
ABSTRACT 

One area of medicine in which knowledge-based systems may improve day to day 
patient care is in the design of initial dosing regimens and dosage adjustment of 
certain drugs whose plasma levels correlate with their toxicity and/or efficacy. Since 
the general clinician is responsible for the appropriate administration of many of 
these drugs, a way must be found to enable these clinicians to rapidly determine the 
appropriate dose or dosage adjustment required to achieve the desired plasma 
concentration and thus the desired clinical effect. To obtain the best results, a good 
knowledge of pharmacokinetic principles is required as well as the facility to apply 
these principles easily and safely. In this study, the intention was to construct a 
knowledge-based system for the design of drug dosing regimens and to investigate 
issues relating to the design of such a system which will affect its' utility in general 
medicine. A mUltidisciplinary approach to the problem was adopted. A combination 
of standard pharmacokinetic modelling and artificial intelligence techniques was 
used to design a system suitable for use by the general physician. The approach was 
informed by ethnography with the design incorporating features seen as desirable 
by prospective users and a knowledge base with facts and rules related to the safe 
and effective use of the system. In addition, a more general method of 
pharmacokinetic parameter estimation than that employed in most current 
pharmacokinetic systems was investigated. In the clinical environment, there are a 
number of sources of error which may invalidate pharmacokinetic calculations. The 
most important of these being those associated with the incorrect preparation of 
doses and the recording of incorrect times of dosing and specimen collection. It 
was observed that current pharmacokinetic systems do not address these sources of 
error directly. A more general Bayesian approach which might be extended to 
incorporate these 'external' errors would be appropriate. The method investigated in 
the report is a Bayesian formulation of the Kalman filter. It was applied to the one 
and two compartment linear models and to the one compartment nonlinear model. 
These models being sufficient to cover the majority of drugs of interest in the 
general hospital setting. Kalman filtering is a general method for handling state­
space models which gives optimal estimates of the current state of a dynamic 
system. It is commonly encountered in the field of control engineering but is also 
used in the analysis of time series. The method was shown to be adaptable in 
principle to pharmacokinetic parameter estimation and it is theoretically extendable 
to incorporate the external sources of error described above. The positive initial 
results presented in the report form the basis for ongoing research into the possible 
extension of the system and a formal assessment of user acceptance. 
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1.1 Background 

CHAPTER 1 

INTRODUCTION 

1 

Computers have been used in medicine for a variety of purposes from their earliest 

days. Perreault and Wiederhold (1990) have identified eight different purposes said 

to define the basic functions provided by computer systems in medicine. These are: 

Data acquisition, data analysis, record keeping, communication and integration, 

surveillance, information storage and retrieval, education and decision support. 

Knowledge-based systems as decision support tools, are becoming common in many 

fields of human endeavour. They allow novice practitioners to function at a higher 

level within a particular area than might otherwise be expected. In medicine, there are 

a number of areas in which these systems might play an important part in improving 

the day to day treatment of patients. Unfortunately, for a variety of reasons, there are 

few, if any, knowledge-based medical systems in routine use [Hannan, 1991]. 

One area in which knowledge-based systems may improve day to day patient care, is 

in the design of initial dosing regimens and dosage adjustment of certain drugs whose 

plasma levels correlate with their toxicity andlor efficacy. To obtain the best results 

with such drugs, a good knowledge of pharmacokinetic principles is required as well 

as the facility to apply these principles rapidly and easily. In this study, the intention 

was to construct a knowledge-based system for the design of drug dosing regimens 

and to investigate design issues which affect the acceptance or otherwise of these 
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systems in general medicine. 

1.2 The drug dosing problem 

For a number of drugs commonly prescribed in the general clinical setting, there is 

a narrow margin between a therapeutic and toxic dose. In order to maintain adequate 

therapy and avoid toxicity, the concentration of the drug in the body must be kept 

above a certain minimum threshold and below the toxic threshold, see figure 1.1. This 

Tb~rapeutic 
Range 

TIME (t ) 

CmaYss 

Cmirh 

Steady 
State 

MTC 

c 

MEC 

MEC ~~ minimum effective concentration. 
MTC '" minimum toxic concentration. 

Figure 1.1 Typical plasma drug concentration-time profile. 
(multiple identical doses) 

is often difficult for the novice practitioner to achieve, since a given dose of a drug 
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will often result in widely different drug concentrations in different patients even when 

these patients appear to have similar physical characteristics such as age, weight and 

gender. [Burton et aI., 1985; Goodman Gillman et aI., 1985]. 

Many of the drugs used routinely present no great problems, but the groups of drugs 

for which difficulties may arise include: the anti-convulsants, the anti-asthmatics, the 

cardiac glycosides and the aminoglycoside group of antibiotics. There is a significant 

but manageable number of drugs for which a solution to the problem of predicting the 

concentration of the drug in the body for a particular dose would contribute to 

improved patient care. 

Since the general clinician is responsible for the appropriate administration of many 

of these drugs, a way must be found to enable these clinicians to determine rapidly 

the ,appropriate dose or dosage adjustment required to achieve the desired plasma 

concentration and thus the desired clinical effect. 

1.3 An approach to the drug dosing problem 

There have been a number of attempts to rationalise drug therapy. These attempts 

have included predictive nomograms and pharmacokinetic models which are described 

briefly below and discussed further in chapter 2. 

Predictive nomograms were amongst the earliest attempts to rationalise drug therapy. 

They are essentially graphical descriptions of pharmacokinetic equations which are 
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used to determine appropriate doses based on average population values of the 

pharmacokinetic parameters. They tend to be inaccurate in that they fail to account for 

the large interindividual variation in response [Pechere and Dugal, 1979]. They are 

however simple to apply and are still used, though not very widely. 

Computer programs using pharmacokinetic models have had considerable success and 

are becoming increasingly well regarded [Burton et aI., 1985; Erdman et aI., 1991; 

Pryka et aI., 1991]. A phannacokinetic model is a set of equations which contains both 

drug and patient specific parameters and which may be used to relate the drug plasma 

concentration at any time in a dosing interval to the dose given. A more complete 

description of these models is provided in appendix A. To be useful, a way must be 

found to estimate the patient specific parameters in the appropriate equations and 

apply them to design an individualised dosing regimen. The estimation is usually done 

using a few plasma drug levels and the equations applied in a computer program. This 

is still most often performed only in pharmacology or pharmacy departments and 

requires considerable expertise to produce reliable results. Few of these programs 

could be said to have achieved widespread utilisation in the routine clinical setting or 

be considered suitable for use by the general physician responsible for drug 

administration. 

The proposed approach to the drug administration problem described in 1.2 above, is 

the development of a knowledge-based computer system which combines 

pharmacokinetic modelling, symbolic modelling of the patient, and knowledge related 

to the safe use of these drugs, in a way which meets the specific needs of the 
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practitioner in the routine clinical setting. This approach is the basis of the work 

described in detail in later chapters. 

1.4 Methodology 

An initial investigation was conducted in a representative clinical setting to confirm 

the desirability of such systems. This investigation took the form of a retrospective 

study on the efficacy of drug dosing methods currently employed. A prototype system 

was developed as a vehicle for further system development and the system was placed 

in operation to promote awareness and to provide a reference for a series of interviews 

with prospective users of the system. The interviews and observation were used as the 

basis for changes to the system designed to meet user needs. Interface design issues 

and problems relating to the mixed nature of the knowledge-base were also addressed 

and are discussed further later in the report. 

In addition, a new approach to pharmacokinetic parameter estimation was investigated 

and finally incorporated into an advanced prototype system. This method which is 

based on the Kalman filter, has several advantages over other methods described in 

the literature and is in line with the design goal of providing a robust simple method 

requiring minimal input from the user. 

A final prototype system was constructed which was designed to be expandable as to 

the knowledge base. It may serve as the basis for a commercial application. 
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1.5 Research themes 

The purpose of this research was to investigate the design requirements of a computer 

based drug dosing system which would be suitable for use by the general physician. 

Initial observations suggested that many, if not all, of the current pharmacokinetic 

systems may be unsuitable for this purpose and that this may be due to deficiencies 

in the design process with systems not being designed fbr users with a limited 

knowledge of pharmacokinetic principles. In addition, a number of practical 

difficulties relating to such things as the requirement for accurate timing of specimen 

collection suggested that a different approach to model parameter estimation might 

be required. The two major themes of the research presented in this report are the 

emphasis on design for usability and a new approach to pharmacokinetic parameter 

estimation, the investigation being carried out in an action research situation within 

a hospital environment. 

1.6 Definitions and summary 

According to Bratko 1990, Han expert system is a program that behaves like an expert 

in some, usually narrow, domain of application." Classically, an expert system can 

be divided into three components: (1) a knowledge base (2) an inference engine and 

(3) a user interface. The knowledge-base consists of the knowledge specific to the 

domain. This knowledge may include various things such as simple facts or as in the 

drug system mathematical models and rules describing relationships between patient 

states and dose response. Since knowledge of the domain is integral to the correct 
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operation ofthe system, these systems are also called knowledge-based systems. Other 

terms commonly encountered are 'Advisory system' and 'Decision Support System'. 

The distinction between these terms is unclear. If there has to be a distinction then it 

usually has to do with the authority placed in these systems. Expert systems being the 

most authoritative, followed by knowledge-based systems, followed by advisory 

systems and decision support systems. All four usually have the capability of 

explaining their recommendations or decisions, to a greater or lesser extent. For the 

purposes of this report, these terms will be used interchangeably. 

The term 'drug' also needs definition in the context of this report. In its broadest sense, 

a drug is "any chemical agent that affects living processes"[Goodman Gillman et 

aI.,1985]. In this report, the term drug refers to a subclass of drugs, the therapeutic 

drugs and in particular, the further subclass of therapeutic drugs which may have 

toxic effects when dosed inappropriately and for which these toxic effects and/or the 

efficacy of the treatment may be related to plasma concentration or some other 

measurable change in body chemistry. 

The following chapters contain a review of the relevant literature, the research 

methods employed and a history of the system's development, a description of the 

prototype drug system and the pharmacokinetic parameter estimation procedure, a 

discussion of the results of trials and finally the conclusions drawn from the research. 

Refereed publications relating to the work performed are attached to this thesis. 
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CHAPTER 2 

REVIEW OF RELEVANT LITERATURE 

This chapter looks at the various systematic methods which have been and are 

currently being used to provide dosage guidelines for a variety of drugs. It contains 

a review of some of the literature relevant to the design of pharmacokinetic software 

and, in addition, it discusses the benefits which may be derived from widespread use 

of these systems and some of the legal and ethical issues related to this use. 

2.1 Orug dosing methods 

Drug dosing methods may be classified as either empirical or as based on the science 

of pharmacokinetics. Empirical drug dosing methods use standard doses or doses 

based on rules of thumb derived from physician experience. For some classes of 

drugs, such as certain analgesics and antibiotics, the empirical methods are 

satisfactory. However, for those drugs where the plasma concentration correlates with 

clinical response or toxicity, empirical methods are largely inadequate. There is 

considerable evidence of the generally poor correlation between drug dosing and the 

ability to achieve a specific serum drug concentration [Sheiner et aI., 1979; Burton et 

aI., 1985; Goodman, Gillman et aI., 1985; Pryka, Rodvold and Erdman, 1991]. 

Numerous drug dosing methods have been tried in an attempt to improve this 

correlation. The latest attempts using pharmacokinetic models and modern adaptive 

control theory, also venture into the area of artificial intelligence with AI techniques 

being used to produce dosing guidelines in a way that is acceptable to the general physician. 
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"Pharmacokinetics deals with the absorption, distribution, biotransformation and 

excretion of drugs."[Goodman, Gillman et ai., 1985]. It is these factors which 

determine the plasma concentration of a drug and the concentration at the intended site 

of action. Pharmacokinetic models, which are essentially mathematical descriptions of 

the time course of plasma drug concentration, have been used successfully for some 

years to design individualised dosing regimens. A description of the mathematical 

basis of these models is given in appendix A. The earliest methods for 

individualisation of drug therapy using pharmacokinetic principles, involved the use 

of predictive nomograms and algorithms [e.g. Chan et aI., 1972; Tozer, 1974; Hull and 

Sarubbi, 1976]. These were notoriously inaccurate [Burton et aI., 1985 and 1986; 

Pancoast 1988], being based on 'average' population values, but still better than 

empirical methods [Jelliffe, 1983]. Simple computer programs to implement algorithms 

based on pharmacokinetic principles were also developed at this time [e.g Jelliffe and 

Jelliffe, 1972], but suffered from similar limitations to those of the predictive 

nomograms. Jelliffe and Schumitzky (1990) and Buffington, Lampasona and Chandler 

(1993), have given interesting descriptions of the development history of 

pharmacokinetic software. 

The availability of rapid and inexpensive drug assays made it possible to produce the 

adaptive pharmacokinetic models which used drug concentration data to adapt the 

model to an individual patient. These adaptive models were either deterministic or 

probabilistic in nature. The deterministic pharmacokinetic models [e.g. Sawchuk and 

Zaske, 1976; Sawchuk, Zaske and Cipolle, 1977] required several serum drug levels 

within a dosing interval to determine individual pharmacokinetic parameters by means 
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of simple linear regression analysis. These methods are generally quite accurate but 

suffer from several limitations in that they use drug levels in a single dosing interval, 

parameters are recalculated as new data becomes available and high and low data 

points are assumed known with equal precision. Thus they fail to use what is already 

known about the individual and are particularly vulnerable to inaccurate data points 

within a dosing interval [Jelliffe et aI., 1991]. Weighted nonlinear regression analysis 

as used by lelliffe in 1982 is somewhat more flexible, but generally requires more 

data points and also discards previous information. 

Probabilistic models based on an application of Bayes' theorem were developed at 

approximately the same time as deterministic models. Bayesian models [e.g. Sheiner 

et aI., 1972 and 1979; Kelman, Whiting and Bryson, 1982] use routine clinical data 

(age, height, weight, renal function), to provide initial estimates of the patient 

pharmacokinetic parameters. Then, by applying Bayes theorem and using maximum 

likelihood estimation, any number of serum drug concentrations may be used to refine 

the predicted parameters and the dosing regimen. The maximum a posteriori 

probability (MAP) Bayesian method, described by Sheiner et al. (1979), has the main 

advantage of being somewhat more flexible in that non uniform dosing schedules and 

serum levels may be used to refine the initial estimates. 

While the Bayesian models have been shown to be accurate and have achieved some 

commercial success, current implementations do not really account for all the 

problems encountered in practice. lelliffe et al in 1993, suggested that what is needed 

is to implement models in stochastic form, to allow for errors due to factors such as 
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model misspecification, incorrect preparation of doses and mistiming of administration 

and collection of blood samples for analysis. lelliffe and Schumitzky in 1990 had 

previously described a 'new' method which they called Approximate Optimal Closed­

Loop (AOCL) control. In this method, modern adaptive control methods utilising a 

general nonlinear stochastic system are applied to drug concentration data. The method 

is said to be superior to current methods in that it is able to actively learn about the 

system in the process of controlling it. The approach appears to have similar aims to 

that adopted in the system development which is the subject of this report. The 

mathematical basis of the approach used in the drugs adviser and some of the 

implications for further development are discussed in chapters 5 and 6. 

2.2 Drug dosing systems 

Table 2 gives a necessarily incomplete list of available drug dosing systems. The list 

focuses on clinical systems commercially available. It is necessarily incomplete as this 

is an active area of applied research with a number of systems being developed which 

have achieved a largely local following [Reidenberg, 1993, Buffington et aI., 1993]. 

