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Robust Kalman filtering design for continuous·time Markovian jump nonlinear systems with 
uncertain noise was investigated. I3ecausc of complexity of Markovian jump systems, the statistica l 
characteristics of system noise and observation noise arc time-varying or unmeasurable instead 
of being stationary. [n view of robust estimation, maximum admissible upper bound of the 
uncertainty to noise covariance matrix was given based on system state estimation performance. 
As long as the noise uncertainty is limited within this bound via noise control, the Kalman filte r 
has robustness against noise lUlcertainty, and stability of dynamic systems can be ensured. It is 
proved by game theory that this design is a robust mini-max filter. A numerical example shows 
the validity of this design. 
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1 . Introduction 

Optimal filtering problem has been a hot topic in past decades, within which Kalman 
filtering is one of the most popular estimation approaches and considerable effort has been 
devoted to its theory and applications. The applications of Kalman filtering theory may be 
found in a large spectrum of di.fferent fields ranging from various engineering problems to 
biology, geoscience, economics, and management [1]. For standard Kalman filtering, one 
of the key assumptions is that system noise and observation noise are Gaussian, whose 
covariances are known and stationary. However, in many actual problems, the statistical 
characteristics (covariances) of noise may be time-varying instead of being stationary, and 
in some cases it is impossible to get the exact measurement values, which me;lns that the 
noise covariances are uncertain instead of being exactly known; for this reason, the stochastic 
noise is called "uncertain." Consequently, the standard Kalman filter may not be robust 
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against modeling uncertainty and disturbances. Thus, the study of a robust state estimation 
approach is of practical importance and has been attracting mOTe interest over the past few 
yea rs. A useful approach is to use a game-theoretic formulation with which one minimizes 
the worsl performance stimulated by uncertain factors, and some corresponding results of 
robust filtering for linear systems with uncertain noise have been addressed in [2--4]. 

On the other hand, Markovian jump systems, which are convenient tools for 
representing many real-world systems [5], have aroused much attention in recent years. 
In the case of fault detection, fault-tolerant control, and multimodal control, discrete jumps 
in the continuous dynamics are used to model component failures and sudden switch of 
system dynamics. With further srndy of Markovian jump systems, many achievements have 
been made in the last decade on stability analysis [6, 7], filtering [8, 9], and controller 
design [l0, 11 ]. Among the efforts towards filtering, Shi et al. [12] and Mahmoud et al. 113] 
gave Kalman filtering equations for continuous-time and discrete-time Markovian jump 
linear systems with strucrnre uncertainty, respectively. However, in the above-referred 
contributions, all the research work is facing the same problem as that of nonjump systems; 
both the state equation and output measurement are subjected to stationary Gaussian noise so 
that an optimal filtering gain is obtained based on the stationary noise covariance matrix. But 
this is only an ideal assumption for Markovian jump systems. As we know, Markovian jump 
systems are used to represent a class of systems which are usually accompanied by sudden 
changes of working environment or system dynamics. For this reason, noise uncertainty 
occurs more frequently or with more probability than in nonjump systems. Moreover, with 
the uncertainty to noise covariance matrix increasing, the estimation of system state tends to 
be inaccurate or false, which may cause errors in control signals and in worst case may lead 
to breakdown of the whole dynamic systems. 

To avoid this tragical situation, a direct way dealing with this problem is to redesign 
Kalman filter for jump systems by using new noise covariance matrix. But as we have pointed 
out above, it is almost impossible to get the real-time information of noise covariance matrix 
since it is time-varying or unmeasurable; therefore we could not update Kalman filter gain 
online. Another feasible way is to give an admissible bound for estimation performance 
of system state so that the predesigned Kalman filter will remain effective and the system 
operates in the course of nature as long as the real-time estimation error is within this 
precision. To achieve this purpose, we perform the following design method. By using the 
view of robust estimation, a maximum bOlmd of noise covariance matrix lmcertainty is 
obtained through calculation according to admissible bias for estimation performance of 
system state. if we could ensure the noise uncertainty to be within this bound via teclmical 
method such as noise control, the estimation of system state can be within a desired precision, 
and thus stability of the whole dynamic process can be achieved. It should be noted that in 
this research work, we do not mean to eliminate the effect of noise entirely because it is almost 
impossible or highly costly to do so in practical environment. Our work focuses on the upper 
bound of noise change level; thus it means only that the change to noise covariance matrix is 
required to be limited within this bound no matter what the stationary covariance matrix is. 

