calculation of values nec-
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essary for the solution of the tridiagonal system of equations. For a more detailed 

explanation of this problem and its solution, please refer to Chapter 2, Section 8. 

4.5 Genetic learning of the irrigation schedule. 

As stated in [28], "Consideration of movement of water in the soil profile as illus­

trated in this simulation leads to an idea that it is not so much the volume of water 

that is important but rather where the water is with respect to the roots." Thus, 

the goal of simulating an irrigation schedule is to maintain the water content in the 

soil at a desired value at a chosen depth within the soil. It is at this point that we 

seek to apply our knowledge of genetic algorithms to the problem. 

As stated earlier, at it's most basic level, the logical operation of a genetic algorithm 

IS: 

begin 

t = 0 

Create random pet) 

until (finished) repeat 

begin 

Evaluate Fitness of Strings in pet) 

t = t+l 

Create P(t+l) from pet) 

end 
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end 

In parameterising this particular problem, we have chosen that each individual ~ in 

the population P at time t is a linear array of binary bits, with each bit representing 

the action taken on a particular day of the simulation. A bit value of 0 represents 

a day of evaporation and a 1 represents a day of infiltration. Therefore, given a 120 

day time period over which the simulation is run, each string ~ consisting of 120 

bits represents a potential solution to the problem. 

As is the case with any genetic algorithm, a fitness function is required to determine 

which are the better strings to be used for spawning the next generation. In this case 

the fitness fk of the kth individual is determined by passing the individual to the 

water flow simulation algorithm for processing and having the algorithm return a 

fitness value for the string. The fitness function chosen is a variance or least squares 

measure: 

where ()j (d) is the moisture content on the jth day at depth d = 65 cm and ()d is 

the desired moisture content level which was chosen as 0.3. It is this measure of 

variance about the desired moisture content level that we seek to minimise. 

Representing the entire simulation in pseudo code as it stands as a subsystem of the 

genetic algorithm makes it easier to comprehend the exact operation. Therefore, 

each time the fitness evaluation is to take place within the genetic algorithm, the 

following process transpires: 
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• Present irrigation schedule :z;j. 

• Initialise and perform boundary setup. 

• Repeat for k = 1 to N = 120. 

- If x j (k) = 1, implement the infiltration boundary conditions. 

- If :z;j(k) = 0, and :z;j(k - 1) = I, then solve for water contents at all 

depths by using first estimate thetas (not using Taylor's approximation), 

provisionally update water contents, then use these second estimate water 

contents. 

- If :z;j(k) = 0, and :z;j(k - 1) = 0, then use Taylor's approximation to find 

projected forward thetas. 

- Use estimates to solve for water content profile e. 

- Upgrade water contents ek . 

• Calculate jth individual fitness fj. 

Once in possession of the fitness values for each individual in the population it is 

now possible to perform the crossover and mutation processes to obtain the next 

generation P( t + 1) of individuals. In this particular case, proportional selection 

is used to determine which pairs of parents will be chosen for mating. A standard 

single point crossover with random swap point and probability of 0.6 combined with 

the standard binary mutation operator, utilizing a probability of 0.001, was used in 
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the generation of the next generation. The value of 0.001 for mutation was chosen 

after some experimentation. It was found that the 0.001 value resulted in better 

convergence than higher values of 0.1 and 0.01. 

Breaking away from the standard crossover and mutation approach, one concession 

was made in the generation of new individuals. The field surface data available for 

use in the simulation did not exceed 18 consecutive days of evaporation. Hence, 

an addition was made to the algorithm for crossover which, following the mutation 

process, scanned the newly formed string for a sequence of 19 consecutive D's and, 

if found, set the 19th zero to a one. This is certainly not the only way to ensure 

no more than 18 days of continuous evaporation events, but is simple and effective. 

Had more field data been available for continuous evaporation, it would of course 

have been preferable not to have this limitation in place. 

The population size was set at 40 individuals and elitism and prescaling, as covered 

in Chapter 3, were used to improve convergence. 

In Figures, 4.1 and 4.2, show the water content profiles within the soil at days I, 60, 

90 and 120. The point depicted in the centre of each diagram by a circle represents 

the chosen reference point of d = 65cm and e = 0.3. This, as the reader will recall, 

is the point ed from the chosen fitness function. 

87 

the generation of the next generation. The value of 0.001 for mutation was chosen 

after some experimentation. It was found that the 0.001 value resulted in better 

convergence than higher values of 0.1 and 0.01. 

Breaking away from the standard crossover and mutation approach, one concession 

was made in the generation of new individuals. The field surface data available for 

use in the simulation did not exceed 18 consecutive days of evaporation. Hence, 

an addition was made to the algorithm for crossover which, following the mutation 

process, scanned the newly formed string for a sequence of 19 consecutive D's and, 

if found, set the 19th zero to a one. This is certainly not the only way to ensure 

no more than 18 days of continuous evaporation events, but is simple and effective. 

Had more field data been available for continuous evaporation, it would of course 

have been preferable not to have this limitation in place. 

The population size was set at 40 individuals and elitism and prescaling, as covered 

in Chapter 3, were used to improve convergence. 

In Figures, 4.1 and 4.2, show the water content profiles within the soil at days I, 60, 

90 and 120. The point depicted in the centre of each diagram by a circle represents 

the chosen reference point of d = 65cm and e = 0.3. This, as the reader will recall, 

is the point ed from the chosen fitness function. 

87 





0.5 

8 

0.0 

0.00 

_.0...5 , 
8 \ , 

\ , 
\ , 

\ , 

-- .... ---- -------------.0 

Plot: Theta against z 

'-­--- -.--------- -- ....... -', 

\ 
\ 

\ 
\ 

(a) 

----0 , 
\ , . , 

\ 

\ , 

\ 
\ 

\ 
\ 
\ , , 

\ 

Day '90 

z 

130.00 

Day 1.2:0 

Final Soil Hoisture Profile 
SUM Fitness = 

6 .169~698895E.-01 

. \ , , , 

0.0 

0.00 Plot: Theta against z 

(b) 

, 
\ , 

\ , 
\ .".-"" \ _________ .. __ ,..J"'-

,/,// -'-

z 

130.00 

Figure 4.2: (a) Moisture Content Profile at day 90 (b) Moisture Content Profile at 

day 120 - One reference point 

89 



The irrigation cycle depicted in these illustrations has the following binary repre­

sentation: 

100011011011010001010000101010110001010100110100100110010100 

100110001000010110101000100010110101001001001001110000101001. 

It can be noted that the irrigation cycle arrived at by the genetic algorithm seeks 

to maintain sufficient moisture content at the upper levels of the soil to precisely 

maintain the moisture content at depth d. Also obvious from the results is the 

distinct diminishment of the soil water content below depth d. This dropping off 

of the moisture content within the soil below wilting point!, Be, represented by the 

horizontal dotted line on the diagrams, signifies that for a substantial period of time 

the end ofthe root zone does not receive any water. This is obviously not an accept­

able solution in a real world situation and an alternative fitness function must be 

established in order to overcome this limitation. As a proof of concept though, the 

genetic algorithm has proven a most effective means of finding an optimal irrigation 

schedule in this test case. By taking an average of 10 simulation runs, utilizing 

different random seeds to generate the genetic algorithm initial populations, Fig­

ure 4.3 has been generated to show convergence of the genetic algorithm and graphs 

the minimum, average and maximum fitness values at each generation. 

1 Wilting point is defined as the moisture content value below which it is impossible for a plant 

to extract water from the soil. 
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It is observed that the genetic algorithm converges strongly within 60 generations. 

The wide variation seen in the fluctuating minimum values is explained by the 

sensitivity of the system to minor changes. A finer granularity in the enforcement 

of infiltration and evaporation events would reduce this sensitivity. 

