# Molecular investigation of cellular immunity in marsupials 

Sabine Flenady

B. Biomed. Sc., B. Biomed. Sc. Hon. (1 ${ }^{\text {st }}$ Class)

A thesis submitted for the degree of Doctor of Philosophy in accordance with the guidelines of CQUniversity Australia

School of Science, Engineering and Health
CQUniversity Australia

## Certificate of Authorship of Thesis

The work contained in this thesis has not been previously submitted either in whole or in part for a degree at CQUniversity or any other tertiary institution. To the best of my knowledge and belief, the material presented in this thesis is original except where due reference is made in text.

Signature of Candidate. $\qquad$

Date.

## Copyright Statement

This thesis may be freely copied and distributed for private use and study, however, no apart of this thesis or the information contained therein may be included in or referred to in any publication without prior written permission of the author and/or any reference fully acknowledged.

Signature of Candidate. $\qquad$

Date.


#### Abstract

\section*{Abstract}

The $T$ cell signalling cascade is an important biochemical event in the adaptive immune system. In this study, various molecules involved in the T cell biology of marsupials were characterized. Investigation of possible differences in the molecular sequence of these genes was undertaken to explain why marsupials appear to respond differently to other mammals in their reaction to challenge by pathogens. Prior to this study it has been generally accepted that the adaptive immune system in marsupials may not function in the same manner as in other mammals.

Reverse transcription polymerase chain reactions, rapid amplification of cDNA ends, and quantitative polymerase chain reactions were employed in this study to obtain sequences for key molecules of the marsupial T cell signalling cascade. All putative amino acid sequences were investigated for structurally important motifs using various bioinformatics tools. Tertiary structure predictions were carried out using the open reading frame for the key molecules in the marsupial T cell signalling cascade. For the ZAP-70 and Lck molecules, commercially available human antibodies were trialled using a Western Blot method in a crude cell lysate prepared from Onychogalea fraenata spleen, liver and gut node and other tissues. This was undertaken to investigate possible species cross reactivity. A species-specific antibody for IL-2 was designed and successfully trialled in the Macropus eugenii tissue lysate prepared from thymus. This contributes an important new immunological tool for marsupial research.

This work demonstrated conclusively that the marsupial mRNA derived sequences of various T cell molecules were similar to their eutherian counterparts. It was shown that in marsupials the putative amino acid sequences were comparable to those of other mammals and many of the structurally important motifs were conserved. An important exception was the marsupial TCR $\alpha$ molecule which appeared to be significantly different in the putative amino acid sequence when compared to that of other mammals. It was also found that the marsupial IL-2 protein appeared to be functional since all structural motifs important for biological activity were identified and were at least partially conserved indicating a potential similarity. What this means in terms of marsupial immune competency is not yet completely understood. As a result of this study it is now hypothesized that the marsupial immunological adaptive immune system is as sophisticated as that of other mammals.


## Table of Contents

## Table of Contents

Certificate of Authorship of Thesis ..... ii
Copyright Statement ..... ii
Abstract ..... iii
Table of Contents ..... iv
List of Tables ..... xii
List of Figures ..... xvii
Acknowledgements ..... xxii
Statement of contribution by others ..... xxiii
List of publications and Conference presentations ..... xxiv
Abbreviations ..... xxv
Chapter 1 - Introduction and Literature Review. ..... 1
1.0 Introduction and Literature Review ..... 1
1.1 Adaptive Immunity ..... 3
1.2 Marsupial immunology ..... 7
1.3 T cell signalling cascade ..... 13
1.4 Key molecules of the T cell signalling cascade ..... 14
1.4.1 The Major Histocompatibility Complex ..... 14
1.4.2 CD86 ..... 16
1.4.3 The T cell receptor alpha /beta (TCR $\alpha \beta$ ) and CD3 complex ..... 16
1.4.3.1 The T cell receptor gamma/delta (TCR $\gamma \delta$ ) ..... 19
1.4.4 The Co-receptors CD4, CD8, CD28 and CTLA-4 ..... 20
1.4.4.1 The CD4 co-receptor ..... 21
1.4.4.2 The CD8 co-receptor ..... 22
1.4.4.3 The CD28 co-receptor ..... 23
1.4.4.4 Cytotoxic T- lymphocyte antigen-4 (CTLA-4) - the negative regulator ..... 24
1.5 Signalling molecules ..... 25
1.5.1 T cell receptor zeta chain (TCR弓) ..... 25
1.5.2 TCR弓 chain and the immunoreceptor tyrosine activation motif (ITAM) ..... 27
1.5.3 Zeta associated protein of 70 kDa (ZAP-70) ..... 27
1.5.4 Lymphocyte specific kinase (Lck) ..... 29
1.6 Cytokines and Forkhead box protein 3 (Foxp3) ..... 30
1.6.1 Marsupial cytokine research ..... 30
1.6.1.1 Interleukin-2 (IL-2). ..... 32
1.6.1.2 Interleukin-17 (IL-17) ..... 34
1.6.1.3 Forkhead box protein 3 (Foxp3) ..... 34
1.7 Aims and Objectives ..... 35
Chapter 2 - General Materials and Methods ..... 37
2.0 General Materials and Methods ..... 38
2.1 Part I - Molecular Studies ..... 38
2.1.1 Animal tissues ..... 38
2.1.2 Primer design ..... 39
2.1.3 Total RNA isolation by Tri-Reagent ..... 39
2.1.3.1 Total RNA isolation using SV Total RNA Isolation System ${ }^{\text {M }}$ (Promega, Madison, ..... 40
2.1.3.2 mRNA isolation using FastTrack MAG ..... 41
2.1.3.3 mRNA isolation with PolyATract ${ }^{\circledR}$ mRNA (Promega, Madison, USA) ..... 42

## Table of contents

2.1.4 Qubit ${ }^{\circ}$ 1.0 Fluorometer RNA quantitation ..... 43
2.1.5 Reverse Transcription ..... 43
2.1.5.1 Reverse Transcription using Superscript ${ }^{\text {TM }}$ II RT ..... 44
2.1.6 Reverse Transcription Polymerase Chain Reaction (RT-PCR) ..... 44
2.1.7 Genomic DNA extraction ..... 44
2.1.8 Polymerase Chain Reaction ..... 46
2.1.8.1 Cycling conditions ..... 46
2.1.8.2 Gel electrophoresis ..... 47
2.1.8.3 DNA purification of PCR products from an agarose gel matrix ..... 47
2.1.9 Rapid amplification of cDNA ends (RACE) ..... 48
2.1.9.1 Cycling conditions for RACE-PCR ..... 50
2.1.9.2 Rapid amplification of $3^{\prime}$ cDNA ends ..... 51
2.1.10 Cloning of PCR and RACE-PCR products ..... 52
2.1.10.1 Media (LB Agar) ..... 52
2.1.10.2 Luria Bertani Broth (LBroth) ..... 52
2.1.10.3 Transformation ..... 52
2.1.10.4 Plasmid DNA preparation. ..... 53
2.1.10.5 Plasmid digest ..... 54
2.1.10.6 Sequencing of PCR products and plasmid DNA ..... 54
2.2 Bioinformatics tools ..... 54
2.2.1 CLUSTALW2 ..... 54
2.2.2 The Basic Local Alignment Search Tools (BLAST and BLAT) ..... 55
2.2.2.1 BLASTn ..... 55
2.2.2.3 BLAST2 ..... 55
2.2.3 Expert Protein Analysis Systems (EXPASY) ..... 56
2.2.3.1 Translate tool ..... 56
2.2.3.2 ProtParam ..... 56
2.2.3.3 Signal IP-4.0 ..... 56
2.2.3.4 Protein Domain database (ProDom) ..... 56
2.2.3.5 C-mannosylation ..... 57
2.2.3.6 O-linked glycosylation ..... 57
2.2.3.7 Protein glycation ..... 57
2.2.3.8 N-linked glycosylation ..... 57
2.2.3.9 Phosphorylation prediction ..... 57
2.2.3.10 Disulphide bond prediction ..... 58
2.2.4 SMART (Simple Modular Architecture Research Tool) ..... 58
2.2.4.1 CDART (Conserved Domain Architecture Retrieval Tool) ..... 58
2.2.5 Primary structure prediction. ..... 58
2.2.5.1 2ZIP-Leucine Zipper prediction ..... 59
2.2.6 Secondary structure prediction ..... 59
2.2.6.1 Protein Structure Prediction Server (PSIPRED) ..... 59
2.2.6.2 Secondary structure prediction through NetSurfP ..... 59
2.2.7 Tertiary structure prediction (Homology modelling) ..... 60
2.2.7.1 I-TASSER ..... 60
2.2.7.2 RaptorX ..... 60
2.2.7.3 3D Jigsaw ..... 60
2.2.7.4 Modweb ..... 61
2.2.7.5 Swiss-Model ..... 61

## Table of contents

2.2.7.6 Modeller ..... 63
2.2.7.7 The Protein Homology/analogY Recognition Engine V 2.0 (Phyre2) ..... 63
2.2.7.8 Ligand binding site prediction ..... 63
2.3 Phylogenetic Analyses ..... 64
2.3.1 Maximum likelihood tree ..... 64
2.3.2 Neighbor-Joining tree. ..... 65
2.3.2.1 Dayhoff algorithm ..... 65
2.4 Genomic DNA analyses ..... 65
2.4.1 Promoter Scan ..... 65
2.4.2 Genscan ..... 66
2.5 Ensembl and UCSC Genome Browsers ..... 66
2.6 Semi-quantitative Expression studies ..... 66
2.7 Real Time PCR - Quantitative PCR (qPCR) for Interleukin-2 ..... 67
2.7.1 Primer design ..... 67
2.7.1.1 Real Time Polymerase Chain Reaction (qPCR) ..... 67
2.7.2 High Resolution Melt analysis (HRM) ..... 68
2.8 Part II Protein studies ..... 68
2.8.1 Protein Extraction ..... 68
2.8.2 Bicinchoninic acid assay (BCA) ..... 69
2.8.2.1 Qubit protein assay ..... 70
2.8.3 Protein Gels ..... 70
2.8.4 Western Blotting ..... 72
2.8.4.1 Protein transfer to membrane ..... 72
2.8.4.2 Dot Blot ..... 73
2.8.4.3 Isotype control ..... 74
Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor ..... 75
3.0 Abstract ..... 76
3.1 Introduction ..... 77
3.2 Aims and Objectives ..... 79
3.3 Specific Materials and Methods ..... 80
3.3.2 Reverse Transcription ..... 80
3.3.3 Primer design ..... 81
3.3.3.1 CD3 $\varepsilon$, TCR $\alpha$ and TCR $\beta$ ..... 81
3.3.3.2 Polymerase Chain Reaction (PCR), cloning and sequencing ..... 81
3.3.4 Amplification of 3 ' end of CD3 $\varepsilon$ from $M$. domestica cDNA library ..... 82
3.3.5 Phylogeny ..... 82
3.3.6 Bioinformatics ..... 83
3.4 Results ..... 83
3.4.1 RNA and mRNA isolation ..... 83
3.4.2 CD3 epsilon (CD3 $\varepsilon$ ) ..... 83
3.4.2.1 CD3 $\varepsilon$ - Homology ..... 83
3.4.3.2 CD3 $\varepsilon$ - Structural motifs ..... 86
3.4.3.3 CD3 $\varepsilon$ - Domain structure ..... 88
3.4.3.4 CD3 $\varepsilon$ - Glycosylation and glycation sites (non-enzymatic glycosylation). ..... 88
3.4.3.5 CD3 $\varepsilon$ - Phosphorylation sites ..... 89
3.4.3.6 CD3 $\varepsilon$ - Disulphide bond predictions ..... 90
3.4.3.7 CD3 $\varepsilon$ - Primary sequence and secondary structure predictions ..... 91
3.4.3.8 Tertiary structure modelling ..... 96

## Table of contents

3.4.3.9 CD3ع - Phylogenetic analysis ..... 96
3.4.4 T cell receptor alpha (TCR $\alpha$ ) ..... 100
3.4.4.1 TCR $\alpha$ - Homology ..... 100
3.4.4.2 TCR $\alpha$ - Structural domains and motifs ..... 102
3.4.4.3 TCR $\alpha$ - Glycosylation and glycation sites ..... 102
3.4.4.4 TCR $\alpha$ - Phosphorylation sites ..... 104
3.4.4.5 TCR $\alpha$ - Disulphide bond predictions ..... 104
3.4.4.6 TCR $\alpha$ - Primary sequence and secondary structure prediction ..... 105
3.4.4.7 TCR $\alpha$ - Structure modelling ..... 106
3.4.4.8 TCR $\alpha$ - Phylogenetic analysis - connecting peptide ..... 107
3.4.4.8.1 TCR $\alpha$ - Phylogenetic analysis - Connecting peptide of TCR $\alpha$. ..... 107
3.4.4.8.2 TCR $\alpha$ - Phylogenetic analysis - Transmembrane region of TCR $\alpha$ ..... 108
3.4.5 T cell receptor beta chain (TCR $\beta$ ) ..... 110
3.4.5.1 TCR $\beta$ - Homology ..... 110
3.4.5.2 TCR $\beta$ - Structural domains and motifs ..... 111
3.4.5.3 TCR $\beta$ - Glycosylation and glycation sites ..... 112
3.4.5.4 TCR $\beta$ - Phosphorylation sites ..... 112
3.4.5.5 TCR $\beta$ - Disulphide bond prediction ..... 113
3.4.5.6 TCR - Primary sequence and secondary structure prediction ..... 113
3.4.5.7 TCR $\beta$ - Phylogenetic analysis - FG-loop ..... 117
3.5 Discussion ..... 119
3.6 Conclusion ..... 129
Chapter 4 - The diprotodontic co-receptors and co-stimulators to the $\mathbf{T}$ cell receptor ..... 131
4.0 Abstract ..... 132
4.1 Introduction ..... 132
4.2 Aims and Objectives ..... 135
4.3 Specific Materials and Methods ..... 136
4.3.1 RNA, mRNA and cDNA ..... 136
4.3.2 Primer design ..... 136
4.3.2.1 CD4, CD8 $\alpha$, CD8 $\beta$, CD28, CTLA-4 and CD86 ..... 136
4.3.1.2 Polymerase chain reaction (PCR), cloning and sequencing ..... 137
4.3.1.3 Phylogeny ..... 138
4.3.1.4 Bioinformatics ..... 138
4.4 Results ..... 138
4.4.1 CD4 ..... 138
4.4.1.1 CD4 - Homology. ..... 139
4.4.1.2 CD4 - Domain structure ..... 139
4.4.1.3 CD4 - Glycosylation and glycation sites. ..... 140
4.4.1.4 CD4 - Phosphorylation sites ..... 140
4.4.1.5 CD4 - Primary sequence and secondary structure prediction ..... 141
4.4.2 CD8 alpha (CD8 $\alpha$ ) ..... 143
4.4.2.1 CD8 $\alpha$-Homology ..... 143
4.4.2.2 CD8 $\alpha$ - Domain structure ..... 144
4.4.2.3 CD8 $\alpha$ - Glycosylation and glycation sites ..... 144
4.4.2.4 CD8 $\alpha$ - Phosphorylation sites ..... 145
4.4.2.5 CD8 $\alpha$ - Disulphide bond prediction ..... 146
4.4.2.6 CD8 $\alpha$ - Primary sequence and secondary structure prediction ..... 146
4.4.2.7 CD8 $\alpha$ - Tertiary structure and ligand binding predictions ..... 150

## Table of contents

4.4.2.8 CD8 $\alpha$ - Phylogenetic analysis ..... 152
4.4.3 CD8 beta (CD8 $\beta$ ) ..... 155
4.4.3.1 CD8 - Homology ..... 155
4.4.3.2 CD8 $\beta$ - Domain structure ..... 156
4.4.3.3 CD8 - Glycosylation and glycation sites ..... 156
4.4.3.4 CD8 $\beta$ - Phosphorylation sites ..... 157
4.4.3.5 CD8 $\beta$ - Disulphide bond prediction ..... 158
4.4.3.6 CD8 $\beta$ - Primary sequence and secondary structure prediction ..... 158
4.4.3.7 CD8 - Tertiary structure and ligand binding predictions ..... 161
4.4.3.8 CD8 $\beta$ - Phylogenetic analysis ..... 164
4.4.4 CD28 ..... 166
4.4.4.1 CD28 - Homology ..... 166
4.4.4.2 CD28 - Domain structure ..... 167
4.4.4.3 CD28 - Glycosylation and glycation sites ..... 167
4.4.4.4 CD28 - Disulphide bond prediction ..... 168
4.4.4.5 CD28 - Phosphorylation sites ..... 169
4.4.4.6 CD28 - Primary sequence and secondary structure prediction ..... 169
4.4.4.7 CD28 - Tertiary structure and ligand binding predictions ..... 172
4.4.4.8 CD28 - Phylogenetic analysis ..... 174
4.4.5 Cytotoxic T lymphocyte antigen-4 (CTLA-4) ..... 176
4.4.5.1 CTLA-4 - Homology ..... 176
4.4.5.2 CTLA-4 - Domain structure ..... 177
4.4.5.3 CTLA-4 - Glycosylation and glycation sites ..... 177
4.4.5.4 CTLA-4 - Phosphorylation sites ..... 177
4.4.5.5 CTLA-4 - Disulphide bond prediction ..... 178
4.4.5.6 CTLA-4 - Primary sequences and secondary structure prediction ..... 178
4.4.5.7 CTLA-4 - Tertiary structure and ligand binding site predictions ..... 182
4.4.4.8 CTLA-4 - Structure modelling ..... 184
4.4.4.9 CTLA-4 - Phylogenetic analysis ..... 186
4.4.6 CD86 ..... 189
4.4.6.1 CD86 - Homology ..... 189
4.4.6.2 CD86 - Domain structure ..... 189
4.4.6.3 CD86 - Glycosylation sites ..... 189
4.4.6.4 CD86 - Phosphorylation sites ..... 190
4.4.6.5 CD86 - Primary sequence and secondary structure prediction ..... 190
4.5 Discussion ..... 192
4.6 Conclusion ..... 200
Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck. ..... 202
5.0 Abstract ..... 203
5.1 Introduction ..... 203
5.2 Aims and Objectives ..... 205
5.3 Specific Materials and Methods ..... 206
5.3.1 RNA, mRNA and cDNA ..... 206
5.3.2 Primer design ..... 206
5.3.2.1 TCRZ, ZAP-70 and Lck. ..... 206
5.3.2.2 Polymerase chain reaction, cloning and sequencing ..... 208
5.3.2.3 Phylogeny ..... 209
5.3.2.4 Biofinformatics ..... 209

## Table of contents

5．3．3 Protein extraction and protein concentration ..... 209
5．3．3．1 Protein Gels ..... 210
5．3．4 Western Blots ..... 210
5．3．4．1 Western Blot ZAP－70 ..... 210
5．3．4．2 Western Blot Lck ..... 210
5．3 Results ..... 211
5．3．1 Protein extraction and determination of concentration ..... 211
5．3．2 Molecular characterization ..... 211
5．3．2．1 Homology－T cell receptor zeta（TCR $\zeta$ ） ..... 211
5．3．2．2 TCR弓－Domain structure ..... 212
5．3．2．3 TCR弓－Glycosylation and glycation sites ..... 213
5．3．2．4 TCR弓－Phosphorylation sites ..... 214
5．3．2．5 TCR弓－Disulphide bonds ..... 214
5．3．2．6 TCR弓－Primary sequence and secondary structure prediction ..... 214
5．3．2．7 TCR弓－Phylogenetic analysis ..... 217
5．3．2．8 TCR $\zeta$－Structure modelling ..... 219
5．3．2．9 TCR弓－Semi－quantitative expression studies ..... 222
5．3．3 Zeta associated protein of 70 kDa （ZAP－70） ..... 223
5．3．3．1 ZAP－70－Homology ..... 223
5．3．3．2 ZAP－70－Domain structure ..... 225
5．3．3．3 ZAP－70－Glycosylation and glycation sites ..... 226
5．3．3．4 ZAP－70－Phosphorylation sites． ..... 227
5．3．3．5 ZAP－70－Disulphide bonds ..... 229
5．3．3．6 ZAP－70－Primary sequence and secondary structure prediction ..... 231
5．3．3．7 ZAP－70－Phylogenetic analysis ..... 238
5．3．3．8 ZAP－70－Structure modelling ..... 240
5．3．3．9 ZAP－70－Western Blot analysis ..... 241
5．3．4 Lymphocyte specific kinase（Lck） ..... 242
5．3．4．1 Lck－Homology ..... 242
5．3．4．2 Lck－Domain structure ..... 243
5．3．4．3 Lck－Glycosylation and glycation sites ..... 244
5．3．4．4 Lck－Phosphorylation sites． ..... 245
5．3．4．5 Lck－Disulphide bonds ..... 246
5．3．4．6 Lck－Primary sequence and secondary structure prediction． ..... 247
5．3．4．7 Lck－Phylogenetic analysis ..... 252
5．3．4．8 Lck－Structure modelling ..... 254
5．3．4．9 Lck－Expression studies ..... 256
5．3．4．10 Lck－Western Blot analysis ..... 257
5．4 Discussion ..... 257
5．5 Conclusion ..... 266
Chapter 6－Cytokines－Interleukin－2（IL－2），Interleukin－17（IL－17）and the Foxp3 ..... 268
transcription factor Error！Bookmark not defined．
6．0 Abstract ..... 269
6．1 Introduction ..... 270
6．2 Aims and Objectives． ..... 271
6．3 Specific Materials and Methods ..... 272
6．3．1 RNA，mRNA and cDNA ..... 272
6．3．2 Primer design for Interleukin－2（IL－2），Interleukin－17（IL－17）and Forkhead box P3 ..... 272

## Table of contents

6.3.3 Trichosurus vulpecula PHA stimulated lymphocytes. ..... 273
6.3.4 Macropus eugenii stimulated lymphocytes. ..... 274
6.3.5 Polymerase chain reaction, cloning and sequencing. ..... 274
6.3.6 Investigation of polymorphisms in $T$. vulpecula and $M$. eugenii IL-2 sequences. ..... 274
6.3.7 Genomic DNA isolation and amplification ..... 275
6.3.7.1 Gel electrophoresis for gDNA ..... 276
6.3.8 Real Time PCR (qPCR) for IL-2 ..... 276
6.3.9 Annotation of the M. eugenii IL-2 promoter region ..... 276
6.3.10 Peptide design ..... 277
6.3.11 Western Blot ..... 278
6.3.12 Phylogeny. ..... 279
6.3.13 Bioinformatics ..... 279
6.4 Results ..... 279
6.4.1 Interleukin-2. ..... 279
6.4.1.1 IL-2 - Homology ..... 279
6.4.1.2 IL-2 - Domain structure ..... 280
6.4.1.3 IL-2 - Glycosylation and glycation sites ..... 281
6.4.1.4 IL-2 - Phosphorylation sites ..... 281
6.4.1.5 IL-2 - Disulphide bonds. ..... 282
6.4.1.6 IL-2 - Primary sequence and secondary structure prediction ..... 282
6.4.1.7 IL-2 amplification in genomic DNA ..... 285
6.4.1.8 IL-2 gene polymorphisms ..... 285
6.4.1.9 IL-2 promoter annotation using the ensembl database ..... 285
6.4.1.10 IL-2 - Real Time Polymerase Chain Reaction (qPCR) ..... 286
6.4.1.11 IL-2 - Phylogenetic analysis ..... 287
6.4.1.12 IL-2 - Structure modelling. ..... 290
6.4.1.12.1 IL-2 - Ligand binding ..... 292
6.4.1.13 IL-2 - Peptide design ..... 293
6.4.1.14 IL-2 - Dot Blot and Western Blot ..... 295
6.4.2 Interleukin-17. ..... 297
6.4.2.1 IL-17 - Homology ..... 297
6.4.2.2 IL-17 - Domain structure ..... 298
6.4.2.3 IL-17 - Glycosylation sites ..... 299
6.4.2.4 IL-17 - Phosphorylation sites ..... 299
6.4.2.5 IL-17 - Disulphide bonds ..... 299
6.4.2.6 IL-17 - Primary sequence and secondary structure prediction. ..... 300
6.4.2.7 IL-17 - Phylogenetic analysis ..... 301
6.4.2.8 IL-17 - Structure modelling. ..... 303
6.4.3 Forkhead box protein 3 (FOXP3) ..... 304
6.4.3.1 Foxp3 - Homology ..... 304
6.4.3.2 Foxp3 - Domain structure ..... 306
6.4.3.3 Foxp3 - Glycosylation and glycation sites ..... 306
6.4.3.4 Foxp3 - Phosphorylation sites ..... 307
6.4.3.5 Foxp3 - Disulphide bond prediction ..... 308
6.4.3.6 Foxp3 - Primary sequence and secondary structure prediction ..... 308
6.5 Discussion ..... 309
6.6 Conclusion ..... 316
7.0 Research summary, concluding discussion and future work ..... 318

## Table of contents

References ..... 326
Appendix 3A ..... 364
Appendix 3B ..... 375
Appendix 3C ..... 379
Appendix 4A ..... 385
Appendix 4B ..... 393
Appendix 4C ..... 409
Appendix 4D ..... 416
Appendix 4E ..... 426
Appendix 5A ..... 432
Appendix 5B ..... 439
Appendix 5C ..... 455
Appendix 6A ..... 468
Appendix 6B ..... 492
Appendix 6C ..... 496
Appendix 7 ..... 503

## List of Tables

List of Tables
Chapter 2 - Materials and Methods
Table 2.1 RACE Kit supplied RACE primers ..... 50
Table 2.2 Dilution scheme for eppendorf tube protocol ..... 69
Table 2.3 Standards for fluorometer and protein sample dilutions ..... 70
Table 2.4 Antibody and Dilutions ..... 73
Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor
Table 3.1 Primer sequences for CD3 $\varepsilon, \operatorname{TCR} \alpha$ and $\operatorname{TCR} \beta$ ..... 81
Table 3.2 PCR templates used for amplification of CD3 $\varepsilon$, TCR $\alpha$ and TCR $\beta$ ..... 82
Table 3.3 RNA and mRNA concentrations obtained by spectrophotometric analyses ..... 83
Table 3.4 Homology search results for CD3ع of M. domestica, O. fraenata and L. hirsutus ..... 85
Table 3.5 Comparison of CD3 structural motifs of three macropods and one didelphid species to the human $C D 3 \varepsilon$ sequence. ..... 87
Table 3.6 Significant e-values of predicted structural important domains in CD3 $\varepsilon$ ..... 88
Table 3.7 Signal peptide cleavage probability as predicted by SignalIP4.0 ..... 88
Table 3.8 Predicted glycation sites in O. fraenata, L. hirsutus and M. domestica CD3ع chain ..... 89
Table 3.9 Predicted phosphorylation sites in O. fraenata, L. hirsutus and M. domestica CD3\& ..... 90
Table 3.10 Disulphide bond prediction of CD3 in O. fraenata, M. eugenii and M. domestica type of bond and probability ..... 91
Table 3.11 Homology search results for partial TCR $\alpha$ sequence in $O$. fraenata ..... 101
Table 3.12 Sequences and conservation of functional motifs of the TCR $\alpha$ chain in $O$. fraenata and M. eugenii compared to H. sapiens and T. vulpecula. ..... 102
Table 3.13 Predicted $N$-linked glycosylation sites in O. fraenata and M. eugenii TCR $\alpha$ sequences. ..... 103

