
Specifying Dynamic Software Architectures with
Dynamic Description Logic

Zhikun Zhao

School of Computer & Information Engineering, Shandong University of Finance, Jinan, Shandong, China, 250014
zhaozk@sdfi.edu.cn

Wei Li

School of Information & Communication Technology, Central Queensland University, Rockhampton, Australia, 4702
w.li@cqu.edu.au

Abstract—Dynamic software architectures provide support
for building long running and reconfigurable applications.
Formal specification is useful to the design of correct and
robust dynamic software architectures. In this paper,
dynamic software architectures are specified with dynamic
description logic. Dynamic description logic inherits the
expressiveness and decidability of description logic and it
has the ability to represent state changes. Reconfigurable
dataflow model, which is an extension of the widely used
dataflow model, is used as the architecture meta-model.
Architectures, reconfiguration operations, and
reconfiguration plans are represented in a unified
framework from the view point of data flow. Three levels of
constraints have been proposed to aid designers in
predetermining the possible side effects of reconfiguration
plans. The work can guide the development of dynamic
software systems from component definition to
reconfiguration plan design.

Index Terms—dynamic software architecture, dynamic
description logic, runtime reconfiguration

I. INTRODUCTION

Dynamic software architectures support
reconfigurations of their structures during execution [15].
They can be used to build long running applications that
face changing requirements and/or execution
environment [2]. Architecture description language (ADL)
[17] is widely used in specifying dynamic software
architectures. Most of the ADLs are based on some kinds
of formal foundations [13]. For example, Dynamic
Wright [2] and Darwin [8] have laid their foundations on
process algebra. Approaches proposed in [12] [18] [19]
are based on graph theory. And [1] [10] [16] [11] have
presented logic-based specifications.

The reconfiguration of software architecture is usually
expressed as reconfiguration plan, a sequence of steps to
change the architecture. The validity of reconfiguration
plan is crucial to many software systems, such as airport
management systems, bank systems, and e-business
systems. Execution of an improper reconfiguration plan
may cause disastrous results. Logic-based specifications
have solid foundations and sound reasoning algorithms.
So they play important roles in the area of analyzing and

validating reconfiguration plans. Expressiveness and
reasoning services are two critical features of the logic-
based specifications.

In this paper, dynamic description logic [3] is used to
specify dynamic software architectures. The features of
the approach include: 1. The Reconfigurable Data Flow
(RDF) model is proposed as the architecture meta-model.
It is an extension to the widely used Data Flow (DF)
model and its architecture can be changed during
execution. 2. Architectures, reconfiguration actions, and
reconfiguration plans are represented in a unified
framework from the viewpoint of data flow based on
dynamic description logic. 3. Three levels of constraints
have been proposed to aid designers in predetermining
the side effects of the reconfiguration plans.

II. RELATED WORKS

Logic-based specifications of dynamic software
architectures represent the architectural elements,
structures, and reconfiguration plans based on some kinds
of logics. So far as we know, the logics used as the
foundations of the specifications include first order logic,
temporal logic, predicate logic and set theory, and spatial
logic.

Generic Reconfiguration Language (Gerel) [10]
specifies the reconfigurations of components as change
scripts. The script language is based on first order logic.
It also can be used to describe the properties of
components. It uses the precondition and selection
mechanisms to check if the current configuration has the
required properties and to apply the reconfiguration
commands only to the components satisfying these
properties.

ZCL [16] framework uses the denotations of Z and the
semantics of CL, a language based on predicate logic and
set theory. ZCL models concepts in two schemas: state
and operation. A state schema consists of a variable-
definition part and a predicate part in which relations and
constraints are described. An operation schema has a
before state, an after state, inputs, outputs, and a set of
pre-conditions, which models an operation as a transition
between two states. Thus the properties of the
reconfiguration can be validated through reasoning.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 169

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.169-175

Aguirre-Maibaum's approach [1] presents a formal
specification language for component-based systems.
Based on temporal logic, the language aims at specifying
the dynamical behaviors of architectures. Re-configurable
systems can be built hierarchically and their behaviors
can be reasoned based on the semantics of the language.