In line with the comment made above regarding the moisture content drop off below 

depth d a new fitness function was developed. This new fitness function is the 

weighted sum of relative differences at specified depths within the soil. The expected 

outcome of this new fitness function is that an appropriate volume of water will be 

maintained throughout the entire root zone. 

This new fitness function can be expressed as: 

Figures 4.4 and 4.5 display the water content profiles resulting from the computer 

simulation at days 1, 60, 90 and 120 as before with the weighted sum reference 

positions show by circles. These reference points are given in Table 4.1. 

The choice of these particular values for the reference points correlates directly with 

the sink term of Molz and Remson [21J. 
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depth (cm) e 

15 0.46375 

45 0.39125 

75 0.31875 

105 0.24625 

Table 4.1: Fitness function reference points. 
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As can be seen from the diagrams, the water content profile maintained by the 

genetic algorithm is now more finely attuned to the requirements of the plant root. 

Although a sharp decline in the moisture content below ee past the deepest reference 

point in the soil is obvious, as with the last optimisation, this could be solved by 

the addition of another reference point at the end of the root zone. 

The binary representation of this irrigation cycle is: 

111011010001100001001111000000011101001010010010110001000101 

110000110000000011101000101001100100011010011010100011001101. 

When examining both irrigation schedules arrived at by the genetic algorithm it is 

apparent that while there are periods where day on day off switching occurs, these 

patterns tend to be infrequent. Rather, it appears as though the genetic algorithm 

has learned to perform extended drying periods as would be expected in a realistic 

problem. 

Specified drying (or wetting) periods for a crop during its growth may be accom­

plished by appropriate modifications to the genetic algorithm operators ensuring 

viable individuals (irrigation schedules) are generated. The convergence of the fit­

ness function selected in this second demonstration was, upon examination, found 

to be similar to that in Figure 4.3. 
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4.6 Summary 

In this chapter research was conducted into the application of genetic algorithms to 

the learning of an irrigation schedule with the aim of maintaining moisture content 

around desired values at given depths. The simulation of the water flow in the soil 

was one dimensional with water extraction due to a single mature plant root. In 

the next chapter we examine the application of evolutionary algorithms to the op­

timal control problem arising from semi-discretisation of a linear parabolic tracking 

problem with boundary control. 
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Chapter 5 

Optimal boundary control of a 

tracking problem using 

evolutionary algorithms 

5 .1 Introduction 

Intelligent control systems, that is systems that self-organise, learn and adapt their 

control laws or control rules in response to changes in the environment reside in 

the now well established area of research known as intelligent system research. Two 

problems present themselves in relation to this approach. These are: 

• How do you, for systems that are not precisely described, in a systematic and 

logical manner, describe the systems and compute control of the evolution? 
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• How do you optimise the modelling and control of the system? 

The forms of the optimisation may be many, ranging from simple optimisation of 

some objective criteria such as time or fuel consumption to optimisation of the 

mathematical model itself. Problems may be multi-objective in nature possessing 

nonlinear constraints or even with constraints not lying within the search space of 

classical optimal control. The use of evolutionary algorithms to mimic the natural 

learning of humans through experience is well established in terms of both theory 

and application. See [3J and [8J for a survey of the evolutionary algorithm and its 

application to real world problems involving optimisation. 

The motivation for this investigation resides in the work performed in the previous 

chapter.. The mathematical modelling of water flow in cropped soils is complex and 

the solution to optimisation problems in this area by classical numerical methods 

is difficult due to the requirement of maintaining numerical accuracy at the upper 

boundary where infiltration and evapotranspiration occur when switching between 

irrigation on and irrigation off. 

The aim of the research in this chapter is to investigate the feasibility of applying 

an evolutionary algorithm directly, to solve the boundary control problem posed by 

applying irrigation at the surface boundary and using the Richards' flow equation 

to model moisture content. This is not a trivial exercise as the problem posed is a 

nonlinear optimal control problem with differential and boundary constraints. 
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We begin by undertaking a study of a similar problem, namely, a linear parabolic 

tracking problem with boundary control for a distributed process whose governing 

state equation is a parabolic partial differential equation, cf Huntley [17]. It is 

simple in structure but has inherent computational difficulties that make it a good 

test example for our investigation. 

In Huntley [17] a comparative study was made of five methods for calculating the 

optimal control function for a linear parabolic tracking problem with boundary 

control. Both open-loop methods based upon the variational equations and closed­

loop methods, cf [5], via the Ricatti equation, were analysed for computational 

efficiency, accuracy, ease of programming and robustness. 

This boundary control problem whose underlying state equations were parabolic par­

tial differential equations, was first converted to a classical optimal control problem 

with ordinary differential state constraints through a method of semi-discretisation 

with respect to the state variable (the method of lines), cf [17]. In recent years it 

has been the practice to tackle these problems using fully discretised difference or 

finite element methods. Yet it has been suggested [1], that semi-discrete approaches 

obtained with current methods of solving stiff systems of ordinary differential equa­

tions might have advantages. 

Semi-discretisation is employed to perform conversion of the partial differential equa­

tions to classical optimal control formulation. Problems arise with attempting so­

lution of this new formulation such as the discretisation in time when solving the 

optimal control for a piecewise constant control strategy and the 'curse of dimension-
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ality' when such discretisation is made in state variables. The next section discusses 

the formulation of the classical optimal control problem and the issues surrounding 

its solution, particularly those relating to the use of evolutionary algorithms. 

In the next section we briefly discuss some of the current research issues relating 

to finding the solution of the classical optimal control problem using evolutionary 

algorithms. 

5.2 Classical optimal control 

The optimal control problem can be stated as: 

Minimise the performance index 

(5.1 ) 

subject to the differential constraint 

dx 
d~ = f(x, u, t), t ~ ~ 

(5.2) 

where the state vector x E Rn and the control vector u E Rm and where x(to), 
~ ~ ~ 

the initial state, is given. The term ¢(?;(td, t I ) usually represents a cost or penalty 

associated with the state at the final time t l . 

This system may be subject to: 

• combined state and control. 

• equality and inequality constraints. 
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• integral constraints . 

• interior point constraints. 

Methods traditionally utilised for solving these types of problems require some form 

of conversion of the control function '!.:f into an approximately equivalent represen­

tation that consists of a weighted combination/amalgamation of simpler functions, 

referred to as the collocation method. This changes the problem into one of discov­

ering the optimal weights. Examples of these types of solutions are gradient descent 

methods and differential dynamic programming. As an alternative, the continuous 

control functions can be partitioned on [to, tIl into N intervals and the control func­

tions replaced with simpler ones such as piecewise control for each Ui in the intervals 

[ti' ti+1l· Thus the objective becomes one of finding approximations in these local 

regions to optimise the performance integral. 

The application of an evolutionary algorithm to such a problem requires the de­

velopment of a representation of a control strategy over [to, tIl which can be easily 

manipulated by the operators that imitate and augment the genetic operators of 

crossover and mutation. One way in which this can be accomplished is, if the con­

trol is considered as a piece-wise constant approximation locally, to regard each real 

encoded string in the population as an array of N m-vectors. If the approximation 

is piece-wise linear each real encoded string may be considered as double m-vectors. 

If the time partition nodes are considered as variable, being able to move, then 

another row can be included to define the N-time partitions that can 'move' as the 
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evolutionary learning progresses. To ensure that the operators of the evolutionary 

algorithm, such as the arithmetic operator, produce strings that belong within the 

control space, it must be assumed that the control space itself is convex (i.e. the 

action of the operators is closed). 

The formation of a uniform grid and choice of a an admissable control '!!:i(t) in [ti, ti+l] 

can be performed in order for a fixed time problem to form an initial population 

that will not converge prematurely. It is only necessary to test !:1; at the node points 

for feasibility since there is linearity of the controls and since the control space is 

assumed convex. 