## List of Tables

Table 3.14 Predicted phosphorylation sites in the partial TCR $\alpha$ sequences, their positions and probabilities of $O$. fraenata and M. eugenii ..... 104
Table 3.15 Homology search results for partial TCR $\beta$ sequences in $M$. eugenii and O. fraenata. ..... 110
Table 3.16 Conservation percentages of F-loop, $\mathrm{C} \beta$ elbow loop, and G-loop in the TCR $\beta$ chain ..... 111
Table 3.17 Predicted $N$-linked glycosylation sites in the $O$. fraenata and M. eugenii partial TCR $\beta$ sequence ..... 112
Table 3.18 Predicted serine, threonine and tyrosine phosphorylation sites in the TCR $\beta$ sequences $O$. fraenata and $M$. eugenii. ..... 113
Chapter 4 - The diprotodontic co-receptors and costimulators to the T cell receptorTable 4.1 Primer sequences for CD4, CD8 $\alpha \beta$, CD28, CTLA-4, and CD86137
Table 4.2 PCR templates used for amplification of CD4, CD8 $\alpha, C D 8 \beta$, CD28, CTLA-4 and CD86 ..... 138
Table 4.3 Homologies search results for O. fraenata partial CD4 sequence ..... 139
Table 4.4 Predicted phosphorylation sites in the partial O. fraenata CD4 sequence ..... 140
Table 4.5 Homology search results for O. fraenata and L. hirsutus CD8 $\alpha$. ..... 144
Table 4.6 Predicted O-linked glycosylation sites and their probabilities in O. fraenata and L. hirsutus ..... 145
Table 4.7 Predicted phosphorylation sites in the O. fraenata and L. hirsutus CD8 $\alpha$ ..... 146
Table 4.8 Predicted ligand binding sites their positions, and number of ligands contacted. ..... 151
Table 4.9 Homology research results for O. fraenata and L. hirsutus CD8 $\beta$ ..... 155
Table 4.10 O-linked glycosylation sites for both species $O$. fraenata and L. hirsutus in the CD8 $\beta$ chain ..... 156
Table 4.11 Predicted phosphorylation sits of CD8ß for O. fraenata and L. hirsutus ..... 157
Table 4.12 Predicted disulphide bridge locations and their connectivity probabilities ..... 158
Table 4.13 Predicted ligand binding sites of the mature protein CD8 $\beta$ ..... 164

## List of Tables

Table 4.14 Homology research results for M. eugenii CD28 ..... 167
Table 4.15 Predicted O - and N -linked glycosylation and glycation sites and their confidence level in M. eugenii CD28. ..... 168
Table 4.16 Predicted disulphide bridges in M. eugenii CD28 their locations and corresponding sequence ..... 169
Table 4.17 Predicted phosphorylation sites of CD28 ..... 169
Table 4.18 Predicted ligand binding sites of $M$. eugenii CD28 ..... 173
Table 4.19 Homology research results for O. fraenata and M. eugenii CTLA-4 ..... 176
Table 4.20 Predicted glycosylation sites in O. fraenata and M. eugenii CTLA-4. ..... 177
Table 4.21 Predicted phosphorylation sites of CTLA-4 and their probabilities. ..... 178
Table 4.22 Predicted disulphide bonds, their locations and probabilities in CTLA-4 in O. fraenata and M. eugenii ..... 178
Table 4.23 Predicted ligand properties of CTLA-4 in O. fraenata and L. hirsutus. ..... 183
Table 4.24 Statistical values of the CTLA-4 model predictions ..... 186
Table 4.25 Homology search results for partial $M$. domestica CD86 sequence ..... 189
Chapter 5 - The diprotodontic signalling molecules - TCRZ, ZAP-70 and Lck
Table 5.1 Primers sequences for TCRZ ..... 207
Table 5.2 Primer sequences for ZAP-70. ..... 208
Table 5.3 Primer sequences for Lck. ..... 208
Table 5.4 RT-PCR and RACE-PCR templates used for TCRZ, ZAP-70 and Lck ..... 209
Table 5.5 Protein concentration determined by BCA assay ..... 210

## List of Tables

Table 5．6 Homology search results for TCR in O．fraenata and M．eugenii ..... 212
Table 5．7 Predicted structural domains within the TCR弓 chain ..... 213
Table 5．8 Predicted glycation sites in TCR弓 ..... 213
Table 5．9 Predicted phosphorylation sites in M．eugenii and O．fraenata． ..... 219
Table 5．10 Homology models of TCR弓 for O．fraenata and M．eugenii ..... 223
Table 5．11 Homology search results for M．eugenii and O．fraenata ZAP－70 ..... 224
Table 5．12 Homology search results for $L$ ．hirsutus and $M$ ．domestica partial ZAP－70

$\qquad$ ..... 225
Table 5．13 Predicted domain structures identified with SMART In ZAP－70 their sequences and e－values ..... 226
Table 5．14 Predicted N－linked glycosylation sites，their position，sequence， and confidence level in ZAP－70 ..... 227
Table 5．15 Predicted phosphorylation sites in the ZAP－70 sequences of M．eugenii， O．fraenata，L．hirsutus and M．domestica ..... 228
Table 5．16 Predicted O－linked glycosylation sites in the ZAP－70 sequence in M．eugenii， O．fraenata，L．hirsutus and M．domestica

$\qquad$Table 5．17 Putative disulphide bonds in the ZAP－70 sequences of differentmarsupial species．230
Table 5．18 Homology search results for marsupial Lck． ..... 243
Table 5．19 Domain structures in the O．fraenata and M．eugenii Lck sequences． ..... 244
Table 5．20 Putative N－linked glycosylation sites in the O．fraenata and M．eugenii Lck sequences ..... 244
Table 5．21 Predicted glycation sites and their positions in O．fraenata and M．eugenii Lck sequences ..... 245
Table 5．22 Predicted phosphorylation sites for O．fraenata and M．eugenii Lck sequences． ..... 246
Table 5．23 Predicted disulphide bonds in marsupial Lck ..... 247
Table 5．24 Predicted ligand binding sites and their location in the $O$ ．fraenataLck sequence．255

## List of Tables

Chapter 6 - The diprotodontic cytokines Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the regulatory T cell surface marker Foxp3
Table 6.1 Primer sequences for IL-2, IL-17 and Foxp3273
Table 6.2 RT-PCR and RACE-PCR templates used for amplification of IL-2, IL-17 and Foxp3 ..... 274
Table 6.3 RT-PCR conditions for polymorphism investigation ..... 275
Table 6.4 Homology search results for M. eugenii and T. vulpecula IL-2 ..... 280
Table 6.5 Predicted phosphorylation sites, their locations, sequences and probabilities in IL-2 for M. eugenii and T. vulpecula IL-2 ..... 282
Table 6.6 Homology search results for M. eugenii IL-17A. ..... 297
Table 6.7 Sequence identity between M. eugenii IL-17A and IL-17F ..... 298
Table 6.8 Predicted phosphorylation sites their locations, sequences and probabilities in IL-17 for M. eugenii ..... 299
Table 6.9 Homology search results for the M. eugenii and O. fraenata partial Foxp3 sequences ..... 305
Table 6.10 Predicted glycosylation and glycation sites in M. eugenii and O. fraenata Foxp3 ..... 307
Table 6.11 Predicted phosphorylation sites and their confidence levels in M. eugenii and O. fraenata Foxp3 ..... 307

## List of Figures

## List of Figures

## Chapter 1 - Introduction and Literature Review

Figure 1.1 $T$ cell sub-populations of $T_{h} 1, T_{h} 2, T_{h} 17, T_{h} 9$ and $T_{\text {reg }}$ lymphocytes $\qquad$
Figure 1.2 Comparison of the known components of the T cell signalling cascade in human and marsupial species ..... 12

## Chapter 2 - Materials and Methods

Figure 2.1 Example of statistical QMEAN representations.

## Chapter 3 - The diprotodontic Tcell signalling unit and the corresponding receptor

Figure 3.1 O.fraenata $\mathrm{CD} 3 \varepsilon$ primary sequence and secondary structure prediction ..... 93
Figure $3.2 \quad$ L. hirsutus $C D 3 \varepsilon$ primary sequence and secondary structure prediction ..... 94
Figure 3.3 M. domestica $C D 3 \varepsilon$ primary sequence and secondary structure prediction. ..... 95
Figure 3.4 Result of homology modelling for the marsupial CD3 $\varepsilon$ chain ..... 96
Figure 3.5 Neighbor-Joining phylogenetic tree for CD3 $\varepsilon$ ..... 97
Figure 3.6 Exon/intron boundaries for CD3ع ..... 100
Figure 3.7 O. fraenata partial TCR $\alpha$ chain primary sequence and secondary structure prediction ..... 105
Figure $3.8 \quad$ M. eugenii partial TCR $\alpha$ chain primary sequence and secondary structure prediction ..... 106
Figure 3.9 Putative tertiary structure for TCR $\alpha$ ..... 107
Figure 3.10 Maximum likelihood tree for connecting peptide of the TCR $\alpha$ gene ..... 108
Figure 3.11 Maximum likelihood tree for transmembrane region ( $\alpha$ TCP). ..... 109
Figure 3.12 O. fraenata TCR $\beta$ chain primary sequence and secondary structure prediction ..... 115
Figure $3.13 M$. eugenii partial TCR $\beta$ chain primary sequence and secondary structure prediction ..... 116
Figure 3.14 Neighbor-Joining tree using the Dayhoff algorithm for the FG loop of TCR $\beta$ ..... 118
Chapter 4 - The diprotodontic co-receptor and co-stimulator to the $T$ cell receptorFigure 4.1 O. fraenata CD4 partial primary sequence and secondary structure142

## List of Figures

Figure 4.2 O. fraenata CD8 $\alpha$ primary sequence and secondary structure prediction ..... 148
Figure $4.3 \quad$ L. hirsutus CD8 $\alpha$ primary sequence and secondary structure prediction ..... 149
Figure 4.4 Tertiary structure prediction for CD8 $\alpha$ ..... 150
Figure 4.5 pdb structure comparison for 0 . fraenata CD8 $\alpha$ and L. hirsutus CD8 $\alpha$ sequences. ..... 152
Figure 4.6 Phylogenetic tree for CD8 $\alpha$ ..... 154
Figure $4.7 \quad$ O. fraenata CD8 $\beta$ primary sequence and secondary structure prediction ..... 159
Figure $4.8 \quad$ L. hirsutus $\mathrm{CD} 8 \beta$ primary sequence and secondary structure prediction ..... 160
Figure 4.9 Tertiary structure prediction for the mature CD8 $\beta$ chain and it's ligand binding capacity. ..... 161
Figure 4.10 Structure comparison and Z-score slider for $O$. fraenata and L. hirsutus CD8 ..... 162
Figure 4.11 Phylogenetic analysis of the CD8 $\beta$ chain ..... 165
Figure 4.12 M. eugenii CD28 primary sequence and secondary structure prediction. ..... 171
Figure 4.13 M. domestica CD28 partial primary sequence and secondary structure prediction. ..... 172
Figure 4.14 Tertiary structure of M. eugenii CD28 and it's ligand binding ability ..... 173
Figure 4.15 M. eugenii CD28 statistics. ..... 174
Figure $4.16 \quad$ Neighbor-Joining phylogenetic tree for CD28. ..... 175
Figure $4.17 \quad$ O. fraenata CTLA-4 primary sequence and secondary structure prediction. ..... 180
Figure $4.18 \quad$ M. eugenii CTLA-4 primary sequence and secondary structure prediction. ..... 181
Figure $4.19 \quad$ M. domestica CTLA-4 partial primary sequence and secondary structure prediction. ..... 182
Figure 4.20 CTLA-4 putative tertiary structures and ligand binding capacities for O. fraenata and M. eugenii. ..... 183
Figure 4.21 RaptorX homology model for CTLA-4 ..... 184
Figure 4.22 CTLA-4 models for O. fraenata and M. eugenii ..... 186
Figure 4.23 QMEAN score for $O$. fraenata and $M$. eugenii (mature protein) CTLA-4 models ..... 187
Figure 4.24 Phylogenetic tree (Neighbor-Joining) for known CTLA-4 sequences ..... 189

## List of Figures

Figure 4．25 M．domestica CD86 partial primary sequence and secondary structure prediction192

## Chapter 5 －The diprotodontic signalling molecules－TCRZ，ZAP－70 and Lck

Figure $5.1 \quad \begin{aligned} & \text { M．eugenii } T C R \zeta \text { chain primary sequence and } \\ & \text { secondary structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 215\end{aligned}$
Figure 5．2 $\begin{aligned} & \text { O．fraenata } T C R \zeta \text { chain primary sequence and } \\ & \text { secondary structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 216\end{aligned}$
Figure 5．3 $\quad \begin{aligned} & \text { M．domestica TCRZ partial primary sequence and } \\ & \text { secondary structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 217\end{aligned}$
Figure 5．4 TCR弓 Phylogenetic analysis by Neighbour－Joining method．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 218
Figure 5.5 pdb structure 2hacA．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 219
Figure 5．6 QMean Z－score for both O．fraenata and M．eugenii TCR弓．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 220
Figure 5．7 The homology models of the putative TCR弓 proteins ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 221
Figure 5．8 Alternative models for O．fraenata and M．eugenii identified with 3D－Jigsaw．．．．．．． 221
Figure $5.9 \quad$ O．fraenata and M．eugenii TCR弓 putative binding sites．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 222
Figure 5．10 Image of 2\％agarose gel showing the expression of the TCR弓 gene ．．．．．．．．．．．．．．．．．．．．． 223
$\begin{array}{ll}\text { Figure 5．11 } & \begin{array}{l}\text { M．eugenii ZAP－70 primary sequence and } \\ \text { secondary structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．232－233 }\end{array} \text { 230 }\end{array}$
Figure 5.12 O．fraenata partial ZAP－70 primary sequence and
secondary structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．234－235
$\begin{array}{ll}\text { Figure } 5.13 & \begin{array}{l}\text { L．hirsutus partial ZAP－70 primary sequence（partial）and secondary } \\ \text { structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 236\end{array}{ }^{2} .\end{array}$
$\begin{array}{ll}\text { Figure } 5.14 & \begin{array}{l}\text { M．domestica partial ZAP－70 primary sequence（partial）and secondary } \\ \text { structure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 237\end{array}\end{array}$
Figure 5．15 Phylogenetic analysis by Maximum Likelihood method for M．eugenii ZAP－70．．．．．．．．．． 239
Figure 5．16 Model of M．eugenii ZAP－70．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 240
Figure 5．17 Predicted ligand binding sites（to $\mathrm{PO}_{4}$ ）of M．eugenii ZAP－70．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 241
Figure 5.18 Western Blot ZAP－70．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 241
Figure 5．19 O．fraenata Lck primary sequence and secondary structure prediction．．．．．．．．．．．．．．248－249
$\begin{array}{ll}\text { Figure } 5.20 & \begin{array}{l}\text { M．eugenii partial primary Lck sequence and secondary } \\ \text { structrure prediction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．250－251 }\end{array} \text { 250．}\end{array}$

## List of Figures

Figure 5.21 Phylogenetic analysis using the Neigbour-Joining method based on the Poisson correction model. ..... 253
Figure 5.22 O. fraenata Lck models. ..... 254
Figure 5.23 Statistical evaluation of $O$. fraenata Lck model prediction. ..... 256
Figure 5.24 Expression of O.fraenata Lck across four tissue types. ..... 256
Figure 5.25 Western blot for Lck in M. eugenii thymus and O. fraenata nodes. ..... 257
Figure 5.26 Structural differences in the cytoplasmic tail of the marsupial TCR弓 chain. ..... 258
Chapter 6 - The diprotodontic cytokines Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the regulatory T cell surface marker Foxp3
Figure 6.1 M. eugenii IL-2 primary sequence and secondary structure prediction. ..... 283
Figure 6.2 T. vulpecula IL-2 primary sequence and secondary structure prediction ..... 284
Figure 6.3 Melt curve for M. eugenii IL-2. ..... 286
Figure 6.4 O. fraenata IL-2 melt curve (using consensus primers) against GAPDH. ..... 287
Figure 6.5 Maximum likelihood tree of interleukin-2 ..... 289
Figure 6.6 M. eugenii and T. vulpecula IL-2 models obtained through different modelling programs. ..... 291
Figure 6.7 Statistics for the obtained IL-2 models of $M$. eugenii and $T$. vulpecula. ..... 292
Figure 6.8 Ligand binding sites of IL-2 models in M. eugenii and T. vulpecula ..... 293
Figure 6.9 Kyte-Doolittle plot obtained through EXPASY for M. eugenii IL-2. ..... 294
Figure 6.10 Hydrophilicity depicted in a Hopp and Woods diagram. ..... 295
Figure 6.11 Dot Blot of marsupial IL-2 peptide including isotype control for secondary antibody (anti-Rabbit $\lg G$ ) ..... 296
Figure 6.12 Western Blot for IL-2 in M. eugenii tissue (thymus). ..... 296
Figure 6.13 M. eugenii IL-17 primary sequence and secondary structure prediction ..... 300
Figure 6.14 Neighbor-Joining phylogenetic tree for IL-17A. ..... 302
Figure 6.15 Structure prediction with different prediction software programs. ..... 303
Figure 6.16 Swiss Model prediction of IL-17A in M. eugenii ..... 304
Figure 6.17 Partial Foxp3 primary sequence for O. fraenata and secondary structure prediction. ..... 308
Figure 6.18 Partial Foxp3 primary sequence for M. eugenii and secondary structure prediction. ..... 309

## List of Figures

## Chapter 7-Research summary, concluding discussion and future work

Figure 7.1 Comparison of the marsupial signalling cascade prior to and after this study

## Acknowledgments

## Acknowledgements

I would like to thank Professor Jennelle Kyd for her invaluable advice and her courage to take me on in a very late stage of my candidature. Without her, this thesis would have not been written. Her tireless commitment and endless guidance and support will never be forgotten. I also wish to thank the members of Professor Kyd's team at the Capricornia Centre for Mucosal Immunology, especially Dr. Ajay Krishnamurthy for his encouraging words and Jessica Browne for lighting up my day when the writing became hard going.

I cannot forget my long-standing friend and colleague Dr. Noel Sammon with whom I went through my undergraduate studies at CQUniversity Australia. He provided countless hours of his time to read through thesis drafts and to coach me in the English language. When things were difficult he would often be the only person that understood. I am grateful for his time and advice throughout our studies together especially in my PhD.

This has been a long journey which I would have not been able to undertake without the support of my husband Barry and my son Daniel. My husband has been very supportive for the seven years it took for me to get through my undergraduate studies including honours and finally my PhD. My son Daniel has known no other mother but the one that always buried her head in a text book or in scientific papers but I hope he learned that perseverance pays off and not to throw the towel in the ring too early.

I must not forget my friends Alana and Robert Evans. A thank you to Robert who took time out to read through the early drafts of the thesis and gave me directions as to how to apply the English language more effectively and taught me how to organize my work more efficiently. Alana, what can I say! Your humor and personality made me laugh in my darkest hours.

A very grateful THANK YOU to all the above, you played a very important part in the completion of this thesis.

## Statement of contribution by others

## Statement of contribution by others

## Chapter 3 to 6 inclusive

Sequencing reactions were sent to the Australian Genome Research Facility, Brisbane, Queensland for processing on a paid consultancy basis.

The molecules characterized in M. domestica were obtained from a spleen and thymus cDNA library provided by Associate Professor Dr. Katherine Belov, Sydney University, NSW.

Cell Pellet and RNA from stimulated M. eugenii lymphocytes and RNA from ConA stimulated M. eugenii lymphocytes as well as a spleen and thymus were donated by Dr. L. J. Young, CQUniversity Australia, Rockhampton, Queensland.

Spleen, mesenteric lymph nodes and lung tissue from O. fraenata were donated by Dr. L. J. Young, CQUniversity Australia, Rockhampton, Queensland.

The Alma Street Veterinary Hospital, Rockhampton performed a necropsy on a euthanized, diseased $O$. fraenata and and donated the tissues to the Young laboratory at CQUniversity Australia, Rockhampton, Queensland.

## Chapters 3 and 4

RNA from L. hirsutus was isolated and synthesized into cDNA by Krista Howard, Honours student at CQUniversity Australia, Rockhampton, Queensland.

## Chapter 5

Primer ST3F1 was donated by Amy Suthers, PhD student at CQUniversity Australia, Rockhampton, Queensland.

## List of publications and Conference presentations

## Published Papers.

Young, L. J., Cross, M. L., Duckworth, J. A., Flenady, S. \& Belov, K. 2011. Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula. Dev \& Comp Immunol, 2011.

## Conference Presentations

## 2010

Flenady, S. - Oral presentation. T cell signalling in endangered marsupials. Expression of TCRZ, Lck and ZAP-70 in the endangered bridled nailtail wallaby.
Presented at the Australian Health and Medical Congress (AHMRC), $14-18^{\text {th }}$ November, 2010, Melbourne, Australia.

## $\underline{2009}$

Flenady, S. - Poster. Functional Investigation of Marsupial T cell Responses. Presented at the Institute for Resource Industries and Sustainabilities, (IRIS), $3^{\text {rd }}$ December, 2009, Rockhampton, Australia.

## 2008

Flenady, S. - Poster. The T Cell Receptor Repertoire in the endangered marsupial Onychogalea fraenata (Bridled Nailtail Wallaby). Presented at ComBio $21-25^{\text {th }}$ September, 2008, Canberra, Australia.

## $\underline{2007}$

Flenady, S. - Poster. Characterization of immune receptor molecules in the endangered marsupial Onychogalea fraenata (bridled nailtail wallaby). Presented at ComBio $22-26^{\text {th }}$ September, 2007, Sydney, Australia.

| Abbreviations |  |
| :---: | :---: |
| Abbreviations |  |
| ${ }^{\circ} \mathrm{C}$ | degree Celsius |
| $\mu$ | micro |
| 3' | 3 prime end of cDNA sequence |
| 5' | 5 prime end of cDNA sequence |
| aa | amino acid |
| AMVRT | Avian Myoblastosis virus reverse transcriptase |
| AP-1 | adaptor protein-1 |
| APC | antigen presenting cell |
| APS | Ammonium persulfate |
| ATP | Adenosine triphosphate |
| BCA | Bicinconinic acid |
| BLAST | basic local alignment search tool |
| BLAT | (Basic Local Alignment Search Tool)-Like Alignment Iool |
| BLSOSUM | Blocks of Amino Acid Substitution Matrix |
| bp | base pair |
| BSA | bovine serum albumin |
| BTLA | B- and T cell attenuator |
| Ca | calcium |
| CD | Cluster of differentiation |
| CD28RE | CD28 response element |
| CDART | Conserved Domain Architecture Retrieval Tool |
| cDNA | complementary DNA |
| CDR | complementarity determining region |



| Abbreviatio |  |
| :---: | :---: |
| Grb2 | growth factor receptor-bound protein2 |
| h | hour |
| Havana | Human and Vertebrate Analysis and Annotation project |
| HRM | high resolution melt analysis |
| ICOS | Inducible T-cell Co-stimulator |
| IFN | interferon gamma |
| IG | immunoglobulin |
| IG-V | immunoglobulin-variable |
| IL-2 | Interleukin-2 |
| $\mathrm{IP}_{3}$ | Inositol triphosphate |
| ITAM | immune tyrosine activation motif |
| ITK | inducible tyrosine kinase |
| IUCN | International Union for Conservation of Nature |
| kDa | kilo Dalton |
| L | litre |
| LAT | linker of activated T cells |
| LB | Luria Bertani |
| Lck | Lymphocyte associated kinase |
| LT | lymphotoxin |
| MALDI-TOF | Matrix-assisted laser desorption/ionization-time of flight mass spectrometry |
| MAPK | Mitogen activated protein kinase |
| mg | milligram |
| MHC | Major Histocompatibility complex |
| min | minute |
| mL | millilitre |



| Abbreviations |  |
| :---: | :---: |
| Ras | rat sarcoma |
| RIPA | radio immunoprecipitation assay |
| RNA | Ribonucleic acid |
| rpm | revolution per minute |
| RT-PCR | Reverse Transcription Polymerase chain reaction |
| s | second |
| SLP-76 | $\mathrm{SH}_{2}$ containing lymphocyte protein of 76 kDa |
| SNP | Single nucleotide polymorphism |
| s.o.c. | super optimal catabolite repression medium |
| SA-PMPS | Streptavidin MagneSphere Paramagnetic Particles |
| SCOP | Structural Classification of Proteins |
| SDS | Sodium dodecyl sulfate |
| SHP | $\mathrm{SH}_{2}$ domain-bearing protein tyrosine phosphatase |
| Syk | Spleen tyrosine kinase |
| TBE | Tris-borate EDTA |
| TBS | Tris buffered saline |
| TBS-T | Tris buffered saline and Tween |
| TCR | T cell receptor |
| TdT | terminal deoxynucleotydil transferase |
| Tec | tyrosine kinase expressed in hepatocellular carcinoma |
| TEMED | Tetramethylethylenediamine |
| $\mathrm{T}_{\mathrm{h}}$ | T helper |
| TGF | Transforming growth factor |
| Tm | melt Temperature |
| TM | Transmembrane |


| Abbreviations |  |
| :---: | :---: |
| TNF | Tumor necrosis factor |
| TNFR | Tumor necrosis factor receptor |
| $\mathrm{T}_{\text {reg }}$ | regulatory T cell |
| UCSC | University of California, Santa Cruz |
| UT | untranslated |
| UTF | untranslated forward |
| UTR | untranslated reverse |
| V | volt |
| VAV | guanidine nucleotide exchange factor |
| VH/VL | variable heavy/variable light |
| ZAP-70 | zeta chain associated protein of 70 kDa |
| $\alpha$ | alpha |
| $\beta$ | beta |
| V | gamma |
| $\delta$ | delta |
| $\varepsilon$ | epsilon |
| $\zeta$ | zeta |
| K | kappa |

