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ABSTRACT 

Instrument criteria, in tenns of wavelength range, wavelength resolution, signal 

to noise ratio, sensitivity and illumination/detector were defined for the use of 

near infrared (NIR) spectroscopy in the assessment of soluble solids content 

(SSC) in intact fruit in an in-line system. Techniques for predictive model 

generation and transfer of predictive models across a number of systems were 

assessed in tenns of root mean squared error of prediction (RMSEP). 

A comparative study of components making up an NIR spectroscopic system 

established that for the application of assessment of SSC in intact fruit, quartz 

halogen light sources could provide adequate low cost radiant energy and prisms 

could provide cheap, more efficient dispersion and higher throughput than flat 

diffraction gratings. Three wavelength dispersion elements (single equilateral 

prism, two prisms in series and a ruled diffraction grating) were separately 

assessed. 

Calibration perfonnance for sucrose in a water-cellulose matrix was significantly 

degraded by a signal to noise ratio (SNR) <5000: 1, and when wavelength 

resolution was decreased beyond a FWHM of 16 nm (at 912 nm). Therefore 

either photo diode arrays or binned charge-coupled devices could be used as 

photodetecting elements if SNR is maintained above this level. 

A body-transmittance optical path was preferred over reflectance optics to 

eliminate the 'noise' from specularly reflected light. However, physicaly 

contacting the fruit with an optical barrier to separate illuminated and detected 
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reglOns constrained process rates. Therefore, an illumination/detector 

configuration was designed to allow rapid, non-contact spectral measurements to 

be made. This configuration supported comparable calibration statistics for 

assessment of SSC of intact melons as a 'contact' configuration (e.g. root mean 

squared error of cross validation (RMSECV) of 0.740 and 0.65 0 Brix non-contact 

and contact, respectively). 

Predictive models developed using partial least squares (PLS) regression were 

significantly more accurate than those developed using multiple linear 

regression, principal component regression or parallel regression. Wavelength 

selection techniques were examined. Predictive PLS models based on 

knowledge of spectrally important wavelengths (for SSC, 630 to 1040 nm) were 

superior to models based on other wavelength selection techniques. Assessment 

of data pre-treatment techniques showed that, in most cases, mean centred and 

autoscaled absorbance data provided the best results. Nine methods for transfer 

of calibration between instruments were compared against the performance of a 

simple model updating (MU) technique. While MU gave consistently better 

predictions on slave instruments, this approach requires maintenance of 

calibrations on every instrument. Of the established standardisation methods, 

direct standardisation of the wavelet coefficients was the most efficient. 

These design criteria were used in the construction of a prototype fruit sorting 

system, with performance assessed over a period of two years. The hardware 

components of this system proved adequately robust to endure the rigours of a 

pack-house environment and the accuracy of the sorting achieved an RMSEP of 
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0.7° Brix (standard deviation and range of sse in sample set, 1.5° and 8.5°, 

respectively). 
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Introduction 

1. Introduction 

Near infrared (NIR) spectroscopic technology has the potential for non-invasive 

analysis of the internal attributes of fruit for such parameters as sweetness, dry 

matter, acidity and other consumer-important characteristics. Used in an in-line 

setting it has the capability to offer fruit and vegetables of guaranteed internal 

quality thereby adding value to the product. For the first time retailers will be 

able to offer consumers fruit and/or vegetables of a guaranteed quality. When 

financial resources are limited and the quality of natural product is uncertain a 

consumer will most often choose the less healthy but quality-assured 

confectionary. The long term benefits to the individual and the nation are 

obvious if the healthy choice is made. 

In response to consumer demand for high quality product and consistency, major 

fruit and vegetable wholesalers and retailers are increasingly subjecting 

producers to more stringent on-farm quality assurance programs. The sheer 

volume of product passing through large packing sheds each season has 

necessitated the employment of advanced technologies to increase the throughput 

rates of current sorting for 'external' features such as shape, weight, density 

colour and blemishes. Other technologies can be applied for the non-invasive 

assessment of internal attributes. Invasive methods of inspection for the 

determination of soluble solids content (SSe) are widely used, however non­

invasive techniques do not damage saleable fruit and are preferred. Non-invasive 

methods include the use of ultrasonics, nuclear magnetic resonance (NMR) 
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Introduction 

imaging and NIR spectroscopy. NIR spectroscopy uses optical techniques and is 

adaptable to automated sorting systems. It is the focus of this thesis. 

The NIR portion of the spectrum is rather ill-defined but, for the purposes of this 

work, it will be sufficient to consider the region 780 to 2500 nm 1. The NIR 

spectral region was, in the past, discarded as "too difficult to use" by traditional 

spectroscopists because of its heavily overlapping, broad spectral features2. The 

advent of high-perfonnance desktop computers has allowed the use of powerful 

chemometric algorithms to extract infonnation from these difficult to interpret 

spectra and the generation of predictive models. The fundamental elements of an 

NIR spectrometer are the same as any classical spectrometer, comprising a light 

source, collimating and focusing optics, a wavelength dispersing element, and a 

light detector3. The sample under analysis can be positioned either before or 

after the dispersing element, with the mode of operation being classified as post­

dispersive or pre-dispersive, respectively. Short wavelength near infrared (SW­

NIR) technology (700 - 1050 nm) can use silicon-based detector designs found 

in many low cost miniature spectrometers which have commercially proliferated 

since the mid-1990s. These technologies have found application in non-invasive 

sorting of large items such as fruit because of its inherent requirement of long 

path lengths due to low absorptivity in this spectral region. Long pathlengths 

means that data can be collected from deeply penetrating light or measurements 

made through thick samples thus making whole-fruit sse assessment possible. 

Extensive databases of the spectral responses of various compounds now exist 

(see, for example, the reviews ofPutzig et a1.4, Workman5 and Workman6). NIR 

technology is used in an ever increasing number of applications and industries. 
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For example, NIR spectroscopy is used to monitor oxygen levels in the blood 

stream non-invasively7. NIR spectroscopy is used extensively for process 

control and product authentication in the petrochemical and pharmaceutical 

industries. NIR spectroscopy is also applicable to the grading of fruit for internal 

attributes, for example, soluble solids content (SSC) or dry matter (DM) content 

in melon8, citrus9, pineapple lO, apples11and peaches 12. 

Mathematical data pretreatment of the spectral data and chemometric techniques 

are essential for the non-invasive, non-contact analysis of internal attributes (e.g. 

SSC) of fruit. These techniques provide an invaluable tool for the generation of 

reliable calibrations and allows the extraction of information related to issues 

such as the identification of noise sources. However, due to manufacturing 

tolerances of the many components of a spectrometric system, no two systems 

can be identical hence no two spectrometers will give identical spectra for the 

same sample. These differences are enough to cause directly transferred 

predictive models to fail. Commercial applications demand transferability of 

calibrations rather than costly individual calibration generation. In this 

application of grading fruit, the requirement is to transfer calibrations between 

packhouses. This necessitates the transference of calibrations generated on one 

system for use by another system using chemometric processes. This thesis 

makes an extensive study of the available techniques and after extended trials, 

proposes a new method with improved performance. 

Two Japanese companies (e.g. Fantec and Mitsui Mining Corporation) market 

NIR in-line sorting machines for use in packing sheds using full or partial 
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transmittance or reflectance modes of operation. However, due to their 

government subsidies and tariffs, their purchase price to an offshore client is 

prohibitive (> $300K per lane). 

Despite the commercial availability of a few small generic spectrometers, the 

initial aim of this project was to design a spectrometer optimised for the 

application of non-invasive sorting of fruit for SSC content in a packline setting. 

In late 1990s a large number of generic, high quality, economical post-dispersive 

spectrometers became commercially available. Economic considerations 

dictated a change of focus for this study to the assessment of the spectrometer 

designs in a number of areas which had been shown to be critical to the 

commercial success ofNIR technology in this application. 

After examining the underpinning technologies and recent case studies, the thesis 

focuses on several key areas, namely: 

• Comparisons of optical characteristics of spectrometer designs based on two 

dispersive elements in terms of resolution, linearity of output and range; 

• Investigation of the impact of the system signal to noise ratio (SNR) and 

resolution on the development of predictive models for this application; 

• Design of the illumination/detector systems suitable for a non-contacting 

system to rapidly sort fruit. (SSC distribution and light penetration are 

studied to optimise this design and a proposed illumination/detector 

configuration); 
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• Transferability of predictive models among a number of systems. Ten 

standardisation techniques are tested for efficacy with respect to the transfer 

of predictive models used in the assessment of sse in rockmelons. 

In all of these cases, the chapters consist of the author's publications in these 

areas. Finally, the conclusion reviews the success of the project and highlights 

possible future developments. 
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2. Underpinning Technologies 

2.1. Near Infrared Spectroscopy 

2.1.1. Theory of Spectroscopy and NIR Spectroscopy 

In 1800, Sir William Herschel l3 noted that when 'white' light was separated with 

a prism into component colours and made to fall on a thermometer, little 

temperature change occurred over the visible range. However, when the 

thermometer was moved to regions beyond the visible (red) position the 

temperature increased. It was obvious from his observation that energy existed 

in a previously unknown region, which he named "infrared" (IR)( ca. Latin, 

below). 

The NIR region is defined by International Union of Pure Applied Chemistry 

(IUP AC) as the region 780 to 2500 nm. The region 700 to 1100 nm is often 

referred to as the 'Herschel region' after its discoverer l . 

When a sample is illuminated by a white light source some of its continuous 

energy spectrum is absorbed by organic molecules causing deficiencies at 

discrete wavelengths of a measured spectrum. These measured deficiencies 

provide the identifying 'finger print' of the constituent molecule. In the NIR 

region the observed absorption bands are either overtones or combinations of 

overtones of fundamental bands originating in the mid infrared region (2500 to 

25000 nm), with a characteristically broad bandwidth (typically 30-40 nm 

FWHM)l4. The NIR region is generally defined as the spectral region 780 to 

2500 nml5 , while short-wave NIR (SW-NIR) refers to the region 700 to 1100 
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run. The regions encompassing both these, 700 to 2500 run, contains absorption 

bands corresponding to overtones and combinations of fundamental C-H, O-H 

and N-H vibrations due mainly to the large anharmonicity of the vibrations 

attributed to the hydrogen atoms. These overtones and combination bands are 

much weaker (typically by a factor 100) than their counterparts in the IR region. 

This fact allows the use of far greater path lengths within samples and hence the 

use of minimal or no sample preparation prior to spectra acquisition; a significant 

advantage for in-line analyses. 

A thorough introduction to the topic ofNIR spectroscopy is given by Eisberg and 

Resnick16 and Serway et a/.l7. A brief review follows: 

For an ideal diatomic harmonic oscillator rough calculation of the fundamental 

band wavelengths can be achieved using Hooke's law (F=-kfx) (F is force, kfis 

the force constant and x is the distance travelled) and Newton's law (F=ma) (F is 

force, m is the mass and a is acceleration) to derive the following classical 

equation for simple harmonic oscillation (Eqn. 2.1). 

Eqn 2.1 

where v is the vibrational frequency, kf is the classical force constant and f.I is the 

reduced mass of the two atoms. Around 1900 Planck showed, whilst studying 

black body radiation, that this type of model was only appropriate for ideal 

systems. The assumption of equi-partition of energy was invalid and at a 

quantum level the energy of a simple harmonic oscillator was discontinuous. 
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The discrete energy level steps can be described by the equation M = hv , 

where E is energy and h is Plancks constant. Solution of Schr6dinger's wave 

equation provides the quantum equivalent to the classical equation for a simple 

harmonic oscillator (Eqn 2.2) 

E=(v+O.5)hv (v = 0, 1,2, ... ) Eqn 2.2 

where v is the vibrational quantum number16 (Fig. 2.1). 

E \------------/v=9 

\------/ v=2 

Figure 2.1. Simple harmonic oscillator energy levels. E is energy, r is 
interatomic distance and v is the vibrational quantum number. 

In reality, however, molecules do not follow the laws of simple harmonic motion 

because other inter-nuclear forces also contribute to the energy distribution of the 

system. This interaction is best described by the equations for anharmonic 

oscillation 

Eqn 2.3 
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where Xe and Ye are the anhannonicity constants. Usually the third tenn in this 

equation is small and so is neglected. The energy levels are not equally sized 

steps but the difference between the energy levels decreases as the v increases 

(Fig. 2.2). The selection rule now becomes !J.v = ±1, ±2, ±3, .... Thosequantum 

numbers greater than 1 are the transitions which create the overtones. 

E 

v=10 v=11 

~------------~~ 
~----------~r~ 
~---------T"v=7 

\-------/ v=6 

~------~ v=5 

Figure 2.2. Anharmonic oscillator energy levels. E is energy, r is 
interatomic distance and v is the vibrational quantum number. 

Electromagnetic energy absorbed by molecules in the infrared region is 

dependent on the presence of an electric dipole moment across the vibrating 

bond. That is molecular vibration must cause a change in the dipole moment of 

the molecule to be IR active. In the NIR region, it is principally energy 

interaction from triatomic molecules or AX2 groups and AX3 groups that is 

observed. This interaction takes the fonn of either stretching or bending 

vibrations of interatomic distance or angle, respectively, among the bonded 

atoms. A combination of both these vibrational and rotational interactions 

frequently occurs in nature. The centre of mass of the molecule must remain 
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stationary so only complementary movements of atoms are those allowed. There 

are approximately (3n-6) degrees of vibrational freedom for poly-atomic 

molecules «3n-5) for linear molecules) where n is the number of atoms. 

The equation defining energy levels for vibrational energy levels (Evib) is 

EVib =liO{V+ ~) wherev= 1,2, ... Eqn 2.4 

where v is the vibrational quantum number and ro is the classical frequency of 

vibration, (J) related to the force constant k by k = Ilro2 where Il is the reduced 

mass of the two atoms. 

For rotational energy levels (Erot): 

li
2 

( 1) Erot = --I 1 + - where 1 = 1,2, ... 
2fcm 2 

Eqn 2.5 

where fern is the moment of inertia about the reduced mass and 1 is the rotational 

quantum number. 

Finally, for energy levels of combinational bands (Erot-vib) this relationship 

becomes 

Erot-vib = ~/(I +~) + (v + ~)Ii(J) 
2Icm 2 2 

Eqn 2.6 

= Erot + Evib Eqn 2.7 
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For example, for a water molecule (H20) which has three atoms in a non-linear 

arrangement there are three vibrational modes as shown in Fig. 2.3. 

Symmetrical Stretching 

(sym str) 

Dipole 

Asymmetrical Stretching 

(asym str) 

Symmetrical in-plane defonnation 

( scissoring) 

Figure 2.3. Vibrational modes of a water molecule. 

For a linear molecule like carbon dioxide (C02) which also has three atoms there 

are four vibrational modes ( + and - designate in and out of page 

respectively)(Fig.2.4). 
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~ •• ------~o~----~.~~~~ -.~-.--------~O~--------.----

Symmetrical Stretching 

(sym str.) 

(not IR active) 

; ! ; 
Symmetrical Bending 

(sym. bend) 

Asymmetrical Stretching 

(asym str.) 

+ + .• ~----~o~--------. 

Symmetrical Bending 

(sym. bend) 

Figure 2.4. Vibrational modes of a carbon dioxide molecule. 

Other vibrational modes existing but not observed in either water or carbon 

dioxide, are shown below (Fig. 2.5). 

+ + + 

Symmetrical Symmetrical Symmetrical 

in-plane deformation in-plane deformation in-plane deformation 

(def. rocking) (def. wagging) (def. twisting) 

Figure 2.5. Other vibrational modes. 
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Table 2.1. Position and assignment of absorption peaks in the spectral 
region 700 to 1100 nm by Williams and Norris18). 

Wavelength (nm) Absorbing Species Wavelength (nm) Absorbing Species 

834 H2O 978 Sugar 

838 Sugar 978 Cellulose 

860 Cellulose 986 H2O 

888 Sugar 994 H2O 

905 Cellulose 1005 Sugar 

913 Sugar 1010 H2O 

920 Cellulose 1030 H2O 

938 H2O 1030 Starch 

958 H2O 1058 Cellulose 

978 H2O 1099 H2O 

NIR absorption spectra of fruit are characterised by features related to O-H and 

C-H bonds. These bonds are affected by other atoms present in the molecules 

therefore slightly modifying the observed vibrational mode frequencies. Both 0-

Hand C-H bonds exhibit peaks at several wavelengths (Table 2.1). This causes 

severe overlapping and requires robust chemometric techniques to extract 

relevant information. For more specific band assignments see Appendix A. 

2.1.2. Theory of Scattering and Absorption 

Beer's Law describes the relationship between sample transmittance or 

reflectance absorption measurements and analyte concentration for a given 

pathlength. However, scattering effects due to particles of the sample matrix 
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often disrupt this relationship 19. A commonly used multivariate regression 

equation used for instrument calibration is 

Eqn 2.8 

where Y is percent concentration of absorber, Bo is intercept from regression, Bk 

is regression coefficient, k is index of wavelength used, Rj is its corresponding 

reflectance and E is random error. This is often shortened to (Eqn. 2.9) 

Y = Bk (-logR). Eqn 2.9 

NIR spectroscopic analyses can be based on diffuse reflectance or transmittance 

data. Diffuse reflectance is non directional radiation returning to the detector 

from a surface. Many physics textbooks describe diffuse reflectance in terms of 

surface roughness with reference to metallic materials. For non-metallic 

materials, some of the returned diffuse radiation originates at the rough surface 

and but some originates from within the sample20. NIR reflectance spectroscopy 

tries to discard the surface component and use only that originating from within 

the sample for analyses. 

A simple but widely adopted approach for describing the interaction of light with 

diffusing media has been formulated by Kubelka and Munk21 . This theory has 

been widely used to relate the total diffuse reflection from a material to the 

scattering and absorption coefficients of the sample. In two-flux (Kubelka 

Munk) theory, radiation is assumed to be composed of two oppositely directed 
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radiation fluxes through a continuous medium. In this formulation the remission 

function, F(R), for an ideal sample which is optically thick at the wavelength of 

choice and with a homogeneous distribution of absorbers and scatters 

throughout, is given by the Kubelka-Munk function, i.e. 

F(R) = (I-Roo? = K 
2Roo S 

Eqn 2.10 

where R represents the observed diffuse reflectance from the surface of the 

sample and K and S represent absorption and scattering coefficients, respectively. 

F(R) is proportional to the absorber concentration. 

The derivation of this equation usmg an exponential solution makes the 

following assumptions: 

1. The radiation flux (i andj) travels in two possible directions. 

2. The sample is illuminated with monochromatic radiation of intensity 10• 

3. The distribution of the scattered radiation is isotropic so that all regular 

(specular) reflection is ignored. 

4. The interacting particles in the sample layer (defined as the region between 

x = 0 and x = sample depth) are randomly distributed. 

5. The particles are very much smaller than the thickness of the sample layer. 

6. The sample layer is subject only to diffuse irradiation. 

7. Particles are much larger than the wavelength of irradiation (so that the 

scattering coefficient will be independent of wavelength - if only one 

wavelength is to be used then this requirement is not relevant). 
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8. The breadth of the macroscopic sample surface (in the yz plane) is great 

compared to the depth of the sample and the diameter of the beam of 

incident radiation (to discriminate against edge effects). 

x 

I t ~ i f 
\ \ 

x ,: x dx 

\ tJ \ 
\ \ 

-: 0 

Figure 2.6. An illustration of the diffusing medium of a thickness (x) divided 
into parallel layers infinitely thin (dx). Fluxes travelling in opposite 
directions, descending and ascending, represented by arrows i andj. 

Consider a layer of a thickness x (Fig. 2.6) of an infinite surface where 

boundaries are neglected and two fluxes i and j are travelling in opposite 

directions. Of the incident light flux, a fraction is absorbed (coefficient of 

absorption) and a fraction is scattered (coefficient of scattering). The model 

assumes that these coefficients do not vary in the layer studied. Balancing of the 

amount of flux transversing a infinitely thin layer (dx) to arrive at a position x 

leads to a system of linear differential equations for the coefficients. On 

trans versing the infinite layer the flux j diminishes by Kf absorption and Sf 

scattering by an amount equal to an increase in Si, the fraction on the i flux 

scattered outside the thickness of the layer dx. This reasoning also applies to flux 
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i. After paying attention to the orientation of the axis x the following system 

results (Eqn 2.11). 

di = (K + S)i- S j 
dx 

dj =Si-(K+S)j 
dx 

Eqn 2.11 

The mathematical solution to this system was presented in an article by Kubelka 

and Munk21 . After simplification of the general solution other measurements 

than the coefficients of absorption and scattering become apparent. The final 

solution presents itself then in the condensed form (Eqn 2.12) 

1- R . (<; - 3· coth(bSX)) 
R= g 

<; - R g + 3· coth(bSX) 

with <; = (S + K) and 3 = ~<;2 -1 
K 

Eqn 2.12 

where Rg is the reflectance of the supporting layer. It should be noted that Ra>, 

the reflectance limit, is achieved when Rg tends toward infinity. Study of the 

equation shows that Ra> depends on the interaction of K and S which leads to the 

relationship: 

Eqn 2.13 
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The function (1- Roo )2 is known as the Kubelka-Munk function22. It can be 
2Roo 

seen that the measured reflectance is a function of the ratio of two constants, K 

and S and not their absolute values. Quantitative analyses can be achieved using 

the following equation. 

K = lnl0.Q,c'E(A) 
S S 

Eqn 2.14 

where c is the analyte concentration, Q is the absorptivity and e(A.) is the 

pathlength. This equation describes the logarithmic proportionality existing 

between K and the analyte concentration. 

Although detailed investigations of the theory of diffuse reflectance spectrometry 

by many workers (e.g. Bemtsson23; Birth24; Gerken25; Maier26; Reynolds27; 

Tsai28; Tsuchikawa29) have been carried out since the turn of the century, only 

rarely are the treatments resulting from these studies useful in practice. A simple 

log (base 10) conversion of reflectance values is effective for many powdered 

samples being analysed by near infrared reflectance spectroscopy. 
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2.2. Hardware 

2.2.1. Spectrometer Designs. 

2.2.1.1. Fourier Transform (FT) 

Fourier Transfonn Infrared (FTIR) spectroscopy has been well described (see 

Chen30; Holland31 ; Iwata32; Lin33; Mattu34; Noda35; Petty36; Reshadat37) and 

only a brief review will be presented here. The theoretical basis of Fourier 

transfonn spectroscopy is that one light beam is split into two equal rays and 

their relative optical paths are changed. The resultant output of the 

recombination of the rays is then observed. For interference to occur a phase 

difference must exist between the two rays. A phase difference can be caused by 

lengthening the optical path distance, or by changing the refractive index and 

thereby slowing the velocity of the ray over the same distance38. Large 

laboratory based instruments have achieved wavelength resolutions3 of < 

0.00001 nm although for general use in the NIR region, > 2 nm resolution has 

been shown to be sufficient for use in the phannaceutical industry39 and is 

anticipated to be similar for other applications. All-fibre-optic Fourier transfonn 

spectrometers have been developed which use the dependency of refractive index 

on temperature to alter the optical path sufficiently that an interferogram, and 

hence the relevant data, can be acquired40. Unfortunately this type of instrument 

has a relatively slow scan rate due to the time required for temperature changes. 

A piezo-electrically adjusted Fabry-Perot interferometer (Etalon) has also been 

developed which has relatively rapid scan rate, allowing an interferogram to be 

scanned at 6 lJ.S intervals41 . Another Michelson type interferometric system 

which uses two prisms separated by a mechanical drive mechanism to adjust the 
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optical path distance has also been tested42. Optical path difference has also 

been manipulated by precisely stretching the optical fibre in an instrument43. 

Fourier transform spectroscopy can extract valuable information from all 

wavelengths simultaneously although some systems use monochromatic light 

input. There are several input systems currently in use, not the least of which is 

an acousto-optical tunable filter (AOTF) which has the capability of selecting a 

particular wavelength of interest or scanning the entire range available if 

required. AOTFs have very high scan rates, currently of the order of a few J,.lS 

and a high resolution (a few tenths of a nanometer)44, although throughput is 

poor (typically ~ 49%). AOTFs are discussed in more detail below. 

2.2.1.2. Diffraction Gratings 

Reflective diffraction gratings are frequently used in conventional spectrometers. 

The reflective surface of the grating is finely ruled (sometimes as often as 2400 

lines per millimetre) with a specially shaped instrument to create a blaze angle to 

optimise the efficiency of the grating in the wavelength range of interest3. When 

a light beam is incident on a blazed diffraction grating, a significant portion of 

the available energy can be concentrated in the desired diffractive order instead 

of being specularly reflected as would otherwise be the case. The efficiency of a 

diffraction grating is in most cases less than 80% at the optimised wavelength 

and efficiency drops off rapidly away from this wavelength. The effective 

bandwidth of a diffraction grating is strictly limited by the choice of blaze angle 

and line frequency and is inversely proportional to the resolution capability. The 

theoretical resolution limit of a diffraction grating is dependent on the total 

number of diffracting lines. 
20 



Underpinning Technologies 
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Figure 2.7. Diagrammatical representation of a blazed diffraction grating 
with defining angles. 

For a typical grating 25 nun wide and 1200 lines per nun a resolution of 

approximately 3 x 10-2 nm is achievable. For a diffraction grating illuminated by 

a collimated beam of light of wavelength A., incident at an angle a to the grating 

normal and reflected at an angle jJ on the opposite side of the normal (see Fig. 

2.7), the grating equation is given by 

d(sina - sin~) = mA. Eqn 2.15 

where m is the order of diffraction and d is the periodic distance of the grating. 

If the grating has N lines, the intensity of diffracted waves, I(fJ), is given by 
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Eqn 2.16 

where 10 is the incident light intensity and R( fJ,jJ) defines the grating effi~iency. 

There are two main types of gratings: the classical ruled grating (described 

above) and the concave holographic grating. The holographic grating was 

developed to overcome imperfections inherent in mechanically ruled gratings by 

the creation of grooves on a photosensitive material using the interference pattern 

of two intersecting lasers. It is a hybrid device which both disperses and focuses 

; the result of which is a compromise in which neither is performed as well as 

would be with individual components. However, use of this technology has 

enabled the production of gratings with a 'flat-field' output suitable for use with 

flat semiconductor photo-detectors. They are also capable of close to uniform 

efficiencies over a much broader band width than the classical ruled grating. Use 

of this type of grating has the added benefit of reducing of the number of 

components required for a spectrometer design. A comparison of each type of 

grating is given in the Table 2.2. 

Gratings suffer from a phenomenon called 'overlapping orders', that is, where 

longer wavelengths from one order overlap shorter wavelengths of the next 

highest order. This necessitates the use of order sorting filters to restrict the 

effective bandwidth of the instrument. Since prismatic wavelength dispersion is 

not a result of wavefront interference patterns, prisms do not suffer this 

phenomenon. 
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Table 2.2. Comparison of Ruled and Holographic Gratings (adapted from 
Haya(45) 

Property 

Efficiency 

Ghosts 

Scattered light 

Size 

Classically Ruled Gratings 

60-99% (at blaze) 

Approximately 10-5 of line 

Holographic Gratings 

At maximum 35-99%. 

Efficiency curve ·can be made 

flatter than ruled gratings to 

cover wider spectral domain. In 

blazed holographic gratings, 

efficiency curve is identical to 

ruled gratings. 

No ghosts 

At best 10-5 to 10-6 at 5 A of 10-6 to 10-8 at 5 A of laser line in 

laser line in the visible the visible 

Generally limited to 200 mm x Up to 430 mm diameter in all 

200 mm for groove spacings of groove spacmgs. Much larger 

more than 600 glmm size, up to 1 m is possible 

Groove density Maximum of 3600 glmm; m Up to 6000 glmm. Stray light 

general, stray light increases dose not increase with groove 

drastically with groove density density 

Aberration Not possible Possible 

correction 

2.2.1.3. Prisms 

Although grating spectrographs achieve higher resolving powers, they are 

generally more wasteful of light because they produce many orders of diffracted 

rays. Alternatively, a typical prism has a theoretical resolution limit of 
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approximately 0.3 run (50 mm base, dnld:i = 4.7 x 10-S, at 750 run) and can be 

usefully employed when high resolution is not a significant factor. Rays of light 

corresponding to each wavelength component emerge mutually parallel after 

refraction by the prism and are viewed by a telescope focused for infinity3. 

When an incident beam (from an entrance slit) is focused through a prism, the 

emerging spectrum will focus in two dimensions in a manner similar to the exit 

beam focusing in the diffraction grating case. This will vertically intensify the 

available energy but reduce the resolution because the slit image can suffer slight 

aberrational blurring. 

refractive index, n 

g 

Figure 2.8. Dispersion of white light through an equilateral prism. 

When passing through a prism, light is deflected by an angle jJ according to its 

incident and exit angles, the angle of the prism, 8, and the refractive index, n, of 

the prism material (Fig. 2.8). If the incident and exit angles are equal, the light 

travels parallel to the base of the prism and jJ defines the angle of minimum 

deviation. Under this condition, the angular dispersion, djJIdA-, is independent of 
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the prism dimensions and is a function of the prism angle and the dispersion, 

dn/d2, through 

d~ 
d')., 

2sin{E/2) dn 

~1-n2 sin2{E/2) d')., 

The resolving power, ')J /).')., is given by 

')., dn 
-=g­
/).')., dA, 

where g is the base width of the prism. 

1.02 

Eqn 2.17 

Eqn 2.18 
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Figure 2.9. Transmission efficiency and refractive index of SF18 glass (10 
mm thickness) as a function of wavelength in the visible (VIS) and NIR 
region. 

Dispersion of a prism can be described by the wavelength-dependent difference 

in the refractive index for the prismatic material. For SF18 glass, a plot of 

refractive index versus wavelength is given in Figure 2.9 from data derived from 
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characteristics of the glass (Sumita Optical Glass, Inc., Urawa, Saitama, Japan). 

A quadratic curve of the form 

n(A.) = 1.6824828 - 5.0414119/ A. + 10422.619 / A. 2 (Iv in nm) Eqn 2.19 

describes this relationship. The dispersion equation follows a trivial 

differentiation function yielding a weakly varying, linear function of wavelength 

in the NIR region. 

2.2.1.4. Acousto-Optical Tunable Filter (AOTF) 

An ATOF is an all-solid-state, electronic dispersive device which is based on the 

interaction of light and ultrasound44. When an electric radio frequency (RF) 

signal is applied to a piezoelectric layer, attached to an anisotropic crystal, 

(typically paratellurite (Te02)), a diffracting grating is created46. The acoustical 

wave produced in the crystal together with the spatial parameters of the crystal 

create a standing wave which defines the parameters of the diffraction grating. 

The Bragg equation (Eqn 2.20) describes the relationship between the 

wavelength and to the acoustic frequency which is dependent on the RF signal. 

Their aperture is typically - 4 x 4 mm. It is this standing wave which acts as a 

diffraction grating to the incident light and so separates the incident light into a 

non-deviating polychromatic beam and two diverted oppositely polarised 

monochromatic beams of the wavelength which interacts with the spacing of the 

standing wave. 

mA = 2dSin9 Eqn 2.20 
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where d is the period of the standing wave in the crystal, m is the order of 

diffraction and e is the incident angle of the input radiation. 

When polychromatic, collimated light is incident on the AOTF it is split into 

two, orthogonally polarised beams fulfilling the requirements of the Bragg 

equation and another beam of the remainder of the light. AOTFs have an 

extremely fast response time (~ 2Jls), high diffraction efficiency (typically> 

90%), high resolution (0.08 nm at 253.4 nm) and a wide tuning range (> 253 to 

2500 nm)47. The most significant disadvantages of AOTF are its low throughput 

of light (typically < 4%, (Brimrose Corporation of America, 2000) and high 

sensitivity to temperature variation. 

2.2.2. Light Source 

Tungsten when heated to 2900 K (the normal operating temperature for quartz 

tungsten halogen (QTH) bulbs) has a peak emission at approximately 1000 nm, 

which coincides closely with the peak efficiency of a silicon (Si) based detector 

at approximately 950 nm3, 48 (Fig. 2.10). The life of a QTH lamp is dependent 

on its operating temperature, as is the spectral distribution of the output. Output 

is generally specified by QTH bulb manufacturers to be within 2% until failure, 

if operated at recommended voltage. To maximise the efficiency of a tungsten 

bulb, in terms of power and heat dissipation, as much as possible of the available 

radiant energy needs to be collected and focused to a convenient location. 

Parabolic reflectors are commonly employed with the filament positioned at the 

parabola focal point to generate a collimated beam of light (see for example, a 
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design reported by Musselman49 which uses two parabolic reflectors). The finite 

extent of the filament (typically 4 mm) limits the effectiveness of collimation. 

The Nernst glower is an alternative light source which is used in IR 

spectroscopy. This source has an electrode constructed from refractory material 

which is resistively heated to emit radiation from the visible to IR region (0.5 

-30 j..lm), although the visible/near infrared content is very low. Continuous and 

pulsed arc lamps are another source of radiant energy. Both are discharge 

sources but the pulsed arc generally has higher output in the ultra-violet (UV) 

region than the continuous arc. Optical designs can be more efficient using this 

type of source because they have a very small source region (electrode gap, 

typically < 1 mm), making focussing more precise. Their spectral output is 

weighted towards the shorter wavelengths «500 nm) because of the extremely 

high operating temperatures compared to that ofQTH lamps (typically> 5500°C 

and 2900°C, respectively). However, the output in the NIR region is comparable 

to the output of QTH lamps of the same power rating. Their elevated operating 

temperature makes them difficult to use in terms of heat management and their 

inherent arc noise and additional driver electronic noise can contribute additional 

noise to the system unless care is taken to avoid it. Because the cost of using a 

discharge source is very much higher than a QTH system and can have 

difficulties (electronic noise and heat) attached to it, a QTH is generally 

preferred, except in applications requiring high intensity visible light. 
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Figure 2.10. Blackbody curve at 2900°C, typical silicon detector response 
and diffraction grating efficiency curve (flat, ruled, gold coated, blazed for 
750 nm, 1200 grooves per mm (Edmunds Scientific Co». Normalised 
detector response is based on the convolution of grating, light out and 
detector response. 

2.2.3. Detectors: 

Low cost spectrometric designs employ silicon based detectors, as either linear 

photodiode arrays (PDA)(e.g. Zeiss MMS1, Carl Zeiss, Jena, Germany) or linear 

charge-coupled devices (CCD)(Ocean Optics S1000, Dunedin, Florida,USA.). 

Generally PDAs have a deep-well electron storage capacity ~ 100 times higher 

than that of CCDs which gives the PDA devices a competitive edge in terms of 

signal to noise ratio at high signal levels. Signal to noise of CCDs can be 

enhanced using a variety of techniques described below. CCDs have a higher (-

100 to 1000 times) sensitivity than PDAs, although the sensitivity of PDAs can 

be enhanced by increasing the pixel size. 
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Area CCD arrays can be useful if spectral imaging is required. In such cases the 

area of the CCD can be optically segmented to provide spectral information from 

spatially separated sample areas. Area array CCDs have been used in designs 

described by Bellon et al. 12 and Martinsen and Schaare50 and has been 

incorporated in some products from Oriel (Oriel MS127i and FICS, Stratford, 

CT, USA.). 

Choice of semiconductor material used in the construction of a spectrometer is 

dependent on the spectral region under investigation, signal to noise ratio 

desired, sensitivity and desired cost. Sensitivity or detectivity (D) is often 

parameterised in terms of noise equivalent power (NEP). NEP is defined as the 

amount of signal required to generate a signal equal to the root-mean-square 

(rms) noise output from the detector; D is the reciprocal ofNEP. D* (normalised 

D) compensates for differing detecting areas and operational frequencies. D* 

and spectral bandwidth for some commonly used semiconductor materials are 

listed below (Table 2.3). 

Noise on photo-detection systems originates from two main sources, photon and 

electronic. The detection of light is a discrete process because the creation of 

photo-electrons results from the absorption of the photon. The detected signal is 

a function of the statistics of the quantum nature of the arriving light and thus has 

a Poisson distribution. Variation on this signal will have a root squared 

relationship to the mean number of arriving photons48, 51 (Eqn. 2.21). 
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Photon Noise(N Ph) = ~(2 ·11· E p • Ad ·Tt) 
=~Np 

Eqn 2.21 

where 11 = quantum efficiency, Ep = photon irradiance, Ad = pixel area, Ti = 

integration time and N p = mean number of arriving photons. Nph noise is given 

in electrons. 

Table 2.3. Bandwidth and normalised reciprocal NEP (D*) of some 
semiconductor materials and photodetector devices. 

Semi-conductor Material Wavelength D* 

Range (nm) (cm Hz°.SW1) 

Silicon (Si) PDA 300-1100 2xlO~ 

Silicon (Si) CCD 300-1100 4x10 12 

Indium-Gallium-Arsenide (InGaAs) 800-2000 lx1012 

Lead-Sulphide (PbS) 800-3800 4xlO11 

Mercury-Cadmium-Zinc-Telluride 2000-12000 3x107 

(HgCdZnTe) 

Electronic noise on semiconductor photodetectors like a silicon photodiode array 

(PDA) or charge-coupled devices (CCDs) comes from a number of sources. For 

example, readout noise and white noise arising from the driver/amplifier 

electronics, the shot noise of the biasing of the photodetector (dark current shot 

noise), and the shot noise due to the photo-current may be present. Whenever 

there is a flow of electrons shot noise can be expected. It is a statistically based 

noise due to the arrival rate of electrons and thus has a Poisson distribution and a 

variation in signal (in electrons) with a square root proportionality (Eqn. 2.22). 

Dark current shot noise sets the limit of detectability of the signal. If the photon-
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current is below the dark current shot noise level it will not be distinguished from 

it. 

Dark Current Noise (NDc ) = ~(J d . ~ • Ad ) Eqn 2.22 

where Jd = dark current generation density and q is electronic charge. The photo-

electron shot noise (NPE) has the same equation. NDC noise is calculated in 

electrons. 