The commercial systems themselves are continuously being upgraded as trends 

change, the option of Bayesian parameter updating being a good example. Most of the 

commercial development has occurred in the last five to six years, mainly in the USA, 

although European development is proceeding apace. There are also a number of 

pharmacokinetic systems appearing in the literature, such as NONMEM, PC-NONLIN, 

MKMODEL, which have been developed as modelling programs and are not designed 
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SYSTEM 

USC*PACK 
programs 

Abbottbase PK 
System. 

SIMKIN 
Pharmacokinetic 

KINETIDEX 

DRUGCALC 

MSMEDS Pharmacy 
info. 

MW/Pharm 

APIS 

OPT 

PEDA 

MULTI(2) 

PARAMETER 
UPDATING 

Bayesian I 
Non Bayesian 

Bayesian I 
Non Bayesian. 

Bayesian I 
Non Bayesian 

Bayesian I 
Non Bayesian 

Non Bayesian 

Non Bayesian 

Bayesian I 
Non Bayesian 

Bayesian 

Bayesian 

Bayesian 

Bayesian 
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ORIGIN STATUS 

USA Commercial 
Time Share 

USA Commercial 

USA Commercial 

USA Commercial 

USA Commercial 

USA Commercial 
included in 
large Phann. 
system 

Holland Commercial 

France Commercial 

UK unknown 

Japan research 
prototype. 

Japan Commercial 

Table 2.1 Various Clinical Pharmacokinetics Systems, their country 
of origin and current status, where known. 
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primarily as clinical tools [Buffington et aI., 1993], these also have not been included 

in the table, as this report is concerned with developing a system for clinical use. The 

remainder of this section discusses interesting aspects of some of the systems in the 

table and others. 

A number of early pharnlacokinetic programs were based on the traditional method 

of parameter estimation which uses simple linear least squares regression as described 

by Sawchuk and Zaske in 1976. This is the prototypical method based on the 

pharmacokinetic model. Much of the earlier work was done on the amino glycoside 

antibiotics and is still relevant today. The method has been applied to various 

therapeutic drugs with suitable modification of the model and it is often used in 'in 

house' systems such as that produced by Kaka and Buchanan in 1983. These systems 

have been largely superseded by programs employing nonlinear least squares 

regression or Bayesian analysis. 

The USC*PACK of programs [Jelliffe, 1982], generated considerable interest in 

pharmacokinetic programs. They were originally designed to operate on mainframe 

computer systems but were later adapted to the PC. These programs have been 

modified over time to include Bayesian parameter estimation and are the most widely 

used pharmacokinetic programs in the United States with some 650 installed systems 

in the US and internationally [Buffington et aI., 1993]. The Abbottbase PK system 

[Moller, 1992] is the next most widely used system in the US and elsewhere and has 

been installed at several sites in Australia. New versions have been produced and 

although expensive to purchase, it may be supplied free of charge to sites using 
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Abbott products. These programs are usually found in pharmacy or clinical 

pharmacology departments and require considerable expertise to produce good results. 

The KINETIDEX program listed in table 2.1, is part of a suite of programs to support 

clinical decision making. It is produced by Micromedex corporation [Micromedex, Inc. 

Denver USA, 1974 - 1993] and supports the largest number of drugs of any of these 

systems. Along with SIMKIN, it has the interesting feature of providing for selection 

of clinical factors which the program will use to adjust initial pharmacokinetic 

parameters. This approach has been extended by Lenert et al. (1992) in their design 

of a prototype system which they call the Aminoglycoside Therapy Manager (ATM). 

The A TM uses a combination of Bayesian pharmacokinetic modelling and symbolic 

modelling of the patient to produce dosing and therapeutic monitoring strategies. The 

symbolic model of the patient is generated from clinical data provided by the user in 

response to questions from the system. A similar approach has been adopted in the 

Drugs Adviser. It is important in systems designed to be used by those with limited 

expertise in pharmacokinetics. 

Pharmacokinetic software may also serve as a useful teaching tool [MacFadyen et aI., 

1993] and some systems have been designed with this in mind. The APIS system 

[Iliades et al., 1992] was designed to assist clinicians in optimizing drug therapy, but 

also includes simulation facilities which allows the user to investigate the appropriate 

model for a particular drug. This obviously requires a reasonable knowledge of 

pharmacokinetics and may in fact be used to illustrate pharmacokinetic principles. 

APIS has been used successfully in this teaching role at the University of Marseille 
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for some time. 

Another of the more recent systems applying the Bayesian method is PEDA [Higuchi 

et al., 1987]. Using appropriate pharmacokinetic models this systems has been 

extended to include a variety of therapeutic drugs. It has been successful, mainly in 

the research setting, and is said to have similar accuracy to the deterministic 

pharmacokinetic methods. Interestingly, practicality in clinical use was one of the 

design criteria for PEDA . This was an attempt to improve on perceived weaknesses 

in this area of the Bayesian MULTI [Yamaoka et al., 1985] and raises the general 

question of system design. 

Finally, this section would not be complete without some mention of one of the best 

known antibiotic dosage advisory systems, MYCIN [Bennett and Scott, 1980; 

Buchanan and Shortliffe, 1984]. This system uses a built in knowledge base about 

infectious diseases and susceptibility to antibiotics, together with patient specific data 

to customise dosages. The patient pharmacokinetic parameters are estimated from 

patient data such as renal status, height and weight. These are then used to graph the 

probable time course of drug levels for a given dosage regimen using a basic 

pharmacokinetic model. It thus precedes the adaptive models and has not been 

included in table 2.1. It does, however have several interesting features, the most 

striking of these being the capability of explaining program recommendations in 

response to simple questions from the user. The questions of explanation and 

practicality in clinical use lead to consideration of more general design issues in the 

next section. 
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2.3 Design issues 

Medical artificial intelligence has begun to move from the research laboratory into 

clinical settings [Shortliffe, 1987; Spackman and Connelly, 1987; Wiener et aI., 1989]. 

With this move, there has been a growing emphasis on logistics and design so that 

medical personnel would be encouraged to use the systems and come to regard them 

as helpful rather than a hindrance or threat. There seems to be an inherent resistance 

by physicians to the use of computers in clinical practice, often mentioned or at least 

alluded to in the literature [Shortliffe, 1986 and 1987]. However, at least one study 

suggests that physicians believe that assistance from computer based advisory systems 

will ultimately be of benefit to medical practice [Teach and Shortliffe, 1981] and a 

recent survey of medical students at one Australian medical school concluded that "the 

perceived importance of computing in medicine was high among all students and there 

was enthusiasm for the development and inclusion of a course on medical computing 

in the undergraduate curriculum" [Kidd et al., 1993]. 

It does seem clear that in order for medical advisory systems to fulfil their promise, 

a greater emphasis must be placed on those aspects of system design related to 

usability. The main design issues which any developer has to confront are those 

relating to the design of the interface, the provision of appropriate explanation 

facilities, the ability of the system to handle uncertainty and system validation. Some 

current ideas on these issues are discussed below. 
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2.3.1 The user interface 

One important factor that can influence physicians to accept or reject a system is the 

quality of the user interface [Shortiiffe, 1987; Buffington et al., 1993]. Many programs 

have been written with the ability to produce accurate results, but few have gained 

widespread acceptance. This is clearly due to the fact that the production of results is 

only part of the requirements for success. Shortliffe (1987) has called these other 

requirements 'Human Factor Issues' and further subdivides them into Logistical, 

Mechanical and Psychological. Logistical issues cover such things as physical access 

to the system, the requirement to re-enter patient information each time the system is 

used and the time it takes to start the system. Mechanical issues involve the mode of 

interaction with the system. The interaction may be via keyboards, mouse devices, 

touch screens, voice interfaces or some other means. Psychological issues relate to the 

way in which the user interacts with the system. For instance, the content and 

appearance of what is shown on the screen will affect the way the user feels about the 

system and whether or not it will be used. Bankowitz et aI., (1989) have concluded 

that "they must incorporate man machine interfaces suitable for use by physicians and 

be as convenient as making a phone call to a colleague". Most current systems either 

fail to address these issues at all or use outdated interface designs. 

Shneiderman (1987) provides useful guidelines for designing the interface. The 

interface must be designed to meet the needs of the users and to suit their level of 

expertise. There are a number of different types of interface. These include, menu 

systems, command language interfaces and natural language interfaces. Natural 
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language interfaces are difficult to construct and may be too slow for practical use 

although voice command systems may make them more acceptable. A similar 

objection applies to command interfaces where instructions have to be typed into the 

system using some kind of command language. The WIMP (Windows, Icons, Menus 

and Pointers) interface is a generalised type of menu system which has become 

standard in modem software. The WIMP interface design is flexible and easy for 

inexperienced users to learn. Furthermore, WIMP interfaces tend to have the same 

'look and feel' which makes for consistent screen formats within and across 

applications. Linear sequences of menus are also a simple and effective way to guide 

a user through a complex task [Shneiderman, 1987; Chignell and Waterworth, 1991]. 

Of the different types currently available, the WIMP interface seems the most suitable 

for medical decision support software. 

2.3.2 Explanation 

One of the more important elements relating to the human factor issues in medical 

advisory systems, is the ability of the system to explain the basis of the advice given 

with justifications as required. The problem of providing appropriate explanation is 

one which occurs in all expert system applications and what constitutes appropriate 

explanation is both domain and user dependent. Explanation and interface design are 

closely linked. The design ofthe interface will affect the way in which the explanation 

is presented and its acceptability. 

Chandrasekaren, Tanner and Josephson (1989), in an introductory review of work in 
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this area, decomposed the explanation problem into three top-level components. These 

components are distinguished by: 

1. How the problem solver represents its activity and retrieves relevant portions 

appropriately in response to queries from the user. 

2. How a user's goals, expertise etc. are used to shape the output so that the 

explanation is appropriate to the particular user. 

3. How appropriately and effectively the interface displays information to the user. 

They also contend that the first component above is central to the main task and itself 

has three components. These explanations of problem solving are: 

1. Explaining why certain decisions were made or were not made. 

2. Explaining the elements of the knowledge base itself. 

3. Explaining the problem-solving strategy. 

These different types of explanation provide a useful classification of one aspect at 

least of the explanation problem. 

For explaining problem solving, Chandrasekaren et al.(l989), outline a theory of 

problem solving types and describe a representation of deep models of a domain. 

Their idea is that there are "generic tasks in knowledge-based problem solving" and 

that by using these generic tasks as a framework for system design they will be able 

. to produce explanations which are closer to the conceptual level of the user. The 

approach was implemented in a mission planning assistant (MP A) prototype. 

Medical systems have provided some of the best known practical applications of 
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explanation. In MYCIN, [Bennett and Scott, 1980], the basic explanation facility used 

to justify the systems' recommendations came from responses to the classical How and 

Why questions. Should the user ask the system Why a partiCUlar question was asked, 

the response is provided as a list of rules which the system is trying to prove and if 

the user asks the system How a conclusion was reached then the system lists all the 

rules invoked in the proof. Thus, while adequately addressing the type 1 explanation 

described above, MYCIN was unable to explain the strategies it was using in solving 

a particular problem or justify its rules (explanation types 2 and 3 above). In 

NEOMYCIN, [Clancey, 1983], the explanation facility was extended to include 

additional diagnostic operators which represented the diagnostic strategies employed 

and which could be used to explain these problem solving strategies to the user. Thus 

NEOMYCIN addressed the type 2 problem above but was still unable to explain the 

elements in the knowledge base. In the XPLAIN system (" explainable expert 
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symbolic models of the domain which are descriptions of the structure of the domain 

and the principles which control its behaviour. These structural descriptions and 

domain principles are often referred to as "deep" knowledge as compared to the 

"shallow" knowledge contained in the classical systems. Models may be characterized 

in many different ways. Most often, the classification is by means of the application 

area they are being used to describe. In model-based expert systems, the models are 

most often described as symbolic models which contain objects, relationships between 

objects and object attributes. This is somewhat vague as many terms appear to have 

multiple meanings in the literature and there is considerable overlap between model 

types [Rothenberg, 1989]. Potentially, model based systems are able to provide more 

detailed explanations than the classical rule based systems but generally require 

considerable investment in interface design to extract maximum benefit [Kunz, 

Stelzner, Williams, 1989; Miller and Larson 1992]. Teach and Shortliffe (1981) noted 

that one of the requirements for clinical systems is that they exhibit common sense. 

In a prototype system modelling the water balance mechanism of the kidney, Kuipers 

(1989) describes a qualitative model based system which is said to exhibit a "type of 

common sense" in that it is able, by means of suitable constraints generated by a 

method referred to as "abstraction by time scale", to distinguish clinically undesirable 

courses of action which may however have produced a solution. 

The issue of transparency is closely related to the issue of appropriate explanation. 

Knowledge based systems should be transparent [Smith J.D., 1991]. That is, the users 

and experts, should be able to verify the knowledge being used, whether it be tables, 

equations, diagnostic profiles of a disease, or some other. The reasoning being applied 
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to a particular case should also be transparent to the user. Thus the use of a graphical 

concentration time profile in pharmacokinetic systems which provides a rapid visual 

check on the likely validity of the recommendations and, indeed, why these 

recommendations were produced. Transparency thus requires that the knowledge being 

used must be accessible to the user, verifiable by the expert and capable of being 

updated as required. 

Much of the work on explanation presented above has remained largely theoretical. 

There is no standard way of providing appropriate explanations and several methods 

are commonly used including simple text justification, graphical representations where 

appropriate and response to the standard How and Why questions as used in MYCIN. 

Text justification with 'reference to higher authority' is widely used in the medical 

domain. For example, ANABEL, a system for the interpretation of arterial blood 

gases, [Zarkadakis et al., 1989], uses a 'semantic trace', natural language text which 

explains the system's reasoning and justifies the interpretation. The KINETIDEX drug 

dosing system provides literature references, access to the pharmacokinetic equations 

and a plot of the predicted concentration-time data as justification for its calculations 

and recommendations. Whatever the method used, it seems that some sort of 

justification for the recommendations is mandatory if a system is to be widely used 

by physicians. 

2.3.3 Learning and uncertainty 

A further issue in the design of clinical decision support system is the problem of 
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dealing with uncertainty. Uncertainty occurs when the knowledge-base is incomplete, 

when data which is not completely known is used or when stochastic relationships 

between propositions exist. In these situations, classical probability theory is often 

inappropriate or simply cannot be used and other methods are applied [Spiegelhalter, 

1986]. 

A number of alternatives to classical probability theory have been proposed. These 

include: Certainty theory as used in MYCIN, the Dempster-Schafer theory of evidence 

and fuzzy logic. Castillo and Alvarez (1991) provide a useful introduction to these 

theories. Certainty factors combine measures of belief and unbelief in a given 

hypothesis due to some known information or evidence. The hypothesis may be the 

presence of some disease state and the evidence, the presence or lack of some 

symptom. The certainty factors may then be propagated according to consistent laws 

derived from the original definition. The Dempster-Schafer theory of evidence uses 

two measures of uncertainty, a belief function and plausibility and fuzzy logic uses 

another measure of probability called possibility. 

Unfortunately, the use of these alternatives to probability theory carries its own risks. 

Most seem to agree that, where appropriate, probabilistic techniques should be used. 

The aim of expert systems in medicine and other areas, is to propagate human 

knowledge not human errors. In hybrid systems such as some pharmacokinetic 

systems, more than one method may be used. Classical probability theory (Bayesian) 

may be used to estimate pharmacokinetic parameters and predict the time course of 

plasma drug concentration. Confidence intervals may be derived and deviations from 
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expected values may provide evidence of poor timing of sample collection or possible 

changes in the patients! state. However, if the system includes advice on appropriate 

drug levels, then other uncertainty measures may need to be used. 

