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Abstract 
This paper contributes a data engineering framework to relate precipitation at Central Queensland in Australia to 

other climatic factors and ENSO. Advanced data engineering concepts including computational intelligence 
techniques are used to model precipitation characteristics for areas within the region. A seasonal stratification 
process based on standardized precipitation index, predictor selection based on mutual information, a multiple 
imputation technique and a computational intelligence based approach to examine the influence of ENSO have been 
demonstrated. An ensemble based regression approach has also been highlighted to characterize the relation between 
predictors and precipitation. Results indicate that a data engineering framework is effective in unraveling the inter-
relationships between different factors and precipitation, and characteristics of the relation vary spatially. The 
outcomes are expected to aid design of regional forecasting model and relevant statistical downscaling. 
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1.    Introduction 
While the early works on climate change have focused on variations at global contexts, better understanding of 

changes at regional scale has been strongly felt in recent years (Solomon et al., 2008). Traditionally employed 
General Circulation Models (GCM) are not well-suited to predict climate at regional scale due to high computational 
complexity and limitations in conceptualizing events (Wetterhall et al., 2009; Xu, 1999). Statistical downscaling was 
designed to overcome these difficulties. The method comprises selecting a set of predictors from GCM simulated 
data and determining the value of a predictand based on these variables (Chen et al., 2010; Wetterhall et al., 2009; 
Wilby et al., 1999). The underlying objective of this method is to model the relation between predictand and 
predictors. Information about the relationship is then employed in developing a regional climate forecast model. In 
this article, we focus on analyzing precipitation characteristics at Central Queensland in Australia. A data engineered 
framework is developed to conceptualize the characteristics. However, in contrast to traditional downscaling process 
that works on GCM simulated data, we concentrate on deriving the relation between precipitation and other factors 
(i.e., predictors) from real observation data. GCM models have restrictions in projecting climate and are subject to 
imperfection due to high degree of uncertainty (Knutti, 2008). In recent times the GCM simulated outputs have also 
come under strong skepticism (Schiermeier, 2010). So we consider actual observed data in our research. More 
particularly, precipitation characteristics for different areas within Central Queensland are perceived and modeled 
using a data driven approach. Further to climatic factors, we also investigate the influence of region external factors 
like El Niño/Southern Oscillation (ENSO). Also, an automated method for seasonal stratification of data, a missing 
value imputation technique and a computational indigence based modeling process is demonstrated. The outcomes 
from this research are expected to aid designing a climate forecasting model for the region in a later research. In the 
following section (Section 2), we first provide an overview of the climatic issues at Central Queensland, followed by 
which, we present details on the data engineered research framework employed in our research (Section 3).  Finally, 
Section 4 provides a summary of the findings and points to future directions. 

2.   Climatic Issues at Central Queensland 
Central Queensland, Australia is an industrially booming and economically highly potential region, 

accommodating a number of industries including one of the world's largest alumina refineries at Gladstone, major 
Australian meat processors at Rockhampton, Queensland's largest port and largest coal fired power station at 
Gladstone, and sugar industries at Mackay (OCC, 2009). The region is also notable for a number of tourist 
attractions including parts of  the Great Barrier Reef, several national parks, state forests and beaches.  Further, the  
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Figure 1. Research Framework for Precipitation Analysis 

region is covered by a number of major rivers including the Fitzroy, Pioneer, Plane and Waterpark rivers. With 
increasing industrialization, potential impact on its climate is, hence, a growing area of concern for relevant 
authorities and communities (DERM, 2006; DERM, 2008). The latest comprehensive works in this regard (CSIRO, 
2007; OCC, 2009) have projected the region’s climate through an ensemble of a set of circulation models. But a 
comprehensive investigation of the area’s climatic features, in particular precipitation properties, is yet lacking. 
Daily weather records for the area are maintained by the Bureau of Meteorology (BoM, 2009), but insightful 
analysis employing advanced data engineering technique like computational intelligence are still missing.  This 
study will address these issues in the context of precipitation characterization for Central Queensland. 