The readout cycle creates its own noise in the form of reset and white noise 

which are defined (in terms of electrons) by 

~ Reset Noise (NRS) = V q-2- 0 Eqn 2.23 

and 

(
8.C

2 
·I:!,./·Z 'k'T] White Readout Noise (NWR) = 0 2 0 

3·q ·G 
Eqn 2.24 

respectively, where k = Boltzmann's constant, Co = load capacitance, fl./ = 

amplifier bandwidth, G = amplifier voltage gain, Zo = amplifier first stage output 

impedance, T = absolute temperature and q = electronic charge. 

The total rm~ noise for a system is calculated by the following equation: 

Total Noise (NT) = ~(N De
2 + NWR2 + N PE

2 + N RS
2) Eqn 2.25 
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When the detector is blacked out and a measurement made, the resulting dark 

current contains all the noises except the photon noise due to the light signal and 

the photo-electron shot noise. Because photo-electron noise is equated to the 

square root of the photo-electron signal, if the average signal is 3600 counts the 

NPE due to the signal will be - 17 counts (assuming a typical CCD photo-electron 

to count conversion rate of 13 to 1 (Table 2.4)). If the typical dark current 

contribution is 1 count then the main source of noise in a non-dark measurement 

is shot noise due to the photo-current thus a larger signal will have a larger NpE 

value but a higher SNR ratio. PDAs have a deep well structure allowing them to 

accumulate much more signal than a single pixel of a CCD (typically 100 times 

greater), although binning and/or accumulation ofa number of readout cycles can 

compensate. Specifications for PDAs and CCDs given in Table 2.4 originate 

from Oriel Corporation's52 product information and can be used to develop 

estimates for typical SNRs for both PDAs and CCDs. For a typical CCD 

(ignoring NWR) operating near saturation (using data from the Table 2.4): 

Dark current = 13 e and at saturation = 2.5x 105 e, therefore 

SNR = 250000 ::::; 500 : 1 

~(250000 + 132 
) 

Eqn 2.26 

and for a typical PDA photodiode array (ignoring NWR) operating near saturation 

(using data from the Table 2.4): 

33 



Underpinning Technologies 

Table 2.4. Typical characteristics of some detectors used in commercial 
spectrometers (Oriel Corp.52). (Electronically summing groups of pixels is 
called binning.) 

PDA CCD (256 binned) 

Energy at 600nm = 3.3107e-1Y J at 650nm = 3.056e-l~ J 

Pixel Size in J.Lm 25 x 2500 27x27 

Detection Limit 3.3e-12 J cm-2 3.8e-15 J cm-2 

2.063e-15J/pixel 7.092e-18 J/binned pixels 

3800 electrons 13 electrons 

Dark Current O.le-12 A O.le-15 A 

<2 counts 1 count 

Saturation Exposure 107e-9 J cm-2 250e-12 J cm-2 

6.688e-11 J/pixel 4.666e-13 J/binned pixel 

125 x 106 e 250x 103 e 

810 x 103 e (binned) 

SIN 10000:1 900: 1 (binned) 

Electrons per count 1800 e l3e 

dark current = 3800e and the signal = 125 x 106e , therefore 

SNR = 125000000 = 10586: 1. 
~(125000000 + 38002

) 

Eqn 2.27 

SNR of CCDs can be enhanced by binning across pixels, although this strategy is 

implemented at the expense of resolution. SNR should be improved by a square 

root proportionality to the number of pixels binned, however, in some cases, the 

physical storage capacity of readout buffers reduces the actual improvement 

(evidenced below). Since the dimensions of CCDs are frequently many times 

smaller than PDAs (- 90 times in the given example) SNR can reach easily 
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acceptable levels. For example, a typical CCD might have a 1024 x 256 matrix 

of pixels, each 27 x 27 ~, so binning all 256 pixels vertically will give a 

theoretical SNR increase of 16 times and a new SNR estimate (using the above 

data) of 8000: 1. The discrepancy between the calculated value 'and that 

presented in Table 2.4 (SNR = 900: 1) is due to the manufacturers specified 

binned saturated exposure being - 9 times less than a simple summation of the 

individual pixels. With alternative readout processes the actual improvement in 

SNR may be enhanced. 

The readout time for CCDs and PDAs can be very short, < 4 )ls per pixel, 

dependent on the clock speed of the analogue to digital converter (ADC) used. 

The pixel reset function for most CCDs occurs as part of and during the readout 

cycle time unlike most PDAs which, frequently require a separate reset time. 

Therefore CCDs can potentially acquire data at a faster rate since dead-time is 

reduced (a useful facility when assessing rapidly moving fruit). PDAs offer 

higher signal precision (or SNR) than CCDs (unless binning or multiple reads are 

used) but CCDs offer higher sensitivity. Since CCDs generally have smaller 

pixel dimensions than the PDAs, the wavelength resolution available in CCDs is 

generally higher than PDAs for a given instrument size. When data acquisition 

rate is the major consideration, response times and responsivity of the CCDs 

make them superior to PDAs in low signal level conditions. Also, enhanced 

quantum efficiency, low read out noise, wide dynamic range and the flexible 

timing characteristics of CCDs make them prime candidates for low-light 

applications53. 
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The final detector response will represent a convolution of light source output, 

diffraction grating efficiency, glass transmittance and detector response. 

Interaction is inevitable between detector, light source and diffraction grating and 

thus these characteristics must be considered in the design process. 

2.3. Fruit Quality Components 

Angiosperm fruit consists of 'fertile', ie. seed bearing, leaves (sporophylls) fused 

to enclose and so protect the seed (creating a carpel). Several megasporophylls 

can be fused, parietally or centrally, to create a multi-chambered structure. In 

fleshy fruit (berry and hesperidium) the fruit remains fleshy at maturity. 

According to fruit type, different tissue growth is accentuated to form the edible 

component. For example, rockmelon fruit consists of the outer exocarp (skin), 

the outer mesocarp ( the non-edible flesh just below the skin), the inner mesocarp 

(the inner edible flesh close to the seed cavity) and a thin layer of endocarp. In 

citrus the exocarp and meso carp form the skin, with oil glands, and cells in the 

endocarp produce extensions Guice sacs) within the seed cavity. 

Taste is a subjective measurement reflecting a primary (sweet, sour, bitter) 

sensation overlain by an olfactory sensation (esters) and texture of the sample 

(e.g. crispness)S4. Since NIR spectroscopy is a secondary correlative 

measurement technique its accuracy depends on the accuracy of the primary 

measurement method. The use of subjective analyses presents difficulties in 

accuracy but this type of assessment is still possible. For example, visible and 
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near-infrared (VISINIR) spectroscopy was used by Kawamura et al.55 to 

generate calibration models (MLR) for rice taste evaluation of 61 short-grained 

rice samples. They found that the developed calibrations were not adequate to 

justify replacing sensory tests with the calibration model for evaluating rice taste 

however the results indicated that VISINIR technology could be used in 

classifying rice samples into broad qualitative groups, such as poor taste, better 

taste and best taste. 

Fruit eating quality is generally linked to soluble solids content (SSe) or sugar 

(sucrose) content, with organic acid content (or sugar/acid ratio) playing an 

important role in some fruit types (e.g. citrus, pineapple). NIR spectroscopy was 

first applied to the measurement of sse in melons by Dull et al. 56, operating in a 

reflectance mode. A standard error of prediction (SEP) of 1.6% for sliced fruit 

and 2.2% for intact fruit was reported. Subsequent reports of the use of NIR 

spectroscopy to assess the sse of intact melon fruit show a progressive decrease 

in the SEP, from 2.2% 57 and 1.9% 58 to 0.4% 59. This improvement reflects 

change in the instrumentation used, in the optical geometry (light-sample­

detector alignment) employed, and the use of improved chemometric techniques. 

NIRS technology is now in commercial use in Japan (e.g. Fantec, Mitsui), with a 

reported SEP of 0.5%. 

Fresh fruit samples have high water content (typically 70% w/w)60. The quality 

of spectral data is degraded by the presence of water due mainly to the effects of 

shifts and broadening of spectral peaks, even those not associated with OR 

groups. Temperature variation further exacerbates this situation by causing peak 
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shifts frequently linearly related to increasing values61 . The SW-NIR region has 

an advantage in this respect in that water peaks are localised to two main regions 

(centred on ~ 760 and 970 nm) leaving the remainder of this region available for 

analysis. 

NIR fingerprints of macro-constituents are commonly due to either O-H or C-H 

bonds (e.g. water, carbohydrates - sugar alcohols, sucrose, fructose and glucose). 

Warrington and Weston62 listed (see Table 2.5) some macro-constituents of fruit 

most of which have been shown to be quantifiable using NIR spectroscopy. 

Table 2.5. Typical concentration (% by dry weight) of some macro­
constituents of fruit. 

Component % by dry weight 

Water 80-88 

Carbohydrate 12-18 

Organic Acids 1.0-2.5 

Protein 0.11-1.2 

Lipid 0.07-0.9 

Minerals 0.45-0.74 

Absorption in the NIR spectral regIon IS extremely weak, therefore the 

identification of macro-constituents is the most common use of this technology. 

However, Aldridge63 detailed the use of an automated system for at-line analysis 

of sulphur residues in pork products by thin layer chromatography which had 

detection limit of 80 pg for sulphurmethaxine spotted on a plate. Also, using 

NIR spectroscopy and a partial least-squares algorithm, very good calibration 
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statistics were obtained by Schulz et al.64 for the prediction of gallic acid 

(concentration range = 0.01-0.2%), caffeine (0.3-5%), and theobromine (0.02-

0.4%) with standard deviation/standard error of cross-validation (StDev/SECV) 

ratios ranging from 2.00 to 6.27. These substances have been identified as those 

contributing to varying taste attributes of tea. Dry matter content of the tea 

leaves was also analysed very precisely (R2 = 0.94; StDev/SECV = 4.12) and it 

was possible to discriminate tea leaves of different age by principal component 

analysis. 

Texture also contributes to taste perception. Larnmertyn65, in a study to 

determine the potential of VISINIR spectroscopy as a non-destructive 

measurement technique for measuring quality characteristics of Jonagold apples 

developed good predictive models (typically R = of 0.93) for the prediction of 

pH, soluble solids content and stiffness factor although other texture parameters 

such as the elastic modulus of the flesh did not correlate as well. The proposed 

model for the stiffness factor and for the elastic modulus had SEPs of 2.49 and 

0.26 respectively and an R of 0.90 and 0.75 respectively. Texture (crispness) 

probably reflects the turgor of cells, that is , the balance of solutes inside and 

outside the cell, thereby making NIR spectrometric assessment difficult. 

2.3.1. Scattering and Absorption Centres 

Osborne et al.66 have discussed the physical principles of NIR reflection and 

transmission measurements relevant to the fruit processing industry in detail 

therefore only a brief overview will be given here. In the transmission mode of 

operation (illumination/detector angle - 0°), light emerging from the fruit will be 
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an isotropically scattered beam. It will contain more infonnation, with respect to 

the composition of the specimen than reflectance mode but will be weak due to 

attenuation by greater distances of travel within the fruit67. A more powerful 

light source will alleviate the problem of low signal intensity but may introduce 

other problems, e.g. high heat loads. 

When the illumination/detector angle is increased the detected signal may also 

contain specularly reflected light (reflectance mode). Data acquired using 

reflectance mode originates from a shallow sample region close to the fruit 

surface. Predictive models generated from data acquired using reflectance mode 

therefore utilise a fonn of double correlation. This correlation is established 

between spectral data from a shallow sample region and the analyte value (for 

the attribute of interest) which is generally detennined from tissue from greater 

depths. For this reason many workers in this field prefer to use transmittance 

mode as new detector technologies make acquisition of the inherently weaker 

signals possible68, 69. Use of full transmittance optics will, however, not be 

appropriate for fruit having a large, optically dense central seed (e.g. mango). 

2.4. Chemometrics 

Chemometrics is frequently defined as the application of mathematical, 

statistical, graphical or symbolic methods to maximise the chemical infonnation 

which can be extracted from data 70. Chemometrics started in its present fonn 

around the early 1970s due largely to the efforts of Karl Norris. The use of the 

40 



Underpinning Technologies 

term chemometrics first appeared around 197171 to describe the growing use of 

mathematical, statistical and other logic-based methods in the field of chemistry 

and in particular analytical chemistry. 

Multivariate analysis, as used by chemometricians, is any statistical, 

mathematical or graphical approach which considers multiple variables 

(dependent and independent) simultaneously. This description is slightly 

different from the statisticians' definition of multivariate analysis, which requires 

that multiple dependent variables be considered simultaneously in the analysis. 

It has been suggested that chemometricians should refer to what they do as 

multivariable analysis as this would eliminate confusion. This recommendation 

for the chemometric definition of multivariate analysis will be used for this work. 

One of the primary goals of chemometrics is to reduce the number of dimensions 

needed to accurately describe the characteristics of the data set. This can be 

achieved by a variety of methods, e.g. selecting an important subset of the 

original variables, or creating a set of new variables which are more efficient 

than the original variables in describing the data. Two possible methods for the 

creation of new variables are projection and mapping. Projection is the more 

common technique and involves using weighted linear combinations of the 

original variables to define a new, smaller set of variables (latent variables or 

principal components) which contain nearly as much information as the original 

variables. The most frequently used projection technique is the principal 

components technique. 
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2.4.1. Data Treatments 

The financial and temporal costs of the acquisition of good data is generally high, 

therefore extraction of the maximum amount of information is desirable. 

Chemometrics can achieve this in several ways, for example, data pretreatment 

techniques can assist by distinguishing overlapping spectral features using 

methods such as mean centring, differentiation, least squares peak and curve 

resolution and Fourier spectral deconvolution. Some data pretreatment 

techniques accomplish signal processing, e.g. increase the signal to noise ratio 

(SNR) by distinguishing between signal and noise, extracting the latter. Use of 

appropriate data pretreatment techniques can assist in obtaining reliable robust 

solutions to prediction problems. Some commonly used methods are discussed 

below. 

2.4.1.1. Mean centring o/spectra 

As a first step in data pretreatment, data are frequently mean centred by 

subtraction of the mean absorbance spectrum (8) of the calibration data set (S), 

(Eqn. 2.28). This step ensures that all results are interpretable in terms of 

variation about the mean spectrum. The mean spectrum is calculated as: 

Eqn 2.28 

Subtraction of the mean spectrum will remove common, non-informative 

artefacts from the spectra highlighting features resulting from differences in 

analyte concentration. 
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2.4.1.2. Smoothing 

Vibrational/rotational absorption peaks in the NIR spectral region are relatively 

broad (typically 40 run). It is therefore not surprising that spectral resolution 

better than 10 run (FWHM) has been demonstrated not to be necessary· for good 

predictive model generation 72. Smoothing within this bandwidth limit can 

greatly reduce the high frequency noise components in the spectra. A number of 

smoothing techniques are available, for example boxcar, Fourier, wavelet and 

Savitsky- Golay smoothing. 

Boxcar smoothing is the simplest technique. It copes very well with data with 

broadband features like those inherent in NIR spectra. In this method the signal 

is convoluted with a box-like function. Thus, to find a value of a smoothed 

spectrum at some point, i, an average of all points between (i-w) and (i+w) is 

taken, where w is a box half width. It is the computationally least expensive 

method but will reduce resolution. 

When data is smoothed using the Fourier transform, it is firstly transformed to 

the frequency domain where undesirable frequencies are removed (zeroed). 

These data are then inverse-Fourier transformed to the original time domain, 

returning to a signal like the original one but with the high-frequency 

components removed. In order to minimise adverse effects (Gibbs phenomenon, 

ringing) caused by abrupt cutoffs, apodisation should be used. That is, the 

observed signal is convolved with the Fourier transformed apodisation function; 

simply, the amplitudes of the frequencies close to the cut-off value are attenuated 

to smaller values. This method has a high computational cost but copes very 
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well with high frequency noise (dependent on correct choice of cutoff 

frequency). 

Wavelet smoothing is a method derived from the principles of Fourier 

smoothing. Instead of performing a frequency analysis of the data, a scale 

analysis is used. A sinsuoidal based transformation is perfectly localised in 

frequency but not in wavelength, whereas a wavelet transformation is localised in 

both wavelength and frequency. Wavelet transformation maps a single 

dimension wavelength signal into a joint, two dimensional wavelength-scale 

plane. Data can be easily smoothed by thresholding the 'detail' components at 

the desired level before signal reconstruction is performed. The resultant signal 

is the original signal without the high-frequency components and without 

degrading spectral information, if appropriate parameters are chosen. This 

method has a high computational cost. 

The Savitsky-Golay algorithm is based on the application of least squares linear 

regression to fit a polynomial over a moving window centred on the point in the 

spectrum to be smoothed. The choice of polynomial order and/or window size 

may seriously degrade spectral information of the transformed spectrum so 

caution should be exercised when using this technique. A characteristic of this 

procedure is that noise is reduced approximately by the square root of the 

number of points used73. 
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2.4.1.3. Differentiation 

Differentiation is frequently used to enhance difficult-to-identify structures by 

removing sloping baselines and separating overlapping peaks. The goal of 

differentiation is to remove background and to increase spectral resolution74. 

For example, Kawano et al.9 had success (R = 0.97, SEP = 0.50, peaches) using 

multiple linear regression (four wavelengths, 906, 878, 870 and 889 nm) and 

second derivative of the absorbance data to determine the sse content of 

peaches. Two main methods used to derivatise a data sets are the numerical 

method and the Savitsky-Golay method. 

For a first order derivative, simple numerical differentiating techniques calculate 

the difference in ordinand values over a predetermined window by subtracting 

lowest value from the highest and dividing by the window width. An example of 

a typical formula for a centred-difference differentiation is given in Eqn. 2.2975. 

P~ (Xl) = f2 ~ fo + O(Wind 2 ) (first derivative) Eqn 2.29 
.2wznd 

Pn(X) is the approximating polynomial of j{x), fa is the first data point, Ji the 

central point and fi the last data point in the selected window of width wind. The 

error term O( wind2
) is dependent on the stepsize and, in application, often 

ignored. 
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Another technique which requires many more computations is the Savitsky-

Golay method. The Savitsky-Golay algorithm is based on performing a least 

squares linear regression fit of a polynomial of degree yover at least y+ 1 data 

points in a moving window about each point in the spectrum which also smooths 

the data. The derivative is then calculated for fitted polynomial at each point. A 

modified algorithm for this calculation has been presented by Steinier et al.,76 to 

calculate 1 st through 9th derivatives. The calculation is performed with the 

abscissa data in low to high order. The eth derivative is given below (Eqn. 2.31) 

(note that the data set will be truncated by half the number of points in the 

window at each end of the spectrum). 

dex +t 
- = (e!) "x·T l' . 
d 

e ~ I e+ ,l-j 
Y j=-t 

Eqn 2.31 

In matrix formulation this is achieved by 

Let: 

e = the order of the derivative 

y= the degree of the polynomial 

s = the number of points to be fitted by the polynomial 

z-= (s-I)/2 

x = the vector of observed values 

T = the matrix of transforming coefficients 

The largest single drawback with the use of differentiation is its inherent 

exaggeration of noise. Various smoothing functions are therefore often 

implemented prior and after differentiation. Differentiation using the Savitsky-
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Golay method is accompanied by an inherent smoothing which reduces added 

differentiation noise to manageable levels. It should be noted that to apply 

Savitsky-Golay differentiation the step interval within a window must be fixed 

and uniform 73. 

2.4.1.4. Standard Normal Variate and Detrending 

Other signal improvement tools available are standard normal variate (SNV) and 

detrend (DT). These transformations mainly correct problems associated with 

sample size (pathlength) but also reduce the effects due to multi-collinearity and 

baseline shifting and curvature77. SNV and DT, although often used together 

(either one first), can be used separately. SNV centres the spectra by dividing 

each data point by the mean of all data points in the spectrum and scales it to its 

own standard deviation, (Eqn. 2.32) 

x·-i 
- I 

Xi(SNV) -
cr 

Eqn 2.32 

where Xi(SNV) is the ith element of the transformed spectrum, Xi is the ith element 

original spectrum, i is the mean of the spectrum and ()" is the standard deviation 

of absorbances at all wavelengths of the spectrum. 

Detrending is applicable to spectra in which the correlation between 

concentration and the amplitudes of the wavelength variables is fairly linear. In 

practice, spectra are generally converted to absorbance (log (l/R) ) prior to 

implementation. Detrending transforms the spectra using a second order 

polynomial regression analysis of spectral responses (absorbance, dependent 
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variable) to wavelength (independent variable). Baseline curvature correction, 

for example, using this relationship are 

Eqn 2.33 

and 

Eqn 2.34 

where i y. is the estimated value of Xj calculated by Eqn 2.33. W is absorbance 

at a given wavelength, a, band c are intercept and polynomial constants. 

2.4.1.5. Multiplicative Scatter Correction 

Absorbance spectra can be influenced by undesirable information originating 

from specular reflectance, particle size, path length and refractive index of the 

sample. Scattering is wavelength dependent and often results in a baseline offset 

or tilt to the spectrum. In highly scattering systems, a multiplicative effect can 

also occur, that is both offset and tilt. Multiplicative scatter correction (MSC) is 

a relatively simple spectra processing method that attempts to account for 

differences in measurement path lengths and scattering effects 78. The simplest 

implementation of MSC is based on the assumption that all samples have the 

same scatter coefficient at all wavelengths and uses a 'reference group of 

wavelengths (flat portion within or close to a spectrally significant region) to 

generate the MSC coefficients. This technique regresses a measured spectrum 

against an "ideal" reference spectrum, the mean centred spectrum (Eqn. 2.28). 

The measured spectra are then corrected using a slope value calculated from this 

regression for a 'reference group of wavelengths'. 
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The unknown multiplicative factor b and additive factor a are determined using: 

m SiR = bi SR + ai 

where R is the group of reference wavelengths. 

and the corrected spectra is then given by: 

Eqn 2.35 

Eqn 2.36 

where m S is the spectrum to be corrected and msc S is the corrected spectrum. 

Isaksson and Kowalski79 presented a slightly more complex variation of this 

technique (piecewise multiplicative scatter correction (PMSC)), in which the 

wavelength dependency of scattering was addressed by calculating a and b for 

each wavelength. This was achieved by regressing the absorbance value at each 

wavelength of a sample spectrum against a moving window of wavelengths, 

centred on the corresponding wavelength, of the 'ideal' spectrum. Vectors of 

correction coefficients (a and b) were then used to correct the new spectrum by 

the following equation (Eqn. 2.37): 

Eqn 2.37 

The primary assumption of this technique is that the wavelength dependency of 

the scattered light is different to the analyte absorption. By correcting 
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multiplicative and/or additive scatter, differences between spectra due to these 

effects will be minimised whilst preserving analyte concentration information. 

Similar to SNV and DT, this technique is only applicable to spectra which have a 

fairly linear correlation to concentration, therefore these techniques are normally 

employed in conjunction with absorbance data. 

2.4.1.6. Orthogonal Signal Correction 

NIR spectra are often pre-processed in order to remove systematic noise. Some 

pre-processing techniques may also however, remove information from the 

spectra regarding the analyte. One technique which has been demonstrated to 

remove unwanted noise whilst maintaining analyte information is orthogonal 

signal correction (OSC). With OSC the X-matrix (independent wavelength 

variable matrix) is corrected by subtraction of variation that is orthogonal to the 

Y -matrix (dependent variable, analyte). Assuming the spectra have been mean 

centred, OSC can be achieved by the following80: 

In order to extract those X (wavelengths variable) factors which include as much 

as possible variation in X whilst remaining orthogonal to Y (analyte), a vector of 

loading weights (w) is required. A suitable matrix formulation is max(wTXTXw) 

with the constraints wTXTy = 0 and wTw = 1. 

A possible solution is that w is the first (largest) eigenvector of MX.TX where M 

is 

Eqn 2.38 
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Because the matrix MXTX is not symmetric eigenvectors are more easily found 

directly by solving a symmetric n x m problem firstly. Let Z = XM. If Cj is an 

eigenvector of ZZ T and has an eigenvalue ~ and unit length then 

Eqn 2.39 

is a normalised eigenvector of MX.TX and has the same eigenvalue, ~. 

The required score vectors are found by 

Eqn 2.40 

and the vector of loadings is 

Eqn 2.41 

Ai 
Eqn 2.42 

In the case when the number of X-variables exceeds the number of samples, 

strict orthogonality is obtained. Those factors orthogonal to Y can be removed 

usmg 

f T 
X =X-"t.p. o L..i I I 

i=l 

Eqn 2.43 

(where f is the number of factors) giving an Xo matrix which has the same 

covariance as Y but not the unwanted noise. 
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2.4.1.7. Other Techniques 

A number of other data preprocessing methods are in current use. For example, 

much work has been done with FTIR and analysing data available in 

interferograms directly81 and digital filters (to reduce noise and background) in 

conjunction with partial-least squares (PLS) regression have been used in the 

construction of acceptable multivariate calibration models82. 

2.4.2. Multivariate Calibration 

Spectroscopy is an indirect measurement technique; it relies on the ability to 

develop a calibration model that relates the spectral intensities at different 

wavelengths to the chemical composition of the product. The development of 

the calibration model is the crux of the use of this technology, and therefore use 

of appropriate methods is essential. 

Chemometric analysis is subject to the normal constraints of any complex 

analysis technique, namely: 

• The best chemometric methods must fail if the experimental data does not 

contain good information relating to the analyte concentration. 

• It is possible to lose sight of the underlying techniques, and to 

inappropriately over-treat data. 

Chemometric techniques are not magical, surefire methods to extract desired 

results from whatever data is available. They can only extract information from 

good data if it exists. 
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2.4.2.1. Classical Least Squares 

The classical least squares (CLS) model83, 84 assumes that measurements are the 

weighted sum of linearly independent inputs. In spectroscopy, the CLS model 

assumes that measured spectra are the sum of spectra only from a combination of 

known pure component spectra weighted by the concentration of the analytes. 

Therefore, the model is: 

x=yS Eqn 2.44 

where x is the measured response row vector (spectrum), S is the matrix of pure 

component responses (pure analyte spectra) and y is the row vector containing 

the weights, i.e. concentrations of the analytes. To generate a predictive model 

this equation needs to be manipulated to give the predicted analyte concentration 

from the vector of x measurements. This is achieved by: 

y= X S+ , Eqn 2.45 

where S+ is the pseudo-inverse of S, defined for CLS by: 

Eqn 2.46 

The mam disadvantage of CLS is that all the pure responses S (analyte 

concentrations) must either be known a priori or estimated from the data. This 

includes the responses of any minor constituents that may not be of interest 

themselves but may contribute to the measured signal. Given a vector of 
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concentrations c and measured spectra x, an estimate of the pure component 

spectra Sest can be obtained from 

Eqn 2.47 

To obtain Sest the concentration of all spectrally active species must be known 

and they must be linearly independent (otherwise (cTc)"! would not exist). 

Furthennore, the pure component responses must be linearly independent in 

order to obtain S+. If they are not, (SSTr! is not defined. These assumptions can 

not be met for the approach of assessment of sse in fruit. 

2.4.2.2. Inverse Least Squares 

It is possible to avoid the problem of having to know all constituent 

concentrations, that is, estimate S, by using an inverse least squares (ILS) 

model83, 85. ILS assumes that a regression vector b can be used to detennine a 

property of the system y from the measured variables x (a row vector, a 

spectrum). The ILS model is 

y=Xb Eqn 2.48 

The regression vector b must be detennined using a matrix (X) of x 

measurements and the known values of the property of interest, y. b is estimated 

from 

Eqn 2.49 
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where X+ is the pseudo-inverse of X. Of the many ways to determine a pseudo­

inverse, the most obvious is MLR (also known as ordinary least squares). In this 

case, X+ is defined by 

Eqn 2.50 

Collinearity of X or when X contains fewer samples than variables often causes 

this approach to fail. If the spectroscopic data is extremely ill-conditioned due to 

a high degree of correlation between absorbances at nearby wavelengths, which 

is often the case, MLR will not be successful86. While the calibrations may fit 

the data, they are typically not useful for predicting the properties of new 

samples. 

2.4.2.3. Principal Component Analysis (PCA) 

Principal components analysis (PCA) is among the most versatile of all 

chemometric methods. It seeks to maximise the variance information present in 

a data set in as few new dimensions as is possible. Graphically, principal 

components analysis (PCA) twists the axes of the data to conform to new axes 

which contain a maximum amount of variance information. Mathematically, this 

is a simple linear algebra transformation for any number of dimensions. 

Principal components analysis helps to reduce the number of variables which 

need to be considered in an analysis, and often yields a new set of variables 

(principal components) which describes important, but unmeasurable properties 

of the system. 
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Principal components regression (peR) is one way to deal with the problem of 

ill-conditioned matrices. Instead of regressing the system properties (e.g. 

concentrations) on the original measured variables (e.g. spectra), the properties 

are regressed on the principal component scores of the measured variables, 

(which are orthogonal and, therefore, well conditioned)87. Thus, X+ is estimated 

as 

Eqn 2.51 

where P are loadings. Similarly to peA, the number of principal components 

(pes) to retain in the model must be determined; the purpose of the regression 

model is to predict the properties of interest for new samples. Therefore, the 

number of pes that optimises the predictive ability of the model must be 

determined. This is typically done by cross-validation, a procedure where the 

available data is split between training and test sets. The prediction residual error 

on the test samples is determined as a function of the number of pes retained in 

the regression model formed with the calibration data. The procedure is usually 

repeated several times, with each sample in the original data set being part of the 

test set at least once. The total prediction error over all the test sets as a function 

of the number of pes is then used to determine the optimum number of pes, i.e. 

the number of pes which produces minimum prediction error. If all of the pes 

are retained in the model, the result is identical to that for MLR (in the case of 

more samples than variables). Thus, it can be seen that the peR model 

"converges" to the MLR model as pes are added. 
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2.4.2.4. Partial Least Squares (PLS) 

Partial Least Squares (PLS) regression85 is related to both PCR and MLR and 

occupies a region between the two. PCR finds factors that capture the greatest 

amount of variance in the predictor variables, e.g. spectra. MLR searches for a 

single factor that best correlates predictor variables with predicted variables, e.g. 

concentrations of analyte. PLS attempts to maximise covariance by finding 

factors which capture both predictor variable variance and achieve 

predictor/predicted variable correlation. Of the many possible methods the most 

intuitive approach to calculate PLS model parameters is non-iterative partial least 

squares (NIPALS). NIPALS calculates scores T, loadings P and weights, W85. 

Weights are required to maintain orthogonality of the scores. The NIP ALS 

algorithm for PLS can also be applied when there is more than one predicted 

variable Y, and therefore scores U and loadings Q are also calculated for Y-

block. A vector of "inner-relationship" coefficients (regression coefficients), b, 

which relate the X- and V-block scores, must also be calculated. Using NIPALS, 

the scores (t), weights (w), loadings (p) and inner-coefficients are calculated 

sequentially as shown below. The PLS decomposition is started by selecting one 

column ofY, yj, as the starting estimate for Uj. In the case of univariate y, Uj = 

y. Starting with the X data block which is a matrix of (k) absorbance data points 

with n samples (x is one spectrum): 

Eqn 2.52 

Eqn 2.53 

In the y data: 
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Eqn 2.54 

Eqn 2.55 

Convergence is monitored by comparing tl in Eqn 2.53 with the value from the 

previous iteration. If they are equal within rounding error, proceed to Eqn 2.56. 

If they are not return to Eqn 2.52 and use UI from Eqn 2.55. If the Y-block is 

univariate, Eqns 2.54 and 2.55 can be omitted, then set qI = 1 and no iteration is 

required. The X data block loadings are calculated and the scores and weight 

rescaled accordingly: 

WI new = WI old lip! oldll 

Find the regression. coefficient b for the inner relation: 

T 
b = u l tl 

I et 
I I 

Eqn 2.56 

Eqn 2.57 

Eqn 2.58 

Eqn 2.59 

After the scores and loadings have been calculated for the first factor (latent 

variable (LV) in PLS), the X- and Y -block residuals are calculated as follows: 

Eqn 2.60 
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Eqn 2.61 

This entire procedure is repeated for the next latent variable starting from Eqn 

2.52. X and Yare replaced with their residuals El and Fl , respectively, and all 

subscripts are incremented by one. It can be shown that PLS forms the matrix 

inverse defined by: 

Eqn 2.62 

where the W, P, and T are as calculated above. It should be noted that although 

the scores and loadings calculated in PLS are not the same as those calculated in 

peA and peR, they correspond to these having been rotated to be more relevant 

for predicting y. Similarly to peR, the PLS model converges to the MLR 

solution if all latent variables are included. 

2.4.2.5. Artificial Neural Network Partial Least Squares (NN-PLS) 

Artificial neural networks (ANNs) are simplified and idealised models of 

biological neural networks88. An ANN (frequently shortened to neural network 

(NN)) approximates the function of multiple variables in terms of the function of 

one variable89. One of the basic units for information carrying in NNs is the 

neuron. Neurons are arranged in a number of layers with weights linking them. 

The number of layers is dependent on model complexity but there is always an 

input and output layer with the number of hidden layers between these varying. 

The arrangement of the layers and the number of neurons in each is described as 

the neural network architecture. The input can be any multivariate signal, e.g., 

spectra, and the output is the predicted analyte value90. 
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The output, Y, to an input vector (spectrum) x, of a neural network with nj input 

neurons, one hidden layer with nh neurons and one output neuron with a linear 

transfer function, can be written 

Eqn 2.63 

where f is a linear, sigmoid or tangent hyperbolic transfer function, bij and Bias 

are biases of the model and Wjj and Wj are the weights of the hidden and output 

layers, respectively. 

Like other multivariate techniques, NNs can also present small errors in the 

calibration data sets but large errors in validations sets. This is mainly due to the 

use of overly complex models which over-fit the model. A high level of operator 

expertise is required unless one of a increasing number of optimisation methods 

is used to prune the complexity. Optimum brain surgery (OBS) and optimum 

brain damage (OBD) are two available optimisations90. Both these methods 

work by starting a neural network with an excessive number of neurons in the 

hidden layer(s) and cutting those connections which have little impact on the 

monitored residual error. Overfitting and complexity is therefore diminished by 

removing those neurons which have had all connections cut. 

2.4.2.6. Pattern recognition 

Pattern recognition techniques seek to identify regularities and similarities which 

are present in data. Mathematical pattern recognition is often confused with 
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optical pattern recognition, which seeks to teach machines to evaluate optical 

data. While these techniques do have some common bases, they are different in 

application, methodology and terminology. Many techniques are included in the 

category of pattern recognition. 

There are two main categories of pattern recognition techniques: clustering 

(unsupervised pattern recognition) and supervised learning. Hierarchal 

clustering links all objects in a data set (one by one) by measuring their relative 

similarity in terms of Euclidean distance (ED). Mahalanobis distance (MD) can 

also be used in the same way to link similar populations by calculating the MD 

between the population means91 (see Appendix B for ED and MD calculation). 

Supervised pattern recognition methods can be further divided into either 

discrimination or class modelling techniques. Both incorporate a training set of 

objects of a known class, and a mathematical model is generated to predict the 

class of a newly presented object. Linear discriminant analysis (LDA) , 

Quadratic discriminant analysis (QDA) and regularised discriminant analysis 

(RDA) are some examples of discrimination methods frequently used92, 93. All 

these, however, use a global model to discriminate a class and an object must 

belong to one of the classes available. 

In the case of LDA, the class of a next measurement can be predicted to a class 

membership K by: 

Eqn 2.64 
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where elK (Xi) is the classification score, C·1Pooled is the inverse of the pooled 

variance-covariance matrix of the different classes, Xi is the ith sample and x K is 

the absorption value at the centroid of the class K. 2ln 1t K is the prior 

probability which requires consideration if the number of elements in each class 

differs. The classification score is assessed against an F-tested critical value for 

acceptance to an appropriate class. 

Another classification method is Soft Independent Modeling of Class Analogy 

(SIMCA). This method is based on making a PCA model (PCR and PLS models 

can be used but only the x variables will be influential) for each class in the 

training set. Unknown samples are then compared using the class models and 

assigned to classes according to their similarity to the training samples. SIMCA 

is a residual variance method which uses boundaries based on EDs between 

objects and the origin in PC residual space determined from PCA models94. An 

equation describing this process is: 

So = 

2 tf eij 

i=l j=l (p - r Xn - r - 1) 
Eqn 2.65 

where et is the squared residual of object i on the latent variable j, p is the 

number of dependent variables, n is the number of samples, r is the number of 

PCs and So is the mean distance between all objects belonging to the class model. 

A new measurement is classified by projecting it towards PC space defined for 

the class and calculating its distance from the class model (sf) using: 
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2 L eij 

(p-r) 

An F-test is applied to this value and a critical value calculated 

Eqn 2.66 

Eqn 2.67 

If Si < Scrit the new measurement accepted as a class member otherwise it is 

considered to be an outlier. SIMCA, in contrast to the previously described 

methods, does not force new measurements into a class but will reject them. 

In summary, the Mahalanobis technique is a distance method which covers the 

space defined by the significant PCs and the SIMCA model is a residual variance 

method covering residual space. Although these two techniques may be seen as 

competitors they are complementary and when used together can enhance the 

classification task. 

Another major class of techniques, of great interest in recent years, is spectral 

library matching and comparison95 . These techniques seek to efficiently explain 

chemical structures from spectral data. They include nearest neighbour and 

distance (Mahalanobis or Euclidean) measures, correlation analysis, probability 

matching, Fourier and principal components analysis. 
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2.5. Standardisation of Instruments. 