Han's approach [11] tailors spatial logic as a
specification for structures, which is used to verify
whether the system evolution satisfies some structure
constraints. Spatial logic is a kind of formal language
representing the geometrical entities and relations over a
class of structures. It employs the syntax and semantics of
first-order logic.

Although these approaches specify dynamic software
architectures with different fragments of first order logic,
they all use the reasoning algorithm of first order logic.
The expressiveness of first order logic is sufficient to
formalize dynamic software architectures. But as
Brachman and Levesque pointed out, there is a tradeoff
between the expressiveness of a language and the
difficulty of reasoning using the language [7]. The
specifications of dynamic software architectures do not
require all the machinery of first-order logic. So the
machinery of first order logic is too general for the
specifications of dynamic software architectures to reason
efficiently.

Compared with these approaches, the approach
presented in this paper is based on dynamic description
logic [3]. Dynamic description logic extends description
logic [4] with the representation of state changes.
Description logic is a decidable fragment of first order
logic. Compared with first order logic, its notable feature
is that it provides efficient reasoning services, although it
has less expressiveness. Dynamic description logic
inherits the features of description logic on the one hand;
it has the ability to represent state changes on the other
hand. Its expressiveness is sufficient to represent dynamic
software architectures and it supports efficient reasoning
services at the same time. Therefore it is an appropriate
formal foundation for the specifications of dynamic
software architectures.

III. SPECIFICATION OF DYNAMIC SOFTWARE
ARCHITECTURES

A. Architecture Meta-model
We find it difficult to handle the existing computations

when dynamic reconfiguring a control flow based system.
So we propose an architecture meta-model, RDF model
[20], based on the DF model semantics. DF model is one
of the most popular models for structured analysis and
design [6][9]. It focuses on representation of the flow of
data through an information system.

The basic elements of a RDF model are components,
data-stores, and data-paths. A component is a software
module that could consume data through entrances and
produce data through exits. A data-store is a random-
access data container with infinite capacity. A data-path
is a route by which data can flow.

Figure 1. Graphical representation of components.

Components are divided into simple components and
composite components. A simple component is a black-
box (Fig.1-a), while a composite component is composed
of other components (Fig.1-b). A simple component
works in a block-read and non-block-write mode. Block-
read means that a process does not consume data until its
fire rule is satisfied. Non-block-write means that a
process does not wait when trying to write data to an exit
without outgoing data-path. If the exit is connected with a
data-path, the data flows through the data-path. Otherwise,
the data is thrown away. The internal structure of a
composite component is a data flow system that consists
of other components and data-stores. An internal
component could bind its entrances/exits to the composite
component’s entrances/exits so that it could use the
entrances/exits as its own to interchange data with the
environment outside the composite component. Thus a
software system could be modeled as a composite
component. And a complex system could be constructed
hierarchically from small parts.

A data-path does not queue any data, thereby a datum
always pass through a data-path instantaneously. And
because components all work in block-read and non-
block-write mode, the data transmitted from an exit to an
entrance must pass through a data-store.

A set of operations could be applied to change the
structure during runtime. These operations include
addition and removal of a component, a data-store, or a
data-path. Using these operations, the RDF model
supports dynamic reconfigurations without influence on
the data flow rate. For example, to replace a component, a
replacement pattern could be used: 1)start the new
component; 2)set up the outgoing data-path for the new
component; 3)set up the incoming data-path for the new
component; 4)remove the incoming data-path of the old
component; 5)wait the old component to finish the
current processing; 6)remove the outgoing data-path of
the old component; 7)remove the old component.