In this paper, robust Kalman filtering fo r continuous-time Markovian jump nonlinear 
systems with uncertain noise is considered. Firstly, we give some assumptions so that the 
nonlinear jump systems can be modeled as a linea r one by local linearization. Secondly, we 
seek the maximum upper bound of nonstructural uncertainty to noise covariance matrix such 
that the deviation of performance can be within a prescribed precision. Then, we discuss 
the analytical solution of maximum bound using Lagrange method. Finally, we prove the 
establishment of saddle inequality, and show that this filter design is a mini-max robust 
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filter using game theory. At the end of the paper, an illustrative example is used to show 
the validity of our method. 

2 . Problem D escription 

Throughout the paper, unless otherwise specified, we denote by (n, 1, 11, JI>O' P) a complete 
probability space with filtration !1t1 ,>o satisfying the usual conditions (i.e., it is right
continuous, and '1-0 contains all p-null sets) . Let Ixl stand for the usual Euclidean norm for 
a vector x, and let IXI denote the Frobenius norm of a matrix X defined by IXI = J.~a2AXXT) , 
where J.m~x( ·) is the maximum eigen value of matrix and the superscript T represents 
transpose. Operator Tr(·) denotes the matrix trace, and we denote by X > 0(> 0) that matrix 
X is positive definite (semipositive definite). Let Ir(t),t > OJ be a right-continuous Markov 
process on the probability space taking values in finite state space 5 = 11,2, ... , N J with 
n = [Jrij J being the chain generator, an N x N matrix. The entries Jr,} , i, j E S, are interpreted 
as transition rates such that 

.Jl"i jdt + o(dt) if if j, 

1 + Jrijd/ +o(d/) if i = j, 
(2.1) 

where dt > ° and limd,---o(o(dt)/dt) = 0. Here, Jri j > ° (if j) is the transition rate from i to j. 
Notice that the total probability axiom imposes Jrii < ° and 

N 

2:>;j = 0, Vi E S. 
j~l 

(2.2) 

Consider the following continuous-time Markovian jump nonlinear system with uncertain 
• nOise: 

X=/(XJ(t))+w' , 

.II = h(x,r(t») + uo, 
(2.3) 

where x E Rn is state vector, andy E Rm is measurement output. f(·,·) E R" and 11 (·,) E R'" 
are nonlinear vector functions. uP and Uo are ,,-dimensional and m-dinlensional white noises 
and satisfy the following assumption. 

Assumption 2.1 . For any given time s, t > 0, there are 

(1) Elw?J = 0, E[u?J = 0, 

(2) Cov[w?,w~l = Woo/,s = (W + 6.W)o/,s; W > 0, 6.W > 0, 

(3) Cov[v?, v~ l = VOo/,5 = (V +!! V)O, ,S, V> 0, tJ. V >0, 

(4) E[( ~) . (w~Tu~T)l = [W'l
0
6,., v<l~J . 

In Assumption 2.1, WO E R"x" and VO E Rmxm consist of two parts, where Wand V denote 
the stationary noise covariance matrix, whose values are exactly known. tJ. W and tJ. V denote 
the noise uncertainty caused by time-varying or sudden switch of system dynamics; they 
are unknown but nonn-bounded. 0(-'·) is a Dirac function taking values in 10,1 J. For the 
deduction of robust Kalman filter, we introduce the following assumption. 
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Assumption 2.2. For any fixed system mode r(f ) = j E 5 and vector 0 E Rn, the nonlinear 
vector functions f (.,.), 11(·,,) are assumed to satisfy f (0, i) = 11(0, i) = 0 and 

If(x + a, i) - j(x, i) - A (i)al < l"A(i) Ilal, 

11, (x+a,i)-h(x,i) -C(i)al < 1"C(i)ilal, 

where A(i), C(i) are Jacobian matrices of Ih .), ,,(.,.), and f>.A(i), 6.C(i) satisfy 