Generation of calibrations is time consuming and a complex procedure mainly 

because the acquisition of large data sets which are representative of a broad 

sample range is required. The inherent costs associated with such calibration 

development makes their transferability across a number of systems desirable. A 

predictive calibration model generated on spectra acquired from one instrument 

will generally give poor results when used on the spectra acquired from another 

instrument. This is due to small differences in instrumental response impacting 

on shape and position of spectral features. Individual spectrometer 

characteristics including, wavelength accuracy and photometric response, 

electronic noise, optical noise and temperature stability can all contribute to the 

failure of calibration transfer. Even during the use of a single spectrometer 

instrument drift or change in environmental conditions like a change in humidity 

may disrupt the performance of calibrations. The NIR spectrometric application 

for which calibration models have been generated may require transferability 

across a number of instruments and, possibly, locations. Some well known 

standardisation techniques, include. 

1. Slope and Bias Correction (SBC) 

2. Direct Standardisation (DS) 

3. Piecewise Direct Standardisation (PDS) 

4. Double Window Piecewise Direct Standardisation (DWPDS) 

5. Orthogonal Signal Correction (OSC) 

6. Finite Impulse Response filtering (FIR) 

7. Wavelet Transform (modified) (WT) 
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8. Interpolation (Int.) 

9. Interpolation with photometric correction (Int. and Mod.) 

10. Model updating (MU) 

A variety of standardisation techniques has been proposed which attempt to 

remove or minimise instrumental differences96, 97, 98, 99. Most techniques 

require that spectral measurements to be made by both instruments of a 

standardisation sample set. In some cases this requirement may not be 

acceptable, e.g. instrument failure or instrument location, prompting many 

workers to develop alternatives. 

2.5.1. Standardisation Techniques 

In most standardisation methods, other than slope and bias correction, 

wavelength variables from a slave spectrometer, Xs are transformed to appear as 

if originating from the other instrument Xm thus accommodating wavelength (x­

axis) and photometric response (y-axis) variation. This is achieved by 

calculating standardisation parameters F which are applied in the following 

manner: 

Eqn 2.68 

F can be calculated using any of the methods detailed below. 
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2.5.1.1. Slope and Bias Correction 

One of the first standardisation approaches, a bias correction technique, was 

proposed by Osborne and FeamlOO in 1983 to address the transfer question. 

Jones et al.I Ol modified this technique to one called slope and bias correction. 

The univariate slope and bias method is the simplest standardisation technique 

and has adequate performance when used where data sets have simple 

differences99. Predictions are made on samples recorded on both spectrometers 

(Y m and Ys, master and slave respectively) using a predictive model generated on 

the master, then the results are regressed to provide 

Ym = slope· Ys + bias Eqn 2.69 

Each new prediction for the slave instruments is then transformed using this 

equation. 

2.5.1.2. Shenk and Westerhaus patented standardisation technique 

In 1989, Shenk and Westerhaus 102 patented a standardisation technique which is 

currently incorporated in their chemometric software (WinISI, Infrasoft 

International, LLC., USA). This method is based on two main steps: wavelength 

matching and photometric response correction. 

For wavelength matching, the data is firstly differentiated and the absorbance ith 

wavelength of the master instrument (Xm) is linearly correlated to absorbance at 

wavelengths in a spectral window (i ± w) of the slave instrument (xs). From 

these calculations, the wavelengths with the highest correlation (Xmi and Xsk , for 

the master and slave instruments, respectively) (k being in the interval i ± w) are 
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identified. A quadratic function is fitted correlating these master and slave 

wavelengths, allowing new slave wavelengths to be defined by 

i' = a + bi + ci2 Eqn 2.70 

where i is the wavelength index, a, band c are regression constants. 

F or photometric correction, raw absorbance data is used. Absorbance values are 

calculated for the new slave wavelengths using interpolation. The photometric 

responses, absorbances at the each wavelength, of the master instrument and the 

slave instrument are linearly regressed to identify the correlation between them. 

The regression is calculated from 

Eqn 2.71 

are then used to adjust the absorbance values to new values using 

Eqn 2.72 

where x STDi is the new absorbance value at the new wavelength and aU) and b(i) 

are regression coefficients at the ith wavelength. Each new spectrum is treated 

with these wavelength coefficients to correct the wavelength scale and with the 

photometric response coefficients to correct the absorbance values. 

2.5.1.3. Direct Standardisation 

When the differences between instruments are simple an univariate approach 

which is based on slope and bias correction can be successful. However, when 
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more complex differences are present between instruments, more complex 

techniques are required. Such a method was proposed by Wang et al. 103 called 

direct standardisation (DS). The standardisation transformation matrix F is 

calculated by 

Eqn 2.73 

where R 1 is a matrix of absorbance values for a subset of standardisation 

samples measured on the master instrument and R2 is the matrix of absorbance 

values for the same subset of standardisation samples measured on the slave 

instrument. A new response vector of unknown samples, rJ un , measured on the , 

slave instrument is standardised by F to appear as a master response vector, r{un 

by using 

"T T F 
rl,un = r2,un Eqn 2.74 

The previously generated predictive model can then be used on this standardised 

spectrum. In this method the whole spectrum acquired on the slave instrument is 

used to fit each spectral point on the master. 

2.5.1.4. Piecewise Direct Standardisation 

Wang et al)03 developed the 'piecewise direct standardisation' (PDS) algorithm 

which is similar to the DS technique but incorporates the use of a moving 

window which steps across the variable range. For each wavelength of a sample 

spectrum collected on the master instrument, the absorbances are regressed 
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against the corresponding absorbances in a spectral window of neighbouring 

wavelengths from the slave instrument. For example, when the spectra from the 

master instrument are Xl ,and the slave instrument to be standardised are X2, and 

a window width of 2j+ 1 is used, the model for the absorbance value of the ith 

variable (wavelength) bi is identified by 

Eqn 2.75 

where Xl (:,i) and X2 (:,i-j:i+j) are columns identifiers used in the formation of 

the model bi. The superscript '+' indicates a pseudo-inverse. 

2.5.1.5. Double Window Piecewise Direct Standardisation 

In cases where the spectral features are very narrow with regions of only baseline 

noise in between, as with some FTNIR spectra, transfer models developed with 

PDS do not perform well. Double window PDS (DWPDS) was developed by 

Wise104, (personal communication, 2000) to address this issue. It does this by 

forming models based on data on both sides of the current window to be 

standardised. The second window defines the range data outside the original 

window to be used. The form of the model is identical to that of PDS, only the 

way in which the model is identified is different. In DWPDS, with a first 

window width of 2j+ 1 and a second window width of 2k+ 1, the model for the ith 

variable bi is 

Eqn 2.76 
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where X2DW = 

X 2 (:, i - j - k : i + j - k) 

X 2 (:, i - j - k + 1 : i + j - k + 1 ) 

X2 (:,i - j - k + 2: i + j - k + 2) 

X 2 (:,i - j: i + j) 

X 2 (:,i - j + k: i + j + k) 

Xl (:,i -k) 
X I (:, i - k + 1) 

X I (:, i - k + 2) 

and XIDw = 

The model for the ith variable is based on a wider range of data, and therefore 

more data. 

2.5.1.6. Orthogonal signal correction 

Sjoblom et az.105 investigated the use of orthogonal signal correction (OSC) for 

the standardisation of instruments. They proposed that OSC makes the spectra 

less dependent on instrument variation. OSC is a technique for the preprocessing 

of NIR spectra before they are subjected to multivariate calibration model 

generation. With OSC, the X-matrix (spectral data) is corrected by subtraction of 

variation that is orthogonal to the Y -matrix (concentration). This correction is 

then applied to new spectra that are going to be used in predictions. The main 

aim of OSC is to minimise the variation in the spectral data which is not 

correlated to the analyte concentration. This achieved by repeatedly 

orthogonalising the score vector, using principal component analysis (PCA), to 
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the analyte vector until stability is achieved. The spectral data is then PLS 

regressed against this resultant score vector and the B coefficients employed to 

construct new scores and loadings which transform spectral data to a new 

orthogonal signal corrected data set. Usually both spectral and analyte matrices 

are individually centred before orthogonalisation of the score vector. 

2.5.1.7. Wavelet Transform 

Walczak et al. 106 proposed standardisation of instruments in the wavelet domain. 

Wavelet theory can be described as the representation of a signal by the sum of 

analysing functions, achieved by an expansion of spectra into localised building 

blocks, defined by their scale and position 107. The spectra are essentially 

divided into 'approximation! average' and 'detaill difference' components, 

bandpasses of frequencies from 0 Hz to the Nyquist frequency (half the number 

of wavelengths) 1 08. Their mathematical basis stems from the familiar frequency 

analysis theory of Fourier transforms but instead of using the time-frequency 

variables of Fourier, wavelet transforms use a 'scaling variable a' and the 

'position variable b' which closely resembles it. 

Walczak's procedure follows other standardisation steps by selecting a subset of 

spectra from the master and slave instruments to which wavelet transforms are 

applied using suggested filter and resolution criteria. The resultant wavelet 

coefficients for each are univariately, linearly regressed against each to obtain 

standardisation. This technique also can have the benefit of reducing spectral 

noise. 
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2.5.1.8. Finite Impulse Response 

The Finite Impulse Response (FIR) function can be thought of as a moving 

window similar to the multiplicative scattering correction (MSC) function. In 

MSC, points of an average spectrum are regressed against corresponding points 

from an actual spectrum. The sample spectrum is corrected by multiplication 

and substraction of the regression slope and bias values. The main purpose of 

the use of the MSC technique is to remove effects of scattering. The FIR 

function used as a standardisation technique was proposed by Blank et a1. 109. A 

windowed (limited bandwidth) MSC is used to correct new spectra using one 

reference spectrum with only the centre channel of each window being corrected. 

This technique has the advantage of requiring only one spectrum from the master 

instrument to transfer spectra from a second instrument. A disadvantage of this 

technique is that if the reference spectrum has regions where the response is flat 

for a bandwidth corresponding to approximately the window size, artefacts (e.g. 

spikes) can arise in the corrected spectra making standardisation in that window 

poor. 

2.5.1.9. Wavelength Selection 

When samples cannot be measured on both instruments many of the commonly 

used techniques (DS, PDS, DWPDS and OSC) become useless. Swierenga et 

al. IIO proposed an approach based on a wavelength selection technique as a data 

pretreatment prior to calibration model generation so that the model retains its 

predictive ability when it is transferred to another instrument. 
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Optimisation algorithms such as simulated annealing and the genetic algorithms 

have been applied to the wavelength selection but are very time intensive. Both 

these techniques require significant user input for their operational parameters 

therefore adding another labour consuming aspect to their use. 

Brenchley et a/. lll demonstrated a simplified approach to wavelength selection 

by excluding wavelength regions known to be irrelevant to the analyte of interest 

rather than using time-consuming optimisation algorithms to select information 

carrying wavelengths. They demonstrated that certain PLS loading vectors were 

equivalent to correlograms of analyte to absorbance value and thus this type of 

analysis was useful for the determination of the primary regions responsible for 

spectral variations. 

In 1999, McShane et a/. 112 also proposed a simplified approach to wavelength 

selection, supporting its relevance as a useful alternative to the difficult-to-

configure genetic algorithm approach. Their algorithm was a "peak-hopping" 

algorithm, which when used on glucose concentration in cell culture media and 

aqueous media determination improved the accuracy of the resultant predictions. 

2.5.1.10. Interpolation and Photometric correction 

The design of most modem post-dispersive NIR spectrometers incorporates the 

use of either linear PDAs or linear or area CCDs as photodetecting elements. 

The physical structure of these devices, when coupled to wavelength dispersion 

elements, means that a discrete number of intensity values (representing a 

spectrum) results. A calibration equation (often a fourth order polynomial) is 
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required to associate the spectral output of the dispersion elements (a continuous 

function) with the pixels of the photo detectors (discrete increments). Despite 

high engineering accuracy, small physical displacement of components means 

that each instrument will have slightly different wavelength/pixel assignment. 

The photometric response and noise characteristics of photodetectors, even from 

the same batch, can differ considerably compounding the problem of calibration 

transfer. The non-linear wavelength/pixel assignment of each photo detector can 

be re-assigned to a uniform, common (across instruments) wavelength/spectral 

position assignment, using an interpolation technique. The photometric response 

of one instrument can be mathematically modified to reproduce another 

instrument's response by ratioing a spectral measurement of a stable reference 

sample. 

2.5.2. Sample Selection for Standardisation 

The use of standardisation samples from a source different to those on which the 

calibration is to be used and which cover a larger spectral range, generally leads 

to poor results. Standardisation samples similar to the samples to be predicted 

can lead to good standardisation but will be applicable only to those samples l13, 

114, 115. Bouveresse et al. 113 investigated the effect of using three different 

standardisation sets for the transfer of calibrations, using Shenk's algorithm, 

between different spectrometers. One standardisation set contained samples very 

similar to the agricultural samples from the sets to be analysed, the second set 

contained generic standards, and the third set contained pure organic and 

inorganic chemicals. The accuracy of each standardisation was tested by 

assessing the root mean square errors and correlation coefficients before and 
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after standardisation. Predictive ability was also tested by assessing the standard 

error of prediction for the three different predictions before and after 

standardisation. They concluded that standardisation samples need to cover 

exactly the same absorbance value range as the samples on which prediction was 

intended, with the best predictions achieved following standardisation using like 

samples. 

A frequently used algorithm for standardisation sample selection is the Kennard 

and Stone algorithm. This algorithm was proposed by Kennard and Stonel16 in 

1969 to assist experimental design. This method begins by removing a pair of 

samples in the 'master' calibration matrix me which are most different to each 

other and places these in a standardisation matrix mT. Then the following 

stepwise procedure is repeated until the desired number of samples is achieved. 

The Euclidean distance between the candidate sample and other selected samples 

is calculated and the minimum distance d(u) is stored. 

Eqn 2.77 

where s = index of selected spectra, n = number of spectra selected prior to this 

iteration, u = index of unselected spectra. 

The unselected sample in the me matrix with the largest d(u) value is removed 

and added to the mT matrix. 
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2.6. Conclusion 

Choice of spectrometer design can greatly impact on data quality and therefore 

predictive ability. Physical characteristics such as detection limit, signal to noise 

level, precision, and accuracy of spectrometric systems need to be carefully 

chosen for an application. Chemometric methods can unlock valuable 

information contained in data. Correct use and application of these techniques is 

the key to successful predictive model generation. Transfer of predictive models 

among systems is highly desirable to maximise cost efficiency. A number of 

chemometric methods are available to achieve this. 

Design of the complete NIR spectroscopic fruit grading system, incorporating 

hardware and data analysis, requires extensive multi-disciplinary investigations. 
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3. Literature Review/Case Studies 

3.1. Introduction 

Consideration of the NIR region for spectroscopy followed from Coblentz's 

seminal workl17 on fingerprinting of organic molecules using infrared (lR) 

(1000 - 15000 run) spectra. Commercial NIR instrumentation became available 

in the 1950s. This instrumentation was usually based on filter or tilting 

diffraction grating dispersive elements used in a pre-dispersive format and was 

generally not suitable to in-line industrial applications due to the vibration 

sensitive nature of the componentry. Array spectrometers became available in 

the early 1990s with the advances in Si-based technologies, providing these 

photodetectors with rapid responses, high SNR and at a reasonable cost. In this 

section the criteria for the selection of appropriate hardware needed for the task 

of sorting fruit in an in-line application are reviewed. 

3.2. Criteria Important to In-line Fruit Sorting System Design 

3.2.1. Bandwidth 

A large number of wavelengths in the NIR region 700 to 2500 run have been 

assigned to sucrose and water. For example, the first overtone of CH2 (sucrose) 

has been assigned to 1765 run and 1725 run, while the second, third and fourth 

overtone assignments are 1215 run, 938 - 913 run and 762 - 746 run, 

respectively66, 118 (Appendix A). However, the surrounding matrix heavily 

influences band assignment. Further, the high absorbances of the first and 

second overtone regions results in shallow sample penetration of these 
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wavelengths in intact fruit, while absorbances in the third and fourth overtone 

regions (SW-NIR) allow far longer pathlengths. Thus, the practical application 

of fruit sorting requires use of third and fourth overtones (938 - 913, 762 - 746 

run). 

On this basis, the recommended operational wavelength region is 760 - 940 run. 

This region is covered by Si detectors. Wavelengths identified by Kawano et 

al. 9, 68, 119, Dull et al. 56, 58, 120, 121, 122 and Ito123 as being spectrally important 

in the wavelength range ofSi are listed below (Table 3.1). 

Table 3.1. Wavelengths (nm) in the SW-NIR region associated with sucrose 
or SSC in fruit samples. Kawano et aL9, 68, 119, Dull et al. 56, 58, 120, 121, 122 
and Ito123. 

Kawano etaL Dull etaL Ito 

745 

760 

769 

786 

796 

870 860 

878 884 

889 896 

904 907 900 

906 913 905 

914 918 910 

935 918 

950 

951 
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3.2.2. Resolution 

It is generally acknowledged that the instrument bandpass should be no greater 

than the absorber bandwidth. Spectra in the SW-NIR region generally have very 

low amplitude, broad (> 40 run) absorption peaks14. This observation suggests 

that NIR instrumentation has a low resolution requirement. 

In a study of glucose in an animal biological matrix, Ding and Small124 

transformed their original spectral data (with a point resolution of 2 cm-! (0.8 

run) by de-resolving it to 4, 8, 16 cm-! (1.6, 3.2 and 6.4 run at 2000 run, 

respectively). They found that the performance of the optimal PLS calibration 

models (based on the 2000 to 2500 nm range) obtained with the original spectra 

(0.8 nm resolution) was maintained with the lower resolution spectra of both 4 

and 8 cm-! (1.6 and 3.2 run) point spacing. However calibration statistics were 

degraded when the spectra were computed with a point spacing of 16 cm-! (6.4 

nm). Similarly, Wang et az.1 25 investigated the performance of multivariate 

analysis of pharmaceutical tablets with 14 different concentrations of aspirin (85 

to 90%) as resolution was decreased from 2, 4,8, 16 to 32 cm-! (0.8, 1.6,3.2,6.4 

and 12.8 nm at 2000 nm, respectively). In this study, a high resolution FT-NIR 

spectrometer (Briiker IFS 281N, 2 cm-! resolution, range 2000 to 2500 nm) was 

used in reflectance mode of operation. They found a roughly linear degradation 

in R2 and RMSECV from 0.91 and 0.46% (respectively) at 2 cm-! (0.8 nm) to 

0.84 and 0.60% (respectively) at 32 cm-! (12.8 nm). In a short follow-up study, 

the same spectrometer was used in transmission mode with a more sensitive 

InGaAs detector. They concluded from the statistical results (R2 
= 0.96 and 

RMSECV = 0.28%) of predictive models generated using spectra collected at a 
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resolution of 16 cm- l (6.4 nm at 2000 nm) that higher resolutions are probably 

not required. A search for literature assessing the effect of resolution on the 

determination of SSC in intact fruit did not provide any material. 

Thus, high resolution « 6 nm FWHM) is probably unnecessary for predictive 

model generation in the SW-NIR region. Higher resolution often involves lower 

signal (due to use of a narrower slit) and thus lower signal to noise ratio (SNR). 

Determination of the requirements, specific to the application, are therefore 

necessary to the instrument design. 

3.2.3. Noise and Sensitivity 

Noise is inherent in low level light detection. It is often stated that quantitative 

NIR analyses requires high SNR, but the minimum level required has not been 

well defined in literature. One manufacturer of laboratory-based instruments 

(NIRSystems) benchmarks their instruments at 20 J-lA (micro-Absorbance units) 

standard deviation. 

Noise on the spectral data limits the certainty prediction from calibrations 

generated using this data126. By estimating these uncertainties an assessment of 

the robustness of each calibration model can be achieved. Theoretical estimation 

can be achieved using the following relationship: 

Lower Limit of RMSECV = ~(cr2 x b2 ) Eqn 3.1 
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where (52 = vector of variances of the spectral variables and b is the calibration 

predictive coefficient vector. 

Some workers have explored empirical validation of this estimation to a limited 

extent. For example, Lu and McClure127 evaluated the performances of four 

calibration models: (1) stepwise mUltiple regression (SMLR); (2) classical least 

squares (CLS); (3) principal component regression (PCR) and (4) partial least 

squares (PLS) in NIR spectroscopy analysis when random noise was present in 

the spectral data of computer simulated and natural data sets. In these 

experiments the ZAP function in Grams/386 was used to add normally 

distributed random noise which specified as a percentage of the highest peak in 

each spectrum. The relative performance of each noise level was made using a 

simple numerical comparison without significance testing. It was concluded that 

for synthesised data, some full spectrum calibration methods "performed quite 

well for predicting the composition of a three-component mixture even in the 

presence of 99% noise" (i.e. addition of 99% noise, i.e. SNR of 600: 1), although 

later in the same paper they report that when only one wavelength was used the 

"SEC and SEP increased as the noise level increased" (above 10%) and that "It is 

confirmed that random noise has an important effect on the performance of 

PLS". They also found that for a natural product (tobacco), the level of added 

noise above which the prediction errors became unacceptable (SEP > 0.55) was 

30% (i.e. SNR = 2000: 1). These findings seem to suggest that if a full spectrum 

method were to be used on synthesised or natural spectra then, surprisingly, SNR 

is relatively unimportant in the development of calibrations if the correct 
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chemometric technique is used. This result could lead to greatly simplified 

instrument design if verified. 

Norris128 considered the effect of instrument noise on the measurement of 

narrow-bandwidth weak absorbers. This work was based on simulated spectra 

with Gaussian absorption bands and random white noise to a specified 

magnitude. He reported a steady increase in error with noise. Data 

pretreatments reduced these errors, but did not remove the trend for error to 

increase with increasing noise. This conclusion is contrary to that ofLu127. 

While a high count is required to maximise SNR, the twin issues of the optical 

density of fruit and the limited integration period available for assessment of 

moving fruit (ca. 50 ms) drives a requirement for a sensitive assembly. This can 

be achieved by maximising collection of light, use of large detector array pixel 

size and use of sensitive detector elements. 

3.2.4. Light Detector Configuration. 

Full transmission mode has limited application to optically dense fruit (ie. either 

large or optically dense flesh) or 'non-homogenous' fruit (e.g. fruit with a large 

seed). Most literature reports of the use of NIR spectroscopy for assessment of 

internal attributes have considered stationary fruit. These systems contacted the 

sample in order to exclude spectrally reflected light from the detector. Further, 

sample size, shape and surface texture differs greatly among fruit types (apple, 

rockmelon, mandarin and kiwifruit) necessitating specific instrument design for 

each. 
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Maeda69 assessed a variety of illumination/detector configurations for use in an 

in-line setting. sse was determined of thinned skinned fruit using reflectance 

mode of operation, in which the illumination source and detector were angled 

relative to each other at < 90°, but the impact of fruit size and orientation on 

accuracy was too great to make this method successful. They concluded that, 

although measurements made in this mode could determine sse of thin-skinned 

fruit (e.g. peaches, apples and pears) accuracy was poor due to light signal noise 

for specularly reflected light and wet chemistry inaccuracies due to ill-defined 

correlated sample regions. A non-contact, full transmittance detection method 

was also trial ed, however, secondary and ternary reflected light degraded the 

quality of the acquired spectrum and limited its usefulness. An optical 

configuration which operates in transmission mode and requires contact with the 

fruit (oranges, small watermelons and thick rind melons) was therefore adopted. 

Mechanical devices required for fruit-contacting measurements may introduce 

both system complexity and speed limitations. Non-contact spectral 

measurement is therefore desirable to eliminate these considerations. 

3.2.5. Other Factors 

Temperature stability and mechanical robustness (vibration tolerance) are 

primary design considerations of instrument manufacturers. In the application of 

in-line fruit sorting, where ambient temperatures can vary by 400 e and the 

instrumentation is subjected to long work periods (> 12 hours per day) in a 

mechanically harsh environment, these criteria become two of the major 
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considerations, in terms of impact on wavelength calibration stability and 

detector responsivity. 

3.2.6. Summary 

The major criteria for in an in-line fruit sorting application are: 

• . wavelength range, 

• wavelength resolution, 

• SNR (electronic and optical), sensitivity, 

• optical geometry (lamp - sample - detector), 

• temperature stability and 

• mechanical robustness. 

Non-contact spectral measurements are required to enhance processing speed 

capability of fruit sorting system. 

Prior to the mid-1980s, patented NIR technology was used to distinguish 

damaged (bruised) vegetables or fruit using mainly reflectance methods (Table 

3.2). These spectral measurements were limited in quality due to the use of 

unrefined dispersive elements (flat, ruled diffraction gratings) and early­

technology photo detectors (e.g. photo-multiplier tubes). Also, although the work 

by Ben-Gera and Norris 129 had highlighted the benefits of the use of multivariate 

analysis (later, 1971, termed chemometrics71) to extract information from data 

and to develop efficient multivariate predictive models, high computational 
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Table 3.2. List of patents, presented in chronological order, relating to hardware for sorting of vegetables or fruit using NIR technology. 

Country Year Assignee Title Description 
(Patent Number) 
USA 1973 Brown Method for detecting bruises in fruit. Detection of bruises in fruit has been 
(US421379) Segerlind1 accomplished by measuring the reflectance of near 

30 infrared light from the fruit surface. 

USA 1975 Brown Detection of bruises in fruit is Detection of bruises in several genera of fruit 
(US3867041 ) Segerlind1 accomplished by measuring reflectance including apples, peaches, and pears by measuring 

31 ofNIR light from the fruit surface. the reflectance of NIR light from the fruit surface. 

USA 1976 Conway Method and means for internal inspection Evaluation of citrus fruits using transmission 
(US3930994) Paddock 13 and sorting of produce. optics on a moving conveyor wherein the 

2 percentage of internal damage is computed for 
each fruit. 

USA 1978 Burford Produce grading system using two visible A method for sorting articles of a given produce 
(US876085) Henry 133 and two invisible colours. according to a desired red colour and for sorting 

undesired nonvegetable articles such as dirt clods 
and rocks. 

USA 1980 Burford134 Produce grading system using two visible A sorting system, using two bands in the visible 
(US4204950) and two invisible colours. range and two in the NIR range, for undesired 

nonvegetable articles such as dirt clods and rocks. 

Japan 1988 Norinsho1 Fruit and vegetable quality measurement A system to assess quality of fruit and vegetables 
(JP8840740) 35 by production of spectrum by irradiating non-destructively using NIR spectroscopy. 

fruit with NIR rays non-destructively. 

- ... _-------
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Japan 1989 Mikio Method and device for measuring quality A system to measure the quality of a vegetable or 
(JP1301147) Masayuki of vegetable and fruit. fruit for sugar and hardness non-destructively 

Koji136 using reflected light from the vegetable or fruit of 
wavelengths e.g. 0.90 - 1.10, 1.11 - 1.31, 1.24-
1.44, 1.35 - 1.55, 1.58 - 1.78, and 1.72 - 1.92 nm. 

USA 1990* Birth Nondestructive measurement of soluble A system to determine SSC of fruit and vegetables 
(US563170) Dull solids in fruit by detection and using wavelengths in the range 700 - 1100 nm. 

Leffler 137 measurement ofNIR radiation scattered 
by internal structure of juice. 

USA 1992* Birth Nondestructive measurement of soluble An invention to non-destructively measure SSC of 
(US508970 1 ) Dull solids in fruits having a rind or skin. fruits having a rind or skin using NIR. 

Leffler 138 

USA 1992 Conway13 Method and Apparatus for Grading Fruit A method for grading the surface of fruit 
(US5164795) 9 according to surface characteristics such as colour 

and blemish using three reflected NIR wavelength 
bands. 

USA 1994* Mutsuo Method of nondestructively measuring A method of nondestructively measuring the SSC 
(US5324945) Sumio14O sugar content of fruit by using NIR of fruit using NIR radiation; measuring the 

transmittance spectrum. absorbance at a given wavelength; normalising the 
obtained absorbance; and predicting the sweetness 
of the fruit. 

Japan 1994* Mutsuo . Nondestructive measurement method for A system to obtain an index for sweetness by 
(JP6186159) Sumio141 fruit by using NIR transmittance irradiating fruits with NIR light, measuring 

spectrum. absorbance at a specific wavelength with a 
spectroscope and correcting by the fruit size. 
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- ~ -~1-

USA 1994* Iwamoto Method of nondestructively measuring Same as US5324945 
(5324945) Mutsuo sugar content of fruit by using NIR 

Kuno transmittance spectrum. 
Sumio l42 

Japan 1995 Toru Apparatus for measuring ripeness of fruit Nondestructively measure ripeness of fruit or 
(JP722983A) Hideki l43 or vegetable on branch vegetables on the plant, using a measuring 

wavelength and detecting the reflected wavelength 
and correlating it to ripeness. 

Belgium, Switzerland 1996* Blanc 144 Analysis device for automatically sorting A system using a multi-spectral-line laser, a near 
Germany,Spain, products, especially fruit or vegetables. infrared collimated laser diode, an infrared 
France, Great Britain collimated laser diode and associated mirrors, and 
Italy, Lithuania, polarising cubes to distinguish between outgoing 
Netherlands and returning beams to automatically sort fruit. 
(EP736339) 

USA 1998* Ito Non-destructive sugar content measuring An apparatus to nondestructively measure sse of 
(US5708271 ) Iida apparatus. vegetables or fruit to an accuracy of ± 10 Brix 

Terashima using NIR lasers (860 - 880, 900 - 960 nm). 
Kishimoto 
123 

Australia 1998* Salmond An Optical Device. An optical apparatus for examining an object and 
(PP3652) Greensill l in particular, an optical apparatus for examining 

45 carbohydrate constituents in a plant. 

Japan 1998* Salmond An Optical Device. Same as previous example. 
(280171198) Greensill l 

46 

* = patents dealing with assessment of sugar content. 
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requirements restricted its application. When high-powered desktop computer 

power became readily available around the beginning of the 1980s, research 

accelerated in the field of chemometric methods. Chemometrics has proven to 

be the backbone of NIR spectrometric methods allowing more diverse 

application ofNIR technology, for example rapid in-line fruit sorting. 

After the mid 1980s, most patents employed high output (- 100 W) QTH sources 

of illumination, post-dispersion by diffraction gratings and photo diode array­

based detectors and reflectance mode of data acquisition. Blancl44 continued to 

employ reflectance mode, but presented a novel use of mirrors and laser diodes 

for illumination of the sample and data acquisition. Transmission (body 

transmission) mode of spectral measurement has received preference in most of 

the patents from 1990 (e.g. Birth et al. 137). 

The listed patents describe systems which manage interference from specularly 

reflected light by physical means (e.g light-tight cups). This arrangement, 

involving physical contact with the fruit, is cumbersome and will limit 

processing speeds (typical 3 fruit per second). A non-contact optical system 

would be far more appropriate to the task of in-line fruit grading. 

A number of workers have reported the use of NIR spectroscopy for the non­

invasive assessment of internal attributes of fruit and vegetables (Table 3.3). 

Although this is not an exhaustive list of publications in this field of research, it 

is representative (that is, temporally unbiased). Of a total of 54 listed, only 6 

occurred before 1990 and 13 before 1995. It is obvious that a heightened interest 
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Table 3.3. List of publications relating to the determination of quality parameters in fruit, vegetables and fruit juice. 

Year Author Fruit Light Source Detector SNR Resolutiou RMSECV Comment 
Dispersive element (Number of pixels) (Scans FWHM(nm) (STDEV) 

IManufacturer) averaged] Range (nm] (R] 
1965 Birth & Peach QTH 150W Photo-multiplier Tube 2000:1 [400-1000] - Categorised fruit into three 

Norris 147 Apple Filter Wheel classes on .1.0D. 

1965 Yeatman & Apple QTH Photo-multiplier Tube - 690 nm (15) [0.957] 60 fruit per minute sorting 

Norris148 Filter Wheel [Dumont 6911] 744 nm (20) rate. 

1978 Ballinger et Grape Pre-dispersive Si and PbS - 0.1 - Feasibility of sorting small 

al. 149 Diffraction grating [Cary 17] [4003000] fruit like grapes or berries. 

1989 Dull et al. 121 Honeydew QTH650W Si photodiode - 0.5 2.18 Detector angle determined 
Tilting Filter [EG&G HUV -4000B] [700-1000] (75°) 

1989 Dull et af. 56 Rockmelon QTH650W Si photodiode - 0.5 1.56 Detector angle determined 
Tilting Filter [Biospect L T 7000] [800-1000] (1.95) (75°) 

1989 Kawanoet Peach - - - 0.42 (SEP) 10 wavelengths identified for 

al. 119 [Pacific Scientific 6250] [680 - 1235] [0.96] the assessment of SSC (887, 
[Technicon 500] [1100 - 2500] 985, 1057, 1128, 1542, 1610, 

1778,2118,2182 and 2242 
nm). Bias = -0.01. 

1990 Birth et al. 57 Rockmelon QTH650W Si photodiode - 6 2.18 Description of an instrument 
Potato Tilting Filter [BioSpect L T7000] [800 - 970] (2.725) design 
Onion 

1990 laenisch et Date QTH50W Si photodiode - 9 - Focussed on AOTF 

al. 15O AOTF [EG&G HUV -4000B] [800 - 1050] description 

1992 Dull et al. 122 Honeydew QTH (GE 1392) Si photodiode - -0.7 1.85 Feasibility of assessment of 
Tilting Filter [EG&G HUV -4000B] [760 - 980] (1.30) SSC in honeydew melons. 

--
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Table 3.3 (continued . 
1992 Kawano et Peach - Si [50 scans] [680 -930] 0.50 4 wavelengths identified for 

al.9 [Pacific Scientific 6250] (1.65) assessment of SSC (870, 878, 
889 and 906 nm) 

1993 Bellon et al. 12 Peach QTH 150W Si CCD (500 x 582) 90000:1 1.8 1.05 Feasibility of sorting peaches 
[Jobin Yvon CP200] [800 - 1000] (1.83) Best wavelength range was 

Diffraction Grating 7671027 nm. 

1993 Kawano et Mandarin QTH lOOW Si - 0.4 0.32 4 wavelengths identified for 

al. 68 Diffraction Grating [Pacific Scientific 6250] [680 - 930] (1. 73) assessment ofSSC (745, 769, 
(stationary) 786 and 914 nm) 
(600Ilmm) 

1993 Shiina et Pineapple - [Technicon 500] - - 1.29 Measurements were made of 

al. 151 [700 - 2500] (2.14) 3 cm slices of skin and flesh. 
Bias = -0.002 

1995 Bellon-Maurel - SiCCD - - - 60 ms integration time 

& Vigneau152 [800 - 1050] 

1995 Cho et al. 153 Apple - [InfraAlyzer 500 & 400] - - 1.07 Firmness of apples 
Filter [InfraAlyzer 
400) 
Pre-dispersive 

1996 Aoki et al. 59 Watermelon QTH 16 lamps SiPDA 9000:1 8.9 0.46 10 second measuring time 
Diffraction Grating (0.61) 

1996 Martinsen & - QTH Si CCD (753 x 488) ~ 1400:1 ~6 - 2 - 3 minutes scan time, 

Schaare50 Diffraction Grating [Electrim EDC-I000HR] [10 scans] [400 - 1100] 53 ms integration time 
(400 IImm, 850 11.5 x 13.5 /.lm pixel 
blaze) size. rms noise 140 

electrons/pixel. Saturated 
signal 200000 electrons 

-- ---
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Table 3.3 (continuedJ. 
1996 Matsumoto Watennelon QTH 16x 100W Si PDA (1 x 64) 9000:1 8.9 0.38 10 ms integration time 

et al.8 Diffraction Grating Temperature controlled ± [32 scans[ [650 -1070) (1.2) 6 wavelengths used for 
(600 Vmm) 0.05° C. accuracy ± 3 assessment of SSC (800, 820, 

840,860,880 and 894 nm.) 

1996 Osbomeet Kiwifruit QTH Si PDA (1 x 256) 30000:1 9 0.33 . 180 ms integration time 

al154 Diffraction Grating [Zeiss MMS 1] [5 scans] [3001100] (1.46) 

1996 Slaughter & Kiwifruit - Si and PbS [250 scans] 10 0.68 (SEC) Whole fruit scanned 

Crisosto155 Diffraction Grating [NIRSystems 6500] [400 -1100] (2.18) 
Pre-dispersive 

1996 Tanabe et Mango - Si and PbS - 10 0.48 (SEP) Assessment of variation of 

al. 156 Diffraction Grating [NIRSystems 6500] [400 -1100] (0.73) Focus on model perfonnance 
Pre-dispersive across cultivars. Bias varied 

widely (-3.81 - 6) on 
predictive models originating 
from a different cultivar. 
MLR identified wavelengths 
for assessment of SSC (864, 
920, 958 and 978 nm). Bias 
=-0.02 

1997 Greensill & Papaya QTH 100W Si CCD (1 x 2048) 900:1 0.3 - Dispersion element 

Newman 157 Prismls and [600-1000] comparison 
Diffraction Grating 

1997 Guthrie & Pineapple QTH 200 W Si and PbS - 10 0.75 Feasibility of assessing SSC 

Walsh158 Mango Diffraction Grating [NIRSystems 6500) [700-2500] (3.354) in pineapples and DM in 
Pre-dispersive mangoes. 

1997 Guthrie & Pineapple QTH 200 W Si and PbS - 10 1.84 Robustness of predictive 

Walsh. 10 Mango Diffraction Grating [NIRSystems 6500] [700-2500] (3.477) models for pineapples across 
Pre-dispersive seasons. 

-- -- -_._-
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Table 3.3 (continued. 
1997 Holland et Berry Puree - Deuterated triglcine - [2500 -12500] - Classification success> 90% 

al. 31 (DTGS) detector 
FT _ IR [MonitIR & 
Bio-Rad FTS-7] 

1997 Osborne et Kiwifruit QTH Si PDA (1 x 256) 30000:1 9 0.445 Feasibility of sorting kiwifruit 

al. 159 Diffraction Grating [Zeiss MMS 1] [3001100] (0.989) 

1997 Peiris et Peach QTH50W Si photodiode 0.5 0.837. Calibrations malfunctioned 

al.16O AOTF [EG&G HUV -4000B] [800 - 1050] (1.79) when used on fruit from 
different time or cultivar. 