(a) A simple component

(b) A composite component

A Component Datastore

Entrance

Exit

IngoingPath

OutgoingPath

en1

ex1

c1:A c2:C

c3:D

d
B

en1 en2

ex1

Binding

Data-path

Subcomponent

Datastore

170 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

B. Dynamic Description Logic
Description logic is considered as a structured subset

of first order logic and one of the most effective
formulizations of knowledge representations [4]. It
provides several kinds of useful services, such as
terminology consistency detection and ABox query. As
description logic was originally designed for representing
static knowledge, some researchers present dynamic
description logic [3], which is an integration of
description logic and situation calculus [14]. Actions are
generally defined by pre- and post-conditions and they
cause changes of the system state.

Based on dynamic description logic, we represent
architectures, reconfiguration actions, reconfiguration
plans, and architectural constraints in a unified
framework. Table I lists the basic concepts and roles used
in the representation.

TABLE I.
ATOMIC CONCEPTS AND ROLES

Concepts/Roles Explanation
Component(x) x is a component.
SimpleComponent(x) x is a simple component.

SimpleComponent⊑Component
CompositeComponent
(x)

x is a composite component.
CompositeComponent⊑Component

Datastore(x) x is a datastore.
Entrance(x) x is an entrance.
Exit(x) x is an exit.
hasEntrance(x,y) Component x has an entrance y.
hasExit(x,y) Component x has an exit y.
canFlowInData(x,y) Entrance x allows type y data to

flow in.
canFlowOutData(x,y) Exit x allows type y data to flow

out.
canContainData(x,y) Data-store x can contain type y

data.
hasIncomingPath(x,y) Entrance x has an incoming data-

path from datastore y.
hasOutgoingPath(x,y) Exit x has an outgoing data-path to

datastore y.
bindTo(x,y) Entrance/exit x is bound to

entrance/exit y.
hasInflow(x,y) Datastore x has an inflow from exit

y.
hasOutflow(x,y) Datastore x has an outflow to

entrance y.
hasSubComponent(x,y
)

Composite component x has a
subcomponent y.

hasDatastore(x,y) Composite component x has a
datastore y.

hasRoute(x,y) Composite component x has a data
route y.

SimpleActive(x) Simple component x is active.
Empty(x) Datastore x is empty.

hasOutflow is the inverse of hasIncomingPath and
hasInflow is the inverse of hasOutgoingPath.
hasIncomingPath and hasOutgoingPath are defined to
describe the properties of Components, while hasOutflow
and hasInflow are defined to describe the properties of
Datastores. The following axioms always hold:

∀x∀y(hasIncomingPath(x,y) ↔ hasOutflow(y,x))

∀x∀y(hasOutgoingPath(x,y) ↔ hasInflow(y,x))
bindTo means that two Entrances/Exits are connect to

the same data-path. So the following axioms always hold:
∀x∀y∀z(bindTo(x,y)∧hasIncomingPath(y,z)→hasInc

omingPath(x,z))
∀x∀y∀z(bindTo(x,y)∧hasOutgoingPath(y,z)→hasOut

goingPath(x,z))

C. Architecture Description
Components
A simple component is described from its interface,

which includes the entrances and the exits. In an entrance
or exit declaration, the data it can consume or produce is
also defined. For example, the component A in Fig.1(a)
can be represented as

Component A
 hasEntrance(en1); // an entrance
 canFlowInData(datatype1); // data type
 hasExit(ex1); // an exit declaration
 canFlowOutData(datatype2); // data type
end of component;

A composite component is described from its interface,
structure, and route map. The interface, similar to that of
simple component, includes the entrances and the exits.
The structure defines its subcomponents, data-stores,
data-paths, and bindings. The route map defines the
routes that data elements could pass through the
component. A data route is a sequence of components
that a data element might pass through. It could be
viewed as a description of the logic processes of the
component from a data flow viewpoint. For example, the
component B in Fig.1(b) can be defined as