"A (i) = H ,(i) F(i)E(i), 

"C(i) = H,(i)F(i)E(i), 

(2.4) 

(2.5) 

where H di), J-l2 (i), and £(i), j E S, are known constant matrices, and F(i), i E 5, is 
lll1known matrix satisfying FT (i)F(i) < I. Establishing Assumption 2.2, the Markovian jump 
nonlinear system could be transformed to a nominal linear model via local linearization 
technique: 

i = [A( , (t)) + "A(,(t))]x +wo, 

y = 1C(,(t)) + " C(,(t))lx + 0'. 
(2.6) 

For simplification, we denote A(r(f) = i), N I{r(t) = i), H2( r(t) = i), E(r(t) = i), 6A (r(t) = 
i), C(r( l ) = i), and 6 C(r{f) = i) by A i, H ]i, H Zi, E il [)'A j, Cj, and DoCj. 

Theorem 2.3. COllsider stochastically stable Markoviall jWlIp system (2.6), alld assllme tllat tile lIoise 
is statiollary;whicll mealls tllat t:. W = t:. V = o. Then, olle lias file followillg stalldard Kalmall filter 
(see {12J): 

(2.7) 

where filtering gaill K j is given by tile following coupled Riccati equations: 

(2.8) 

( -T 1 T) (1 T )-' K ; -= Q;C. + -H1iH~. -H2iH~ . + V , 'ei .. , e; .. , 

Here, matricesP; > 0, Q j > 0 and scalar e; ared/Osen so tlwt tr(Qj) readies the millilllllm. 
With the above stalldard Knllllall filler gaill K; adopted, the state est illlat iOIl error is 

E(X-X)T(X-X)) <~axlr(Qi). 
J" 

(2.9) 
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Figurc 1; Standard Kalman filter with stationary noise. 

Define the estimation error performance as 

(2.10) 

According to Theorem 2.3 and the quality of Kalman filtering, if the noise is stationary (6. W 0: 

6. V 0: 0), the estimation error perfonnance can achieve the minimum value by adopting 
standard Kalman filtering (2.7) . 

Now, we consider that the noise is not stationary, which means that 6. W ~O and 
6. V ~O; thus the new covariance matrix of noise is WO, y o. If we still adopt the former 
predesigned standard Kalman filte r gain Ki, the new state estimation error should be Q?, 
which satisfies 

(2.11) 

Therefore, the new estimation error perfonnance is 

(2.12) 

According to (2.10) and (2.12), the deviation of estimation error performance yielded 
by noise uncertainty (6. W, 6. V) can be written as 

6J ( K " K" . . . , K N, 6W, 6 V) = J( K " .,., K N, We, VOl - J ( K " . ." K N, W, V) 

0: max tr (Qo,. ) - max tr(Qi ) < r, 
}ES }ES 

(2.13) 

where r > 0 is a paramete r which is given according to detailed precision request o f practical 
dynamic process . 

Our design purpose is shown in Figures 1 and 2. Suppose that the noise is s tationary 
with covariance matrix W, V, and that the system filtering performance is J with standard 
filtering gain K; adopted as shown in Figure 1. But now noise is with uncertainty (6.W, 6. V ); 
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Figure 2: Robust Kalmilll filter with uncertain noise. 

the former designed Kalman filter gain K; will no longer be an optimal one. If we still want 
to get the precise estimation of system state so that the dynamic system could remain stable, 
there are two choices. One is to update the Kalman filter gain K; according to new noise 
covariance matrix (W + 6 W, V + Do V), but this way is impossible or highly costly. Another 
way is to still adopt the former designed filtering gain K; and take some actions in noise 
control. Based on this idea, the new estimation performance is J + 6.J with Ki adopted, and 
a deviation t:.J occurs resulting from noise uncertainty (see Figure 2). For the robustness 
of system, which means that t:.J is less than an admissible precision r, there must besome 
limitation to noise uncertainty. Using the view of robust estimation, we are trying to find a 
maximum upper bound a, b for the uncertainty to noise covariance matrix. As long as the 
noise uncertainty is controlled to satisfy It:. W I < a, It:. V I < b via noise control, we will achieve 
deviation of estimation performance to be within the admissible precision r, which means 
that t:.J < r; thus the general system has robustness to noise tu1certainty, and stability of the 
whole dynamic process can be maintained whatever the original stationary noise covariance 
matrix (W, V) is. In the following part of this paper, we seek the solution of maximum upper 
bound a, b. 