1998 Akimoto et Watermelon QTH 16 x 100 W. Si PDA (1 x 64) 9000:1 8.9 0.46 10 second processing time 

al. 161 [NIRF2000] [640 -1050] (0.61) 

1998 Chang et Rockme1on - [Hitachi U-3410] - 1 0.485 2 wavelengths used 

al. 162 Juice Pre-dispersive [1000 - 2500] (1.707) 2270 and 2080 nm. 

1998 Guthrie et Rockmelon QTH200W Si and PbS - 10 1.84 Feasibility of assessing SSC 

al. 163 Diffraction Grating [NIRSystems 6500] [400- 2500] (3.477) in rockmelons. 
Pre-dispersive 

1998 Kawano 164 Pear QTH 2 lamps - - - - Grading 3 fruit per second 
Apple Diffraction Grating 
Mandarin 

1998 Lammertyn Apple QTH 100W Si&PbS 4 scans 0.5 SSC 0.61 Firmness, pH SSC stiffuess 

et al. 65 Double diffraction [Optical Spectrum [380 - 1650] (1.066) factor elastic modulus of the 
Grating Analyser 6602] flesh determined 

1998 Lammertyn Apple QTH 100W Si&PbS 4 scans 0.5 SSCO.65 Focussed illumination 

et al. 165 Double diffraction [Optical Spectrum [880 - 1650] (1.318) geometry, 450 determined to 
Grating Analyser 6602] be optimum. 

1998 Maeda69 Apple QTH - - - 0.56 Discusses 

Orange Diffraction Grating (1.351) illumination/detecting 
geometries. 

---

92 



Table 3.3 (continued. 
1998 Martinsen & Kiwifruit QTH Si CCD (753 x 488) ~ 1400:1 ~5 1.2 400 ms integration time 

Schaare166 Diffraction Grating [Electrim EDC-I000HR] [650 - 1100] (2.4) 
(400 l/mm, 850 11.5 x 13.5 J!m pixel 
blaze) size. rms noise 140 

electrons/pixel. Saturated 
signal 200000 electrons 

1998 McGlone & Kiwifruit QTH200W Si and PbS - 10 0.42 Firmness and dry matter also 
Kawano 167 Diffraction Grating [NIRSystems 6500] [800 - 1100] (1.328) assessed 

Pre-dispersive 

1998 Mowat & Persimmon QTH Si Array (l x 1024) ~ 1000:1 0.5 - Segregation offruit by 
Poole 168 Diffraction Grating [Ocean Optics S 1024] [550 -1000] cultivar and/or treatment. 

1998 Peiris et Peach QTH50W Si photodiode ~ 250:1 0.5 1.11 Calibrations malfunctioned 

al. 169 AOTF [EG&G HUV -4000B] [800- 1050] '(2.08) when used on fruit from 
different time or cultivar. Bias 
=-0.237 

1998 Peiris et Tomatoes QTH65W SiPDA - 0.5 0.52 Compared regression 

al. 17O Diffraction Grating [OM - 2000 Onion [650-1000] (0.72) methods, e.g. PLS, MLR and 
Meter, Dual Ocean NN. 
Optics spectrometers] 

1998 Ventura et Apple QTH6W Si PDA (l x 1024) ~ 250:1 [811 - 999] 1.14 MLR determined wavelengths 

al.11 Diffraction Grating [Ocean Optics S 1 024 (1.72) 819, 835, 859, 867, 875, 883, 
dual beam] (SEP) 891, 899, 939, 947, 971 and 

987 nm. 10 scans averaged, 
300 ms integration time. Bias 
=-0.13 

1999 Greensill & Papaya QTH 100W Si CCD (1 x 2048) 900:1 0.3 - Wavelengths indicative of 

Newman171 Prisms [Larry2048] [600-1000] maturity identified (720, 745 
and 815 nm) 

. _ ... ---- -----
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Table 3.3 (continued. 
1999 Guthrie et Pineapple QTH200W Si and PbS - 10 1.84 Feasibility of assessing SSC 

al.1n Diffraction Grating [NIRSystems 6500] [400- 2500] (3.35) in pineapples. 
Pre-dispersive 

1999 Osbomeet Kiwifruit QTH50W Si PDA (I x 256) 30000:1 10 0.27 50 ms integration time 

al. I73 Diffraction Grating [Zeiss MMS I] [300 - 1100] (1.08) average 15 spectra 

1999 Peiris et Rockmelon AOTF Si Photodiode - 6 0.978 Spatial variability of SSC. 

al. I74 Honeydew (1.79) 

1999 Sugiyama 175 Andes QTH SiCCD - 10 - Wavelengths (676 nm) 
melon [CV-04Il, Mutoh [400 -2500] determined by predictive 

Industries] models generated using a 
(16 bit AID) NIRSystems 6500 initially. 

Two dimensional spectral 
imaging. 500 ms integration 
time. 

2000 Greensill & Citrus QTH 100 W Si eCD (1 x 2048) 900:1 0.3 - Dispersion element 

Newmanl76 Prismls and [Larry 2048] [600 -1000] comparison and identification 
Diffraction Grating of maturity indicative 

wavelengths (710, 730 and 
805 nm). 

2000 Greensill & Rockmelon QTH lOOW Si PDA (1 x 256) 30000:1 10 0.636 New illumination/detector 

Walshl77 Diffraction Grating [Zeiss MMS 1] [300 - 1100] (1.181) design assessment, 
assessment of light 
penetration (> 15 mm) and! 
sse distribution. 

2000 Greensill & Rockmelon QTH lOOW Si PDA (I x 256) 30000:1 10 0.53 Assessment of calibration 

Walsh178 Diffraction Grating [Zeiss MMS 1] [300 -1100] (1.077) transfer techniques. 

--

94 



Table 3.3 (continued. 
2000 Lammertyn Apple QTH lOOW Si & PbS [4 scans] 0.5 SSC 0.61 Focussed on light penetration 

et al. 179 Double diffraction [Optical Spectrum [880 - 1650] (1.066) in fruit and illumination 
Grating Analyser 6602] geometry, 450 determined to 

be optimum. Penetration 
depth determined to be ~ 4 
mm at 500 - 1900 nm. 

-
2000 Schmilovitch Mango QTH75W PbS - 1 1.223 MLR gave best results 

et al. 18O Diffraction Grating [Quantum 1200, LTI ] [1200 - 2400] (1.545) wavelengths not given. 

2000 Segtnan& Orange Juice - Si and PbS [32 scans] 10 - A new technique dry extract 

Isaksson 181 Diffraction Grating [NIRSystems 6500] [780- 2500] diffuse reflectance (DESIR) 
Pre-dispersive assessed against standard 

curvette methods in relative 
terms. 

2000 Walshet Rockmelon QTH50Wx4 Si PDA (1 x 256) 30000:1 10 0.636 Focus on instrumentation and 

al. 182 Diffraction Grating [Zeiss MMS 1] [300 - 1100] (1.181) model generation for an at-
line sorting application (450 

light/detector angle). 

2000 Wen & Apple - Si - Si - Stem-end Icalyx against true 

Tao l83 [Hitachi KP-MI] [700-2500] defect determination. ~ 100% 
Highpass filter (700 nm) classification rates. 

PtSi 
PtSi (256 x 256) [3400 - 5000] 
[ThermaCAM PM2501 
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has sparked a great deal of interest into hardware and software improvements 

since 1995. This appears likely to continue. 

Much of the early melon work was based on assessment on samples excised from 

the fruit (e.g. Dull et ai., 1989a; Dull et al., 1989b; Dull et ai., 199056, 58, 121) 

and hence are destructive measurements and not useful to an in-line sorting 

application. Aoki et al. 59 assessed whole watermelon fruit, but neither the 

apparatus (16 light surrounding the sample with the detector contacting the fruit) 

nor the required processing time (10 seconds) was conducive to the rapid in-line 

sorting. 

Improvement in hardware technologies combined with improved chemometric 

techniques have contributed to better performance of predictive models e.g. for 

rockmelons, RMSECV has slowly decreased from < 2.1 to > 0.6% SSC through 

the 1990s. 

3.3. Spectrometer Case Studies 

3.3.1. Filter Based Instruments 

Much of the early work undertaken in NIR spectroscopy employed filter-based 

instruments. These instruments were restricted to pre-selected wavelengths 

based on knowledge of relevant band assignments. Birth and Norris147 reported 

the development of a portable filter-based instrument for determination of 

internal attributes of fruit and vegetables (e.g. hollow heart in potatoes, ripeness 
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of peaches, water core in apples). In 1965, Yeatman and Norris148 presented an 

apparatus to sort apples by chlorophyll content. This instrument used a filter 

wheel monochromator (690 and 744 nm), allowing transmittance measurements 

which were differenced. Low chlorophyll content was associated with high 

eating quality (fruit maturity). This system could grade apples into 5 categories 

at a rate of 1 fruit per second. However, the relationship of chlorophyll to eating 

quality was cultivar and growing condition specific which degraded the 

instrument performance. 

Ballinger et al. 149 automated a 'light sorting of fruit mechanism' based on the 

'difference meter' which had been developed by Birth and Norris147 ten years 

previously. The original instrument of Birth and Norris was capable of sorting 

blueberries at a rate of 2000 berries in a 10 hour period when operated by 6 

workers. Ballinger et al. 149 achieved rates of 64 berries per minute whilst 

sorting into 5 grades and extended its use to other small fruit like grapes. These 

determinations were made in full transmission mode and detector technology 

(photo-multiplier tube) of this period was the fruit-size restricting parameter. 

Burford and Henry133 (Table 3.2) patented a 'Produce grading system using two 

visible and two invisible colours', which was based on filter technology designed 

to identify the presence of non-vegetative matter (e.g. dirt or rock) in produce in 

a process line. The basis of the patent was the relationship between four 

wavelengths (530, 660, 800 and 900 nm). No detail on the type or bandpass of 

the filters was provided. 
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Dull et al.1 22 employed tilting interference-filter technology for wavelength 

scanning and a Si detector with preamplifier to make non-destructive reflectance 

measurements to determine the percent SSC (SEC 0.82) in whole honeydew 

melons. This instrument had the advantage of flexibility due to wavelength 

range but the disadvantage of a number of moving parts which, generically, are 

prone to undesirable effects from temperature and vibration. 

Filter-based technology thus offers a low-cost alternative in instrument design 

however, the disadvantages, in terms of mechanical robustness, speed of 

operation and wavelength selectability make it unsuitable to an in-line sorting 

application. 

3.3.2. Gratings/Prisms Based Instruments 

The advent of high quality semiconductor photodetector arrays (PDAs and 

CCDs) has led to a proliferation of commercially available stationary diffraction 

grating based instruments. Since no published work was discovered with respect 

to empirical comparison of the results of the prism versus diffraction grating 

designs, a gap exists in this body of knowledge. Currently no known instrument 

manufacturers employ pris:p1-based technology despite some possible 

advantages, in terms of even efficiency distribution, high throughput and low 

cost. 
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3.3.3. AOTF Based Instruments 

When this work was commenced the poor efficiency « 40%, unpolarised input 

light), high power consumption (and hence associated noise) and high cost of 

AOTFs (Te02 crystals) (>$20K) limited application to the task of in-line sorting 

for fruit. However, Tran et al.47 reported the development of a new acousto­

optic tunable filter (AOTF) that had a wide spectral tuning range, high resolution, 

no sidelobes, and requires low RF powers. It required approximately 14 times 

lower driving power for a noncollinear AOTF with the same aperture, had a 

spectral range >600 nm with a relatively constant diffraction efficiency of ~ 70% 

(for polarised input light) for the entire tuned region and a resolution of ~3 nm 

across the tuned spectral region. 

AOTFs offer can offer scanning speeds < 10 J..LS per wavelength, however the 

total spectral acquisition time required for good quality spectral data (high SNR) 

can be long. The integration time (spectral acquisition time) is dependent on the 

sensitivity and SNR characteristics of the photo detector used, for example, 

miniature, grating-based spectrometers using similar photo-detection systems to 

AOTFs frequently use integration times of ~ 50 ms per scanned wavelength. 

This would mean that the total spectral acquisition time for an AOTF would be 

multiples of 50 ms (multiplied by the number of wavelengths used). Also, 

although transmission efficiency has improved (~ 49%) (Brimrose Corporation 

of America, 2000) it remains low therefore reducing sensitivity. laenisch et 

al. ISO (Table 3.3) designed a date sorting instrument based on AOTF technology 

which had a reported sorting capability for dates of 5 items per second. 

However, they concluded that this design would be restricted to small fruit due to 
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low AOTF efficiency. AOTF-based instruments are therefore unlikely 

candidates for rapid in-line sorting of fruit larger than dates. 

3.3.4. LED Based instruments 

An electronically scanned, small size 32 wavelength NIR spectrometer was 

developed for use as a handheld spectrometer and for a process application184. 

The design relied on a linear light emitting diodes (LEDs) (200 m W, 13.3 run 

FWHM) array light source and a fixed diffraction grating monochromator. A 

series of LED spectrometer modules was manufactured for short wave near 

infrared (SW-NIR) specifications, covering the range from 832 to 1048 run. 

However, the range of this instrument is restrictive and may eliminate the 

assessment of certain fruits or attributes. 

Schnable185 reported the development of a portable instrument with a high-speed 

multiple-wavelength LED array source (range 420 - 950 nm), and simultaneous 

detectors for absorbance and 90 degree nephelometry. Absorbance values and 

simultaneous 90 degree-scatter intensities at six different wavelengths were 

determined and stored every 0.02 s. Rugged, laptop compatible, portable and 

inexpensive, the LED instrument was useful for discrete or on-line VIS-NIR 

absorption analysis and turbidity, or turbidity ratio, analysis. However, the slow 

scan rate of this instrument would exclude it from candidacy for a fruit sorting 

application. 

LED technology offers potential for a fruit sorting application but suffers from 

similar restrictions to the filter based instruments in that their design may be 
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specific to a sample type and hence would not be optimised to all fruit types. If 

assessment were required for a different sample LED wavelength modification 

would be necessary. Further, it is doubtful whether LEDs emit sufficient light 

energy (200 m W diffusely emitted) to penetrate to depths considered useful to 

sort fruit rapidly and/or with thick optically dense exocarp. 

3.3.5. Laser Based Instruments 

Sample illumination by high intensity sources offers the possibility of obtaining 

constituent-descriptive data from greater fruit depths. For some fruit, full 

transmission may be possible. However, high intensity white light sources bring 

an inherent heat-load problem. Alternatively, laser light, at only the required 

wavelengths, offers the advantage of high illumination without the heat load. 

Another possible benefit, yet to be assessed, is that data may be cleaner due to 

fewer interactions between wavelengths because of the number of lasers used. 

Passively mode-locked titanium:sapphire laser provides new opportunities for 

acquiring spectral data in the near infrared, a region not commonly accessible to 

synchronously pumped dye lasers. A system designed along the lines of early 

pre-dispersive systems but incorporating tunable lasers or laser arrays as the 

monochromatic source instead of the traditional moving gratings is therefore 

possible. These systems would have the benefit of high power per wavelength, 

the possibility of high spectral scan rates if laser diode arrays were to be used, 

and low noise component (with use of a PIN detector). 

Tunable lasers and laser diode arrays have become widely available since the 

mid-1990s and affordable (AU$20K) for this project since the late 1990s. 
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Nakamura186 implemented a non-destructive inspection method for the 

quantitative analysis of moulds inside soya beans. Three near-infrared lasers 

(150 mW 810 nm, 160 mW 1064 nm and 80 mW 1319 nm) were used for 

multispectral transmission imaging (Hamamatsu C2741-03 NIR Vidicon camera) 

of the beans. The results of these experiments were very successful, achieving 

discrimination between one species of old (green old) and 'good' beans. 

Meurens and Moons187 constructed and tested a system incorporating a 700 mW 

Titanium:Sapphire continuous wave laser and a sensitive CCD detector to 

spectrally examine solid samples such as apples using NIR spectroscopy for 

evaluation of internal attributes. A comparison of spectra taken by a CCD 

spectrometer (Ocean Optics S2000) on apples illuminated by this tunable laser 

(range 730 to 830 nm, in 5 nm increments) and alSO W tungsten halogen lamp 

was undertaken with encouraging results. They concluded that the determination 

of optical density using transmitted light through whole apples in the range of 

730 to 830 nm was better using the laser light than the white light source, based 

on the performance of predictive models (MLR) to determine SSC (e.g. R2 = 0.8 

and 0.5, laser and QTH data, respectively). 

Blancl44 (Table 3.2) patented a system employing an NIR laser diode and an IR 

laser diode associated with mirrors and polarising cubes which distinguish 

between outgoing and returning beams. Measurement time was reported to be -

66 J.lS but few other details were given. 
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Ito et al. l23 (Table 3.2) patented an apparatus to non-destructively measure sugar 

content of a vegetable using three NIR lasers in the range 860 to 890 nm 

(specifically 910 - 915 nm (SSC), 860-890 nm and 920 - 925 nm non-SSC 

reference bands). An accuracy off 1%° SSC and R2 of 0.85 was reported. This 

work formed the basis of a system marketed by Sumitomo Metal Mining Co. 

Ltd. 

Sumitomo Metal Mining Co. Ltd. employs laser sample illumination instead of 

QTH. It offers systems to sort melons, apples, peaches, pears, nashi and 

watermelon at a maximum rate of 2 fruit per second (other performance results 

are unavailable). Very little system detail is available from this company so an 

in depth assessment is not possible. Again, the cost is > AUS$IM which makes 

it prohibitively expensive for most Australian customers. 

The major drawback of these systems is their high overall costs (> AU$20K) 

relative to the low cost « AU$6k) of miniature spectrometers and safety issues 

inherent in handling class III and IV lasers in Australia. 

3.3.6. Detectors 

Availablity of Si based PDAs and CCDs with a range of pixel and array sizes, 

sensitivity, well capacity, peak wavelength efficiency and readout rates allows 

the detector to be optimised for each application. For example, Bellon et a/. l2 

reported the use of a spectrometer based on CCD technology (range of 800 to 

1050 nm). Image acquisition time (20 spectra composed one image) for this 

instrument was 40 ms and a high SNR (> 27000: 1) was reported. A predictive 

model generated on 54 and tested on 25 peaches of the population resulted in an 
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SEP of 1.04° (SSC). Despite the apparent potential usefulness of this instrument 

no further infonnation was published on it. 

No work has been published to date on an empirical comparison of a number of 

PDAs and CCDs for the design of an instrument for rapid in-line sorting of fruit. 

However, Godfrey 188 gives a useful theoretical comparison of a wide variety of 

photodetectors. 

3.3.7. Optical Geometry 

Another NIR fruit sorting spectroscopic system design was presented by 

Matsumoto et al. 8 optimised many crucial aspects of the overall design of an 

NIR fruit sorting system including, sample illumination geometry and power, 

detector optics and electronic noise levels. The resultant system illuminated the 

sample with 16 x 100 W QTH lamps and achieved an SNR of ~ 3000:1 (at 3 Au). 

Spectral acquisition and processing time was 5.82 seconds which results in a 

very slow fruit processing rate of < 12 per minute. 

Hiromu Maeda69, representative director and president of Fantec Research 

Institute, presented a report on the ~ 1998 status of non-destructive measurement 

techniques for analysing internal attributes of fruit on-line using NIR 

spectroscopy which discussed the evolution of Fantec's research through many 

typical design questions related to on-line fruit grading. Reflectance 

spectroscopy was reported to be successful for small, thin skinned fruit (e.g. 

apples, pears, peaches) a decision was made to switch to transmittance 

measurements in 1996 in order to gain higher precision and accuracy. In 
104 



Literature Review/Case Studies 

transmittance mode of operation, they examined the relative potential of a 

number of illumination technologies and geometries. For example, one system 

used opposed QTH light source and detector on the optical axis, and another used 

illumination by a battery of QTH light sources and detection through a light tight 

acceptance probe. The latter arrangement was adopted with good success in the 

determination of SSC and acid in oranges (R = 0.96, SEP = 0.39, and R = 0.95, 

SEP = 0.12, respectively) with a sorting rate of3 fruit per second (maximum). 

A number of other Japanese companies market fruit sweetness sorting systems. 

Mitsui Mining and Smelting Co. Ltd. l64 which first developed a sweetness 

sorting machine for peaches in Japan in 1986 (first marketed in 1989). This 

system operated in reflectance mode and a later version (released in 1990), 

concentrating on smaller fruit like peaches, pears, apples and citrus fruit used 

transmittance technology. Reflectance mode continues to be used for large fruit 

like melons with the sample being illuminated by an array of light sources 

(details not available) and can function on small fruit (apples, oranges, etc.). The 

process rate is 3 melons per second and 2 watermelons per second with an 

RMSEP 0.5 0 SSC for both fruit and similar rates for small fruit. This company 

also markets a full transmittance system to sort citrus fruit. This system can 

process a variety of citrus fruit at 6 samples per second with an RMSEP of 0.5 0 

SSC and 0.2% acid. Details of the system components are, naturally, protected 

intellectual property. The assessment of these systems at a more fundamental 

level is not possible. This technology is not available outside Japan. 
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3.3.8. FT -NIR Based Instruments 

Fourier transform (FT) spectroscopy has become a very successful analytical tool 

for some applications mainly due to their high frequency precision and high 

sensitivity characteristics. Their major drawbacks are their high sensitivity to 

vibration and temperature due to their delicate moving mirror instrumentation. 

This alone is sufficient to exclude them from candidacy for the application of 

fruit sorting in an in-line setting. 

The principles of FTIR spectrometry are illustrated by the novel fibre-optic 

Fourier transform spectrometer described by Stelze40. The optical retardation 

between the arms of a Mach-Zehnder-type interferometer made of single mode 

optical fibre is modulated by variation of the fibre temperature. Frequency shifts 

within the observed spectra was explained by the dependence of the refractive 

index on temperature, dnldt. The bandwidth of this experimental system was 633 

nm (due essentially due to the cutoff imposed by the fibre material) to 935 nm 

with a resolution of - 0.3 nm at 824 nm. This system alleviates many of the 

disadvantages of more traditional FTIR spectrometers (e.g. accurate positioning 

of moving parts) and its bandwidth was suitable for the application of sse 

measurement in intact fruit. Its data acquisition rate, although not explicitly 

stated in terms of wavelengths or wavenumbers per second, is apparently greater 

than 40 nm per ms, making it unsuitable for assessment of moving samples as in 

an in-line setting. 

Another variant on the design of a Fourier transform spectrometer was presented 

by Prunet et al.1 89. The novelty of this work came from the interferometer 
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designed, with two identical Wollaston prisms. The interferogram, formed at 

infinity in the spatial domain, is independent of the size of the source and of its 

position. By associating the birefringent interferometer with a lens and a linear 

CCD sensor, they realised a spectrometer with a resolution about 19.5 nm at 580 

nm and a range from 400 to 1100 nm. This system overcame some physical 

disadvantages of the traditional FTIR spectrometers but the effect of temperature 

variation and data acquisition rate was not assessed. The poor wavelength 

resolution is likely to preclude application to the sorting of fruit for SSC content. 

3.4. Calibration Transfer 

Although many workers (e.g. Bouveresse96, 99, 113, 114; Dardenne et a/190; de 

Noord115. Despagne191, 192. Dreassi193 . Duponchel194. Geladi lOS . Shenk and , " , , 

Westerhaus 195; Sjoblom 1 05; Sweirenga 11 0) have researched calibration transfer 

techniques, only one researcher31 applied these techniques to fruit. They 

reported models using the first PC scores of the pre-treated spectra from one 

spectrometer were able to correctly assign the fruit species of between 91.1 and 

96.4% of the pre-treated spectra of independent test sets. However, the data were 

of purees of berry fruits collected using FTNIR spectrometers and therefore the 

techniques may not be applicable to transfer of calibrations of intact fresh fruit 

across PDS or CCD based instruments used in an in-line setting. 

Blanco et a/. 196 discussed the problems potentially ansmg m transferring 

calibrations between diode array UV -Vis spectrophotometers. They highlight the 
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problem of wavelength differences between spectrophotometers in relation to the 

transfer of predictive models for binary mixtures of theophylline and 

doxylamine. They developed a method for aligning instrumental wavelengths on 

the basis of reference wavelengths and applied this to the transfer of predictive 

models developed from data collected from one spectrophotometer across four 

others (4 x Hewlett-Packard HP 8452A and 1 x HP8451A). Other literature has 

indicated that calibration transfer across instruments is likely to be seriously 

affected by changes in photometric responses of photodetectors and changes in 

illumination which was not discussed in this paper. Hence, these issues and 

other related additional complications when used with intact fruit in an in-line 

setting remain to be answered. 

3.5. Conclusion 

Instrumentation based on a QTH light source, post-dispersive spectrometer optics 

using dual prisms or holographic concave diffraction grating dispersion elements 

and Si or InGaAs array detector technology appears to be appropriate for the 

application of in-line sorting of fruit, in terms of wavelength range, wavelength 

resolution, SNR, speed of operation, mechanical stability and cost. This 

technology has been adopted in commercial fruit sorting operations in Japan. 

Technologies such as AOTF, tilting grating pre-dispersive, PbS and InGaAs offer 

specific advantages, but disadvantages of limited array size availability, cost and 

mechanical instability make them currently unsuitable. Technologies involving 

high intensity light sources (e.g. lasers) may have significant benefits, in terms of 

high SNR, but their high cost and safety requirements makes their use 
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challenging. Systems which use discrete wavelength illuminators in low 

numbers (e.g. filter-, LED-, laser-based instruments) may hamper their predictive 

efficiency by restricting their ability to employ powerful chemometric and data 

pretreatment methods (e.g. MLR, differentiation). 

An emerging trend is that most companies are moving away from reflectance 

mode of detection to transmittance mode. Of those companies using 

transmittance technologies all require a detecting probe in contact with fruit, 

therefore limiting process rates. The process rate appears to be stalled at - 2 - 3 

samples per second with the exception of one (Mitsui Mining and Smelting Co. 

Ltd) capable of6 samples (citrus fruit) per second. 

A number of issues continue to require clarification with respect to NIR fruit 

sorting design, for example 

• What is the appropriate wavelength range to use? 

• What is the appropriate wavelength resolution? 

• What is the most efficient spectrometer optical design to use for this 

application? 

• What photo detection system is most appropriate to this application? 

• What level of SNR must be achieved for robust predictive model generation 

(considering noise-handling capabilities of chemometric techniques)? 

• How will environmental conditions (e.g. temperature and vibration) impact 

system performance? 

• What sample regions should be optically sampled to be representative of the 

entire fruit? 
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• How can predictive models generated on one system best be transferred to 

another? 

The results of the research undertaken to answer these questions have been 

individually published and are presented in the following chapters. The aim of 

this thesis was to determine criteria important to the design of a NIR 

spectroscopic system used to automatically sort a variety of fruit ranging in size 

from 40 to 180 mm diameter for a variety of internal characteristics, e.g. sse 

andDM. 
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4. An Experimental Comparison of Simple NIR 
Spectrometers for Fruit Grading Applications 

This chapter has been accepted for publication under this title in the Journal of 

Applied Engineering in Agriculture, (2000). 

4.1. Introduction 

Due to increasing consumer demands, large-scale changes in both the production 

and retail sectors of the fresh fruit and vegetable industries in the developed 

countries of the world are resulting in increasing adoption of technology to 

maintain acceptable product quality. Ever more stringent standards which affect 

factors such as shelf life, appearance and flavour are being imposed on fresh 

produce by retailers. This is increasingly forcing the issue of quality control onto 

the individual producers and packing operations at 'farm gate' level. The sheer 

volume of produce passing through individual packing sheds means that the 

adoption of automated, uniform quality assessment procedures is becoming 

essential. One method that has received considerable attention is the use of near 

infrared (NIR) radiation to assess the level of ripeness and/or sweetness of the 

fresh product by relating the spectral response in the NIR region to constituents 

like total dissolved solids content66, 197, 198. When used in conjunction with a 

visible (colour) sensor on a conveyor system, rapid and reliable grading of 

produce becomes a possibility. An NIR system would need to achieve sorting 
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rates of 3 to 15 fruits per second (dependent on commodity) to be considered 

financially viable. 

Spectrometers designed for the NIR region have included instruments based on 

either pre- or post-dispersion optical geometries. Pre-dispersive instruments 

illuminate the sample with monochromatic light. They have limited illumination 

power to avoid dispersion element damage and have slow spectral acquisition 

times. Post-dispersive spectrometers can use an illumination source which 

contains all wavelengths and which is power-limited only by the criterion to 

avoid sample damage. When high rates of data acquisition (e.g. in-line fruit 

grading) are desired, post-dispersive spectrometers have the capability of 

processing all wavelengths simultaneously with the use of multi-element 

detectors. Both pre- and post dispersive designs have incorporated the use of 

interference filters 199, diffraction gratings with photodiode detectors200 and 

diffraction gratings with charge-coupled device detectors12. 

Much laboratory work has been performed in recent years to determine the 

internal attributes of many fruits using NIR radiation, e.g. data published for 

pawpaws171, 199, mangoes and pineapples158, honeydew melons122, peaches and 

citrus9, 68 and kiwifruit155, 201. Measurements have been made using both the 

reflectance and transmission modes of operation. In the reflectance mode, 

instruments measure radiation scattered from a thin, near-surface layer of the 

fruit and presuppose a correlation between these measurements and the 

properties of interest in the bulk flesh. In transmission measurements, radiation 

is detected after passing through more of the body of the sample, dependent on 

illumination/detector geometry. Transmission mode possesses two major 
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advantages over reflectance; firstly, a direct measurement of the bulk flesh 

properties is undertaken and secondly, there is no specularly reflected 

background radiation interfering with the results. Reflectance data often requires 

mathematical pretreatment (e.g. second derivative) to remove interference of 

specular radiation which increases processing time66. Absorption and scattering 

of the incident radiation is dependent upon physical and chemical characteristics 

of the fruit (density, size, water content, total soluble sugar (SSe) content, 

presence of seeds etc.). Due to long pathlengths, characteristic in transmission 

mode measurements, severe attenuation of the incident light occurs. High 

intensity light sources may be utilised to increase the transmitted signal but these 

may cause sample damage due to unacceptable heat loads. Alternatively, the 

inherent low signal level issue can be addressed by optimising instrument design 

factors for the application, such as dispersion element efficiency, light source 

configuration and detector sensitivity. The primary factors affecting the 

perfonnance of the spectrometer operating in transmission mode are its 

sensitivity to extremely low light levels, rejection of background light, 

insensitivity to variable environmental conditions (e.g. temperature and 

humidity), linearity of response, effective bandwidth and data processing rate. 

Sensitivity, in tenns of signal throughput, is the one of the main considerations 

for these systems. Resolution can be considered a secondary concern since 

spectral features in the NIR region are predominantly vibrational overtones or 

combination bands of fundamental molecular vibrations and hence are very 

broad (typically 40nm full width half maximum (FWHM)14). 
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High resolution, commercially available laboratory-based spectrometers are 

currently available but are generally expensive and unsuitable for integration into 

an industrial process line. This study focuses on the assessment three simple 

wavelength dispersion elements, in terms of spectral range, resolution, . linearity 

and throughput, for the design of a simple, low-cost, robust NIR spectrometer for 

use in automated fruit grading systems. 

4.2. Theory 

The theory of wavelength dispersion by prisms and diffraction gratings is well 

documented in the literature (see, for example Demtroder202) so we confine this 

discussion to a brief overview of the relevant equations applicable in this 

instance. The terms used in the equations are defmed in Figures 4.1 and 4.2. 

Dispersing 

III 

g 

Figure 4.1. Defining terms for an equilateral prism. 

4.2.1. Prism 

refractive index, n 

Red 

Blue 

When passing through a prism, light is deflected by an angle ~ according to its 

incident and exit angles, the angle of the prism, e, and the refractive index, n, of 

the prism material (Figure 4.1). If the incident and exit angles are equal then the 
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light travels parallel to the base of the prism and ~ then defines the angle of 

minimum deviation. Under this condition, the angular dispersion, d~/dA, is 

independent of the prism dimensions and a function of the prism angle and the 

dispersion, dn/dA, through 

dP 2sin(E/2) dn 
-= 

~1-n2 sin2(E/2) dA dA 
Eqn 4.1 

The resolving power, ')...1 M is given by 

A dn 
!:1A = g dA 

Eqn 4.2 

where 'g' is the base width of the prism and is related to the limiting aperture 'a' 

by straightforward trigonometrical manipulation. 
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Figure 4.2. Defining terms for a diffraction grating. 
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4.2.2. Diffraction Grating 

For a diffraction grating illuminated by a parallel beam of light of wavelength A, 

incident at an angle a to the grating normal and reflected at an angle ~ on the 

opposite side of the normal (Figure 4.2), the grating equation is given by' 

d(sin ex. - sin 13) = mA. Eqn 4.3 

where m is the order of diffraction. 

If the grating has N grooves, the intensity of diffracted waves, IW), is given by 

Eqn 4.4 

where 10 is the incident light intensity and R(e,~) defines the grating reflectivity. 

A highly non-linear function results exhibiting a peak around the blaze angle of 

the grating. 

The angular dispersion is independent of the number of grooves and is 

determined by the equation 

d13 m sin ex. + sin 13 
= =-----'-

d'A. d cos 13 A. cos 13 

The resolving power is given by 

A. 
-=mN 
~A. 

Eqn 4.5 

Eqn 4.6 
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4.3. Experimental Method 

4.3.1. Materials 

4.3.1.1. Prisms 

SF18 glass, used in the equilateral prism (25 mm sides, antireflective coated, 

Edmund Scientific Co. Barrington U.S.A) incorporated in the prism based 

designs, had a high transmission coefficient (> 0.95)(Fig. 4.3) and was highly 

linear in the spectral range of interest (650 to 1050 nm). The dispersion of the 

prism describes the effective change in the refractive index of the material for 

different wavelengths of radiation. The refractive index was a function of 

wavelength of the form 

n(.J) = 1.6324304 + 2.0603786xlO-5 .J + 44.88937 / .J 2 (Iv in nm). 

The dispersion follows by a trivial differentiation yielding a weakly falling, 

linear function of wavelength in the NIR region. The characteristics of the glass 

were derived from commercial data (Sumita Optical Glass, Inc., Urawa, Saitama, 

Japan). 

The first instrument design, utilizing a single prism, was based on traditional 

prism-based spectrometers, ie. collimated light was made incident on a single 

prism and the emergent beam focussed onto a detector. The second design 

incorporated an additional prism in the optical train of the first configuration to 

increase dispersion and therefore improved resolution (Figs. 4.4a and 4.4b). 
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Figure 4.3. Illustration of the relationship between refractive index, optical 
transmission and diffraction grating efficiency and wavelength. 

4.3.1.2. Diffraction Grating 

For the assessment of a diffraction grating dispersion element, a unit based on 

traditional grating-based spectrometer designs used a diffraction grating (25mm 

square, ruled, 1200 I mm-1
, blazed at 750 nm, gold coated) supplied by Edmund 

Scientific Co. The grating normal was mounted at 17° to the incident radiation 

and first order wavelengths used for the assessment. The grating efficiency was 

non-linear peaking at the blazed wavelength (peak efficiency of ~ 74% at 750 

nm) and decreasing in efficiency away to ~ 66% at 650 nm and 50% at 1050 nm 

(Figure 4.3). A diagram of the optical configuration is given in Fig. 4.4c. 
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4.3.1.3. Detector 

The detector (Lastek, Adelaide, Australia, Larry, Model 2048) was purchased as 

a commercial package and incorporated a 2048 pixel, line element CCD (Sony 

ILX 503A) with a polymer window, a 500kHz, 12 bit ADC card and controlled 

by a custom data analysis and acquisition package (Lastek, Adelaide, Australia, 

SpectraSolve v 4.0). Manufacturer's specifications of this detector were: pixel 

size = 14 x 12 ~m, well capacity = 95000 electrons, dark signal (25 0 C) = 185 

electrons, sensitivity = 23 electrons per count and peak response at 550 nm. 

4.3.1.4. Spectrometers 

A vertical parallel slit S 1 of width 1 0 ~m was mounted approximately at the 

focal length of lens LIto act as a real object and define the input beam to the 

spectrometer (FigA.5). Lens Ll provided a parallel beam of light incident on the 

dispersing element. The position of L 1 relative to S I was adjusted for optimum 

resolution and intensity for the particular dispersing element employed. Lens Ll 

comprised a combination of two plano-convex lenses (diameter = 38 mm, focal 

length = 68 mm) positioned to give a total focal length of 35 mm. Each lens was 

stopped to an f-number of 4, yielding an overall f-number of 2.1 for the 

combination. A lowpass filter « 550 nm cutoff) was inserted into the optical 

path between lens L 1 and the dispersion element to block second order effects 

characteristic of diffraction gratings. The dispersed radiation was focussed onto 

a CCD with an achromatic lens L2. Focal lengths for L2 of250 mm and 60 mm 

were selected for the prism and diffraction grating configurations respectively to 

ensure a suitable linear dispersion of the spectrum across the CCD face. Typical 

integration times for the collection of spectra were in the range 10 - 100 ms. 
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A 

B C 

Figure 4.4. Diagrammatical representation of the optical geometries used 
for the single prism, two prism and diffraction grating spectrometers. 
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Initially, the stability of the light source was monitored using an optical fibre 

(500 Ilm diameter) positioned near the rim of the elliptical reflector and viewing 

the lamp. The monitored signal was attenuated using neutral density filters and 

recorded on a group of dedicated pixels on the detector via an optical fiber link. 

This signal could subsequently be used for intensity normalization to correct the 

spectrum for any possible fluctuations in the light source. This procedure was 

found to be unnecessary due to the stability of the power supply and light source 

and therefore not used any further. 