## Abbreviations

## Amino Acid description

| Amino Acid | 3-letter <br> abbreviation | 1-letter <br> abbreviation | Polarity of side <br> chain | Charge of side <br> chain |
| :--- | :--- | :--- | :--- | :--- |
| Alanine | Ala | A | nonpolar | neutral |
| Arginine | Arg | R | polar | positive |
| Asparagine | Asn | N | polar | neutral |
| Aspartic acid | Asp | D | polar | negative |
| Cysteine | Cys | C | polar | neutral |
| Glutamic acid | Glu | E | polar | negative |
| Glutamine | Gln | Q | polar | neutral |
| Glycine | Gly | G | nonpolar | neutral |
| Histidine | HIs | H | polar | neutral |
| Isoleucine | Ile | I | nonpolar | neutral |
| Leucine | Leu | L | nonpolar | neutral |
| Lysine | Lys | K | polar | positive |
| Methionine | Met | M | nonpolar | neutral |
| Phenylalanine | Phe | F | nonpolar | neutral |
| Proline | Pro | P | polar | neutral |
| Serine | Ser | S | neutral |  |
| Threonine | Thr | T | nonpolar | neutral |
| Tryptophan | Trp | W | polar | neutral |
| Tyrosine | Tyr | Y | nonpolar | neutral |
| Valine | Val | V |  |  |

(Source: Lehninger Principles of Biochemistry, David L. Nelson, 2008)

The genetic code

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | U | C |  | A |  | G |  |  |  |
|  | U |    <br> UUU Phe  <br> UUC   <br> UUA Leu  <br> UUG   | UCU <br> UCC <br> UCA <br> UCG | Ser | UAU UAC UAA UAG | Tyr <br> Stop Stop | UGU UGC UGA UGG | $\begin{aligned} & \text { Cys } \\ & \text { Stop } \\ & \text { Trp } \\ & \hline \end{aligned}$ | U |  |
| 1st | C | CUU  <br> CUC  <br> CUA Leu <br> CUG  | ccu CCC CCA CCG | Pro | CAU <br> CAC <br> CAA <br> CAG | $\begin{aligned} & \text { His } \\ & \text { Gln } \end{aligned}$ | CGU CGC CGA CGG | Arg | U | 3rd |
| letter | A | AUU  <br> AUC Ile <br> AUA  <br> AUG Met | $\begin{aligned} & \text { ACU } \\ & \text { ACC } \\ & \text { ACA } \\ & \text { ACG } \end{aligned}$ | Thr | AAU <br> AAC <br> AAA <br> AAG | Asn <br> Lys | AGU <br> AGC <br> AGA <br> AGG | Ser <br> Arg | U | letter |
|  | G | GUU <br> GUC <br> GUA <br> GUG | GCU GCC GCA GCG | Ala | GAU <br> GAC <br> GAA <br> GAG | Asp Glu | GGU <br> GGC <br> GGA <br> GGG | Gly | U |  |

(Source: taken from (http.//www.google.com.au/imgres?imgurl=http.//biology.kenyon. edu/)

## Chapter 1 - Introduction and Literature Review

## Chapter 1 - Introduction and Literature Review

### 1.0 Introduction and Literature Review

Pathogens continually evolve and adapt to avoid detection by the host's defence mechanisms and therefore two major systems, the innate and adaptive immune systems, have evolved to combat these pathogens in all mammals. A function of the adaptive immune system is the recognition of antigens by the T cell receptor (TCR) and major histocompatibility complex (MHC) molecules. This process leads to the activation of the T cell signalling cascade. In humans and other mammals many of the molecules involved in this cascade have been characterized and their functions elucidated (Davis, 2002, Gong et al., 2001). However, up until the turn of the last century marsupials were thought to be immunologically immature (Belov et al., 2002). The difference between metatherians and eutherians is the degree of development at birth. Marsupials have a shorter gestation period and their neonates have immature lymphoid organs with pouch young being unable to elicit an immune response for some time after birth (Baker and Miller, 2007, Belov et al., 2002, Ashman et al., 1975). While some of the molecules involved in the T cell signalling cascade have since been characterized in marsupials, some of the receptors, signalling molecules and cytokines tied to that cell signalling cascade were still unknown. Studies conducted in the second half of the last century reported differences in the T cell responses between marsupials and eutherians (Baker et al., 1999, Waring et al., 1978, Ashman et al., 1977, Ashman et al., 1976, Ashman et al., 1975). It was further discovered that marsupials were wildlife reservoirs for diseases such as Ross River fever caused by the Ross River Virus (RRV), and infections caused by Mycobacteria bovis and M. avium (Old and Deane, 2005, Boyd et al., 2001, Buddle and Young, 2000).

Because some marsupial species are endangered, and frequently succumb to these diseases in captivity, the development of immunological reagents that would identify asymptomatic animals is highly desireable. In order to do so it is first necessary to understand the marsupial immune system. However prior to this study little work has been done to characterize the immune molecules important in the disease processes. Marsupials represent an important branch of mammalian evolution. Based on genetic

## Chapter 1 - Introduction and Literature Review

data, the marsupial divergence from the most recent common ancestor can be placed at 173-193 million years ago (Woodburne et al., 2003, Tyndale-Biscoe, 1973). This makes them ideal subjects for the study of evolutionary links in the development of the adaptive immune system and to identify changes in that system over time. For these reasons this study was undertaken to characterize the key molecules of the adaptive immune system in marsupials. The marsupials Monodelphis domestica, Macropus eugenii, Onychogalea fraenata, Trichosrurus vulpecula and Lagrochestes hirsutus were chosen as appropriate species for this study.

Monodelphis domestica (South American gray short tailed opossum), a didelphid, was the first marsupial to have its genome sequenced (Mikkelsen et al., 2007). Because so few characterizations of marsupial molecules have been conducted, the M. domestica genome published at UCSC (http://genome.ucsc.edu/) and the predicted sequences for many molecules deposited in Genbank (http.//www.ncbi.nlm.nih.gov/genbank/) were used in the present study as positive controls. M. domestica lacks a pouch thus exposing the neonates which are easily accessed for studies into the development of the immune system (Wang et al., 2003). This marsupial species is unique in that it can repair a damaged spinal cord and can develop melanomas by exposure to UV light which makes it an invaluable research animal (Mladinic et al., 2010, Chan et al., 2002). This animal has also been used for comparative genetics studies (Samollow, 2006). For those reasons M. domestica was included in the present study as a model species for the investigation of immune molecules in Australian marsupials.

The Australian marsupial Macropus eugenii (tammar wallaby), a macropod, has been used for a number of years as a biomedical research model in anatomical and physiological studies (Griffiths et al., 1993, Langer, 1984), reproductive studies (Renfree et al., 2011, Hickford et al., 2009) and genetics research (Marshall Graves and Westerman, 2002). M. eugenii was the first Australian marsupial to have its genome sequenced and this was published by Renfree et al., (2011). This species was included in this study since it represented the most studied marsupial species and is the main focus for genetics and comparative immunology research in Australia.

## Chapter 1 - Introduction and Literature Review

A close relative of $M$. eugenii is Onychogalea fraenata (bridled nailtail wallaby) which is an endangered marsupial native to Central Queensland, Australia. Prior to this study no molecular characterizations have been published for any of the immune molecules in this animal. This species was chosen because, in a captive environment, it appears to resist infection by different pathogens. This makes this species interesting and novel to investigate in respect of whether or not specific differences in its immunology can be detected when compared to M. eugenii and M. domestica.

Lagorchests hirsutus (rufous hare wallaby) is a small macropod which appears to readily succumb to mycobacterial infections (Buddle and Young, 2000) in contrast to O. fraenata which appears to be more resistant to such infection. Some molecular studies have been carried out for L. hirsutus but the main focus of research was predominantly concentrated on immunohistochemical studies (Young and Deane, 2003, Young et al., 2003). This species was chosen for part of this study for comparison with $O$. fraenata and M. eugenii. It was considered that because of this species' susceptibility to mycobacterial infections, a sequence comparison of one of the key molecules with that of $O$. fraenata may possibly reveal differences in some of the important structural motifs.

Trichosurus vulpecula (Australian brushtail possum) was included in this study when an opportunity for collaborative research presented itself with a New Zealand research group into the immune status of that marsupial. This animal is native to Australia but a large introduced population exists in New Zealand. T. vulpecula is a vector of Mycobacterium spp and is of great concern in the cattle industry in that country.

### 1.1 Adaptive Immunity

The adaptive immune system responds to a pathogen that has evaded the innate (inborn) immune system (Medzhitov and Janeway, 1997). One of the main features of the adaptive immune system is the differentiation of self from non-self. This is determined by the avidity of the interactions between $T$ cell receptors (TCRs) on T lymphocytes, specific to antigens, and major histocompatibility complex (MHC)/antigen peptides (pMHC) presented in the antigen presenting groove of the MHC on the antigen presenting cell

## Chapter 1 - Introduction and Literature Review

(APC) (Jiang and Chess, 2009, Sehgal and Berger, 2000). The adaptive immune response also ensures immunological memory which is achieved through clonal expansion and lymphocyte differentiation of antigen-specific lymphocytes. Thousands of copies of a particular antigen receptor on the cell's outer surface recognize a specific antigen. The diversity of antigen receptors is created by a process known as somatic recombination or V(D)J recombination (Matzinger, 2002). This mechanism allows a few genes to generate a large number of different antigen receptors which are then expressed on each individual lymphocyte thus enabling them to respond to antigen (Krangel et al., 1998). An important functional component in the adaptive immune system is the release of the immunemodulatory molecule IL-2 which has been termed the master regulator of the adaptive immune system (Sharma et al., 2011) .

T cell differentiation of naïve T lymphocytes into effector and memory subsets is one of the necessary events of $T$ cell mediated immunity which is an essential function of the adaptive immunity (Fig.1.1).


Figure 1.1. $T$ cell sub-populations of $T_{h} 1, T_{h} 2, T_{h} 17, T_{h} 9$ and $T_{\text {reg }}$ lymphocytes. Adapted from (Brand, 2009). A detailed characterization of the different $T$ lymphocyte phenotypes, their function, and their pathways of differentiation of T cell subpopulations has been carried out in human cells (Appay et al., 2008). However in marsupials no such in-depth investigation has been undertaken to date. Those T cell sub-populations in marsupials have been identified by the characterization of receptors which identify a certain cell type. A morphological investigation of marsupial T-lymphocytes revealed a similarity to eutherian T lymphocytes but they were not identical to human T-lymphocytes (Young and Deane, 2005). T helper T lymphocytes are subsets of $\alpha \beta T$-cells and play a role in controlling and regulating the immune system (Rolland and O'Hehir, 1999). T helper subsets express different profiles of cell surface molecules and are characterized by a distinguishing cytokine milieu.
$\mathrm{T}_{\mathrm{h}} 1$ cells comprise the main T cell sub-population involved in the cellular immune response and host defense and are characterized by the production of pro-inflammatory

## Chapter 1 - Introduction and Literature Review

cytokines such as IFN- $\gamma$, IL-2 and lymphotoxin- $\alpha$ (LT $\alpha$ ) (Spellberg and Edwards, 2001). An in silico prediction exists for the IFN $\gamma$ gene in M. eugenii, however no expression studies have to date been successful (Wong et al., 2006). The identification of LT $\alpha$ and LT $\beta$ in marsupials indicated that marsupials have the capacity to deal with intracellular pathogens. This is consistent with what has been observed in captivity (Harrison and Deane, 2000, Harrison and Deane, 1999). Interleukin-12 has been identified in $M$. domestica with an in silico method, however no expression studies have yet confirmed the prediction (Wong et al., 2006).

The $T_{h} 2 T$ cell subset is mainly involved in the humoral immune response and host defense against extracellular parasites (Charles et al., 2010). They differentiate from a naïve CD4 cell in the presence of the cytokine IL-4 which has been elucidated in marsupials (Young, 2010). The marsupial IL-4 appeared to have a $32 \%$ sequence homology to human at the putative amino acid level. However structurally important motifs were conserved indicating that the function of the molecule might also be conserved (Young, 2010). This cell population was not relevant to this study.

While $T_{h} 1$ cells are important for protection against viruses and intracellular bacteria, $T_{h} 2$ cells direct immunity to extracellular parasites at the mucosal surface. A third $T$ cell subset, $\mathrm{T}_{\mathrm{h}} 17$, only recently discovered in humans constitutes the link between innate and adaptive immunity (van Beelen et al., 2007). $T_{h} 17$ cells appear to be developmentally distinct from the $T_{h} 1$ and $T_{h} 2$ subsets and appear to play key roles mainly in autoimmune diseases in humans (Brand, 2009, Emamaullee et al., 2009, Hofstetter et al., 2009). Th17 cells produce IL-17A and IL-17F, and it has been suggested that $\mathrm{T}_{\mathrm{h}} 17$ polarized cells may mediate the regression of established tumors (Muranski et al., 2008, Martin-Orozco et al., 2009). It was evident in human and mouse studies that the $T_{h} 17$ sub-population is induced by IL-6, IL-1 $\beta$ and TGF- $\beta$ (Manel et al., 2008, Ouyang et al., 2008, Volpe et al., 2008). Despite the fact that IL-17 was identified in the wallaby genome (Renfree et al., 2011), no sequence motifs have been identified in IL-17 and no immunohistochemical

## Chapter 1 - Introduction and Literature Review

investigations have been conducted. The elucidation of the IL-17 sequence will therefore further contribute to our knowledge of the marsupial immune system and will indicate how sophisticated it is in comparison to other mammals.
$\mathrm{T}_{\mathrm{h}} 17$ cells have their antagonists in the regulatory T cell population. $\mathrm{T}_{\text {regs }}$ play an active role in immune tolerance and can be recognized by their cell surface receptors. $\mathrm{T}_{\text {regs }}$ are peripheral CD4 ${ }^{+}$T lymphocytes which express CD25 on their cell surface and play an essential role in suppressing damaging immune responses (Sakaguchi et al., 1995). Initially it was thought that this T cell was a variant of CD4 cells but it was soon evident that naturally occurring $\operatorname{CD} 4^{+} \mathrm{CD} 25^{+} \mathrm{T}_{\text {reg }}$ cells were important for homeostasis and play a role in preventing immune responses to auto-antigens (Sakaguchi et al., 2008). $\mathrm{T}_{\text {reg }}$ cells can suppress CD4 and CD8 T lymphocytes, B lymphocytes, NK cell, dendritic cells and neutrophils, hence limiting both the innate and adaptive immune responses (Azuma et al., 2003, Fallarino et al., 2003, Lewkowicz et al., 2006).
$\mathrm{T}_{\text {regs }}$ participate in regulating graft rejection (Walsh et al., 2004) but may also suppress anti-tumor responses and prevent the elimination of some infections such as Pneumocystis carnii and some multicellular parasites (Suvas and Rouse, 2006, Mittrucker and Kaufmann, 2004). $\mathrm{T}_{\text {regs }}$ express the Forkhead box protein 3 transcription factor which is essential for the development and function of thymic and peripheral $\operatorname{CD4}{ }^{+} \mathrm{CD} 25^{+} \mathrm{T}_{\text {reg }}$ cells. A fragment of Foxp3 is annotated in the wallaby genome. The expression of this molecule in M. eugenii and O. fraenata was investigated in the current study to determine whether or not the full T cell repertoire exists in these animals.

### 1.2 Marsupial immunology

Immunohistochemical studies of marsupial tissues have indicated that T and B-cells could be defined by using antipeptide antibodies (Coutinho et al., 1995, Hemsley et al., 1995, Jones et al., 1993). Use of a polyclonal anti-human CD3- and a monoclonal anti-human CD5 antibody to the Pan T cell markers CD3 and CD5 also enabled marsupial

## Chapter 1 - Introduction and Literature Review

immunologists to identify T lymphocytes in different tissues. This included gut-associated lymphocyte tissue (GALT), mesenteric lymph nodes, and tissue beds of spleen, thymus and bronchus-associated lymphoid tissue (BALT) (Old and Deane, 2001, Old and Deane, 2002b). By using these species cross-reactive antibodies, T lymphocytes were identified in adult T. vulpecula, Pseudocheirus peregrinus (ringtail possum), M. domestica (Jones et al., 1993) and Phascolarctos cinereus (koala) (Canfield et al., 1996, Hemsley et al., 1995). By employing a monoclonal antibody from a conserved peptide sequence of human CD5 antigen, the cell surface marker CD5 was identified in M. eugenii, Potorous longipes (longfooted potoroo), Potorous tridactylus (long nosed potoroo) and L. hirsutus (rufous hare wallaby) (Young and Deane, 2003). The identification of T lymphocytes in the lymphoid tissue of Isodoon macrourus (northern brown bandicoot) was also demonstrated by using a mouse anti-CD3 antibody (Cisternas and Armati, 2000). In addition, rabbit anti-CD3 polyclonal antibodies were used to identify the same cell population in the more distantly related Didelphis albiventris (Brazilian white bellied opossum) (Coutinho et al., 1995). The monotreme Ornithorhynchus anatinus (platypus) was also investigated with anti-human CD3 and CD5 antibody resulting in the identification of T lymphocytes in spleen, thymus and lymph nodes (Connolly et al., 1999). This indicated that T lymphocytes could be located in marsupial tissues but no distinction could be made between the different T cell subsets except that CD3 and CD5 in human lymphoid tissue were associated with a $T_{h} 1 T$ cell sub-population.

It has been stated that marsupials have diminished $T$ cell responses, such as an almost non-existent mixed lymphocyte response, and a delayed response time in skin graft rejections. They were therefore termed inferior in their immunological capacity compared to other mammals (Stone et al., 1997b, Stone et al., 1996). This was reported by Jurd (1994) who called the metatherian mammals 'primitive'. Marsupial immune-competence has been assessed in model animals such as Setonix brachyurus (quokka), M. domestica and M. eugenii in early marsupial research (Waring et al., 1978, Brozek et al., 1992, Stone et al., 1996) . Cell mediated immune responses were studied both in vivo by observing

## Chapter 1 - Introduction and Literature Review

responses to graft rejection, and in vitro by culturing lymphocytes with mitogens (Old and Deane, 2000). It was further reported that skin grafts were successful in young immunologically underdeveloped S. brachyurus (Waring et al., 1978). No further experiments were carried out to investigate the mechanism of skin graft acceptance in different juvenile age groups. Similarly, the transplantation of thymus from 30 day and 40 day postpartum young were reported to be successful in the same species (Ashman et al., 1975). Old and Deane (2000) reported a low stimulation index in a mixed lymphocyte culture from marsupial pouch young while Baker et al. 1999 documented a rise in the proliferative response in aged animals. It appears that the argument concerning the in vitro stimulation and mixed lymphocyte reaction in marsupials remains unresolved.

As research continued over the years into the immune competency of marsupials it was found that although suffering from serious mycobacterial infections some did not succumb easily to the disease (Buddle and Young, 2000). As a vector for Mycobacterium bovis, $T$. vulpecula poses a threat to the economic viablility of the cattle industry in New Zealand. Mycobacterium avium also poses a great risk to endangered marsupials in captivity. Buddle and Young (2000) linked the inability to wall off the mycobacterial infection sites to deficiencies in the cellular immunity of marsupials. The same argument was presented by researchers investigating mycobacterial infection in Dendrolagus matschiei (Matschie's tree kangaroo). These animals have a documented history of $M$. avium infections and there is no evidence of any immunosuppressive retroviral infection in that species (Montali et al., 1998). This differes from P. cinereus which often suffers from koala immunodeficiency virus (KIDS) and chlamydia and was shown to have retroviral activity in its genome (Hanger et al., 2000).

Other marsupials such as $O$. fraenata were observed to resist infection with Toxoplasma gondii and Echinococcus granulossus in captivity (Turni and Smales, 2001). A detailed study of $E$. granulosus in M. eugenii found differences in this macropod's response to the infection when compared to Ovis aries (sheep) (Barnes et al., 2007). M. eugenii did not show the conventionally observed cellular recruitment, granuloma organization and

## Chapter 1 - Introduction and Literature Review

fibrosis. It was therefore concluded that the $T_{h} 1$ (cell mediated) immune response in $M$. eugenii was inefficient (Barnes et al., 2007).
P. cinereus (koala) was investigated in relation to antibody production in response to soluble antigens and particulate antigens. When compared to Oryctolagus cuniculus (rabbit) the response was very slow (Wilkinson et al., 1994, Wilkinson et al., 1992), however when these experiments were repeated in an in vitro lymphocyte assay the responses were very similar to those of other eutherian mammals (Wilkinson et al., 1994).

By the turn of the twentieth century a few contradictory statements were found in the literature in regard to marsupial immunology. While the majority of researchers maintained that marsupial immune systems were under-developed, Stone et al., suggested otherwise. Harrison and Wedlock (2000) took an interesting position stating that marsupials and eutherian mammals share similarities, but also have substantial differences such as the presence of two thymuses in the macropods. A distinct difference in the B cell biology of marsupials where delayed secondary antibody responses are dominated by $\operatorname{lgM}$ rather than the obligatory class-switch from $\lg \mathrm{M}$ to $\lg G$ was also reported. So to was the lack of T cell dependent carrier effects in secondary antibody responses (Dean and Cooper, 1998). It was further hypothesized that the cytokines will hold the key to the functioning of the marsupial immune system (Harrison and Wedlock, 2000).

During the process of marsupial genome sequencing, researchers came to the conclusion that marsupials may not be so different to the eutherian mammals (Samollow, 2008, Belov et al., 2007). M. domestica was the first marsupial to have its genome sequenced (Mikkelsen et al., 2007) followed by M. eugenii, an Australian macropod (Renfree et al., 2011). The latest marsupial genome sequencing project was that of Sarcophilus harrisii (Tasmanian devil) infamous for the terrible Devil Facial Tumor Disease (DFTD), a transmissible tumor that has brought this species to the brink of extinction

## Chapter 1 - Introduction and Literature Review

(Murchison et al., 2012). It was hoped that the elucidation of the genome would hold the answer to the survival of that species.

A characterization of key elements in the adaptive immune system using the marsupial genomes would identify any differences in the molecular makeup of marsupial genes compared to the same genes in other mammals. Nucleotide sequences, intron/exon structures, gene ontogeny and the ability to infer structure and functionality would quickly indicate any differences to other mammalian sequences and show significant modifications or similarities. Investigating key molecules of the $T$ cell signalling cascade at the message (mRNA) level would therefeore add to the debate as to whether marsupials are as sophisticated in their immunological makeup as are other mammals.

Chapter 1 - Introduction and Literature Review

The diagram in Fig. 1.1 compares the elements of the $T$ cell signalling cascade of humans with what was known in marsupials before the present study was undertaken.


Figure 1.2. Comparison of the known components of the $T$ cell signalling cascade between human and marsupials.

## Chapter 1 - Introduction and Literature Review

1.3 T cell signalling cascade

The T cell signalling cascade is initiated when an antigen binds the antigen binding groove of the major histocompatibility complex molecule located on an antigen presenting cell. This event triggers the TCR located on T lymphocytes. This is the first stimulus that will initiate the $T$ cell signalling cascade in humans and other mammals. The activation of the TCR promotes a number of signalling cascades that determine cell fate and the transcription of immune regulatory molecules (cytokines) that regulate cell survival, proliferation and differentiation of $T$ lymphocytes (Dranoff, 2004).

An early event in T cell signalling is the phosphorylation of the immunoreceptor tyrosinebased activation motifs (ITAMs) on the cytosolic side of the TCR/CD3 complex by lymphocyte protein-tyrosine kinase (Lck). Once Lck and other Src family tyrosine kinases are activated through phosphorylation, the zeta-chain associated protein kinase (ZAP-70) is recruited to the TCR/CD3 complex (Burbach et al., 2007). This event activates ZAP-70 which in turn promotes recruitment and phosphorylation of adaptor and scaffold proteins found downstream from ZAP-70 (Alonso et al., 2003). ZAP-70 phosphorylates the $\mathrm{SH}_{2}$ domain containing leukocyte protein of 76 kDa (SLP-76) which recruits the guanine nucleotide exchange factor (VAV) and the non-catalytic region of tyrosine kinase adaptor protein (Nck), the Grb2 related adaptor protein (GADS) and the IL-2 inducible tyrosine kinase (ITK) (Qi and August, 2007). Transient molecules such as phospholipase (PLCץ1) produce second messengers such as diacylglycerol (DAG) and inositol trisphosphate ( $\left(\mathrm{IP}_{3}\right)$. DAG activates the protein kinase C-theta (PKC日) and the Mitogen activated kinase (MAPK)/Extracellular Signal-Regulated Kinase (Erk) pathways, both promoting transcription factor nuclear factor kappa beta (NF-kB) activation (Okkenhaug et al., 2004). The release of calcium from the endoplasmic reticulum (ER) is triggered through $\mathrm{IP}_{3}$, and through the activation of calcium bound calmodulin, calcineurin is activated. This promotes the transcription of the IL-2 gene through the transcription factor nuclear factor of activated T lymphocytes (NFAT).

The activation of the transcription factor NFKB is dependent on stimulation of the TCR and co-stimulation from CD28 (Davis, 2002). This cascade is negatively regulated in order to

## Chapter 1 - Introduction and Literature Review

keep hyperactivation of immune responses under control. The cytotoxic T-lymphocyte antigen-4 (CTLA-4) negatively regulates T cell activation (McCoy and Le Gros, 1999). Once T lymphocytes are activated, CTLA-4 is rapidly endocytosed thus removing it from the cell surface. ZAP-70 initiates the process of active release and translocation of CTLA-4 to the membrane after TCR signalling. CTLA-4 antagonizes T cell function through the inhibition of CD28 signalling by competing for the CD80 and CD86 ligands which are located on the antigen presenting cell (Gough et al., 2005, Lin et al., 1998).

T lymphocytes are important in cell mediated immunity which is a part of the adaptive immune system. It is this part of the immune system that is involved in the defense against intracellular pathogens (Anderton, 2006). It is also involved in graft rejection, and in the mixed lymphocyte response, either performed in vitro (Waldmann, 2006, Rich and Rich, 1974) or during the sensitization phase, where T lymphocytes recognize alloantigens expressed on cells of the foreign graft and proliferate in response (Kreijveld et al., 2008).
1.4 Key molecules of the T cell signalling cascade

### 1.4.1 The Major Histocompatibility Complex

In the human T cell signalling cascade the initiation of the signal begins from when the MHC captures and internalizes an antigen. The MHC molecule is a cell surface glycoprotein on the surface of an antigen presenting cell (APC) and determines compatibility of donors in transplant medicine as well as the susceptibility of an individual to an autoimmune disease (Gerloni et al., 2004).

The MHC gene family comprises class I and II regions which encode antigen presenting molecules, and a class III region containing immune and non-immune genes. The chicken has one of the smallest class II regions with 19 genes (Kaufman et al., 1999), while the human class II region contains 264 genes (Horton et al., 2004, The MHC sequencing consortium, 1999).