Mutation or perturbation of the string can be done at the local or global level. If 

ti is perturbed then it must be restricted to [ti-I> ti+l] and a check made to ensure 

that the new string is admissable. If it is found not to be then it must be suitably 

modified. If all strings have the same number of time partitions, then it is clear that 

a typical arithmetic crossover will, by convexity of the control space, guarantee a 

valid string in the population. 

One-point crossover is more difficult to implement, cf [24]. 

As with any form of optimisation, constraints are a major problem. In optimal 

control this is particularly apparent where it may not be possible to explicitly test 

many constraints. Unlike simple optimisation problems where it is always possible to 

test if a given state satisfies all constraints before the objective function is evaluated, 

in optimal control problems this is not the case. Our aim is to solve a functional 
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optimisation problem for which the solution belongs in control function space and 

not in the traditional state space. The differential constraints must be integrated to 

enable testing of interior state constraints and any equality or inequality constraints 

involving state variables. 

Apart from the semi-discretisation process which has already been mentioned, this 

formulation brings with it the 'curse of dimensionality' when the discretisation is 

made in the time domain. Achieving good convergence through the use of evolu-

tionary algorithms requires new and enhanced genetic operators to deal with large 

numbers of real-valued parameters which have to be optimised in the presence of 

equality and inequality constraints cf [24] and [25]. Indeed, in [24] it was shown that, 

when compared to classical nonlinear constrained optimisation methods, direct ap-

plication of evolutionary algorithms to determine accurate solutions of constrained 

continuous optimal control problems as defined was possible. 

5.3 Boundary control of a distributed process 

In this section an evolutionary algorithm is applied to the boundary control problem 

from [17]. The problem is now described. We first consider the state equation 

ax a2x 
at ay2' 0 < t < T, 0 < y < L, 

subject to boundary conditions 

x(y,O) = 0, 
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OX 
oy 
ox 
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p(X - u) 

o 

on y = 0 ) o < t ::; T. 

on y= L 

where p is a constant heat-transfer coefficient, x is temperature, y is depth and t is 

time. 

The process of semi-discretisation may is accomplished by replacing 

02X X'+l - 2x· + X'-l 
• oy2 by its central difference approximation t h2t t of local accuracy 

O(h2), using !::ly = L/(N - 1), 

• [~xl by (Xl - x_1)/2h, and [~xl by (XN+l - XN-l)/2h. 
Y y=o Y y=L 

Defining q; = [xo,"', XNJT, the equations are discretised to 

:E = Aq; + Bu, (5.3) 

where u is the scalar boundary control function, A is constant tri-diagonal matrix, 

and B is the vector [2p/h 0"", O]T. 

The cost function to be minimised is defined by 

1 rL 1 rT 

J = '2 Jo [x(y, T) - 7](Y, t)]2 dy + '2 Jo ru2(t) dt = J1 + J2, 

where 7](y, T) = 0.2 for 0 < y < L. This is the target tracking function specified 

at all depths y for the dependent variable x. The first term Jl defines a quadratic 

performance measure of the error from the target profile, and the second term J2 

defines a measure of cost in control. 
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Even though the definition of this problem is simple in nature, the solution of it is 

complex. This is due to the stability of the numerical approaches being a complicated 

function of p, r, the number of state steps (in y), and the number of time points (in 

t). A full discussion of the stability or instability of the numerical methods used to 

solve this problem can be found in [17] 

In [17] the mathematical analysis of finding an open loop control of this system 

using necessary conditions arising from the application of the Minimum Principle is 

given. We note at this point that the technique used to do this derives necessary 

conditions for a solution of the problem and not sufficiency conditions. 

For this set of parameters, described in [17], L = 1, T = 0.4, r = 0.00001, and 

p = 1.0, Table 5.1 presents a summary of the results of the two methods (Method 

3 and Method 4) of the paper along with the results of the finite element and 

evolutionary algorithm approaches, for NT = 100 time steps. 

In Method 3 the coupled state and costate equations derived from the Minimum 

Principle were appropriately numerically integrated with 100 time steps in the inter­

val [0, T]. In Method 4, the coupled system of equations was integrated analytically. 

The control graphs obtained for these two methods are shown in Figure 5.1. 

The finite element solution was arrived at by direct application to the boundary 

control of the partial differential equation using rectangular elements and bilinear 

shape functions with N = 10 and NT = 100. The explicit and open loop solution 

is presented in the table and provides another comparison base. Convergence of the 
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Station Method 3 Method 4 FE EA 

y 

0.0 0.2000 0.1952 0.20003 0.19957 

0.1 0.2000 0.2011 0.19995 0.20068 

0.2 0.2002 0.1993 0.20010 0.19960 

0.3 0.1998 0.2006 0.19999 0.19914 

0.4 0.1997 0.1993 0.19964 0.19978 

0.5 0.2001 0.2002 0.20003 0.20082 

0.6 0.2006 0.2005 0.20054 0.20129 

0.7 0.2005 0.2004 0.20053 0.20082 

0.8 0.2000 0.2002 0.20001 0.19974 

0.9 0.1994 0.1992 0.19938 0.19871 

1.0 0.1992 0.1994 0.19911 0.19829 

Table 5.1: Comparison of output results - r = 0.00001 

finite element solution to the target profile is superb. 

5.4 Solution by evolutionary algorithm 

In the fourth colum:q. of the table can be seen the results obtained by the solution 

of the control problem using an evolutionary algorithm. A Runge-Kutta algorithm 

was used to integrate the state equations (5.3) with the time interval discretised 
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Figure 5.1: Control graphs for Method 3 and Method 4 in [17] 

into NT = 100 fixed time steps. The Runge-Kutta algorithm requires that the 

control be evaluated at the midpoint of each time subinterval [ti' t i +1]. A possible 

solution string for the desired optimising control was constructed as an array'!!: of 

20 1 constant real elements Ui. 

By choosing the u~ randomly in the interval [-1,2] the initial population, P(O) = 

{,!!:k : k = 1"", M}, where M is the number of strings, was determined. The 

values of the global upper and lower bounds, Urn = 2 and Ue = -1 respectively, 

were chosen from the control function graphs given in [17]. These bounds, defining 

a convex region in the control space, can clearly be observed in Figure 5.1. 
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The mechanisms used in determining successive generations of strings in the evolu-

tionary algorithm were as follows: 

• A full replacement policy from generation to generation. 

• Tournament selection with size nT = 4. 

• Arithmetic crossover with probability Pc. 

• Elitism with 4 copies of the best string passed to the next generation. 

The mutation operator, occurring with a probability of Pm, approximated small 

random Gaussian perturbations OUk and is expressed as: 

12 

if (mutate) Uk = Uk + OUk where OUk = a(I: rk - 6)/6, 
k=l 

where a was a small constant, characteristically around 0.1, and rk was a random 

number in the interval [0,1]. The new Uk was capped to lie within the desired 

interval to ensure that the perturbation resulted in practical values as follows: 

In order to measure the fitness of each string, the following fitness function was 

created: 
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where A(Jk ), k = 1,2 was either a Trapezoidal approximation or Simpson's approx-

imation to the integrals Jk . Pk , k = 1,2,3 are the penalty terms which are defined 

below: 

200 

P2 = (Xl 2.: (Uk+l - Uk?, 

k=l 

200 

P3 (X2 2.: (Uk - Uk-I)(Uk+l - Uk) (if) (Uk - Uk-I)(Uk+1 - Uk) < O. 
k=2 

It is assumed that the constants {3k, k = 1,2 are positive. The minimum of {3IA(JI)+ 

{32A(J2), it should be noted, is the same as the minimum of A(JI) + A(J2). This 

is due to the fact that both integrals are positive. These constants were set at 

{31 = {32 = 1 for the given set of parameters. 