Light 
Source 

~ V 
Slit Sl 

<: ::>Lens Ll 

Dispc rsiOD 

Eler ent 

c::::: :> Achromatic Lens 
L2 

" C~D Detector 
,/ 

Li 
Xi 
~, 

ght 
19bt 
ox 

Figure 4.5. Diagrammatical representation of the NIR spectrometer. 

The spectrometers (beam collimating and focussing optics, wavelength 

dispersion element and photodetector) were designed, constructed and housed in 
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a light tight box to eliminate the effects of stray light. An opaque test sample 

was placed in the sample position to test the system for this purpose. A diagram 

is shown in Figure 4.5. 

Samples were illuminated using a 100 W tungsten halogen bulb powered at 12 V, 

8 A by a low ripple DC power supply (Power House Pty. Ltd., Brisbane, 

Australia, L1288) mounted at the primary focus of a rhodium coated elliptical 

reflector (Melles Griot, Ivine, Ca., 02REMOI4). Electrical input power to the 

bulb was typically in the range 90 - 100W. 

4.3.2. Method 

4.3.2.1. Spectrometers 

Measurements were made of light from a HgAr discharge source (Ocean Optics, 

Inc., Dunedin, Fl., HG 1) positioned 5 mm from S 1. Spectral data were acquired 

using SpectraSolve v 4.0 with Larry addin detector driver package. Known 

spectral peaks (manufacturer supplied) were associated with pixel number and a 

calibration equation generated using TableCurve Windows v 1.10 (San Rafael, 

Ca.). Spectra were regenerated using calculated wavelengths to determine 

spectral range. Resolution was determined by full width at half maximum 

(FWHM) at 763 nm. 
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Diffraction Grating 

Dual Prisms 

Single Prism 

650 700 750 800 850 900 950 1000 1050 

Wavelength in nm. 

Figure 4.6. Comparison of the relative resolution and bandwidth of the 
diffraction grating, single prism and double prism spectrometers using a 
HgAr discharge source. Baselines have been displaced for clarity. Bars 
indicate manufacturer's specified peak intensity. 

Throughput was assessed by comparison of peak heights of spectral responses to 

a 750 nm narrow bandpass filter (SI0-750-F, Corion, Franklin, Ma.). Each 

configuration was exposed to direct illumination by the stabilised power supply 

attenuated by two neutral density filters (ADI00F and AD30F, Corion, Franklin, 

Ma.) and passed through the 750 nm bandpass filter. 

Linearity of response was visually assessed by comparing spectra of each system 

against the manufacturers specified peak intensities for the HgAr discharge 

source plotted as bars overlaying response plots for each system (Fig. 4.6). 

123 



! , 
f 

Experimental Comparison of Simple NIR Spectrometers 

I 
4.3.2.2. Fruit Assessment 

The fruit samples were positioned 5 nun from the slit on the optical axis with the 

light source. This position ensured full transmission mode was achieved and 

eliminated specular reflectance effects. The fruit under test was positioned at the 

secondary focus of the elliptical reflector, although positioning was found not to 

be critical as the fruit randomly scatters the incident radiation and acts as a 

diffuse, poorly defined obj ect. 

Representative batches of 18 limes at differing stages of maturity (assessed 

visually in the field) were collected from the authors' farms and stored in a 

refrigerator at approximately 5° C if same day experimentation was not possible. 

All fruit samples were allowed to equilibrate to room temperature (25 0 C) before 

measurements were made. The fruit samples (~ 47 - 60 rom diameter) were 

presented intact to each of the spectrometers in three orientations (ie. along the 

distal axis and along the equatorial axis in two orthogonal directions). Hence 

each sample produced three spectra increasing the total number of spectra 

recorded to 54. Each dispersing element configuration was optimized to 

maximize resolution and intensity using measurements of spectra of a 

commercial HgAr discharge source, positioned to illuminate slit S 1 prior to 

sample spectral measurements to assess each at its individual optimum 

performance level. 
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4.4. Results and Discussion 

4.4.1. Comparison of Spectrometer Performance 

Spectra recorded by the single prism, double prism and diffraction grating 

spectrometer configurations when illuminated by the HgAr discharge source are 

shown on Figure 4.6. The resolution measured at 763 nm FWHM was 3 nm, 4 

nm and 6 nm for the diffraction grating, dual prisms and single prism, 

respectively. Linear dispersion (0.53, 0.26, and 0.15 nm/pixel for the diffraction 

grating, dual prisms and single prism, respectively) of each system was in good 

agreement with the theoretical predictions as shown in Table 4.1. 

Table 4.1. Observed and calculated resolution of the three spectrometer 
configurations. 

Configuration FWHM(nm) linear dispersion linear dispersion 

at 763 nm nm / pixel nm / pixel 

(observed) (observed) (calculated) 

Single prism 6.04 0.56 0.53 

Dual prism 4.43 0.23 0.26 

Diffraction grating 2.96 0.16 0.15 

Peak heights resulting from exposure to attenuated light from the stabilized 

power supply and passing through a 750 nm bandpass filter were 2500,2400 and 

1500 counts for diffraction grating, dual prisms and single prism, respectively. 

The band pass of this filter coincided with the peak efficiency for the grating so 

results for the grating may be slightly optimistic because grating efficiency 

deteriorates away from this high point. The lower than theoretically expected 
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efficiency of the prism based systems may be attributed to the design of the 

antireflective coating (MgF2' thickness optimized for 550 nm) and the high angle 

of incidence (60°) on the first interface. Reflectivity of the antireflective coating 

was calculated to be ~ 7.5% at 60° incident angle. Throughput for the prism 

based instruments may be improved by more appropriate antireflective design. 

The most pronounced difference in the spectra arose in the effective useful 

bandwidth of operation. The prism configurations had a relatively uniform 

transmission function through the visible and NIR (~400 - 1050 nm) and closely 

reproduced the HgAr discharge source intensity curve supplied by the 

manufacturer. The diffraction grating, however, had a non-linear, wavelength 

dependent efficiency which was a function of the blaze angle and the direction of 

reflected radiation relative to the grating normal. When optimized for maximum 

intensity and resolution, the useful bandwidth of the grating lay in the 650 - 900 

nm range and spectral features in the region of the blazed angle were 

significantly enhanced. This may have a significant impact on the usefulness of 

the grating instrument for applications involving the analysis of raw spectral data 

unless additional signal processing to correct for the variation in efficiency is not 

performed. For example, physiological changes occurring in the fruit during the 

ripening process can lead to spectral signatures of maturity, for example 

variations, in the relative intensity of features and an increasing total 

transparency to radiation. In addition, the NIR spectra are generally 

characterised by broad spectral features, typically 40 nm wide14 making band 

assignment difficult if distortion of the spectra by the instrument function occurs. 

Greensill and Newman171 have discussed this effect on spectra of pawpaw 
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(Carica papaya) and similar effects are evident in the spectra of limes in this 

study. 

4.4.2. Radiation Transmission by Limes 

Citrus fruit exhibit a gradual decline in their respiratory pattern during ripening 

which classifies them as non-climacteric and requires that they must be allowed 

to mature on the tree before harvesting. The peel comprises two layers, the thin, 

outer, pigmented exocarp and the thicker, inner mesocarp which is a colourless 

tissue with many large air spaces. The endocarp or pulp of the fruit is a complex, 

segmented structure built up of many juice sacs which contain essentially all of 

the soluble solids responsible for flavour and some pigments203 . 

The spectra recorded by each spectrometer demonstrated a similar trend of 

increasing transmission towards shorter wavelengths as ripeness develops. As 

the ripening process proceeds, the exocarp of the lime changes from green to 

yellow due to the degradation of chlorophyll and increased biosynthesis of 

carotenoids whereas the endocarp remains green. Chlorophyll is known to 

absorb radiation over the ranges 550 - 590 run, 620 - 630 run and 710 - 740nm199 

so that the increasing transmission observed in the spectra in the region of 700 -

720 run can be attributed to a falling concentration of chlorophyll in the exocarp. 

Band assignment for the 805 run peak could not be confidently made because a 

comprehensive listing of band assignments for the 700 -1050 run region was not 

available. The 850 run band may correspond to C-H unsaturated fats peaks66. 
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A typical transmission spectrum for immature (green) and mature (yellow) limes, 

believed to be the 'West Indian' cultivar, was obtained with the diffraction 

grating, dual prism and single prism spectrometers are shown in Figures 4.7, 4.8 

and 4.9, respectively. All spectra were smoothed using a boxcar smoothing 

algorithm with a window size dependent on their relative resolution (3 nm, 6 nm 

and 4 nm, for diffraction grating, one prism and two prisms, respectively). These 

spectra were normalized to maximum intensity for clarity. 

The features present in these spectra are listed and compared in Table 4.2. 

Although inferior resolution of the single prism spectrometer resulted in a loss of 

detail, the spectra demonstrated a shift in the intensity of peak transmission with 

ripening from about 805 nm to 720 nm in agreement with the dual prism 

instrument. A comparison of the higher resolution dual prism and diffraction 

grating results highlighted features which were common to both sets of spectra, 

but which had marked differences in intensities. Raw spectral data for the three 

spectrometers, with a simple linear background subtraction, yielded a useful 

threshold signature of fruit maturity (Table 4.3). The dual prism results 

demonstrated a capability of using these features to discriminate for maturity 

using the intensity ratios 1720 / 1750 or 1720 / Ig05 directly from the raw data, 

however for the grating the structure at 720 nm was not as well defined. The 

grating spectra exhibited shoulders at 745 nm and 805 nm which changed in 

intensity relative to the maximum transmission peak but, as this did not occur at 

a fixed wavelength for the green and ripe limes, an additional computation would 
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Figure 4.7. Transmission spectra of limes at two stages of ripeness using the 
diffraction grating spectrometer. Normalisation factors f:: 3.5 x 10-4 for ripe 
and 1.5 x 10-3 for green states. 

be required to detennine its position. Although this would be a trivial task, it 

would have consequences for the ultimate throughput of a machine in practical 

use. The dual prism spectrometer had an advantage over the diffraction grating 

based instrument since it could identify two relationships (1720/1750 and 1720 / 1805) 

for prediction purposes whereas the diffraction grating instrument could only 

reliably identify one (1no /1805). Although, attenuation of transmitted radiation 

through fruit is extremely high (dependent on the sample), the relationship 

among spectral peak amplitudes can remain constant, despite variation in 

attenuation due to different pathlengths, if appropriately selected. 

129 



Experimental Comparison of Simple NIR Spectrometers 

0.9 

0.8 

0.7 

~ 
Cii 
5i 0.6 .. 
.E 
'tI 0.5 
CD 

.!!l 
iii 
E 0.4 ... 
0 
Z 

0.3 

0.2 

0.1 

0 
850 700 750 eoo 850 

Wavelength In nm 
900 950 1000 1050 

Figure 4.8. Transmission spectra of limes at two stages of ripeness using the 
dual prism spectrometer. Normalisation factors:: 3 x 10-3 for ripe and 9 x 
10-3 for green states. 
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Figure 4.9. Transmission spectra of limes at two stages of ripeness using the 
single prism spectrometer. Normalisation factors:;: 1.5 x 10-3 for all spectra. 
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Table 4.2. Summary of features observed in the transmission spectra of 
limes taken with the prism and diffraction grating spectrometer 
configurations. The following abbreviations apply; fruit maturity, R : ripe, 
G : green; spectrometer configuration, SP : single prism, DP : dual prism, 
DG : diffraction grating. 

"-(run) Structure Maturity Configuration 

710 transmission peak R DG 

720 transmission peak R DP, SP 

730 transmission peak G DG 

745-750 peak G,R DP 

pronounced shoulder G SP 

shoulder G,R DG 

805 peak G,R DP,SP 

shoulder G,R DG 

845-850 weak shoulder G,R DP,DG 

Table 4.3. Intensity ratios as indicated of selected features according to lime 
maturity for the prism and diffraction grating based spectrometer 
configurations. 

Single Prism Double Prism Diffraction Grating 

Ripe 1.13±O.OI (I no / I805) 1.06 ± 0.01 (I no / I805) 2.13 ± 0.05 (I710 / I805) 

1.03 ± 0.01 (lnol h50) 

Green 0.73 ± 0.02 (InoII805) 0.76 ± 0.02 (I no / I805) 1.62 ± 0.07 (I730 / I805) 

0.69 ± 0.02 (Ino/ h50) 

Figures 4.7 to 4.9 highlighted the efficiency differences between the two types 

dispersive elements. The spectral response of the grating based system was 
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wavelength dependent; hence the resultant spectra displayed a reduced sensitivity 

in the regions away from its blazed wavelength (750 nm) or region of peak 

efficiency (650 to 850 nm) when compared to those of the prism based systems. 

Since spectral features outside this region are frequently used for fruit quality 

assessment68 the performance of the grating based instrument may be less than 

desirable. 

4.5. Conclusion 

Three simple near infrared (NIR) spectrometers, incorporating differing 

dispersion elements (single equilateral prism, two equilateral prisms in series and 

ruled diffraction grating) were constructed to compare performance for 

suitability for fruit sorting in an in-line setting. Performance, in terms of 

resolution, spectral range, efficiency and linearity across the spectral range, was 

characterised using a HgAr discharge source. Further, practical application was 

assessed by comparison of spectra from transmitted radiation of whole immature 

and mature limes (Citrus aurantifola) over the wavelength range 650 - 1050 nm. 

The resolution of each spectrometer configuration was estimated from the full 

width at half maximum of the 763 nm line from a HgAr discharge source. 

Results yielded 3.0 nm, 4.4 nm and 6.1 nm for the diffraction grating, dual prism 

and single prism configurations, respectively. The results of measurements on 

limes indicated that, on the basis of the performance criteria above, the 

configurations ranked in order of suitability are: dual prism, diffraction grating 

and single prism. The dual prism configuration exhibited uniform efficiency and 
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dispersion characteristics over a wider spectral range than the diffraction based 

instrument resulting in markedly different effects on the intensities of common 

features in the raw data of each. The characteristics of the dual prism may 

facilitate the generation of predictions relationships from appropriately selected 

features over those of the grating based instrument. Throughput was found to be 

slightly lower for the prism based than the grating based instruments although 

this relationship could be reversed by more appropriate antireflective coating 

design. 

Radiation transmitted through whole limes in the unripe (green peel) and ripe 

(yellow peel) states was measured over the wavelength range 650 - 1050 nm in 

order to ascertain whether spectral signatures existed to allow the maturity of the 

samples to be identified from the raw data with minimal further processing. The 

results demonstrated an apparent correlation between the degradation of 

chlorophyll in the outer peel, observed through an increase in transmission at 

about 720 nm, with respect to the intensity of spectral features, possibly related 

to the concentration of sugars in the pulp, at 750 nm and 850 nm. Further 

experiments are now in progress to determine whether a quantitative relationship 

can be established between particular intensity ratios of these spectral features 

and the degree of fruit maturity. 
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5. An Investigation into 
Maturity of Pawpaws 
Transmission Spectra 

the Determination of the 
(Carica papaya) from NIR 

This chapter has been published under this title in the Journal of Near Infrared 

Spectroscopy, 7 (1999), pp. 109-116. 

5.1. Introduction 

The increasing demands of volume production and the need for quality assurance 

in the fresh fruit and vegetable industry are resulting in food processors looking 

towards technological solutions for rapid, non-invasive assessment of produce. 

One method that has been receiving considerable attention is the use of near 

infrared (NIR) radiation to indicate the level of maturity and/or ripeness of the 

primary product. Optical spectrometers have been employed that detect radiation 

that is either scattered from the skin and near surface layer (reflectance mode) or 

scattered by the bulk flesh (transmission mode) of the product before detection. 

In transmission measurements, radiation is detected after passing through the 

body of the fruit where absorption and scattering occurs dependent upon various 

physical and chemical characteristics of the fruit (dimensions, density, water 

content, sugar content, presence of seeds etc.). Many laboratory studies have 

been performed that have determined the existence of correlations between the 

spectral response and the total dissolved solids content of various fruits in the 

NIR region. For example, work has been reported for mangoes 10, 156, 
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pawpaws l99, melons59, 122 and peaches9. Knowledge of the ripening properties 

of fruit can have considerable advantages in practice, especially with regard to 

optimal harvesting times to minimise damage to produce from environmental 

pests. The capability to assess the maturity of the fruit before harvest would 

have definite advantages. 

Pawpaws are susceptible to attack by a variety of insect pests. For example, in 

Hawaii they are infested by the Oriental fruit fly (Dacus dorsalis), the melon fly 

(Dacus cucurbitae) and the Mediterranean fruit fly (Ceratitis capatata)204, 205. 

Pests of significance to Australia include the Queensland fruit fly (Dacus tryoni) 

and the Papaya fruit fly (Bactrocera papayae) which made its first appearance on 

the mainland in the Cairns district in 1995 followed by a more serious outbreak 

in 1997 along the eastern seaboard of northern Queensland down to the 

Townsville area. Harvesting pawpaws at an early stage in their development can 

minimise the incidence of fruit fly infestation. Previous work by Seo et al.206 

and Couey et al. 207 has shown that pawpaws more mature than the half ripe stage 

are most susceptible to attack. 

The pawpaw is a climacteric fruit in that it demonstrates a peak in its respiratory 

pattern during ripening. Several physical and chemical changes occur during the 

development of the fruit but between 110-120 days after flower fertilisation, two 

useful indicators to maturity become apparent. In an immature green pawpaw, 

the seeds and the flesh surrounding the central cavity are both white, for a mature 

green pawpaw, the seeds are turning black and the flesh begins to yellow. At a 

certain stage of maturity, a green pawpaw, can be picked and will continue to 
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ripen off the palm to achieve its full flavour; this is not the case for an immature 

green fruit207. However, these internal indicators of maturity are not 

accompanied by any visible change to the exterior of the fruit so that a reliable, 

non-invasive indication of the maturity status of the fruit could be of 

considerable benefit to the industry. 

Experiments have been conducted by the United States Department of 

Agriculture in an effort to determine the maturity status of green pawpaws in a 

quantitative and non-destructive fashion. These include the body reflectance and 

transmittance work of Birth et al. 199 and the delayed light emission studies of 

Forbus et al. 204 and Forbus and Chan205. Birth et aZ. 199 used a scanning 

monochromator and a tilting filter spectrometer to measure the change in relative 

optical density of immature and mature green pawpaws over the wavelength 

range of 500 - 900nm. They presented their data in terms of a relative optical 

density (ROD) of the fruit as a function of wavelength (where they defined ROD 

as the logarithm of the ratio of the transmission of a standard to the sample) and 

based their maturity predictions primarily on measurements from the visible 

region of the spectrum where the ROD was yielding a transmission of about 

0.1 % of that in the near infrared. Their spectra did generally show, however, 

identifiable trends in the wavelengths over the 700-800nm range but as the 

resolution of their instrument appeared to be low (> 4 nm FWHM at 700 nm), 

they were unable to resolve sharp features which limited their findings. 

Forbus et aZ. 204 employed the technique of delayed light emission to measure 

pawpaw maturity and later, Forbus and Chan205 extended the method to predict 
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the susceptibility of pawpaw to fruit fly infestation. Delayed light emission 

occurs for several seconds after chlorophyll containing material is illuminated by 

a light source and then placed in the dark. The work indicated a high correlation 

between the intensity of delayed light emission and colorimetric methods (Hunter 

'b' values) of determining the ripeness of the fruit from the yellowing of the skin. 

However, the physical requirements of this technique limit its usefulness for 

incorporation into a small portable instrument. 

This paper reports on some of our investigations into NIR transmission spectra of 

pawpaws in various states of maturity ranging from immature green through to 

skin colour break. The main aim of our work is to determine and identify 

whether any features or trends exist in the NIR spectra which can be used to 

assess the level of maturity of pawpaws using a simple correlation between the 

observed features and the level of maturity without the need for time consuming 

and expensive calibrations that are frequently used in other similar horticultural 

applications at the present. Success in this endeavour would illustrate the utility 

of a simple instrument for this determination which would be of interest to those 

workers in the field. 

5.2. Experimental Method 

5.2.1. Spectrometer 

The NIR optical spectrometer, designed and constructed at this research facility 

for the purpose of these experiments, is. comprised of a light source, beam 
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collimating and transport optics, a wavelength dispersion element and a 

photodetector as shown diagrammatically in Figure 5.1. 

Light 
Sample Light-tight Housing 

~ ~ ~------~ 
:=:; CCD 

Fibre 
SI Ll 

Optic 

Figure 5.1. Diagrammatical representation of the NIR spectrometer. 

All elements of the optical train, after the light source, were mounted in a 

blackened light tight box to eliminate any interference from environmental 

background radiation and reflections from optical surfaces. The light source 

consisted of a tungsten halogen bulb, mounted at the primary focus of an 

elliptical reflector and powered by a low ripple DC power supply at a typical 

electrical input power of about 90 - 100W. The fruit sample under test was 

positioned in the region of the secondary focus of the reflector, although this was 

not found to be a critical consideration as the fruit randomly scatters the incident 

radiation and acts as a diffuse, poorly defined object. Radiation transmitted 

through the sample was collected by a 500llm diameter optical fibre with an 11
0 

numerical aperture mounted on the optical axis of the reflector. The receiving 

end of this fibre optical cable was positioned at a fixed distance of 5mm from the 
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sample inside a blackened cavity which contacted the sample thereby eliminating 

stray light. The other end of the fibre was positioned before a vertical parallel 

slit, S 1, of 10J.lm width mounted approximately at the focal length of a 

collimating lens, Ll (achromat of 30mm diameter and 50mm focal length), to 

define a parallel input beam to the spectrometer. The precise position of Ll 

relative to S 1 was adjusted to optimise the resolution and intensity of the 

spectrometer. 

Dual equilateral prisms of SF 18 glass were employed for the wavelength­

dispersing element. The dispersed radiation was focussed onto a charge coupled 

device (CCD) detector with lens L2, comprised of a combination of two plano­

convex lenses (40mm diameter and 200mm focal length) positioned to give a 

total focal length of 100mm which ensured a suitable linear dispersion of the 

spectrum across the CCD face. The detector was purchased as a commercial 

package and consisted of a 2048 pixel, line element CCD (Larry TM) with a 

500kHz, 12 bit ADC card. The CCD was supplied with a polymer window and 

had pixel dimensions of 14J.lm (h) by 12J.lm (w) on a 14J.lm spacing. The 

spectrometer was controlled by a PC running a custom data analysis and 

acquisition package (Spectrasolve TM). 

Calibration of the wavelength scale was accomplished usmg a commercial 

mercury - argon discharge source (Ocean Optics HG1) coupled to the optical 

fibre input of the spectrometer. The resolution of the system was estimated from 

the full width at half maximum (FWHM) of selected peaks in the discharge 

spectrum. 
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5.2.2. Materials 

Pawpaws at differing stages of maturity (assessed visually in the field by 

experienced personnel) were sourced from local farms from the Yarwun area of 

Central Queensland and stored in a refrigerator at approximately 10°Cuntil the 

experiments were performed. All fruit samples were allowed to reach room 

temperature (about 20°C) before commencing any measurements. Individual 

pawpaws were sectioned into thirds perpendicular to the polar axis, the seeds 

were removed and their maturity assessed from flesh and seed colouration. For 

the purposes of this work, four grades of apparent maturity were noted as 

follows: (i) immature; skin green, flesh and seeds white (ii) transition; skin green, 

flesh white overall with a slight orange colouration around the seed cavity, seeds 

grey to black (iii) mature green; skin green, flesh demonstrating definite orange 

colouration (iv) colour break; skin pale green to patchy yellow, flesh uniform 

orange/yellow. Each third was further sectioned longitudinally into 

approximately 60 degree segments and three alternate segments were selected for 

the experiments and trimmed to approximately 20 - 25mm thickness. This 

process created nine samples from the one fruit but characteristic of that fruit. 

The flat, cut surface of the sectioned fruit was placed in contact with a light-tight 

housing which was connected to the fibre optic probe of the spectrometer. In this 

arrangement the sample to fibre optical cable distance was maintained at 5 mm 

and since the internal diameter of the housing was 25mm diameter and the N.A. 

of the fibre was 11 0 stray light was eliminated. Spectra were recorded with light 

incident on the skin surface using a CCD integration time of 50ms. A total of 30 

pawpaws were sectioned in the above the manner to provide 270 samples to 

140 



An Investigation into the Determination of Maturity of Pawpaws 

detennine whether any correlation exists between the observed spectral features 

and the assessed fruit maturity. 

5.3. Results and Discussion 

5.3.1. (a) Characteristics of the Spectrometer 

The spectrometer transmission results using the HgAr discharge source are 

shown in Figure 5.2. The resolution of the system was estimated from the full 

width at half maximum of selected peaks and yielded the values of 3.5nm 

FWHM at 436nm, 4nm FWHM at 696nm and 9nm FWHM at 965nm. The 

relative intensities of the spectral lines were also in good agreement with the 

expected intensity distribution estimated from radiative transition probability 

data and the instrumental response of the spectrometer. Some instrumental 

effects were observed on the data but since they did not appear to complicate the 

detenninations they were not removed and so the spectra presented herein are the 

raw transmission data. 
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Figure 5.2. Spectrometer transmission results using a HgAr discharge 
source. 

5.3.2. (b) Radiation Transmission by Pawpaw 

Visual inspections of the flesh and skin colour of each segment were made 

before experimentation to allow an estimation of the maturity status. For grades 

(i) - (iii), described earlier, there was no external visual difference between the 

fruit. 

In order to minimise possible effects on the results arising from the (unknown) 

field conditions of the fruit such as exposure to sun and shade, summed spectra 

were calculated for the stalk, central and blossom sections from the spectra of 

their three respective segments. In general the blossom and central thirds 

provided similar indicators of the maturity status whereas the stalk third 

indicated a less mature fruit. In addition an overall total summed spectrum was 

calculated from all nine segments to simulate data that would be collected from a 
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Figure 5.3. Typical averaged transmission spectra of pawpaw at an 
immature stage of maturity. Grade (i) 
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500 580 660 740 820 900 980 
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Figure 5.4. Typical averaged transmission spectra of pawpaw at the 
transition stage of maturity. Grade (ii) 
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500 580 660 740 820 900 980 
Wavelength in nrn. 

Figure 5.5. Typical averaged transmission spectra of pawpaw at late mature 
green stage of maturity. Grade (iii). 
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500 580 660 740 820 900 980 
Wavelength in nrn. 

Figure 5.6. Typical averaged transmission spectra of pawpaw at the colour 
break stage of maturity. Grade (iv). 
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Figure 5.7. Typical averaged transmission spectra of pawpaw at the four 
stages of maturity. Grades (i).(ii), (iii), and (iv). The respective spectra have 
been displaced vertically for clarity and no ordinate axis is used since these 
spectra are viewed as self-calibrating. 
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whole fruit by an instrument operating in a scanning situation. Comparing all of 

the summed spectra, there appeared to be little difference between the whole fruit 

spectrum and the central and blossom end spectra apart from an improvement in 

the signal to noise ratio. Hence Figures 5.3 to 5.6 inclusive are typical summed 

transmission spectra for whole pawpaws representative of the four grades of 

maturity outlined above. Transmission mode was used in making these 

measurements to determine if a correlation among features of each sample's 

spectrum and their corresponding maturity level could be achieved. 

Taking the spectra in Figures 5.3 to 5.6 as a whole, there are up to four distinct 

features in the transmission functions of which two demonstrated variability with 

sample maturity. No ordinate axes are defined in these figures since these spectra 

are viewed as self-calibrating and hence independent of the intensity of the 

transmission measurement. The individual spectra from Figures 5.3 to 5.6 are 

combined in Figure 5.7 and have been displaced vertically for clarity. All 

spectra showed a prominent peak at about 815nm after which the transmission 

fell rapidly to zero with increasing wavelength. This was most likely due to a 

combination of factors arising from the falling efficiency of the spectrometer at 

long wavelengths and the onset of absorption by water and to a lesser extent by 

carbohydrate (starch and cellulose)18 in this region. Further structures at 720nrn 

and 745nm demonstrated interesting behaviour as ripening proceeded. In the 

immature green fruit, (Fig. 5.3), the 745nm peak was clearly seen with a distinct 

shoulder at 720nm. However once the fruit had ripened to the transition stage 

and beyond, the structures reversed in appearance, a prominent peak was 

observed at 720nm with a shoulder at 745nm (Fig.5A). In addition the 
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magnitude of the 720mn peak showed a correlation with the maturity of the fruit, 

its intensity increased to a similar order as that of the 815mn peak as the fruit 

developed to the mature green stage (Fig. 5.5). For all of these maturity states, 

the threshold of increasing transmission remained constant at about 700nm. 

Once the fruit had reached the colour break stage (Fig. 5.6), the intensity of the 

720mn peak exceeded that of the 815mn peak and it became the dominant 

feature in the NIR spectrum. At this stage the transmission threshold of the 

720mn peak also shifted down to about 670mn and increasing transmission at 

lower wavelengths peaking around 660mn was also apparent. 

As the ripening process proceeds, the chlorophyll content of the fruit falls to one 

sixteenth of its value at the immature stage and the carotenoids that result in the 

yellow colouration rise by a factor of about fourteen203. The measurements of 

Birth et al. 199 showed that both chlorophyll and carotenoids absorb radiation in 

the ranges of 550-590mn and 620-63Omn but chlorophyll also absorbs over 710-

740mn. Therefore the increase in intensity of the 720mn peak observed in the 

present spectra was attributed to a reduction in absorption by a falling 

concentration of chlorophyll. 

The spectra for the immature, transition and mature green fruit all demonstrated a 

reasonably constant transmission bandwidth with a threshold of transmission 

occurring at about 700mn. For the colour break fruit, inspection of Figure 5.6 

shows that the equivalent threshold has shifted down in wavelength to about 

670mn though this has been masked to some extent by a rapidly increasing 

transmission of visible radiation giving rise to a small peak at about 660nm. 
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Some visible radiation was also observed in the mature green fruit spectra (Fig. 

5.5). Although the increase in visible transmission was a real effect for ripening 

fruit, any attempt to link it to maturity offered fewer categories and more 

uncertainty. In contrast, the features observed in the NIR range, though 

attenuated to some degree by sample dimensions, always demonstrated the same 

relative intensity behaviour irrespective of reasonable experimental geometries. 

In this work no attempt was made to reference the sample transmission to a 

standard as a primary interest of the investigation was the possibility of self­

calibration by the sample using its own spectral signature. 

The only other optical determination of pawpaw maturity of which the authors 

are aware that attempts similar measurements to those described in this paper 

was performed by Birth et a1'199. Their spectra generally showed similar trends 

to the present work over the 700-S00nm range but as the resolution of their 

instrument appeared to be somewhat less than that employed here, they were 

unable to resolve the sharp features seen in Figures 5.3-5.6. Their data for the 

immature green fruit yielded a smooth curve exhibiting lower transmission at 

about 730nm compared to SOOnm whereas the mature green fruit demonstrated a 

similar intensity of transmission across this range. This can be compared with 

the present observations regarding the intensity shifts of the sharp feature at 

720nm compared to that at S15nm. Both experiments observed a transmission 

threshold at about 690nm followed by increasing transmission with similar 

gradient as a function of wavelength irrespective of the maturity status of the 

fruit. Birth et al's199 data also showed a broad maximum at about 7S0-S00nm 
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which overlapped for the immature and mature green fruit which probably 

corresponds to the 815nm feature observed in this work. 

In contrast to the present work, Birth et al199 based their maturity predictions 

primarily on measurements from the visible region. The experimental technique 

that they employed would have enabled data to be collected at low light levels in 

a straightforward fashion by varying the counting period to obtain an acceptable 

signal to noise ratio. In the presented method which collected light at all 

wavelengths simultaneously, the counting period was limited by the time taken to 

saturate the detector by the most intense transmission feature in the near infrared, 

often resulting in a poor signal to noise ratio for weak features in the visible 

region. Therefore given our earlier comments regarding visible light 

transmission, no conclusions concerning the maturity of fruit at less than the 

colour break stage could be reliably drawn from observations in this wavelength 

region with the present apparatus. 

5.4. Conclusion 

Samples of pawpaws (Carica papaya) were illuminated by a focussed lOOW 

tungsten halogen light source and the transmitted radiation coupled to the 

entrance slit of the spectrometer by an optical fibre probe. Data acquisition times 

were typically 50ms per spectrum. Transmission spectra over the wavelength 

range of 500 - 1000nm were recorded from 270 samples taken from 30 fruit at 

varying stages of development ranging from an immature green state to beyond 

skin colour break. Distinct spectral features were observed at 720nm, 745nm and 
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815nm in the raw data. As ripening proceeded the 720nm feature gained in 

intensity and changed from an indistinct structure in the immature green fruit to a 

prominent peak of similar magnitude to the 815nm peak in the mature green 

fruit. At the skin colour break stage, the 720nm peak dominated the spectrum 

and increasing transmission was also observed in the 550 - 700nm wavelength 

range. Previous work by Birth et al. 199 linked the region of 710-740nm to 

absorption by chlorophyll and the wavelength of the feature at 720nm and the 

changes in its spectral behaviour appeared to be indicative of the degradation of 

chlorophyll in the maturing fruit. 

This work has demonstrated that direct observation of the near infrared optical 

transmission function can provide a non-invasive method for detennining the 

maturity status of green pawpaws. If the maturity status of the green fruit is 

known, this could pennit early harvesting, helping to minimise the likelihood of 

pest infestation. The results could potentially be exploited in the development of 

a portable instrument for use in the field and/or an in-line instrument for grading 

on a conveyor belt. 
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6. Optimisation of Instrumentation Precision 
Wavelength Resolution for the Performance of 
Calibrations of Sucrose in a Water-Cellulose Matrix. 

and 
NIR 

This chapter has been published under this title in the Journal of Applied 

Spectroscopy (2000), 54, (3), 426-30. 

6.1. Introduction 

Since the early 1970s the interest in and the use of near infrared (NIR) 

spectroscopy has grown enormously in the food related industries. 

Technological progress has seen the instrumentation evolve from instruments 

incorporating the use of single photomultiplier tubes and changeable filters199 to 

those with scanning diffraction gratings as the wavelength selection mechanism, 

and the use of a single semiconductor (e.g. Si, InGaAs, PbS)200 in place of the 

photomultiplier tube. The next step in this evolutionary process was the 

transition to instruments using arrays of photo detectors in combination with 

stationary wavelength dispersion elements like diffraction gratings to capture 

entire spectra simultaneously. This step allowed the possibility of near-realtime 

processing in analytical process control applications. Technological progress has 

also provided the instrument designer with a choice of types of photodetector. 

For example, the use of photodiode arrays (PDA) allows higher signal precision 

(or signal to noise ratio, SNR) whereas the use of charge-coupled devices 

(CCD)12 offer higher sensitivity but reduced precision. Since CCDs generally 
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have smaller pixel dimensions than the PDAs, the wavelength resolution 

available in CCDs is generally higher than PDAs for a given instrument size. All 

of these types of instrumentation have been used for the NIR spectroscopic 

assessment of fruit for soluble sugar content (e.g. scanning grating163~ CCD12, 

PDA173). 

The primary performance characteristics of a spectrometer operating in body 

transmittance mode are its precision, wavelength resolution, sensitivity to light, 

stray light, sensitivity to environmental variables (e.g. temperature and humidity 

fluctuations), bandwidth and rate of processing data. These criteria together with 

the manufacturing simplicity and cost of the instrument need to be defined in 

order to design an instrument for a specific commercial application. 

Quantitative data analysis requires that the precision (SNR) of an instrument be 

of an acceptable level. This criterion is influenced by the various noise 

contributions associated with the detector type, associated electronics and signal 

level. Digital filtering has been demonstrated to improve the SNR and hence 

improve the performance of resultant calibrations208. Lu and McClure127 report 

that when calibrating on synthesised data some full spectrum calibration methods 

"performed quite well for predicting the composition of a three-component 

mixture even in the presence of 99% noise" (CV ~ 0.17). However, later in the 

same paper they report that when only one wavelength was used the "SEC and 

SEP increased as the noise level increased" (> 10%). They conclude that "it is 

confirmed that random noise has an important effect on the performance of 

PLS". In these experiments the ZAP function in Grams/386 was used to add the 
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random noise which was normally distributed and specified as a percentage of 

the highest peak in each spectrum. Assuming this noise is distributed within 6 

standard deviations around a zero mean, one standard deviation can be used for 

the CV determination. When Lu and McClure tested these findings (using PLS, 

PCR and CLS) on spectra of natural products (nicotine in flue cured tobacco), the 

level of noise above which the prediction errors became unacceptable (SEP > 

0.55) was 30% (CV - 0.05). These findings suggest that, surprisingly, SNR is 

relatively unimportant in the development of calibrations if the correct 

chemometric technique is used. 

The wavelength resolution of an instrument can be considered a secondary 

concern because spectral features in the NIR region are predominantly broad 

(around 50-100 nm FWHM) vibrational overtones or combination bands of 

fundamental molecular vibrations. These features are often shifted from their 

theoretically predicted positions by the influence of local environmental factors 

of the molecule such as hydrogen bonding5. As such, the spectral assignment of 

the features themselves is not particularly important and often not possible 

without supporting data collected at longer wavelengths to measure the 

fundamental vibrational spectra. Yet, higher resolutions would be expected to 

assist in the identification of subtle changes in the slopes of absorption spectra, 

and thus in the identification of overlaid spectral features. 

Wang, Conzen, Schmidt and Weiler125 reported that relatively high spectral 

resolution was necessary to achieve satisfactory NIRS-PCA analyses involving 

FTNIR analysis (Bruker IFS281N) of multi-component systems (pharmaceutical 
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tablets - Aspirin TM) with heavily overlapping spectral features. Spectral 

resolution of 2 cm- l (0.9 nm at 2173 nm) was required to differentiate tablets of 

different amounts of active ingredients in the 400 to 7000 cm- l (143q to 25000 

nm) spectral region and 16 cm- l (1.8 nm at 1050 nm) in the 7100 to 12000 cm l 

(830 to 1410 nm) spectral region. This result suggests that resolution of ca. 1-2 

nm is required for optimal instrument performance, for this application. 