3. Upper Bound of Nonstructural Noise Uncertainty 

3.1. Mathematical Expression of Upper Bound 

According to (2.8) and (2.1 1), we have 

N 

(A; - K ;C ;) t:.Qi + t:.Q; (Ai - K l i) T + 2:JI";j t:.Qj + t:. W + K; t:. V KT = 0, (3 .1 ) 
j~1 

where t:.Q; = ct/ - Qi· From the above equation, it is easily seen that tr( t:.Qi) is a linear 
mapping of (t:. W, t:. V). Define a compact convex set as :=: = {(t:. W, t:. V) : 0 < t:. W < t:. W ', 0 < 
t:. V < t:. V'); thus the deviation of performance t:. J ( K 1, K2, . .. , K N , t:. W, t:. V) is a mapping 
from :=: to R I , and it has the following facts. 



]in Zhu et al. 7 

Fact 1. Fo r any given noise uncertainty (6 Wi' 6 Vi) e S, j = 1, 2, if 6 W I < 6 W2 and 6 VI < 
6 V2 , one has 

Fact 2. Define the maximum admissible deviation of estimation performance r as 

(3.3) 

Thus, r could be achieved only by maximum noise uncertainty (6 W', 6 VO l, which means 
that 

(3.4) 

The purpose of the following work is to construct a maximal compact convex set S', as long 
as the noise unce rtainty satis fi es ( 6 W, 6 V ) e S', (2.13) is sure to establish. According to the 
tinity of mod e 5, (2.13) is equivalent to 

Therefore, for each mode i E 5, there is 

Define the maximum upper bound of noise uncertainty as 16 WI < 0 , 16 VI < b; thus 

O< 6W < aJ II , 

Substituting the above inequalities into (3.1) and (3.6), one has 

where matrices D;, G; > 0, i E 5, satisfy the following coupled Riccati equations: 

N 

(I\; - K;Ci) D; + Di(A; - K;Ci)T + L 7l"ii Dj + 'n = 0, 
j=1 

(3 .5) 

(3.6) 

(3 .7) 

(3 .8) 

(3.9) 

According to the above analysis, seeking a maximum upper bound of noise uncertainty 
( 6 W, 6 V ) is equivalent to obtaining the optimal solution of a, b: 

max o·b 

s.t. O·tr( Di) +b·tr (G i ) < r + n:taxtr (Qj)- tr(Q;) , 0> 0, b >O, i e 5. 
I" 

(3.10) 

Thus, seeking the optimal solution a, b is transformed to a nonlinear programming problem 
with linear inequalities' constraints. Now, we discuss how to find the analytical solution of 
such problem . 
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3 .2. Analytical Solution 

Since:::: = ! (.6.W, .6.V ) ! is a compact convex set and the inequalities' constraints in (3.10) 
compose a compact set on which a· b is defined as a continuous fWlction, thus the nonlinear 
prog ramming problem must have optimal solution a' , b' and the exis tence of solution is 
proved. Next, we will seek the analytical solution 0 ' , b' . 

Decompose the original nonlinear programming problem (see (3.10» into N 
subproblems: 

max al ,b] 

s .t. OJ' tr ( D )} + b l . tr ( G 1} < r + n:tax tr (Qj) - tr (Q J) 
I" 

max 0 2 -b2 

s.t. 02' Ir ( D2} + ~ . tr (G2} < r + n:tilx Ir( Qj) - tr (Q2} 
I" 

• 
• 

max ON· b N 

s.t. oN· !r( DN) +bN ·tr(GN} < r+maxtr(Qj)- tr( QN). 
I" 

(3.11 ) 

By using Lag rallge method , we have the optimal analytical solution for each sub prob lem as 

(3.12) 

Thus, the analytical solution for the original nonlinear programming problem (see (3.10)) is 
given as 