Due to the necessary requirements of the minimum principle requiring that the final 

value of the control be zero at the final time T, the first penalty term was introduced 

to make this so. The second penalty term exists in order to provide assurance that 

the sum of the squares of the differences in the piecewise constant approximation 

to the control remains small. The third penalty term seeks to remove any spiking 

in the graph due to gradient changes under mutation. Without these latter two 

penalty functions the solution string arrived at by the evolutionary algorithm tends 

towards bang-bang control, cf [5]. For the given set of parameters, (Xk, k = 1,2 were 

chosen as small constants with values typically around 10-4 to 10-6 , while (X3 was 

set to 1.0. 

The results shown in column 4 of Table 5.1 were obtained by the evolutionary 
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algorithm around generation 236400. The algorithm was run for the first 50000 

generations with a population of 100 and a high mutation probability of Pm = 1.0. 

For the remainder of the generations Pm was set to 0.7. Throughout the entire run 

the crossover probability, Pc, was set at 0.6 and ex at 0.06. To integrate J1 and J2 a 

Trapezoidal approximation was used. 

Figure 5.2 shows the control graphs obtained by both the finite element (FE) and 

evolutionary algorithm (EA) methods where the horizontal axis is time t, the vertical 

axis is the control u(t) and the FE result is represented by the solid line. 
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Figure 5.2: Control graphs for methods FE and EA - r = 0.00001 

5.5 Comparison 

It can be seen in Table 5.1 that, when compared with the two methods used for 

the semi-discretised system reported in [17J, the finite element and evolutionary 

algorithm methods yield comparable results. There is a singularity at y = 0 which 
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was caused by the required jump in solution to 7](0, T) = 0.2 and produced a spike 

in the initial values of the control for the finite element method but did not appear 

to be a problem with the evolutionary algorithm method. Figure 5.2 shows that the 

control obtained via the evolutionary algorithm converges quite well to the solution 

obtained directly from the finite element method. This is particularly true over the 

later half of the time interval. The inability of the solution to settle over the first 

half of the time interval may be the result of the singularity at y = O. Both of the 

control solutions demonstrate an oscillation at the end of the time interval that is 

not apparent in the results obtained in [17]. In that paper it was reported that none 

of the methods they employed yielded convergence to y(T) = 0 as was required by 

the minimum principle and that this was due to the computational nature of the 

methods. It was to overcome this difficulty specifically that the penalty term PI was 

introduced. 

Experimentation revealed that, although the evolutionary algorithm required a re­

evaluation of penalty parameters in the algorithm, it appeared to be very robust. 

Using Simpson's rule for integration rather that the Trapezoidal rule appears to not 

cause oscillatory problems that were encountered in[17]. The evolutionary algorithm 

was critically dependent upon a high mutation level and small perturbation factor 

for reasonable convergence to the desired level of 0.2. By increasing the value of 

the constant /31 it W&s found that the algorithm converged faster and with better 

accuracy to the desired state. 

The mutation operator used by Michalewicz [19] was trialed, but was found to pro-
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duce results closer in form to 'bang-bang' control. It was also found that use of the 

Trapezoidal approximation to evaluate the two integrals produced better conver­

gence than use of the Simpson approximation. By increasing the number of depth 

steps N and increasing the number of time discretisations NT better convergence 

could be obtained but at the cost of computational time and complexity. 

The definition of the evolutionary algorithm was very basic, consisting of the stan­

dard operators of arithmetic crossover and mutation. Special operators used to 

enhance convergence, such as quadratic operators and others investigated in [25] 

and [30], were not implemented in this study. Use was not made of a second level 

structure in each string to incorporate variation in the time node points, however, 

the implementation of this device may have assisted in gaining a better understand­

ing of the oscillatory variation found in the solution at the end of the time interval. 

To do this, the learning in the areas where the control solution is changing rapidly 

could have been enhanced. The major problem with this approach to finding a 

solution is in determining appropriate penalty factors as is illustrated in the next 

section. 

5.6 Simulation with parameter r = 0.0005 

In this section the problem is solved with the parameters unchanged from the pre­

vious case with the exception of r = 0.0005. Table 5.2 below shows the comparison 

for this new result set. As before, N = 10 and NT = 100. 
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Station Method 3 Method 4 FE EA 

y 

0.0 0.1985 0.1937 0.19981 0.20002 

0.1 0.1979 0.1966 0.20026 0.20009 

0.2 0.2034 0.2016 0.19831 0.20006 

0.3 0.2064 0.2070 0.19996 0.19998 

0.4 0.2045 0.2039 0.20273 0.19956 

0.5 0.1984 0.1990 0.20368 0.19989 

0.6 0.1901 0.1902 0.20209 0.20050 

0.7 0.1816 0.1817 0.19877 0.20061 

0.8 0.1743 0.1748 0.19509 0.200l0 

0.9 0.1695 0.1693 0.19231 0.19942 

1.0 0.1678 0.1684 0.19129 0.19911 

Table 5.2: Comparison of output results - r = 0.0005 

Utilising the same set of parameters as defined in the previous test case, the evolu­

tionary algorithm was found to be slow to converge. The control it produced was 

saturated at both the upper and lower bounds for two non-empty subintervals of 

the integration. 

As a result of this, the following changes were made in order to improve performance: 

• Constant (31 was increased to 100. 
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• Constant (32 was set to 1. 

• CYk = 10-6
, k = 1,2. 

• The control bounds were increased such that u~ E [-2,4]. 

• In the case of there being too large a jump in control another penalty function 

was added: 

With these changes, the evolutionary algorithm was found to converge to the tabu­

lated values within 143000 generations. These are excellent results when compared 

to those of the other methods. 

Figure 5.3 displays the control graphs obtained by the Finite Element and Evolu­

tionary Algorithm methods where the horizontal axis is time t, the vertical axis is 

the control u( t) and the Finite Element result is represented by the solid line. 

There exists a significant difference between the two control graphs on the second half 

of the time interval where the solution of evolutionary algorithm is quite oscillatory. 

One possible cause for this oscillation is that the approximation to the cost integral 

was not reduced by t.he algorithm to those values given in the first simulation where 

r = 0.00001. r was a factor in this integral and in this instance it is now a factor of 

50 times greater than before. 

115 

• Constant (32 was set to 1. 

• CYk = 10-6
, k = 1,2. 

• The control bounds were increased such that u~ E [-2,4]. 

• In the case of there being too large a jump in control another penalty function 

was added: 

With these changes, the evolutionary algorithm was found to converge to the tabu­

lated values within 143000 generations. These are excellent results when compared 

to those of the other methods. 

Figure 5.3 displays the control graphs obtained by the Finite Element and Evolu­

tionary Algorithm methods where the horizontal axis is time t, the vertical axis is 

the control u( t) and the Finite Element result is represented by the solid line. 

There exists a significant difference between the two control graphs on the second half 

of the time interval where the solution of evolutionary algorithm is quite oscillatory. 

One possible cause for this oscillation is that the approximation to the cost integral 

was not reduced by t.he algorithm to those values given in the first simulation where 

r = 0.00001. r was a factor in this integral and in this instance it is now a factor of 

50 times greater than before. 

115 



-4.0 

.. 
.. 

. -.- .... ................ ..... .. .. -.* ......... . 
..... . . 

. 00 

.. 
.... -.... -

-2.0 

Figure 5.3: Control graphs for methods FE and EA - r = 0.0005 

5.7 Constant target case r = 0.00001 revisited 

Our initial discussion concerned the case of a constant target function TJ = 0.2 using 

the parameters: L = 1, T = 0.4, r = 0.00001, and p = 1.0. 

As stated, the results were achieved at around generation 236400, with a population 

of 100, high mutation Pm = 1.0 for the first 50000 generations and then 0.7 thereafter, 

Pc = 0.6 and ex = 0.06, and were in reasonable agreement with those obtained by 

the finite element method, see Figure 5.2. 

As can be seen, the control obtained via the EA, does approximate well the solution 

obtained directly by the finite element method (the continuous line on the graph). 