In this manuscript we adopt an empirical approach to variation of the precision 

and wavelength resolution of a spectrometer in terms of the performance of 

calibrations for the prediction of sugar content against a water-cellulose matrix. 

This work is undertaken with a view to specifying instrumentation parameters for 

the application of non-invasive assessment of fruit soluble sugar content. 

6.2. Experimental 

6.2.1. Instrumentation. 

An MMS 1 VISINIR spectrometer and associated 15 bit electronics from Carl 

Zeiss Pty. Ltd. (Jena, Germany) was used in conjunction with an LOI tungsten 

halogen light and reflectance probe (R400-7-VISINIR) (Ocean Optics, Dunedin, 

FL, USA). The probe end was housed in a light tight tube and a fixed position 

maintained at a distance of 2 mm above the sample. Aspect Plus® (Carl Zeiss) 

software was used for data acquisition. 
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The MMS 1 spectrometer and LG 1 light source required, at minimum, 30 and 60 

min operation, respectively, before being considered stable for the purpose of the 

experiments described in the following paragraphs. Both these instruments were 

powered up two hours before any work began. In an attempt to minimise the 

possible effects of the Windows95 operating system on the tight timing schedule 

of the MMS 1 spectrometer, the resource management software UPD32, 

(shareware, Uwe Buenting), was employed in 'real-time' mode thereby 

allocating top priority to this selected task. The above conditions apply to all the 

blocks of experiments described below. 

A Hamamatsu S4874Q photodiode array was incorporated into the spectrometer 

design of Greensill and Newman 171. The spectral range of this instrument was 

500 to 1050 nm. The probe end was maintained at a fixed distance from the 

upper most sheet of filter paper, as described above. Resolution of the 

spectrometer was altered by adjusting the slit width, and estimated from the full 

width at half maximum of the 750, 763, 811 and 912 nm peaks of the HgAr lamp 

using SpectraSolve@ (Therbarton, SA, Australia) spectroscopic software. Five 

levels of resolution varying between 8 and 20 nm (estimated of the 912 peak of 

the HgAr lamp) were used, while adjusting integration time to maintain a 

constant signal. 

6.2.2. Determination of Coefficient of Variation. 

The precision of an MMS 1 spectrometer was assessed by determining the 

coefficient of variation (CV) at 12 different settings for the maximum signal 

level and number of scans averaged, using a white Teflon tile as the sample 
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(Table 6.1). To vary the maximum count level, the detector height was adjusted 

to a suitable distance whilst keeping the integration time (100 ms) constant. In 

this way all environmental variations were considered 'rendered negligible' from 

the CV determination. 

At each of these settings, 50 sets of 50 spectra were acquired. Initially 2500 

spectra were acquired sequentially over a five hour period to make the 

determination of the CV at each wavelength but the variation in the light source 

grossly distorted the determination. This result prompted the decision to acquire 

sets of 50 spectra over short periods « 4 minutes) in order to reduce the effect 

attributed to the light source to a negligible level. A CV was calculated as the 

mean divided by the standard deviation of measurements of each wavelength for 

each group of 50 spectra. The CV of all groups was then averaged to arrive at a 

mean CV for each wavelength for a total of 2500 spectra. 

6.2.3. Determination of the Number of Layers of Filter Paper. 

For the reflectance studies employing filter paper it was necessary to determine 

the apparent absorption and scattering coefficients of filter paper saturated with 

sucrose solution, so that sufficient layers could be used to limit the reflectance 

data to that of the sample only and not from any underlying material. The 

MMS 1 spectrometer was coupled (0.5 mm distance from fibre optic probe to 

filter paper) to a 100 mm platform on which filter paper (Whatman #1004, 150 

mm diameter) wet with distilled water, rested. Incident light was delivered by 

the Ocean Optics reflectance probe to the opposite surface of the filter paper to 

the surface on which measurements were made. The light source and the 
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detecting optical fibre were aligned on their optical axis. The vertical position 

above the upper-most sheet of filter paper was maintained at 2 mm so as to 

provide an area of illumination which would not vary with increasing numbers of 

filter paper. To reduce the counts to a level of <10 counts, 42 filter paper layers 

were sufficient. In subsequent work, 50 layers were used, with the filter papers 

placed on an optical dump constructed from a 100 mm metal ring with the 

underlying cavity lined with black cloth to minimise the contribution of the 

underlying material. 

6.2.4. Calibration of Sucrose Solutions on Filter Paper. 

Sixteen concentrations of sucrose, varying between 0 and 20% w/v, were 

prepared by the dissolution of refined white cane sugar in distilled water. Each 

solution was used to saturate a bundle of 50 sheets of filter paper. These bundles 

were presented in a random order to minimise experimental method error. The 

vertical position of the reflectance probe was maintained at a constant height 

above the upper-most sheet of filter paper for the measurements involving the 

maximum number of counts (32000). For the two sets of measurements at lower 

numbers of counts the probe was elevated above the upper-most sheet to a 

vertical position. The reflectance measurements were made at four separate 

positions, within a 40 mm diameter area, of the centre of each sample and at five 

levels of CV (achieved by varying the integration time or the number of scans, 

see Table 6.1). Wavelength resolution was changed by alteration of entrance slit 

width (Table 6.2). 

Spectra were acquired using Tec5® software but since this software did not offer 

group calculation of absorbance values, each spectrum was individually imported 
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into Excel where an absorbance value was calculated using the first zero sugar 

(ie. filter paper and distilled water) measurement as the reference. 

Calibrations were generated from absorbance data using The Unscrambler® (v. 

7.1, Camo ASA). Data were not pretreated before PLS calibrations were 

developed, although the centring and lISTD weighting option offered during the 

calibration phase were applied. The spectral window investigated was 700 to 

1050 nm. Although outliers existed and better calibrations were achievable for 

all data sets, in order to make equivalent comparisons only a minimum level of 

processing was applied to all cases to give each data set equal opportunity. These 

resultant standard error of cross validation (SECV) and coefficient of 

correlation-validation (Ry) were used to make an assessment of the effect of the 

resolution on the performance of calibrations. SAS® software was used to 

analyse and compare (at 0.=0.05) the SECV and Ry of the generated calibration 

equations. 

6.3. Results and Discussion 

6.3.1. Signal Coefficient of Variation. 

A range of % CV values was achieved (0.156 to 0.0031; SNR 707 to 30303) by 

altering signal level and the number of scans averaged per spectrum (Table 6.1). 

Variation in signal level will include contributions from a (constant) dark current 

value, a (variable) readout noise from the electronic components and variation 

attributed to the signal uncertainty (Shot noise with a Poisson distribution). The 
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expected Shot noise variation, calculated as the square root of number of incident 

photons using the available photon to electron to count conversion rate (supplied 

by the detector manufacturer, Hammatsu Photonics) was close to the observed 

values (Table 6.1). Further, the CV can also be expected to demonstrate a square 

root proportionality to the number of scans. The calculated CV was in general 

agreement with the observed value, except for the conditions of above 16 scans 

averaged per spectrum. This poor result is attributed to a limitation in software 

timing. 

6.3.2. Number of Layers of Filter Paper. 

An inverse ~ 2 order relationship (y = 36907 x-2.1954) existed between the 

number of counts and the number of filter paper layers (Fig. 6.1). In this case 42 
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Figure 6.1. Transmission of light through water soaked mter paper at --
800 nm. The integration time (45 ms) was set so that a maximum number of 
counts were available when one sheet of fIlter paper was placed on the 
optical axis between light source and detector. 
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Table 6.1. Effect of signal precision on calibration of sucrose solutions (0-20% w/v) on cellulose. Signal precision, measured as 
Coefficient of Variation (standard deviation of 50 spectra divided by mean), and quoted for maximum signal in spectrum was varied by 
alteration of signal level and number of scans averaged per spectrum. When the number of scans is varied the number of counts is 
32000. The expected CV is that calculated from theoretical considerations, from the CV of the 1 scan measurement. Those settings 
marked '*' were used for the development of calibrations. PLS calibration performance is reported in terms of RMSECV and Rv, with 
a General Linear Models Procedure T test (Alpha = 0.05) on the significance of these variables. An associated Least Significant 
Difference (LSD) is provided. Note that this test controls the type I comparison wise error rate and not the experiment wise error rate. 
Within a column, means with the same letter are not significantly different. 

Treatment CV Expected CV RMSECV T tests (LSD) for variable: Rv T tests (LSD) for variable: 
(%) (%) df= 20 MSE= 0.104561 df= 20 MSE= 0.000261 

Critical Value ofT= 2.09 Critical Value ofT= 2.09 
LSD = 0.3894. LSD = 0.0194 

lKCounts 0.1415 0.1190 
*2KCounts 0.0729 0.0729 2.017 A 0.925 A 
4KCounts 0.0379 0.0446 
*8KCounts 0.0216 0.0273 1.289 B 0.966 B 
16K Counts 0.0146 0.0167 

*1 Scan 0.0103 0.0103 1.216 B 0.972 B 

*2 Scans 0.0063 0.0073 1.294 B 0.964 B 

4 Scans 0.0045 0.0052 
8 Scans 0.0042 0.0036 

*16 Scans 0.0033 0.0026 1.459 B 0.955 B 

32 Scans 0.0031 0.0018 
64 Scans 0.0044 0.0013 

--------
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Table 6.2. Effect of wavelength resolution, reported for four emission lines of a HgAr calibration lamp, on calibration of sucrose 
solutions (0-20% w/v) on cellulose. Wavelength resolution was altered by setting of the entrance slit width, and signal level maintained 
by adjusting integration time. PLS calibration performance is reported in terms of RMSECV and Rv, with a General Linear Models 
Procedure T test (Alpha = 0.08) on the significance of these variables. An associated Least Significant Difference (LSD) is provided. 
Note that this test controls the type I comparison wise error rate and not the experiment wise error rate. Within a column, means with 
the same letter are not significantly different. 

Slit Integration Wavelength FWHM RMSECV T tests (LSD) for variable: Rv T tests (LSD) for variable: 
width Time (nm) (nm) df= 20 MSE= 0.005211 df= 20 MSE= 9.316E-6 
(Jlm) (ms) Crit. Teal Value ofT= 2.09 Critical Value ofT= 2.09 

LSD = 0.0869 LSD = 0.0037 
48 500 578 7.2 1.04 A 0.979 A 

750 6.2 
826 6.5 
912 7.7 

60 350 578 7.4 0.966 A B 0.981 A 
750 7.3 
826 8.2 
912 10.6 

73 250 578 7.7 0.932 B 0.983 A 
750 9.2 
826 10.9 
912 13.8 

89 220 578 7.9 0.923 B 0.982 A 
912 16.7 

107 200 578 8.3 0.982 A ... B 0.980 A 
912 20.0 

--- ---
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layers are required to reduce the number of counts to 10 (ie. near to dark count 

level), and we accepted 50 layers as a convenient number in excess of this value. 

6.3.3. Calibration of Sucrose Solutions. 

Martens & Dardenne (1998) define the coefficient of correlation, R, in tenus of 

RMSEP (which closely corresponds to SEC) and the variance of the population 

(0-) (Eqn. 6.1). RMSEP is a measure of the variation between the predicted and 

actual values (Eqn. 6.2). 

Eqn 6.1 

Eqn 6.2 

where yiis the predicted value for sample 'i', yiis the actual value for sample 

'i', and 1 is the number of samples. Thus RMSECV and R7. values should be 

closely correlated, as should SEC and Re, based on the inter-relatedness of these 

measures. However, The Unscrambler chemometrlc package employs a 

different definition for the coefficient of correlation (Eqn. 6.3). 

I 

I(Yi - Y)'(yi - y) 
R = -i-i=....:l~_--;-~_~ 

(1 -l).Sy(Y)·Sy(Y) 
Eqn 6.3 

where Sy is the standard deviation (Eqn. 6.4). 
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Eqn 6.4 

In consequence, the RMSECV and R2 values were not directly correlated (Tables 

6.1, 6.2). However, statistical analyses (Least Significant Difference or 

Protected t test) using SAS® software indicated that the results for SECV and Rv 

have similar trends in terms of the performance of the calibrations (Table 6.1, 

6.2). SEC and Rc values were not significantly different between any of the 

calibrations performed (data not shown). 

Calibration performance was significantly poorer, in terms of SECV and Rv, 

using spectra with maxima of below 8000 counts than for those above this 

threshold, i.e. a precision plateau was reached at around 8000 counts (CV = 

0.022% or SNR ~ 5000:1) beyond which no significant increase was evident. 

The maximum achievable SNR for a CCD or a photodiode can be estimated by 

the ratio of the well depth of each pixel to the combined dark current, readout 

noise and shot noise. For example a typical CCD may have a well depth of-

810000 electrons, and thus an expected shot noise of 900 electrons, a readout 

noise of 13 electrons and a dark current of 13 electrons. Therefore the maximum 

SNR expected is ~ 900: 1. The same calculation for a typical photodiode array 

which would have a well depth of 125000000 electrons and thus a shot noise of 

11180electrons, a readout noise of 3000 electrons and a dark current of 4000 

electrons would result in a SNR of,..., 12250: 1. However, various techniques 

(vertical and horizontal binning) can augment the SNR of a CCD array to a value 

near to that of a PDA. We conclude that PDA linear arrays, or CCD two 

dimensional arrays using binning, can be employed for the application of sucrose 
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assessment, with scope for operation in single scan mode and at signal strengths 

significantly below saturation. 

Resolution (FWHM) was not constant across the spectral range, a result of the 

dispersion mechanism employed (prisms), the wavefront geometry and the planar 

surface of the detector. Variation of the slit-width from 47 to 107 Ilm achieved a 

range of resolutions from - 8 to 20 nm at 912 nm. The resolution at slit openings 

89 and 107 Ilm was too low (>12 nm) to allow the values of FWHM to be 

determined for those peaks with close neighbours, i.e. 750 and 826 nm (Table 

6.2). 

There was insignificant difference in the performance of calibrations (as judged 

in terms of SECV and Rv) when the slit opening was in the range 60 to 107 Ilm 

(resolution from 11 to 20 nm at 912 nm). The highest resolution (8 nm, slitwidth 

48 Ilm) supported a significantly poorer calibration than that developed at a 

resolution of 14 and 17 nm (Table 6.2) (SECV only), a result attributed to 

diffraction effects of the narrow slit. 

6.4. Conclusion 

The future of NIR spectroscopy lies in the design of cost effective, application 

specific, instrumentation. On the basis of the work presented here, we suggest 

instrumentation for the application of grading cellulose based (plant) products for 

sugar content can involve a resolution as low as 16 nm (at 912 run) and a CV of 

0.022 (SNR - 5000: 1). These criteria impact on detector choice and electronic 

design of the spectroscopic instrument design for this application. The design of 
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an instrument with a relatively low resolution, when compared to most currently 

available array spectrometers, may be advantageous in terms of instrument cost 

and higher speed of operation (increased throughput). 
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7. A Remote Acceptance Probe and Illumination 
Configuration for Spectral Assessment of Internal 
Attributes of Intact Fruit 

This chapter has been accepted for publication under this title in the Journal of 

Measurement Science and Technology, (2000), in press. 

7.1. Introduction 

Fruit can be non-invasively assessed for internal quality attributes such as sugar 

content through chemometric analysis (typically using partial least-squares (PLS) 

and mUltiple linear regression (MLR) or other multivariate techniques) of near 

infrared (NIR) spectra. We have previously reported on characteristics of the 

spectrometer which impact on the calibration performance for this task (e.g. 

signal precision, wavelength resolution 178). Application of this technology in a 

commercial pack-line setting (operating at a belt speed of up to 1 m S-I), 

however, requires the optimisation for a given fruit type of a non-contact 

illumination and detector configuration. The sample illumination and detector 

system must allow rapid spectral data acquisition of regions representative of the 

whole sample for the attribute of interest. 

Both transmittance (where light penetrates the sample and is re-emergent into a 

non-illuminated area of detection) and reflectance (where light also penetrates 

the sample and is re-emergent but where specularly reflected light is often a 
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significant portion of the detected signal) optical configurations have been 

applied to in-line fruit sorting. Transmittance spectral data is expected to carry 

significantly more attribute information, since the detected light will have a 

longer path length within the sample, than reflectance spectral data. However, 

while full transmittance optics (where the illumination and detection systems are 

at 180° with reference to the centre of the fruit) will be possible only with fruit of 

relatively high transmittance (e.g. citrus fruit, but not seeded mangoes). In full 

transmittance mode, the amplitude of the measured signal is relatively low, and, 

by association, the signal-to-noise ratio (SNR) is also low. SNR below 5000: I 

has been shown to give relatively poor calibration performances for sucrose in a 

water-cellulose matrix 178 and is expected to have the same impact on 

performance for rockmelon fruit. Partial transmittance (where the angled axis of 

illumination and detector with respect to the centre of the fruit is other than 180°, 

but designed to optically eliminate specular reflectance) has advantages in terms 

of increased signal level, although path length is ill-defined. However, optical 

path-length can be estimated through the measure of absorbance of a wavelength 

not readily absorbed by the sample, and not relevant to the constituent of interest. 

For example, Kawan068 measured absorbance at 844 nm to determine the path 

length of light in Satsumo mandarins when determining soluble solids content. 

For a fruit pack line, where fruit are moving with respect to the light source and 

detector, the optical system should also be designed to minimise secondary 

specularly reflected light reaching the detector, and to prevent possible detector 

damage from frequent full saturation of the detector by the primary light beam 

between samples (ie. as would occur. in full transmittance mode without 
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additional shuttering hardware). Also, the optical system should not require 

physical contact with the sample. Some of the most important design 

considerations will therefore include the desired range of operation between 

detector assembly and fruit, the collimation of the light source, size of sample 

and the field of view of the detector. 

Reflectance mode optics have been used for several decades in commercial 

spectrometers designed for non-contact process control applications of optically 

dense materials (e.g. grain, NIRSystems, Silver Springs, USA; DA7000, Perten, 

Huddinge, Sweden). Mitsui Mining (Japan) introduced a non-destructive (peach) 

fruit sweetness sorter operating in non-contact reflectance mode in 1989, using 

two focussed tungsten halogen lamps to illuminate the sample 164. However, 

variations in surface roughness greatly impact on the amount of specular 

radiation received by the detector, and thus on calibration performance. For 

example, Walsh et a/.209 reported an improved calibration for soluble solids 

content of melon fruit for a lamp-fruit-detector angle of 400 when a light 

excluding shroud was used between the detector and the fruit surface. This result 

was ascribed to the reduction of detected specular radiation. Alternatively 

additional chemometric manipUlation (e.g. derivatives) can be applied to remove 

the effect of specular reflectance when using the reflectance technique 164. 

Maeda69 employed a non-contact, full transmittance method in an in-line setting 

with citrus fruit, with an electronic shutter used to prevent saturation of the 

detector between samples. However, secondary and ternary reflected light (due 

to reflective surfaces of componentry) was reported to degrade the quality of the 
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received signal and limit the application of the system in the determination of 

low concentration constituents. Full transmittance optics are also not appropriate 

for dense or seeded fruit (e.g. melons or mangoes). 

With partial transmittance optics, the illuminated and detected areas of the fruit 

are not at 1800 relative to the centre of the fruit. A sample cup is generally used 

to eliminate specularly reflected light from the field of view of the detector (e.g. 

Ballinger149 and YeatmanI48 illuminated fruit through an aperture in the base of 

a cup in which the sample rested, and collected spectral data from a non­

illuminated area of the fruit). In these systems, the benefit of higher signal 

(higher signal to noise ratio) must be balanced against the need to optically 

sample a representative region of the fruit. For example, Walsh et a/.2IO 

employed four 50 W lamps positioned at various angles with reference to the 

centre of melon fruit and to the detected region (with a sample cup between the 

fruit and the input fibre optic to the detector).. For a given integration time, 

calibration statistics for prediction of SSC of edible flesh was improved using a 

lamp-fruit-detector angle of 400 or 60°, relative to 20°, despite the reduction in 

signal intensity. The greater angles presumably a better optical representation of 

the tissue of interest (inner mesocarp). Fantec Research Institute Co. Ltd.8 

employed 16 lamps evenly spaced radially around the fruit, and orthogonal to the 

axis of the fruit and detector for the same application (melon SSC evaluation), 

again ensuring optical sampling of a representative region of the fruit.. In this 

case, the detector was located below a light excluding cup. However, the 'cup' 

concept is not particularly appropriate for use in high speed pack lines. Location 

of either light source or detector optics below the transport system is also 
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disadvantageous in tenns of falling debris. Further, a 90° placement of detector 

to light source, relative to fruit centre still involves a relatively long optical path, 

and thus requires high illumination load to provide an adequate signal level from 

large, dense fruit such as melons. Osborne et ai.173 aligned the light source 

behind a detector probe, with this probe placed in contact with the (kiwi) fruit. 

This arrangement prevented specular light from reaching the detector, and while 

most light received by the detector is expected to have derived from the upper 

layers of the fruit, acceptable PLS derived correlation was obtained between the 

absorption spectra and the soluble solids content of juice extracted from the 

whole fruit. 

A basis for the theoretical description of light scattering in food produce was laid 

by Birth, and developed by other workers in the last two decades. Birth24, 211 

reported a diffuse thickness (the depth after which no light directionality 

remains) of 25 J.lm and -2.5 mm for dry, white paper and potato tuber 

respectively (absorption and scattering coefficients of S = 2.75 and K = 0.37, 

respectively, reported for white potato flesh). From this theoretical base, we 

expect that light will be totally diffuse within a few millimetres of entry into a 

product such as a melon fruit. However, this prediction remains to be 

empirically validated. 

Another spatial-geometrical problem in the application of NIRS sorting of 

moving fruit on a pack-line relates to the assessment of consistent regions of the 

fruit, as fruit are not homogeneous in relation to the assessed criteria. For 

example, Peiris et ai. 174 described the spatial variation in sse of a number of 
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fruit types, including cantaloupe (Cucumis melo L. Cantaloupensis group). SSC 

was noted to increase along the proximal-distal axis, and towards the seed cavity. 

Little variation was noted circumferentially at the equator. 

In this study we assess a novel illumination/acceptance probe configuration 

which allows non-contact spectral acquisition from moving rockmelon fruit, for 

the assessment of fruit SSC. The system was designed with reference to light 

penetration through the sample and the distribution of SSC within the sample. 

The non-contact configuration was assessed in terms of PLS calibration 

performance for assessment of SSC in rockmelons, relative to calibrations 

developed using a configuration in which optical probe and sample were in 

contact, eliminating specular reflectance (as used by Walsh et al.209). 

7.2. Materials and Methods 

7.2.1. Distribution of sse within a rockmelon fruit 

Five rockmelons were sliced at 10 mm intervals along the length of the fruit 

(from flower to peduncle end) to provide 12 slices from each fruit. Cores (8 mm 

diameter) were excised from twelve points from each slice and assessed for 

soluble solids content. These points were positioned with reference to the major 

vascular networks associated with the seed masses, and with reference to 

distance from the exocarp (Fig. 7.1). The inner meso carp was not represented in 

the extreme two slices (from each end of the fruit), which represented tangential 

173 



Figure 7.1. Sampling positions (grey circles) in relation to fruit anatomy. Twelve slices were taken along the distal proximal axis, per 
fruit. Six paired samples of inner and outer mescocarp were taken per slice, with three sets located adjacent to the vascular tissue - seed 
masses, and three sets located between these points. 
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Figure 7.2. Schematic of illumination and detector probe configurations assessed for the non-contact assessment of fruit. (A) Without 
front lens; (B) With front lens. A colliminated light source illuminates the fruit. The detector probe acts as an optical spot of diameter 
'd', casting a shadow onto the fruit surface. The end of the detector fibre optic is a distance 'r' from the fruit surface, with a detected 
area of 'a' radius of the fruit surface. The fruit has a diameter, 'R'. 
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sections through the outer mesocarp only. Each core was crushed with a hand 

operated garlic press and a soluble solids content assessed of the resultant juice 

using an Erma digital refractometer (accuracy 0.2% SSe), against sucrose 

reference standards. sse distribution within rockmelon fruit highlighted the 

need for a comparison of tissue sampling techniques used in the reference 

measurement of sse by refractometry for the NIR calibration. One population 

of fruit (- 290 spectra) was sampled using three sampling methods: (A) four 10 

mm cores taken from a 50 mm diameter area covering the region identified to 

have been spectrally scanned from a stationary perspective, inclusive of the 

exocarp; (B) as previously but with the outer 8 mm of exocarp and outer 

mesocarp removed; and (e) a section of fruit - 40 mm wide and 70 mm long 

excised from the samples in the region determined as having been spectrally 

scanned, with 8 mm of exocarp and outer meso carp removed. 

sse data is presented in the text as mean ± standard error. Microsoft Excel 

analysis of variance routines were used to assess significance of differences in 

sse across slice and radial position, reported at 95% confidence limit. 

7.2.2. Optical design 

A collimated light source illuminated the sample, with the centre of this beam 

obscured by a stop (the detector acceptance probe) (Fig. 7.2). The stop formed a 

shadow on the sample surface, and radiation emergent from this region must 

represent radiation that has interacted with the sample, being diffusely scattered 

and absorbed within the fruit. A light source consisted of a 100W quartz­

tungsten-halogen automotive spot light supplied by ARB Pty. Ltd. Australia for 
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those experiments involving comparison of optical configurations, and a 100 W 

focusable RMDL 170 Striker spotlight from Light Force Australia Pty. Ltd, 

Cleve, Australia for all other work. However, the output beam of this source was 

not fully collimated across its entire width due to the finite spatial extents of the 

components making up the source (e.g. the filament is not a point source). For 

this reason an orifice was used on the light source (Fig. 7.1), reducing the level of 

non-collimated light impinging on the shaded region. This assembly provided an 

80 mm diameter beam of collimated light to the sample. 

The acceptance probe was positioned 65 mm from the lens of the light source 

and on the optical axis between the light source and the centroid of the sample 

(Fig. 7.2). The acceptance probe housed a mirror (gold coated front surface, 

Edmunds Scientific Company, Barrington, NJ USA) to direct incoming light to 

the fibre optical cable of a Zeiss MMS1 spectral sensor (a bundle of 30 fibres, 

each 70 ~m in diameter, total diameter of 500 ~m; NA 0.22) (Fig. 7.2). Gold has 

a high (> 0.95) reflectance in the region 600 to 2500 nm (eRC Handbook, p. 

E379). The probe was designed to minimise refraction losses at interfaces and 

transmittance losses. Direct specular light entering the probe assembly will not 

fall within the angle of acceptance of the fibre optic, and will thus not be 

transmitted to the detector. The interior of the probe assembly was painted in a 

matt black to minimise further secondary reflections. The front of the probe was 

sealed with either a flat glass plane (BK7) or a lens of focal length (87 mm). 
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7.2.3. Light penetration through rockmelon fruit 

The 'non-contact' system was used to illuminate an area in the 'equatorial' 

region of a rockmelon fruit, with the detector probe positioned 40 nun from the 

fruit surface. A grid consisting of 100 equally spaced (15 nun centres) 12.5 nun 

diameter holes in a lOx 10 array constructed from 20 nun thick acrylic 'was 

positioned over the fruit on the side opposite to the light source. Grid orientation 

was maintained, relative to the sample, by two locating guides. Spectra were 

acquired via a 1 metre fibre optical cable, connected using a SMA connector to 

the fibre optical input of the Zeiss MMSI spectrometer and a 12 nun diameter 

probe at the input end. This probe was inserted in the grid holes and contacted 

the sample under its own weight. This arrangement ensured a constant distance 

of 25 nun between fibre end and fruit surface, giving a constant field of view (,.., 

79 nun2
). Integration time was set to 250 ms. The holding frame and fruit was 

covered in black cloth to exclude ambient light from spectral measurements. 

Spectral data was collected from each grid point. Once 100 measurements had 

been made, a 10 nun thick slice of fruit was removed and the process repeated 

until all the fruit was sliced (generally 12 slices, with the final slice ,.., 15 rom 

thick). Ten fruit were processed in this manner. 

Spectral data was processed in Matlab V5.3 to extract the transmitted light 

intensity level at 812 nm (relative maximum value) for all collected spectra and 

to fonnat to a configuration acceptable to Slicer Dicer (Visualogic). 
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7.2.4. Comparison of optical configurations 

The perfonnance of calibrations generated against SSC of fruit mesocarp tissue 

was assessed for spectra collected by two optical configurations. The 'non­

contact' optical configuration described above was compared to those from a 

system in which the detector assembly was placed in contact with the fruit 

surface, excluding specular light from the detector. The 'contact' system was 

described by Walsh et al.210, and is similar to that of Osborne et al.173 This 

system was developed for the acquisition of spectral data of stationary fruit210 

and used to examine the effects on the perfonnance of calibrations of different 

cultivars and growing districts 163. The illumination/detector configuration of 

this assembly was based on 4 x 50 W QTH lamps illuminating the sample at 45° 

to a 50 mm diameter probe sample (relative to the centroid axis) and positioned 

at 90° to each other. The acceptance probe contacts the sample, thereby 

excluding all external light. 

In both configurations, spectral measurements were made with a MMS 1 NIR­

enhanced spectrometer from Carl Zeiss Pty. Ltd. (Jena, Gennany) using Tec5 (15 

bit resolution) electronics. Labview based software was developed for data 

acquisition and spectrometer control. The light sources and spectrometers were 

powered up two hours prior to commencement of experimentation to ensure 

stable operation. The reference used for all measurements was a 6 mm thick, 

white teflon tile positioned so that the maximum (reflectance) count level was -

80% of the dynamic range. 
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Single scans of 50 ms integration time were taken for the 'non-contact' system. 

Four scans of 200 ms integration time were averaged per spectrum acquired 

when using the 'contact' system (as per Walsh et al. 209). This level of signal 

averaging should, theoretically, reduce noise by ~ 1.4 times and therefore 

potentially enhance calibration performance. However, Greensill and Walsh178 

demonstrated that calibration performance for the prediction of sucrose 

concentration in water-cellulose matrix was not improved by improvement in 

signal precision above a SNR of 5000: 1. This level of precision was achieved at 

a count level of 8000 counts with the Zeiss MMS 1 detector system. A maximum 

count of 10000 was accepted in the present study, and thus the spectral averaging 

used with the 'non-contact' system should not have influenced the calibration 

result. 

Spectral data were pre-treated and used in PLS (partial least squares) multivariate 

linear regression calibrations generated against mesocarp soluble solids content 

(see below) using The Unscrambler v7.5 (Camo ASA). For each population of 

fruit, calibrations were generated using absorbance data from two spectral 

windows (700 to 1050 nm and 600 to 970 nm), and transmittance and 

derivatisation of absorbance for the 700 to 1050 nm spectral window. 

Calibrations were generated using mean centring and autoscaling. Second 

derivative pre-treatment used a Savitzky-Golay method with a half width set to 4 

units and a second order polynomial fitting function. Calibration performance 

was recorded in terms of Root Mean Square Error of Cross-Validation 

(RMSECV; 6 segments with random selection), Correlation Coefficient 

(Validation) (Rv), and Standard Deviation Ratio (SDR) and population statistics, 

180 



Remote acceptance probe and illumination configuration. 

number of sample population and Standard Deviation (STDev) of soluble solids 

content. 

Root mean squared error of cross validation (RMSECV) is calculated by: 

RMSECV= 
I-I 

Eqn 7.1 

where Yi is the predicted SSC value, Yi is the actual SSC value and I is the 

number of samples. 

The Standard Deviation Ratio (SDR) is calculated by: 

SDR=--(j-­
RMSECV 

where (j is the standard deviation of the SSC of the population. 

The correlation Rv between two variables kJ and k2 is calculated by: 

L (Yik, - Yik, ). (Yik
2 

- Yik
2 

) 

Rv = -----,-.....,...-----
(I -1)·(jk ·(jk 

I 2 

for kJ, k2 = 1 . .. K. 

Eqn 7.2 

Eqn 7.3 

where i is the sample identifier, I is the number of samples, k is the variable 

identifier and (j k is the standard deviation of the variable. 
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The primary assessment for performance of calibrations was made on the 

significance of the variation in the RMSECV as recommended by Fearn212 (ex. = 

0.05, and assuming bias negligible since bias is minimised by the calibration 

'intercept' coefficient, Bo) (see also Snedecor and Cochran213). For each 

comparison of two calibrations, the R2 of the correlation between residuals 

(predicted - actual SSC) and the 95% confidence limits on RMSECV are 

reported. Briefly, Fearns' method involves comparison of prediction errors (root 

mean square error, RMSE) for two calibrations, predicting analyte concentration 

from spectral data for a single validation set of n samples (for which analyte 

concentrations have been determined by a primary analytical method). Since 

both calibration models have been tested on the same samples, the calculated 

errors are correlated, that is, laboratory error will appear in both methods. The 

correlation coefficient (R) between the two sets of errors is calculated and used in 

the following manner: 

2( 1- R2}~ _ 2,0.025 
FK = 1 + --.!..--~---­

n-2 

where tn-2.0.025 is the upper 2.5% point ofa t distribution on n-2 

degrees of freedom. 

Then calculate 

Eqn 7.4 

Eqn 7.5 

The upper and lower limits of a 95% confidence interval for the ratio of the 

RMSEs the equations are 
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calculated as 

Eqn 7.6 

and 

Eqn 7.7 

respectively. If the compared value falls between these two values it is not 

significantly different at a= 0.05. 

Note that in order to achieve comparative results for all data sets, calibrations 

generated used equivalent calibration parameters (in tenns of the exclusion of 

outliers above the set threshold) which were not optimised for any individual set. 

Therefore RMSECV and SDR should not be assessed in an individual context. A 

'working' calibration would also require attention to the selection of samples 

used in the calibration set. 

Eleven populations of rockmelons (Cucumis me/o, L. Cantaloupensis group), 

comprised of four different cultivars and sourced from four different growing 

localities (total population of 1764 melons), were used to compare perfonnance 

of calibrations generated on both the 'non-contact' and 'contact' (with or without 

front lens) systems. Spectra were acquired of stationary fruit samples, placed 

manually below the detector, for both the 'non-contact' and 'contact' system. 

However, for two populations, spectra were also collected of fruit moving past 

the detector on a conveyor at 0.5 ms·!. These spectra were acquired on a trigger 

from an optical sensor. 
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7.3. Results and Discussion 

7.3.1. Variation of Soluble Solids Content within Rockmelon Mesocarp 

The sse of tissue within a given rockmelon fruit varied with position of 

sampling along the fruit (from blossom to peduncle end, Fig. 7.3), around the 

fruit (Fig. 7.4), with respect to the depth of sampling into the mesocarp (Figs. 7.3 

and 7.4). The average (n =5 fruit) standard deviation for sse (% w/v) within 

each rockmelon fruit (across 12 slices of fruit from distal to proximal ends, and 

around the fruit, see Fig. 7.2 for sampling strategy) was 1.66 for meso carp (inner 

and outer) tissue (n= 144), 1.05 for inner mesocarp only (n=72), 0.72 for outer 

mesocarp only (n = 72), 0.52 for the inner meso carp tissue of only the three 

centre or 'equatorial' slices (n = 18), and 0.47 for outer mesocarp of only the 

three centre or 'equatorial' slices (n = 18). 

sse varied significantly along the distal axis of the fruit, with the average 

maximum difference in sse 1.86 ± 0.01 and 2.51 % w/v ± 0.01 (n = 5 fruit) for 

inner and outer mesocarp respectively. Most of the variation occurred in the 

extreme two slices (ie. the first and last 30 mm of fruit), with little variation in 

the central region. Peiris et al. 174 reported a similar result for soluble solids 

content variation along the proximal-distal axis when measurements were made 

close to the skin. We conclude that spectral data should be acquired from the 

equatorial region to best represent average fruit eating quality. 

The average difference in sse between tissue from the inner and outer mesocarp 

was 2.82 % w/v ± 0.06 (n = 5 fruit). This difference was larger than differences 

observed with respect to the proximal-distal axis of the fruit (ie. 'latitude'), or 
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with respect to position 'around' the fruit (ie. 'longitude'). The correlation of 

outer to inner mesocarp data was very poor (R2
...., 0.16, n= 60; data not shown). 

Similarly, sse varied between different sampling methods for the same area of 

fruit, principally representing variation in the relative proportion of inner and 

outer mesocarp in the sample. The relationship between the sse measure of four 

cores with skin, relative to four cores without skin was y = 0.91 x + 0.36 (R2 = 

0.85, n = 284). The relationship between the sse of a section of fruit (40 by 70 

mm, without skin) and four cores from the same area of fruit, with and without 

skin, was y = 0.82 x + 1.19 (R2 = 0.73) and y = 0.84 x + 2.31 (R2 = 0.75) (n = 

284), respectively. 

We recommend that attention be given to the variation in sse across a sample in 

the development of calibrations. For example, the attribute of exocarp thickness 

may vary in fruit grown under different agronomic conditions. As optical data 

will be derived principally from the outer layers of the fruit, the performance of a 

calibration may be degraded if exocarp thickness is changed. It is also important 

that a consistent thickness of skin is removed from the cored sample, with the 

lower soluble solids content of the outer meso carp averaged with the higher 

content of the inner mesocarp. 

The average difference between tissue from between vascular bundles relative to 

adjacent to vascular bundles was 0.10 % w/v ± 0.03, and 0.0 % w/v ± 0.04 (n = 5 

fruit) for inner and outer meso carp tissue, respectively. The average difference 

between tissue from between vascular bundles and close to the ground-spot 

relative to that away from the ground-spot was 0.02 % w/v ± 0.37 and 0.40 % 
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w/v ± 0.42 (n = 5 fruit) for inner and outer mesocarp tissue, respectively. These 

differences are small relative to the variation between fruit, and hence the fruit 

orientation with respect to these characteristics can be ignored. 