• . • . { y+maxjEs tr (Qj)- tr(Q;) } 
a = mma; = mm , 

iES ;ES 2tr (D;) 
(3.13) 

• . . . { r+maxjEs tr (Qj)- tf (Q,) } 
b = mmbi = mm . 

iES IES 2tr (G;) 

Remark 3.1. The analytical solution of the nonlinear programming problem is given by the 
above analysis; however, it is on ly an optimal solution for each subproblem. This analytical 
solution in (3.13) is local optimal, but global suboptimaL For the global optimal solution, we 
could only get the numerical solution using "fmincon " ftmction in MATLAB software. The 
optimal analytical solution of such nonlinear programming problem is still an open problem 
in mathematics for further exploration. 

Th eore m 3.2. COl1sider MarkolJiall jllmp sysfem (2.6). if one adopts state est imator (2.7) and Kalman 
filter gain (2.8), there exists a maximlllll admissible compact set 2. As long as the IIncertainty to noise 
covariance lIIatrix satisfies ( ~W, t::. V ) E 2, the dev iatiOIl of system state estimation error performallce 
t::.] is within a given precision r. 
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Remark 3.3. Take into account the existence of noise uncertainty, and the new noise covariance 
matrix is given as (W +6 W, V +6 V). Thus, the former predesigned optimal Kalman filter gain 
K;, which is deduced from stationary noise (W, V), will no longer be optimal and may cause 
distortion of control signals. But, this does not mean that we need to redesign Kalman filter. 
According to the above analysis, if we can successfully limit noise uncertainty (6 W, 6 V) 
to be within an admissible compact set :=:, the predesigned Kalman filter gain K; can still 
be effective though it is not optimal. Moreover, the deviation of estimation performance is 
ensured to be within a desirable precision r. 

4. Mini·Max. Robust Filter 

Let K;, Ki, . . . , K N denote the standard Kalman filtering gain according to new noise 
covariance matrix pair (W ' , V') :: (W + 6 W', V + t:. V'), which corresponds to the maximum 
admissible noise uncertainty (t:. W', 6 V ' ); thus K;, Ki, ... , KN satisfy 

N 1 
AiP; + P; Ai + eiPtEiEi P; + L.1l";i P; + e . HliH~ + W' = 0, 

i~ l I 

K::: (Q:CT + ];..HuH!.) (];..HzIH! + v.)-', 
"' 101 "'ej'" 

(4.1 ) 

According to the least-square quality of standard Kalman filtering, we have 

On the other hand, with the establishment of Fact 1, there is 

(4.3) 

Thus, we have the following saddle-point inequality: 

t:.J(Kj, Ki, ... , K N, 6W, 6 V) < 6J(K;, Ki, . . . , K N, 6W', t:. V') 

< 6J(K I,Kz, .. . ,KN ,t:.W·,6V·). 
(4 .4) 

By game theory, we have 

min max t:.J(K\,Kz, . . . , K N ,6W,6V):: max min6J(K\,Kz, . .. ,KN ,6W,6V). 
K j (.lIW,lIVje2 (lIW.lIV)e2 K; 

(45) 

This means that the optimal estimation under the worst sihlation is a mini-max filter. Itcannot 
only minimize the estimation performance under the largest noise uncertainty (a'ln, b'lm), 
but can also ensure the deviation to be within a given precision r. For this reason, this Kalman 
filter design is a robust mini-max filter. 
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Remark 4.1 . Traditional Kalman filtering design is performed on the basis thai noise covari
ance matrix is stationary and exactly known, and it will fail when the noise covariance matrix 
is unknown or has uncertainty. I.n OUT method, the filter design could be divided into two 
steps. Firstly, we design standard Kalman filter according to the stationary noise covariance 
matrix (W, V), then via some technical methods such as noise control we impose the noise 
uncertainty to be within the given bound ( 6. W', 6. V"), which could be presented in the 
form of nonstructural (a' In, b' 1m) . In practical dynamic process, when the noise uncertainty 
reaches the maximum, the ideal deviation of performance is A/(Ki, K~, ... , KN, I:J.W·, I:J. V'), 
and this deviation is less than the worst case 6. J (K 1, K2, . . . , K N, I:J. W', 6. V') < r, which 
ensures the estimation of system states and control signals to beprecise to some extent, and 
the synthetical system to be robust and stable. For this reason, the Kalman filter design has 
robustness to noise uncertainty, and according to (4.5), this filter is also a mini-max filter. 