3.   Data Engineering Research Framework 
Data engineering (Wolkenhauer, 2001) constitutes conceptualizing and modeling of a system through processing 

the relevant data (including analysis by statistical methods and computational intelligence algorithms). In our 
research, we employ a data engineering based research framework as outlined in Figure 1. The data used in our 
research include the daily weather data from climate stations (i.e., active weather monitoring stations with long term 
record) and the monthly Southern Oscillation Index (SOI). As per the Bureau of Meteorology (BoM), there are 3 
climate stations in Central Queensland, respectively located at Rockhampton (latitude: -23.3753, longitude: 
150.4775), Gladstone (latitude -23.8553, longitude: 151.2628) and Mackay (latitude: -21.1172, longitude: 
149.2169). So, we focus on these 3 regions due to the availability of long period data. The time span covered by 
these stations, however, vary. To ensure a consistent time scale across the regions, weather records spanning the 
period Jan 1960 – Oct 2009 are used in our analysis. Three data driven models are developed. A novel algorithm for 
seasonal stratification is designed to categorize the months, using precipitation characteristics, across the different 
seasons. Regression based modeling is then performed, along with relevant data analysis including predictor 
selection and missing value processing, to model precipitation. Lastly, a computational intelligence approach is 
employed to relate ENSO to precipitation. The outcome of the research framework is a knowledgebase 
characterizing precipitation at Central Queensland. 

3.1 Seasonal Stratification 
Climate analysis at a geographical location is generally performed in terms of seasons identified from historical 

experiences. Researchers have recognized four seasons for Australia - summer (Dec-Feb), autumn (Mar-May), 
winter (Jun-Aug) and spring (Sep-Oct) (Hennessy et al., 1999). For precipitation analysis, two seasons are often 
considered- dry and wet season (Wetterhall et al., 2009). However, season structure varies from places to places. 
Also, it has been noted that seasons understood from historical experiences may not match seasons perceived from 
observed data (Tripathi et al., 2006; Winkler et al., 1997). In this article, we employ an algorithmic approach to 
determine the seasons at Central Queensland automatically from data. The pseudo-code for the algorithm is 
illustrated in Algorithm 1. An outstanding feature of the algorithm is the use of Standardized Precipitation Index 
(SPI) to characterize the months. SPI is a relatively modern and well popular measure of drought conditions and is 
calculated using the probabilistic distribution of precipitation (Guttman, 2007; McKee et al., 1993; McKee et al., 
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1995). The measure is well suited to compare precipitation across spatial and temporal boundaries, and has been 
applied to a number of scenarios including flood risk monitoring (Seiler et al., 2002) and drought probability 
detection (Türke et al., 2009). Use of SPI in characterizing months for automatic season detection, to the best of our 
knowledge, is novel. The Algorithm 1 first calculates SPI for each of the months of every year from the total 
precipitation during the month. The SPI values are then discretized into 3 intervals: [-∞,-0.99), [-0.99,0.99), [0.99, 
∞) and the corresponding climatic conditions are regarded as dry, normal and wet conditions respectively. Then, 
based on the number of years a particular month has sustained dry, normal and wet conditions, the algorithm 
proceeds to characterize the month as part of dry or normal or wet season. If the aggregate count for dry and normal 
conditions, and the aggregate count for wet and normal conditions for a particular month both exceed 80% of the 
total number of years, then normal condition is prevalent during that month and it’s considered part of normal 
season (i.e., the corresponding season is neither dry nor wet). Otherwise, if the aggregate count for dry and normal 
conditions exceed that for wet and normal conditions, the corresponding month is categorized as part of dry season 
(i.e., occurrence of rainfall is rare). If none of the previous conditions is fulfilled, the month is considered part of wet 
season (i.e., rainfall is frequent). In Figure 2, we present the outcome of seasonal stratification for the three regions 
in Central Queensland It’s notable that for all the three regions, December-March comprises the wet season. While 
July-August comprises dry season for all three areas, the length and time-span for dry seasons vary across the 
regions. Also, between dry and wet seasons, normal seasons are observed for each of the areas. April is normal 
season for all areas, while precipitation characteristics during May, June, October and November vary. For two of 
the regions, May, October and November are part of the normal season and June is part of the dry season. Overall, 
we conclude that at Central Queensland, in terms of precipitation characteristics, December-March and June-
September are wet and dry seasons respectively, while between these two seasons, two normal seasons appear 
during April-May and October-November. 

Algorithm 1. Pseudo-code for seasonal stratification 
Let, D be the climate dataset containing daily records including Precipitation.  