In areas where knowledge is incomplete or incomplete data is provided to the system, 

it would be desirable for expert systems to learn from past experience. There are a 

multitude of ways in which computer systems may learn from experience or data. 

Some of the methods used in various systems include linear discriminant analysis, 

neural network techniques, nearest neighbour techniques and decision tree methods. 

There are a number of useful texts discussing these various techniques [e.g. Castillo 

and Alvarez, 1991; Weiss and Kulikowski, 1990]. Interest in the use of Neural 

networks in medical systems appears to be increasing [Sharpe et aI., 1993] and their 

application in pharmacokinetics is being explored [e.g. Veng-Pedersen and Modi, 

1993; Hussain et al. 1993]. Pharmacokinetic systems using statistical techniques to 

estimate an individual patients' pharmacokinetic parameters from data supplied by the 

user may also be said to learn. There has been considerable effort to improve 

population parameter estimates of pharmacokinetic parameters from data gathered 

directly from patients receiving drugs of interest [e.g. Sheiner, 1984 and 1992], but 

no examples of pharmacokinetic systems incorporating this type of learning could be 

found. The relatively new AOCL control methods discussed above indicate that the 

ability for a system to learn is considered as a possible solution for some of the 

problems related to everyday use of pharmacokinetic systems. 
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2.3.4 Evaluation 

For expert systems, there does not seem to be any generally recognised definition of 

what 'evaluation' means. HollnageI (1989) considers expert system evaluation to 

comprise assessment of three different aspects of the system. The first is the systems 

reliability, the second its validity and the third its usability. These terms are defined 

as follows: Reliability involves software engineering and knowledge-base verification, 

in the sense that given the same input, the same output is always produced. Validity 

refers to whether the system produces the results it should and usability refers to the 

ease with which the user can apply the system to the problem it is designed to solve. 

Others use slightly different definitions and categories [e.g Liebowitz, 1986]. 

However, it seems clear that evaluation must be considered throughout the design 

process and that issues such as transparency, sensitivity and interface design need to 

be considered from the beginning. 

Evaluation and validation of clinical decision support systems is a particular area of 

concern since their application is often in areas of critical care. A number of 

approaches have been proposed for knowledge-base verification [e.g. Perkins et aI., 

1989] but, as for advisory systems in general, there are no well accepted general 

techniques for overall evaluation of clinical software. Buffington et aL (1993) 

reviewed various pharmacokinetic systems commercially available in the USA and 

provided guidelines for choosing appropriate software. Witbeck and Brooks (1983) 

have provided guidelines for evaluation of software for clinical decision making which 

may be adapted to pharmacokinetic systems. Several features are seen as highly 
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desirable. Full descriptions of the mathematical models used should be provided and 

the validity of these models thoroughly tested both retrospectively and where possible 

prospectively. For novice users, the system should provide the correct model to be 

used for each drug. It should be made clear that 100% accuracy and reliability is not 

achievable and the user should be made aware of the limitations of the system at each 

session, particularly those factors such as age and disease state of the patient which 

are likely to affect the results of calculations. The users must also be made aware that 

theirs is the final responsibility and that the use of such a system is no substitute for 

sound clinical judgement. 

2.4 Benefits and cost-effectiveness 

Therapeutic drug monitoring (TOM) which provides the basis for the development of 

pharmacokinetic software has been well established in clinical practice as a means of 

improving patient care, but its benefits are by no means universally accepted [e.g. 

McCormack and Jewesson, 1992; Cantu et al., 1993]. There is also evidence that 

TOM is being misused, with some studies showing 40 percent or more drug assay 

results either ignored or misapplied in dosage adjustment [Travers, 1987]. Not all 

drugs are suitable candidates for TOM and the timing and number of specimens 

collected are important considerations in the interpretation of drug levels [Bochner and 

Tonkin, 1993]. Appropriately designed pharmacokinetic software may be beneficial 

by reducing the incidence of misuse of TOM and providing a rational basis for 

individualisation of drug therapy. In a prospective audit of an aminoglycoside 

consultation service, Li et al. (1992), concluded that the introduction of the service 
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"had a positive impact on the effective use of aminoglycosides". There was a 

significant, reduction in toxicity and a significant reduction in the number of 

uninterpretable assays performed. In addition, there was a reduced, but not statistically 

significant, number of aminoglycoside courses judged clinically inappropriate. 

The accuracy of well designed pharmacokinetic software in predicting serum drug 

concentrations and designing effective dosing regimens is well known [Burton et al., 

1985]. The cost-effectiveness of these systems is less easy to demonstrate [Vozeh et 

al., 1987]. Burton et al. (1991) performed a controlled trial of the cost benefit of 

computerized amino glycoside administration and demonstrated a significant 

improvement in response rates in the test group with a concomitant reduction in the 

length of stay in hospital. On the basis of this reduced length of stay, it was concluded 

that a potential cost saving of $1311 per patient was achievable. There are few such 

studies in the literature and more are needed to firmly establish and quantify the cost­

effectiveness of pharmacokinetic systems. 

There are not many examples in the literature of medical support systems undergoing 

clinical evaluation. If any medical decision support system is to gain general 

acceptance, then it must undergo extensive evaluation in a clinical setting. For 

pharmacokinetic systems to gain widespread acceptance, the end result of such 

evaluations will have to be that there are clear benefits to be gained in the areas of 

patient care andlor efficiency which generally equates to dollars. Drug dosage systems 

have been in development for almost 20 years and while TDM has become well 

established in clinical medicine, the tools for correct interpretation of assay results are 
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less well accepted. Systems such as that proposed in this report, focussing on 

usability, may go some way towards correcting this deficiency. 

2.5 Legal and ethical issues 

The legal principle which governs the use of pharmacokinetic software is still unclear. 

Up to the present, there has been no litigation surrounding the use of these systems 

but this does not guarantee that a manufacturer or user will not be held liable for some 

perceived harm caused by one of these systems at some time in the future [Schwartz 

and Fink, 1989]. The pivotal concern seems to be whether or not such a situation will 

be viewed under negligence law or product liability law [Miller et aI., 1985]. 

Negligence law means that a product must meet reasonable standards of safety. 

Product liability law on the other hand requires that a product must not cause harm. 

Since clinicians are subject to negligence law, it seems unreasonable to apply higher 

standards to decision support systems and the present view is that negligence law 

would apply. The United States Food and Drug Administration at present has no plans 

to regulate systems in which the physicians judgement can override the system's 

recommendations [Young, 1987]. The eventual determination of which legal principle 

applies, will have important implications for the acceptance of decision support tools 

by physicians. 

The inverse question to that of the liability of the manufacturer or user was proposed 

by Shortliffe in 1987. Is a physician who does not use a program liable if the 

programs advice might have prevented an adverse outcome? Shortliffe considers the 
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answer would be that she would if the use of such a system had become the standard 

of care in the community. 

Another interesting question that often appears is who should use such systems? The 

major concern seems to be that the user may not be trained to operate the system 

safely [Miller et aI., 1985]. Some feel that only those with a thorough understanding 

of pharmacokinetics should use pharmacokinetic based systems [e.g. Buffington et al 

1993]. This seems to ignore the potential for improving the general clinicians 

performance in this area by means of the experience gained while using these systems 

and ignores the fact that the general clinician is ultimately the one responsible for the 

safe and effective use of the drug. In addition, several 'in house' systems such as that 

described by Vozeh et ai. (1984 and 1985) are used successfully by clinicians. 

Provided the system has been thoroughly tested and appropriately designed, there 

seems no reason why it should not be used by the general physician. 

2.6 Summary 

This chapter reviewed various drug dosing methods which have been used and 

aspects of system design related to producing a drug dosage advisory system for 

general use. 

Pharmacokinetic systems are currently commercially available and are used 

successfully at a number of sites. The Bayesian, adaptive control systems appear to 

produce the best results and appear to be more suitable for use in the clinical 

environment than systems using deterministic pharmacokinetic parameter estimation 
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methods. There are few, if any, systems which have been designed for use by the 

general physician. 

A number of issues relating to systems for general use were also discussed. These 

included: design of the user interface, types of explanation, validation and evaluation 

and legal and ethical issues. These issues have been addressed in various clinical 

advisory systems but do not appear to have been adequately addressed for 

pharmacokinetic systems. 

Use of pharmacokinetic systems also appears to have benefits in terms of cost savings 

and improved patient care. 
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This chapter describes the structure and purpose of the prototype Drug Dosage 

Adviser. It includes a description of the contents of the mixed knowledge base and 

describes aspects of the program structure designed to allow for ease of maintenance 

and expandability. 

3.1 Purpose 

The Drug Dosage Adviser is designed to produce dosing recommendations for some 

commonly prescribed therapeutic drugs and antibiotics. It uses plasma drug levels to 

derive an individualised pharmacokinetic model of the patient which may then be used 

to modify the amount of drug being given to produce the desired drug levels. In 

addition, it uses clinical knowledge, in the form of facts and rules, to suggest 

appropriate drug levels for the individual patient and to provide additional information 

related to safe use of the drug. As explained in the introduction, this is not a trivial 

problem in medicine and it has attracted considerable research efforts. The unique 

aspects of the Dosage Adviser in this area are its design for usability and a new 

approach to individual pharmacokinetic parameter estimation. The system produces 

an initial dosing recommendation by applying the appropriate pharmacokinetic model 

using popUlation based estimates of the pharmacokinetic parameters rather than 

individual values. These population estimates are then updated or individualised, as 

plasma levels become available. The antibiotic drugs gentamicin and vancomycin and 
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problem in medicine and it has attracted considerable research efforts. The unique 

aspects of the Dosage Adviser in this area are its design for usability and a new 

approach to individual pharmacokinetic parameter estimation. The system produces 

an initial dosing recommendation by applying the appropriate pharmacokinetic model 

using popUlation based estimates of the pharmacokinetic parameters rather than 

individual values. These population estimates are then updated or individualised, as 

plasma levels become available. The antibiotic drugs gentamicin and vancomycin and 
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the anticoagulant drug, heparin, were chosen for the initial implementation of the 

system as they are used extensively in the general clinical setting and may be 

modelled by the one compartment, two compartment and non linear models, 

respectively. These models are sufficient to cover the majority of drugs of interest. 

3.2 System overview 

The operation of the system was designed to be largely intuitive. The system operates 

in the Windows environment, [Microsoft Windows version 3.1, Microsoft Corporation, 

Washington, USA 1991], which provides a standard user interface with a consistent 

look and feel and which is familiar to most potential users. Within this environment, 

the operation of the system was kept simple with few choices of action required at 

each stage in a consultation. This supports the requirements of simplicity and ease of 

operation expressed by potential users. The system is menu driven with extensive use 

made of popup dialogue windows and single choice menus. The necessity for typing 

was avoided as much as possible although a small amount of alphanumeric data entry 

for drug levels, times of sample collection and patient demographics is required. 

The system was constructed in Edinburgh standard Prolog. LP A Prolog, [LP A 386-

PROLOG version 2.600, Logic Programming Associates Ltd, London, England, 1994], 

is the particular vehicle. All dialogue windows and popup menus were written using 

the available Prolog GUI (graphical user interface) predicates. The code for 

pharrnacokinetic parameter updating is written directly in ANSI C and loaded as a 

DLL (dynamic link library) for access by Prolog. 
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The general architecture employed [Smith J. D. 1991] is described in figure 3.1. This 

is an idealised view and the distinction between the navigation program and the 

inference program in this implementation, is not as sharp as it appears in the figure. 

However, the outline was followed as closely as possible to allow for ease of 

maintenance, particularly when expanding the system to handle additional drugs. 

INFERENCE PROGRAM NAVIGATION PROGRAM 

-Initialization - Task Processor 
- Main Driver Program (Refer Fig. 3.3 below) 

(refer Fig. 3.2 below) - Interface Predicates 
- Cleanup blackboard - Directions and Advice 

on exit to users 

.~ / 
BLACKBOARD 

- Dynamic Prolog Data 
Structures 

- Symbolic Patient Model 

I 
KNOWLEDGE BASE 

- Clinical Facts and Rules for 
Drug interactions, Warnings 
and Symbolic Patient Model 

- Equations for initial parameters 
- DLL parameter update modules 

Figure 3.1 Architecture of the Drug Dosing System. A Blackboard Structure 

The results of a consultation and patient demographics may be stored or retrieved 

from the hard or floppy disk. A graphics function is available to enable the user to 

plot past or forecast drug concentration data and there is a help function which 

includes an introduction to the system with a description of basic system operation. 

Data validation and consistency checks are applied where appropriate in the interface 

predicates. There are additional consistency checks applied to drug concentration data 



34 

entered by the user. These checks which may be used to provide warnings about 

suspected errors in collection or timing of samples are described in gr~ater detail in 

chapters 4 and 5. 

Further discussion of the individual system components is presented in the sections 

which follow. 

3.3 Navigation and inference 

The inference program or main driver program uses a 'failure driven loop' to process 

a group of Prolog predicates which together are capable of deriving everything which 

needs to be derived from the knowledge base. Figure 3.2 describes the code structure 

used ( for the non specialist reader of figure 3.2, unfamiliar with Prolog, a word 

starting with an uppercase letter is a variable and variables get their values from the 

user or from other Prolog predicates. For example, the Prolog predicate 

"choosedrug(Drugstatus,Drug)", obtains the current value of "Drug" and "Drugstatus" 

by direct input from the user or from a global data structure called the blackboard, see 

3.4 below). At the start of a consultation, the user must choose from a main menu 

which of several main tasks is to be performed. Depending on this choice, a particular 

group of Prolog predicates are called sequentially. They determine the initial system 

state. This state is communicated to the navigation program via the blackboard which 

further interacts with the user to refine the state and generate a solution. The main 

driver program also handles initialisation of the system and cleanup on exit. 
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solve:-

%OR 

%OR 

%OR 

repeat, 
data_cleanup, 

select_ task(Task), 

get_ consult_ status(Patstatus,Drugstatus), 
choosedrug(Drugstatus,Drug), 
obtain ---'patient_ data(Patstatus,Patient), 
start_or _ adjust_ dose(Start _ or_update), 
route _ oC administration(Drug,AdmRoute), 
task_list(Drug,Task,Start_or_update,AdmRoute,Tasklst), 
process _ tasks(Tasklst), 
fail 

; Task == predict_levels, 

get_ consult_status(Patstatus,Drugstatus), 
choosedrug(Drugstatus,Drug), 
obtain ---'patient_ data(Patstatus,Patient), 
get---'parameter _ status(Drug,Drugstatus,Paramstatus), 

route _ oCadministration(Drug,AdmRoute), 
taskJist(Drug, Task,Paramstatus,AdmRoute, Tasklst), 
process_tasks(Tasklst), 
fail 

; Task == plot, 

plot_cone ---'profile, 
fail 

; Task = quit), 

cleanup. 
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Figure 3.2 Structure of the main driver program for the Drug Dosage Adviser. 
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There are certain operations common to each main task. These include obtaining 

patient information, choosing the drug and determining whether an initial 

dosing regimen or an adjustment to a current dosing regimen is required. The 

solutions to these intermediate goals determine the initial state of the system. 

The navigation program obtains this initial state from the blackboard and uses this and 

other infonnation obtained from the user to refine further the state on the way to a 

solution. Interaction with the user is by means of popup dialogues containing single 

choice menus or edit fields for text and/or numeric data. 