The number of generations is unacceptably high and the EA depended critically on 

a high level of mutation and a small perturbation factor to enable tracking to the 

desired level of 0.2 to be effective. 
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In order to address these issues, let M( a) define the mutation given above, and take 

the new mutation operator to be: 

if (mutate) 

if (flip(0.33)) M(1.0); 

else 

if (flip(0.5)) M(O.l); 

else 

if (flip(0.5)) pd = gen/maxgen; 

else 

else pd = 0.995; 

pow_ «1 - pd) * (1 - pd)); 

fact (1 - power(Random(), pow_)); 

if (flip(0.5)) 

delta = fact * (lb - u_k); 

else 

delta = fact * (u - u_k); 

return (u_k + delta); 

If a control value Uk is mutated, then the basic mutation with a large factor a = 1, 

is implemented one third of the time, basic mutation with a small factor a = 0.1 

one third of the time, and a modification of Michalewicz's mutation [19], is applied 

the remainder of the time. The standard arithmetic crossover with constant a c and 

two parents generating two children was modified as follows: Given two parents '£1 
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Figure 5.4: Control graphs for methods FE and EA - r = 0.00001 revisited 

and '£2 selected by tournament a child £1 is then determined by random Oc E [0,1] 

from the equation 

With continued selection of parent pairs, the children are added to the next gener-

ation's population until it is complete. 

Applying these new operators with small mutation Pm = 0.01, the evolutionary algo-

rithm yielded the control graph given by the dotted line in Figure 5.4 within 100000 

generations. The results are a substantial improvement upon those obtained in [33]. 

Indeed the resultant control curve is very much as shown in 70000 generations. 
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5.8 Constant target case r = 0.001 

Returning to the constant target case TJ = 0.2, with the new operators and with small 

Pm = 0.01, the evolutionary algorithm converged quickly within 7000 generations 

to the control graph shown by the dotted line in Figure 5.5. The value of J1 + J2 

was 0.00021561 for the evolutionary algorithm and 0.0002143 for the finite element 

method. 
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Figure 5.5: Control graphs for methods FE and EA - constant case r = 0.001 

We now discuss results for two other cases discussed in [17]. 

5.9 Ramp case 

In this case the target function is given by 

{ 

O.4(y/L) 
TJ(Y, T) = 

0.2 
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o ~ y/L < 0.5, 

0.5 ~ y/L ~ 1.0, 



Station Method 3 Method 4 FE EA 

y 

0.0 0.2001 0.1953 0.2003 0.1991 

0.1 0.1990 0.2004 0.1993 0.1989 

0.2 0.1987 0.1980 0.1983 0.1992 

0.3 0.2020 0.2020 0.2016 0.2023 

0.4 0.2044 0.2040 0.2044 0.2046 

0.5 0.2040 0.2041 0.2042 0.2039 

0.6 0.2008 0.2009 0.2011 0.2006 

0.7 0.1962 0.1962 0.1963 0.1960 

0.8 0.1915 0.1918 0.1916 0.1914 

0.9 0.1882 0.1882 0.1882 0.1881 

1.0 0.1870 0.1874 0.1869 0.1869 

Table 5.3: Comparison of output results - constant case r = 0.001 

and the parameter r is maintained at the same value r = 0.001. This case is easier 

than the constant case as a non-zero target value at y = 0 is no longer demanded. In 

initialising the evolutionary algorithm and for the mutation operator, global bounds 

on the control were selected as Ue = -7 and Urn = 6. 

Results obtained for.a longer run of 300000 generations to obtain the control graph 

shown again by the dotted line in Figure 5.6. The approximation with the solution 

found by the finite element method is excellent. The value of J1 + J2 obtained 
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was 0.00028373 for the evolutionary algorithm and 0.0002732 for the finite element 

method. A value of J1 + J2 of 0.000285 was obtained by the evolutionary algorithm 

within 11000 generations. Table 5.4 shows a comparision of the results of the evo-
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Figure 5.6: Control graphs for methods FE and EA - ramp case 

lutionary algorithm and the finite element method with Method 3 of [17] which is a 

numerical integration of the state and costate partial differential equations arising 

as necessary conditions from the minimum principle for distributed systems. 

5.10 Triangle case 

The final case discussed by Huntley is that of a triangular target function with its 

peak at y / L = 0.2, defined by 

{ 

O.4(y/L) 
1](Y, T) = 

O.4(L - y)/ L 
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Station Ramp Method 3 FE EA 

y 

0.0 0.00 0.0011 0.0022 0.0028 

0.1 0.04 0.0368 0.0367 0.0349 

0.2 0.08 0.0846 0.0829 0.0857 

0.3 0.12 0.1317 0.1316 0.1324 

0.4 0.16 0.1658 0.1666 0.1656 

0.5 0.20 0.1853 0.1862 0.1848 

0.6 0.20 0.1939 0.1944 0.1935 

0.7 0.20 0.1958 0.1959 0.1957 

0.8 0.20 0.1947 0.1944 0.1947 

0.9 0.20 0.1929 0.1925 0.1931 

1.0 0.20 0.1922 0.1917 0.1924 

Table 5.4: Comparison of output results - ramp case 

In this case we take the parameter r = 0.0001 and the global bounds on the control 

are taken to be those in the ramp case. Noting that boundary control is applied 

at one end of the spatial dimension only, it is not obvious that this difficult target 

function might be achieved computationally. Results shown in Figure 5.7 obtained 

for a run of 300000 generations to obtain the control graph shown again by the 

dotted line in Figure 5.6. The approximation with the solution found by the finite 

element method is excellent. The value of J1 + J2 obtained was 0.000330l0 for the 
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Figure 5.7: Control graphs for methods FE and EA - triangle case 

evolutionary algorithm and 0.0002249 for the finite element method. 

These target values are consistent with the graphical results for the case depicted 

in [17J. However the graphs of the control for both the evolutionary algorithm and 

finite element are not in good agreement. Further they are in disagreement with 

an extra oscillation in control at the later end of the time interval as described in 

Figure 5 of [17J. 

5.11 Summary 

In this chapter we have shown that evolutionary algorithms can be applied to optimal 

control problems in distributed parameter systems under semi-discretisaion with a 

good measure of success provided care is taken in correctly defining the right blend 

of operators and parameters. 
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Station Triangle FE EA 

y 

0.0 0.00 -0.0009 0.0043 

0.1 0.04 0.0423 0.0276 

0.2 0.08 0.0701 0.0885 

0.3 0.12 0.1358 0.1438 

0.4 0.16 0.1763 0.1684 

0.5 0.20 0.1742 0.1626 

0.6 0.16 0.1450 0.1377 

0.7 0.12 0.1076 0.1066 

0.8 0.08 0.0748 0.0786 

0.9 0.04 0.0532 0.0598 

1.0 0.00 0.0458 0.0533 

Table 5.5: Comparison of output results - triangle case 

Future research is now considered feasible by progressing this application of evolu­

tionary algorithms to solve the boundary control for irrigation scheduling using the 

Richards' flow equation, implementing semi-discretisation to convert the problem 

into a classical optimal control problem with ordinary differential constraints, [17]. 

From this position one can then apply the growing number of techniques in the appli­

cation of evolutionary learning to the resulting constrained optimal control problem 

and compare the results obtained with those obtained by the genetic algorithm 
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in [32] and the results in [18]. It needs to be noted that the results obtained in [32] 

yield a bang-bang control at the surface boundary whereas the results obtained in 

this chapter yield a boundary control which is continuous. 

The solution obtained for this boundary control problem constitutes an open-loop 

solution to the problem, that is, the solution is a function of time only and does 

not include any feedback on the current value of the state variable. The closed loop 

solution for the boundary control problem poses more computational difficulties as 

reported in Huntley. Yet it should be possible to find a closed loop solution by 

developing a fuzzy controller using evolutionary algorithms in a manner similar to 

that described in [30]. This is a topic of future research beyond the scope of this 

thesis. 
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Chapter 6 

Conclusion 

This thesis was an initial investigation of how modern artificial intelligent tech­

niques, namely the genetic algorithm/evolutionary algorithm could be applied to 

find irrigation strategies for a cropped soil. 