1. Calculate monthly total precipitation for each year and each month from D 
2. Calculate Standardized Precipitation Index (SPI) for each of the months, considering the monthly total 

precipitation as input to SPI calculation algorithm (Wheatley, 2010) 
3. Partition the SPI values based on 3 intervals: [-∞,-0.99), [-0.99,0.99), [0.99, ∞) and consider these 3 intervals 

indicating dry, normal and wet conditions respectively. Based on this partitioning, assign to each month a 
variable indicting whether it has been dry, normal or wet.  Let these be denoted by Mi,y, where i=1..12 for 
the 12 months and y are the different years under consideration. 

4. For i=1..12: 
                 Let cd = count of years for which Mi,y, = dry 
                 Let cn = count of years for which Mi,y, = normal 
                 Let cw = count of years for which Mi,y, = wet 

                 Let Si denotes a variable that indicate the final decision of the algorithm regarding whether   
                 month i shall be considered as dry, normal or wet 
                  
                 Let, sm1 = cd + cn      and    sm2 = cw + cn      and  sm = cd + cw + cn  
 
                  if (sm1/sm > 0.8)  and (sm2/sm > 0.8)  then Si = normal 
                  else: 
                           if (sm1 > sm2)  then Si = dry 
                           else Si = wet                          

5. Return Si for i=1..12 

 
Figure 2. Seasonal stratification for the regions in Central Queensland. 
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3.2 Precipitation Model 
This section focuses on the design of a precipitation model (a model that associates precipitation amount to other 

climatic factors through statistical and computational intelligence based techniques, and thereby conceptualizes the 
underlying relationship). In statistical downscaling, this is an important step and different techniques like multiple-
linear regression, support vector machine and artificial neural network have been explored in this context (Hessami 
et al., 2008; Tripathi et al., 2006; Wetterhall et al., 2009; Wilby et al., 2002). As mentioned earlier, we use real 
observational data (instead of a GCM simulated data) in our aim to characterize precipitation at Central Queensland. 
Development of a precipitation model from this data poses a number of challenges – selecting predictors for 
analysis, missing value processing and fitting a regression model. We present further details on these under the 
following headings: 

Predictor Selection 
The collected daily weather data for the three regions in Central Queensland contained a number of redundant or 

erroneous attributes. Information for some of the variables (for instance, relative humidity) was available at three-
hour time resolution only and a daily statistic for these attributes was missing. For some of the attributes, very 
limited information was available. In our analysis, we ignore the erroneous and very limited information attributes, 
and compute missing daily statistics from the available three-hourly measures using an aggregation function (for 
instance, relative humidity for a day is computed by averaging available three hourly observations). Further, we 
consider that human feeling of climate is an important issue when characterizing climate. So, we compute and 
include daily average values for apparent-temperature (Steadman, 1979), a stress index indicating the effect of 
humid and hot conditions on human body. Thus preprocessed dataset contains 28 attributes. In Table 1, we detail the 
attributes and outline the symbolic notations used to represent these variables for subsequent analysis. From the 
preprocessed dataset, we analyze the relationship between precipitation and other factors to identify predictors for 
precipitation modeling. Correlation coefficient is often used in this context (Tripathi et al., 2006; Yin et al., 2009). 
But the measure is not well-suited to capture non-linear dependence between predictands and predictors. In our 
research, we use, in addition to correlation coefficient, mutual information to select predictors. Mutual information 
is a measure motivated from information theory and is capable of representing non-linear dependence (Veyrat-
Charvillon and Standaert, 2009). For predictor selection, we employ a combination of Spearman correlation 
coefficient and mutual information. Attributes having correlation coefficient of at least |0.4| and the five top 
attributes in terms of mutual information with respect to precipitation are considered as the features having moderate 
to strong statistical relationship with precipitation. The chosen predictors are union of these two sets of attributes. In 
Table 2, we show the predictors identified for the three areas across the three seasons. It’s notable that, the number 
and characteristics of the predictors for the three areas vary. However, daily average for total cloud amount, low 
cloud amount and relative humidity are positively correlated to precipitation for all three areas and seasons, while 
solar exposure has statistical association for the wet season. Attributes like wind speed and direction and various air 
pressure statistics, that are often identified as potential drivers of precipitation at varied geographical location and in 
statistical downscaling of GCM (Barry and Chorley, 2003; Chang, 2006; Wetterhall et al., 2009), appear to have 
limited impact  on  precipitation at  Central  Queensland. 

Missing Value Processing 
A challenging issue in our research is the occurrence of missing values for varied attributes and observations. 