Component B
 hasEntrance(en1); // interface
 canFlowInData(datatype1);
 hasEntrance(en2);
 canFlowInData(datatype3);
 hasExit(ex1);
 canFlowOutData(datatype4);
 hasDatastore(d); // structure
 canContainData(datatype2);
 hasSubComponent(c1);
 hasComponentType(A);
 hasEntrance(en1_c1);
 bindTo(en1);
 hasExit(ex1_c1);
 hasOutgoingPath(d);
 hasSubComponent(c2);
 hasComponentType(C);
 hasEntrance(en1_c2);
 bindTo(en2);
 hasExit(ex1_c2);
 hasOutgoingPath(d);
 hasSubComponent(c3);
 hasComponentType(D);
 hasEntrance(en1_c3);
 hasIncomingPath(d);
 hasExit(ex1_c3);
 bindTo(ex1);
 hasRoute([c1, c3]); // route map
 hasRoute([c2, c3]);
end of component;

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 171

© 2012 ACADEMY PUBLISHER

Reconfiguration
A composite component can change its structure and

route map during runtime. A reconfiguration transfers the
composite component from one configuration to another,
where configuration is a snapshot of the structure and
route map of a running composite component. A
reconfiguration is achieved by a reconfiguration plan,
which is a program that has a sequence of reconfiguration
actions. A reconfiguration action is an instance of one of
the reconfiguration operations, which can cause a type of
changes on the configuration. Formally, configuration,
operation, action, plan are defined as follows.

A configuration is a set of facts, which represent the
interface, structure, and route map of the component.

An operation is in the form of
OP(x1,…,xn) ≡ <C, N, E>

where OP is the operation name; x1,...,xn are variables,
which denote the individuals the operation operates on; C
is the constraint on the operation; N is the negative effects
and E the positive effects of the operation.

An action is an instance of an operation by binding the
variables to individuals. Suppose action a change the
system from configuration F to F’. C(a) must be satisfied
in F. And the execution of a will remove all the facts in
N(a) from the configuration and add all the facts in E(a)
into the configuration, i.e. F’=(F-N(a))∪E(a).

A reconfiguration plan is a sequence of actions
a1,a2,…,an. The execution of a plan will cause the
component to reach a new configuration after
experiencing a sequence of interim configurations.

after
a

n
aa

before CCCCC n→→→→→ −1
......

21 ...21

.

D. Constraints
The running of a system requires that the configuration

satisfies several constraints, including route connectivity
and data consistency. Route connectivity means all the
routes are connective so that data elements could pass
through. Data consistency means that the data elements
produced by the predecessor component are exactly what
the consequent component needs. The following
constraints 1 and 2 are for route connectivity, and
constraints 3 and 4 are for data consistency.

Constraint 1. A data route should be connective. Or in
other words, there should be a data-path between a
component and its subsequence. Suppose a data route is
[c1,c2,…cn], for any 1≤ i≤n-1,
∃x∃y∃z (Exit(x)∧Datastore(y)∧Entrance(z)∧hasExit(ci,x)∧

hasPathTo(x,y)∧hasEntrance(ci+1,z)∧hasPathTo(z,y))
Constraint 2. An entrance could be connected to at

most one data-store. On the contrary, an exit could be
connected to multiple datastores for representation of
broadcasting.
∀x(Entrance(x) → (≤1 IngoingPath)(x))

Constraint 3. The data that could flow in an entrance or
flow out an exit must be consistent with the data that the
connected data-store could contain.
∀x∀y∀z(Entrance(x)∧DataType(y)∧Datastore(z)∧

canFlowInData(x,y)∧hasPathTo(x,z)→canContainData(z,y))
∀x∀y∀z(Exit(x)∧DataType(y)∧Datastore(z)∧

canFlowOutData(x,y)∧hasPathTo(x,z)→canContainData(z,y))

Constraint 4. The data that can flow through two
entrances/exits that are bound together by a binding must
be consistent.
∀x∀y∀z (Entrance(x)∧DataType(y)∧Entrance(z)∧

canFlowInData(x,y) ∧Binding(x,y)→canFlowInData(z,y))
∀x∀y∀z (Exit(x)∧DataType(y)∧Exit(z)∧

 canFlowOutData(x,y) ∧Binding(x,y)→canFlowOutData(z,y))
Besides configurations, a reconfiguration must satisfy

several constraints to ensure the system correctness
during the reconfiguration progress. Because the route
map defines the logic processes of the component, the
most important change in a reconfiguration is the change
on the route map, e.g. add a route, remove a route, or
replace a route.

