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1. INTRODUCTION

Vibration power flow measurement is an important tool in identifying significant
paths of vibration transmission from sources through a structure. The
measurement of vibration level itself may give limited information since
stationary waves may be present giving rise to large amplitude with no power
transmitted. Structural intensity is a vector quantity where the power flow
pattern may be identified by measuring the structural intensities on the
structure. This paper examines the use of structural intensity in the theoretical
estimation of vibration power flow in naturally orthotropic plates in the
frequency domain under far field conditions. The theoretical power flow models
could be used in technically orthotropic plates, and corrugated plates for
example, by defining the elastic rigidity constant using the method of elastic
equivalence [2].

2. COMPLEX POWER IN THE FAR FIELD

The bending stiffness of the flexural wave equation in isotropic plates is
obtained as a common factor in the classical plate equation [3]. It is however
not possible to obtain such a common term for bending stiffness in orthotropic
plate because of different rigidity constants in the flexural wave equation [2].
For free vibration analysis in orthotropic plates, the plate governing equation
could be modified to obtain an equivalent non-dimensional representation by
changing the variables [4, 5]. As an approximate analysis of bending wave
power in orthotropic plates, it is possible to introduce dimensionless parameter
[2] to modify the plate governing equation. Structural intensity for far field
conditions would be denoted by | and not P hereafter in this paper to
differentiate it from the general case [1].

The governing orthotropic plate equations are available in the literature,
Troitskey [2], for example. It is possible to apply Newton's law in order to obtain



a relationship between the shear forces and the transverse motion w for free
vibration. If the analysis is restricted to free harmonic time variations, the
flexural wave equation for naturally orthotropic plates could be expressed as
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where, D,, D, are the bending rigidity, H is the torsional rigidity, m” is the mass
per unit area of the plate, and w is the natural frequency. The dimensionless
parameters [2] used here for the purpose of simplifying the equation (1) are
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where y_. is the edge length ratio, a and b are the sides of the plate in the x
and y_direction respectively such that bza and y_,<1 (Fig. 1). The latter
condition also states that D, = D,. Therefore, by partial differentiation of the
spatial derivatives of the flexural wave equation (1), and by introducing
H= JD,‘ D, [2] in the flexural wave equation for free vibration in orthotropic

plates, a modified general plate equation could be obtained as,
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If the bending wave number k = mDm is introduced, the above equation
is reduced to
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The flexural wave equation may be further expressed in a simpler form as
(VY w - @K)Yw = 0 (4)
The above flexural wave equation (4) represents the free vibration of
orthotropic plates such that V’ = (;%? + oy -a—?n—) This term is referred as
the modified Laplace operator.
Equation (4) may be replaced by two different second order equations in
operator form; i.e.
(V' + ak)w = 0 (Sa)
(V' - 22K)w = 0 (5b)
Equation (5a) represents the condition of far field where free propagative
waves exit. Equation (5b) is the condition of near field [3] as the disturbances
decay exponentially from the sources and boundaries. A complete solution of
the governing flexural wave equation (4), for example, is not possible far plates
in general [6]. A typical solution could however be achieved using a Hankel
function of the second kind [3].
If the co-ordinates x, y are transformed to £,n, and by introducing the

dimensionless parameters defined earlier, the x-companent of shear force (2]



under far field conditions could be expressed in a new form by incorporating
the Fourier transform
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The x component of structural intensity (complex power) in orthotropic plates
from shear force alone.could be expressed according to equation [1] as,
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The linear velocity and shear force quantities in the above equation could be
estimated by the finite difference approximation using a two point transducer
array measurement as shown in Fig. 1.
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Fig. 1 The co-crdinate systems of the plate with two point transducer array.

The linear velocity and shear force are given by:
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Substituting values of linear velocity and shear force, and by evaluating the

ensemble averages term by term, the final complex form of structural intensity

in the x-direction by shear force component could be expressed as
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where d is the distance between two successive points, o is the angular
frequency, Gz is the cross-spectrum of the velacity signals at points 1 and 2,
and Gz; and Gy, are the two auto-spectrum of the velocity signals. The real part
of the above complex power flow equation (7) defines the power transmitting by
shear force in the x direction under the far field conditions of the orthotropic
plates, and could be expressed as
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As the contribution of vibration power from shear force and moments are equal
in the far field [6], the total active power could be simply obtained by doubling
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the power from either the shear force component or the moment component.
The total active power from shear force part in the far field in the x-direction
(Fig. 1) is therefore obtained as
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Only one cross-spectrum of velocity signal is necessary to quantify the total
power. This is a new definition of structural intensity which defines the power
flow per unit width of the plate. This expression is consistent with the
conventional description of structural intensity being a power flow per unit width
of the plate (W/m).
The y component of total structural intensity (active power) in the far field could
be obtained similarly by changing the transducer array,
2./D, m"
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The practical form of the intensity equation (9) could be obtained using cross-
spectrum of acceleration signals as,
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where G;; is the cross-spectrum of the acceleration signals at points 1 and 2
(Fig. 1).

3. CONCLUSION

The structural intensity technique was used to formulate the bending wave
power in naturally orthotropic plates under far field conditions in the frequency
domain. A new but similar description of structural intensity was proposed. This
new formulation defines the vibrational power flow per unit width of the plates.
Only one cross-spectra was used to obtain the intensity vectors in a point on
the plate in a particular direction. This is similar to the conventional "2-
transducer” method as commonly used in vibration power flow measurements.
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