## Chapter 1 - Introduction and Literature Review

In most other mammals, MHC class III is located between classes I and II. In R. norvegicus (rat) the class I genes are adjacent to the antigen processing genes (Kelley et al., 2005) while in Sus scrofa (pig) the class II genes are separated from the remainder of the MHC (Joly et al., 1998). Amphibian and bird MHC molecules appear to be similar to the human gene organization with three closely linked regions (Ohta et al., 2006). However in teleost fish the class II loci are divided between two linkage groups distinct from the linkage group containing the class I loci (Bingulac-Popovic et al., 1997). The MHC of M. domestica contains 114 genes, 87 of which are shared with humans (Belov et al., 2006). The genotypic variation of the marsupial MHC lies between eutherian mammals and birds, but the gene organization of the marsupial MHC appears to be closer to that of non-mammals. An investigation by Belov et al. (2006) indicated that the MHC class I genes amplified within the class II region, creating a unique class I/II region not seen in any other animal. Recent studies indicate that there has been a shift in the M. eugenii MHC away from the core MHC due to retroviral activity (Siddle et al., 2011). However, the M. eugenii MHC is predicted to consist of 129 putative functional genes, which puts this marsupial between M. domestica and human in terms of the size of the MHC molecule (Siddle et al., 2011). Although there appears to be a difference in the organization of the MHC genes between vertebrates, and even between mammals, the function appears to be conserved.

The human MHC has great diversity and is highly polymorphic, acting almost like a fingerprint, and in a mixed population there are no two individuals, except for identical twins, with the same set of MHC genes. However there are species, such as Acinonyx jubatus (Cheetah) (Castro-Prieto et al., 2011), Castor fiber (Eurasian beaver)(Babik et al., 2005) and Ailuropoda melanoleuca (giant panda)(Zhu et al., 2007) where low MHC diversity has been reported. Low MHC diversity was identified as the contributing factor in the near demise of $S$. harrisii which appears to be threatened by a transmissible tumor involved in devil facial tumour disease (DFTD) (Siddle et al., 2007).

The MHC molecule plays a major part in transplant biology. In a transplant situation the MHC molecules themselves are antigens and incite an immune response in the recipient leading to transplant rejection (Janeway, 2001).

## Chapter 1 - Introduction and Literature Review

Another molecule important in graft rejection and in the T cell signalling cascade is the coreceptor CD86 located on the antigen presenting cell.

### 1.4.2 CD86

It is well documented that T lymphocytes require co-stimulatory signals for optimal activation and clonal expansion. CD28 is thus far the best characterized co-stimulator associated with the known ligands CD80 and CD86 (van Rijt et al., 2004, Nakajima et al., 1997). CD86 is a type I membrane protein and a member of the immunoglobulin superfamily. CD86 is involved in various immune responses including graft rejection, and is stimulated via the CD28 receptor. This system has a major role in regulating inflammation in autoimmune diseases and in graft vs. host disease (Nolan et al., 2009).

### 1.4.3 The $T$ cell receptor alpha /beta (TCR $\alpha \beta$ ) and CD3 complex

The T cell receptor, like the MHC molecule, is a disulfide linked dimeric receptor located on the surface of T lymphocytes which have an antigen binding cleft located between the $\alpha$ and $\beta$ chains. These two chains have specificity for antigen but no signalling capacity which is consistent with the short cytoplasmic tail of this molecule (Holst et al., 2008). TCR signalling commences with the activation of protein tyrosine kinases that are mediated by the Src kinases Lck and Fyn, the 70kDa zeta-associated protein kinase, and members of the Tec kinase family (Nel and Slaughter, 2002). Signalling is induced by the phosphorylation of tyrosine residues in these molecules which leads to the activation of specific signalling molecules (Weiss and Littman, 1994). The signalling task falls upon a complex called the CD3 complex, an accessory molecule to $\alpha$ which is composed of six invariant polypeptide chains (Abram and Lowell, 2007). The assembly of the CD3 complex proteins is responsible for the transport of the receptor to the cell surface where the TCR binds to peptide MHC ( pMHC ) thus activating the signalling cascade.

The TCR and the glycoproteins of the CD3 complex are developed and expressed in late thymic ontogeny (Reinherz et al., 1986). Interspecies sequence comparisons of structural elements of the mammalian TCRs found that they exhibit clear homologies to the human TCR especially in the constant domains (Marchalonis et al., 1996).

## Chapter 1 - Introduction and Literature Review

The TCR of humans is composed of a 51 kDa alpha and a 43 kDa beta chain which is similar to the TCRs of other species (Acuto et al., 1983). Both chains contain variable regions and constant domains (Cole et al., 2007). The V domain contains the complementarity determining regions (CDRs). The number of CDRs vary between the alpha and beta chains (Haynes and $W u, 2007$ ). The CDR1 and 2 regions bind to the MHC, while the CDR3 domain contains a single binding site for an antigen (Haynes and Wu, 2007). Further evidence of a conserved structure was found when the sequences of the $O$. aries TCR $\alpha$ chain was elucidated. This indicated that the primary structure of the immunoglobulin ( lg ) domain, transmembrane domain, and cytoplasmic C gamma domains were conserved compared to human (Hein et al., 1991). The same was found when the sequence of the S. scrofa TCR was revealed (Thome et al., 1993).

It appears that the CDR3 region is well conserved, not only among mammals but also in birds and teleost fish, indicating that this region experienced selective pressure in vertebrate evolution (Partula et al., 1996, Gobel et al., 1994). The hinge region in the TCR alpha chain varies greatly from species to species indicating that it is a biologically important domain. The TCR $\alpha$ chain sequence has been characterized in many mammals and vertebrates including the monotremes which have a sequence identity of $37 \%$ in the constant region compared to other mammals (Belov et al., 2004). The alpha chain of the TCR has also been elucidated in the marsupials T. vulpecula (Zuccolotto et al., 2000) and M. domestica (Baker et al., 2001). The TCR $\alpha$ sequences of those marsupials encompass all the important structural motifs found in other mammals.

The TCR $\beta$ chain, like the $\alpha$ chain, can be identified by the hypervariable CDR3 region which is the site of V(D)J recombination and antigen contact (Freeman et al., 2009). The alpha chain only undergoes a VJ recombination which may explain the reduced conservation in the alpha chain among mammals. The recombination process is facilitated by the RAG proteins RAG-1 and RAG-2 both of which have been characterized in $M$. domestica (Miller and Rosenberg, 1997).

From a sequence alignment it can be determined that the constant domains of the TCR $\beta$ gene are highly conserved in a number of mammals such as $H$. sapiens, Mus musculus

## Chapter 1 - Introduction and Literature Review

(mouse), Rattus norvegicus (rat) and Oryctolagus cuniculus (rabbit), while the teleost fish and avian sequences are conserved among each other but show greater diversity to the mammals. The known marsupial sequences are highly conserved to other mammalian sequences in the CDR3 regions, but differ at the $N$-terminal end of the molecule.

A sequence homology of $\sim 30 \%$ was observed between the amphibian TCR $\beta$ sequences compared to mammalian sequences (Chretien et al., 1997). Anurians also have a conserved TCR $\beta$ chain that contains elements involved in molecular interactions with the $\alpha$ chain as well as some of the polypeptide chains that make up the CD3 complex (Fellah et al., 1993). Elements such as the FG loop, the beta core-peptide, and the F-loop were found in all mammalian sequences. The TCR $\beta$ chain of $T$. vulpecula had a $67 \%$ identity to the human $\beta 1$ sequence. Reference to a partial sequence of $M$. eugenii TCR $\beta$ was made however the sequence has not been published to date (Zuccolotto et al., 2000). The beta chain has also been characterized for M.domestica and a phylogenetic analysis revealed that the marsupial TCR constant domains of both TCR $\alpha$ and TCR $\beta$ group together to form a sister group to other mammals (Baker et al., 2001).

The CD3 complex consists of eight polypeptide chains which are expressed on the cell surface in an orderly fashion after being assembled in the endoplasmic reticulum(ER) (San José et al., 1998). The polypeptide chains form dimers by pairwise interaction. CD3ع forms a dimer with either CD3 $\gamma$ or CD3 $\delta$. Once formed, they assemble with the TCR chains and on completion the $\zeta$ unit joins the receptor. The whole molecule is then transported from the ER to the cell surface, thus making the TCR弓 chain the rate limiting step of this process (Jose et al., 1998).

The CD3 $\varepsilon$ and TCR弓 chains are important in transmitting a signal from the TCR since the cytoplasmic tail of the receptor is too short to transduce the signal. Therefore the gene organization of both of these molecules is important in order to elucidate any possible differences in function. The human CD3 consists of nine exons. Three of these encode the junction of the signal peptide and mature protein and were found to be very small containing only 21,15 and 18 base pairs respectively (Clevers et al., 1988b). These small

## Chapter 1 - Introduction and Literature Review

exons have only been found in $H$. sapiens and $M$. musculus where the latter has only two small exons.

The CD3 2 chain is one of the most important chains of the CD3 complex and has been investigated in many vertebrates. The molecule has also been investigated in the marsupial $M$. eugenii showing a high sequence homology to humans ( $>50 \%$ ) and other mammals, especially in the ITAM region (Old et al., 2001). However no other marsupial $C D 3 \varepsilon$ molecule has been elucidated therefore, prior to the present study, no comparison could be made between the marsupials and other mammals.

Other subunits of the CD3 complex, such as CD3 $\gamma$ and CD38, have also been characterized in marsupials. The CD3y chain was defined in M. eugenii (Harrison et al., 2003a), while the CD3 $\delta$ chain was characterized in Isoodon macrourus (northern brown bandicoot), M. eugenii and M. domestica (Baker et al., 2005).

### 1.4.3.1 The $T$ cell receptor gamma/delta (TCR $\gamma \delta$ )

$\gamma \delta$ T lymphocytes are a small subset of T lymphocytes that carry a distinct T cell receptor on their surface. This receptor consists of a single $\gamma$ and a single $\delta$ chain. This group of $T$ lymphocytes is a minor cell population in the peripheral blood but is found abundantly among intestinal intraepithelial lymphocytes (Holtmeier and Kabelitz, 2005). These cells can be placed between the adaptive immune and innate immune response (Born et al., 2006) since they re-arrange TCR genes similar to TCR $\alpha \beta$ T lymphocytes and also develop a memory phenotype. On the other hand, restricted TCRs can be used as pattern recognition receptors (Morita et al., 2000). $ү \delta$ T lymphocytes have shown distinct myeloid characteristics by presenting as professional phagocytes which make them an ancient lymphocyte in an evolutionary sense (Wu et al., 2009). In contrast to the $\alpha \beta$ T lymphocytes the $\gamma \delta$ T lymphocytes are either MHC restricted or can bind free antigen which is similar to the function of immunoglobulins (Hayday, 2000).

Both chains of this TCR have been characterized in marsupials, specifically I. macrourus, M. eugenii and M. domestica (Baker et al., 2005, Harrison et al., 2003b). The investigation of

## Chapter 1 - Introduction and Literature Review

these chains in marsupials indicated that the structural features are conserved compared to humans and other eutherians.

A unique $T$ cell receptor that appeared to share similarities with the TCR $\delta$ chain has been identified in the marsupials I. macrourus, M. domestica and M. eugenii which are distantly related to each other (Parra et al., 2007), and in the monotreme O. anatinus (Wang et al., 2011b). This TCR appeared to have pre-joined $V, D$ and $J$ segments in germline DNA as opposed to somatic recombination (Parra et al., 2009). The newly found T cell receptor was named mu for marsupial and has two isoforms TCR $\mu 1.0$ and TCR $\mu 2.0$. The TCR $\mu 2.0$ appeared to be analogous to the TCR isoform described in Ginglymostoma cirratum (nurse shark) which also contains a double V domain (Criscitiello et al., 2006). Further research indicated that although TCR $\mu$ appears to be similar to the $\operatorname{IgNAR}$, a shark $\operatorname{IgH}$ chain isotype that contains two V domains, $\operatorname{TCR} \mu$ is not orthologous to the shark molecule (Criscitiello et al., 2010, Parra et al., 2007). Whether this newly found TCR binds MHC or binds free antigens like the $\gamma \delta T C R$ is unknown at present. The signalling capacity of that TCR is also unknown.

### 1.4.4 The Co-receptors CD4, CD8, CD28 and CTLA-4

Co-receptors are molecules that are expressed on the cell surface and either bind ligands to effect signalling or transmit via adaptor molecules through cytoplasmic domains that bind signalling motifs (Kirkbridge et al., 2005). Co-receptors such as CD4 and CD8 require serine or threonine residues in cytoplasmic domains in order to transduce a signal. CD4 and CD8 are some of the best-characterized proteins of the adaptive immune system. The expression of CD4 and CD8 on T lymphocytes is mutually exclusive (Wang and Bosselut, 2009). CD4 ${ }^{+}$and CD8 $^{+}$T lymphocytes are restricted by MHC class II and class I respectively (Meuer et al., 1984). Co-receptors are often associated with the TCR which is unable to transduce and regulate the signal into the cell (Kirkbridge et al., 2005).

## Chapter 1 - Introduction and Literature Review

### 1.4.4.1 The CD4 co-receptor

Human CD4 is a 55 kDa glycoprotein consisting of nine introns and ten exons, expressed on the surface of MHC class II restricted T helper cells (Zhang et al., 2008, Hanna et al., 1994). CD4 is a member of the immunoglobulin superfamily and has four immunoglobulin domains of which $D_{1}$ and $D_{3}$ resemble immunoglobulin variable domains located at the $N$ terminal end of CD4 (Ryu et al., 1990). $D_{2}$ and $D_{4}$ resemble the constant regions of immunoglobulin molecules (Zhang et al., 2008, Wu et al., 1997). CD4 also contains a joining (J)- like region, a third extracellular domain, a membrane spanning region which is homologous to the MHC class II $\beta$-chains, and a cytoplasmic domain that contains phosphorylated tyrosine's (Maddon et al., 1985). CD4 interacts with the MHC class II molecule via the $\beta_{2}$ domain, while specific residues in the cytoplasmic domain interact with the signalling molecule lymphocyte specific antigen (Lck). The interaction of CD4 with the MHC and the T cell receptor makes it an essential molecule responsible for T cell activation and it increases the affinity of thymocytes with antigen presenting cells (Marrack et al., 1983, Reinherz and Schlossman, 1980).

CD4 has been characterized in several vertebrates including some fish species such as Hippoglossus hippoglossus (Atlantic halibut) (Patel et al., 2009) and Carassius auratus langsdorfii (ginbuna crucian carp) (Nonanaka et al., 2008). It was found that in those species the Lck binding site is conserved the same as in mammals. CD4 was also characterized in the marine mammal Delphinapterus leucas (Beluga whale) which has a similar gene organization to that of human and mouse CD4 molecules. Differences in the secondary structure of CD4 in D. leucas were detected thus indicating possible differences in T cell responses and activation (Romano et al., 1999). CD4 has also been elucidated in the marsupials M. eugenii and M. domestica (Duncan et al., 2007). Secondary structure variations were found in these animals. In marsupials, a cysteine substitution prevents the building of a disulphide bridge in D1 of CD4. The consequences of these biochemical changes are unknown. It appears that the binding sites on CD4 that bind the MHC class II molecule are intact in marsupials. It is therefore expected that, in marsupials, antigen recognition functions in a similar manner to human CD4. Since CD4 controls important T

## Chapter 1 - Introduction and Literature Review

cell functions, it was important to investigate this molecule in $O$. fraenata due to the documented ability of that species to efficiently combat pathogens (Konig et al., 2002, Turni and Smales, 2001).

### 1.4.4.2 The CD8 co-receptor

CD8, like CD4, is a heterodimeric co-receptor to the T cell receptor. It consists of a disulphide bonded alpha and beta chain and binds an MHC class I molecule. Human CD8 is a member of the immunoglobulin superfamily containing an immunoglobulin variable extracellular domain (Parnes et al., 1985) which is connected via a thin stalk to the cell membrane (Gao and Jakobsen, 2000). CD8 also contains a hydrophobic transmembrane domain (Sukhatme et al., 1985) and a cytoplasmic tail that contains an Lck binding motif similar to that of CD4 (Kim et al., 2003). CD8 was first discovered as a cell surface marker in mice and was used to distinguish between CD8 ${ }^{+}$cytotoxic T lymphocytes and CD4 ${ }^{+} \mathrm{T}$ helper cells (Littman et al., 1985). CD8 can exist as a heterodimer (CD8 $\alpha \beta$ ) as well as a homodimer (CD8 $\alpha \alpha$ ). It is involved in cytotoxic T lymphocyte co-activation due to increased antigen sensitivity, and stabilizes the TCR/pMHC interaction (Devine et al., 2000).

The CD8 molecule binds to a distinct region in the MHC class I molecule and induces TCR/pMHC/CD8 interactions. In humans, the main interface between CD8 $\alpha \alpha$ and pMHC class I lies between CD8 residues 51-55 and the pMHC residues 223-29 in the $\alpha 3$ domain which forms the CD8 binding loop (Currier et al., 2002).

CD8 is involved in the immune response to infections caused by $M$. bovis and $M$. avium (Pollock et al., 2005). Endangered marsupials, such as L. hirsutus, have been shown to suffer from $M$. avis infection in captivity. They are unable to wall off infection sites resulting in the formation of secondary lesions leading to severe disease states (Buddle and Young, 2000). This process is linked to cell mediated immunity and specifically to CD8. There is evidence from mouse models that MHC class I restricted $\alpha \beta T C R^{+} C D 8^{+} T$ lymphocytes play a major role in protection from mycobacterial infections (Smith and Dockrell, 2000, Canaday et al., 1999).

## Chapter 1 - Introduction and Literature Review

Observations by zookeepers and animal handlers suggest that the marsupial O. fraenata is less susceptible to mycobacterial infections than are other macropods kept in captivity. The elucidation of CD8 in M. eugenii and M. domestica further advanced the knowledge of the $T$ cell biology in marsupials (Duncan et al., 2008). However, since those two species are only distantly related to each other, the elucidation of CD8 in $O$. fraenata would possibly show variances that may explain the observed differences in disease susceptibility between species.

### 1.4.4.3 The CD28 co-receptor

CD28 delivers the second signal required in the activation of T lymphocytes while the first signal is delivered through the TCR $\alpha \beta / C D 3$ complex (Alegre et al., 2001). The combined signals from CD28 and TCR $\alpha \beta$ lead to the expression of the cytokine interleukin-2 through a CD28 response element (CD28RE) in the IL-2 promoter. CD28 stabilizes the IL-2 mRNA and enhances $T$ cell survival through a stabilization motif in the 3 ' un-translated region (Hehner et al., 2000, Boise et al., 1995). CD28 binds the ligands CD80 and CD86, but when a T cell interacts with an MHC molecule without the surface expression of either CD28/CD80 or CD86 the T cell is said to be anergic or unresponsive (Schwartz, 2003).

The proteins CD28, CTLA-4, ICOS and BTLA belong to the family of co-stimulatory receptors and each contains a single V-type extracellular immunoglobulin domain, a transmembrane domain, and an intracytoplasmic domain. The human CD28 is a 44 kDa glycoprotein that contains a proline rich region that binds to the $\mathrm{SH}_{3}$ domain in molecules such as Itk and Tec at the N-terminal. The C-terminal end of CD28 binds the signalling molecule Lck and transports it to the lipid raft of the immune synapse (Evans et al., 2005).

CD28, like the other molecules discussed so far, belongs to the immunoglobulin superfamily and contains an important hexapeptide MYPPPY motif for binding the CD80 and CD86 ligands (Yang et al., 2003a). A YMNM motif found in the cytoplasmic domain of human CD28 is the binding site for phosphatidylinositol 3-kinase (PI3K) and Grb2 (Harada et al., 2003). CD28 exists as a disulphide linked homodimer due to an extracellular interchain disulphide bond which lies in the linker region (Lazar-Molnar et al., 2006)

## Chapter 1 - Introduction and Literature Review

connecting the immunoglobulin variable region and the transmembrane domain (Aruffo and Seed, 1987).

CD28 crosslinking under physiological conditions alone does not result in a significant induction of transcription nor in any functional response of a T cell. It has therefore been argued that the role of CD28 is a mere TCR signal transduction amplifier (Michel et al., 2001).

A partial annotation of the CD28 co-receptor for M. eugenii is in the ensembl database. There are 453bp in the database but the start site and the $3^{\prime}$ end of the open reading frame are missing. It was therefore important in this study to complete the sequence in order to identify structural motifs, especially the motifs that play a role in the regulation of $T$ cell responses.

### 1.4.4.4 Cytotoxic T- lymphocyte antigen-4 (CTLA-4) - the negative regulator

CLTA-4 is a glycoprotein ( $33-37 \mathrm{kDa}$ ) consisting of four exons and is also known as CD152. Human CTLA-4 is viewed as having a strand topology where the top surface is formed by the CDR regions known as CDR1, 2 and 3 that resemble the $V$-alpha domains. CTLA- 4 is able to dimerize the B7 binding site away from the dimerization interface thus allowing it to bind two divalent B7 molecules. It is the CDR3 region that plays the major role in the binding of the B7 molecule (Ostrov et al., 2000).

The human CTLA-4 sequence contains a short cytoplasmic tail with two potential Src homology $\left(\mathrm{SH}_{2}\right)$ domain binding sites centered at tyrosine residues 165 and 182, spaced by a proline-rich stretch. There appears to be an association between CTLA-4 and phosphatidylinositol-3 kinase (Schneider et al., 1995), and between CTLA-4 and the $\mathrm{SH}_{2}$ domain-containing protein (SHP) -2 phosphatase (Marengere et al., 1997). In humans the expression of CTLA-4 on the cell surface is dependent on phosphorylation of a tyrosine residue ( $\mathrm{Y}^{165}$ ) in the cytoplasmic domain of CTLA-4 (Baroja et al., 2000). Phosphorylation of this residue prevents the interaction of CTLA-4 (Bradshaw et al., 1997, Chuang et al., 1997, Shiratori et al., 1997) with the clathrin-associated AP-2 internalization adapter and hinders CTLA-4 internalization (Owen and Evans, 1998). The CTLA-4 dimer interface in the

## Chapter 1 - Introduction and Literature Review

complex is formed by residues that are positioned strategically within the different strands in the C- terminal end thus burying some of the access area (Schwartz, 2001).

CD28 and CTLA-4 play a role in $T_{h} 1 / T_{h} 2$ differentiation. It has been reported that ligation of CD28 during TCR stimulation in vitro promotes the differentiation of $T_{h} 2$ cells (Rulifson et al., 1997). Higher concentrations of antigen may favor $T_{h} 2$ development but little is known about the mechanism by which CTLA-4 exerts its inhibitory function. It has been suggested that CTLA-4 might 'steal' B7 ligands making them unavailable to bind CD28, thus reducing $T$ cell responses (Fallarino et al., 2006).

Studies indicate that CTLA-4 disrupts stimulatory signalling complexes by competing with CD28 for binding the B7 isoforms, and promotes the assembly of inhibitory signalling complexes (Schwartz et al., 2001). Unlike CD28, which is expressed on resting T lymphocytes, CTLA-4 is not detected on the cell surface until 24 hours after activation. In addition, CTLA-4 exhibits a 10 to 100 times greater affinity for the B7 isoforms than for CD28 (Bluestone, 1997). The balance between the opposing signals elicited by CD28 and CTLA-4 is central to the regulation of T cell responsiveness and homeostasis (Bluestone, 1997).
M. eugenii CTLA-4 is annotated in the ensembl database. However unlike CD28 it appears that the full transcript is in the ensembl database. This facilitated the design of primers to investigate the expression of CTLA-4 in various marsupial tissues in this study.

### 1.5 Signalling molecules

Signalling molecules activate specific receptors on the cell membrane and through this event either a conformational change is triggered or a secondary messenger molecule transmits a signal into the cell thus prompting a response.

### 1.5.1 T cell receptor zeta chain (TCR弓)

The TCRZ chain, or CD247, is a component of the TCR complex that plays a critical role in the assembly, transport and signal transduction of the TCR complex. This molecule is required for the expression of the TCR/CD3 complex as well as transporting the fully

## Chapter 1 －Introduction and Literature Review

assembled complex from the Endoplasmic Reticulum to the Golgi apparatus（Chowdhury et al．，2005，Geisler et al．，1989）．In the absence of the zeta chain，transportation of the TCR／CD3 complex is greatly diminished．The TCR弓 is a mediator between the binding of an antigen and the transduction of a signal leading to T cell activation（Duchardt et al．，2007）．

The human TCR gene is composed of eight exons，separated by distances of between 0.7 and 8 kb （Weissman et al．，1988）．The spliced mRNA product of the human gene is 1492 kb long，comprising a 492bp coding domain and a 3＇－untranslated region（3＇－UTR）spanning 906 bp（Lanier et al．，1989）．The TCR弓 chain forms a disulfide－linked dimer and contains a triplicated immunoreceptor tyrosine activation motif（ITAM）．All ITAMs consist of a pair of YXXL（where $Y$ denotes the amino acid tyrosine，$X$ is any amino acid residue，and $L$ denotes the amino acid leucine）sequences separated by seven or eight amino acid residues（Irving et al．，1993）．The tyrosine（Y）and leucine（L）residues are required for the functional activity of the ITAM motif in the cytoplasmic tail of the molecule（Irving et al．， 1993）．The zeta homodimer is the last unit to join the complex and the extracellular domain（EC）of this subunit regulates receptor assembly（Minguet et al．，2008）．

The short EC domain of TCRZ consists of nine amino acids．The length，but not its primary amino acid sequence，is highly conserved．This was demonstrated in Gallus gallus（chicken） where only four of the nine amino acids are conserved（Gobel and Bolliger，1998）．The highest identity（81\％）between chicken and mammalian $\zeta$－chain sequences is found in the transmembrane（TM）domain．This includes the cysteine residue involved in the dimerization of the $\zeta$－chain，and a negatively charged residue which is a putative site of interaction with TCR chains（Gobel and Bolliger，1998）．The EC is the main functional unit of the zeta chain and，when reduced from the customary nine amino acids to two amino acids，the receptor assembly is inhibited．

There is no annotation for the $M$ ．eugenii TCR弓 in the ensembl database，and this molecule has not been characterized in any marsupial．The molecular characterization of the marsupial TCR弓 chain was reported for the first time in this study．

## Chapter 1 - Introduction and Literature Review

1.5.2 TCR弓 chain and the immunoreceptor tyrosine activation motif (ITAM)

Recognition of foreign antigens by lymphocytes initiates a cascade of biochemical steps which lead to cellular activation (Bakker and van der Merwe, 2002). A specialized motif found in antigen receptors are the immunoreceptor tyrosine based activation motifs (ITAMs) which recruit other tyrosine kinases such as ZAP-70 (Borroto et al., 1999). Specifically, once the signalling cascade is activated by the engagement of the TCR with the pMHC the tyrosine kinase Lck also becomes activated and in turn phosphorylates the intracellular portions of the CD3 complex. The most important member of the CD3 family is the TCR $\zeta$ chain to which the signalling molecule ZAP-70 binds. The tandem $\mathrm{SH}_{2}$-domains of ZAP-70 are engaged by the doubly phosphorylated ITAMs of TCR $\zeta$, which together position ZAP-70 to phosphorylate the transmembrane protein Linker of Activated T lymphocytes (LAT) (Deindl et al., 2007).