A new route should be established from the end point
to the start point. Thus the building process of the route
has already finished before data elements could flow into
the route. Otherwise, if data elements were allowed to
flow into a route that is under construction, they might
encounter a dead end, a component or data-store without
outflow. Then unexpected side effects would appear. A
dead end component might cause data lost if data
elements flow into because the data elements produced
by the component are thrown away. A dead end data-
store might cause flow rate decline if data elements flow
into because the data elements stop flowing until an
outflow is set up.

An old route should be removed from the start point to
the end point. The route is closed first so that no data
element could flow into the route any more. Then along
the route, the components are removed one by one after
the existing data elements have all flowed through.
Otherwise, there would be side effects of data lost or flow
rate decline because removing a working component or
causing dead end.

In a route replacement, the new route should be
established before the removal of the old route. Data
elements could flow through the new route during the
removal process of the old route. Thereby no flow rate
decline during the process. Also the process of new route
establishment and old route removal should satisfy the
corresponding constraints.

These constraints are formally represented as follows.
Constraint 5. The data produced by a component

should be able to find a path to flow into a datastore.
∀x((Activable⊔Active)(x)→DataExportable(x))
Activable ≡ ∀HasEntrance.(=1 IngoingPath)
Active≡(SimpleComponent⊔SimpleActive)

 ⊔ (CompositeComponent⊓
 ((∃ContainComponent.Active)
 ⊔ (∃ContainDatastore.¬Empty)))

DataExportable ≡ ∀HasExit.(=1 OutgoingPath)
This constraint is to prevent a possible condition of

data losses. A component might produce data if it is
Activable or Active. Activable means that the components
may become active, e.g. each of its entrances is
connected to a datastore. Active is a recursive attribute.
For a simple component, Active equals to SimpleActive.
For a composite component, Active means there is an
internal Active component or a non Empty datastore. The

172 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Active property can be checked by a recursive procedure.
DataExportable represents the component that each of its
exits is connected to a datastore.

Constraint 6. The data already in a datastore or the data
that may flow into a datastore should have a path to flow
out.
∀x ((Datastore⊓ ((∃Inflow)⊔¬Empty))(x) → (∃OutFlow)(x))

If a datastore has inflow(s) but has no outflow, data
that flow into the datastore cannot flow out. Although the
data is not lost, the flow of data is blocked. The successor
components have to wait for data. Therefore the QoS
declines.

Constraint 7. Any component should be Activable.
Otherwise it is useless to the system.
∀x (Component(x)→Activable(x))

Constraint 8. Any datastore should be connected with
some component(s). Otherwise it is useless.
∀x (Datastore(x)→(∃Outflow)(x))

These constraints could aid the designers in
predetermining the side effects of a system configuration,
According to the side effects that they could detect, the
constraints could be classified into three levels, fatal,
flow-rate-decline, and sleeping-node. They are listed in
Table II.

TABLE II.
THREE LEVELS OF CONSTRAINTS

Contraints Level Side effects detected

1~5 fatal The system is unable to work because of
data lose.

6 flow-rate-
decline

The system could work functionally but
its performance declines.

7,8 sleeping-
node

There are useless components or
datastores in the system.

The side effects of a reconfiguration plan can be
predetermined by the following rules. Suppose the
reconfiguration causes the system experiencing a
sequence of configurations C1, ..., Cn.

i) If one or more configurations of C1, ..., Cn have error
side effects, the reconfiguration plan may cause the
system unable to work or losing data.

ii) If one or more states of C1, ..., Cn have QoS-decline
side effects, the reconfiguration plan may cause decline
of the QoS.

iii) If Cn has sleeping-node side effects, there are
useless components or datastores after the execution of
the reconfiguration plan.

