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1. INTRODUCTION 

Vibration power flow measurement is an important tool in identifying significant 
paths of vibration transmission from sources through a structure. The 
measurement of vibration level itself may give limited information since 
stationary waves may be present giving rise to large amplitude with no power 
transmitted. Structural intensity is a vector quantity where the power flow 
pattern may be identified by measuring the structural intensities on the 
structure. This paper examines the use of structural intensity in the theoretical 
estimation of vibration power flow in naturally orthotropic plates in the 
frequency domain under far field conditions. The theoretical power flow models 
could be used in technically orthotropic plates, and corrugated plates for 
example, by defining the elastic rigidity constant using the method of elastic 
equivalence [2]. 

2. COMPLEX POWER IN THE FAR FIELD 

The bending stiffness of the flexural wave equation in isotropic plates is 
obtained as a common factor in the classical plate equation (3]. It is however 
not possible to obtain such a common term for bending stiffness in orthotropic 
plate because of different rigidity constants in the flexural wave equation [2]. 
For free vibration analysis in orthotropic plates, the plate governing equation 
could be modified to obtain an equivalent non-dimensional representation by 
changing the variables [4, 5]. As an approximate analysis of bending wave 
power in orthotropic plates, it is possible to introduce dimensionless parameter 
[2] to modify the plate governing equation. Structural intensity for far field 
conditions would be denoted by I and not P hereafter in this paper to 
differentiate it from the general case [1]. 
The governing orthotropic plate equations are available in the literature. 
Troitskey (2], for example. It is possible to apply Newton's law in order to obtain 



a relationship between the shear forces and the transverse motion w for free 
vibration. If the analysis is restricted to free harmonic time variations, the 
flexural wave equation for naturally orthotropic plates could be expressed as 

a~ w a~ w a• w , 
D -- + 2H + D -- = m"ro- w (1) • ax• ax~ oy 1 

y 8/ 
where, D., Dy are the bending rigidity, H is the torsional rigid ity, m" is the mass 
per unit area of the plate, and ro is the natural frequency. The dimensionless 
parameters [2] used here for the purpose of simplifying the equation (1) are 
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where y on is the edge length ratio, a and b are the sides of the plate in the x 

and •[_ direction respectively such that b ~ a and yon$. I (f:ig. 1 ). The latter 
condition also states that D. ~ D Y. Therefore, by partial differentiation of the 

spatial derivatives of the flexural wave equation (1 ), and by introducing 

H = ~D. D, (2] in the flexural wave equation for free vibration in orthotropic 

plates, a modified general plate equation could be obtained as, 
a•w , a· w a•w ro 2 m" 
-- + 2 y - + y • -- = a 4 

(--) w (2) 
a~; • on a!; 2 alll on CiT]• D, 

If the bending wave number k ~ is introduced, the above equation 

is reduced to 

(3) 

The flexural wave equation may be further expressed in a simpler form as 
(V') 2 w - (a2 k 2

)
2 w = 0 (4) 

The above flexural wave equation ( 4) 
al 

orthotropic plates such that V' = ( -::---;- + 
o!;-

the modified Laplace operator. 

represents the free vibration of 
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Equation (4) may be replaced by two different second order equations in 
operator form; i.e. 

(V' + a2 k 2)w = 0 

(V' - a2 k2)w = 0 

(Sa) 

(5b) 
Equation (Sa) represents the condition of far field where free propagative 
waves exit. Equation (Sb) is the condition of near field (3] as the disturbances 
decay exponentially from the sources and boundaries. A complete solution of 
the governing flexural wave equation (4), for example, is not possible for plates 
in general [6]. A typical solution could however be achieved using a Hankel 
function of the second kind (3]. 
If the co-ordinates x, y are transformed to !;. '1 , and by introducing the 

dimensionless parameters defined earlier, the x-component of shear force [2] 



under far field conditions could be expressed in a new form by incorporating 
the Fourier transform 

(6) 

The x component of structural intensity (complex power) in orthotropic plates 
from shear force alone .could be expressed according to equation [1 ] as, 

1,5 (f) = <- v· Q, > 

The linear velocity and shear force quantities in the above equation could be 
estimated by the finite difference approximation using a two point transducer 
array measurement as shown in Fig. 1. 

a 

b 

Measurement point 
at mid point 

y 

Fig. 1 The co-ordinate systems of the plate with two point transducer array. 

The linear velocity and shear force are given by: 
I 

v = 2(v1 + vz) and 

- D. k~ VI- v, 
Q -:·-c--·) ' = Jf!l d 

Substituting values of linear velocity and shear force, and by evaluating the 
ensemble averages term by term, the final complex form of structural intensity 
in the x-direction by shear force component could be expressed as 

D k" 
l,s(f) = 2 j'rod[(G"~-G 11 )+2jlm{G 1 ,} ] (7) 

where d is the distance between two successive points, ro is the angular 
frequency, G12 is the cross-spectrum of the velocity signals at points 1 and 2, 
and G22 and G11 are the two auto-spectrum of the velocity signals. The real part 
of the above complex power flow equation (7) defines the power transmitting by 
shear force in the x direction under the far field conditions of the orthotropic 
plates, and could be expressed as 

~ 
~,5(f) = d 1m {G1,} (8) 

As the contribution of vibration power from shear force and moments are equal 
in the far field [6]. the total active power could be simply obtained by doubling 



706 

the power from either the shear force component or the moment component. 
The total active power from shear force part in the far field in the x-direction 
(Fig. 1) is therefore obtained as 

2~ 
I(f) = -yu,•u lm{G , } (9) • d ,_ 

Only one cross-spectrum of velocity signal is necessary to quantify the total 
power. This is a new definition of structural intensity which defines the power 
flow per unit width of the plate. This expression is consistent with the 
conventional description of structural intensity being a power flow per unit width 
of the plate (W/m). 
They component of total structural intensity (active power) in the far field could 
be obtained similarly by changing the transducer array, 

2~Drm" 
Ir (f) = d Im{G,~} (10) 

The practical form of the intensity equation (9) could be obtained using cross
spectrum of acceleration signals as, 

2~D.m" 
I, (f) = dro 2 Im{G,~} (11) 

where G12 is the cross-spectrum of the acceleration signals at points 1 and 2 
(Fig. 1 ). 

3. CONCLUSION 

The structural intensity technique was used· to formulate the bending wave 
power in naturally orthotropic plates under far field conditions in the frequency 
domain. A new but similar description of structural intensity was proposed. This 
new formulation defines the vibrational power.flow per unit width of the plates. 
Only one cross-spectra was used to obtain the intensity vectors in a point on 
the plate in a particular direction. This is similar to the conventional "2-
transducer'' method as commonly used in vibration power flow measurements. 
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