The exercise was to find such strategies to keep the moisture content in the soil 

layers at sufficient levels to enable nutrient uptake by the plant. 

We first introduced concepts in soil physics in order to give an understanding of 

the nature of soil composition and the movement of water within a cropped soil. 

Previous work undertaken by Janz in his Masters Thesis, was then summarised to 

show how classical solutions to the Richards' flow equation could be obtained for 

an irrigation schedule, defining periods of time when the water infiltration at the 

surface boundary was assumed to be off or assumed to be on. 

A brief introduction to genetic and evolutionary algorithms defining their algorith-
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mic structure then followed in Chapter 3. 

Our research commenced with the novel application of a genetic algorithm to ob­

tain a schedule of irrigation for control of the moisture content to be maintained 

at specific levels at certain depths within the soil to maximise "nutrient uptake" 

by the root. Essentially this is a classic tracking problem in optimal control. In 

this application an individual string of the genetic algorithm, was a binary string 

composed of O's, representing a day without irrigation, and 1 's, representing 1 day 

with irrigation. This string represented a possible irrigation schedule. It was of 

bang-bang control type with typical control off or control on. We showed that it 

was possible to learn a realistic irrigation schedule for a problem posed with realistic 

field data. 

A problem with applying this technique still lay in using the classical solution of the 

flow equations as undertaken by Janz, and continually making appropriate correction 

to ensure accuracy in the transition from irrigation on to irrigation off, when using 

the Crank-Nicolson method. 

Encouraged by the new substantial research by Stephen Smith on the feasible appli­

cation of evolutionary algorithms to solve difficult non-linear optimal control prob­

lems, we sought to investigate this problem further by examining how an evolution­

ary algorithm could be used to solve the tracking problem that was solved by the 

genetic algorithm in Chapter 4. 

We turned our attention to the boundary control of a distributed process which 
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is inherently the same as the one posed but with a simplified structure compared 

with the parameter complexity in the Richards' flow equation. It still however was 

a difficult problem to solve with inherent stability problems as can be ascertained 

from a reading of Huntley's paper, [17]. 

Our objective here was to establish if such a problem could be solved by an evolution­

ary algorithm approach with reasonably simple operators and structural definition 

of the individuals in the population. 

A continuous open loop control applied at the boundary, was found by evolution­

ary learning and compared with two methods from Huntley's paper and the more 

popular finite element method. The results obtained verify that the evolutionary 

learning approach to find the boundary control compares favourably with the clas­

sical techniques commonly used to solve this type of problem, in all cases including 

the constant, ramp and triangular target final states. 

We believe that the research presented in this thesis shows that it is now possible to 

continue an investigation into the evolutionary learning of an open loop, boundary 

control solution to find an irrigation schedule which will keep the moisture content 

in the soil at specified levels in the vicinity of the plant-root structure, using a 

full mathematical model of Richards' equation with realistic field parameters and 

data. Such an application would need to account for the non-practical nature of a 

continuous control, as derived from the evolutionary algorithm, when considering its 

application to an irrigation scheduling problem. Indeed the aim should be to arrive 

at some form of discretisation for the control as was present in the genetic algorithm 

128 

is inherently the same as the one posed but with a simplified structure compared 

with the parameter complexity in the Richards' flow equation. It still however was 

a difficult problem to solve with inherent stability problems as can be ascertained 

from a reading of Huntley's paper, [17]. 

Our objective here was to establish if such a problem could be solved by an evolution­

ary algorithm approach with reasonably simple operators and structural definition 

of the individuals in the population. 

A continuous open loop control applied at the boundary, was found by evolution­

ary learning and compared with two methods from Huntley's paper and the more 

popular finite element method. The results obtained verify that the evolutionary 

learning approach to find the boundary control compares favourably with the clas­

sical techniques commonly used to solve this type of problem, in all cases including 

the constant, ramp and triangular target final states. 

We believe that the research presented in this thesis shows that it is now possible to 

continue an investigation into the evolutionary learning of an open loop, boundary 

control solution to find an irrigation schedule which will keep the moisture content 

in the soil at specified levels in the vicinity of the plant-root structure, using a 

full mathematical model of Richards' equation with realistic field parameters and 

data. Such an application would need to account for the non-practical nature of a 

continuous control, as derived from the evolutionary algorithm, when considering its 

application to an irrigation scheduling problem. Indeed the aim should be to arrive 

at some form of discretisation for the control as was present in the genetic algorithm 

128 



control solution. 

129 

control solution. 

129 



Bibliography 

[1] Ames, W.F., Numerical Methods for Partial Differential Equations, Academic 

Press, New York, 1977. 

[2] Baeck, Th., Evolutionary Algorithms in Theory and Practice, Oxford University 

press, NY, 1996. 

[3] Baeck, Th. and Schwefel, H.P, Evolutionary Computation: An Overview, Pro­

ceedings ICEC'96, Nagoya, Japan, 20-29, May 1996. 

[4] Clapp, RB. and Hornberger, G.M., Empirical Equations for Some Soil Hy­

draulic Properties, Water Resources Research, Vol. 14, No.4, 601-604, 1978. 

[5] Dorf, RC., Modern Control Systems, Addison-Wesley 1986. 

[6] Feddes, RA., Bresler, E., and Neumann, S.P., Field Test of a Modified Numer­

ical Model for Water Uptake by Root Systems, Water Resources Research, Vol. 

10, No.6, 199-206, 1974. 

[7] Fogel, D.B, Evolutionary computation: Toward a New Philosphy of Machine 

Intelligence, IEEE Press, Piscataway, NJ, 1995. 

130 

Bibliography 

[1] Ames, W.F., Numerical Methods for Partial Differential Equations, Academic 

Press, New York, 1977. 

[2] Baeck, Th., Evolutionary Algorithms in Theory and Practice, Oxford University 

press, NY, 1996. 

[3] Baeck, Th. and Schwefel, H.P, Evolutionary Computation: An Overview, Pro­

ceedings ICEC'96, Nagoya, Japan, 20-29, May 1996. 

[4] Clapp, RB. and Hornberger, G.M., Empirical Equations for Some Soil Hy­

draulic Properties, Water Resources Research, Vol. 14, No.4, 601-604, 1978. 

[5] Dorf, RC., Modern Control Systems, Addison-Wesley 1986. 

[6] Feddes, RA., Bresler, E., and Neumann, S.P., Field Test of a Modified Numer­

ical Model for Water Uptake by Root Systems, Water Resources Research, Vol. 

10, No.6, 199-206, 1974. 

[7] Fogel, D.B, Evolutionary computation: Toward a New Philosphy of Machine 

Intelligence, IEEE Press, Piscataway, NJ, 1995. 

130 



[8] Fogel, D.B. and A. Ghozeil, A., Using Fitness Distributions to Design more 

Efficient Evolutionary Computations, Proceedings of 1996 IEEE International 

Conference on Evolutionary Computation, Nagoya, Japan, 11-19, 1996. 

[9] Gardner, W.R., Relation of Root Distribution to Water Uptake and Availabil­

ity, Agronomy Journal, Vol. 56, 41-45, 1964. 

[10] Gardner, W.R., Hillel, D., Benyamini,Y., Post irrigation movement of soil wa­

ter: I. Redistribution, Water Resources Res. 6 (3), 851-861; II. Simultaneous 

redistribution and evaporation, Water Resources Res. 6 (4), 1148-1153. 1970. 

[11] Goldberg, D., Genetic Algorithms in Search, Optimisation and Machine Learn­

ing, Addison-Wesley, 1989. 