The navigation program is a modification of an idea presented by Coulston, Smith 

and Tilley in 1992 and is described in figure 3.3. It consists of a task processor which 

operates on a list of tasks to determine a solution. Individual tasks are Prolog 

predicates which calculate intermediate results or provide for interaction with the user 

to refine the system state. The task list processed is uniquely determined by the initial 

system state. Intermediate results produced by the navigation program and stored on 

the blackboard may be used by other tasks in the list to generate the final solution. 

After the navigation program has completed its tasks and displayed a solution, control 

is returned to the inference program which searches for maj or adverse drug 

interactions and suggests appropriate monitoring strategies, depending on the system 

state. When the main task is complete, logical failure returns control to the main menu 

from which further inference can proceed or the consultation can be halted. 

The navigation program must be sensitive to the users requirements and thus contains 
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most of the interface code. The main driver program also needs to interact with the 

user initially so that it also contains appropriate blocks of code for this purpose. The 

user interface is thus provided by the navigation program and certain elements within 

the inference program. The inference program must also perform problem solving 

using the different types of knowledge available. It generates intermediate results 

1* TASK PROCESSOR *1 

process _ tasks([ ]). 

process_tasks([Task I Rest_oCtasks]):­
call(Task), 

process_tasks(Rest_oCtasks). 

1* TASK LISTS *1 

task _listC Gentamicin' ,calculate _a _ dosingJegimen,start,ivr, 
[advise Jequirements(gentamicin,start,ivr), 
renal_function, 

initialyarameter _ estimates(gentamicin,start,ivr), 
calc _ dosingJegimens(gentamicin,start,ivr), 
report_recommendations(gentamicin,start,ivr), 

report _ warnings(gentamicin,start,ivr)] ). 

Figure 3.3 Navigation program - A task processor and a list of tasks. 

which may be used by other tasks within the navigation program or by the main driver 

program. This structure is characteristic of blackboard systems and serves to 

differentiate them from the 'classical' expert system which has a more rigid structure 
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of separate inference engine, knowledge base and user interface. Ease of maintenance 

and perspicuity are not compromised however due to the structure of the navigation 

program and the main driver program. An individual task within a navigation list for 

a given system state, may be modified or have its order changed quickly and simply. 

The inference program itself is less than 50 lines of code and so straightforward to 

maintain. 

3.4 The blackboard 

The program must keep track of the consultation, noting intermediate results which 

may have to be changed or results of actual problem solving such as initial 

pharmacokinetic parameter estimates or later updated parameter estimates. This is 

done on the blackboard [Nii 1989; Schwartz and Sterling 1992]. Intermediate results 

may be asserted as simple Prolog facts or rules. 

Blackboard system is a generic term which covers different types of systems with a 

variety of program structures. The basic characteristics of a blackboard system are: 

First, the knowledge base can be separated into different modules each containing a 

particular knowledge representation and which mayor may not have its own inference 

program. Second, the different knowledge modules produce changes to the blackboard, 

a global data structure, which leads incrementally to a solution. 

The drug system was constructed as a type of blackboard system. The final solution 

is generated serially in a manner controlled by the navigation and inference programs. 
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Some of the advantages of the general blackboard architecture are lost by using the 

serial approach, but it is a practical method which retains the advantages of the 

blackboard model in handling different styles of knowledge representation while 

acknowledging the limitations of current computer architecture [Nii, 1989]. 

3.5 The knowledge base 

The knowledge base has three main components. First, it contains the appropriate 

pharmacokinetic equations and rules for determining initial estimates of 

pharmacokinetic parameters to be applied to the different classes of drugs. Second, it 

contains the facts and rules which are applied to construct a symbolic model of a 

patient which may then be used to suggest an appropriate dosing regimen and third, 

it contains facts gleaned from the literature which are used as the basis for advice on 

possible drug interactions and patient states which may require a modification of the 

dosing regimen. Knowledge based systems which use mathematical models are widely 

termed model based. However, this is not strictly accurate since any knowledge base 

is a model [Clancey, 1993; Gaines, 1993]. 

The pharmacokinetic equations which form the basis of the models used in the system 

fall into three categories. 

1) the one compartment linear model with administration of multiple doses at regularly 

spaced intervals. 

2) the two compartment linear model with elimination from the central compartment 

only and with administration of multiple doses at regularly spaced intervals. 
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3) the one compartment nonlinear model with elimination obeying Michaelis-Menten 

kinetics and with administration by continuous constant rate infusion. 

These equations are sufficient to adequately model the behaviour of the current drugs 

of interest. They are an integral part of the DLLs used for parameter updating and 

they are stored in individual prolog predicates used to forecast drug concentrations and 

to design dosing regimens. The models are described more fully in appendix A and 

Chapter 5. 

The clinical knowledge is in the form of facts and rules. The knowledge base for 

determining adverse drug interactions contains Prolog facts derived directly from the 

medical literature. Target values for drug levels are determined by applying clinical 

rules. A type of symbolic model, similar to that described by Lenert and Lurie (1992), 

is constructed to describe a particular patient and stored in a frame representation. 

This model may then be used to determine an appropriate target plasma level for the 

drug of interest by application of appropriate production rules. For example, the rule 

in figure 3.4 is fired if the patient is being treated for severe sepsis, is not 

immunocompromised and has normal renal function. The target peak: plasma level of 

gentamicin is suggested to be 8.5 mg/L. 

The rules and frames were constructed using 'flex' a near-standard expert system 

toolkit supported by LP A [ LP A flex, an expert system toolkit, version 1.2, Logic 

Programming Associates, London, 1990]. Each of the different knowledge 

representations are stored in separate program modules. This makes addition, deletion 

or modification a straightforward process. 
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Figure 3.4 

3.6 Summary 

rule gplO 
if renal_status is normal 
and immune_status is normal 
and infection_site is blood 
then targe(JJeak is 8.5 . 

A rule to determine a target serum gentamicin concentration; 
renal_status, immune_status, and infection_site are slot 
values of the frame representation of the patient. 
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The system described above incorporates all those features considered desirable, based 

on experience with earlier prototypes and interview data acquired from prospective 

users. The system is an advanced prototype which has been designed to be readily 

expandable with regard to the knowledge base. It has the major characteristics of a 

blackboard application as compared with the classical expert system structure, with 

different types of knowledge stored in separate knowledge modules. It operates in the 

Windows environment and was constructed using standard Edinburgh Prolog. 

Development history and research methods are to be discussed in the chapters which 

follow. 



CHAPTER 4 

RESEARCH 
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In this chapter the research methods and their rationale are described and results 

presented. 

4.1 Assessment of current dosing methods 

As described previously in this report, there is considerable evidence in the literature 

of the poor correlation between the amount of a drug given and the plasma levels 

achieved in a particular patient. In the case of certain classes of drugs, this may result 

in therapeutic failures or serious toxicity. In order to confirm these general 

observations at the research site (Mackay Base Hospital), it was decided to conduct 

a short retrospective study on one of the drugs of interest, gentamicin, which would 

provide an indication of whether a drug dosage system might be useful in this 

hospital. The study was conducted in early 1992 and based on data obtained before 

the prototype drug adviser was made available for use. The results were published in 

the Australian Journal of Medical Science in 1993 [Botsman,1993]. A copy of this 

paper may be found in the attachments to this report. 

In the study, the medical records of 107 patients were reviewed and dose response 

data abstracted and assessed. The main conclusions may be summarised as follows. 

First, the dosing methods employed did not often achieve the serum levels generally 

considered necessary for effective therapy. Approximately 50% of the serum levels 
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achieved initially were classified as sub-therapeutic, potentially toxic or both. Second, 

there was an equally low success rate for dose/interval adjustment based on the initial 

serum levels. Approximately 29% remained sub-therapeutic and 38% remained 

potentially toxic. Third, low mean peak levels ( < Smg/L) suggested caution in dosing 

habits. There was a general reluctance to increase doses markedly, even when such 

increases were clearly indicated. 

While the results of the study allowed for no conclusions to be drawn regarding the 

clinical efficacy of the treatment, they nevertheless supported the general observations 

on the difficulty of achieving desired drug plasma levels by means of empirical 

techniques and confirmed the relevance of these observations to the research site. 

4.2 Design for usability 

A recurrent theme in this research is the development of a drug dosage advisory 

system suitable for use by the general physician in a wide range of clinical settings. 

In order to gain information on the requirements of such a system and to increase 

awareness, a series of interviews was conducted with medical staff likely to use the 

system. 

The approach was informed by ethnography [Fetterman, 1989] and used semI­

structured interviews as a particular technique [Welch, 1983]. The interviews were 

conducted from December 1991 to April 1992. There were eight interviews in all and 

the medical officers interviewed included those with as little as twelve months 



44 

experience as resident medical officers to principal house officers with over ten years 

experience. They were selected based on their assignments at the time i.e. those 

working in the medical and surgical wards where they were most likely to use the 

proposed system. A copy of the questions used as the basis for the interviews and a 

summary of the responses are provided in appendix B and further discussion may be 

found in copies of papers attached to this report. Some of the more important and 

interesting points arising from these interviews are presented in the following 

paragraphs. 

The prospective user group had a 'typical' profile: 

(a) Variable computer literacy (low to average). 

(b) Scanty knowledge of pharmacokinetics. 

(c) Generally busy. 

This basic profile served to provided a philosophical framework for development of 

the prototype drug dosage adviser. 

Additional findings of interest may be illustrated by the following extracts. Contrary 

to expectations, there appeared to be a greater recognition of the potential value of the 

system by those with more rather than less medical experience. There was very little 

curiosity about the mechanics of the system. Also, surprisingly, accessibility and ease 

of operation were given a higher priority than accuracy. Most were of the opinion that 

any system was likely to be more accurate than the methods currently employed. 

From the interview process, the following design priorities emerged. 
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1) Simplicity. 

2) Accuracy. 

3) Flexibility / Practicality. 

4) Robustness. 

These design priorities involve issues relating to the human computer interface as well 

as those relating to more fundamental program structure. The steps taken to address 

these priorities are discussed in the next section on system development. 

4.3 Prototype development 

The current prototype was developed in three main stages. Stage one involved the 

development of an initial system for the amino glycoside antibiotic gentamicin. It was 

constructed using turbo-Prolog version 2.0. The initial prototype was developed in 

response to a suggestion from a consulting physician at the Mackay hospital. This 

system used a pharmacokinetic model to predict gentamicin concentrations at steady 

state. The calculations were primarily deterministic in nature and based on the early 

work of Sawchuk and Zaske in 1976. The system was demonstrated at a physicians' 

conference in Mackay at the end of 1990. In response to a questionnaire, appendix B, 

all who saw the system at the conference indicated that they would use such a system 

and they would like to see it extended to other drugs. An initial literature search was 

conducted to determine the state of the art in computer aided dosage adjustment. 

There were few such systems available and none that could be said to be in general 

use. The few commercial systems available, such as the Abbott PKS system [Abbott 

GmbH Diagnostica, Wiesbaden, Germany], seemed to be directed primarily towards 
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pharmacists and pharmacologists rather than the general clinician. The approach 

adopted in this research appeared to be unique and the initial evidence was that a 

suitably designed system could find a niche in the area of clinical decision support. 

Initial testing of the underlying model was performed as described in 4.5 below. It 

was decided that, with suitable modification, this original prototype could serve as the 

basis for an exemplary system which would be used as a test vehicle for further 

system development. 

Stage two involved system redesign in order to produce an exemplary system which 

would also serve as a vehicle for further research. The basic calculations for initial 

parameter estimation and updating were unchanged. The system redesign was 

conducted concurrently with the interviews described in 4.2 above and a number of 

modifications were made based on the design priorities which emerged from these 

interviews. These modifications were as follows. 

Operation of the system was simplified by reducing the number of keystrokes required 

to operate the system from seven to four. The number of choices for the user at each 

stage were also reduced. 

Improvements in flexibility and practicality were achieved by blending the solutions 

and data requirements with the normal protocols used in the hospital. Most gentamicin 

dosing (> 90%, unpublished study) at the Mackay hospital is by intravenous infusion 

at regularly spaced intervals. The efficacy of the dosing regimen is then assessed by 
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collecting specimens for assay just before the next dose (trough level) and 30 minutes 

after a 30 minute infusion (peak level). These specimens are usually collected after 

3-4 doses have been given. Thus the system needed to be able to calculate a starting 

regimen and to recommend an appropriate dosage adjustment, if required, based on 

a peak and trough level only. A starting regimen was calculated using the appropriate 

equations and starting estimates of the individuals' pharmacokinetic parameters derived 

from equations gleaned from the literature [Kaka and Buchanan, 1983] which relate 

physical characteristics such as age, weight and sex to these parameters. Dosage 

adjustment based on plasma levels requires updated estimates of the individuals' 

pharmacokinetic parameters. The usual deterministic method uses 2 or 3 levels within 

a dosing interval. Since most levels are collected after 3-4 doses have been given, 

parameter estimation and dosage adjustment was achieved by assuming that the trough 

level remains approximately constant (i.e. approx. steady state) and the calculations 

were then based on these 2 levels and the trough level from the previous dose only. 

Practicality of the solutions was achieved by having the doses rounded to the nearest 

10 mg and dosing intervals being adjusted to 6, 8, 12, 16 or 24 hours. This was to 

allow for ease of administration. Robustness was achieved by modular design and 

extensive testing. 

Accuracy was given a surprisingly low priority by the prospective users interviewed 

but was retained as a design priority for ethical reasons. The uncertainty in the 

calculations is difficult to quantify for the deterministic methods. Approximate 

confidence intervals may be determined statistically, but other effects such as poor 

timing in the collection of specimens or unrecorded variations in the infusion rate are 
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impossible to quantify. For this reason, it was decided initially that the reporting of 

confidence intervals was likely to be of limited benefit and that a better approach 

would be to apply consistency checks to the data entered and provide warnings when 

large changes occur in the parameter estimates. The approach was extended in the 

advanced prototype to include confidence intervals as a test for possible errors as 

described in chapter 5. 

Stage three was the development of an advanced prototype using adaptive Bayesian 

parameter updating and incorporating a representative group of drugs. These drugs, 

gentamicin, vancomycin and heparin, were chosen for two reasons. First, they are used 

extensively in the hospital and second the pharmacokinetic models required include 

the one compartment, two compartment and nonlinear models. These are sufficient to 

cover the majority of drugs in routine clinical use for which pharmacokinetic 

modelling is appropriate. This advanced prototype was described in chapter 3. 

4.4 Pharmacokinetic parameter updating 

To recapitulate briefly on section 2.1 of chapter 2, there are two 'classical' techniques 

for updating initial estimates of pharmacokinetic parameters from plasma drug levels. 

These are deterministic methods and probabilistic methods. The deterministic methods 

use either simple linear regression techniques, as described by Sawchuk and Zaske in 

1976, to directly estimate the parameters from several drug plasma levels within a 

dosing interval, or nonlinear regression as used by lelliffe in 1982, to estimate the 

parameters from drug plasma levels in one or more dosing intervals. The probabilistic 
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methods, as described by Sheiner et al. in 1972 and 1979, use Bayesian techniques, 

to update initial population estimates of the parameters from a few drug plasma 

levels, also in one or more dosing intervals. Of the two, the Bayesian methods are 

more flexible and thus more suitable for use in the general clinical setting when there 

are usually only a few plasma drug levels available. A simple method of implementing 

the Bayesian algorithm was sought. Kalman filtering is a particular Bayesian technique 

for forecasting the elements of a time series and detennining the variances of these 

estimates. The advantages of the technique include recursive calculations, rapid 

convergence and the capacity to follow changes in the parameters when these 

parameters do not remain constant. The procedure is readily programmed and the 

recursive calculations are uncomplicated, involving only simple matrix algebra. This 

scheme for parameter estimation is in line with the design objectives of simplicity and 

flexibility. As few references to the application of this particular technique to the 

problem of pharmacokinetic parameter estimation have been found in the literature, 

a separate chapter (chapter 5) in this report gives a more complete discussion of the 

application. 