Missing values pose significant issue in data analysis and different methods for imputing missing values have been 
proposed in literature (Harel and Zhou, 2007). But it’s unclear which missing value imputation method is 
particularly suitable for multivariate temporal data like the climate dataset used in our research. To handle missing 
values in our experiments, we employ a multiple imputation strategy. The strategy is outlined in Algorithm 2. 
Considering values for each of the predictors as a time-series, missing values are imputed using two techniques- 
Amelia-II (Honaker et al., 2010), a multiple imputation process, is executed to generate 5 imputed time-series and 
two cubic spline interpolation techniques are used to generate two other time series. Amelia-II utilizes a robust 
method for multiple imputation, while cubic splines allow single imputation by fitting a well understood 
mathematical structure. The noteworthy feature of the Algorithm 2 is combination of the seven missing value 
imputed time series into a single time series. For each of the imputed time series, mutual information between the 
predictor and precipitation is calculated and the one with maximum mutual information replaces original 
measurement values of the predictor. The rationale behind the algorithm is: multiple imputation results in multiple 
possible values for missing data and thereby decreases uncertainty, while combination based on maximum mutual 
information reduces inter-independence between predictors and predictand and is expected to lead to better fitting 
for the regression model detailed under the next heading. 
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Table 1.      List of attributes for the pre-processed dataset.  

Attribute Symbol Physical Interpretation 
SE Solar exposure in MJ/m2

Prec Precipitation in mm. 
MaxT, MinT, AvgT Maximum, minimum and average temperature in oC 
MaxDwT, MinDwT, AvgDwT  Maximum, minimum and average dew point temperature in oC 
MaxWbT, MinWbT, AvgWbT  Maximum, minimum and average wet bulb temperature in oC 
HrBrSun Span of bright sunshine in hours 
MaxWS, AvgWS Maximum and average of daily wind speed in km/h 
DirMaxWs Direction of maximum wind flow in degrees 
AvgHpSeaL, AvgHpStnL Average daily mean sea level and station level pressure in hPa 
MaxHpVp, MinHpVp, AvgHpVp Maximum, minimum and average vapor pressure in hPa 
MaxHpSat, MinHpSat, AvgHpSat Maximum, minimum and average saturated vapor pressure in hPa 
AvgClA, AvgLoClA Average total cloud amount and low cloud amount in eighths 
AvgVis Average visibility in km. 
AvgR Average relative humidity in percentage 
AvgAT Average apparent temperature in oC 

Table 2.      Predictors for the three areas. Predictors are sorted on correlation coefficient and mutual 
information in descending order respectively. * marked predictors have negative correlation. 

Area Season Predictors Correlated with 
coefficient of at least |0.4| 

Predictors with top statistical dependence 
indicated by mutual information 

dry AvgLoClA AvgR, AvgLoClA, AvgClA, MaxHpVp, 
MaxDwT 

normal AvgLoClA, AvgR, AvgClA AvgLoClA, AvgR, AvgClA, AvgDwT, 
AvgHpVp 

Rockhampton 

wet AvgR, AvgClA, AvgLoClA, SE* AvgR, AvgClA, AvgLoClA, SE, MinHpVp 

dry AvgLoClA AvgLoClA, AvgClA, AvgR, MaxHpVp, 
MaxDwT 

normal AvgClA, AvgLoClA AvgLoClA, AvgClA, AvgR, SE, AvgVis Gladstone 

wet AvgR, AvgClA, AvgLoClA AvgR, AvgClA, AvgLoClA, SE, MaxSatVp 
dry AvgR, AvgClA, AvgLoClA, HrBrSun* AvgLoClA, AvgR, HrBrSun ,AvgClA, MinWbT 

normal AvgClA, AvgLoClA, AvgR, SE*, 
HrBrSun* HrBrSun, AvgLoClA, AvgClA , SE, AvgR, 

Mackay 

wet 
AvgLoClA, AvgClA, AvgR, MaxWS, 

MaxT, MaxSatVp, AvgVis*, SE*, 
HrBrSun*

AvgLoClA, AvgClA, HrBrSun , SE, AvgR 

Algorithm 2. Pseudo-code for missing value estimation 
Let, D be the climate dataset 

1. Partition D into Ddry, Dnormal and Dwet subsets based on dry, normal and wet season respectively. Let these 
partitions contain precipitation records (denoted by Prec),  and predictors (denoted by Vk) having moderate 
to strong correlation or high mutual information, as indicated in Table 2, for the respective seasons  