IV. A CASE STUDY

In this section, we illustrate how to use our approach to
specify an Upgradeable Client-Server (CCS) system.
There are one server and multiple clients in the system.
The server provides services to the clients in a request-
reply mode. The server can be upgraded during runtime.

Figure 2. The upgradeable client-server system.

The architecture of the system is shown in Fig.2. A
client is composed of two components, ClientInput and
ClientOutput. ClientInput generates a request when it
needs the service of the server. The request has a tag
marked with the client's address. It flows into datastore di
and then is consumed by the Server component. After
processing the request, the Server component generates a
reply, which has an address tag and a timestamp tag. The
reply flows into datastore do, and then is retrieved by a
ClientOutput according to the address tag. A client can
freely connect to the server and disconnect from the
server. If a client submits a request and then quits before
retrieving the reply, the Cleaner component will gather
the outdated replies based on the timestamp tag.

The component definitions are as follows:
component Client-Server-System
 hasDatastore(di);
 canContainData(request);
 hasDatastore(do)
 canContainData(reply);
 hasSubComponent(s1);
 hasComponentType(Server1);
 hasEntrance(en1);
 canFlowInData(request);
 hasIncomingPath(di);
 hasExit(ex1);
 canFlowOutData(reply);
 hasOutgoingPath(do);
 hasSubComponent(c);
 hasComponentType(Cleaner);
 hasEntrance(en1);
 canFlowInData(reply);
 hasIncomingPath(do);
 hasSubComponent(ci);
 hasComponentType(ClientInput);
 hasExit(ex1);
 canFlowOutData(request);
 hasOutgoingPath(di);
 hasSubComponent(co);
 hasComponentType(ClientOutput);
 hasEntrance(en1);
 canFlowInData(reply);
 hasIncomingPath(do);
 hasRoute([ci,s1,co]);
 hasRoute([ci,s1,c]);
end of component;

ci1:ClientInput

di

co1:ClientOutput

s1:Server1 s2:Server2

do
cin:ClientInput

con:ClientOutput c:Cleaner

……

p:Client-Server-System

request

reply

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 173

© 2012 ACADEMY PUBLISHER

In Fig.3, we show four reconfiguration plans for server
upgrade. The unsatisfied constraints are listed after each
action. Plan-A (see Fig.3(a)) has no side effect because
only the InactivableComponent constraint is not satisfied
during the procedure and all the constraints are satisfied
after the execution. Plan-B (see Fig.3(b)) has sleeping-
node side effects because s1 is an InactivableComponent
after the execution. Plan-C (see Fig.3(c)) has QoS-decline
side effects because di breaks the DeadEndDatastore
constraint during the procedure. Plan-D (see Fig.3(d)) has
error side effects because there are two temporary
InvalidComponents during the procedure.

Figure 3. Reconfiguration plans.

Therefore, Plan-A is the best reconfiguration plan
among them. In plan-A, component s2 goes into operation
first. Then the ingoing data path to s1 is cut off so that
there will be no data flowing into s1 any more. And s1 is
stopped after it finishes processing the data that has
already flowed into it. The flow of the data has not been
interrupted or blocked during the substitution procedure,

so the reconfiguration plan has little side effects on the
system running.

The upgradeable client-server case is a quite simple
example. But it shows that our approach works well in
modeling and verifying dynamic software architectures.
Based on the formal specification of the architecture,
reconfiguration plan, and architectural constraints, the
side effects can be predetermined before bringing a
reconfiguration plan into effect.

V. CONCLUSION AND FUTURE WORKS

The logic based formal specification plays an
important role in analyzing, planning, and validating
dynamic software architectures. In this paper, we present
a configurable extension of the widely used dataflow
model as the architecture meta-model. Then we propose a
formal specification for the configurable dataflow model
based on dynamic description logic. Architectures,
reconfiguration actions and reconfiguration plans are
represented in a unified framework. Three levels of
architectural constraints are defined to predetermine the
side effects of the reconfiguration plans. Our work can
guide the development of software systems that have
dynamic architectures from component definition to
reconfiguration plan design. For the systems built under
our framework, the side effects of the reconfiguration
plans are predictable and disastrous results can be
avoided.