4.5 T est results 

4.5.1 Retrospective testing of deterministic parameter updating 

A short retrospective study was conducted to 'prove' the model and to assess the 

possible usefulness of the initial prototype. A sample of ten patients who were 

receiving gentamicin and who had their doses adjusted empirically, was chosen 
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arbitrarily and dose response data were abstracted from their medical records. The 

program was used to calculate individual pharmacokinetic parameters which were then 

used to predict steady state peak and trough levels for each patient following dosage 

adjustment. These predicted levels were compared with actual measured values. The 

results are summarised in table 4.1. 

Patient 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

Table 4.1 

Predicted Steady state ~easured Steady State 

Concentration (mg/L) Concentration (mg/L) 

Peak Trough Peak Trough 

7.2 3.2 8.4 4.5 

(i.9 0.2 4.7 1.1 

(i.7 0.1 5.5 1.0 

4.2 0.1 4.5 0.6 

(i.5 1.5 -- 2.2 

8.6 0.1 7.8 0.3 

2.0 0.1 4.5 1.3 

(i. 1 0.3 7.1 2.1 

8.0 1.7 9.8 3.5 

5.4 0.4 7.4 0.8 

Comparison between predicted and measured gentamicin 
levels, at steady state, for patients used in the triaL 
(The non adaptive model). 

This initial study indicated that the program would be useful for establishing 
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regimens for gentamicin dosing. For example, for patient A in the table, a dangerously 

high trough level would have been predicted and a suitable modification made. 

Similarly, for patient D, the low peak level, which may have allowed a 'breakthrough' 

bacteraemia, could have been avoided. In the case of patient I, the failure of the 

program to predict the high trough level was unexplained but felt to be probably due 

to inaccurate initial data. This is a common problem in the practical application of 

these systems. 

This initial testing was followed by more extensive testing over a period of several 

months while the program was further developed and thoroughly debugged. This 

completed the first phase of testing. 

4.5.2 Simulation studies 

The second phase of testing involved validation of the Kalman filter algorithm for 

pharmacokinetic parameter updating. Simulation studies were performed on the three 

drugs included in the Bayesian prototype. These drugs, gentamicin, vancomycin and 

heparin, being modelled by the one compartment, two compartment and nonlinear 

models respectively. 

The simulations were performed as follows: Simulated concentration data for each of 

the drugs was produced, at arbitrary times within a dosing interval, using the 

appropriate pharmacokinetic equations and pharmacokinetic parameters perturbed from 

'average' values by an arbitrary amount. The simulated data were used as input to the 
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parameter estimation modules which had the 'average' values as initial parameter 

estimates. The %Error, defined as - %Error = [(Simulated Yt - Expected Yt) I 

Simulated Yt] x 100, where Yt is the measured output, was detennined after each 

parameter update. 

The results of a typical simulation run for the antibiotic gentamicin, described by the 

one compartment model, are shown in table 4.2. 

Sequence of Simulated Expected %Error 

Observations Concentration Concentration 

1 12.2 6.2 +49.2 

2 3.7 4.2 "13.5 

3 10.6 ?9 +6.6 

4 5.0 5.3 -6.0 

5 9.1 8.9 +2.2 

6 4.3 4.5 -4.7 

Starting Parameter estimates: Vd = 16.8 L; ke = 0.27 hrs-I. 
Parameters used to simulate data: Vd = 12.() L; ke = 0.15 hrs-1. 

Parameter estimates after Observation 3: Vd = 13.0 L; ke = 0.14 hrs-l. 

Where: V d is the volume of distribution in the central compartment and ke is the 
elimination rate constant for elimination from the central compartment. 

Table 4.2 Predictive perfonnance over time of the one compartment Kalman filter, 
using simulated data for the antibiotic gentamicin. 
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'Average' population values were calculated for a hypothetical patient with the 

following characteristics: Age 40 years; Sex Male; Weight 70 kg; Stable serum 

creatinine 0.08 mmol/L. Using the approximate relationships between these 

characteristics and the pharmacokinetic parameters of volume of distribution (V d) and 

elimination rate constant eke) [Kaka and Buchanan, 1983; Cockcroft and Gault, 1976], 

the parameters were calculated to be: Vd = 16.8, ke = 0.27 hrs-I. The initial 

concentration prior to the first dose (Yo(l) was assumed to be zero. These parameter 

values were used to start the updating procedure. Observation data were generated by 

using parameter values of V d = 12 L, kc = 0.15 hrs-I. 

As can be seen from the table, useful results may be obtained with as few as two or 

three concentration results even when initial parameter estimates are quite poor. For 

further discussion see chapter 5. 

For the two compartment model, simulated data were produced for the antibiotic 

vancomycin and the predictive performance of the model determined as for the one 

compartment model above. The results of a simulation are shown in table 4.3. 

For vancomycin, initial parameter estimates were determined using data produced by 

Hurst et aI., (1990). These parameters were perturbed from the population values by 

arbitrary amounts and the perturbed values used as the actual parameters representing 

an individual patient. The excellent predictive performance shown in table 4.3~ while 

typical, is dependent on appropriate timing of serum concentration 

measurements. Initial observations must be taken in both the alpha and beta phases 
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Sequence of Simulated Expected %Error 

Observations Concentration Concentration 

1 33.3 17.8 +46.5 

2 12.4 9.0 +27.4 

3 22.8 22.9 -2.6 

4 11.5 11.8 -2.6 

5 13.5 13.6 -0.7 

6 20.2 20.1 +0.5 

Initial macroparameter estimates: A = 31.4, B = 16.4, alpha = 2.4, beta = 0.10. 
Macroparameters used to simulate data: A = 15.9, B = 15.7, 

alpha = 3.0, beta = 0.08. 
Final macroparameter estimates: A = 16.8, B = 15.6, 

alpha = 3.3, beta = 0.08. 

where: A, B, alpha, beta are macro constants which are functions of the 
micro constants ( see Appendix A). 

Table 4.3. Predictive performance over time of the two compartment Kalman filter, 
using simulated data for the antibiotic vancomycin. 

or the predictive performance at the low or high end suffers. Further explanation and 

discussion may be found in chapter 5. 
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The nonlinear model was tested using simulated data for the anticoagulant heparin. 

Predictive performance was again assessed as described above and the results of a 

simulation are shown in table 4.4. The activated partial thromboplastin time (APTT), 

rather than the heparin concentration, is the measurable output (chapter 5). 

Sequence of Simulated APTT Expected %Error 

Observations APTT 

1 39.7 54.7 -37.8 

2 44.3 45.8 -3.3 

3 50.7 52.2 -3.0 

4 60.4 61.9 -2.5 

5 76.3 77.4 -1.4 

6 172.6 169.8 +1.9 

Initial parameters: M = 2.0, V m = 2500, ~ = 0.45. 
Parameters used to simulate data: M = 1.6, V m = 3500, ~ = 0.35. 

Final parameter estimates: M = 1.8, V m = 3538, Km = 0.40. 

Where: M is the heparin sensitivity factor. V m is the maximal rate of elimination. Km 
is the concentration at which elimination is half maximal. 

Table 4.4. Predictive performance over time of the nonlinear one compartment 
Kalman filter, using simulated APTT response data for the anticoagulant 
heparin. 
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Initial parameters for heparin were based on the work of Mungall, Raskob et aI., 

(1989), Mungall and Floyd (1989) and Kershaw et al. (1994). As demonstrated in 

table 4.4, useful results may be obtained with as few as one or two APTT results. 

Further explanation and discussion may again be found in chapter 5. 

4.5.3 Usability 

The gentamicin prototype system included code for determining system usage by 

recording the date of a consultation and the starting and finishing times. This was 

designed to gain an indication of both the acceptance of the system by prospective 

users and its' usability. The data were obtained over a full year in 1992 and the 

number of monthly consultations are plotted in figure 4.1 below. 

The shortest consultation time was approximately 1.5 minutes and the longest 

approximately 40 minutes, the average being approximately 6 minutes. The total 

number of consultations represents approximately 10% of the gentamicin monitoring 

requests for the same period. Lowest usage occurred at the beginning, the end and the 

middle of the year. 

The average consultation time of 6 minutes appeared to be well tolerated by medical 

staff. It should be noted that the system was installed at only three sites in the hospital 

and this was not considered adequate to judge system acceptance. However, the 10% 

usage rate may be regarded as quite high as not all serum levels indicate that dosage 

adjustment is required and serum levels are often requested following dosage 
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adjustment to monitor the effect of the change. In addition, inappropriate ordering of 

serum levels is not uncommon. The fluctuation in usage of the system may be due to 

changes in medical staff. New medical officers appear each year and rotation through 

different areas occurs mid-year. Additional evidence that this might be the case was 

the observation that a small amount of 'in-house advertising' caused usage to increase 

in the period immediately following. 

Figure 4.1 Gentamicin prototype usage for the year 1992. 

Obviously, the data presented above is insufficient to draw any major conclusions 

regarding the design for usability. However, the indications for the prototype were 

considered positive. A final assessment requires the installation of the system at 

additional sites throughout the hospital and a more structured assessment protocol. 

This will be possible in the future as a network system comes on line. 
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4.6 Summary 

The research was conducted in several stages. Initial research indicated that a drug 

dosage advisory system might be accepted by the general physician and be clinically 

useful. A basic prototype was produced to act as a vehicle for further research and 

assessment of current dosing practices was undertaken at the research site. Interviews 

were conducted to determine the major design requirements for the system and 

research into a new method of pharmacokinetic parameter updating which was felt to 

have advantages over current methods was conducted. Simulation studies to prove the 

parameter updating procedure were conducted and typical results are presented. A final 

prototype incorporating the design requirements and the parameter updating method 

based on the Kalman filter was produced. The prototype incorporates three drugs 

which require the use of pharmacokinetic models which are sufficient to cover most 

drugs commonly used and for which pharmacokinetic modelling is appropriate. The 

full system is extensible and awaits clinical trials. 
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CHAPTER 5 

A NEW APPROACH TO THE ESTIMATION OF INDIVIDUAL 
PHARMACOKINETIC PARAMETERS. 

This chapter, describes the mathematical basis of the method of pharmacokinetic 

parameter estimation used in the drugs adviser. In addition, the application to 

particular drugs is discussed and methods used for data validation are described. 

5.1 General considerations 

For compartmental models used in pharmacokinetics, th.e drug concentration varies 

with time depending on individual pharmacokinetic parameters, the mode of 

administration and the dose given. If the appropriate parameters are known, then, by 

applying suitable pharmacokinetic equations, the drug level in a particular 

compartment may be predicted for a given dose and mode of administration at any 

time during the dosing regimen. Thus the drug concentration may be considered as 

a continuous time series. Due to interindividual variation in parameter values, a robust 

method of estimating individual parameters is required to enable accurate forecasting 

of drug concentrations. 

Bayesian forecasting is a general approach to forecasting the elements of a time series 

and may include such methods as exponential smoothing, regression and filtering. 

Filtering is a process by which recent observations on a time series are used to revise 

estimates of the parameters which in tum determines the forecast values. In particular, 
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Kalman filtering is a recursive procedure for updating the parameter estimates and the 

standard error of the estimation based on the most recent observation. Advantages of 

the technique include: (1) the calculations are recursive (2) it converges quickly when 

the model is constant and (3) it can follow the movement of a system should the 

model parameters not remain constant. It is this technique which has been applied to 

the problem of estimation of individual pharmacokinetic parameters. 

5.2 The model 

The General Univariate Dynamic Linear Model in state-space representation, as 

developed by West and Harrison (1989) is given by the following system of equations: 

System equation: 

Observation equation: 

lni tial pr ior : 

Where: 

Y t = FeOt + v t 

0e = GeO t - 1 + (i)e 

- Yt is the observed value of the series at time t. 

V t - N[ 0, V t ] 

(i)e - N[O, We] 

- Ft is an nx:1 matrix relating the observation Yt to the parameter vector Ot· 

- Ot is the parameter vector, of size 1xn. 

- Gt is the evolution transfer matrix which for some models is the identity matrix. 

- v 0) are the errors assumed to be independent and nonnally distributed. 
\' t 

- Do is the initial infonnation set. 
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By means of standard normal theory or by application of Baye's theorem, the updating 

and forecasting equations are given by West and Harrison (1989) as: 

(a) Posterior distribution for Bt_1: 

for some mean m t_1 and variance Ct_1• Prior information Dt_1• 

(b) Prior distribution for Bt : 

where 

( c) One-step forecast: 

where 

(d) Posterior distribution for Bt : 

with 
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me = me-1 + Aeee and C e 

and where 

Hence the Kalman filter can be seen as a method of recursively updating parameter 

estimates and their variances, based on new observations as they become available. 

There is no requirement that the intervals between observations be constant. 

The recursive updating equations are: 

me = me-1 + Aeee 
C e = Re - AeAT eQe 

where 

Qt = FTtRtFt + V t 

A e = Kalman gain 
RtFe 

Qe 

5.3 Applying the model 

The elements of the model equations may be related to drug concentration data as 

follows: 
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- Yt is the observed drug concentration at time t. 

- F t represents the appropriate pharmacokinetic equation. 

- at, the pharmacokinetic parameters. 

- Gt is the evolution transfer matrix for the parameters. 

- V t , rot are the errors. 

For drug concentration data, the pharrnacokinetic parameters remain constant, in the 

short term at least, and the evolution matrix is thus the identity matrix and the 

evolution of the parameters through time is constant. The nonlinearity of the function 

Ft will be addressed below. 

Since the function F is nonlinear, it must first be linearised before the Kalman filter 

is applied. The simplest method is by means of a Taylor series approximation about 

the expected value of the vector random variable a. Expanding the function F about 

the prior value of a = e', and assuming the linear terms dominate, we obtain 

Flet) = Fle't) + F'ia t - a\) + quadratic and higher order terms 

where F' is the vector derivative of F evaluated at the prior value of S = S'. 

The system equation may then be written as 

Yt = 4 + F'let - e't) + Dt 

= (4 - F'te'J + F'ta t + Dt 

where 

4 = Ftat• 

and the standard updating equations continue to apply. 
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In the practical application, the expected observation is obtained by substitution into 

the appropriate pharmacokinetic equation, using the best parameter estimates so far. 

The more commonly required pharmacokinetic equations are given in appendix A. 

Note that as long as the mode of administration is known for a particular dosing 

interval, then the function F is defined and the technique may be applied. 

In order to initialise the calculations, starting estimates of the pharmacokinetic 

parameters and their standard deviations are required. These may be obtained directly 

from published data or estimated from other sources. The better the initial estimates, 

the faster the convergence and the more useful the revised estimate. 

The remainder of this section deals with the application of the method to the 

pharmacokinetic models used in the drugs adviser. These are the one and two 

compartment models with administration by constant rate infusion at regularly spaced 

intervals, and the nonlinear model with administration by continuous constant rate 

infusion. They represent the most common methods of administration used for the 

drugs included in the prototype. The extension to other modes of administration would 

require that additional pharmacokinetic equations be added to the knowledge base. 

However, the basic method remains the same. 

5.3.1 The one compartment model 

For a drug administered by constant rate intravenous infusion at regularly spaced 

intervals, the equation representing the time course of drug concentration in the one 

compartment model (appendix A) is given by: 
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Y t = Y.o • e -k" t + D (1- -k,,7\ -ke(t-'I) 
T V k· e J.e 

. d· e 
. .. (1) 

where 

Yt is the concentration at any time t in a dosing interval. 