2. Let,   
3. For each  : 

       For each predictor Vk:  
                 Set, M1..5 = 5 missing value imputed time series for Vk generated by applying Amelia-II  
 
                Set, M6 and M7 be two time series with missing values generated by cubic interpolation using  
                (Forsythe et al., 1977) and natural splines on Vk 

 
                Set Vk

’ = argj (maximizing mutual information between Mj and Prec) 
        
      Set Di

’ = the dataset comprising Vk
’ as predictors and Prec 

4. Return Di
’ for  
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Fitting Regression Model 
With predictors chosen and missing values imputed in the previous steps, we, here, reflect on fitting a regression 

model to daily rainfall quantity and thus establish a relationship between precipitation and other climatic factors. 
Different researchers have used different regression strategies and methods in this context (Tripathi et al., 2006; 
Wetterhall et al., 2009; Wilby et al., 2002). It’s, however, unclear which method is particularly suitable for data from 
a geographical location. In this research, we consider two popular techniques - multiple linear regression (Weisberg, 
2005) and Support Vector Regression (Fan et al., 2005; Vapnik, 2000). Multiple linear regression (MLR) comprises 
fitting a linear model to the predictand and the objective is to estimate coefficients for the predictors that best fits the 
observed values. Support Vector Regression (SVR), on the other hand, is a theoretically solid technique that takes as 
input a regularization parameter and a kernel function, and produces model with high generalization capability. To 
fit a regression model to the precipitation information at Central Queensland, we use both of the methods and 
compare the performance. Experiments are conducted for each season at each of the areas (thus, we work with 9 
datasets, representing the 3 seasons at the 3 areas). Predictors are chosen based on the predictor selection process 
outlined earlier. We experiment with two different versions of the same data. In one version all incomplete records 
are removed, while the other version of data comprises missing information imputed using Algorithm 2. For SVR 
regression we use RBF kernel, which is well matched for representing non-linear relationship. For each of the 9 
datasets, we randomly select 90% of the records as training samples and report performance in terms of root mean 
squared error (RMSE). The training parameters for SVR are optimized using 10-fold cross-validation. In addition to 
MLR and SVR, we test the suitability for an equal-weighted ensemble of the two techniques. The experiment 
outcomes are detailed in Table 3. A particular characteristic notable from the outcome is the suitability of the 
ensemble approach. For datasets with missing values imputed, the ensemble method results in the least RMSE (i.e., 
better generalization) for six datasets. However, for datasets with incomplete information removed, SVR wins in 
five cases, while the ensemble method is better for four datasets. The ensemble method is also the second-best for 
datasets in which it is not the best-performing strategy. MLR, noticeably, has performed relatively poor compared to 
the other methods. Overall, we conclude that for the areas in Central Queensland, an ensemble model comprising 
equal weights for a MLR based model and a SVR model is the well-suited regression model in relating precipitation 
to other climatic factors. Symbolically the model is represented as follows: 

                                                                        .                                                             (1) 
 is the prediction from MLR model and  is the prediction from SVR model, where the SVR model is trained 

using RBF kernel and optimal learning parameters derived by cross-validation. 
3.3 Influence of ENSO 

El Niño/Southern Oscillation (ENSO) is a global climatic event that influences precipitation at several localities 
including Australia (Holbrook et al., 2009). In this subsection, we explore the impact of this event at the areas in 
Central Queensland. Values of monthly SOI, an index representing the impact of ENSO (Ropelewski and Jones, 
1987; Trenberth, 1984), is associated to the monthly total precipitation. Apriori (Agrawal et al., 1996), a well known 
rule mining algorithm, is employed to unravel the association. The results are highlighted in Table 4. Only the three 
rules with top confidence values (i.e., the most likely rules) are included. We note the differing influence of SOI for 
the different regions. In Rockhampton and Gladstone, influence of SOI is similar for both the dry and normal 
season. During wet season Rockhampton has sustained rainfall when SOI values are in the range [10,30).  
Gladstone, on the other hand, has experienced notable rainfall during wet seasons for SOI values in the range [5,30). 
This implies that precipitation at Gladstone, during wet season, is more sensitive to positive values of SOI than 
Rockhampton. A similar notable characteristic is observed for Mackay. We observe that precipitation in this area is 
impacted by SOI values in the range [5,30) for all the seasons, implying that precipitation characteristics at Mackay 
is very sensitive to SOI. Another noteworthy observation is SOI in the range [-30,-5) has led to the least 
precipitation for all the areas, implying drought condition in the region is effected by highly negative values for SOI. 