We conclude that edible mesocarp tissue (sample regions with consumer 

importance) sampled from the equatorial region of the fruit should be used 

without skin for a sse estimation of the whole fruit that is relevant to the 

consumer importance (ie. fruit flesh which is consumed). The spectral 

assessment system described below is similarly targeted at the equatorial region 

of the fruit. 

7.3.2. Light Scattering within Rockmelon Fruit 

When an annular illumination beam was used to illuminate the fruit surface 

(collimated 80 mm diameter beam interrupted by 42 mm diameter stop), the light 

intensity assessed through 15 mm of fruit exocarp and mesocarp was equivalent 

under the stop and under the area of direct surface illumination (Fig. 7.5). This 

result is attributed to scattering of light by the fruit tissue, and is consistent with 

the estimate of diffuse thickness of 2.5 mm for potato tissue21l . Light intensity 

(y) rapidly decreased (exponential relationship, e.g. y = exp(11.002412-

0.78879785 x), R2 = 0.999) (averaging signal at position adjacent to seed cavity 

over 10 fruit) with increasing thickness of fruit (where x is the slice number, each 

slice == 10 mm thickness). Thus ca. 25% of incident light was transmitted 

through 10 mm of fruit tissue. 
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Figure 7.3. Soluble solids content of inner and outer mesocarp tissue of twelve equidistant slices of a fruit, numbered distally from 
blossom to peduncle end of the fruit. Six samples were assessed per slice, representing circumferential variation. Data is representative 
of all (n=5) fruit assessed. Lines connect a given symbol type, representing a given sampling location within a slice. 
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Figure 7.4. Soluble solids content of inner and outer mesocarp tissue of median slices (slice #6 in Fig. 7.3) from five fruit, with respect to 
the position of sampling within the slice (see Fig. 7.1). The position of sampling is numbered in clockwise sequence (viewed from distal 
end of fruit) from the groundspot (part of fruit in contact with the ground during growth) except for one fruit (ground spot identified by 
enlarged data point symbol). Lines connect a given symbol type, representing a given fruit. 
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Figure 7.5. Three dimensional representation of light penetration through a 
fruit. The data set consists of twelve slices (z axis), with 100 (10 by 10 
matrix) values per slice. Data is presented in raw AtoD counts, ranging 
from a maximum of 32000 in 15 equal ~teps (225 counts). 
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A light ray reaching any given depth can be scattered back towards the 

illuminated surface. Approximately 25% of the diffuse light at 10 mm depth is 

expected to re-emerge from the fruit surface (ie. ca. 6.25% of incident light 

reaches this depth and is returned to the surface). Diffusely scattered . light re­

emerging within the shadowed region will be collected by the detector system if 

the ray is within the angle of acceptance of the fibre optic. Thus the detected 

light will have primarily originated within the upper layer (first 10 mm depth) of 

fruit, although some of the signal will have been contributed from depths as far 

as the seed cavity. Increasing incident light intensity will not proportionally 

increase the level of signal received from deeper layers of the fruit, but the 

absolute level of such signal should be increased, and thus SNR should be 

improved. The soluble solids content of inner mesocarp tissue, however, is 

poorly correlated to that of the outer mesocarp. Thus calibration against sse of 

the inner tissue should be possible only to the level of the correlation between 

inner and outer mesocarp soluble solids content, or to the level of a secondary 

correlation involving spectral characteristics of another attribute of the outer 

mesocarp and the sse content of inner mesocarp. 

7.3.3. Design of illumination and detection system 

The diameter and length of the probe were matched to the characteristics of the 

fibre (numerical aperture, NA, 0.22) and the desired range of operation. With a 

diameter of the probe of 42 mm, the detected field of view reached 42 mm (the 

diameter of the probe shadow) at a fibre to sample distance of 40 mm. Given 

that the light source was not perfectly collimated, it was useful to limit the 

190 



Remote acceptance probe and illumination configuration. 

detected area diameter to a value less than the diameter of the detector probe / 

shadowed region. 

This optical assembly was most easily adapted to the in-line sorting of fruit 

moving on a conveyor belt by viewing the fruit from above (as shown in Fig. 

7.1). However, this orientation will involve a change in the distance from 

detector probe to the fruit surface with change in fruit diameter. Smaller fruit are 

positioned more distant from the probe, and thus have a reduced surface 

radiance. However, the field of view of the fibre optic (without lens) is increased 

with distance between probe and fruit surface, and should result in a 

compensatory increase in signal intensity as distance increases. The balance of 

these factors is considered below. 

The following calculations attempt to describe, using the frequently used 

reversed optics technique, the effect of distance from the fibre cable end and 

curvature of fruit on the signal level emerging for a shadowed region on the fruit 

sample, assuming uniform radiance across the region. 

A fibre optic cable with a cross-sectional fibre area A]F = 7.854 X 10-7 m2 was 

used to image an area on the (flat) sample defined by A2F = 1111
2 

, where as = the 

radius of the segment viewed by the fibre with a numerical aperture of 0.22. 

Thus: 

as - 0.2rff Eqn 7.8 

where rffis the distance between the fruit and the fibre (Eqn. 7.8.). 

191 



Remote acceptance probe and illumination configuration. 

Given that Radiant Flux (<p) represents the change in radiant energy per unit area, 

per unit time, and that the Radiant Intensity (L) is defined as the radiant flux 

emitted per unit area of solid angle by a point source, it follows that: 

Eqn 7.9 

where (J/ and (J2 represent the angles of the planes of the illumination source and 

the illuminated area, respectively, to the optical axis, and rp is the distance 

separating the two planes.:. Assuming that both these planes are flat and 

orthogonal to the incident light, Cos (J/ = Cos (J2 = 1. This equation can be 

simplified to: 

Eqn 7.10 

Thus, for the current application, as the distance between the fibre (probe) and 

sample surface is increased, the radiance of the viewed area (<p) will increase but 

the assessed radiance of the fruit would remain close to constant. 

However, these calculations have not allowed for curvature of the surface of the 

sample as encountered with fruit. In such cases, the illuminated area and radiant 

flux on the fruit surface is a function of both the distance between the fruit and 

the fibre and the radius of the fruit (RoF). The half segment angle of the viewed 

area on the fruit e b , relative to the centre of the fruit, is defined as : 
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. O.2rp 
Szneb =-­

RoF 

1 

(ROF 2 -(o.2rp~)2 
cose b = "':'---R-o-F---':"--

Eqn 7.11 

Eqn 7.12 

where e b is half the segment angle of the viewed area on the fruit and RoF is 

radius of the fruit. 

The surface area of the illuminated curved segment on the fruit is determined as : 

eb 
Area = 21tR 2 [Sine de 

o 

= 21t R 2 Cose]~ 
b 

= 21tR 2 (1- coseb ) 

1 

(R2 -(O.2r)2 )2 
1--'--------''---

R 

Substituting into Eqn. 7.9, Radiant Flux can be defined as : 

Eqn 7.13 

Eqn 7.14 

Eqn 7.15 

Eqn 7.16 

Eqn 7.17 

Eqn 7.18 
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When a collimated light source is used, as the distance to the sample is increased, 

radiance of the fruit surface is therefore expected to increase. When a fruit 

surface is moved from 25 to 35 mm from the end of the probe, radiance is 

calculated to increase by 0.8% and 0.3% for a 100 mm and 150 mm diameter 

fruit respectively. At a given distance from light source to sample, the radiance 

of a smaller diameter fruit will be less than that on a larger diameter fruit due to 

the increased area of illumination of the smaller fruit, and the average distance 

from the illuminated region to the detector is increased. Thus the amplitude of 

the detected signal will decrease. However, it is expected (Eqn. 7.18) that the 

overall effect will be that radiance will be slightly increased with increased 

distance between light source and fruit due to decreased fruit size. At a fixed 

distance of25 mm from the probe end, the difference in radiance for 100 mm and 

150 mm diameter fruit is expected to be 1.5% higher (or 450 counts on a near 

saturation signal of 30000 counts) for the smaller fruit. This variation in signal 

level is within the signal to noise (SNR) limit of 5000: 1 (-0.025% variation in 

signal, count level maintained > 8000 counts) shown to effect the calibration of 

sucrose in water on a cellulose matrix, using absorbance data from a Zeiss 

MMS1 178. 

If a lens is used in this design, the area of the viewed segment is only affected by 

the curvature of the fruit since the lens is set at its focal length from the fibre. 

Signal level will decrease with increased distance from fruit to probe (e.g. 

smaller fruit) due to the decreased radiance. Empirically this has been found to 

be as high as - 25% signal level over 100 mm range (probe to sample). 

Providing the signal level is maintained above the previously determined critical 
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level (8000 counts211) the SNR is sufficiently high to allow the generation of 

reliable predictive models. 

7.3.4. Optimisation of optical geometry and sampling strategy with respect 

to calibration performance 

A comparison was made of calibration development for the wavelength range 

700 -1050 nm, using either transmittance, absorbance or second derivative data, 

and for the wavelength range 630- 980 nm, using absorbance data (Table 7.l). 

Calibration performance (RMSECV) was not significantly different at the 95% 

confidence interval, using Fearns' criteria. Nonetheless, RMSECV results for 

each technique for each of the 11 data sets was assigned a value (0 to 3, 3 being 

best), commensurate with their performance relative to the others of the same set. 

Weighted sums of all results were calculated for each technique to determine the 

optimal technique. A optimal RMSECV value was obtained for the 'contact' 

configuration using d2 A data in 43% of the cases (n= 11), with optimal 

RMSECV attributed to each of the other three techniques in ca. 20% of cases 

each. Optimal RMSECV was obtained for the 'non-contact' configuration using 

absorbance data from the wavelength range 630 - 980 nm in 29% of cases. 

Derivatisation of data is commonly employed to remove background effects from 

spectra, such as those introduced by specular light. Given that the optical 

configurations effectively eliminated specular light from the detector, the lack of 

effect of this data pre-treatment is not surprising. Little information is carried in 
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Table 7.1. PLS calibration performance for spectra collected using the 'contact' and 'non-contact' (without lens) illumination/detector 
optical configuration, across eleven populations of differing cultivars and growing districts. Data was processed as absorbance data (A), 
transmittance data (T), second derivativised absorbance data (d2A) and lowered spectral window using absorbance data (LA). 
Calibration performance is reported in terms of number of samples in the calibration set, standard deviation of refractometer assessed 
soluble solids content in the population (SD), RMSEC, RMSECV, Rv, the ratio of SD to RMSECV (SDR). Calibration performance of 
the two optical configurations is reported in terms of Fearns' criteria (R2 and RMSECV values for a 95% confidence interval). 
Differences in RMSECV which were significantly different at a 5% confidence interval using Fearn's criteria are indicated by bold type. 

Cultivar - Site Optical Data Standard Rv SDR RMSECV Feam~ 
(Number of Samples) Configuration Type Deviation Low - High RMSECV 

Dubloon-A contact A 1.01 0.74 1.51 0.67 0.17 
(n = 178) contact T 1.03 0.78 1.58 0.65 0.56 -0.75 

contact d2A 1 0.77 1.52 0.66 
contact LA 0.96 0.59 1.26 0.76 

non-contact A 0.9 0.64 1.30 0.69 
non-contact T 0.91 0.64 1.30 0.7 
non-contact d2A 1.04 0.71 1.41 0.74 
non-contact LA 0.91 0.66 1.34 0.68 

Dubloon- A contact d2A 1.24 0.82 1.77 0.7 0.16 
(n = 172) non-contact LA 1'.28 0.79 1.64 0.78 0.60 - 0.82 

Highline - A contact A 1.13 0.86 1.95 0.58 0.13 
(n = 180) non-contact A 1.1 0.81 1.72 0.64 0.50-0.67 

Dubloon - B contact d2A 0.78 0.7 1.44 0.54 0.15 
(n = 140) non-contact T 0.84 0.76 1.50 0.56 0.45 -0.64 

-----~--
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Table 7.1. (continued) 

Cultivar - Site Optical Data Standard Rv SDR RMSECV FearnRz 

(Number of Samples) Configuration Type Deviation Low - High RMSECV 

Eastern Star - B non-contact d2A 0.89 0.68 1.37 0.65 0.16 
(n =72) non-contact T 0.95 0.67 1.32 0.72 0.51- 0.83 

Eastern Star - B contact d2A 1.07 0.74 1.47 0.73 0.21 
(n = 142) non-contact T 0.99 0.77 1.46 0.68 0.62-0.87 

Eastern Star - Domenico contact A 1.01 0.72 1.49 0.68 0.42 
(160) non-contact LA 1.02 0.72 1.44 0.71 0.59-0.79 

Eastern Star - B contact d2A 1.02 0.85 1.92 0.53 0.18 

(n = 180) non-contact LA 1.01 0.77 1.55 0.65 0.46- 0.61 

-------- -------------
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Table 7.2. PLS calibration performance for spectra collected in stationary and moving (0.5 m S-1) modes of the 'non-contact' 
illumination/detector system (without lens) configuration, across two populations. Calibration performance parameters are described in 
the legend to Table 1. Differences in RMSECV values for spectra collected of moving and stationary fruit were not signicantly different 
at a. = 0.05, using Fearn's criteria. 

Cultivar - Site Sample Data Type Standard Rv SDR RMSECV FeamRl 

(Number of Samples) presentation Deviation Low - High RMSECV 

Eldorado - B stationary LA 1.69 0.83 1.80 0.94 0.52 

(n= 196) moving LA 1.67 0.81 1.72 0.97 0.83 -1.06 

Eldorado - B stationary T 1.69 0.87 2.38 0.71 0.49 

(n = 788) moving T 1.69 0.87 2.38 0.71 0.68-0.76 

-- ...... _--_ ... _-_._-- --- -- - -_ ........ - - _._--_ ...... __ .. _-
-~ 
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Table 7.3. Results of calibration of spectra collected in moving (0.5 m S·l) mode of operation of the 'in-line' illumination/detector system 
with and without a lens across one population. Performance of calibrations using spectral data acquired using the at-line configuration 
from another population (ABZ) were assessed against spectral data acquired using the illumination/detector probe with lens when fruit 
were moving at 0.5 ms·l (neither significant at 50/0 confidence level). In-line moving data with out window is indicated by ILMNW and 
in-line moving data with lens by ILML. 

Cultivar - Grower Optical Data Type Standard Rv SDR RMSECV Fearn~ 
I 

(Number of Samples) Configuration Deviation Low - High RMSECV 

Eastern Star - D No lens dlA 1.16 0.72 1.49 0.78 0.14 I 

I 

(286) Lens d2A 1.20 0.77 1.58 0.76 0.69-0.88 

I 

Eastern Star - E non-contact A 1.43 0.77 1.59 0.90 0.11 

(238) Lens LA 1.45 0.83 1.77 0.82 0.79-1.03 

~ .... -- .. --.-- ----- ----- ---- --- --_ ... __ ... __ .. _---
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Table 7.4. PLS calibration performance for spectra collected of one population of fruit, with three sampling procedures employed in the 
extraction of a juice sample for SSC determination. Fruit were sampled by extraction of four 10 mm diameter cores, with either 
removal or retention of the 'skin' (outer 8 mm of meso carp and exocarp) or ofa 'scoop' (40 by 70 mm) of tissue. Data presented is from 
spectra were collected using the 'non-contact' configuration operated with moving samples (0.5 m.s-I

) with and without a front lens. 
Calibration performance parameters are described in the legend to Table 1. Differences in RMSECV values for spectra collected with 
and without the front lens were not signicantly different at a = 0.05, using Fearns' criteria. 

Cultivar - Grower System Tissue Standard Rv SDR RMSECV FearnR2 

(Number of Samples) Sampled Deviation Low - High RMSECV 

Eastern Star - D no lens No skin 1.22 0.69 1.39 0.88 0.23 

(n = 215) lens No skin 1.24 0.76 1.53 0.81 0.77 - 1.01 

no lens Skin 1.16 0.70 lAO 0.83 0.30 

lens Skin 1.21 0.78 1.57 0.77 0.73 -0.95 

no lens Scoop 1.29 0.67 1.36 0.95 0.18 

lens Scoop 1.28 0.73 1.41 0.91 0.83 -1.09 

- - ~.-------
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wavelengths below 700 run with respect to vibrational and stretching modes 

associated with sucrose. However, this region is significant for absorption of 

wavelengths related to transitions within the chlorophyll molecule. Chlorophyll 

content of a fruit can act as an index of maturity, and thus for sugar content 

within a given popUlation. Thus it was anticipated that the lower wavelength 

window might support superior calibrations. Probability plots reveal slightly non 

linear curves of both absorbance and transmittance data, with transmittance 

slightly worse in most cases. Often the observed non-linearities can be 

accommodated by PLS by the use of additional principal components (PCs). 

Hence, in some cases, transmittance data can achieve a better predictive model 

than absorbance data despite the assumption, based on the Beer-Lambert law, 

that a logarithmic proportionality should exist between concentrate and spectral 

measurement. Without clear differences between the data types, absorbance data 

over 700 -1050 run range was accepted as the default for chemometric analysis 

(e.g. Table 7.4). 

In two of 11 populations, the RMSECV of the non-contact system was 

significantly different from that of the contact configuration, one being poorer 

and one improved (Table 7.1). We conclude that the 'non-contact' system did 

not perform significantly better than the 'contact' system for these data sets. 

Walsh et aZ.209 demonstrated superior calibration performance for data sets 

collected using the contact assembly, which totally excludes specular light, 

relative to optical arrangements which permitted specular light to be detected. 

The present result indicates that if any specular light is detected using the non-
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contact probe, it must be at levels sufficiently low level that calibration 

performance is not affected. 

As noted earlier, the SSC of this tissue is poorly correlated with that of the 

deeper, edible mesocarp. Surprisingly, given that the 'non-contact' probe used in 

this study detected light returned primarily from the upper layers (ca. 10 mm), a 

superior correlation was developed using optical data from the 'non-contact' 

probe (predicted on actual SSC). Therefore, it is likely that the PLS calibration is 

based on a secondary attribute of the outer layers, which is in turn is correlated to 

inner mesocarp SSC. This relationship may be population specific, and we 

propose further work to examine the robustness of the calibration. 

For the two populations assessed, calibration performance was not significantly 

different in terms of Feams' criterion for RMSECV comparison for spectra 

collected of either stationary fruit, or fruit moving on a conveyor at 0.5 ms·!, 

using the 'non-contact' configuration (Table 7.2). At a belt speed of 0.5 m.s·!, 

fruit will have moved 25 mm with respect to the detector, during the period of 

signal integration. This movement is not significant with respect to the overall 

size of a rockmelon, with the optical signal collected within the equatorial region 

of the fruit. This region has a consistent soluble solids content. Faster belt 

speeds, leading to integration of signal over greater areas of the fruit, are 

expected to result in a decreased calibration performance. 

Inclusion of a front lens in the optical train of the 'non-contact' configuration 

was anticipated to improve signal stability with respect to variation in fruit size. 
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However, calibration performance was not significantly improved by inclusion of 

the lens, as judged using Feams' criterion (Table 7.3). The diameter of the 

rockmelon fruit size in this population assessed ranged from 115 to 150 mm. 

The use of the lens may have more impact with fruit spanning a larger size range. 

Three fruit sampling protocols were trialed. Two protocols involved removal of 

cores of the fruit, with either removal of the outer green mesocarp and skin, or 

inclusion. The third protocol involved removal of a larger segment of the fruit, 

and removal of the skin and green mesocarp. Calibrations developed for sse 

derived from juicing of any of the three sample types were not significantly 

different, using Feams' criterion. Evidently, the three sampling techniques are 

equivalent in assessing SSC of a tissue area relevant to that optically sampled. 

7.4. Conclusion 

The rockmelon fruit used in these experiments had a range of 5 to 13.1 % sse 

with a mean of 8.4 and standard deviation of 1.7 % (the threshold for acceptable 

tasting fruit is lO % SSC). The 'non contact' system was capable of grading 

rockmelons to an accuracy of ca. 1.5 % SSC (estimated as two times RMSECV 

ca. 0.7 achieved). The non-contact detector/illumination configuration is 

therefore recommended as appropriate for the application of non-invasive, 

spectroscopic determination of SSC of rockmelon, using PLS regression 

techniques based on absorbance data. Optical and related tissue juice sse 

sampling from the equatorial region of the fruit is recommended to best represent 

'whole fruit' quality. 
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8. Calibration Transfer between NIR Spectrometers in 
the NIR Assessment of Melon Soluble Solids Content. 

This chapter has been submitted for publication under this title in the Journal of 

Applied Spectroscopy, (2000). 

8.1. Introduction 

NIR spectrometers using low cost photodiode array (PDA) or charged-coupled 

device (CCD) using either silicon (Si) (400 to 1100 nm) and/or indium gallium 

arsenide (InGaAs) (800 to 1700 nm) technologies are finding application in an 

ever increasing number of process line applications. Commercial applications 

demand transferability of calibrations rather than calibration generation for each 

installation. 

The design of most modem post-dispersive NIR spectrometers incorporates the 

use of a dispersive element and either PDA or CCD photo-detecting elements. 

These units will vary in wavelength calibration and photometric response, even 

within one model and batch of manufacture. The spectral alignment of the 

detector array (commonly associated using a fourth order polynomial calibration 

equation between pixel number and wavelength) will differ between 

spectrometers due to small physical displacements of components. Pixel related 

photo-detector output can be interpolated to yield a common wavelength related 

assignment across instruments. Correction of differences in photometric 
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response between instruments is more difficult. The use of absorbance units, 

with referencing to a stable standard, allows comparison of spectra collected on 

different detecting units, however this strategy can not correct for differences in 

the signal to noise ratio associated with the raw count across the spectral range of 

the units. Slight differences in illumination geometries associated with sample 

orientation relative to light source and detector will contribute to differences in 

the recorded absorbance spectra of a given sample from two instruments. To 

correct for this difference, the absorbance spectra obtained on the slave 

instrument can be modified to reproduce that of another instrument by use of a 

correction factor for each pixel, relative to an absorbance spectrum for the same 

sample, collected on the master instrument. The standardisation samples used in 

such an exercise must be similar to the samples on which the predictions are to 

be used 113. Model failure will occur when the response of the master and slave 

instruments is very different, or when the standard sample does not represent the 

samples to be analysed. 

8.1.1. Standardisation Techniques. 

Transfer of predictive models from one (master) instrument to another (slave) 

instrument is commonly accomplished using either calibration model correction 

or spectral response correction 113. In the 'calibration model' approach, the 

predictive model, generated from spectra collected on a master instrument, is 

corrected to predict on spectra collected on a slave instrument (e.g. slope and 

bias correction). This method relies on the assumption that a linear relationship 

exists and will remain stable between both instruments 103. In the 'spectral 

response correction' approach, spectra collected on one instrument are modified 
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to appear as if originating from the other instrument103, 214. This procedure has 

advantages over the 'calibration model correction' approach because estimation 

errors in the model transfonnation process can be eliminated from the new 

model. In one variant of this approach, spectra acquired on the slave instrument 

are modified to appear as if having originated from the master instrument. Thus, 

a predictive model generated on 'master instrument' spectra can be used on data 

from all transfonned slave instruments. This method has the advantage that once 

a standardisation calibration has been developed between instruments, no further 

development is required on samples of the same genre115. The second variant 

modifies spectra of the master instrument to appear as if originating from the 

slave instrument and generates a new predictive model. This approach is not 

dependent on maintenance of a central master instrument and thus new spectra 

may be added to the model thereby evolving it to one comprised exclusively of 

slave instrument spectra115. However predictive model development is required 

for each instrument. 

In NIR spectroscopy, calibration transfer has been accomplished using various 

chemometric techniques, for example slope and bias correction (SBC), direct 

standardisation (DS), and application of neural networks. When the differences 

between instruments are simple, an univariate approach based on SBC may prove 

successful 1 00. However, when more complex differences between instruments 

are present, more complex techniques are required. Detailed explanations of the 

relative procedures can be found in the references and only an overview is given 

here. 
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Wang et aZ. 103 proposed a method called direct standardisation (DS), which 

transforms spectra collected from a slave instrument to appear as though 

collected from a different (master) instrument. In this method, multiple linear 

regression is performed for the entire spectrum collected of a set of 

standardisation samples using the slave instrument, against each data point of the 

master instrument. Wang et aZ. 103 also developed the piecewise direct 

standardisation (PDS) algorithm which is similar to the DS technique but 

incorporates the use of a moving window which steps across the variable range. 

For each wavelength of a sample spectrum the absorbances for the slave 

instrument are regressed against the corresponding absorbances in a spectral 

window of neighbouring wavelengths from the master instrument. 

PDS models may perform adequately where features are present in the transfer 

spectra but not very well when featureless regions are frequent. A further 

modification extended the PDS algorithm incorporating a double window 

(DWPDS) (personal communication, Wise104). The second window extends the 

window range and flexibility allowing for Fourier Transform NIR (FTNIR) 

spectra of gas samples with very narrow spectral features and regions of only 

baseline noise in between. DWPDS addresses this problem by forming models 

based on data on both sides of the current window used in the standardisation. 

The second window defines the data range outside the original window to be 

used. The form of the model is identical to that of PDS, with difference in the 

way in which the model is identified. 
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Orthogonal signal correction (OSC)80, 86 is a technique that can be used for the 

preprocessing of NIR spectra by the subtraction of variation that is orthogonal to 

the analyte concentration before they are subjected to multivariate calibration. 

To achieve calibration transfer, standardisation sample spectral data are collected 

on master and slave instruments and corrected by subtraction of variation that is 

orthogonal to the analyte concentration (e.g. instrumental differences). 

Predictive models are generated on corrected spectra from the master instrument 

and applied to corrected spectra from the slave instrument. 

In 1997, Walczak106 proposed a wavelet transform-based standardisation 

technique (WT). In this method, the wavelet transform coefficients of selected 

standardisation sample spectra from both instruments are univariately and 

linearly regressed to achieve a correspondence by which new spectra may be 

modified to appear as though originating from the master instrument. This 

technique also can have the benefit of removing noise from the spectra. 

When the same set of samples cannot be measured on both instruments, many of 

the commonly used techniques (e.g. DS, PDS, DWPDS and OSC) become 

useless. The Finite Impulse Response (FIR) technique, proposed by Blank et 

al. 109 does not require spectra to be measured on both instruments. This 

technique can be thought of as a moving window similar to the multiplicative 

scattering correction (MSC). This moving window is used to correct spectra 

from master and slave using one reference spectrum (e.g. mean spectrum of the 

calibration set from the master instrument) with only the centre channel of each 

window being corrected. It uses corrected spectra from the master to develop a 
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calibration model which is then applied to corrected slave spectra. A 

disadvantage of this technique is that artefacts arise when the FIR transfer 

produces very small regression coefficients in the corrected spectra , making 

standardisation in that window poor. 

An alternative method, model updating (MU), provides an evolving model 

which, when performance monitoring data are routinely added and a 

corresponding number of old data are deleted, will eventually contain data solely 

from the new system. It has the benefit of not requiring samples to be measured 

on both instruments but the disadvantage of requiring individual predictive 

model generation for each instrument. 

8.1.2. Sample Selection. 

Sample selection is critical to success for those methods requiring standardisation 

samples to be measured on both instruments. The use of standardisation samples 

from a source different to those on which the calibration is to be used and which 

cover a larger spectral range generally leads to poor results 114. Use of 

standardisation samples similar to the samples to be predicted can lead to good 

standardisation, but the transfer will be applicable only to that sample genre114, 

115 

A frequently used standardisation sample selection technique comes from an 

algorithm that Kennard and Stone proposed in 1969116 to assist experimental 

design. This method begins by removing a pair of samples in the 'master' 

calibration matrix ( mC) which are most different to each other, based on the 
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Euclidean distance of absorbance spectra and places these in a standardisation 

matrix (mT). The following stepwise procedure is then repeated until the desired 

number of samples is achieved. The Euclidean distance between the candidate 

sample and other selected samples is calculated and the minimum distance d(u) is 

stored. 

Eqn 8.1 

where s = index of selected spectra, u = index of unselected spectra and n = 

number of spectra selected prior to this iteration. The unselected sample in the 

me matrix with the largest d(u) value is removed and added to the mT matrix. 

8.1.3. Technique Selection. 

There is no clear choice for a calibration transfer methodology to suit all 

applications. For example; NIR spectrometry has been extensively applied to the 

quantitative analysis of a range of agricultural products (particularly grain) since 

the 1970s, for which calibration transfer between instruments has been a major 

goal. Many workers (for example, Park et al.215, Osborne216, Tillman217, and 

Shenk and Westerhaus195 ) have reported standardisation results achieved 

between NIRSystems instruments, using propriety software and techniques (for 

example, use of 'single sample standardisation', a photometric response 

correction method, or 'repeatability files', a model updating method, WinISI, 

Infrasoft International, LLC., USA). However, other instrument manufacturers 

advocate different calibration transfer methodologies for the same sample type. 
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In another application area, Geladi108 assessed a number of techniques, including 

Savitzky-Golay Transform (SGT), FIR, PDS, ose and WT, for the transfer of 

NIR calibrations developed to predict the pH of lake sediment between five 

different spectrometers (four NIRSystems 6500 and one NIRSystems 5000). It 

was concluded that, for these data, ose filtering worked best and adequate 

calibration transfer resulted. 

Swierenger et al. 110 considered the case where measurement of standardisation 

samples on both instruments was not possible. This approach makes the model 

robust with respect to transfer by data preprocessing during the development of 

the model. They found that variable selection by simulated annealing (SA) of 

NIR spectra from NIRSystems 5000 and 6500 spectrometers enhanced the 

model's robustness with respect to transfer and also improved its predictive 

ability when used on models of water content of tablets (unspecified ingredients). 

This improvement was comparable with that obtained by PDS. 

In the current study we explore the capabilities of seven well-known 

standardisation techniques, one simple new method and a model updating 

method for the application of calibration transfer between Zeiss MMS 1 PDA 

spectrometers used in the application of non-invasive assessment of sse of 

intact melon fruit!77. In this application a RMSEP of < 1 % sse is required. 
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8.2. Experimental Method: 

8.2.1. Data Sets. 

The performance of standardisation of calibrations, generated against soluble 

solids content (SSe) of fruit mesocarp tissue, was assessed for two data sets from 

two populations of rockmelons (designated A and B). Set A comprised spectra 

of one population of 20 I fruit (Dubloon, from a commercial property near St. 

George, Southern Queensland) collected using four MMS 1 spectrometers 

(designated 155, 726, 730, and 738) and set B using a subset of two MMSI 

spectrometers (726 and 738) on a separate population of 198 rockmelons 

(Navajo, from a commercial property near Kingaroy, Southern Queensland). All 

samples were allowed to equilibrate to room temperature (270 e) overnight 

before spectral measurements were made. Wet chemistry was performed on the 

juice extracted from four 8 mm diameter cores of representative mesocarp from 

each fruit using a garlic press and an Otago refractometer (- 0.2% sse accuracy) 

to determine associated sse values. The means of the sse value for each 

population were 10.67 and 10.02 while the standard deviations were 0.890 and 

1.181 (for the A and B data sets, respectively). 

8.2.2. Instrumentation 

All spectrometers were MMSI NIR-enhanced spectrometers from Carl Zeiss Pty. 

Ltd. (Jena, Germany) using Tec5 (15 bit resolution) electronics. Labview based 

software was developed for data acquisition and spectrometer control. The light 

sources and spectrometers were powered up two hours prior to commencement 

of experimentation to ensure stable operation. The reference used for all 

212 



Calibration transfer between NIR spectrometers. 

measurements was a 6 mm thick, white teflon tile positioned so that the 

maximum (reflectance) count level was - 80% of the dynamic range. A 

collimated light source (100 W quartz tungsten halogen (QTH), focusable 

RMDL 170 Striker (Light Force Australia Pty. Ltd, Cleve, Australia)) 

illuminated the sample with an 80 mm diameter beam. An acceptance probe177 

housed a mirror (gold coated front surface, Edmunds Scientific Company, 

Barrington, NJ USA) to direct incoming light to the fibre optical cable of a Zeiss 

MMSI spectral sensor (a bundle of 30 fibres, each 70 J..lm in diameter, total 

diameter of 500 J..lm; NA 0.22). 

8.2.3. Spectral Data Treatment. 

Single scans of 50 ms integration time were taken for each spectrum. A 

maximum count level > 10000 was maintained to minimise any variation in 

performance due to changing signal to noise ratio (SNR) of each system178. 

Spectral absorbance data were pre-treated by subtraction of the mean absorbance 

spectrum of the population (mean centring). Partial least squares (PLS) 

multivariate linear regression calibrations were generated against mesocarp SSC 

using Matlab v5.3 (The Mathworks, Inc., USA.) and PLS Toolbox, v 2.0 

(Eigenvector Research, Inc., ASA). For each system, calibrations were 

generated using absorbance data from the spectral window 630 to 1030 nm. 

Calibration performance was recorded for the master instruments in terms of 

Root Mean Square Error of Calibration (RMSEC), Root Mean Square Error of 

Cross-Validation (RMSECV using leave-one out (LOO) cross validation· 

segment selection), and Standard Deviation (STDev) of SSC. Calibration 

213 



Calibration transfer between NIR spectrometers. 

performance in terms of prediction on standardised slave spectra was recorded in 

terms of Root Mean Square Error of Prediction (RMSEP). 

RMSEP was calculated as: 

RMSEP= 
1-1 

Eqn 8.2 

where Yi is the predicted SSC value, Yi is the actual SSC value and I is the 

number of samples. 

The primary assessment for performance of calibrations was made on the 

significance of the variation in the RMSEP following the approach of Feam212 

(a = 0.01, and assuming bias negligible) (see also Snedecor and Cochran213). 

For each comparison of two calibrations, the ~ of the correlation between 

residuals (predicted - actual SSC) and the 95% confidence limits on RMSEP are 

reported. Briefly, Feams' method involves comparison of prediction errors (root 

mean square error, RMSE) for two calibrations, predicting analyte concentration 

from spectral data for a single validation set of n samples (for which analyte 

concentrations have been determined by a primary analytical method). Since 

both calibration models have been tested on the same samples, the calculated 

errors are correlated, that is, laboratory error will appear in both methods. The 

correlation coefficient (R) between the two sets of errors is calcullited and used in 

the following manner: 
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2( 1- R2)~ _ 2,0.025 
FK = 1 + ---->.--~---­

n-2 
Eqn 8.3 

where tn- 2,O.025 is the upper 2.5% point of a t distribution on n-2 degrees of 

freedom. 

Then calculate 

Eqn 8.4 

The upper and lower limits of a 95% confidence interval for the ratio of the 

RMSEs the equations are 

calculated as 

and 

RMSE} F 
RMSE

2 
x L 

RMSE} 1 
--~x-

RMSE2 FL 

Eqn 8.5 

Eqn 8.6 

respectively. If the compared value falls between these two values it is not 

significantly different at ex= 0.05. 

Algorithms to test each standardisation technique were implemented using 

Matlab v 5.3 scripting (The Mathworks, Inc., USA) and the parameters relevant 

to each technique were incremented to achieve optimisation. Scripts assessing 
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DS, PDS, DWPDS, FIR standardisation techniques used algorithms available in 

PLS _Toolbox software (Eigenvector Research, Inc., USA) for these 

standardisation assessments. A new OSC algorithm80 was used for the OSC 

technique assessment. Assessment of the wavelet transform technique (WT) was 

based on a method proposed by Walczak106, but differed by the use ofDS on the 

wavelet coefficients instead of directly univariately and linearly regressing one 

on the other. Wavelet coefficients from the first level decomposition were used 

in the DS association. 

In all cases, except FIR which did not require this parameter, the number of 

samples used in the standardisation was varied between 3 and 25 to allow a 

optimum number to be determined. These were selected using the Kennard­

Stone algorithm available in the PLS_Toolbox V 2.0. Window sizes for PDS 

and DWPDS was varied between 3 and 21 (increments of 2). The window size 

for FIR was ranged from 3 to 41 in increments of 4. The number of OSC 

components was varied from 1 to 5. 

Zeiss MMS 1 NIR Enhanced miniature spectrometers were used in this 

application (Carl Zeiss GmbH, Jena). The resolution is ~ 10 run across the 

instrument range, quoted using the Rayleigh criteria, and calculated as three 

times the pixel dispersion (3.3 run). The bandwidth of absorption peaks in the 

short wavelength NIR (SW-NIR) (600 to 1100 run) has often been reported to be 

greater than 40 run 14 and the resolution of a suitable instrument need not exceed 

16 run at 912 run for characterisation of sucrose content in a cellulose/water 

matrix 178. The guaranteed wavelength.accuracy for this instrument is 0.3 run 
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across its range (-305 to 1150 run). However, wavelength range varies slightly 

among instruments due to small variations in the optical alignment of 

components. Interpolation to a common wavelength scale was achieved using a. 

cubic spline interpolation technique. 

Although the photometric response of these instruments is similar due to this 

company's rigorous photo diode selection criteria, differences between 

instruments with long periods between manufacture dates was observed. The 

photometric response (mean absorbance spectrum of standardisation sample set) 

of slave and master was ratioed. A comparison of this transfer technique is made 

against other proposed transfer techniques. 

A technique generally used for updating calibration models with new spectra 

considered to encompass new variables (e.g. new cultivars or growing districts) 

was used to adapt to new instrumental variables. To assess the capabilities of 

model updating, increasing numbers of Kennard - Stone selected samples were 

added to the master data and new models generated. The new model was tested 

on the original slave data set. 

The performance of a calibration across population of fruit varying in time of 

harvest or variety is a significant issue, suggesting that significant spectral 

variation exists between such groups 163 . The performance of the best 

transformation procedure (WT) was therefore tested by comparing the 

performance of a calibration developed using a given spectrometer and 
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population of fruit on another population of fruit assessed using either the 

spectrometer used for the calibration set or another unit. 

All data sets were subjected to the same data pretreatments (mean centring) and 

predictive modelling (PLS) with the relevant parameters for both predictive 

model generation (principal components) and standardisation method 

implementation (number of samples and! or window size) optimised for each. 