Yo is the concentration at the start of a dosing interval. 

ke is the elimination rate constant. 

T is the infusion period. 

V d is the volume of distribution. 

D is the dose given. 

This model was applied to the aminoglycoside antibiotic, gentamicin. The 

pharmacokinetic parameters of interest are the volume of distribution and the 

elimination rate constant. It was also decided to treat the initial concentration as an 

additional parameter. This allows for uncertain prior dosing history and for deviation 

of the parameters used to estimate the initial concentration from the 'true' values. The 

parameters are constrained to 'reasonable' values, see 5.4 below, and the effect ofthese 

constraints is mitigated by rerunning the filter until the deviation from the expected 

value is within a predetermined arbitrary limit, usually less than 1 %. 

Simulation has shown the Kalman filter applied to the one compartment model to be 

well behaved. Initial testing (Chapter 4) suggests that clinically useful results are 

obtainable from the sparse data usually available in the clinical setting. 
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5.3.2 The two compartment model 

For the two compartment model with elimination from the central compartment only, 

the concentration in the central compartment at any time t in a dosing interval is given 

by the following equation. 

n 

(Yc)n = E[Ai.e-ex • c + Bi·e-~·t] 
i=o 

where 

. .. (2) 

(Yt )n is the concentration in the central compartment at time t following the n th 

dose. Ai , Bi , ex. , 13 are the macro parameters to be estimated. These being related 

to the micro parameters as described in appendix A. 

The model was applied to the antibiotic vancomycin which is frequently used to treat 

a number of resistant micro-organisms in the hospital setting, particularly methicillin 

resistant staphylococcus aureus, the so called fgolden staphf. The parameters of interest 

are the macroparameters Ai , Bi , ex. and 13. For the estimation of these parameters, a 

slightly different approach was adopted to that used for the one compartment model 

described above. The concentration at any time t in the dosing interval may be 

considered as a combination of the effect of two separate processes described by the 

two exponential terms in equation 2. The forecast and observed concentrations may 

then be decomposed into two components proportional to the expected contribution 

from each of these exponential processes. The total concentration in the central 

compartment is thus the aggregate of two processes which in classical terms could be 
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said to correspond, at least approximately, to the alpha and beta phases referred to 

in standard texts on pharmacokinetics. This decomposition avoids problems associated 

with the nature of the concentration-time curve which allows for multiple 'fits' on 

single data points. 

The strategy then is to apply the Kalman filter to each of the constituent processes in 

turn using the decomposed observed and expected concentrations and corresponding 

variance terms. This ensures that the process dominant at a particular time in the 

interval is adjusted appropriately. This strategy is described in West and Harrison 

(1989) and it is noted that providing the proportions are stable and well defined, the 

strategy can perform well even though the proportions are themselves forecasts. 

5.3.3 Nonlinear model 

The time course of drug concentration in a one compartment model for a drug obeying 

nonlinear kinetics and administered by constant rate continuous infusion may be 

described by the following equation (Appendix A). 

. .. (3) 

where: 

Y t = the drug concentration at time t. 

V rn = maximal rate of drug elimination. 

~ = the drug concentration at which the rate of elimination is half maximal. 
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where: 
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R = constant infusion rate. 

At steady state, the equation may be written as: 

... (4) 

where Yss is the concentration at steady state and ~, V m' R are as before. 

The steady state model was applied to the anticoagulant drug heparin which has a 

short apparent half-life and which is normally administered by constant rate 

intravenous infusion following a bolus dose to rapidly achieve therapeutic levels. 

However, the concentration of heparin in the plasma is rarely measured. Instead, the 

anticoagulant effect of heparin is measured in vitro by means of a laboratory test 

called the activated partial thromboplastin time (APTT). The APTT may be related to 

the concentration of heparin by means of the following [Mungall et aI., 1989]: 

APTT == APTTo • eM. Yt . .. (5) 

where: 

APTTo = the baseline APTT, prior to therapy. 

APTT = the observed APTT. 

Yt = the concentration of heparin at time t. 

M = a 'sensitivity factor'. 
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By taking the natural logarithm of equation 5 and substituting into equation 4, an 

expression for lnAPTT, equation 6 below, may be obtained. 

M.R.Km 
InAPTT = InAPTTo + 

( Vm - R ) 
• •. (6) 

The desired pharmacokinetic goal is an APTT within the recommended therapeutic 

range. The appropriate therapeutic range depends on the condition being treated. For 

example, following myocardial infarction, the recommended therapeutic range is 1.5 

to 2.5 times the baseline APTT [Hirsh et aI., 1992]. The parameters of interest are M, 

~ and V m and these are estimated for the individual by applying the Kalman filter 

method directly as in 5.3.1 above. Simulation studies have shown the filter to be well 

behaved for this model and if suitable constraints are applied, problems of erratic 

behaviour due to poor initial parameter estimates are avoided. 

The strategy which the drugs adviser follows for heparin may be summarised as 

follows: 

(1) If required, calculate an initial bolus dose and infusion rate based on the patient's 

weight. 

(2) Detennine the desired therapeutic APTT based on the patients condition or as 

direct input from the user. 

(3) Predict APTT at steady state (after approximately 6 hours of therapy) using known 

infusion rate, baseline APTT and population· based estimates of M, V m and ~. 

(4) Obtain measured APTT from user. 
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(5) If the measured APTT is within the recommended therapeutic range then report 

as such. Otherwise, update the estimates of M, ~ and V m using Kalman filter 

method for each observed APTT and recalculate the infusion rate to bring the APTT 

within the therapeutic range. 

The strategy described above was adopted as it follows the normal protocols used in 

the hospital and was thus more likely to be generally accepted. However, it might be 

possible to calculate an improved initial infusion rate based on the initial population 

estimates of the pharmacokinetic parameters. This has not yet been tested. 

5.4 Data validation and constraints 

Three approaches to data validation were taken in the drugs adviser. The first uses 

'standard' checks on data as it is entered by the user, the second is a probability based 

check on the data entered and the third uses rule based reasoning on the output. 

Questionable or obviously incorrect data generates appropriate messages displayed as 

text in a separate window in the centre of the screen. 

The 'standard' approach used to validate data as it is entered by the user involves the 

usual software techniques which provide for real time checks on the raw data. These 

checks include allowing only numerical entry where this is required and checking that 

numerical entry such as dosing times and doses given are within possible or probable 

ranges. For 'unlikely' data, the drugs adviser uses a 'three times and it must be right' 

check. For example, if a grossly abnormal weight is entered, the user is prompted to 
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check the entry twice before it is accepted. It is not possible to detect all errors using 

this method but many problems are avoided initially by paying careful attention to this 

aspect of initial data entry at the risk of some minor annoyance to the user. 

The second probability based approach uses one of the characteristics of the Kalman 

filter. Following each update, the observation and parameter variances are also 

updated. By applying standard probability theory, it is possible to determine 

confidence limits for the expected value of future observations. If an observation falls 

outside some arbitrarily chosen confidence limits, 99% for the drugs adviser, it may 

indicate that there is an error in the data provided. This method is only applied after 

two or more observations have been made and obviously, it will not pinpoint where 

the error lies. Nevertheless, experience appears to indicate that it is a useful pointer 

to gross errors commonly encountered in practice, such as those associated with 

misrecording the time and amount of doses given and the time of sample collection. 

A similar approach to changes in individual pharmacokinetic parameters might provide 

useful indications of a change in the patient's physical state. This has not been tested 

and the approach has not been implemented in the drugs adviser. 

The third approach uses some simple rules to test the output from the system. For 

example, if an unusually high dose of gentamicin seems to be required to achieve the 

target drug levels, a warning is generated. The warning contains the reason why it is 

being displayed and other relevant information. This information may include possible 

errors which may have occurred, disease states which may invalidate the analysis or 

alternative therapies which might be considered. This approach was designed to avoid 
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clinically dangerous situations which may arise from inappropriate use of the drugs 

adviser. 

The three main approaches to data validation discussed above are complemented by 

the provision of a graphical plot of the past and forecast drug concentrations where 

such a plot is appropriate. It was not, for example, considered appropriate for heparin 

as in this case, it is not the concentration which is being observed and a plot of the 

forecast APTT at steady state is unlikely to provide useful information. For those 

cases where it is appropriate, the graphical plot provides a rapid visual check of the 

likely overall validity of the outcome of a consultation. 

Range constraints were applied to the pharmacokinetic parameters to be estimated in 

each of the models in 5.3 above. The constraints are necessary to avoid initial erratic 

behaviour of the filter when the prior parameter estimates are poor. The initial 

behaviour is of particular importance in the data poor environment commonly 

encountered in practice. The general approach used to determine appropriate 

constraints was as follows: 

(l) All pharmacokinetic parameters are constrained to be positive real numbers. 

(2)Where parameters may be considered to have some physical analogue, they are 

constrained to realistic values, for example, the volume of distribution 01 ct) in the one 

compartment model. 

(3) If known relationships exist between parameters, these are maintained. For 

example, in the two compartment model a > > p. 
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The effect of applying constraints is that a poor fit may occur initially. The 'goodness 

of fit' is determined by producing a revised forecast of the observed concentration 

using the constrained parameters. If the observed and expected concentrations differ 

by a predetermined arbitrary amount, the filter is rerun until either the parameters are 

no longer constrained or the fit is within the predetermined limits. Variance updating 

is performed after the 'goodness of fit' criteria are met. This heuristic approach to the 

problem has not been subjected to rigorous statistical analysis but it seems reasonable 

to consider the method as equivalent to the type of feed-back intervention commonly 

employed in Bayesian forecasting [West and Harrison, 1989]. 

5.5 Notes on the method 

(a) Kalman filtering is a general method for handling state-space models which gives 

optimal estimates of the current state of a dynamic system [Chatfield, 1989]. The 

original work on the filter was published by Kalman in 1960 and Kalman and Bucy 

in 1961. The method is commonly encountered in the field of control engineering but 

is of equal use in the area of time series analysis. West and Harrison (1989) have 

described a Bayesian forecasting method based on a model called the 'dynamic linear 

model' which is closely related to the general class of state-space models. A Bayesian 

formulation of the Kalman filter is used to update the state vector whenever a new 

observation becomes available. It is this method which has been adapted to the 

problem of estimating individual pharmacokinetic parameters. 
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(b) The error terms V t and O)t in the model are assumed to be mutually independent and 

normally distributed. Clearly, the independence assumptions are not always valid. For 

the two compartment model described in appendix A, the macroparameters are highly 

correlated. However, in practice, this correlation appears to have little effect. This is 

consistent with the view expressed by West and Harrison (1989) that the independence 

assumptions are not central to the model as it is always possible to rephrase the model 

to satisfy these assumptions. 

(c) In the analysis described in 5.2 above, the updating and forecast equations were 

based on the assumed normality as well as the independence of the observational and 

evolutionary error terms. Again, West and Harrison (1989) have pointed out that the 

updating and forecasting methods may continue to be applied when the normality 

assumptions are dropped and the distributions are unspecified apart from their first and 

second moments. This has important implications for possible extensions of the model. 

A short discussion of some of these possibilities is included in the next chapter. 

(d) The use of constraints and the heuristic employing the 'goodness of fit' criteria 

discussed above, might appear to place too much emphasis on the most recent 

observation. In practice, however, the filter is usually only rerun for the first one or 

two observations. After this the usual single updating recurrences are sufficient. It is 

for this reason that the probability method for data validation is only applied after two 

or more observations have been fitted. 
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(e) No formal comparison with other Bayesian methods of pharmacokinetic parameter 

estimation has, as yet, been attempted. Nevertheless, some general comparisons with 

the maximum a posteriori (MAP) method of Sheiner et aI., (1979) may be made. The 

MAP method has been adapted to several commercial products and is the prototypical 

Bayesian method used in phannacokinetic systems. The two methods are similar in 

their approach but differ in some important respects. The implementation of the MAP 

method which is most often used is essentially a Bayesian adaptation of the standard 

nonlinear weighted least squares algorithm with the weights set to the relative 

precisions (1/0'2) of each of the parameters and observations [e.g. Sheiner and Beal, 

1982]. The weights are commonly estimated in an ad hoc fashion. An efficient method 

of calculating the least squares parameter estimates is required. 

The Bayesian formulation of the Kalman filter is a more general and flexible approach 

to parameter estimation than weighted nonlinear least squares. Model variances are 

updated when a new observation is made and the method can incorporate variance 

leaming for unknown observational variance. It also allows in a natural way for 

changing model parameters. In addition, the method may be extended to include 

nonlinear and non-normal models and the recursive calculations are readily 

programmed [West and Harrison, 1989]. It may be noted that, under certain 

circumstances, principally the assumptions of normality and constant variance, the 

recurrence relations for updating the prior distributions developed in 5.2 above, are 

equivalent to the non-Bayesian Kalman filter equations. These in tum have been 

shown to be equivalent to recursive least squares [Chatfield, 1989]. 
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5.6 Summary 

A general method of Bayesian forecasting employing a model known as the dynamic 

linear model has been adapted to the problem of estimating individual pharmacokinetic 

parameters. It has been applied to three different pharmacokinetic models which 

together are sufficient to cover the majority of drugs of interest in the general clinical 

setting. The Bayesian forecasting method incorporates an efficient Kalman filter 

algorithm for updating pharmacokinetic parameter estimates when further observations 

are made. The Kalman filter method is a more general and flexible method than other 

Bayesian methods currently used. 
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CHAPTER 6 

FURTHER SYSTEM DEVELOPMENT 

The subject of this report is the development of an advanced prototype drug dosage 

advisory system which uses pharmacokinetic principles and other knowledge to aid 

the general physician in the administration and dosage adjustment of some commonly 

prescribed therapeutic drugs. During the course of the research, a number of possible 

avenues for further system development have presented themselves. In this chapter, 

some of these avenues are discussed as well as additional work required to field a 

fully functional system. 

6.1 Additional work required 

The current prototype contains three pharmacokinetic models and additional 

knowledge for three drugs of interest. Some commercial systems contain up to twenty 

different pharmacokinetic models and cater for up to 50 different drugs. It is not 

always clear that all drugs included are suitable candidates for the type of system 

envisaged in this report. However, the knowledge base should be expanded to include 

some additional drugs and pharmacokinetic models. The additional drugs would 

include, other aminoglycosides, the common antiepileptics, the cardiac glycosides, 

other anticoagulants, lithium and theophylline. The additional models would include 

the equations for the appropriate modes of administration for each drug. The current 

prototype has been designed with this in mind. Modular construction has been used 

extensively to enable rapid expansion of the knowledge base. 
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The Kalman filter method for pharmacokinetic parameter updating requires further 

testing, both retrospective and prospective. The initial testing presented in this report 

has demonstrated the feasibility of the method but its' robustness in the clinical 

environment has yet to be proved conclusively. It would be of interest to test the 

method against the other methods that are currently used. As noted in chapter 5, 

Kalman filtering appears to have some advantages over current methods and there are 

recent references to similar applications in the literature. 

One of the major themes of the research was design for usability. While consultation 

with prospective users was an integral part of the design process, additional work to 

test user acceptance is required. The question of who should use such systems is still 

open and it is a question which is unlikely to be easily answered. Clearly extensive 

field trials in a clinical environment will be necessary before user acceptance may be 

adequately judged and the question of whether adequately designed systems may be 

used by the general physician can be at least partly answered. 