[12] Hayhoe, H.N., Analysis of a Diffusion Model for Plant Root Growth and an 

Application to Plant Soil Water Soil Uptake, Soil Sciences, Vol. 131, No.6, 

334-343, 1981. 

[13] Hayhoe, H.N. an De Jong, R., Comparison of Two Soil Water Models for Soy­

beans, Canadian Agricultural Engineering, Vol. 30, No 1, 5-11, 1988. 

[14] Hillel, D., Soil and water: physical principles and processes, New York: Aca­

demic Press, 1971. 

[15] Hogarth, W.L. 'and Watson, K.K., Water Infiltration in Unsaturated Soils: a 

Review of Some Recent Studies, Trends in soil Science, Vol. 1, 277-284, 1991. 

131 

[8] Fogel, D.B. and A. Ghozeil, A., Using Fitness Distributions to Design more 

Efficient Evolutionary Computations, Proceedings of 1996 IEEE International 

Conference on Evolutionary Computation, Nagoya, Japan, 11-19, 1996. 

[9] Gardner, W.R., Relation of Root Distribution to Water Uptake and Availabil­

ity, Agronomy Journal, Vol. 56, 41-45, 1964. 

[10] Gardner, W.R., Hillel, D., Benyamini,Y., Post irrigation movement of soil wa­

ter: I. Redistribution, Water Resources Res. 6 (3), 851-861; II. Simultaneous 

redistribution and evaporation, Water Resources Res. 6 (4), 1148-1153. 1970. 

[11] Goldberg, D., Genetic Algorithms in Search, Optimisation and Machine Learn­

ing, Addison-Wesley, 1989. 

[12] Hayhoe, H.N., Analysis of a Diffusion Model for Plant Root Growth and an 

Application to Plant Soil Water Soil Uptake, Soil Sciences, Vol. 131, No.6, 

334-343, 1981. 

[13] Hayhoe, H.N. an De Jong, R., Comparison of Two Soil Water Models for Soy­

beans, Canadian Agricultural Engineering, Vol. 30, No 1, 5-11, 1988. 

[14] Hillel, D., Soil and water: physical principles and processes, New York: Aca­

demic Press, 1971. 

[15] Hogarth, W.L. 'and Watson, K.K., Water Infiltration in Unsaturated Soils: a 

Review of Some Recent Studies, Trends in soil Science, Vol. 1, 277-284, 1991. 

131 



[16] Holland, J.H., Adaptation in natural and artificial systems. Ann Arbor: The 

University of Michigan Press. 1975. 

[17] Huntley, E., Optimal boundary control of a tracking problem for a parabolic 

distributed parameter system, International Journal of Control, Vol. 42, No.2, 

411-431, 1985. 

[18] Janz, T.C., Mathematical modelling of water flow in cropped soils, Masters in 

Applied Science, Central Queensland University, 1992. 

[19] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, 

2nd Edition, Springer Verlag, 1994. 

[20] Michalewicz, Z., Evolutionary Computation: Practical Issues, Proceedings 

ICEC'96, Nagoya, Japan, 30-39, May 1996. 

[21] Molz, F.J. and Remson, 1., Extraction Term Models of Soil Moisture Use by 

Transpiring Plants, Water Resources Research Vol. 6, No.5, 1346-1356, 1970. 

[22] Nimah, M.N. and Hanks, R.J., Model for Estimating Soil Water, Plant and 

Atmospheric Interrelations: 1. Description and Sensitivity, Proc. Soil Soc. of 

America, Vol. 37, 522-527, 1973. 

[23] Olsson, K.A, and Rose, C.W., Patterns of Withdrawal Beneath an Irrigated 

Peach Orchard on a Red-Brown Earth. Irrigation Science, Vol. 9, 89-104, 1988. 

132 

[16] Holland, J.H., Adaptation in natural and artificial systems. Ann Arbor: The 

University of Michigan Press. 1975. 

[17] Huntley, E., Optimal boundary control of a tracking problem for a parabolic 

distributed parameter system, International Journal of Control, Vol. 42, No.2, 

411-431, 1985. 

[18] Janz, T.C., Mathematical modelling of water flow in cropped soils, Masters in 

Applied Science, Central Queensland University, 1992. 

[19] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, 

2nd Edition, Springer Verlag, 1994. 

[20] Michalewicz, Z., Evolutionary Computation: Practical Issues, Proceedings 

ICEC'96, Nagoya, Japan, 30-39, May 1996. 

[21] Molz, F.J. and Remson, 1., Extraction Term Models of Soil Moisture Use by 

Transpiring Plants, Water Resources Research Vol. 6, No.5, 1346-1356, 1970. 

[22] Nimah, M.N. and Hanks, R.J., Model for Estimating Soil Water, Plant and 

Atmospheric Interrelations: 1. Description and Sensitivity, Proc. Soil Soc. of 

America, Vol. 37, 522-527, 1973. 

[23] Olsson, K.A, and Rose, C.W., Patterns of Withdrawal Beneath an Irrigated 

Peach Orchard on a Red-Brown Earth. Irrigation Science, Vol. 9, 89-104, 1988. 

132 



[24J Smith, S.F. and Stonier, RJ., Applying evolutionary programming to con­

strained continuous optimal control problems, Proceedings of IEEE Interna­

tional Conference on Evolutionary Computing, Nagoya Japan, 285-290, 1996. 

[25J Smith, S.F. and Stonier, RJ., Evolutionary Operators for Constrained Contin­

uous Optimal Control and High Dimensional Constrained Optimisation Prob­

lems, Australian Journal of Intelligent Information Processing Systems, Vol. 4, 

No. 3/4, 240-248, 1997. 

[26J Smith, S.F., The simplex method and evolutionary algorithms, Proceedings of 

the International Conference on Evolutionary Computing, Anchorage, Alaska, 

799-804, 1998. 

[27J Stonier, RJ., Control Problems in Irrigation Management, Proceedings of the 

Second International Workshop on Control Theory applied to Renewable Re­

source Management, Lecture Notes in Biomathematics, Springer Verlag, Vol. 

72, 195-206, 1987. 

[28J Stonier, RJ. and Janz T.C., Modelling Water Flow in Cropped Soils: Simulat­

ing the Irrigation Cycle, Proceedings of the International Congress on Modelling 

and Simulation, Perth, WA Vol. 3, 931-936, 1993. 

[29J Stonier, RJ. and Janz T.C., Modelling Water Flow in Cropped Soils: Water 

Uptake by Plant Roots, Environment International Vol. 21, No.1, 705-709, 

1995. 

133 

[24J Smith, S.F. and Stonier, RJ., Applying evolutionary programming to con­

strained continuous optimal control problems, Proceedings of IEEE Interna­

tional Conference on Evolutionary Computing, Nagoya Japan, 285-290, 1996. 

[25J Smith, S.F. and Stonier, RJ., Evolutionary Operators for Constrained Contin­

uous Optimal Control and High Dimensional Constrained Optimisation Prob­

lems, Australian Journal of Intelligent Information Processing Systems, Vol. 4, 

No. 3/4, 240-248, 1997. 

[26J Smith, S.F., The simplex method and evolutionary algorithms, Proceedings of 

the International Conference on Evolutionary Computing, Anchorage, Alaska, 

799-804, 1998. 

[27J Stonier, RJ., Control Problems in Irrigation Management, Proceedings of the 

Second International Workshop on Control Theory applied to Renewable Re­

source Management, Lecture Notes in Biomathematics, Springer Verlag, Vol. 

72, 195-206, 1987. 

[28J Stonier, RJ. and Janz T.C., Modelling Water Flow in Cropped Soils: Simulat­

ing the Irrigation Cycle, Proceedings of the International Congress on Modelling 

and Simulation, Perth, WA Vol. 3, 931-936, 1993. 