Calibrations generated used equivalent data pretreatment methods which were 

not optimised for any individual set. Therefore RMSECV and RMSEP should 

not be assessed in an individual context. A 'working' calibration would also 

require attention to the optimisation of data pretreatment techniques. 

8.3. Results 

8.3.1. Comparison of Spectrometers. 

The four spectrometers differed in photometric response, not only as an overall 

response but also in terms of spectral sensitivity as illustrated by spectra of a 

white reference (Fig. 8.1). Although the manufacturer (Carl Zeiss GmbH) selects 

photodetectors (Hamamatsu Q4874) on uniformity to minimise this type of 

variation, an obvious difference prevailed which is expected to impact on 

transferability of calibrations. ·For example, the photometric response (18591, 

17942 and 10457, for spectrometers 726, 738 and 155, respectively) varied by 

3.5% in terms of raw digital counts for spectrometers 726 and 738, respectively, 

at 912 nm (significant wavelength for SSC determination). 
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If no differences existed between two spectrometers, a plot of the mean spectrum 

of one against mean of other would result in a straight line with the intercept at 

zero and a slope of 1. Hysteresis in a plot of the mean spectrum of the master 

(Set A, #726) versus the mean of the slave spectra (Set A, #738) for 201 spectra 

(Fig. 8.2) is indicative of wavelength shift. The variation in the slope of this 

relationship indicated a difference in photometric responses between the 

detectors used in these spectrometers. The remaining difference between 

spectrometers following interpolation to a common wavelength scale is ascribed 

solely to difference in photometric repines, (Fig. 8.2, line shifted 0.1 absorbance 

units on the Y axis for clarity). 

8.3.2. Comparison of Standardisation Techniques. 

The residuals of six methods from Set B were highly correlated (Fig. 8.3, see 

also Table 8.3) between these techniques indicating that any remaining residual 

can probably be attributed to the error in the reference method. The highest 

correlation (R2 = 0.98, n = 198) was achieved existing between PDS, a frequently 

referenced standardisation technique and DWPDS (variant of PDS) (Fig. 8.3). 

The performance of seven standardisation techniques SBC, DS, PDS, DWPDS, 

OSC, FIR, and WT, a wavelength interpolation method (with and without 

photometric correction) and a MU procedure were compared using the respective 

RMSEPs (Table 8.1). No one technique prevailed in all cases (seven calibration 

transfer exercises attempted), although MU performed best in the majority of 

cases (6 of 7). Ignoring the MU method, WT and OSC each prevailed in 3 of 7 

cases (Table 8.1). 
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Figure 8.1. White reference spectra representative of differences observed between MMS1 spectrometers (155, 726, 730 and 738). 
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A simple ranking procedure (Table 8.2) indicated that the relative performance of 

the techniques to be (best to worst): MU, WT, DWPDS, DS, PDS, OSC, Int and 

Mod. and FIR. Statistical data describing the predictive model performance 

(RMSEP) was tested for significance using Fearn's criteria. This assessment was 

achieved by firstly regressing the predicted analyte's residuals of one method 

against another method, to determine the coefficient of determination (R2 
) which 

was input to the calculation of the significance limits of the RMSEPs (Table 8.4). 

Since this assessment is always made in pairs, the standardisation technique 

achieving the best result in the respective data set was assessed against its five 

nearest neighbours (closest RMSEPs) (Table 8.3.). RMSEPs achieved by MU 

and other techniques were not significantly different in 6 of 7 cases. Ignoring 

MU, when the minimum RMSEP was achieved under WT, the result was 

significantly better than other treatments. However, when the minimum RMSEP 

was achieved by another method, this difference was not significantly better than 

that achieved by WT. 

When raw absorbance data of melon population 'B' (standard deviation 1.18 sse, 

Table 8.3) was predicted using a calibration developed on spectra, collected 

using spectrometer 726, of population 'A' an RMSEP of 3.80 and 2.86 was 

achieved using spectrometers 726 and 738, respectively. When 738 data, from 

populations A and B were transformed using the WT procedure, an RMSEP of 

0.67 and 1.26 was achieved for melon popUlations 'A' and 'B' respectively. 
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Table 8.1. Performance of calibration transfer process reported in terms of 
RMSEP for the prediction of melon SSC using spectra collected on a slave 
spectrometer and a calibration generated on spectra of the same fruit, 
collected on a master instrument. Bolded results highlight the 
standardisation technique with the lowest RMSEP. Spectra from the slave 
(second listed) instrument were transformed to appear as though originating 
from the master (first listed) instrument spectra. A and B designate two 

populations of rockmelons (sse = 10.68 and 10.02, n = 201 and 198 and SD 
= 1.181 and 0.873, respectively) and 155, 726, 730, 738 are spectrometer 
descriptors. Model parameters in terms of RMSEC are 0.606, 0.485, 0.544 
and 0.494 and RMSECV are 0.71, 0.701, 0.695 and 0.635 for spectrometers 
726 (Set A), 155, 726, 730 (Set B), respectively. 

Melon Population A B B B B B B 

Master 726 155 155 155 726 726 730 

Slave 738 726 730 738 730 738 738 

RMSEP without 1.134 2.166 5.990 1.282 1.706 1.034 1.593 

standardisation 

RMSEPsof 

Standardisation 

Method 

SBe 0.823 30.903 8.l69 3.126 0.867 0.878 0.86 

DS 0.683 0.768 0.722 0.684 0.632 0.664 0.639 

PDS 0.877 0.77 0.826 0.733 0.609 0.668 0.63 

DWPDS 0.742 0.773 0.84 0.764 0.608 0.621 0.623 

ose 0.662 2.468 3.349 0.845 1.078 0.617 0.605 

Fm 1.177 0.87 0.87 0.87 0.817 0.871 0.87 

WT 0.677 0.746 0.629 0.633 0.629 0.657 0.636 

Interpolation 1.179 2.250 3.290 3.796 1.342 0.793 0.687 

Interp. + Mod. 0.671 1.301 1.153 1.130 0.633 0.627 0.635 

Model Updating 0.636 0.660 0.586 0.587 0.583 0.632 0.582 
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Table 8.2. Ranking on RMSEP values achieved by each standardisation 
techniques based on 1 = lowest value, 2 = second lowest value etc. (Refer to 
Table 8.1) 

Melon A B B B B B B Total 

Population 

Master 726 155 155 155 726 726 730 

Slave 738 726 730 738 730 738 738 

DS 5 3 3 3 5 6 7 32 

PDS 7 4 4 4 3 7 4 33 

DWPDS 6 5 5 5 2 2 3 28 

OSC 2 8 7 6 8 1 2 34 

FIR 8 6 6 7 7 8 8 50 

WT 4 2 2 2 4 5 6 25 

Interp. + Mod 3 7 8 8 6 3 5 40 

MU 1 1 1 1 1 4 1 10 

Conversely, when raw absorbance data of melon population 'B' (standard 

deviation 0.87 SSC) was predicted using a calibration developed on spectra, 

collected using spectrometer 726, of population 'B' an SEP of 6.32 and 6.87 was 

achieved using spectrometers 726 and 738, respectively. When 738 data, from 

populations A and B, were transformed using the WT procedure, an SEP of 0.66 

and 1.64 was achieved for melon populations 'A' and 'B' respectively. 
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Table 8.3. Significance testing of the results a comparison of the technique 
with the lowset RMSEP against five nearest neighbours using Fearn's 
criteria to determine upper and lower significance limits of the RMSEP 
value. (Refer to Table 8.2) 

Data Set Method RMSEP R"2 High Limit Low Limit Significant 
Set A (726-738) OSC 0.662 

DS 0.683 0.708 0.723 0.606 N 
PDS 0.877 0.361 0.754 0.582 Y 

DWPDS 0.742 0.819 0.71 0.618 Y 
WT 0.678 0.645 0.73 0.601 N 
MU 0.636 0.932 0.691 0.635 N 

Set B (155-726) WT 0.746 
DS 0.768 0.844 0.795 0.7 N 

PDS 0.77 0.383 0.847 0.657 N 
DWPDS 0.773 0.379 0.847 0.657 N 

OSC 2.468 0.469 0.839 0.663 Y 
MU 0.66 0.638 0.822 0.677 Y 

Set B (155-730) WT 0.629 
DS 0.722 0.595 0.697 0.567 Y 

PDS 0.826 0.324 0.817 0.551 Y 
DWPDS 0.84 0.312 0.719 0.55 Y 

OSC 3.349 0.501 0.705 0.561 Y 
MU 0.586 0.624 0.695 0.57 N 

Set B (155-738) WT 0.633 
DS 0.684 0.803 0.68 0.589 Y 

PDS 0.733 0.436 0.714 0.561 Y 
DWPDS 0.764 0.393 0.718 0.558 Y 

OSC 0.845 0.443 0.714 0.561 Y 
MU 0.587 0.628 0.698 0.573 N 

Set B (726-730) DWPDS 0.608 
DS 0.632 0.703 0.664 0.557 N 

PDS 0.609 0.976 0.623 0.593 N 
WT 0.629 0.711 0.663 0.558 N 
OSC 1.078 0.835 0.649 0.59 Y 
MU 0.583 0.869 0.645 0.574 N 

Set B (726-738) OSC 0.617 
DS 0.664 0.626 0.681 0.559 N 

PDS 0.668 0.81 0.662 0.575 Y 
DWPDS 0.62i 0.885 0.652 0.584 N 

WT 0.657 0.62 0.682 0.558 N 
MU 0.632 0.909 0.648 0.588 N 

Set B (730-738) OSC 0.605 
DS 0.639 0.64 0.667 0.549 N 

PDS 0.63 0.825 0.648 0.566 N 
DWPDS 0.623 0.835 0.646 0.567 N 

WT 0.636 0.63 0.668 0.549 N 
MU 0.582 0.93 0.632 0.58 N 
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8.4. Conclusion: 

Of the established standardisation methods, direct standardisation of the wavelet 

coefficients of the first level decomposition (WT) was demonstrated to be the 

most efficient for the standardisation of a calibration for the non-invasive 

assessment of sse in fresh fruit samples (rockmelons) when used to standardise 

between MMS 1 spectrometers. However, predictive model updating, 

incorporating 'Kennard-Stone' selected representative spectra of the slave 

spectrometer has also been shown to be capable of achieving equally good or 

better results (in terms of lowest RMSEP) with significantly better results in one 

case. Model updating has an added advantage over most standardisation 

techniques of not requiring the measurement of standardisation samples on both 

spectrometers and allowing the predictive model to evolve to one containing only 

slave spectra over time. The disadvantage of this method is that a separate model 

is required for each instrument. 

The sse of fruit of a separate population was predicted very poorly by a 

calibration developed on another population, irrespective of whether the same 

spectrometer was employed to collect spectra across the two populations. This 

observation suggests that significant spectral variation exists between such 

groups, limiting the robustness of the calibration163. A common response to this 

issue is to include representatives of the second population into the calibration 

set, a form of model updating. Interestingly, the performance of prediction using 

WT transformed spectra of the second population was greatly improved (SEP 

improved from 2.86 to 1.26 against a population STDev of 1.18, and 6.87 to 1.64 

against a STDev of 0.87), although not acceptable in terms of calibration 

227 



Calibration transfer between NIR spectrometers. 

perfonnance (poor STDev to RMSEP ratio). This improvement indicates that the 

WT procedure does more than make spectra of one instrument look like 

originating from another. It probably emphasises spectral regions related to 

analyte, similar to wavelength selection, thereby more assisting robust predictive 

model development. 
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9. Conclusion 

In this thesis, criteria important to the design of an NlR system for non-invasive 

assessment of internal attributes (e.g. SSe) of fruit (predominantly, melons) in an 

in-line setting have been established, and applied in the development of a 

prototype system with the aim of grading fruit into sweetness categories. To this 

end, development of equipment capable of rapidly « 50 ms) acquiring spectral 

data of a suitable quality was necessary. Spectral quality was assessed in terms 

of the performance of predictive models. 

The determination of design parameters for NIR spectrometers to be applied to 

an in-line fruit sorting system required knowledge of required wavelength 

resolution and signal to noise ratio, detection system and the design of the optical 

system to 'sample' appropriate volume of fruit. In-line application, with fruit 

moving on a belt at up to 0.7 m S-l, allows for a ca. 50 ms analysis time which 

necessitated the design of an optimised illumination/detection system. 

Despite the existence of a few miniature spectrometers, the initial aim of this 

thesis was to design a high quality, low cost spectrometer specific to this 

application. An assessment of wavelength dispersion elements revealed that 

prisms were capable of delivering resolutions better than 1 nm and had a linear 

output across a broad spectral range (e.g. 405 - 2000 nm). In comparison, flat 

gold coated diffraction gratings could achieve better resolution (0.3 nm) but their 

output was shared over a number of orders thus reducing efficiency. Although 

toroidal, holographic concave diffractions had a much flatter efficiency curve 
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and a throughput and resolution similar to that of prisms they had a higher cost 

(comparative costing is difficult since a generic cost for these diffraction gratings 

is not available because they are specially designed and produced for an 

application whereas prisms are mass produced and readily available through a 

number of outlets). A conclusion was made that for a low cost instrument to be 

used in an in-line fruit sorting setting, prisms could be used successfully. 

A wavelength resolution better than 16 nm (FWHM) was empirically determined 

not to significantly improve predictive model (sucrose in a cellulose matrix) 

performance. PDAs and CCDs were assessed, in terms of SNR, to determine the 

effect of signal precision on predictive model performance. For models 

developed to assess sucrose in a cellulose matrix, an SNR of 5000: 1 was the 

lower limit. It was concluded that either PDAs or CCDs could be used in this 

application since both had similar capabilities, however it was recognised that 

PDAs have better SNR in high-light situations, whereas CCDs may provide the 

best SNR in low-light applications and have a slight sensitivity and speed 

advantage. Also, from these results, a protocol was established (in terms of 

minimum acceptable performance) to ensure good quality spectral data for good 

quality predictive model generation. The lower inherent sensitivity of PDAs 

could be enhanced to a level similar to that of CCDs, by increasing the amount of 

light collected by increasing physical pixel size. Lower inherent SNR of CCDs 

could be increased to a level similar to that ofPDAs by binning pixels. 

A bench-top prototype spectrometer, based on a dual-prism dispersion element 

and large pixel size PDA, was constructed and preliminary testing commenced. 

230 



Conclusion 

While early results of this in-house instrument demonstrated that it was 

technically superior, in terms of higher precision and throughput, economics 

dictated the use of one of the commercial instruments chosen on criteria 

identified to be important to performance for this application. The MMS 1 

instrument (Carl Zeiss, Jena, Germany) was adopted due to its high signal to 

noise ratio characteristics, temperature stability, wavelength range, sensitivity 

and robustness. For the MMS1 platform, SNR was achieved at ca. half 

saturation count level ( i.e. > 16000 counts) with a 100 Watt QTH light source 

and the designed illumination/detector configuration (single spectra acquired at 

this SNR in 50 ms). 

SSC distribution within melon fruit was investigated to determine a protocol for 

wet chemistry sampling methods and to determine regions to be spectrally 

sampled for use in predictive model generation. SSC varied in some fruit by > 

2.8 % (from inner meso carp at the equator to outer meso carp at stem end). 

Variation of inner mesocarp in a region - 30 mm wide at the equator was - 0.5% 

SSC. We recommend that attention be given to the variation in SSC across a 

sample in the development of calibrations. For example, the attribute of exocarp 

thickness may vary in fruit grown under different agronomic conditions. As 

optical data will be derived principally from the outer layers of the fruit, the 

performance of a calibration may be degraded if exocarp thickness is changed. It 

is also important that a consistent thickness of skin is removed from the cored 

sample, with the lower soluble solids content of the outer mesocarp averaged 

with the higher content of the inner mesocarp. 

231 



Conclusion 

Light distribution from a novel non-contacting illumination/detecting system was 

assessed to ensure that spectrally sampled and wet chemistry sampled regions 

aligned and that both were from consumer important areas of the fruit. It was 

found that spectral information from depths of 5 to 25 mm in the fruit made up > 

80% of the total signal. 

Ten standardisation techniques were assessed for performance with respect to the 

transfer of predictive models across fruit grading systems using the described 

design. Model updating proved at least as effective as any of the specific 

techniques and has the advantage of not requiring samples to be measured on 

both systems. This advantage can become important in the advent of a total 

failure of the master instrument. Of the devoted techniques, a modified wavelet 

transform incorporating Kennard-Stone sample selection and direct 

standardisation of the first level decomposition coefficients proved the most 

successful. 

A summary of the criteria identified as important to a rapid fruit sorting system 

based on NIR spectroscopic technology incorporating Si based detectors is given 

in Table 9.1. The industrial partner (Colour Vision Systems Pty Ltd, Victoria, 

Australia) adopted these criteria as the basis of a fruit conveyor-based sorting 

system in early 2000. Backed by a strong wet chemistry validation of NIR 

spectroscopy results, fruit identified as sweet were marketed as premium 

products (Fig. 9.1) through Australia's largest fruit and vegetable retailer in mid 

2000. 
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Figure 9.1. Western Australian (a) rockmelon fruit and honeydew (b) 
sorted by the prototype system packaged to differentiate this product as a 
'premium' article. 

(a) 

(b) 
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Table 9.1. Recommended Design Criteria for a Rockmelon Fruit Sorting 
System Employing Silicon-based NIR Spectroscopy. 

Dispersive Element Prism ( 2 x SF 18 equilateral) 
or 
Holographic Concave Diffraction Grating 
(750 - 800 nm blazed) 

Detector Si PDA (large pixel size to increase sensitivity) 
or 
Si CCD (binned to increase SNR) 

Wavelength Range 600 to 11 00 nm 

Wavelength Resolution < 16nm 

Signal to Noise Ratio > 5000: 1 (> 16000 counts on MMS 1, half dynamic range 
(lower limit) at 15 bits AID) 

Integration Time Typically < 50 ms for -15 fruit per second 
(dependent on desired process rate and SNR). 

Electronic Interface > 15 bit (analogue to digital resolution) 

Optical Interface Optical fibre coupling (low OH) 

Optical Path Redirection Front surface, high NIR reflective coatings 
(e.g. gold, rhodium). 

Spectral Data Body transmittance. 
Acquisition Mode 
Light Source Quartz tungsten halogen lamp 

(> 100 W lamp in parabolic reflector). 

White Reference Teflon (> 6 mm thickness, location during measurement 
strictly reproducible, monitored for quality control). 

Dark Reference All ambient light excluded (monitored for quality control). 

Power Supply Stabilised, noise free 
(e.g. Uninterruptable Power Supply (UPS)). 

Hardware Environment All optics enclosed in dust free enclosure. 
(Temperature Stability) ± < 0.5° C for spectrometer and light source. 

Sample Data Acquisition Optically triggered, non-contact measurement. 

Fruit Orientation Stem peduncle axis in direction of movement, sample to 
detector distance variation minimised. 
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Predictive model Partial least squares regression using spectral window 630 
generation to 1040 nm and autoscaled absorbance data. Other data 

pretreatment may be required dependent on commodity. 

Standardisation Across Model updating or regression of wavelet transform 
Systems coefficients. 

Primary Reference Wet chemistry should be performed on flesh (no skin) 
Method excised from a region directly correlated to optically 

sampling. 

Cost < AU$10000. 
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11. Appendices 

11.1. Appendix A 

Band Assigned Wavelengths 

Band assignments of experimentally observed peaks by Osborne et al.66 and 

Murray 118 in the NIR region. In the SW -NIR region precise band assignment is 

difficult due to the broad nature of the features 14 (- 40 nm) and their dependence 

on temperature and other matrix contributions61 , 218. 

Note: Bolded bands indicate SSC identifying wavelengths. 

Italicised bolded bands indicate water identifying bands. 

'*' indicates overlapping SSC and water bands. 

Wavelength Bond vibration Structure 

(nrn) 

713 C-H str. fourth overtone benzene 

738 O-H str. third overtone ROH 

740 C-H str. fourth overtone CH3 

746 C-H str. fourth overtone CH2 

747 O-H str. third overtone ArOH 

760 0-H str. third overtone H2O 

762 C-H str. fourth overtone CH2 

779 N-H str. third overtone RNH2 

790 N-H str. third overtone ArNH2 

806 N-H str. third overtone RNH2 
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808 2 x N-H str. + 2 x N-H def. + 2 x C-N str. RNHR' 

815 N-H str. third overtone RNHR' 

832 2 x N-H str. + 2 x N-H def. + 2 x C-N str. RNHR' 

840 3 x C-H str. + 2 x C-C str. benzene 

874 C-H str. third overtone benzene 

880 C-H str. third overtone CHCh 

900 C-H str. third overtone CH3 

910 C-H str. third overtone protein 

913 C-H str. third overtone CH2 

928 C-H str. third overtone oil 

938 C-H str. third overtone CH2 

970* O-H str. second overtone ROH,H20 

990 O-H str. second overtone starch 

1000 O-H str. second overtone ArOH 

1015 2 x C-H str. + 3 x C-H def. CH3 

1020 2 x N-H str. + 2 x amide I protein 

1020 N-H str. second overtone ArNH2 

1030 N-H str. second overtone RNH2 

1037 2 x C-H str. + 2 x C-C def. + (CH2)n oil 

1053 2 x C-H str. + 2 x C-C def. + (CH2)n CH2 

1060 N-H str. second overtone RNH2 

1080 2 x C-H str. + 2 x C-C str. benzene 

1097 2 x C-H str. + 2 x C-C str. cyclopropane 

1143 C-H str. second overtone aromatic 

1152 C-H str. second overtone CH3 
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1170 C-H str. second overtone HC=CH 

1195 C-H str. second overtone CH3 

1215 C-H str. second overtone CH2 

1225 C-H str. second overtone CH 

1360 2 x C-H str. + C-H def. CH3 

1395 2 x C-H str. + C-H def. CH2 

1410 O-H str. first overtone ROH 

1415 2 x C-H str. + C-H def. CH2 

1417 2 x C-H str. + C-H def. aromatic 

1420 O-H str. first overtone ArOH 

1430 N-H str. first overtone CONH2 

1440 0-H str. first overtone sucrose, starch 

1440 2 x C-H str. + C-H def. CH 

1446 2 x C-H str. + C-H def. aromatic 

1450* O-H str. first overtone starch, H2O 

1460 N-H str. first overtone CONH2 

1471 N-H str. first overtone CONHR 

1480 O-H str. first overtone (intrarnol. H-bond) glucose 

1483 N-H str. first overtone CONH2 

1490 N-H str. first overtone CONHR 

1490 N-H str. first overtone (intrarnol. H-bond) CONH2 

1490 O-H str. first overtone (intrarnol. H-bond) cellulose 

1492 N-H str. first overtone ArNH2 

1500 N-H str. first overtone NH 

1510 N-H str. first overtone protein 
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1520 O-H str. first overtone CONH2 

1520 N-H str. first overtone (intramol. H-bond) ROH 

1528 O-H str. first overtone (intramol. H-bond) starch 

1530 N-H str. first overtone RNH2 

1533 C-H str. first overtone C=H 

1540 O-H str. first overtone (intramol. H-bond) starch 

1570 N -H str. first overtone -CONH-

1580 O-H str. first overtone (intermol. H-bond) starch, glucose 

1620 C-H str. first overtone =CH2 

1645 C-H str. first overtone R-CH-CH 
\ / 

0 

1660 C-H str. first overtone cis-RCH=CHR 1 

1685 C-H str. first overtone aromatic 

1695 C-H str. first overtone CH3 

1705 C-H str. first overtone CH3 

1725 C-H str. first overtone CH2 

1740 S-H str. first overtone -SH 

1765 C-H str. first overtone CH2 

1780 C-H str. first overtone cellulose 

1820 O-H str. + 2 x C-O str. cellulose 

1900 O-H str. + 2 x C-O str. starch 

1900 C=O str. second overtone -C02H 

1908 O-H str. first overtone POH 

1920 C=O str. second overtone CONH 
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1940 O-H str. + 0 H def. H2O 

1950 C=O str. second overtone -C0 2R 

1960 N-H asym. str. + amide II CONH2 

1980 N-H asym. str. + amide II protein 

2000 2 x 0 H def. + C-O def. starch 

2000 N-H asym. str. + amide II CONH2,CONHR 

2030 C=O str. second overtone CONH2 

2050 N-H asym. str. + amide II protein 

2050 N-H asym. str. + amide III CONH2 

2080 OH str. + O-H def. ROH, sucrose, starch 

2100 2 x O-H def. + 2 x C-O str. starch 

2110 N-H asym. str. + amide III CONH2, CONHR 

2132 N-H str. + C=O str. amino acid 

2140 =C=H str. + C=C str. HC=CH 

2150 2 x amide I + amide III CONH2 

2160 2 x amide I + amide III CONHR 

2180 2 x amide I + amide III protein 

2190 CH2 asym. str. + C= str. HC=CH 

2200 C-H str. + C=O str. -CHO 

2242 N-H str.+ NH3+ def. amino acid 

2252 O-H str. + O-H def. starch 

2276 O-H str. + C-C str. starch 

2280 C-H str. + C-H def. CH3 

2294 N-H str. + C=O str. amino acid 

2310 C-H str. + C-H def. CH2 
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2323 C-H str. + C-H def. CH2 

2336 C-H str. + C-H def. cellulose 

2347 CH2 sym. str. + =CH2 def. HC=CHCH2 

2352 C-H def. second overtone cellulose 

2380 0-H def. second overtone ROH 

2461 C-H str. + C-C str. starch 

2488 C-H str. + C-C str .. starch 

2500 C-H str. + C-C str. starch 
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11.2. Appendix B 

Representative list of spectrometer manufacturers detailing type of wavelength selection method used, resolution, SNR and range. 

(Specifications from manufacturer's data sheets.) 

Manufacturer Configuration Resolution Maximum Detector Type Range 

FWHM(nm) SNR (nm) 

Acton Research Corp. (SpectruMM) Diffraction Grating (stationary) 0.4 2560: 1 (binned) CCD (Si) 400-1100 

Agricultural Innovations (OM 200) Diffraction Grating (stationary) 9 - PIN (Si) 800-1050 

Analytical Spectral Devices Diffraction Grating (stationary) 4.2 - PDA (Si) 350-1050 

Bran & Leubbe Filter - - - 1445-2348 

Bran & Leubbe AOTF - - - 900-1700 

Brimrose (Free-Space Luminar 2030) AOTF 2-10 10000:1 PIN (InGaAs) 850-1700 

Broker (Vector 22-NIR) FT-NIR 0.3 30000:1 PIN (Ge, InGaAs) 600-3030 

NIRSystems, Inc. (6500) Diffraction Grating (moving) 8.5 4000: 1 (Si), PIN (Si, PbS) 400-2500 

16000: 1 (PbS) 
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Nicolet Instrument FTIR 0.09 >60000:1 PIN (Si,InGaAs) 400-2500 

Ocean Optics (S2000) Diffraction Grating (stationary) 0.3 - 10 250:1 CCD (Si) 400-1100 

Ocean Optics (SI024DW) Diffraction Grating (stationary) (dependent 2500:1 PDA (Si) 400-1100 

Ocean Optics (SI024DWX) Diffraction Grating (stationary) on slit width) 8000:1 PDA (Si) 400-1100 

Opti-Sciences, Inc (OS5-SP). Grating (stationary) 10 10000:1 PDA (Si) 300-900 

Oriel (MSI27i) Grating (stationary) 0.4 1000:1 CCD(Si) 180-1100 

Pixel Vision, Inc. (ImSpec) GratinglPrism 5 - CCD (Si) 700-1000 

Perten (DA7000) Diffraction Grating (stationary) - - PDA (Si,InGaAs) 500-1700 

Sentronics (CDNIR 1.7) Diffraction Grating (stationary) 8 2000:1 PDA (InGaAs) 900-1700 I 
! 

I 
Shimadzu (UV-1601PC) Grating (moving) 2 1395:1 PIN (Si) 190-1100 I 
Zeltex (ZX-50) Filter 20 8000:1 PIN (Si) 890-1045 

Zeiss Grating (stationary) 10 10000:1 PDA (Si) 400-1100 

-----_ ..... _--
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11.3. Appendix C 

Calculation of Euclidean Distance and (ED) Mahalanobis Distance (MD): 

Replicate sample measurements are expected to be very similar. Differences 

result from spectrometer drift, differences in sample handling, changing 

environmental conditions such as humidity, as well as batch to batch variations 

in the sample material. However, when the spectra are all of the same material, 

the relative intensities at all the wavelengths should remain approximately the 

same. A plot of absorbance at two wavelengths of a series of samples might be 

expected to give a circular cluster however, frequently an elliptical cluster shape, 

typical of spectra from the same material, is formed by the group around the 

mean. The formation of an elliptical cluster is indicative of the subtle differences 

between the spectra (both in terms of baseline shift, pathlength and 

concentration). The mean position of the cluster is unique to the particular 

material of interest, since the int~Ilsities at these two wavelengths would be 

different for a different material. Two well-known mathematical techniques 

which can mathematically determine similarity of groups of spectra are the 

Euclidean distance and the other is the Mahalanobis distance. 

Euclidean distance (ED): 

The Euclidean distance does not give any statistical measurement of how well 

the unknown data matches the training set. In addition, the Euclidean distance 

only measures a relative distance from the mean point in the group. It does not 

take into account the distribution of the points in the group. The Euclidean 

distance describes a circular boundary around the mean point and does not take 

into account the variability of the values in all dimensions. 
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The Euclidean distance (ED) is the geometric distance in multi-dimensional 

space. For two variables it is computed as: 

ED = ~(Xil - XI)2 + (Xi2 - X2)2 for i = 1 to n. 

where XiI and Xi2 are the values of the object i for Xl and X2 , respectively and 

xI.and x2 are the means of n values at X.l and X.2 ,respectively. Note that 

Euclidean (and squared Euclidean) distances are computed from raw data, and 

not from standardised data. 

Mahalanobis distance (MD): 

The Mahalanobis distance, however, does take the sample variability into 

account. Instead of treating all values equally when calculating the distance from 

the mean point, it weights the differences by the range of variability in the 

direction of the sample point. The Mahalanobis distance constructs a space that 

weights the variation in the sample along the axis of elongation less than in the 

shorter axis of the group ellipse. Further, Mahalanobis distances look at not only 

variations (variance) between the responses at the same wavelengths, but also at 

the inter-wavelength variations ( covariance). The Mahalanobis group defines a 

multi-dimensional space whose boundaries determine the range of variation that 

are acceptable for unknown· samples to be classified as members. The 

Mahalanobis model tends to overfit very quickly if a high number of variables is 

used. Consequently variable number is frequently reduced by using scores from 

model space. 
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Independent variables (in a multivariate regression equation) define a multi-

dimensional space in which each observation can be plotted. A plot of points 

representing the means for all independent variables in the multi-dimensional 

space is called the centroid. The Mahalanobis distance is the distance of a case 

from the centroid in the multi-dimensional space, defined by the correlated 

independent variables. If the independent variables are uncorrelated, MD is the 

same as the simple Euclidean distance. Thus, the measure of MD provides an 

indication of whether or not an observation is an outlier with respect to the 

independent variable values. However, the scale of this measure is ill-defined, 

difficult to interpret and dependent on the independent variable used. For 

example, PC scores are frequently used in place of raw absorbance data to reduce 

dimensionality 195. The first step in calculating MD requires the calculation of 

the variance-covariance matrix Cx•
l
. 

Cx =_l_(XJT(XJ 
n-1 

Eqn 11.1 

where X is the data matrix of n x p (objects x variables) and Xc is the column 

centred matrix (X - X). When two variables (XI and X2) are used C becomes 

Eqn 11.2 

where csl and cs~ are the variances of the first and second variables, respectively 

and P12cslcs2 is the covariance between the two variables. 

To determine the Mahalanobis distance for the object Xj: 
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Eqn 11.3 

by substitution this leads to 

Eqn 11.4 
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11.4. Appendix D 

Statistical terms used in this thesis: 

Nomenclature used: 

Symbol Description 

a,A Principal Component (PC) and Number ofPCs. 

ho, bo y-offset 

h, b,B B-coefficients (estimated) 

d Degrees of freedom. 

Ea X-residual for a model using (a) PCs. 

f, Fa Y-residual for a model using (a) PCs. 

i, I Sample number and number of samples. 

j,J Y-variable number and number ofY-variable. 

k,K X-variable number and number of X-variables. 

N Number of elements. 

p,P X-loadings 

jJ B-coefficients (exact) 

t, T Scores 

w, W Loading weights 

x,x Mean values in x or X 

x, x,X x-value (single, vector, matrix)(independent variable) 

y,}' Mean values in y or Y 

y, y, y y-value (single, vector, matrix)(dependent variable) 

y Predicted y value. 

d! Degrees of freedom 
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R Correlation coefficient 

Coefficient of detennination 

Standard deviation 

General linear regression model equation: 

y=~o +~lxl +~2X2 +'''+~KxK + f 
(in matrix notation y =Bx + f.) 

B Coefficients: 

Eqn 11.5 

A line in a two dimensional or two-variable space is defined by the equation 

Y=a+bX; the Y variable can be expressed in tenns of a constant (a) and a slope 

(b) times the X variable. The constant is also referred to as the intercept, and the 

slope as the regression coefficient or B coefficient. The regression coefficients 

(or B coefficients) represent the independent contributions of each independent 

variable to the prediction of the dependent variable. 

Eqn 11.6 

Eqn 11.7 

Standard Deviation: 
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The standard deviation is one of several indices of variability used to characterise 

the dispersion among the measures in a given population. 

Standard deviation: 

1 ~( _ )2 --£... Xik -Xk 
Ik -1 i=1 

for k=I ... K. Eqn 11.8 

Correlation Coefficient: 

Given a pair of related measures (X and Y) on each of a set of samples, the 

correlation coefficient (R) provides an index of the degree to which the paired 

measures co-vary in a linear fashion. In general, R will be positive when items 

with large values of X also tend to have large values of Y whereas items with 

small values of X tend to have small values of Y. Correspondingly, R will be 

negative when items with large values of X tend to have small values of Y 

whereas items with small values of X tend to have large values of Y. 

Numerically, r can assume any value between -1 and + 1 depending upon the 

degree of the relationship. The coefficient of correlation (R) between two 

variables kJ and k2 is calculated by: 

Uncorrected: 

I 

I(Yi - y;)2 
R= 1- i=1 Eqn 11.9 

Corrected for degrees of freedom: 
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R= 1- Eqn 11.10 

Coefficient of detennination (R2) of predictive model = correlation coefjicienr. 

Root mean squared error of prediction: 

Root mean squared error of prediction (RMSEP) is a true measure (within 1 CJ, 

i.e. ~ 67%) of the accuracy of the predicted value in an analytical application. 

Eqn 11.11 

Root mean squared error of cross validation: 

Root mean squared error of cross validation is calculated using the same equation 

(Eqn 14.7) as for RMSEP with the predicted being detennined on the sample/s 

left out of the calibratin set during that iteration. 

Standard error of prediction: 

Standard error of prediction (SEP) is an estimate of the accuracy of the predicted 

values which compensates for bias, if present. To achieve this, all reference 

values must be made for the population before a prediction is made. 

SEP = _1_ f fA. - y. -Biasf 
I-1 i '=1\)'Z Z 

Eqn 11.12 

276 



Appendices 

Bias: 

Bias is the average value of the residuals of the predictive model: 

Standard Deviation Ratio: 

Standard Deviation Ratio (SDR) is calculated by: 

SDR=--O'-­
RMSECV 

Eqn 11.13 

Eqn 11.14 

where cr is the standard deviation of the concentation of the population. 

Degrees of freedom: 

Degrees of freedom (dfJis a term used in statistics to characterise the number of 

independent pieces of information contained in a statistic. For example, if we 

begin with a random sample of n observations and estimate the mean by the 

sample average, we are left with only (n-l) independent measurements from 

which to estimate the variance or deviations around the mean. In a simple 

regression, where we estimate both an intercept and a slope, only (n-2) degrees 

of freedom remain to measure variability around the fitted line. 

Coefficient of variation: 

Coefficient of variation (CV) is the ratio of the standard deviation divided by the 

mean, multiplied by 100, so that it is expressed as a percent. It is sometimes 

called the relative standard deviation. This summary statistic is often employed 

in the natural sciences, where the standard deviation of measurement error is 
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often proportional to the magnitude of the values being measured. Since the CV 

provides a measure of relative variation and is unitless, it is particularly useful in 

making comparisons between different samples. 

Cross-validation: 

Cross-validation refers to the process of assessing the predictive accuracy of a 

model using a test sample (sometimes also called a cross-validation sample). 

Ideally, with an adequately large sample population, a portion of the population 

can be designated as belonging to the calibration set and the remainder to the test 

set. For assessment of a model within a given population, cross-validation (in 

which calibrations are developed with some samples from the population left out, 

cycling through samples until all samples have been left out at some time and 

used for prediction) is superior to the use of a single separate test set. Cross 

validation allows the use of larger data sets in the calibration set. 

Outliers: 

An outlier is an observation which does not correspond to the phenomenon being 

studied, but instead has its origin in background or in a gross measurement (or 

assignment) error. Nearly all experimental data samples are subject to 

contamination from outliers. This reduces the real efficiency of theoretically 

optimal statistical methods. Methods which perform well even in the presence of 

outliers are called robust methods. Outliers may reflect genuine properties of the 

underlying phenomenon (variable), or be due to measurement errors or other 

anomalies which should not be modelled. Because of the way in which the 

regression line is determined in Multiple Regression (that is, based on 
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minimising the sum of squares of distances of data points from the line), outliers 

have a significant influence on the slope of the regression line and consequently 

on the value of the correlation coefficient. 

Overfitting: 

When attempting to fit a curve to a set of data points, producing a curve with 

high curvature which fits the data points well, but does not model the underlying 

function well (its shape being distorted by the noise inherent in the data) is called 

overfitting. 
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