4.   Summary and Conclusion 
In this article, we have characterized precipitation at Central Queensland from different perspectives. A research 

framework outlining a season stratification approach using standardized precipitation index, a predictor selection 
strategy, a missing value imputation technique and a regression model relating precipitation to other climatic factors 
have been contributed. Further, seasonal influences of ENSO have been examined. Overall, we observe that Central 
Queensland sustains there seasons in terms of precipitation characteristics with Dec-Mar being the wet season. 
Predictors related to cloud amount, relative humidity and solar exposure principally influence precipitation in the 
region. An equal weighted ensemble of linear and SVR regression models explain well the underlying relation 
between precipitation and predictors. Also, areas within the region are influenced by ENSO differently, with 
precipitation at Mackay being more sensitive to positive SOI. In a future research, we shall focus on designing a 
regional forecast model using the framework developed and the characteristics discovered. 
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Table 3.      RMSE for three types of model fit on data. Results for both missing data deletion and imputation are 
shown and the best performing method’s statistic is underlined.  

Missing Data Deleted Missing Data Imputed  

MLR SVR Ensemble MLR SVR Ensemble 

dry 3.17 2.98 2.98 3.53 3.45 3.41
normal 9.85 9.83 9.77 9.40 9.33 9.30Rockhampton 

wet 7.79 7.18 7.10 8.95 8.65 8.52
dry 6.38 6.52 6.40 7.21 7.27 7.21

normal 4.30 3.30 3.68 9.49 9.82 9.59 Gladstone 
wet 7.67 3.36 4.87 13.82 13.98 13.67
dry 3.41 3.08 3.08 2.75 2.40 2.45 

normal 22.03 21.29 21.58 14.61 14.78 14.60Mackay 
wet 18.02 14.83 15.95 20.78 18.65 19.25 

Table 4.      Influence of ENSO. Rules with the three highest confidence values are shown. The number beside the 
rule indicates confidence. Symbol I and Prec denote monthly SOI and monthly precipitation respectively. 

Area Season Rules 

dry I=[10,30) => 
Prec=[17.4,228.4] 0.75

I=[-30,-5) =>  
Prec=[0.0, 17.4) 0.62

I=[0,5)  => 
Prec=[17.4,228.4] 0.60

normal I=[5,10) =>  
Prec=[40.2,303.8] 0.71

I=[-30,-5) =>  
Prec=[0.0, 40.2) 0.70

I=[10,30)  =>  
Prec=[40.2,303.8] 0.64Rockhampton 

wet I=[10,30) =>  
Prec=[76.4,660.2] 0.62

I=[-30,-5) =>  
Prec=[1.6, 76.4) 0.57

I=[-5,0)  =>  
Prec=[1.6, 76.4) 0.57

dry I=[10,30) =>  
Prec=[23.4,220.3] 0.79

I=[-30,-5) =>  
Prec=[ 0.0, 23.4) 0.70

I=[0,5)  => 
Prec=[23.4,220.3] 0.62

normal I=[5,10) =>  
Prec=[44.2,316.4] 0.75

I=[-30,-5) =>  
Prec=[0.0, 44.2) 0.70

I=[10,30)  =>  
Prec=[44.2,316.4] 0.61Gladstone 

wet I=[-30,-5) =>  
Prec=[0.0, 90.3) 0.65

I=[10,30) =>  
Prec=[90.3,709.8] 0.62

I=[5,10) =>  
Prec=[90.3,709.8] 0.62

dry I=[5,10) =>  
Prec=[24.3,392.1] 0.59

I=[10,30) =>  
Prec=[24.3,392.1] 0.58

I=[0,5)  =>  
Prec=[0.0, 24.3] 0.56

normal I=[10,30) =>  
Prec=[76.6,545.6] 0.60

I=[5,10) =>  
Prec=[0.0, 76.6] 0.58

I=[-30,-5) =>  
Prec=[0.0, 76.6] 0.52Mackay 

wet I=[10,30) =>  
Prec=[191,1159] 0.72

I=[-30,-5) =>  
Prec=[0, 191] 0.65

I=[5,10) =>  
Prec=[191,1159] 0.62
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