This ITAM motif is responsible for the signal transduction ability of the CD3 complex. When activation occurs, phosphorylation of the zeta chain leads to the recruitment of kinases and adaptor proteins that serve as docking sites to organize multi-protein complexes (Methi et al., 2007). This results in the phosphorylation of several substrates such as CY1 (phospholipase C gamma1), MAPK (mitogen activated protein kinase), ERK1 (extracellular signal regulated kinases), and ERK2. It also activates gene transcription factors such as NFkB (nuclear factor kappa beta) resulting in the expression of IL-2 (Livolsi et al., 2001).

### 1.5.3 Zeta associated protein of 70 kDa (ZAP-70)

ZAP-70 belongs to the Syk family protein tyrosine kinases (PTKs), is important for the selective activation of T lymphocytes through its interaction with the zeta chain of the TCR/CD3 complex, and is necessary for thymocyte development (Hanks and Quinn, 1991). ZAP-70 is composed of 14 exons which encode a 70kDa molecule comprised of three functional domains, two $\mathrm{SH}_{2}$ domains arranged in tandem at the amino-terminus, and a tyrosine kinase domain at the carboxyl terminus. The two tandem N -terminal $\mathrm{SH}_{2}$ domains precede an extended interdomain region which is followed by the PTK domain at

## Chapter 1 - Introduction and Literature Review

the C-terminal end of the molecule (Brdicka et al., 2005). The interdomain A (IA) consists of a coiled-coil structure bringing the two $\mathrm{SH}_{2}$ domains into close proximity thus creating a binding site for one of the phosphotyrosine residues within the ITAM motif. ITAM binding induces a conformational change in the structure of the interdomain A region.

The structure termed interdomain $\mathrm{B}(\mathrm{IB})$ follows the $\mathrm{SH}_{2}$ domains and precedes the kinase domain of ZAP-70. This domain is important in regulating the kinase activity of ZAP-70 and contains a number of conserved phosphotyrosines. The activation loop contains the regulatory sites for this molecule. Those sites contain two important phosphotyrosines which are the sites for tyrosine phosphorylation by the lymphocyte specific kinase (Lck) (Jin et al., 2004b). The glycine rich P-loop is known to be important for nucleotide and substrate binding, catalysis, and regulation of kinase activity. This loop forms the upper side of the ATP-binding cleft and is the catalytic domain of ZAP-70 (Zoller et al., 1997).

Prior to 2006, ZAP-70 was considered to be associated only with T lymphocytes and natural killer cells. However Crespo et al. (2006) demonstrated that this molecule is also expressed in mice pro-B, pre-B and CD19 ${ }^{+}$splenic $B$ lymphocytes. It was subsequently confirmed that ZAP-70 is expressed in all developing subsets of B lymphocytes as well as in re-circulating $B$ lymphocytes indicating that this molecule is also involved in the humoral immune response (Fallah-Arani et al., 2008).

ZAP-70 participates in guiding signalling molecules towards the immunological synapse. This is necessary for the gathering of cell membrane molecules and their positioning in the synapse. The absence of ZAP-70 causes the microtubule network to become disoriented, and signalling molecules will not accumulate in the synaptic zone thus causing T lymphocytes to become non-functional (Blanchard et al., 2002). ZAP-70 has been identified as an indispensable link in directing the signalling cascade towards the nucleus and affecting the gene transcription of the cytokine IL-2 and therefore T cell activation (Blanchard et al., 2002). The identification of ZAP-70 in marsupials was undertaken in this study to provide an important step in the elucidation of the biochemical T cell signalling cascade.

## Chapter 1 - Introduction and Literature Review

### 1.5.4 Lymphocyte specific kinase (Lck)

The Lymphocyte specific kinase associates with the cytoplasmic tail of the cell surface receptors CD2, CD4, CD5, CD8, CD44, CD45 and CD122, and assists with the signal transduction from the T cell receptor (Isakov and Biesinger, 2000). It also associates with other protein kinases, the most important for this study being ZAP-70. Association of the TCR with peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules respectively, and thereby recruits the associated Lck to the vicinity of the TCR/CD3 complex. By phosphorylating tyrosine residues within the ITAMs in the cytoplasmic tail of the CD3 $\varepsilon$ chains and other CD3 subunits, Lck initiates the TCR/CD3 signalling pathway (Briese and Willbold, 2003, Isakov and Biesinger, 2000). These interactions require the chelated metal zinc, which is critical for $T$ cell development and activation (Kim et al., 2003) as well as for binding the short cytoplasmic domains of CD4 and CD8 $\alpha$ (Huse et al., 1998, Turner et al., 1990).

Human Lck is a 56 kDa protein consisting of 13 exons and the N -terminal is myristoilated and palmitoylated to form a 'unique domain' which connects the molecule to the plasma membrane of the cell (Briese and Willbold, 2003). This molecule is a member of the srctype tyrosine kinase family and consists of three functional domains, an $\mathrm{NH}_{2}$ terminal domain, a regulatory $\mathrm{SH}_{2}$ domain, and an $\mathrm{SH}_{3}$ domain. Both $\mathrm{SH}_{2}$ and $\mathrm{SH}_{3}$ domains are independently folded modules of 60-100 amino acid residues (Eck et al., 1994).

Lck also has a kinase domain with a short C terminal tail (Eck et al., 1994) and is involved in T cell and IL-2 receptor signalling (Briese and Willbold, 2003). The $\mathrm{SH}_{3}$ domain binds to an internal proline rich region which modulates the enzymatic kinase activity in the early phase of the activation of the TCR signalling cascade (Romir et al., 2007).

Preceding the $\mathrm{SH}_{2}$ and $\mathrm{SH}_{3}$ domains is a unique domain which serves as a membrane anchor and plays a role in the function and specificity of the $\mathrm{SH}_{2}$ and $\mathrm{SH}_{3}$ domains but is the least conserved domain (Carrera et al., 1995).

The interaction of Lck with the CD4 or CD8 molecules occurs through the N-terminal region. In humans the amino acid residues 417 to 429 of CD4 and 10 to 23 of Lck are

## Chapter 1 - Introduction and Literature Review

important for the non-covalent interaction between the two molecules (Rudd et al., 1988, Ravichandran and Burakoff, 1994). In humans, residues $\mathrm{C}^{420}$ and $\mathrm{C}^{422}$ of CD4 and residues 20 and 23 of Lck are critical for this interaction (Ravichandran and Burakoff, 1994). The conserved CxCP cysteine motif within the cytoplasmic tails of CD4 and CD8, and the CxxC motif of the Lck unique domain are crucial for the signal complex formation and allow the regulated release of CD4 for internalization (Huse et al., 1998). Lck is an example of a metal- dependent co-folding of two protein sequences where a short polypeptide chain and a small less conserved protein domain can fold together to mediate protein interactions (Kim et al., 2003). Further investigation in humans is required to understand this co-folding and exactly how the CD4-Lck complex is disrupted to allow CD4 internalization.

A partial Lck fragment is also annotated in the ensembl database but, prior to this study, no detailed investigation of this molecule in a marsupial had been conducted.

### 1.6 Cytokines and Forkhead box protein 3 (Foxp3)

### 1.6.1 Marsupial cytokine research

Cytokines are small secretory molecules that take care of intercellular communication and belong to the category of signalling molecules. These molecules are immune modulatory glycoproteins affecting changes in the immune system (Gooding, 1992).

Research into marsupial cytokines only began late last century to increase the number of cross-reacting reagents and to deduce the sophistication of the marsupial immune system. Tumor necrosis factor (TNF) was characterized in T. vulpecula (Wedlock et al., 1996) and in M. eugenii (Harrison et al., 1999). The sequence and secondary structure of this proinflammatory cytokine was compared to its human counterpart and it was found that there were distinct structural similarities between marsupials and eutherians. The secondary structure agreed with the human TNF secondary structure which suggested that protein conformation is conserved in both metatherian and eutherian molecules.

## Chapter 1 - Introduction and Literature Review

In humans, TNF and lymphotoxin are cytotoxic proteins with similar biological activities and which share a $30 \%$ amino acid homology. Lymphotoxin- $\alpha$ and $\beta(L T \alpha / \beta)$ are found on activated $\mathrm{T}_{\mathrm{h}} 1$ cells. Both LT- $\alpha$ (Harrison and Deane, 2000) and LT- $\beta$ were characterized in M. eugenii at the molecular level. All structurally important motifs were identified including the eutherian LT- $\alpha$ 3'UTR AU-rich region (Harrison and Deane, 2000). At the genomic level it was found that the gene organization of all three molecules was similar in marsupials compared to eutherian mammals (Harrison and Wedlock, 2000).

Interleukin-1 $\beta$ (IL-1 $\beta$ ), another pro-inflammatory cytokine, was tested in M. domestica for serological cross reactivity with $H$. sapiens and $M$. musculus and yielded a negative result (Brozek and Ley, 1991). IL1- $\beta$ was cloned and sequenced in T. vulpecula and a recombinant construct proved to be biologically active. Bovine IL-1 $\beta$ was subsequently tested on T. vulpecula but had no biological activity (Wedlock et al., 1999).

The interferon family is secreted by a variety of cell types. The most prolific manufacturer of interferon type I (IFN-I) proteins is the plasmacytoid dendritic cell (McKenna et al., 2005). Some family members of this cytokine have been sequenced in M. eugenii and the monotreme Tachyglossus aculeatus (short-beaked echidna) (Harrison et al., 2003c). A number of IFN type I genes were identified in marsupials which is consistent with the number found in eutherians. However, only a few type I IFN genes were found in the monotremes indicating a long evolutionary distance between the two clades.

Interleukin-10 has been isolated from LPS stimulated and $M$. bovis infected $T$. vulpecula alveolar macrophages. Sequence identity of the putative amino acids was $\geq 50 \%$ compared with eutherians. Structurally important motifs in the marsupial IL-10 have been identified, and were found to be conserved in both marsupials and other mammals (Wedlock et al., 1998). Interleukin-5 was identified in M. eugenii and Sminthopsis macroura (stripe-faced dunnart) with a sequence identity of $48-63 \%$ to eutherian mammals (Hawken et al., 1999). A compound microsatellite was identified within the second intron of the M. eugenii IL-5 gene and was also found in Wallabia bicolor (swamp wallaby), Dendrolagus bennettianus (tree kangaroo), S. macroura, M. domestica, T.

## Chapter 1 - Introduction and Literature Review

vulpecula and $P$. cinereus making it a possible tool for the study of population genetics (Hawken et al., 1999).

Leukemia Inhibitory Factor has been identified in T. vulpecula (Cui and Selwood, 2000), Sminthopsis crassicaudata (fat-tailed dunnart), and the monotreme Tachyglossus aculeatus (Australian Echidna) (Cui et al., 2001). The functionally important motifs were conserved in these species.

So where were the important interleukins that drive the $T_{h} 1$ and $T_{h} 2$ response in the adaptive immune system? An attempt was made to show that interferon $\gamma$ (IFN $\gamma$ ) and IL-4 exist in marsupials by trialling an anti-bovine IL-4 and IFN $\gamma$ antibody to label these molecules in the lymphocytes of $P$. cinereus and $T$. vulpecula (Higgins et al., 2004). It was determined by flow cytometry that PMA (phorbol 12-myristate 13-acetate) stimulated cells of $P$. cinereus and $T$. vulpecula both showed cross reactivity to an anti-bovine IFN $\gamma$, but no cross reactivity was observed for IL-4. The sequence of IL-4 was reported by Young (2010). This result may support the theory that marsupials lack the important $T_{h} 1$ immune response, and possibly the $T_{h} 2$ immune response (Higgins et al., 2004). Whether the cell mediated immunity of marsupials is functional or not remained unresolved.

Twenty three key immune genes in $M$. domestica were identified through data mining. This in silico identification of immune genes in that species inferred, for the first time, that the marsupial immune system is as sophisticated as that of other eutherians (Wong et al., 2006).

### 1.6.1.1 Interleukin-2 (IL-2)

Interleukin-2 is a T cell growth factor and was first identified in humans in a cell culture of mixed lymphocytes and named blastogenic factor (BF) (Morgan et al., 1976). A quantitative assay for $T$ cell growth factor (TCGF) based on the ability of IL-2 to induce proliferation of T lymphocytes in culture was developed by (Smith et al., 1980b, Smith et al., 1980a). Interleukin-2 is produced by activated T lymphocytes and causes activated B lymphocytes and natural killer cells to proliferate.

## Chapter 1 - Introduction and Literature Review

Interleukin-2 has been characterized in many vertebrates. This cytokine belongs to a family of interleukins that bind the same receptor, the common gamma chain $\left(\gamma_{c}\right)$. This cytokine is tissue and species specific and is usually only up-regulated in tissue from sick animals or mitogen stimulated tissues making it difficult to detect. Members of this family include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. To date only IL-4 in M. eugenii (Young, 2010) and IL-2 in T. vulpecula (presented as part of this study) (Young et al., 2011) from this family has been characterized in marsupials. Preliminary characterizations of IL-15 and IL21 were conducted in this study.

The avian IL-2 appears to have a length of 140 amino acids with a 21 amino acid long signal peptide (Zhou et al., 2005). By comparison, the IL-2 of the marine mammals D. leucas and Halichoerus grypus (grey seal) has lengths of 155 amino acids and 156 amino acids respectively. Their identity to other mammals was $>50 \%$ in both cases. In contrast, the avian IL-2 amino acid sequence has an identity of $>60 \%$ to other birds and $30 \%$ identity to IL-15 in mammals (St-Laurent et al., 1999), and 29\% identity to T. vulpecula. Human IL-2 has a length of 153 amino acids, including the signal peptide, as was the case for the avian IL-2. Human IL-2 also has structural similarities to IL-15. The differences between the two cytokines are found primarily in the adaptive immune responses. While IL-2 is responsible for the maintenance of regulatory T lymphocytes, IL-15 is necessary for the support of surviving CD8 memory T lymphocytes (Waldmann et al., 2001).

Mouse studies have shown that there is a decline in the proliferation of activated T lymphocytes in the pathogenesis of $M$. avium infection. This was shown to be due to the inability of T lymphocytes to produce or respond to IL-2 (Mannering and Cheers, 2002). The inability to isolate IL-2 in marsupials for such a long period of time led to the argument that these animals might not have the ability to fight mycobacterial infections. However, observations of captive marsupials by zoo keepers did not support that hypothesis. Dasypus novemcinctus (nine-banded armadillo) is the model species for the study of M. leprae infections. Prior to 2005 there were no species specific immunological reagents available for $D$. novemcinctus and marsupials. The isolation of IL-2 in $D$. novemcinctus advanced the species as a translational model (Adams et al., 2005). One of

## Chapter 1 - Introduction and Literature Review

the aims of the present study was the characterization of the marsupial IL-2 and the design of a marsupial specific IL-2 antibody.

### 1.6.1.2 Interleukin-17 (IL-17)

In humans and mice, IL-17(A) is a 155 amino acid long disulphide-linked homodimeric glycoprotein with a molecular mass of 35 kDa (Kolls and Linden, 2004). Each of the homodimeric chains has a weight of $15-20 \mathrm{kDa}$. IL-17 contains a signal peptide spanning 23 amino acids which is followed by 123 amino acids, a characteristic of the IL-17 family. The IL-17 family members have four cysteine residues that form two disulphide bonds, a characteristic of the cysteine knot family (Yao et al., 1995b). IL-17 bears no resemblance to any other known interleukins or structural domains.

The pro-inflammatory cytokine IL-17 induces differentiation and migration of neutrophils through the production of the cytokine IL-8. Protective immunity against pathogens, including mycobacteria, is provided by IL-17 (Matsuzaki and Umemura, 2007). IL-17's proinflammatory capacity induces the release of antimicrobial peptides, matrix metalloproteinase, chemokines, and cytokines which in turn affect the expansion of neutrophils ( Xu and Cao, 2010). IL-17 is also expressed by $\gamma \delta \mathrm{T}$ lymphocytes and natural killer cells thus suggesting a link between the innate and adaptive immune systems (Korn et al., 2009).

### 1.6.1.3 Forkhead box protein 3 (Foxp3)

Human Foxp3 consists of 11 exons and is a specific marker of natural T regulatory cells ( $n \mathrm{~T}_{\text {regs }}$ ) and adaptive or induced T regulatory T lymphocytes ( $\mathrm{i} \mathrm{T}_{\text {regs }}$ ). $\mathrm{T}_{\text {reg }}$ cells expressing Foxp3 are critical in the transfer of immune self-tolerance (Shevach, 2000). Foxp3 contains a Forkhead domain (FKH) that mediates a direct interaction with the transcription factor NFAT (Wu et al., 2006). $\mathrm{T}_{\text {regs }}$ express high levels of CD257, CD26L ${ }^{+}$, CTLA-4 ${ }^{+}$, GITR $^{+}$, ICOS $^{+}$and CD127 ${ }^{\text {low }}$ (Fontenot et al., 2003). They are also hypo-responsive to TCR stimulation in vitro and fail to proliferate or produce activation-induced cytokines such as IL-2 or IFNY (Fontenot et al., 2003, Hori et al., 2003, Schubert et al., 2001). On the other hand, $\mathrm{T}_{\text {regs }}$ proliferate in response to homeostatic signals and then inhibit the

## Chapter 1 - Introduction and Literature Review

proliferation and cytokine production of naïve CD4 ${ }^{+}$T lymphocytes (Fontenot et al., 2005b).

Recent research has found that $\mathrm{T}_{\text {regs }}$ may be able to alter their function depending on the cytokine milieu. $\mathrm{T}_{\mathrm{h}} 17$ cells are pro-inflammatory, are produced under similar conditions to $\mathrm{iT}_{\text {regs }}$, and change under the influence of TGF $\beta$ and IL-6 (or IL-21) (Curotto de Lafaille and Lafaille, 2009). Evidence suggests that Foxp3 is restricted to $\alpha \beta$ T lymphocytes and is linked to suppressor activity even without the expression of CD25 (Fontenot et al., 2005b). Natural $\mathrm{T}_{\text {regs }}$ are $\mathrm{CD} 4^{+} \mathrm{CD} 25^{+}$T lymphocytes that develop and migrate from the thymus to perform key roles in immune homeostasis (Takahashi et al., 1998). Adaptive $\mathrm{T}_{\text {regs }}$ are nonregulatory CD4 ${ }^{+}$T lymphocytes that acquire CD25 expression outside the thymus.

The immune-suppressive mechanism of $\mathrm{T}_{\text {reg }}$ cells is not presently understood. It has been found that IL-9, IL-10, and TGF $\beta$ are immune-suppressive soluble factors, while cell mediated regulation is controlled by the co-stimulatory molecules such as CTLA-4 (Curotto de Lafaille and Lafaille, 2009).

Prior to this study a $\mathrm{T}_{\text {reg }}$ population had not been identified in marsupials.

### 1.7 Aims and Objectives

The argument, prevalent in the literature that marsupials differ in their immunological character compared to other mammals is largely based on differences observed in their cellular immune responses. In this study a molecular characterization of the key molecules of the T cell signalling cascade which drives the cellular immune response was undertaken. This study tested the hypothesis that interleukin-2, the master regulator of the adaptive immune system, and the key signalling molecules are expressed in marsupials.

The specific aim of this study was to find evidence that the adaptive immune system of marsupials is in fact as competent as that of other mammals. The following steps were undertaken.

## Chapter 1 - Introduction and Literature Review

1. Characterize the sequences of the key signalling motifs of the T cell receptor $\alpha$ and $\beta$ chains and predict a feasible structure of those motifs. Investigate the CD3 $\mathcal{E}$ subunit in the endangered marsupials $O$. fraenata and $L$. hirsutus by determining the sequence and structurally important motifs. Determine the expressed sequence of $M$. domestica CD3 $\varepsilon$ to confirm the predicted sequence.
2. Characterize the sequences of the co-receptors CD4 and CD8 and the costimulators CD28 and CTLA-4 in order to show that the mechanism of anergy and T cell activation is supported by the same molecules that drive this mechanism in other mammals. Determine feasible homology structures for all mature putative protein sequences by prediction modelling.
3. Characterize the sequence of the TCRZ, Lck and ZAP-70 signalling molecules of the T cell signalling cascade in marsupials. Trial human specific antibodies to Lck and ZAP-70 in order to investigate possible species cross reactivity in a marsupial. Develop a python shell for structure modelling of the putative ZAP-70 protein. Determine feasible homology structures for the TCR弓 and Lck mature putative protein sequences by prediction modelling.
4. Characterize the sequence of the cytokine interleukin-2 in a marsupial and determine the putative homology structure by prediction modelling. Design a marsupial specific antibody to IL-2 and investigate its ability to identify the protein in a crude cell lysate. Determine the promoter region by data mining the ensembl database. Find evidence of a $\mathrm{T}_{\text {reg }}$ population in a marsupial by characterizing the sequence of the $T_{\text {reg }}$ surface marker Foxp3, and find evidence of a $\mathrm{T}_{\mathrm{h}} 17$ population by characterizing IL-17, the cytokine associated with that T cell sub-population.

## Chapter 2

General Materials and Methods

## Chapter 2 - General Materials and Methods

## Chapter 2 - General Materials and Methods

### 2.0 General Materials and Methods

There are two parts in this General Materials and Methods chapter. Part 1 describes the methodology for the molecular work, and Part 2 describes the methodology for the protein studies. These materials and methods are common to all experiments in the thesis. Methods that are specific to each of the molecules are stated in the Materials and Methods section of the relevant chapters.

### 2.1 Part I - Molecular Studies

### 2.1.1 Animal tissues

Tissues from four different species of marsupials, M. domestica, O. fraenata, M. eugenii and L. hirsutus were used in this study. O. fraenata tissues originated from two animals. The first animal was covered by animal ethics number 97042 from the Macquarie University Animal Care and Ethics Committee and gut nodes, mesenteric lymph nodes, liver and spleen tissues from that animal were donated by Dr. L. J. Young, CQUniversity Australia, Rockhampton, Queensland. The second animal was a young healthy male euthanized after a serious accident, and was obtained opportunistically from the Alma Street Veterinary Hospital, Rockhampton, Queensland.

The M. eugenii was covered by animal ethics number 97042 issued by the Macquarie University Animal Care and Ethics Committee, and spleen, mesenteric lymph node and thymus tissues from that animal were donated by Dr. L. J. Young.

The L. hirsutus was covered by animal ethics number 97042 issued by the Macquarie University Animal Care and Ethics Committee, and spleen and lymph node tissues from that animal were donated by Dr. L. J. Young.

## Chapter 2 - General Materials and Methods

### 2.1.2 Primer design

Degenerate consensus primers were designed for the most conserved regions within the genes which were investigated. Conservation was elucidated using the vertebrate sequences available in Genbank and the predicted $M$. domestica sequence from the UCSC databank (Kent et al., 2002), prior to the publication of the wallaby genome. That genome was subsequently used as a tool for primer design whenever a gene annotation was available. Sequence conservation was detected by aligning mammalian amino acid (aa) and nucleotide ( nt ) sequences with the sequences from other vertebrates and then comparing them with the annotated M. domestica amino acid sequence in CLUSTALW2 using a Blossum62 substitution scoring matrix (Thompson et al., 1994). Primers were subsequently designed from nucleotide alignments targeting identified, conserved regions of the annotated $M$. domestica sequence. Degenerate bases in three positions at either the $5^{\prime}$ or the $3^{\prime}$ end of the primers' oligonucleotide sequences were avoided to prevent non-specific binding (Pan et al., 2007). Degenerate primers were analyzed using the OligoAnalyzer (IDT) tool from Integrated DNA Technologies (http.//www.idtdna.com/) and PCR Primer Stats (SMS) to confirm melt Temperatures and possible impeding secondary structures of the selected primers. Care was taken to exclude degenerate bases in the primer design, and melt Temperatures of primers were kept between $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$. These primers were then trialled on cDNA libraries made from M. domestica thymus and spleen.

### 2.1.3 Total RNA isolation by Tri-Reagent

O. fraenata spleen was treated with Tri-Reagent, homogenized, and centrifuged to inactivate nucleases. RNA was then extracted with chloroform. The supernatant was treated with isopropanol to precipitate the RNA. Subsequent wash steps with $95 \%$ and $75 \%$ ethanol and centrifugation at $4^{\circ} \mathrm{C}$ resulted in an RNA pellet. The pellet was air dried for 10 min and then re-suspended in $50 \mu \mathrm{~L}$ of nuclease-free water and stored at $-20^{\circ} \mathrm{C}$.

## Chapter 2 - General Materials and Methods

### 2.1.3.1 Total RNA isolation using SV Total RNA Isolation System ${ }^{\text {TM }}$ (Promega, Madison, USA)

One mL of RNA Lysis Buffer was dispensed into a nuclease-free tube and weighed. Approximately 30 mg of tissue was added to the Buffer and manually homogenized as quickly as possible. The tube was weighed again and the tissue mass calculated by substraction. In accordance with the manufacturer's instruction, $175 \mu \mathrm{~L}$ of the tissue lysate was transferred to a 1.5 mL microcentrifuge tube. The remaining lysate was frozen at $-20^{\circ} \mathrm{C}$ for later use. Three hundred and fifty microlitres ( $350 \mu \mathrm{~L}$ ) of RNA Dilution Buffer was added to the tissue lysate and mixed by inverting four times. The lysate was incubated on a $70^{\circ} \mathrm{C}$ heat block for two and a half min. and then centrifuged for 10 min at $13,000 \times$ g. After centrifugation, $200 \mu \mathrm{~L}$ of $95 \%$ ethanol was added and mixed by pipetting. The mix was transferred to a Spin Column Assembly and centrifuged at $13,000 \times g$ for one $\min$. The liquid in the collection tube was discarded, a wash solution was added to the spin basket, and the spin column assembly was centrifuged at $13,000 \times \mathrm{g}$ for one min. For every sample, a DNase incubation mix was prepared by mixing $40 \mu \mathrm{~L}$ of Core Buffer, $5 \mu \mathrm{~L}$ $\mathrm{MnCl}_{2}$, and $5 \mu \mathrm{~L}$ of DNase I enzyme. The reaction was mixed by pipetting and kept on ice as per the manufacturer's instruction. The $50 \mu \mathrm{~L}$ of DNase treatment was added directly to the membrane of the spin column and incubated for 15 min at $23^{\circ} \mathrm{C}$. Immediately after incubation, $200 \mu \mathrm{~L}$ of DNase Stop Solution was added to the spin basket and centrifuged at $13,000 \mathrm{xg}$ for one min. Once centrifuged, $600 \mu \mathrm{~L}$ of RNA Wash Solution was added and again centrifuged at $13,000 \times g$ for two min . The spin basket was transferred to a 1.5 mL Elution Tube and $100 \mu \mathrm{~L}$ of nuclease-free water was added to the membrane of the spin basket. The Elution Tube assembly was then centrifuged at $13,000 \times \mathrm{g}$ for one min. The spin basket was discarded and the purified RNA was stored at $-20^{\circ} \mathrm{C}$.
The total RNA was verified by an ethidium bromide gel and spectrophotometric measurement. Two microlitres ( $2 \mu \mathrm{~L}$ ) of the total RNA were reverse transcribed and the resultant cDNA was used for subsequent Polymerase Chain Reactions.