6.2 Possible extensions to the system 

It is well known that significant errors in the estimation of individual pharmacokinetic 

parameters may be due to ,'external' sources such as incorrect preparation of doses and 

errors in recording when doses were given and when samples were taken. Jelliffe, 

Schumitzky et al. (1993) have suggested that what is needed is to implement models 

in stochastic form with a parameter in the dynamic equations to account for these 

'external' errors. The Bayesian forecasting method described in chapter 5 may well be 
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adapted in this way. Little work has been done in this area as yet. The NONMEM 

population program discussed in chapter 2, is said to have been modified to account 

for these sources of error but at present, no clinical systems appear to be available. 

There is a belief in some quarters that pharmacokinetic systems are largely irrelevant 

in a hospital setting due to the errors in drug administration described above. It might 

well be useful to build sensitivity analysis into the system and include it in the 

presentation of results. There has been considerable work on determining optimal 

sampling times [e.g. Drusano et al., 1988; D'Argenio, 1981 and 1990] but less on 

determining the effect of inaccuracies in administration. It would be a relatively 

straightforward process to determine the effect on the observed drug levels of errors 

in the timing of future doses given or specimens collected. This might be of value in 

alleviating the concerns. However, these ideas and their presentation have not yet been 

tested with users. 

The particular form of the model described in chapter 5, with the evolution matrix G 

equal to the identity matrix, might not always be best. The state-space representation 

is most often used to model a dynamic system where the parameters, although not 

directly observable, are known to change in a predictable way with time. This often 

occurs in medicine where different disease states will affect pharmacokinetic and 

pharmacodynamic responses. For example, a patient with changing renal function will 

show a more or less predictable change in the elimination rate constant of drugs such 

as gentamicin that are eliminated primarily by the renal route. This may be modelled 

by means of an appropriate evolution term in the system equation. Other effects might 
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be handled similarly. 

Various methods have been suggested to enhance the performance of the basic 

Kalman filter updating equations. In the data poor environment encountered in 

pharmacokinetic applications, these methods may exhibit certain advantages over the 

basic method described in chapter 5. One such method described by Shumway (1988) 

is based on the expectation-maximisation (EM) algorithm of Dempster et al. (1977). 

This method uses the output from backward and forward Kalman filter recursions to 

perform multivariate normal maximum likelihood estimation. It is a recursive 

procedure which may better handle nonlinear systems such as those encountered in 

pharmacokinetics, although this would need to be demonstrated. An adaptation of the 

method has been proposed by Schumitzky (1991) for the estimation of prior 

distributions in population pharmacokinetic studies. 

6.3 Summary 

In this chapter, possible directions for further research and some of the additional 

work required to produce a fully functional system were presented. In particular the 

problem of the errors due to incorrect dosage preparation and the recording of when 

doses were given and specimens collected was raised and a possible direction for 

investigation indicated. These errors are arguably the most important problems 

encountered in the practical implementation of dosage advisory systems in the clinical 

environment. 
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The research presented in this report was focussed around two themes. The first is the 

design of a drug dosage advisory system based on pharmacokinetic modelling which 

is suitable for use by the general physician. The second is the investigation of a 

pharmacokinetic parameter updating procedure which might be extended to allow for 

the major sources of error encountered in the practical use of such systems. 

The results of the research suggest that there is a requirement for the type of system 

which is the subject of this research and that suitably designed systems would be used. 

In addition, the general Bayesian forecasting procedure using the Kalman filter 

algorithm has been shown to be adaptable to pharmacokinetic systems and the 

indications are that further research may prove its applicability for dealing with 

sources of error apart from those due to interindividual variability in pharmacokinetic 

parameters. It also seems clear that in order for pharmacokinetic systems to be used 

safely in the general clinical setting, they must incorporate other forms of knowledge 

than pharmacokinetic models, as in the system in this report. 

In the early development phase, the majority of the effort was expended on the design 

of the user interface (estimated> 60%). In this author's opinion the importance of the 

interface is difficult to overstate. Systems that are difficult to use will not be used, 

especially in an environment where empirical methods are widely accepted. Simple 

changes such as reducing the number of keystrokes required to operate the system 
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82 

have a marked effect on user acceptance. The design was user focussed. It was felt 

that it is better to make the system compatible with the user requirements than to 

attempt to change traditional work practices markedly. Simplicity of design and ease 

of use ofpharmacokinetic systems, at the possible expense of some accuracy, has been 

criticised [Buffington et aI., 1993]. It is difficult for this author to have much 

sympathy with this view. A cursory examination of the relevant literature shows that 

pharmacokinetic systems are still most often used in large institutions and then only 

by those who would appear to have the least requirement for such a system, that is 

trained pharmacists and pharmacologists. This author contends that the full benefits 

of pharmacokinetic systems will not be realised until appropriately designed systems 

are used routinely by the general physician. This view is supported by observations 

made by prospective users in the interviews conducted as part of this research. It was 

a widely held view that provided the system met reasonable standards of accuracy, it 

certainly could not be any worse than the empirical methods often employed. An 

appropriately designed system available to all medical staff, perhaps restricted to 

certain classes of drugs, would appear to have advantages with regard to patient safety 

and efficacy of treatment. There also appears to be cost benefits [Burton et al., 1991]. 

Perhaps the provision of such systems should be seen as being complementary to the 

services provided by hospital pharmacies and departments of pharmacology, where 

these services are available. 

Interface design and the provision of appropriate explanation are intimately related. 

In the earliest phases of design, the provision of appropriate explanation Was not given 

as much attention as was probably warranted. This was due to the fact that the 
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provision of an explanation facility was given a low priority by prospective users. 

It was later concluded that the traditional explanations of How and Why were not in 

fact what the users wanted. There was little interest in the actual mechanics of the 

system. Most medical practitioners are aware of general pharmacokinetic principles. 

They are not complete novices and do not need to be told Why a serum creatinine 

level is required for dosage calculations concerning drugs excreted by the kidneys. Nor 

did they seem particularly interested in the mathematical models employed in these 

calculations. They were however intensely interested in such things as possible drug 

interactions and contraindications for use of a particular drug. Thus the explanation 

provided by the advanced prototype deviates from the traditional in that it provides 

certain types of explanation without being asked by the user and in other 

circumstances allows the user to request when and how much explanation is required. 

The latter was implemented in the final prototype by means of a hierarchical menu 

structure similar to most windows help functions and the former by natural language 

warnings of major drug interactions and simple explanations of data requirements and 

possible sources of error presented in windows in the middle of the screen. This latter 

form of explanation was also considered to be necessary for safe operation of the 

system by non expert users. 

Next to system design and clinical accuracy, availability was seen as the most 

important factor affecting system acceptance. It was impossible to formally test this 

effect due to the low local availability of suitable hardware. However, the impression 

was gained that this might not be as important as previously thought. The location 

effect would appear to be dependent on how often the system is likely to be used, how 
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useful it is perceived to be and a general awareness of its availability. It was not 

unusual for casualty or other ward staff to use the system located in pathology which 

is located a considerable distance from the ward areas. From the interview data 

presented in chapter 4 and appendix B, it was noted that the general physician had 

only a scanty knowledge of pharmacokinetics. Suitably designed and widely available 

systems might thus have an educational role as well as the primary one of advising 

on drug dosing. 

While no definite conclusions can be drawn about the suitability of the design for use 

by the general physician, the preliminary results presented in the body of this report 

are encouraging. Appropriate explanation and careful attention to the physical aspects 

of operation are seen as essential components of a successful implementation. It would 

have been useful to conduct formal trials of the system with a number of different 

prospective users, but this was not considered feasible in the particular development 

environment. Rotation of staff and the generally hectic work pace made it almost 

impossible to gather and retain a representative group. Nevertheless considerable 

interest was generated and many informal suggestions on possible system 

enhancements were received. Further assessment of the design awaits more extensive 

trials with prospective users. This will become possible following further testing and 

the availability of the system on the hospital network. 

In the clinical environment, there are a number of sources of error which may 

invalidate pharmacokinetic calculations. Arguably, the most important of these are 

those associated with the incorrect preparation of doses and the recording of incorrect 
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times of dosing and specimen collection. It was observed that current pharmacokinetic 

systems do not address these sources of error directly and it was decided to investigate 

the applicability of a more general Bayesian approach which might be extended to 

incorporate these 'external' errors. The particular approach adopted in this 

implementation was based extensively on the method described by West and Harrison 

in 1989. This general Bayesian forecasting approach, incorporating the Kalman filter 

algorithm, was shown to be applicable in principle to the problem of estimating 

pharmacokinetic parameters in an individual patient. The positive initial results 

presented in this report form the basis for ongoing research into the possible extension 

of the system to incorporate the 'external' sources of error discussed above. It is 

currently envisaged that the model will be extended to include additional terms which 

account for these errors and that estimation of these effects will enable users of the 

system to more readily distinguish errors in dosing and sampling from those due to 

interindividual variation in pharmacokinetic response. This may, in fact, be too narrow 

an approach to the problem and the particular form of the Kalman filter algorithm 

presented in this report may not be the best for this purpose, but, at the least, it serves 

as an initial direction for further research. 

A number of avenues for further research were presented in the previous chapter. The 

obvious next step is to conduct extensive testing of the parameter updating procedure 

to demonstrate its robustness and accuracy followed by clinical trials to gauge 

acceptance of the system and its clinical benefits. These are in hand. 
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This appendix contains a short summary of basic pharmacokinetic principles as 

applied in the drugs adviser. Most of the material presented may be found in any 

standard text on basic pharmacokinetics such as that by Wagner (1975). It is included 

as an aid to understanding the mathematical basis of the calculations performed by the 

program and is not intended as a comprehensive review of the science of 

pharmacokinetics. 

(a) Compartmental models 

Pharmacokinetics is a scientific discipline whose basic purpose is to study the time 

course of drug and drug metabolite concentrations andlor effects in biological fluids 

and tissues. Clinical pharmacokinetics uses mathematical models as an aid in the 

provision of safe and effective drug therapy for an individual patient. The most 

common form of model used is the compartmental model in which the body is 

considered to consist of one or more compartments into which the drug passes and is 

distributed uniformly. The disposition of the drug between compartments may involve 

linear or nonlinear kinetics. Kinetic linearity may be defined as direct proportionality 

of rate of change of drug amount to the amount of drug present. In general, the 

compartments do not have direct physiological anologues but are average 'states' of 

nonhomogeneous systems. The actual models are the equations but the graphical 
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representations shown in figure A.I and A.2 are used for clarity. 

-------

R KIO 
Central 

Compartment 

Figure A.I The one compartment model. 

Compartment 2 

K12 K21 

R 
Central 

Compartment 

Figure A.2 The two compartment model. 
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(b) Linear compartmental models 

Linear pharmacokinetic models are derived by making a number of assumptions about 

the way a drug is absorbed, distributed and eliminated from the human body. The 

major assumptions are: (1) the body consists of one or more separate uniform 

compartments (2) the drug is distributed uniformly within each compartment (3) 

elimination, absorption and distribution obeys first order kinetics and (4) distribution 

between compartments occurs rapidly compared to elimination or absorption. Many 

of the drugs in routine use may be described adequately by the one or two 

compartment linear models described graphically above. 

The basic equation describing the amount of drug in the central compartment for the 

one compartment linear model when the drug is administered by constant rate 

intravenous infusion, is as follows: 

dX 
dt = R - k10'X . .. (1) 

where 

X is the amount of drug in the central compartment. 

klO (or ke ) is referred to as the elimination rate constant. 

R is the constant rate of infusion of the drug into the central compartment. 

Similarly, the amount of drug in the body for the two compartment model is given by 

the following system of equations: 
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dX 
dt =R-kl0·X-k12·X+k21·Y '" (2) 

dY 
dt = k 12 · X - k 21 · Y ... (3) 

where: 

klO (or ke ) is referred to as the elimination rate constant and k12' k21 are rate 

(proportionality) constants describing the transfer of drug between compartments 1 

(central) and 2. 

R is the constant rate of infusion of the drug into the central compartment. 

X and Y are the amounts of drug present in compartments 1 and 2 respectively at time 

t in a dosing interval. 

Equations 2 and 3 may be solved to give the following equation for the concentration 

of the drug in the central compartment at any time in a dosing interval after the 

infusion ceases. 

n 

(Ct)n = L[Ai.e-a.·t + Bi·e-~·t] 
i=O 

where 

... (4) 

(el)n is the concentration in the central compartment at time t following the nth dose. 

Ai, Bi, ex, p are the macroparameters to be estimated. 

and 
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1 - V (k10 +k12 +k21) 2 - 4k21kl0 P = 2" [k10 + k12 + k 21 ] 

Ai = 
D(k21 -a) (l_e IXTi ) 

e IXti 
Va (a - P) 

Bi 
D ( P - k 21 ) (1 - e P Ti) 

pt· = e ~ Vp (a - P) 

where D is the dose given, V is the volume of distribution in the central compartment 

and kJO , k12 , k21 are as before. 

F or an n compartment model, sets of equations similar to 2 and 3 above, may be 

integrated to produce solutions of the form. 

n 

L 
i=o 

where: 

A . . e -IXi' t 
1. ... (5) 

Ct is the concentration is the concentration in the central compartment at time t in a 

dosing interval. 

Ai are coefficients which are functions of the rate constants describing the transfer 

between compartments. 

U i are exponential coefficients which are also functions of the transfer rate constants 

and n corresponds to the number of compartments (usually). 

In general, equation 5 is in fact two different sets of equations. One set describing the 

drug concentration in the central compartment during the course of the infusion and 

the other set applies after the infusion ceases. Similar sets of equations may be 

generated to describe the drug concentration in the peripheral compartments. 
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The equations presented above are for drugs administered by constant rate infusion 

into the central compartment and which are also eliminated from this compartment 

only. In theory, the drug could be administered into any compartment or more than 

one compartment simultaneously and also eliminated from one or more compartments. 

Similarly, different methods of drug administration are possible. Some models deal 

with these possibilities but in the practical circumstances commonly encountered in 

the hospital setting, the equations described above are the usual forms applicable with 

some modifications made for different modes of administration as described in (d) 

below. 

(c) Nonlinear compartmental models 

The most common causes of nonlinear pharmacokinetics are: (1) the existence of 

Michaelis-Menten or other nonlinear elimination kinetics (2) the presence of high 

doses which leads to saturable tissue binding or (3) high doses leading to nonlinear 

plasma-protein binding. The most commonly encountered cause in the drugs of 

interest is that of Michaelis-Menten elimination kinetics, exhibited by drugs such as 

phenytoin or heparin. For the one compartment model, the equation governing the 

amount of drug in the central compartment during constant rate infusion, is given by: 

... (6) 

where 

Ct is the concentration of the drug in the central compartment at time t. 
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R is the constant rate of infusion of the drug into the central compartment. 

V m is the maximal rate of drug elimination. 

~ is the drug concentration at which the rate of elimination is half maximal. 
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This equation may be solved explicitly [Beal, 1983] but this is quite 'messy' and often 

not necessary. Many drugs obeying nonlinear kinetics are administered orally over 

extended periods of time and thus steady state conditions apply and dC/dt = O. In 

other cases, the drug is administered by constant rate continuous infusion over short 

periods of time and steady state is reached quickly. In either case the equation is 

simplified considerably and the explicit solution is not required for dosage adjustment 

calculations. Of course, there are methods for handling non steady~state calculations 

[e.g. Scheyer and Mattson, 1991] and these may be employed if warranted. 

Extension to models with two or more compartments is also possible and the 

equations are similar to 2 and 3 above with one or more terms replaced by a term of 

the form of the right side of equation 6. Similar arguments to those used for linear 

kinetic models as regards administration and elimination also apply. 