[29J Stonier, RJ. and Janz T.C., Modelling Water Flow in Cropped Soils: Water 

Uptake by Plant Roots, Environment International Vol. 21, No.1, 705-709, 

1995. 

133 



[30] Stonier, RJ., Stacey, A., Mohammadian, M. and Smith, S.F., Applications 

of evolutionary learning in fuzzy logic and optimal control, Computational In­

telligence for Modelling , Control and Automation, Evolutionary Computation, 

and Fuzzy Logic for Intelligent Control, Knowledge Acquisition and Information 

Retrieval, M. Mohammadian (Ed), lOS Press, 76-85, 1999. 

[31] Stonier, RJ. and Sturgess, D.K, Genetic learning of the irrigation cycle for 

water flow in cropped soils, Proceedings of the First Asian-Pacific Conference 

on Evolutionary Algorithms and Learning (SEAL'96), KAIST, Taejon, Korea, 

201-208, November 9-12th, 1996. 

[32] Stonier, RJ. and Sturgess, D.K, Genetic learning of the irrigation cycle for 

water flow in cropped soils, Lecture Notes in Artificial Intelligence, Xin Yao, 

Jong-Hwan Kim & Takeshi Furuhashi (Eds), Springer Verlag, Vol. 1285,89-96, 

1997. 

[33] Stonier, RJ., Sturgess, D.K, Smith, S.F. and Drumm, M.J., Optimal boundary 

control of a tracking problem using evolutionary algorithms, International Con­

ference on Computational Intelligence for Modelling, Control and Automation, 

ISBN 0858898470, M. Mohammadian (Ed), Las Vegas, 204-214, 2001. 

[34] Visser, W.C., Progress in the knowledge about the effect of soil moisture content 

on plant production, Inst. Land Water Management, Wageningen, Netherlands, 

Tech. Bull. 45. 1966. 

134 

[30] Stonier, RJ., Stacey, A., Mohammadian, M. and Smith, S.F., Applications 

of evolutionary learning in fuzzy logic and optimal control, Computational In­

telligence for Modelling , Control and Automation, Evolutionary Computation, 

and Fuzzy Logic for Intelligent Control, Knowledge Acquisition and Information 

Retrieval, M. Mohammadian (Ed), lOS Press, 76-85, 1999. 

[31] Stonier, RJ. and Sturgess, D.K, Genetic learning of the irrigation cycle for 

water flow in cropped soils, Proceedings of the First Asian-Pacific Conference 

on Evolutionary Algorithms and Learning (SEAL'96), KAIST, Taejon, Korea, 

201-208, November 9-12th, 1996. 

[32] Stonier, RJ. and Sturgess, D.K, Genetic learning of the irrigation cycle for 

water flow in cropped soils, Lecture Notes in Artificial Intelligence, Xin Yao, 

Jong-Hwan Kim & Takeshi Furuhashi (Eds), Springer Verlag, Vol. 1285,89-96, 

1997. 

[33] Stonier, RJ., Sturgess, D.K, Smith, S.F. and Drumm, M.J., Optimal boundary 

control of a tracking problem using evolutionary algorithms, International Con­

ference on Computational Intelligence for Modelling, Control and Automation, 

ISBN 0858898470, M. Mohammadian (Ed), Las Vegas, 204-214, 2001. 

[34] Visser, W.C., Progress in the knowledge about the effect of soil moisture content 

on plant production, Inst. Land Water Management, Wageningen, Netherlands, 

Tech. Bull. 45. 1966. 

134 


	01front.pdf
	20070420162339_00001.tif
	20070420162339_00002.tif
	20070420162339_00003.tif
	20070420162339_00004.tif
	20070420162339_00005.tif
	20070420162339_00006.tif
	20070420162339_00007.tif
	20070420162339_00008.tif
	20070420162339_00009.tif
	20070420162339_00010.tif
	20070420162339_00011.tif
	20070420162339_00012.tif
	20070420162339_00013.tif
	20070420162339_00014.tif

	chap-1
	20070420162500_00001.tif
	20070420162500_00002.tif

	chap-2
	20070420162543_00001.tif
	20070420162543_00002.tif
	20070420162543_00003.tif
	20070420162543_00004.tif
	20070420162543_00005.tif
	20070420162543_00006.tif
	20070420162543_00007.tif
	20070420162543_00008.tif
	20070420162543_00009.tif
	20070420162543_00010.tif
	20070420162543_00011.tif
	20070420162543_00012.tif
	20070420162543_00013.tif
	20070420162543_00014.tif
	20070420162543_00015.tif
	20070420162543_00016.tif
	20070420162543_00017.tif
	20070420162543_00018.tif
	20070420162543_00019.tif
	20070420162543_00020.tif
	20070420162543_00021.tif
	20070420162543_00022.tif
	20070420162543_00023.tif
	20070420162543_00024.tif
	20070420162543_00025.tif
	20070420162543_00026.tif
	20070420162543_00027.tif
	20070420162543_00028.tif
	20070420162543_00029.tif
	20070420162543_00030.tif
	20070420162543_00031.tif
	20070420162543_00032.tif
	20070420162543_00033.tif
	20070420162543_00034.tif
	20070420162543_00035.tif
	20070420162543_00036.tif
	20070420162543_00037.tif
	20070420162543_00038.tif
	20070420162543_00039.tif
	20070420162543_00040.tif

	chap-3
	20070420163459_00001.tif
	20070420163459_00002.tif
	20070420163459_00003.tif
	20070420163459_00004.tif
	20070420163459_00005.tif
	20070420163459_00006.tif
	20070420163459_00007.tif
	20070420163459_00008.tif
	20070420163459_00009.tif
	20070420163459_00010.tif
	20070420163459_00011.tif
	20070420163459_00012.tif
	20070420163459_00013.tif
	20070420163459_00014.tif
	20070420163459_00015.tif
	20070420163459_00016.tif
	20070420163459_00017.tif
	20070420163459_00018.tif
	20070420163459_00019.tif
	20070420163459_00020.tif
	20070420163459_00021.tif
	20070420163459_00022.tif
	20070420163459_00023.tif

	chap-4
	20070420162844_00001.tif
	20070420162844_00002.tif
	20070420162844_00003.tif
	20070420162844_00004.tif
	20070420162844_00005.tif
	20070420162844_00006.tif
	20070420162844_00007.tif
	20070420162844_00008.tif
	20070420162844_00009.tif
	20070420162844_00010.tif
	20070420162844_00011.tif
	20070420162844_00012.tif
	20070420162844_00013.tif
	20070420162844_00014.tif
	20070420162844_00015.tif
	20070420162844_00016.tif
	20070420162844_00017.tif
	20070420162844_00018.tif
	20070420162844_00019.tif

	chap-5
	20070420163058_00001.tif
	20070420163058_00002.tif
	20070420163058_00003.tif
	20070420163058_00004.tif
	20070420163058_00005.tif
	20070420163058_00006.tif
	20070420163058_00007.tif
	20070420163058_00008.tif
	20070420163058_00009.tif
	20070420163058_00010.tif
	20070420163058_00011.tif
	20070420163058_00012.tif
	20070420163058_00013.tif
	20070420163058_00014.tif
	20070420163058_00015.tif
	20070420163058_00016.tif
	20070420163058_00017.tif
	20070420163058_00018.tif
	20070420163058_00019.tif
	20070420163058_00020.tif
	20070420163058_00021.tif
	20070420163058_00022.tif
	20070420163058_00023.tif
	20070420163058_00024.tif
	20070420163058_00025.tif
	20070420163058_00026.tif
	20070420163058_00027.tif
	20070420163058_00028.tif

	chap-6
	20070420163240_00001.tif
	20070420163240_00002.tif
	20070420163240_00003.tif
	20070420163240_00004.tif
	20070420163240_00005.tif
	20070420163240_00006.tif
	20070420163240_00007.tif
	20070420163240_00008.tif
	20070420163240_00009.tif