## Chapter 2 - General Materials and Methods

### 2.1.3.2 mRNA isolation using FastTrack MAG

Messenger RNA (mRNA) was isolated from total RNA with a FastTrack ${ }^{\circledR}$ MAG mRNA isolation kit (Invitrogen, Carlsbad-USA) using oligo dT-conjugated magnetic beads to isolate the polyA ${ }^{+}$RNA from total RNA (Morrissey and Collins, 1989).

An aliquot of $100 \mu$ L of Binding Buffer B6 was added to the chilled total RNA and placed on a heat block at $68^{\circ} \mathrm{C}$. RNase-free water equal to the volume of Binding Buffer B 6 was added to the total RNA sample and the reaction was placed on ice. FastTrack ${ }^{\circledR}$ MAG Beads were mixed by pipetting up and down and $20 \mu \mathrm{~L}$ of the beads were added to an RNasefree tube. The tube was inserted into a magnetic separator for one min and the resulting liquid was discarded. This procedure was repeated three times. The tube was again inserted into the magnetic separator, the resulting liquid pipetted out and the total RNA sample and the heated Binding Buffer B6 was added. The tube was then removed from the magnetic separator and the beads were re-suspended in the solution by pipetting gently up and down. The sample was incubated at $68^{\circ} \mathrm{C}$ for three min, and then transferred to a rotator for 10 min at ambient temperature. The Eppendorf tube was again inserted into the magnetic separator until the beads were clearly separated (~one min ) and the supernatant was saved. The wash buffer W7 was immediately added to the beads and the tube was re-inserted into the magnetic separator. When the beads were separated the wash buffer was removed and discarded, and the procedure was repeated three times. Ten microlitres ( $10 \mu \mathrm{~L}$ ) of RNase-free water was added because the starting volume was less than $50 \mu$ g of total RNA. The tube was removed from the magnetic separator, incubated at $37^{\circ} \mathrm{C}$ for three min, re-inserted into the magnetic separator until the beads were clearly separated, removed again and the supernatant was saved. This procedure was repeated and the supernatant from both separations were combined to form the isolated mRNA. The yield was determined using a spectrophotometer and resulted in $\sim 0.3 \%$ recovery of mRNA from total RNA [(mRNA yield ( $\mu \mathrm{g} / \mu \mathrm{L}$ ) $=\mathrm{A}_{260} \times 0.04$ $\mu \mathrm{g} / \mu \mathrm{L}$ RNA $\times$ Dilution factor)].

## Chapter 2 - General Materials and Methods

2.1.3.3 mRNA isolation with PolyATract ${ }^{\circledR}$ mRNA (Promega, Madison, USA)

Ten micrograms ( $10 \mu \mathrm{~g}$ ) of total RNA was brought to a final volume of $500 \mu \mathrm{~L}$ in RNasefree water in a 1.5 mL Eppendorf tube. This was heated at $65^{\circ} \mathrm{C}$ for 10 min . Three microlitres ( $3 \mu \mathrm{~L}$ ) of Biotinylated-Oligo (dT) probe and $13 \mu \mathrm{~L}$ of $20 \times$ SSC were added to the heated RNA and gently mixed. The RNA was then incubated at ambient temperature until completely cooled ( $\sim$ seven min). A stock solution was prepared by combining $30 \mu \mathrm{~L}$ of 20 X SSC with 1.170 mL of RNase-free water resulting in the required 1.2 mL of sterile 0.5 X SSC solution. A second stock solution was prepared by combining seven microlitres $(7 \mu \mathrm{~L})$ of 20 X SSC with 1.393 mL of RNase-free water resulting in the required 1.4 mL of 0.1 X SSC.

The Streptavidin MagneSphere Paramagnetic Particles (SA-PMPs) were rinsed three times with equal volumes of $0.5 \times$ SSC and used within the manufacturer specified timeframe of 30 min after washing. The particles were re-suspended, and clumped particles were discarded. One tube of SA-PMPs ( $1 \mathrm{mg} / \mathrm{mL}$ in PBS, $1 \mathrm{mg} / \mathrm{mL}$ BSA and $0.02 \%$ sodium azide) was re-suspended by flicking the bottom of the tube until complete dispersion was achieved. Capture took place by insertion of the tube in the magnetic stand until the SA-PMPs were collected at the side of the tube ( 30 s ). The supernatant was removed and the SA-PMPs were washed three times with 0.5 X SSC ( $300 \mu \mathrm{~L}$ per wash), each time capturing them using the magnetic stand and carefully removing the supernatant. The washed SA-PMPs were re-suspended in $100 \mu \mathrm{~L}$ of 0.5 X SSC. The entire contents of the annealing reaction were added to the tube containing the washed SAPMPs. The annealing reaction, together with the SA-PMPs, was incubated at ambient temperature for 10 min , gently mixing the tube by inverting every 1.5 min . The SA-PMPs were captured using the magnetic stand, and the supernatant removed without disturbing the SA-PMP pellet. The supernatant from this step was saved until the amount of mRNA was verified. The particles were then washed four times with $0.1 \mathrm{X} \operatorname{SSC}(300 \mu \mathrm{~L}$ per wash) by gently flicking the bottom of the tube until all the particles were resuspended. After the final wash, as much supernatant as possible was removed without

## Chapter 2 - General Materials and Methods

disturbing the SA-PMPs. The final SA-PMP pellet was gently re-suspended in $100 \mu \mathrm{~L}$ of RNase-free water by flicking the tube. The SAPMPs were captured again magnetically and the supernatant containing the eluted mRNA was transferred to a new RNase-free tube. The elution step was repeated by re-suspending the SA-PMP pellet in $150 \mu \mathrm{~L}$ of RNase-free water.

The isolated mRNA was verified on an ethidium bromide gel. A spectrophotometric analysis was carried out for all mRNA isolations by measuring the absorbance ratio of $\mathrm{A}_{260} / \mathrm{A}_{280}$ using a Qubit ${ }^{\circledR}$ Fluorometer 1.0.

The mRNA was then reverse transcribed as described in section 2.1.5.

### 2.1.4 Qubit ${ }^{\circ}$ 1.0 Fluorometer RNA quantitation

The reagents were prepared as per manufacturer's instructions. Dilutions of $1 / 10,1 / 50$, $1 / 100,1 / 1,000$ and $1 / 10,000$ of the isolated RNA were prepared and read at 260 nm , 280 nm and 320 nm absorbance to determine if any phenol contamination was present. The ratio of the $\mathrm{A}_{260} / \mathrm{A}_{280}$ absorbance was obtained to indicate the purity of the RNA.

### 2.1.5 Reverse Transcription

cDNA was prepared from total RNA and mRNA. A commercially available Reverse Transcription Kit (Promega, Madison-USA) was used according to the manufacturer's instructions. In brief, RNA was incubated at $72^{\circ} \mathrm{C}$ to denature any secondary structures and then incubated with Avian Myeloblastosis Virus Reverse Transcriptase enzyme (AMVRT), ribonuclease (RNase) inhibitor, deoxynucleoside triphosphates (dNTPs), buffer, magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$, oligodT primers and nuclease-free water at $42^{\circ} \mathrm{C}$ for 55 min , followed by a 5 min incubation at $95^{\circ} \mathrm{C}$ to inactivate the AMVRT enzyme. The resulting cDNA was stored at $-20^{\circ} \mathrm{C}$ until required. A polymerase chain reaction was carried out with $C D 3 \varepsilon$ primers to check the integrity of the cDNA.

## Chapter 2 - General Materials and Methods

### 2.1.5.1 Reverse Transcription using Superscript ${ }^{\text {TM }}$ II RT

The following components were added to a nuclease-free Eppendorf tube:
$2 \mu \mathrm{~L}$ RNA or mRNA ( $\sim 2 \mathrm{ng}$ ) together with $1 \mu \mathrm{~L}$ Oligo(dT) ${ }_{12-18}$ primers and $1 \mu \mathrm{~L}$ dNTP Mix ( 10 mM each) were added to a nuclease-free eppendorf tube and made to $12 \mu \mathrm{~L}$ volume with nuclease-free water. The mixture was heated to $65^{\circ} \mathrm{C}$ for 5 min and then chilled on ice. The content of the tube was collected by brief centrifugation and $4 \mu \mathrm{~L}$ of 5 X FirstStrand Buffer, 0.1 M DTT, and $1 \mu \mathrm{~L}$ of $\mathrm{RNaseOUT}^{\mathrm{TM}}$ were added to the tube. The contents of the tube was mixed gently and incubated at $42^{\circ} \mathrm{C}$ for 2 min . One microliter $(1 \mu \mathrm{~L}=200$ units) of SuperScript ${ }^{T M}$ II RT was added and mixed by pipetting gently up and down. The mixture was then incubated at $42^{\circ} \mathrm{C}$ for 50 min . The reaction was inactivated by heating at $70^{\circ} \mathrm{C}$ for 15 min . The reaction was then chilled on ice and $1 \mu \mathrm{~L}$ of RNaseH was added to the tube and incubated ate $37^{\circ} \mathrm{C}$ for 20 min and then stored at $-20^{\circ} \mathrm{C}$.

### 2.1.6 Reverse Transcription Polymerase Chain Reaction (RT-PCR)

RT-PCR was performed to determine the molecular characteristics of each molecule. The PCR reaction contained $1.0 \mu \mathrm{~L}$ DNA, $10 \times$ iTaq PCR buffer (Bio-Rad, Gladesville, Australia), a final concentration of 2 mM MgCl (Bio-Rad, Gladesville, Australia), 0.2 mM dNTPs (BioRad, Gladesville, Australia), $0.2 \mu \mathrm{M}$ forward and reverse primers (Geneworks, Hindmarsh, Australia) and 0.1 U Taq polymerase - iTaq (Bio-Rad, Gladesville, Australia). This was brought to a $20 \mu \mathrm{~L}$ final volume with nuclease-free water. For the negative control, the DNA template was substituted with nuclease-free water. PCR reactions were performed using either a Bio-Rad iCycler (Bio-Rad, Gladesville, Australia) and/or a G-Storm (Geneworks, Hindmarsh, Australia) thermocycler.

### 2.1.7 Genomic DNA extraction

A Promega genomic DNA isolation kit (Promega, Madison, USA) was used to extract DNA from a M. eugenii thymus. One hundred and twenty microlitres ( $120 \mu \mathrm{~L}$ ) of 0.5 M EDTA solution was added to $500 \mu \mathrm{~L}$ of Nuclei Lysis Solution in a 1.5 mL Eppendorf centrifuge tube. The mixture was chilled on ice.

## Chapter 2 - General Materials and Methods

The thymus tissue was ground in liquid nitrogen and dispensed into a 1.5 mL Eppendorf tube. Six hundred microlitres ( $600 \mu \mathrm{~L}$ ) of the EDTA/Nuclei Lysis Solution were added to the ground tissue. Seventeen and a half microlitres ( $17.5 \mu \mathrm{~L}$ ) of $20 \mathrm{mg} / \mathrm{mL}$ Proteinase K was added in accordance with the manufacturer's instruction. The mixture was incubated at $55^{\circ} \mathrm{C}$ on a shaking platform for three h . The sample was vortexed once every hour.

Two hundred microlitres ( $200 \mu \mathrm{~L}$ ) of Protein Precipitation Solution was added to the sample and the mixture was vortexed vigorously at high speed for 20 s . The sample was chilled on ice for 5 min and was then centrifuged for four min at $14,000 \mathrm{xg}$. After the protein precipitated the supernatant containing the DNA was removed and transferred into a clean 1.5 mL Eppendorf tube containing $600 \mu \mathrm{~L}$ of isopropanol at room temperature.

The solution was mixed by inversion until the white thread-like strands of DNA formed a visible mass. The mixture was then centrifuged for one min at $14,000 \times \mathrm{g}$ at ambient temperature. The DNA was visible as a small white pellet. The supernatant was decanted, $600 \mu \mathrm{~L}$ of $70 \%$ ethanol at ambient temperature was added and the tube was inverted several times to wash the DNA. The solution was again centrifuged for one min at 14,000 xg at ambient temperature.

The ethanol was aspirated and the tube was inverted on clean absorbent paper and air dried for 12 min . One hundred microlitres ( $100 \mu \mathrm{~L}$ ) of DNA rehydration solution was added to the tube and the DNA was rehydrated by incubating at $65^{\circ} \mathrm{C}$ for 1 h . The solution was mixed periodically by gently tapping the tube as per the manufacturer's instruction.

For the second extraction, the DNA was incubated overnight at $4^{\circ} \mathrm{C}$ before storing the gDNA at $4^{\circ} \mathrm{C}$.

## Chapter 2 - General Materials and Methods

### 2.1.8 Polymerase Chain Reaction

### 2.1.8.1 Cycling conditions

The temperature and time of each cycling step are set out in the following templates:

## Template 1

| Cycle Number | Temperature | Time | Cycling Step |
| :--- | :--- | :--- | :--- |
| 1 | $94^{\circ} \mathrm{C}$ | 2 min | Denaturation |
| 35 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $50^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $72^{\circ} \mathrm{C}$ | 1 min | Extension |
| 1 | $72^{\circ} \mathrm{C}$ | 10 min | Final Extension |
| Final well Temperature $10^{\circ}$ |  |  |  |

Template 2

| Cycle Number | Temperature | Time | Cycling Step |
| :--- | :--- | :--- | :--- |
| 1 | $94^{\circ} \mathrm{C}$ | 2 min | Denaturation |
| 5 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $65^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $72^{\circ} \mathrm{C}$ | 1 min | Extension |
| 5 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $60^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $72^{\circ} \mathrm{C}$ | 1 min | Extension |
| 30 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $55^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $72^{\circ} \mathrm{C}$ | 1 min | Extension |
| 1 | $72^{\circ} \mathrm{C}$ | 10 min | Final Extension |
|  | Final well Temperature $\mathbf{1 0}{ }^{\circ} \mathrm{C}$ |  |  |

Template 3

| Cycle Number | Temperature | Time | Cycling Step |
| :--- | :--- | :--- | :--- |
| 1 | $95^{\circ} \mathrm{C}$ | 3 min | Denaturation |
| 35 | $95^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $55^{\circ} \mathrm{C}$ | 1.20 min | Annealing |
|  | $72^{\circ} \mathrm{C}$ | 1.40 min | Extension |
| 1 | $72^{\circ} \mathrm{C}$ | 20 min | Final Extension |
| Final well Temperature $\mathbf{1 0}{ }^{\circ} \mathrm{C}$ |  |  |  |

## Chapter 2 - General Materials and Methods

The above cycling conditions were adjusted according to factors that included, but were not limited to, the melt Temperature of the primers, composition of the nucleotide sequence, the length of the transcript, and the nature of the polymerase.

### 2.1.8.2 Gel electrophoresis

Gels were electrophoresed using a mini-sub Gel tank at 100 V for 45 min in 1 X Tris borate ethylenediaminetetra acetic acid (TBE) buffer. Amplicon sizes were estimated using a pGem marker (Promega, Madison, USA), Bio Lab 100 bp DNA ladder (Bio Lab, Australia) or the Bioline Hyperladder ${ }^{\text {TM } I I}$ (Bioline, Alaxandria, Australia). The Hyperladder was also used to estimate the quantity of DNA present in the samples for sequencing purposes.

All PCR products were visualized on a 1.5\% agarose gel in $1 \times$ TBE buffer containing a final concentration of $0.03 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide. Gels were visualized on a Bio-Rad GelDoc ${ }^{\text {TM }}$ EQ system (Bio-Rad,Gladesville, Australia) and images were captured using the Quantity One software package (Bio-Rad, Segrate, Italy) and Vilber Lourmat Gel imaging system using a Quantum Capture software package (Fisher BioTec, Wembley, Australia). Products of correct size were excised from the gels using a sterile No. 10 scalpel blade. The PCR products were separated from the agarose gel matrix using the Promega Wizard SV Gel and PCR clean up kit (Promega, Madison, USA) and prepared for sequencing.

### 2.1.8.3 DNA purification of PCR products from an agarose gel matrix

The DNA was purified from the agarose matrix with the Promega Wizard SV Gel and PCR clean up kit (Promega, Madison, USA). Excised gel slices were weighed and a Membrane Binding solution was added at the ratio of $10 \mu \mathrm{~L}$ of solution to 10 mg of agarose gel slice. The mixture was vortexed and incubated at $60^{\circ} \mathrm{C}$ for 10 min . The dissolved gel mixture was transferred into a SV Minicolumn assembly and subjected to two washes with a membrane wash solution. After the second wash, the SV Minicolumn was transferred to a clean 1.5 mL micro centrifuge tube and the DNA eluted from the column with $15 \mu \mathrm{~L}$ $30 \mu \mathrm{~L}$ of nuclease-free water (dependent on quantity of DNA present).

## Chapter 2 - General Materials and Methods

The clean-up procedure was verified by gel electrophoresis using a Hyperladder II (Bioline, Alexandria, Australia) for quantitation. The amplified DNA was sent for sequencing to the Australian Genome Research Facility (AGRF- http.//www.agrf.org.au/) in a 1.5 mL Eppendorf tube with the required concentration of 6 ng DNA template and 9.6 pmol of primer in $12 \mu \mathrm{~L}$ final volume of nuclease-free water. For the sequencing reaction, the ABI Big Dye Terminator Version 3.1 chemistry was used and analyses were undertaken on an AB3730x sequencer.

### 2.1.9 Rapid amplification of cDNA ends (RACE)

RACE cDNA was made from spleen and node tissue from O. fraenata and from Phythaemagglutinin (PHA) and ConcanavalinA (ConA) stimulated lymphocytes from $M$. eugenii using a GeneRacer ${ }^{\text {rM }}$ kit (Invitrogen - Carlsbad, USA) in accordance with manufacturer's instructions. Seventy percent (70\%) and 95\% ethanol were prepared prior to starting the procedure. The first step in making RACE DNA is the dephosphorylation of the total RNA. A $10 \mu \mathrm{~L}$ reaction containing $5 \mu \mathrm{~L}$ total RNA, 10 X calf intestine phosphatase (CIP) buffer, RNAse Out, calf intestine phosphatase (CIP) and Diethylene Pyrocarbonate (DEPC) water was prepared on ice. The reaction was incubated at $50^{\circ} \mathrm{C}$ for 1 h after centrifugation and was placed on ice. This step was followed by an RNA precipitation by adding $90 \mu \mathrm{~L}$ of DEPC water and $100 \mu \mathrm{~L}$ of phenol-chloroform. After centrifugation, the top phase was transferred to a new 1.5 mL Eppendorf tube to which $2 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ mussel glycogen, $10 \mu \mathrm{~L}$ of 3 M sodium acetate and $220 \mu \mathrm{~L}$ of $95 \%$ ethanol were added. The mixture was placed on dry ice for 10 min and subsequently centrifuged for 20 min at $4^{\circ} \mathrm{C}$. The resultant supernatant was removed without disturbing the pellet. A volume of $500 \mu \mathrm{~L}$ of $70 \%$ ethanol was added to the pellet and centrifuged at maximum speed for 2 $\min$ at $4^{\circ} \mathrm{C}$. The position of the pellet was noted and the ethanol removed by pipetting. Another centrifugation at $16,000 \times \mathrm{g}$ collected the remaining fluid, which was subsequently removed and the pellet was air dried for 1.5 min at ambient temperature. The pellet was then re-suspended in $7 \mu \mathrm{~L}$ of DEPC water.

## Chapter 2 - General Materials and Methods

The Cap Structure of the mRNA was then removed. A $10 \mu \mathrm{~L}$ reaction containing $7 \mu \mathrm{~L}$ of dephosphorylated RNA (from previous step), $1 \mu \mathrm{~L}$ of 10 X Tap buffer, $1 \mu \mathrm{~L}$ of RNaseOut and $1 \mu \mathrm{~L}$ of TAP was mixed and incubated at $37^{\circ} \mathrm{C}$ for 1 h . The enzyme was inhibited by placing the reaction on ice. Another RNA precipitation was performed in the same manner resulting in $7 \mu \mathrm{~L}$ of de-capped mRNA, and this was followed by ligating the RNA Oligo.

The $7 \mu \mathrm{~L}$ of dephosphorylated and decapped RNA was added to the pre-aliquot of lyophilized GeneRacer ${ }^{\text {TM }}$ RNA Oligo, pipetted up and down and centrifuged briefly to collect the fluid in the bottom of the tube. This reaction was then incubated at $65^{\circ} \mathrm{C}$ to relax the secondary structure of the RNA, chilled on ice ( $\sim 2 \mathrm{~min}$ ), and briefly centrifuged. A solution containing a 10 X Ligase buffer ( $1 \mu \mathrm{~L}$ ), 10 mM Adenosine Triphosphate (ATP) (1 $\mu \mathrm{L})$, RNAseOut ( $1 \mu \mathrm{~L}$ ) and the enzyme T4 RNA ligase ( $1 \mu \mathrm{~L}$ ) was added to the $7 \mu \mathrm{~L}$ of RNA and incubated at $37^{\circ} \mathrm{C}$ for 1 h . The reaction was then briefly centrifuged and placed on ice to inhibit the enzyme activity and a third RNA precipitation was carried out with the pellet being re-suspended in $10 \mu \mathrm{~L}$ of DEPC water. The resultant RNA was then reverse transcribed using the AMV Reverse Transcription kit.

One microlitre ( $1 \mu \mathrm{~L}$ ) of primer and $1 \mu \mathrm{~L}$ of the dNTP mix were added to the $10 \mu \mathrm{~L}$ of RNA and incubated at $65^{\circ} \mathrm{C}$ for 5 min . The reaction was then placed on ice for 2 min and briefly centrifuged. A solution containing 5 X RT buffer ( $4 \mu \mathrm{~L}$ ), the enzyme AMV RT ( $1 \mu \mathrm{~L}$ ), RNAseOUT ( $1 \mu \mathrm{~L}$ ), and nuclease-free water ( $2 \mu \mathrm{~L}$ ) was added to the $12 \mu \mathrm{~L}$ of ligated RNA and primer mix. This was well mixed and incubated at $45^{\circ} \mathrm{C}$ for 1 h and then incubated at $85^{\circ} \mathrm{C}$ for 15 min . This reaction was briefly centrifuged and stored at $-20^{\circ} \mathrm{C}$.

Dilutions of $1 / 10$ and $1 / 50$ were made from the obtained RACE CDNA and the validity of the cDNA was checked by RT- PCR with CD3 $\varepsilon$ primers. The amplicons from this PCR were visualized on a $1.5 \%$ agarose gel. The obtained product was excised using a sterile No. 10 scalpel blade and the DNA was purified using the Promega Wizard SV Gel and PCR cleanup kit (Promega, Madison, USA). The obtained product from the DNA purification was sent to the Australian Genome Research Facility (AGRF) for sequencing.

## Chapter 2 - General Materials and Methods

RACE primers, or gene-specific primers, were designed in order to perform RACE-PCR by applying the same principles as for RT-PCR primer design (Chapter 2, section 2.1.2) using the obtained gene sequence from RT-PCR.

The adaptor primers for the respective RACE ends are listed in Table 2.1.

Table 2.1. RACE primers supplied in Invitrogen RACE kit

| Primer | Sequence 5'-3' | bases | $\mathrm{T}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { GeneRacer™ } 5^{\text {¹ }} \\ & \text { Primer } \end{aligned}$ | 5' CGACTGGAGCACGAGGACACTGA-3' | 23 | $74^{\circ} \mathrm{C}$ |
| GeneRacer ${ }^{\text {™ }} 5^{\prime}$ <br> Nested Primer | 5' GGACACTGACATGGACTGAAGGAGTA-3' | 26 | $78^{\circ} \mathrm{C}$ |
| GeneRacer ${ }^{\text {™ }} 3^{\prime}$ <br> Primer | 5'-GCTGTCAACGATACGCTACGTAACG-3' | 25 | $76^{\circ} \mathrm{C}$ |
| GeneRacer ${ }^{\text {TM }} 3^{\prime}$ Nested Primer | 5'-CGCTACGTAACGGCATGACAGTG-3' | 23 | 7206 |

The RACE DNA was used to amplify the $5^{\prime}$ and $3^{\prime}$ ends of the genes. The $5^{\prime}$ regions were investigated for start sequences (atg) as well as for leader signals and other functionally important motifs. The $3^{\prime}$ ends of the genes were investigated for the stop sequences (tga, taa), RNA retention motifs, polyadenylation signals and polyA tails.