Further work focuses on the automatic generation of
reconfiguration plans. Given the initial architecture, goal
architecture, reconfiguration actions, and architectural
constraints, a planner should be able to generate the
reconfiguration plan that has the minimal side effects
automatically.

ACKNOWLEDGMENT

This work was supported in part by the Scientific
Research Foundation for the Returned Overseas Chinese
Scholars from State Education Ministry and Scientific
Research Foundation for Doctors from Shandong
University of Finance.

REFERENCES

[1] N. Aguirre and T. Maibaum, “A temporal logic approach
to the specification of reconfigurable component-based
systems”, Proc. of the 17th Int. Conf. on Automated
Software Engineering (ASE 2002), Edinburgh, Scotland,
UK, 2002, pp. 271-274.

[2] R.J. Allen, R. Douence, and D. Garlan, “Specifying and
Analyzing Dynamic Software Architectres”, Proc. of the
1998 Conference on Fundamental Approaches to Software
Engineering (FASE'98), Lisbon, Portugal, March 1998.

[3] A. Artale and E. Franconi, “A survey of temporal
extensions of description logics”, Annals of Mathematics
and Artificial Intelligence, 30(1-4), 2001.

[4] F.Baader and B.Hollunder, “A terminological knowledge
representation system with complete inference algorithms”,
Proc. of the workshop on Processing Declarative
Knowledge (PDK-91), Kaiserslautern, Germany, 1991, pp.
67-86.

PLAN upgrade-plan-D{ // Unsatisfied Constraints
start-component(s2,Server2); // IAC(s2)
establish-ingoing-path(en1s2, di); // IVC(s2)
establish-outgoing-path(ex1s2, do); // Nil
destroy-outgoing-path(ex1s1, do); // IVC(s1)
destroy-ingoing-path(en1s1, di); // IAC(s1)
wait-component-inactive(s1); // IAC(s1)
stop-component(s1); // Nil

}
(d) Plan D

IAC=InactivableComponent, DED=DeadEndDatastore,
IVC=InvalidComponent

PLAN upgrade-plan-C{ // Unsatisfied Constraints
destroy-ingoing-path(en1s1, di); // DED(di), IAC(s1)
wait-component-inactive(s1); // DED(di), IAC(s1)
destroy-outgoing-path(ex1s1, do); // DED(di), IAC(s1)
stop-component(s1); // DED(di)
start-component(s2,Server2); // DED(di), IAC(s2)
establish-outgoing-path(ex1s2, do);// DED(di), IAC(s2)
establish-ingoing-path(en1s2, di); // Nil

}
(c) Plan C

PLAN upgrade-plan-B{ // Unsatisfied Constraints
start-component(s2,Server2); // IAC(s2)
establish-outgoing-path(ex1s2, do); // IAC(s2)
establish-ingoing-path(en1s2, di); // Nil
destroy-ingoing-path(en1s1, di); // IAC(s1)
wait-component-inactive(s1); // IAC(s1)
destroy-outgoing-path(ex1s1, do); // IAC(s1)

}
(b) Plan B

PLAN upgrade-plan-A{ // Unsatisfied Constraints
start-component(s2,Server2); // IAC(s2)
establish-outgoing-path(ex1s2, do); // IAC(s2)
establish-ingoing-path(en1s2, di); // Nil
destroy-ingoing-path(en1s1, di); // IAC(s1)
wait-component-inactive(s1); // IAC(s1)
destroy-outgoing-path(ex1s1, do); // IAC(s1)
stop-component(s1); // Nil

}
(a) Plan A

174 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[5] F. Baader, et al. The Description Logic Handbook: Theory,
Implementation and Applications, Cambridge University
Press, 2002.

[6] J. Bacus, “Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs”, Communications of the ACM (CACM), 21(8),
1978, pp. 613-641.