5. Simulation 

Consider the following two-mode Markovian jump system. 
Let the system mode r(t ) = 1 be given by 

XI =-0.6X I +0.5x2 +0.01 sin(xI + X2) +w?, 
X2 = 0.7X I + 0.02 COS(XI - X2) + wg, 

y =Xl +0.5X2 +vo. 

Let the system mode r(t ) = 2 be given by 

XI = - Xl + 0.6X2 + 0.02sinx2 + w?, 
X2 = O.SXI -1.1x2 + O.02COSXI + w~, 

y=x] + vo, 

(5.1 ) 

(5.2) 

where uncertain state and measurement noise are Wo = [w? W~ IT and vo; its stationary 
covariance matrix is known as W = [b ?l, V = 1; system mode transition matrix is n -
[-0~96 _°069 J; the admissible bound of performance deviation is r = 0.3. 

The detailed algorithm is as follows. 

(1) By applying Assumption 2.1, we have Al [-0~76°i,s], C] - [10.5], A2 

[ ~.: ~,', ], C, = [1 0], H " = [0.1 Q.2( £, = [0.1 0.1], H " = [0.1 O.l] T, £, 

[0.2 0.2] . 

Notice that I:J.C j = 0; thus H Z1 = H n = O. 

(2) Solve (2.S) and get Q I, Q2 and KI, K2 

[ ~:~~i ~:~~~ ], K ] = [ ~:~~~ ], K2 = [ ~:= ]. 

• 
• [

2.6058 1.4207 ] Q 
1.42(17 3.19~ ' 2 

(3) Substitute the result to (3.10), using Lagrange method; the upper bound of noise 
uncertainty is given as 

a' = 0.1014, b' = 0.1701 . (5 .3) 
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(4) Let the new noise covariance matrix correspond to the maximum uncertainty: 

W' = W + Do W = W + a' . 12, 

(5.4) 
V'=V+DoV=V+bO·l1. 

(5) Repeat step (2), and we have the correspondent Q;, Q;, K;, K; for new noise 
covariance matrix (W O, V'): 

[
2.7641 1.4417] 

Q; = 1.4417 3.2688 ' 

K' = [0.8977] 
I 1.3021' 

[
2.6788 1.4458] 

Q; = 1.4458 2.9011 ' 

K' = [0.7012] . 
2 0.5041 

(6) Applying the robust Kalman filtering, there is saddle-point inequality: 

6J (Ki, K;,6W, 6 V) < 6J(Ki, K;, 6W', 6 V' ) 

= maxi,.(Qi), ,.(Q,) 1- maxi'·(Q,), ,.(Q,) 1 
= 0.2337 < 0.3 

(5.5) 

(5.6) 

From the above simulation, it is seen that with the noise uncertainty being limited within the 
upper bOlmd a' , b' via noise control, the deviation of system estimation perfonnance is less 
than the admissible precision r. Because the analytical solution a' , b' is global suboptimal, 
the deviation of system estimation performance (0.2337) is obviously less than admissible 
precision (0.3), which means that this solution is a conservative one and the global optimal 
solution of a, b could be a little greater than a', b'. Thus, this method allows flexibility to the 
designer to some extent. 

6, Conclusion 

In this paper, robust Kalman filte r for continuous-time Markovian jump nonlinear systems 
with uncertain noise is considered . For the stability of dynamic system when statistical 
information of noise is unavailable, a new design method is given by obtaining the maximum 
admissible bound of uncertainty to noise covariance matrix. Based on this, the deviation 
of system estimation performance is thus guaranteed to be within a given precision. 
Furthermore, the worst performance yielded by noise uncertainty can be minimized by this 
method since it is a mini-max robust filter. The analytical solution of the bound to noise 
uncertainty is also discussed in this paper, which is a global, suboptimal, and conservative 
solution using Lagrange method. The simulation results show the validity of this design. 
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