### 2.1.9.1 Cycling conditions for RACE-PCR

## Template 1

| Cycle Number | Temperature | Time | Cycling Step |
| :--- | :--- | :--- | :--- |
| 1 | $94^{\circ} \mathrm{C}$ | 2 min | Denaturation |
| 35 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $50^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $68^{\circ} \mathrm{C}$ | 1 min | Extension |
| 1 | $68^{\circ} \mathrm{C}$ | 10 min | Final Extension |
| Final well Temperature $\mathbf{1 0}^{\circ} \mathrm{C}$ |  |  |  |

## Chapter 2 - General Materials and Methods

Template 2

| Cycle Number | Temperature | Time | Cycling Step |
| :--- | :--- | :--- | :--- |
| 1 | $94^{\circ} \mathrm{C}$ | 2 min | Denaturation |
| 35 | $94^{\circ} \mathrm{C}$ | 30 s | Denaturation |
|  | $50^{\circ} \mathrm{C}$ | 50 s | Annealing |
|  | $68^{\circ} \mathrm{C}$ | 1 min | Extension |
| 1 | $68^{\circ} \mathrm{C}$ | 10 min | Final Extension |
| Final well Temperature $\mathbf{1 0 ^ { \circ } \mathrm { C }}$ |  |  |  |

### 2.1.9.2 Rapid amplification of $3^{\prime}$ cDNA ends

Total RNA $(1-5 \mu \mathrm{~g})$ or mRNA ( 50 ng ) and DEPC water were combined to give a final volume of $11 \mu \mathrm{~L}$ in a 0.5 mL Eppendorf tube. Four microlitres ( $4 \mu \mathrm{~L}$ ) of RNA in $7 \mu \mathrm{~L}$ of DEPC water was used to make $3^{\prime}$ RACE from M. eugenii ConA and PHA stimulated lymph cells. One microlitre ( $1 \mu \mathrm{~L}$ ) of $10 \mu \mathrm{M}$ ATP solution was added and the reaction was then mixed and collected at the bottom of the tube by brief centrifugation. The reaction was heated to $70^{\circ} \mathrm{C}$ for 10 min and chilled on ice for at least 1 min . The content of the tube was again centrifuged and a solution containing a $10 \times$ PCR buffer $(2 \mu \mathrm{~L}), 25 \mathrm{mM} \mathrm{MgCl}{ }_{2}(2 \mu \mathrm{~L}), 10 \mathrm{mM}$ dNTPs $(1 \mu \mathrm{~L})$ and 0.1 M DTT $(2 \mu \mathrm{~L})$ was added. The reaction was gently mixed and centrifuged. The mixture was equilibrated to $42^{\circ} \mathrm{C}$ for 3 min . One microlitre ( $1 \mu \mathrm{~L}$ ) of Super Script II RT was added and the reaction was incubated at $42^{\circ} \mathrm{C}$ in a heat block for 50 min . The enzyme was inactivated by incubating the reaction at $70^{\circ} \mathrm{C}$ for 15 min . The reaction was again chilled on ice then briefly centrifuged to collect the contents of the tube. One microlitre ( $1 \mu \mathrm{~L}$ ) of RNaseH was added to the contents which were then mixed and incubated for 20 min at $37^{\circ} \mathrm{C}$ before storing the reaction at $-20^{\circ} \mathrm{C}$. A $1 / 20$ dilution of the resultant RACE DNA was verified using CD3eUTF and the 3' Universal Amplification Primer (UAP) ( $5^{\prime}$ CUACUACUACUAGGCCACGCGTCGACTAG TAC-3') supplied by the kit ( $3^{\prime}$ RACE kit invitrogen, Carlsbad, USA). The Abridged Universal Amplification Primer (AUAP) ( $5^{\prime}$-GGCCACGCGTCGACTAGTAC-3') was used for a nested strategy.

## Chapter 2 - General Materials and Methods

### 2.1.10 Cloning of PCR and RACE-PCR products

### 2.1.10.1 Media (LB Agar)

Nutrient agar was prepared by adding 2 g of Bacto-Tryptone (Sigma, Australia), 1 g of Bacto-Yeast (Sigma, Australia) and 2 g of Sodium Chloride ( NaCl ) (Astral, Australia) to 200 mL of $\mathrm{dlH}_{2} \mathrm{O}$. Once the ingredients were dissolved, 3 g of Bacto-Agar (Sigma, Australia) was added and the mixture was autoclaved. After cooling to $55^{\circ} \mathrm{C}, 1 \mathrm{~mL}$ of $10 \mathrm{mg} / \mathrm{mL}$ kanamycin (Invitrogen, Carlsbad, USA) was added aseptically and the media was dispensed into standard Petri dishes.

### 2.1.10.2 Luria Bertani Broth (LBroth)

LBroth was prepared by mixing 20 g of LB (Sigma) and 1.5 g of Bacteriological Agar (Sigma, Australia) with $1 \mathrm{~L} \mathrm{dlH}_{2} \mathrm{O}$. This was heated in a microwave oven to dissolve the agar, dispensed into 100 mL Schott bottles, autoclaved, and subsequently stored at $4^{\circ} \mathrm{C}$. As required, 10 mL aliquots of the broth were warmed to $37^{\circ} \mathrm{C}$ in 30 mL McCartney bottles and $500 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ kanamycin (Invitrogen, Carlsbad, USA) was added to each aliquot before inoculation with Escherichia coli.

### 2.1.10.3 Transformation

Purified PCR products as described in section 2.1.8.3 were used for insertion into the $\mathrm{pCR}^{\text {TM }} 4$-TOPO ${ }^{\circledR}$ TA vector purchased from Invitrogen, Carlsbad, USA and executed in accordance with the manufacturer's instructions. The reaction mix was incubated for 5 $\min$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and immediately put on ice. Transformation of the E. coli cells was carried out by using $2 \mu \mathrm{~L}$ of the cloning reaction which was incubated with the competent cells for 10 min . The competent cells were heat-shocked for 30 s at $42^{\circ} \mathrm{C}$ and placed on ice. Two hundred and fifty microlitres ( $250 \mu \mathrm{~L}$ ) of super optimal catabolite repression (S.O.C.) medium were added to the cells, the tubes were capped tightly, and incubated on a shaker incubator at 200 rpms for 1 h at $37^{\circ} \mathrm{C}$. Aliquots of $20 \mu \mathrm{~L}$ and $50 \mu \mathrm{~L}$ of the transformed cell mixture were spread together with $20 \mu$ L of S.O.C medium on

## Chapter 2 - General Materials and Methods

media plates amended with $500 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ of kanamycin. The plates were incubated overnight at $37^{\circ} \mathrm{C}$.

One colony was selected from each of the $20 \mu \mathrm{~L}$ and $50 \mu \mathrm{~L}$ spread plates and put into 10 mL of LBroth containing $50 \mu \mathrm{~g} / \mathrm{mL}$ of kanamycin. The inoculated LBroth was then incubated on a shaker incubator at 150 rpm overnight at $37^{\circ} \mathrm{C}$.

The resulting plasmids were prepared for purification using a plasmid DNA preparation SV Wizard DNA clean-up kit (Promega, Maddison, USA).

### 2.1.10.4 Plasmid DNA preparation

The Promega Wizard Plus Miniprep DNA purification system (Promega, Madison, USA) was used in accordance with the manufacturer's instructions. One milliliter ( 1 mL ) aliquots of overnight culture were spun sequentially in the same tube at $10,000 \times \mathrm{g}$ for 5 $\min$ at ambient temperature and the supernatant was discarded after each spin. Two hundred and fifty microlitres ( $250 \mu \mathrm{~L}$ ) of Cell Resuspension Solution was added and the cells were completely re-suspended by vortexing or pipetting. Two hundred and fifty microlitres ( $250 \mu \mathrm{~L}$ ) of Cell Lysis Solution was added and mixed by inverting four times until the cell suspension cleared ( $\sim 4 \mathrm{~min}$ ). Ten microlitres ( $10 \mu \mathrm{~L}$ ) of Alkaline Phosphatase was added and mixed by inverting the tube four times. The mixture was incubated for 3 min , and $350 \mu \mathrm{~L}$ of Neutralization Solution was then added and mixed immediately by inverting the tube four times. The bacterial lysate was then centrifuged at top speed for 10 min at ambient temperature.

The cleared lysate was transferred to a spin column assembly, centrifuged and washed twice using a wash solution. The spin column assembly was centrifuged again in order to dry any carry-over ethanol before eluting the plasmid DNA in $100 \mu \mathrm{~L}$ of nuclease-free water.

## Chapter 2 - General Materials and Methods

### 2.1.10.5 Plasmid digest

Five microlitres ( $5 \mu \mathrm{~L}$ ) of DNA was incubated for 2 h at $37 \propto$ with Buffer $\mathrm{H}, 5 \%$ EcoRI and nuclease free water in a $20 \mu \mathrm{~L}$ reaction mix. The digested product was visualized on a $2 \%$ agarose gel on a Vilber Lourmat Gel imaging system using the Quantum Capture software package (Fisher BioTec, Wembley, Australia).

### 2.1.10.6 Sequencing of PCR products and plasmid DNA

Sequencing reactions contained $0.8 \mathrm{pmol} / \mu \mathrm{L}$ of primer in a $12 \mu \mathrm{~L}$ reaction volume. The amount of cDNA was determined by investigating the verification gel for clean-up products run against a quantitative marker (Hyperladder II, Bioline, Australia) for the respective genes. Eight nanograms ( 8 ng ) (if product size was $100-200 \mathrm{bp}$ ) or 75 ng (if product size was $>800 \mathrm{bp}$ ) of PCR products, and approximately 1000 ng of plasmid DNA were sent to AGRF at the University of Queensland, St. Lucia, Brisbane for sequencing. Sequencing was carried out with the Big Dye Terminator Chemistry Version 3.1 on the AB3730x sequence platform.

### 2.2 Bioinformatics tools

### 2.2.1 CLUSTALW2

CLUSTALW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to show where the obtained gene sequence aligned compared to the sequences of other species. Some sequences needed to be aligned manually using the JAVA applet supplied by CLUSTALW. The Jalview function allowed the alignment of sequence fragments to their proper positions. For amino acid residue alignments a BLOSUM62 (BLOcks of Amino Acid SUbstitution Matrix) matrix, which is a scoring alignment between evolutionary divergent protein sequences, was employed and default gap penalties were used (Henikoff and Henikoff, 1992).

## Chapter 2 - General Materials and Methods

### 2.2.2 The Basic Local Alignment Search Tools (BLAST and BLAT)

The Basic Local Alignment Search Tools (http://blast.ncbi.nlm.nih.gov/) (Altschul and Gish, 1996, Altschul et al., 1990) BLASTn, BLASTx, BLAST2 and BLAT were used to investigate the sequences obtained from RT-PCR and RACE-PCR.

### 2.2.2.1 BLASTn

BLASTn is a nucleotide query and determines short matches between the sequences by heuristic methods. After the seeding was complete, BLAST constructs local alignments, which were used to investigate low complexity sequences indicated by lower case letters.

### 2.2.2.2 BLASTx

This function compares translational products of the nucleotide query sequence to a protein database. BLASTx translates in all six reading frames showing significant statistics for hits to different frames. This program was used to identify the correct reading frame of novel nucleotide sequences and was verified using EXPASY's translate function.

### 2.2.2.3 BLAST2

BLAST2 was used for the comparison of novel sequences not yet deposited in Genbank. Similarly to BLASTn, one or more sequences can be compared to one another and the evalues for the queried sequences were calculated.

### 2.2.2.4 BLAT

The BLAT function (http://genome.ucsc.edu/) (Kent et al., 2002) can be found in the UCSC genome browser and maintains an index of the entire genome in memory. BLAT is designed to find sequences containing at least 25 bases with $95 \%$ or greater length similarity.

## Chapter 2 - General Materials and Methods

### 2.2.3 Expert Protein Analysis Systems (EXPASY)

The scientific software tools in the Swiss Institute of Bioinformatics database (http://web.expasy.org/) which were used in this study are detailed in sub-sections

### 2.2.3.1 to 2.2.3.10.

### 2.2.3.1 Translate tool

The translate tool (http://web.expasy.org/translate/) translates nucleotide (DNA/RNA) sequences to a putative protein sequence in six reading frames and was used to verify the results from BLASTx.

### 2.2.3.2 ProtParam

This tool (http://web.expasy.org/protparam/) was used to compute physical and chemical parameters for a given peptide sequence in order to understand the hydropathy pattern of the peptide (Moller et al., 1999). This was especially useful for the design of the interleukin-2 antibody sequence. This tool was used to ascertain the molecular weight, theoretical pl, amino acid composition, atomic composition and extinction coefficient (Bjellqvist et al., 1993, Geer et al., 2002).

### 2.2.3.3 Signal IP-4.0

The Signal IP-4.0 program (http.//www.cbs.dtu.dk/services/SignalP/) is part of the Center for Biological sequence analysis suite sequences (Bendtsen et al., 2004, Petersen et al., 2011). This tool was used to predict the presence and location of signal peptide cleavage sites in amino acid.

### 2.2.3.4 Protein Domain database (ProDom)

ProDom (http.//prodom.prabi.fr/prodom/) is a protein domain family database available through the EXPASY server. This database and software was used to search for protein domain families for comparison with the results obtained from SMART (see sub-section 2.2.4).

## Chapter 2 - General Materials and Methods

### 2.2.3.5 C-mannosylation

NetCGlyc 1.0 (http.//www.cbs.dtu.dk/services/NetCGlyc/) was used for the prediction of C-mannosylation characterized by the attachment of an alpha-mannopyranose to a tryptophan (WxxWW) via a cysteine-cysteine link in mammalian proteins. NetCGlyc 1.0 predicts, with 93\% accuracy, positive and negative C-mannosylation sites (Julenius, 2007). All sequences obtained in this study were inspected for C-mannosylation sites.

### 2.2.3.6 O-linked glycosylation

The NetOglyc server (http.//www.cbs.dtu.dk/services/NetCGlyc/) (Julenius, 2007) was used to predict mucin type GalNac O-glycosylation sites (glycosylated serine or threonine residues) found in coil or turn regions in the putative amino acid sequences obtained in this study.

### 2.2.3.7 Protein glycation

The NetGlycate 1.0 server (http.//www.cbs.dtu.dk/services/NetGlycate/) (Johansen et al., 2006) was used to predict glycation of $\varepsilon$ amino groups of lysines in the putative amino acid sequences obtained in this study.

### 2.2.3.8 N-linked glycosylation

This tool (http.//www.cbs.dtu.dk/services/NetNGlyc/) was used to show the consensus sequence for an N -linked glycosylation ( $\mathrm{N}-\mathrm{Xaa}-\mathrm{S} / \mathrm{T}$ where Xaa is not $\mathrm{P}, \mathrm{N}=$ asparagine, $\mathrm{S}=$ serine, $\mathrm{T}=$ threonine, $\mathrm{P}=$ proline) event in the putative amino acid sequences in this study. Glycosylation is an important post-translational modification which influences protein folding, protein solubility, antigenicity, biological activity as well as cell-cell interactions (Gupta et al., 2004).

### 2.2.3.9 Phosphorylation prediction

The NetPhos server (http.//www.cbs.dtu.dk/services/NetPhos/) (Blom et al., 1999) was used for predicting putative phosphorylation sites at serine, threonine and/or tyrosine

## Chapter 2 - General Materials and Methods

residues in the putative amino acid sequences obtained in this study. Putative phosphorylation and kinase phosphorylations were investigated with the NetPhos and NetPhosK programs. NetPhosK detected kinase specific protein phosphorylation sites in the putative amino acid sequences obtained in this study.

### 2.2.3.10 Disulphide bond prediction

Significant disulfide bonds were predicted using the DiANNA disulphide bond prediction server (http://clavius.bc.edu/~clotelab/DiANNA/) (Ferre and Clote, 2005).

### 2.2.4 SMART ( $\underline{\text { Simple}} \underline{\text { Modular }} \underline{\text { Architecture }}$ Research $\underline{\text { Tool }})$

This search tool (http.//smart.embl-heidelberg.de/) (Letunic et al., 2012) was used for the identification and annotation of genetically mobile domains, the analysis of domain architecture, internal repeats, and protein family domains (PFAM). The domains were annotated with respect to phyletic distribution, functional class, tertiary structures and functionally important residues.

### 2.2.4.1 CDART (Conserved Domain $\underline{\text { Architecture }}$ Retrieval $\underline{\text { Tool }}$ )

CDART is part of the National Centre for Biotechnology Information (NCBI) database (http.//www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi) and displays the functional domains that make up a given protein sequence. It also lists proteins with similar domain architectures and retrieves proteins that contain particular combinations of domains (Geer et al., 2002). This tool was used to verify the SMART results when domains returned low e-value readings with the SMART tool. It was also employed to determine domains such as $\mathrm{SH}_{2}, \mathrm{SH}_{3}$ or Ig-like domains from the putative protein sequences obtained in this study.

### 2.2.5 Primary structure prediction

The primary structure, which is the putative amino acid sequence, is the basis for a secondary structure prediction that calculates the positions of loops and helices.

## Chapter 2 - General Materials and Methods

### 2.2.5.1 2ZIP-Leucine Zipper prediction

The primary structure prediction program 2ZIP (http.//2zip.molgen.mpg.de/)was used to predict Leucine zippers which are dimerization domains occurring mostly in regulatory proteins (Bornberg-Bauer et al., 1998).

### 2.2.6 Secondary structure prediction

A secondary structure prediction aims to predict the local secondary structure of proteins based on the putative amino acid sequence. The prediction programs assign alpha helices, beta strands and/or beta turns to regions of the amino acid sequences. The secondary structure also refers to the interactions that occur between the carbon, oxygen and amine ( NH ) groups on amino acids in a polypeptide chain. The tools used are detailed in sub-sections 2.2.6.1 and 2.2.6.2.

### 2.2.6.1 Protein Structure Prediction Server (PSIPRED)

The Protein Structure Prediction Server (http.//bioinf.cs.ucl.ac.uk/psipred/) was used to predict alpha helices, coiled coils and beta strands by assigning numerical values to determine the probability of either structures occurring (Bryson et al., 2005). This server also predicted transmembrane topology and protein fold recognition. The MEMSAT2 program on the server was used to determine transmembrane helix topology. The accuracy of the method is $\sim 80 \%$ for predicting the topology of all-helical transmembrane proteins (Bryson et al., 2005).

### 2.2.6.2 Secondary structure prediction through NetSurfP

This program (http://www.cbs.dtu.dk/services/NetSurfP/) gives probability values for the different structures such as alpha helices, beta strands and coils (Petersen et al., 2009), and these values were used for comparison with the results obtained by the PSIPRED program.

## Chapter 2 - General Materials and Methods

2.2.7 Tertiary structure prediction (Homology modelling)

The tools used for homology modelling are detailed in sub-sections 2.2.7.1 to 2.2.7.8.

### 2.2.7.1 I-TASSER

The I-TASSER server (http://zhanglab.ccmb.med.umich.edu/l-TASSER/) was used to obtain feasible models for the molecules where the full open reading frame was obtained. Some of the models presented in this thesis were modelled ab initio because no templates were available in the database. 3D models in the I-TASSER server are built on multiplethreading alignments by the Local Meta-Threading-Server (LOMETS) and iterative TASSER assembly simulations (Roy et al., 2010, Wu and Zhang, 2010).

### 2.2.7.2 RaptorX

RaptorX (http.//raptorx.uchicago.edu/about/) is a structure prediction program that aligns distantly related proteins that have limited sequence profiles. This program consists of four modules - single-template threading, alignment quality assessment, multipletemplate threading and the fragment-free approach (Peng and Xu, 2011). RaptorX was used to model some of the structural motifs found within the putative amino acids sequences obtained in this thesis.

### 2.2.7.3 3D Jigsaw

This server (http.//bmm.cancerresearchuk.org/~3djigsaw/) builds 3D structures using as a template identifier in the HMM program (Soding, 2005). This program is a comparative modelling program where gaps and missing amino acid residues are closed and all models are finally recombined (Bates et al., 2001). A genetic algorithm (GA) is at the heart of this program. GA's are well known for their powerful optimization techniques, and have been used in a number of protein modelling efforts ranging from ab initio folding models to model-building by homology (Offman et al., 2006). After 10 rounds of conversion, all models are ranked using the highest sequence identifier and the top five models are returned. The models can be selected either in auto mode or in interactive mode. The

## Chapter 2 - General Materials and Methods

latter allows the user to select the models according to their coverage, sequence identification and domains. Both methods were used in this study depending upon which was the most appropriate in the circumstances. This program was also used to verify the the architecture of structural motifs obtained using RaptorX.

### 2.2.7.4 Modweb

Modweb (http.//modbase.compbio.ucsf.edu/) is a server for comparative protein structure modelling and was used in this study on all putative amino acid sequences that encompassed the full open reading frame. Modweb depends on Modpipe for its functionality (Eswar et al., 2003). The structural templates used to build the models are extracted from the pdb database. Significant alignment (e-value better than 1.0) covering at least 30 amino acid residues are selected for modelling. Comparative modelling is achieved by satisfying the spatial restraints similar to the Modeller program described sub-section 2.2.7.6. The resulting models were evaluated by assigning scores and the highest scoring models were used in this study. Model selection is based on a normalized discrete optimized protein energy (DOPE) score as well as on the alignment with the best sequence identity.

### 2.2.7.5 Swiss-Model

The SWISS-MODEL program (http.//swissmodel.expasy.org/) is a web based integrated service committed to protein structure homology modelling and is available from the EXPASY server. Several functions are available. A fully automated model is suited for cases where the target template is highly conserved ( $>50 \%$ sequence identity) and this model was used throughout this thesis. An interactive model is used when the sequence identity is less than $50 \%$. This was employed in this thesis for the TCR $\alpha$ partial sequence in order to confirm the position of some important residues in an Ig-fold predicted with RaptorX.

Model quality evaluation is determined by the QMEAN and Density plots. The estimated residue error is visualized using a colour gradient from blue to red (Fig. 2.1a). Blue

## Chapter 2 - General Materials and Methods

indicates more reliable regions and red are potentially unreliable regions. The Z-score is normalized to a mean of 0 and a standard deviation of 1 . The Z -score therefore directly indicates how many standard deviations the model's QMEAN score differs from expected values (Fig. 2.1 a, b). Models of low quality are expected to have strong negative Z-scores for QMEAN. Large negative values correspond to red regions while positive values correspond to blue regions and therefore to homologous structures.

Density plots were calculated for all reference models. The background distribution is marked in red. This plot is a 'projection' of the model quality diagram. The number of reference models used in the calculation is shown at the bottom of the plot under the $x$ axis (Fig. 2.1c).


Figure 2.1. Example of statistical representations of models developed by the SWISS-MODEL program. (a) Zscore slider indicating QMEAN, (b) comparison of target model with pdb database, (c) density plot.

The molecular graphics viewer Jmol (http.//imol.sourceforge.net/) (Hanson et al., 2010) was used repeatedly to investigate the predicted structures and the different plots generated by the SWISS-MODEL program.

## Chapter 2 - General Materials and Methods

### 2.2.7.6 Modeller

Modeller (http.//salilab.org/modeller/) creates three-dimensional protein structures for comparative protein structure modelling. This program was used in this thesis because it allows the user to input the alignment of sequences to be modelled with known related structures. The output is a model 3D structure that satisfies the spatial arrangement of the amino acid sequences. These can operate on distances, angles, dihedral angles, pairs of dihedral angles and other spatial features defined by atoms or pseudo atoms. These values are taken from known related structures and their alignment with the target sequence (Eswar et al., 2006, Sali and Blundell, 1993). In this thesis, a Python shell was specifically created to obtain a custom model which was than compared to other models. This is fully described in Chapter 5, section 5.2.

### 2.2.7.7 The Protein $\underline{H} o m o l o g y / a n a l o g \underline{Y}$ Recognition Engine V 2.0 (Phyre2)

Phyre2 (http.//www.sbg.bio.ic.ac.uk/phyre2/)(Kelley and Sternberg, 2009) was also used for homology modelling of putative amino acid sequences in this study. This software aligns two sequences of interest and uses that alignment to generate a homologus 3D model.

Phyre2 uses a library of known protein structures taken from the Structural Classification of Proteins (SCOP) database. This database can be expanded with structures that were deposited later in the Protein Data Bank (pdb) (Berman et al., 2000, Murzin et al., 1995). Three secondary structure prediction programs are used in Phyre2-Psi-Pred, SSPro and JNet (Cole et al., 2008, Pollastri et al., 2002, McGuffin et al., 2000). This makes Phyre2 a very comprehensive modelling program that was used to compare structures determined by I-TASSER and Modweb.

### 2.2.7.8 Ligand binding site prediction

The identification of ligand-binding sites is important because proteins perform their function on ligands, and ligands in turn regulate the protein. Protein structures are mostly

## Chapter 2 - General Materials and Methods

solved in the absence of ligands. It is therefore important to identify amino acids that are capable of binding ligands and which consequently have a biological effect. This program was used throughout this study to determine whether or not the putative amino acids are able to bind to other structures and are thus potentially functional proteins.

The Imperial College London's 3DLigandSite-Ligand binding site prediction Server (Wass et al., 2010) (linked from Phyre2) was used to map ligand sites on predicted structures. The University of Michigan's I-TASSER server also has a ligand binding site prediction server. Both programs were used to predict the ligand binding sites and, where possible, the predictions were compared with each other.

### 2.3 Phylogenetic Analyses

Phylogenetic analyses were carried out using the Mega5 program (Tamura et al., 2011). Two types of phylogenetic trees were generated; a Maximum likelihood phylogenetic tree and a Neighbor-Joining tree. Both trees were based on the Poisson distribution model which is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time and/or space (Gullberg, 1997).

### 2.3.1 Maximum likelihood tree

Amino acid sequences were collected in FASTA formats from Genbank and deposited in MEGA5. The CLUSTALW function within the MEGA5 program was used to align the sequences which were used in the determination of a Maximum likelihood tree.

The tree with the highest likelihood has the lowest negative logarithmic-transformed values. Likelihood is regarded as statistically consistent. Reliability in an inferred tree is achieved using a bootstrap test which is a re-sampling technique where trees are reconstructed by repeat sampling numerous times. If the bootstrap value for a given interior branch is $95 \%$ or higher, then the topology at that branch is considered to be correct (Felsenstein, 1985). In this study a 1,000 bootstrap test was applied.

## Chapter 2 - General Materials and Methods

### 2.3.2 Neighbor-Joining tree

Amino acid residues were collected in FASTA format from Genbank and deposited in MEGA5. A CLUSTALW alignment was carried out within the MEGA5 suite of programs and 1,000 bootstraps were applied for the purpose of stringency when selecting the NeighborJoining program.

The Neighbor-Joining technique is a polynomial-time algorithm suited to large datasets and bootstrapping. Neighbor-Joining is a bottom-up clustering method which uses the distance between each pair of taxa (Didelot, 2010, Saitou and Nei, 1987). The Dayhoff algorithm described in section 2.3.2.1 was used where sequences were identical.

### 2.3.2.1 Dayhoff algorithm

Where identical sequences were included, such as in the comparison of functional or structural important motifs, a Dayhoff algorithm (Dayhoff et al., 1978) contained within the MEGA5 program was used. Gamma distribution values produced by this program were useful in this study.

### 2.4 Genomic DNA analyses

### 2.4.1 Promoter Scan

Promoter Scan (http.//www-mas.cit.nih.gov/molbio/proscan/analysis.html) is designed to find putative eukaryotic Polll promoter sequences in primary sequence data. This program was used to identify the IL-2 gene promoter region in the relevant ensembl genome database. For a sequence to qualify as a promoter region, certain transcriptional elements have to be contained within that sequence (Prestridge, 1995). A cut-off score of $53 \%$ was used in this study to identify a promoter sequence. Promoter Scan reported the sequence range in which the putative promoter was found. The TATA box was determined and estimation of the transcription Start Site (TSS) was made. Significant signals, such as transcriptional elements, were also reported. The results from Promoter

## Chapter 2 - General Materials and Methods

Scan were verified with Genscan in order to find the START site of the gene as well as the TATA box.

### 2.4.2 Genscan

Genscan (http.//genes.mit.edu/GENSCAN.html) predicts gene structures in vertebrate genomic sequences. This program was used in this study to detect the boundary between exon-3 and exon-4 in the IL-2 gene. This allowed a comparison of the human exon/intron boundaries with the marsupial exon/intron boundaries.