[7] R. J. Brachman and H. J. Levesque, “The tractability of
subsumption in frame-based description languages”, Proc.
of the Fourth National Conference on Artificial
Intelligence (AAAI-84), Austin, USA, 1984, pp. 34--37.

[8] C. Canal, E. Pimentel, and J. M. Troya, “Specification and
refinement of dynamic software architectures”. Proc. of the
Working IFIP Conf. on Software Architecture (WICSA'99),
Kluwer, Belgium, 1999, pp. 107-126.

[9] Gang Cheng, A Dataflow-Based Software Integration
Model in Parallel and Distributed Computing and
Applications. Ph.D. Dissertation. Syracuse University,
Italy, 1997.

[10] M. Endler and J. Wei, “Programming generic dynamic
reconfigurations for distributed applications”, Proc. of the
International Workshop on Configurable Distributed
Systems, IEE, 1992, pp. 68-79.

[11] T. Han, T. Chen, J. Lu, “Structure Analysis for Dynamic
Software Architecture Based on Spatial Logic”, Proc. of
the 29th Annual International Computer Software and
Applications Conference (COMPSAC'05), Edinburgh,
Scotland, 2005, pp. 71-76.

[12] D. Hirsch, P. Inverardi, and U. Montanari, “Graph
grammars and constraint solving for software architecture
styles”, Proc. of the 3rd International Software
Architecture Workshop (ISAW-3), ACM Press, 1998, pp.
69-72.

[13] J.S. Bradburya, J.R. Cordyay, J. Dingela, M. Wermelinger,
“A Survey of Self-Management in Dynamic Software
Architecture Specifications”, Proc. of the international
workshop on self-managed systems(WOSS'04), California,
USA. 2004.

[14] H. Levesque, F. Pirri, and R. Reiter, “Foundations for the
situation calculus”, Electronic Transactions on Artificial
Intelligence, 2(3-4), 1998, pp. 159-178.

[15] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture
description languages”, IEEE Trans. on Software
Engineering, 26(1), 2000, pp. 70-93.

[16] V. C. C. de Paula. ZCL: A Formal Framework for
Specifying Dynamic Software Architectures. PhD thesis,
Federal University of Pernambuco, 1999.

[17] M.Shaw and D.Garlan, Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
Englewood Cliffs, New Jersey, 1996.

[18] G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic
change management by distributed graph transformation:
Towards configurable distributed systems”, Proc. of the
6th Int. Workshop on Theory and Application of Graph
Transformation (TAGT'98). Paderborn, Germany, 1998.

[19] M. Wermelinger, A. Lopes, and J. L. Fiadeiro, “A graph
based architectural (re)configuration language”, Proc. of
the 8th European Software Engineering Conference and
9th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2001), Vienna, Austria,
2001, pp. 21-32.

[20] Wei Li, Zhikun Zhao, Influence Control for Dynamic
Reconfiguration of Dataflow Systems, Journal of Software,
2007(6)

Zhikun Zhao was born in Qingzhou, Shandong province,
China in 1975. He received his Ph.D. degree on computer

software theory from the Graduate
University of Chinese Academy of
Sciences, Beijing, China in 2003.
He was an Associate Professor of the
Graduate University of Chinese Academy
of Sciences from 2003 to 2005. He worked
as a Postdoctoral Research Fellow of
Central Queensland University from 2006
to 2008. Currently he is an Associate
Professor of Shandong University of

Finance in Jinan, Shandong province, China. His research
interests include dynamic software reconfiguration and multi-
agent systems.

Wei Li was born in Haerbin, Heilongjiang province, China in
1964. He received his PhD degree on
computer science from the Institute of
Computing Technology, Chinese
Academy of Sciences in July 1998.
He is currently a Senior Lecturer in School
of Information & Communication
Technology at the Central Queensland
University, Rockhampton, Australia. His
research interests include dynamic

software architecture and multi-agent systems.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 175

© 2012 ACADEMY PUBLISHER