(d) Drug administration and elimination 

A drug may be administered by a number of different routes. These include the oral, 

intramuscular, subcutaneous, intradermal, intra-pleural, intra-peritoneal and intravenous 

routes. The route of administration affects the rate at which a drug is absorbed, the 

amount of drug reaching a particular compartment and thus the form of the 

R is the constant rate of infusion of the drug into the central compartment. 
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appropriate pharmacokinetic equation. Other input factors include the form of the 

dosage e.g solid tablet forms, rectal dosage forms, liquid dosage forms. These factors 

affect the amount of the dose reaching a partiCUlar compartment. 

Elimination of the drug occurs when it is metabolised or excreted or both. Drug 

metabolites may also have a pharmacological effect but this is ignored for the 

purposes of this report. The elimination rate constant occurring in the pharmacokinetic 

equations may thus be considered as the sum of the rate constants of all the different 

elimination processes occurring. 

As illustration, assuming a one compartment model with first order elimination, the 

equations describing the concentration of the drug at any time t in a dosing interval 

for different modes of administration are: 

(i) Intravenous bolus administration: 

(ii) Intravenous infusion: 

(iii) Intramuscular injection: 

C -k10 • t + 
o • e 

(iv) Oral: 
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Fa . D . ka (k t k t) -=~:---_""":::"'_. e - 10' + e - a' 

V. (ka - k 10 ) 

where: 

klO is the first order elimination rate constant. 

~ is the first order intramuscular absorption rate constant. 

ka is the first order oral absorption rate constant. 

F a is the bioavailability. 

T is the infusion period. 

Co is the drug concentration before the dose is given. 

D is the dose given. 

V is the volume of distribution. 

Ct is the concentration at time t in a dosing interval. 

When multiple doses of a drug are given (the usual case), the equations may be 

applied iteratively to determine the concentration at any time in a particular dosing 

interval or multiple dosing forms of the equations may be used. The multiple dosing 

forms assume linear kinetics and mUltiple doses given at regularly spaced intervals. 

These forms, incorporating the sum of a geometric series, are often applicable in the 

clinical setting. The multiple dosing form of a drug administered by intravenous 

injection at regularly spaced intervals and using the one compartment model, is given 

by equation 7 below. 

. .. (7) 

where: 
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Ct is the concentration at any time t in a dosing interval, D is the dose given each'! 

hours, ~ is the elimination rate constant, V is the volume of distribution and n is the 

number of doses given. 
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QUESTIONNAIRES USED IN THE RESEARCH 
AND SUMMARIES OF RESPONSES 

106 

This appendix provides copies of the questionnaires used in the research and 

summaries of the responses received. These were used as the basis for design changes 

to the prototype Drug Dosage Adviser so as to better reflect the needs of the 

prospective users. 

A basic prototype system was first demonstrated at the North Queensland physicians 

conference held in Mackay at the end of 1990. The participants were all specialist 

physicians from a variety of institutions both public and private. Individuals were 

shown the system in operation and then encouraged to operate the system themselves. 

A questionnaire was also provided for the participants to record their impressions of 

the system. The questionnaire is reproduced in figure B.I and a summary of the 

responses in table B.1. 

Following initial research and prototype modification, a series of interviews with 

medical staff likely to use the system were conducted at the end of 1991 and the 

beginning of 1992. The interviewees were selected arbitrarily from those working in 

wards where it was decided that the system would most likely be used,'that is the 

medical and surgical wards. The interviewees had different levels of expertise and 

experience and provided a good cross section of the medical staff within the hospital. 

There were eight interviews in all, the eight interviewees representing approximately 
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20% of the hospital medical staff. The interviews were semi-structured. The questions 

asked are reproduced in figure B.2 and a summary of the responses is provided below 

each question. Responses were recorded in longhand at the time of the interviews and 

fair copies transcribed shortly after. The summaries represent as closely as possible 

the replies received without significant exclusions. Exact quotes are given in double 

quotation marks and the short responses recorded and reproduced in the figure, 

paraphrase the actual responses as closely as possible. 
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QUESTIONNAIRE - GENTAMICIN PROGRAM 

Please tick the appropriate response. 

[1] Do you own or have ready access to a personal computer? yes[ ] no[ 

[2] Do you use a personal computer professionally 
on a regular basis ? yes[ ] no[ 

[3] Have you seen another program similar to that on display ? yes[ ] no[ 

[4] Would you use such a program as a clinical aid? yes[ ] no[ 

[5] If you would use such a program, would you prefer 
(a) - to use it yourself [ ] 
(b) - have someone else use it for you [ ] 
(c) - no preference [ ] 

[6] Should a program such as that on display, be used in: 
(a) - physicians office [ ] 
(b) - hospital ward [ ] 
(c) - Pathology lab. [ ] 
(d) - all of the above [ ] 

[7] Do you think a similar program would be useful for: 
(a) - other aminoglycosides [ ] 
(b) - anti epileptics [ ] 
(c) - aminophylline [ ] 
(d) - cardiac glycosides [ ] 
(e) - all of the above [ ] 
00 -M~~~~W [ ] 

[8] When entering data into such a system, would you prefer: 
(a) - all data entry on the one screen (report format) [ ] 
(b) - prompts for each item on separate screens( as here) [ ] 
(c) - no preference [ ] 
(d) - don't understand the question [ ] 

[9] Is a colour display 
(a) - essential 
(b) - desirable 
(c) - undesirable 
(d) - irrelevant 
(e) - no opinion 

[10] Any other comments ? 

Figure B.1 Gentamicin questionnaire. 

[ ] 
[ ] 
[ ] 
[ ] 
[ ] 
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Responses 
Ques. 

yes no 

1 4 2 

2 o 6 

3 2 4 

4 

5 

6 o 1 2 

7 1 1 o o 
8 2 2 1 1 

9 o 1 1 4 

10 2 suggested Heparin be added) lof these suggested Cyclosporin be 
added as well I 2 said they liked it ) 2 had no further comments. 

Table B.I Summary of responses to gentamicin questionnaire. 
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Interview Questions and Responses 

General. 

Question 1. 
Interviewee demographics - Name, Age, Sex, Current position, Previous expenence. 

Interviewee age sex experience current position 

A 

B 

C 

D 

E 

F 

G 

H 

28 M 5 years Principal House 
Officer 

33 M 10 years Principal house Officer 

31 M 8 years Principal House 
Officer 

29 M 3 years Junior House Officer 

26 F 1.5 years Resident Medical 
Officer 

23 M < 1 year Resident Medical 
Officer 

35 M 11 years Principal House 
Officer 

25 F 2 years Junior House Officer 

Figure D.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 2. 
Please explain your professional duties. How Busy are you? 

Interviewee duties 

A Ward management, Patient assessment & care, Admissions, 
minor operations, relevant special procedures, coordinate 
paramedical services. Busy -long hours. 

B Management of patient care, review admissions, minor 
operations, specialist procedures. Very Busy 

C Supervise and manage patient treatment in ICU, CCU and 
Medical wards. Short staffed, Busy 

D Patient management under supervision of PHO and consultants; 
long hours 

E Check admissions, patient management, discharge summaries. 
Busy 

F Assess patients and treatment, Responsible to registrar, Quite 
busy. 

G Assess patients for Theatre, Minor operations, Supervise post op 

H 

treatment. Busy. 

Assess and manage patients, minor procedures. Busy, long 
hours. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Computers and Medical computing. 

Question 3. 
What experience with computers you do you have? Professional? Personal? 

Interviewee Professional Personal 

A "not much really" , Word Fairly knowledgeable. Father 
processing, Ward terminals at wrote accounting software." 
RBH for lab results. Some programming myself." 

B "virtually nil" Own a PC for word processing 
and garnes. 

C "not much" some MEDLINE "zero" 
searches. 

D MEDLINE searches. Own a PC but don't use it 
much. 

E Some experience with Hospital none 
computers in England for 
ordering procedures and getting 
results and Drug cards. 

F Ward terminals at REB for "not a lot". 
results etc. Zero otherwise. 

G Use MEDLINE and CDROM none 
databases 

H "not much" none 

Question 4. 
Do you own a personal computer ? 

A B C D E F G H 

yes yes no yes no no no no 

Figure-B.2 Interview questions and summaries of responses. 
(Continued over) 

II 
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Question 5. 
Do you use a computer regularly - professionally or otherwise ? 

A B C D E F G H 

no no some yes (Pro no yes(Pro no no 
) ) 

Question 6. 
"What do you understand by the terms -
Medical informatics? Medical/clinical advisory systems? Expert system ? 

Interviewee Medical Informatics Advisory systems Expert systems 

A 

B 

C 

D 

E 

F 

G 

H 

"heard the term but "MEDLINE? not "nothing really" 
not sure exactly sure" 
what it is" 

nothing nothing nothing 

"never heard of it" "the gentamicin not sure 
program?" not sure. 

nothing "advice from a "not much; A very 
computer?" good system?" 

nothing nothing nothing 

nothing "MEDLINE type nothing 
system?" 

nothing nothing nothing 

nothing nothing nothing 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 



Question 7. 
Do you see a place for computers in medicine ? Where ? 

(prompt - diagnostics, databases, medical records) 

Interviewee computers in medicine 
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A Yes. Medical records eventually. Laboratory results and programs 
like MEDLINE 

B Yes. Predominantly in medical records and for ordering tests and 
interpreting results. "Drug dosing of course" 

C Yes. Information retrieval and storage. Advice on clinical 
decisions; Printing reports etc. 

D Yes. Summary of medical records. Maybe for access to 
information. 

E Yes. "can type reasonably well" 

F Yes. "useful for access to information in abroad sense" 

G Yes. Access to databases. Help in diagnosis, eventually "is that 
an expert system?" " Not medical records while I can't type" 

H Yes. Medical records maybe. Lab. results. 

Question 8. 
Would you use a medical advisory system ? 
(following explanation where required) 

A B C D E 

Some, yes, if yes Possibl Maybe. 
maybe. it yif Check 

works. conv- it 
enient first. 

F 

Yes 

G 

Yes, if 
easy to 

use. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 

H 

Yes 
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Question 9. 
What knowledge of pharmacokinetics do you have? How much do you use it ? 

Interviewee Knowledge of pharmacokinetics / use 

A 

B 

C 

D 

E 

F 

G 

H 

Quite knowledgeable. Rely a lot on advice from consultants, 
reference texts. / Use it quite a lot. 

Not much knowledge. / "don't seem to need it much." 

Remember a bit from med. school. Usually rely on experience / 
use knowledge occasionally. 

"not a lot". Remember a bit from pharmacology at med. school / 
don't use it much. 

Remember most of what was taught in pharmacology at Uni. / 
use it regularly. 

Basic university knowledge / used "a couple of times maybe" 

Quite extensive, studied anaesthetics. / use it regularly 

Remember some from Uni. / not much use. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 10. 
What do you understand by the terms -
Half-life of a drug? Elimination rate constant? Volume of distribution of a drug? 
Pharmacokinetic model ? 

Understanding ( yes, not at all, vague) 

Interviewee Half-life Rate constant Volume Model 

A 

B 

C 

D 

E. 

F 

G 

H 

Distrib. 

yes vague yes vague 

yes vague vague not at all 

yes yes yes yes 

yes vague vague vague 

yes not at all not at all not at all 

yes vague yes vague 

yes yes yes yes 

yes not at all vague not at all 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 11. 
How would you normally choose a drug dosing regimen? for Gentamicin ? 

Interviewee general gentamicin 

A 

B 

C 

D 

E 

F 

G 

H 

"guesstimate" based on renal "guesstimate" based on 
and hepatic function, creatinine if available. 
recommended dosages in 
reference texts. Experience. 

Based on renal and hepatic Same 
function. Experience. Reference 
texts. 

Use MIMS and other Experience and renal function. 
references. Check drug levels. 

Reference texts. Experience. Same. 

Use MIMS and other Standard start doses. 
references "guesstimates" 

Use MIMS and other Use consultants' nomogram or 
references. "standard doses if patient 

seems 'normal' ". 

Experience and using renal Similar to that used for other 
function, hepatic function, age drugs. 
weight, sex adjustments. 
Reference texts where 
necessary. 

Standard doses from MIMS Standard doses. 
and other references. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 12. 
Do you see any value in using a computer to calculate dosing regimens ? 

Interviewee response - comments 

A Yes. Avoids toxicity. Better levels earlier. 

B Yes. More accurate. "Takes some guessing out of it" 

C Yes. If convenient could eliminate need for extra tests. "couldn't 

D 

E 

F 

G 

H 

be worse than the methods being used" 

Yes. If convenient and on wards. 

Maybe. Should be fairly good. 

Yes. "Could be handy". "need access there and then". 

Yes. "But would need to be very accessible and easy to use." 

Yes. If easy to use. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 13. 
What would you expect in such a system ? 
(prompt - accuracy, reliability, availability,explanation) 

Interviewee Features 

A "easy to use". Fast. Like more interpretation including drug 
interactions. Must have ready access. Needs to be reasonably 
accurate. "Don't need the equations and things .. " 

B User friendly. As simple as possible to use. Should be accurate. 
Might need some help. 

C Convenient to get at. Easy to use. "know what the creatinine is 
for" 

D User friendly. Good results. Fast "and not too many questions 
asked." 

E Must be simple to use. Should give good results. 

F Not too complicated to use. Should have other information such 
as interaction with other drugs. 

G Simple to use. Fast. Other knowledge such as drug interactions. 
Access to patient database for other drugs used. Not much 
explanation necessary. 

H Simple to use. Convenient. Should know what information you 
need to enter into program. 

Question 14. 
Would you prefer such a system to be operated by you or someone else e.g. Lab, 
pharmacy? 

A 

By me. 

B C D E F G 

By me. Prefer By me Someo By me. By me 
Lab ne else. 
say 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 

H 

Byrne. 
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Question 15. 
Would you prefer a choice of options or a single 'best' solution from such a system? 

A B C D E F 

Single Single A A small A A 
best or best. choice number choice choice 
small 0 f 
number choices 
0 f 
choices 

Question 16. 
Have you seen the gentamicin program ? Have you used it ? 
Your Impressions of the program ? 

Interviewee use 

G H 

Single A 
best. choice. 

. . 
ImpreSSIOns 

A Have seen it. Used it. Program is good. Happy with 

B 

C 

D 

E 

F 

G 

H 

results. Use it as a guide 
mainly. 

Have seen it. Used it. A good idea. 

Have seen it. Used it. Good. 

Haven't used it. Heard about it. Sounds good. 

Haven't used it. Heard a bit ---
about it. 

Have seen it. Used it. Program looks good. Seems to 
work. 

Have seen it. "Haven't really Good potential. 
used it." 

Haven't seen it. ---

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 17. 
Would you like to see the gentamicin program extended to include other drugs ? 
Which drugs ? 

Interviewee extension? other drugs 

A 

B 

C 

D 

E 

F 

G 

H 

Yes Other antibiotics, Vancomycin 

Yes Digoxin, antiepileptics. 

Yes Vancomycin, Digoxin, dilantin 

Maybe other aminoglycosides. 

Yes Digoxin, tegretol, maybe others. 

Yes Other antibiotics, other toxic drugs. 

Yes Warfarin, Heparin, antiepileptics. 

Yes Other antibiotics, digoxin. 

Figure B.2 Interview questions and summaries of responses. 
(Continued over) 
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Question 18. 
Any general comments ? 

Interviewee comments 

A Program is good. Aware that it has limitations. 

B Program is a good idea. never seen a program like that before. 
Good if MO's had access 24 hours a day. 

C Good idea. Not enough staff aware of it. 

D Haven't used it. 

E Should use it. 

F Program looks good. "Be more helpful if we had computers on 
the wards" 

G Good. 

H no. 

Figure B.2 Interview questions and summaries of responses. 
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