### 2.5 Ensembl and UCSC Genome Browsers

The wallaby genome had not been published when this study commenced. It was subsequently deposited in the ensembl database by Renfree et al. (2011). The M. domestica genome (Mikkelsen et al., 2007) is also in ensembl although this genome was originally published in the UCSC genome browser (http.//genome.ucsc.edu/) (Dreszer et al., 2012, Fujita et al., 2011, Kent, 2002). The M. domestica genome was used to search for conservation of genes between marsupials and other vertebrates. With this information, consensus primers were designed in this study to permit identification of the gene in question at the molecular level. M. domestica is not closely related to the other species investigated in this study, hence the use of the consensus method. Following its publication, the wallaby genome was used in this study for comparison with the expressed gene sequences determined from RNA and mRNA in the species investigated.

### 2.6 Semi-quantitative Expression studies

A Nanodrop 2000c spectrophotometer (Thermo scientific, Australia) was used to quantify the cDNA obtained from RNA and mRNA. cDNA from O. fraenata and M. eugenii tissues was normalized against the housekeeping gene Glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

## Chapter 2 - General Materials and Methods

2.7 Real Time PCR - Quantitative PCR (qPCR) for Interleukin-2

### 2.7.1 Primer design

The primers were selected by inspecting a sequence alignment and using the secondary structure prediction to avoid unsuitable areas. The secondary structure of the primer pair was inspected with OligoanalyzerdT for heterodimer and hairpin formations. The location of the primer pair used in the HRM experiment was located in exon-3 (tcactaaagaactg aaccctgtggc $/ T_{m} 58.9^{\circ} \mathrm{C}$ ) and exon-4 (gtcactacgcctccaaga tgagg $/ \mathrm{T}_{\mathrm{m}} 59.1^{\circ} \mathrm{C}$ ) spanning 152 bp . The gene interleukin-2 was reported to have a splice variant where exon-2 was missing. The primers were therefore positioned outside that region.

### 2.7.1.1 Real Time Polymerase Chain Reaction (qPCR)

The qPCR protocol must start with an initial incubation step of 5 min at $95^{\circ} \mathrm{C}$ to activate the HotStar Taq Plus DNA Polymerase. The tubes containing the $25 \mu \mathrm{~L}$ reaction volume were loaded into a 36 tube rotor on a Rotorgene $Q$ thermocycler (Qiagen, Doncaster, Vic, Australia) ensuring that the negative control was loaded into the rotor after the samples had been placed. The fluorescence data acquisition commenced at the combined annealing/extension step after the initial denaturation. Care was taken to select the correct fluorescence channel (green for SYBR green). Reactions containing $2.5 \mu \mathrm{~L}$ of cDNA and a HRM SYBR green Master mix were brought to a final volume of $25 \mu \mathrm{~L}$ with nuclease free water. Primers were used at a final concentration of $0.2 \mu \mathrm{M}$. The specificity of the amplicon for each reaction was verified by examination of the corresponding dissociation curve and visualization on a $1 \%$ agarose gel matrix. For all reactions, a denaturation cycle of 5 min at $95^{\circ} \mathrm{C}, 40$ annealing cycles of 15 s at $95^{\circ} \mathrm{C}, 15 \mathrm{~s}$ at $50^{\circ} \mathrm{C}$ and 1 min at $72^{\circ} \mathrm{C}$, and one extension cycle of 10 min at $72^{\circ} \mathrm{C}$ were carried out. Data acquisitions were performed with the Rotorgene $Q$ software.

## Chapter 2 - General Materials and Methods

### 2.7.2 High Resolution Melt analysis (HRM)

SYBR Green I technology was utilized for all quantitative PCR reactions using the HRM kit (Qiagen, Doncaster, Australia). Baseline limits were set as suggested by manufacturer. The threshold was set to lie in the middle of the exponential phase of the amplification plot so that efficiency values truly reflected the reaction dynamics at the $C_{t}$. All efficiency values were determined with the Rotorgene $Q$ analysis software. Data resulting from reactions that did not reach the threshold within the first 40 cycles $\left(C_{t}=40\right)$ were discarded from the analysis. cDNA dilutions of $1 / 100$ and $1 / 1,000$ were made and a qPCR run was set up in triplicate and the samples were normalized against the housekeeping gene GAPDH.

### 2.8 Part II Protein studies

Western Blots were carried out for ZAP-70, Lck and IL-2 to ascertain whether or not the protein could be identified in a crude cell lysate. The procedures are described in the following sub-sections 2.8 .1 to 2.8.4.

### 2.8.1 Protein Extraction

The animal tissue was manually homogenized with a sterile pestle in a 1.5 mL Eppendorf tube. The weight of the tissue was determined by substracting the tare of the tube from its loaded weight. The following additives were then dispensed into a sterile 10 mL tube and placed on ice:

3 mL of Ice cold Radio Immunoprecipitation Assay buffer (RIPA) per gram of tissue.
$100 \mu \mathrm{~L}$ of protease inhibitor (Sigma -Protease inhibitor cocktail 1) per mL of RIPA buffer.
$10 \mu \mathrm{~L}$ of phosphatase inhibitor (Sigma -Phosphatase inhibitor cocktail 2) per mL of RIPA buffer.

The homogenized tissue was transferred to the 10 mL tube which was rotated on a MACSmix ${ }^{\text {TM }}$ Tube Rotator (Miltenyi Biotec, Sydney, Australia) at 12 rpm for 1 h at $4^{\circ} \mathrm{C}$. The tube was then spun in a bench top centrifuge at $14,000 \times g$ for 10 min . The supernatant was aspirated and dispensed into a clean Eppendorf tube leaving the tissue debris behind.

## Chapter 2 - General Materials and Methods

The supernatant was spun again to remove any remaining debris, then aspirated, and a $50 \mu \mathrm{~L}$ aliquot was dispensed into a 0.6 mL tube for storage at $-20^{\circ} \mathrm{C}$.

### 2.8.2 Bicinchoninic acid assay (BCA)

The BCA assay was conducted with a Pierce ${ }^{\circledR}$ BCA Protein Assay Kit. Bovine serum albumin standards (BSA) were prepared in sterile Eppendorf tubes by diluting $2 \mathrm{mg} / \mathrm{mL}$ Albumine Standard from that kit with $1 \times$ Phosphate buffered saline (PBS). Dilutions to suit a working range of 20 to $2,000 \mu \mathrm{~g} / \mathrm{mL}$ as specified by the manufacturer were prepared in triplicate and are listed in Table 2.2.

Table 2.2. Dilution scheme for Eppendorf tube protocol for BCA assay.

| Tube | Volume of Diluent | Volume and Source of BSA | Final BSA concentration <br> $(\mu \mathrm{g} / \mathrm{mL})$ |
| :---: | :---: | :---: | :---: |
| A | 0 | $300 \mu \mathrm{~L}$ of Stock | 200 |
| B | $125 \mu \mathrm{~L}$ | $375 \mu \mathrm{~L}$ of Stock | 1500 |
| C | $325 \mu \mathrm{~L}$ | $325 \mu \mathrm{~L}$ St Stock | 1000 |
| D | $175 \mu \mathrm{~L}$ | $175 \mu \mathrm{~L}$ of vial B dilution | 750 |
| E | $325 \mu \mathrm{~L}$ | $325 \mu \mathrm{~L}$ of vial C dilution | 500 |
| F | $325 \mu \mathrm{~L}$ | $325 \mu \mathrm{~L}$ of vial E dilution | 250 |
| G | $325 \mu \mathrm{~L}$ | $325 \mu \mathrm{~L}$ of vial F dilution | 125 |
| H | $400 \mu \mathrm{~L}$ | $100 \mu \mathrm{~L}$ of vial G dilution | 25 |
| I | $400 \mu \mathrm{~L}$ | 0 | Blank |

The preparation of the BCA working reagent (WR) was carried out in accordance with the following manufacturer's instructions:
(\#standards + \#unknowns) x (\#replicates) x (volume of WR per sample) = total V WR required. (9 standards +3 samples) $\times(2$ replicates $)=12 \times 200=2400 \mu \mathrm{~L}=2.4 \mathrm{~mL}$ WR. Two millilitres ( 2.0 mL ) of the WR was required for each sample. The working reagent was prepared by mixing 50 parts of BCA reagent $A$ with 1 part of BCA reagent $B$ (50.1, Reagent A.B) as per manufacturer's instruction i.e. $\Delta 2,500 \mu \mathrm{~L}(\mathrm{~A})+50 \mu \mathrm{~L}(\mathrm{~B})$.

Samples were diluted $1 / 5,1 / 20$ and $1 / 50$ and 2.0 mL of the working reagent was added to each tube and mixed. The tubes were incubated at $37^{\circ} \mathrm{C}$ for 30 min . All tubes were cooled to room temperature. A Nanodrop spectrophotometer (Thermofisher, Australia) was used

## Chapter 2 - General Materials and Methods

to measure the absorbance at 562 nm for dilutions of $1 / 5,1 / 20$ and $1 / 50$. The average was taken and the concentration determined in $\mu \mathrm{g} / \mu \mathrm{L}$.

### 2.8.2.1 Qubit protein assay

A Quant iT (Life Technologies, Invitrogen, Victoria, Australia) working solution was prepared by diluting $2 \mu \mathrm{~L}$ Quant iT protein reagent in $198 \mu \mathrm{~L}$ of Quant iT buffer (1/200). Standards to be used to calibrate the fluorometer were prepared by diluting the supplied kit standards in Quant iT working solution in accordance with the manufacturer's instructions. The protein samples were also diluted in the Quant iT working solution. The dilution series are shown in Table 2.3. All diluted standards and protein samples were vortexed for 2-3 s and then incubated for 15 min at ambient temperature. The Qubit ${ }^{\circ}$ fluorometer was calibrated using the prepared standards. After calibration of the fluorometer, the concentrations of the protein samples were determined by selecting 'protein assay' from the fluorometer menu.

Table 2.3: Standards for fluorometer calibration, and protein sample dilutions for Qubit protein assays.

|  | Kit standard or protein <br> sample volume | Quant iT working <br> solution volume | Final volume |
| :--- | :---: | :---: | :---: |
| Kit Standard $1(0 \mathrm{ng} / \mu \mathrm{L})$ | $10 \mu \mathrm{~L}$ | $190 \mu \mathrm{~L}$ | $200 \mu \mathrm{~L}$ |
| Kit Standard $2(200 \mathrm{ng} / \mu \mathrm{L})$ | $10 \mu \mathrm{~L}$ | $190 \mu \mathrm{~L}$ | $200 \mu \mathrm{~L}$ |
| Kit Standard $3(400 \mathrm{ng} / \mu \mathrm{L})$ | $10 \mu \mathrm{~L}$ | $190 \mu \mathrm{~L}$ | $200 \mu \mathrm{~L}$ |
| Protein sample | $2 \mu \mathrm{~L}$ | $198 \mu \mathrm{~L}$ | $200 \mu \mathrm{~L}$ |

### 2.8.3 Protein Gels

An APS/TEMED solution was prepared by dissolving 1 polymerization tablet (Amresco, Astral Scientific, Sydney, Australia) in 1 mL of autoclaved milliQ water. Five millilitres ( 5 mL ) of Next Gel solution (Amresco, Astral Scientific, Sydney, Australia) was mixed with $90 \mu \mathrm{~L}$ of the APS/TEMED polymerization solution. Two glass plates were filled to the top with gel solution, the comb was inserted, and the glass plates were overlaid with saturated Butanol. These polyacrylamide gels were allowed to polymerize at ambient temperature for 1 h before refrigerating.

## Chapter 2 - General Materials and Methods

As an alternative method, polyacrylamide gels were made de novo. These gels contained 30\% Acrylamide/Bis solution (BioRad, Gladesville, Australia), 4 X resolving Gel Buffer (Appendix 7), $5 \mu \mathrm{~L}$ of Tetramethylethylenediamine (TEMED) per 10 mL of gel solution, and $10 \%$ APS solution. Two glass plates were filled to the top with gel solution, the comb was inserted, and the glass plates were overlaid with saturated Butanol. These polyacrylamide gels were allowed to polymerize at ambient temperature for 1 h before refrigerating.

In order to achieve greater resolution of the extracted proteins, a resolving gel and a stacking gel were used. The resolving gel, made as detailed above, was dispensed between two glass plates and filled to the three quarter level using a transfer pipette, and was overlaid with saturated Butanol. The resolving gel was allowed to set at ambient temperature for 1 h . The Butanol was then rinsed off with milliQ water and the resolving gel was dried with Kim wipes before the stacking gel was poured on top. The stacking gel was made with $30 \%$ Actylamide/Bis, 4 X stacking gel buffer, $10 \%$ APS solution, and $5 \mu \mathrm{~L}$ of TEMED per 10 mL of gel solution. The comb was then inserted and the stacking gel was overlaid with Butanol. The stacking gel was allowed to polymerase at ambient temperature and the combined gel was then wrapped in plastic and refrigerated until required.

Prior to use, the comb was removed and the wells were rinsed with milliQ water before the gels were transferred to a Mini Protean gel tank (BioRad, Gladesville, Australia). The protein samples, together with Laemmli loading buffer containing 2 M Dithiothreitol (DTT) (BioRad, Gladesville, Australia) was heated at $55^{\circ} \mathrm{C}$ for 15 min . The gel wells were then loaded with the protein/loading buffer mixture ( $40 \mu \mathrm{~g} / \mathrm{well}$ ). One well was loaded with a Precision Plus Protein ${ }^{\text {TM }}$ Standard (BioRad, Gladesville, Australia). The gel was then electrophoresed at 100 V for 2 h in 1 X SDS running buffer (Amresco, Astral Scienctific, Sydney, Australia), followed by 75 V for 1 h . The gel was then stained with Coomassie Brilliant Blue (BioRad, Gladesville, Australia) for 1.5 h on an orbital shaker and de-stained overnight in a de-staining solution (Appendix 7) on an orbital shaker.

## Chapter 2 - General Materials and Methods

SYPRO Ruby stain (Invitrogen, Carlsbad, USA) was used as an alternative to Coomassie Brilliant Blue. After the proteins were electrophoresed, 100 mL of fixing solution was poured on the gel which was gently agitated on an orbital shaker for 30 min . The fixing solution was poured off and replaced with 60 mL of SYPRO ${ }^{\circledR}$ Ruby gel stain. The gel was agitated again on an orbital shaker overnight. The gel was transferred to a new container and 100 mL wash solution was poured on the gel and agitated for 30 min on an orbital shaker.

The gel was visualized with the Vilber Lourmat Gel imaging system using the Quantum Capture software package (Fisher BioTec, Wembley, Australia).

### 2.8.4 Western Blotting

### 2.8.4.1 Protein transfer to membrane

After the protein gel was electrophoresed, it was removed from the glass plates and the wells were trimmed away. The gel was immersed in transfer buffer for approximately 20 min. Filter papers were soaked in transfer buffer for at least 30 s . The PVDF membrane was moistened in methanol for 30 s , rinsed in milliQ water for 2 min , then placed in transfer buffer for 5 min . The foam pads were also soaked in transfer buffer. The stack was then assembled in a cassette from the cathode end to the anode end starting with the foam pad, filter paper, gel, membrane, filter paper and foam pad making sure that none of the components dried out. The cassette was then closed and immediately placed in the cassette holder facing the cathode with the membrane facing the anode. Transfer buffer, a stirrer bar, and an ice pack were added to the tank and the gel was electrophoresed for 80 min at 100 V .

Once transfer was complete the stack was disassembled and the membrane was placed into 50 mL blocking solution (low-fat powdered milk in Tween Buffered Saline -Tween (TBS-T)) and agitated on an orbital shaker for 1 h at ambient temperature. The primary antibody was diluted in the blocking solution, added to the blot, and incubated for 1 h at $4^{\circ} \mathrm{C}$ on an orbital shaker (Table 2.4). The primary antibody solution was discarded and the

## Chapter 2 - General Materials and Methods

blot incubated for 30 min with the secondary antibody diluted in TBS-T. The membrane was then washed twice for 10 min each in TBS-T and then twice for 5 min each in Tris buffered saline (TBS). The membrane was incubated with 3,3 -Te 5 r, 5 ḿmethylbenzidine (TMB) for up to 20 min depending on the gene being investigated. In most instances 10 min was sufficient incubation time.

Table 2.4. Antibodies and Dilutions used in Western Blots and Dot Blots.

| Name of Antibody | Primary <br> Antibody | Secondary <br> Antibody | Blocking \% | Dilution |
| :--- | :--- | :--- | :--- | :--- |
| $\beta$-Actin | $\checkmark$ |  | $5 \%$ | $1: 200$ |
| Anti-Rabbit HRP |  | $\checkmark$ | $5 \%$ | $1: 2500$ |
| ZAP-70 | $\checkmark$ |  | $3 \%$ and 5\% | $1: 100$ and 1:2000 |
| Anti-goat mouse <br> IgG HRP |  | $\checkmark$ | $3 \%$ and 5\% | $1: 2000$ |
| mpIL-2 | $\checkmark$ |  | $3 \%$ | $1: 500$ |
| Anti-Rabbit HRP |  | $\checkmark$ | $3 \%$ | $1: 2500$ |

All protein samples were investigated using the $\beta$-Actin antibody (Santa Cruz, sc-130657, dil. 1.200) in order to ascertain an approximate protein expression profile. Jurkat whole cell lysate (Santa Cruz - Biotechnology, USA, sc-2204) served as positive control in the Western Blots for ZAP-70 and Lck.

### 2.8.4.2 Dot Blot

Two microlitres $(2 \mu \mathrm{~L})$ of peptide and horse serum was spotted onto a PVDF membrane which was then dried before proceeding. Non-specific sites were blocked by soaking the membrane in $0.5 \%$ non-fat milk in TBS-T for 1 h . The Dot Blots were incubated with the primary antibody ( $0.2 \mu \mathrm{~g} / \mu \mathrm{L}$ ). Dilutions of $1 / 100,1 / 1,000,1 / 10,000$ in blocking buffer were incubated with the blot for 1 h . The blots were washed 3 times with TBS-T for 5 min each time. The blots were then incubated for 30 min with the secondary HRP conjugated antibody Anti-Rabbit IgG (W401B, Promega, Australia) diluted to $1 / 2,500$ in blocking buffer as per the manufacturer's recommendation. The blots were washed in TBS-T for 15 min, then twice for 5 min each, followed by a final wash in TBS for 5 min . The blots were then incubated with a 3,3'-Diaminobenzidine (DAB) substrate.

## Chapter 2 - General Materials and Methods

### 2.8.4.3 Isotype control

Isotype controls were used for all primary antibodies. Isotype control antibodies have no specificity for target cells within a particular experiment. They serve to confirm the specificity of primary antibody binding that is not a result of cellular protein interactions. Isotype controls were used for both Dot Blots and Western Blots. An isotype control for the rabbit $\lg G$ contained Rabbit $\operatorname{lgG}+$ anti-lgG, Protein + anti $\lg G$, Protein + PBS incubated with primary antibody, Horse serum (HS) + rabbit $\operatorname{lgG}$ (=negative control). Protein was spotted on PVDF membrane in single dots of $1 \mu \mathrm{~L}$.

Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

## Chapter 3

The diprotodontic $T$ cell signalling unit and the corresponding receptor

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.0 Abstract

The $T$ cell receptor (TCR) is unable to transduce a signal without the immune receptor tyrosine activation motifs (ITAMs) of the oligomeric CD3 complex. In the metatherians, the TCR $\alpha$ and $\beta$ chains have only been characterized in $M$. domestica and $T$. vulpecula, and the CD3ع molecule has only been characterized in M. eugenii. Consequently, prior to the present study, no comparison of this gene sequence with that of other metatherians was possible.

RT-PCR and RACE-PCR were used for comparative analyses of the CD3ع molecule in the two endangered marsupials $O$. fraenata and L. hirsutus, and in M. domestica. The same methods were used to investigate the TCR $\alpha \beta$ chains in $O$. fraenata and $M$. eugenii. Structure predictions of important motifs of the marsupial TCR $\alpha \beta$ and the CD3 $\varepsilon$ molecule were carried out with prediction programs.

It was found that the transmembrane domain of the marsupial TCR $\alpha$ chain was composed of different amino acid residues to that of other mammals thus suggesting a different architecture. This was subsequently supported by a structure prediction program. CD3 $\varepsilon$ was found to be highly conserved in the marsupial species included in this study. Some differences in the stalk region of the marsupial CD3\& molecule were observed when compared with that of eutherians. However, the substituted amino acid residues showed no change in the charge distribution or polarity of the stalk region.

It was shown that both the $\operatorname{TCR} \beta$ the CD3 $\varepsilon$ chains are highly conserved among marsupial species, and between marsupials and eutherians. However, the marsupial TCR $\alpha$ chain, which is the functional unit of the receptor, differed considerably from the eutherian TCR $\alpha$ chain. Notwithstanding that difference, it is expected that this part of the marsupial T cell signalling cascade functions in a manner similar to that of eutherian mammals.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.1 Introduction

The T cell receptor-CD3 complex (TCR-CD3) is important for T cell development and function. Structurally important motifs within this complex are responsible for the initiation of a signal that ultimately leads to the transcription of cytokines such as interleukin-2 (IL-2) (Call et al., 2004). Activation of signalling molecules occurs by ligandbinding of receptors, and in the case of T lymphocytes by the assembly of the TCR-CD3 and the interaction between them. The CD3 complex consists of a number of polypeptide proteins ( $\gamma \delta \varepsilon \zeta \eta$ ) and the $\alpha$ and $\beta$ chains of the T cell receptor. The CD3 chains serve two major functions; the surface expression of the receptor (Clevers et al., 1988a), and the activation of the T cell signalling cascade (Klausner and Samelson, 1991, Clevers et al., 1988a).

Specific amino acid residues are responsible for each of these functions and are located in strategic regions within the CD3ع molecule (Xu et al., 2008). Structural motifs within CD38, such as the ITAM motif, are responsible for signal transduction through a phosphorylation event. This leads to a conformational change and the exposure of a proline-rich region (PxxDY) capable of binding $\mathrm{SH}_{3}$ domains (Kesti et al., 2007). The associated functions of the PxxDY motif have only been investigated in detail in the last decade in human and mouse species (Aitio et al., 2008, Mingueneau et al., 2008). Motifs in the cytoplasmic domain of this molecule are involved in T cell differentiation (Brodeur et al., 2009) and motifs responsible for the activation of the T cell receptor have been investigated in more detail in the last decade (Kim et al., 2010).

In marsupial species, the CD3 chain has been characterized at the molecular level only in M. eugenii (Old et al., 2001). Whether or not important structural motifs are conserved in other marsupial species was not known prior to the present study. Nevertheless an antihuman CD3 antibody has been used in the past on marsupial tissues and was found to be cross-reactive due to the paratope of the human CD3 sequence matching that of the $M$. eugenii sequence (Old et al., 2001, Jones et al., 1993).

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

The anti-human CD3 antibody has been used successfully to detect CD3 in the tissues of a number of marsupials including Phascogale calura (red- tailed phascogale) (Old et al., 2006), Isoodon macrourus (northern brown bandicoot) (Old and Deane, 2002a), Sminthopsis macroura ( stripe-faced dunnart) (Old et al., 2003), Macropus giganteus (grey kangaroo) (Old and Deane, 2001) and M. eugenii (Old and Deane, 2003). However, while this indicated the presence of T lymphocytes in marsupial tissues it could not confirm the presence of functionally important motifs and their conservation among those species.

A comparative investigation of the CD3 8 chain is important since it highlights the evolution of the gene. In order to detect sequence changes within the marsupial clade compared to other mammals it was necessary to investigate this gene in macropods other than M. eugenii, such as O. fraenata and L. hirsutus and in the distantly related marsupial M. domestica.

The two invariant $\alpha$ and $\beta$ chain of the TCR are linked by disulphide bridges but also contain specific amino acid residues that are involved in the dimerization as well as the localization of the receptor on the membrane (Arnaud, 1997). The chains of the T cell receptor have been characterized in T. vulpecula (Australian silver brushtail possum) and M. domestica (Zuccolotto et al., 2000, Baker et al., 2001) but not in M. eugenii or $O$. fraenata.

Two important motifs are contained within the TCR $\alpha$ chain; the transmembrane region responsible for the assembly and surface expression of the receptor, and the connecting peptide which ensures a close proximity of the receptor to the co-receptor CD8. These assure signal strength and control antigen responsiveness (Mallaun et al., 2008, Backstrom et al., 1996).

The 14 amino acid long FG loop ( $F=$ phenylalanine, $G=$ glycine) which lies in the constant domain of the TCR beta chain is the structural link between the CD3 subunits and the receptor during the signalling event (Degermann et al., 1999b, Wang et al., 1998b). The FG loop is important in the biological function of the beta chain.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

In this study prominence was given to investigation of the FG loop structure to determine its conservation and possible changes in charge distribution that may alter the biological activity of the molecule. This study also investigated other important structural motifs within the cDNA sequence, their conservation, and secondary structure. Where possible, models of the marsupial molecules CD3 $\varepsilon$, the TCR $\alpha$ chain and the TCR $\beta$ chain were constructed.

### 3.2 Aims and Objectives

The aims of the experiments reported in this Chapter were to investigate the marsupial TCR and CD3\& molecules, and in particular:

- To characterize the CD3 chain in the endangered marsupials $O$. fraenata and $L$. hirsutus.
- To confirm the existing gene predictions for CD3 2 in the ensembl (http.//www. ensembl.org) and UCSC (http.//genome.ucsc.edu/) databases for M. domestica.
- To investigate the nucleotide sequences of CD38, TCR $\alpha$ and TCR $\beta$ for possible polymorphisms and to explore in particular the putative amino acid sequences for any apparent differences in their structural and functional motifs.
- To determine the position of the marsupial clade compared to other mammals employing phylogenetic analyses.
- To undertake phylogenetic analyses of functional motifs in order to determine divergent evolution within these motifs.
- To conduct protein modelling from the putative amino acid sequences and to deduce possible amino acid residue interactions through ligand binding.


## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.3 Specific Materials and Methods

The following materials and methods were unique to this chapter. General materials and methods are detailed in Chapter 2.

### 3.3.1 RNA, mRNA and cDNA

RNA was isolated from spleen, liver, gut node and thymus of $O$. fraenata as described in Chapter 2, section 2.1.3. mRNA was isolated from total RNA, and cDNA was synthesized as described in Chapter 2, sections 2.1.3.2, and 2.1.5.

RNA and mRNA extracted from M. eugenii spleen were donated by Dr. L. J. Young. RNA from stimulated $M$. eugenii lymphocytes was also donated by Dr. Young for further processing.

RNA, mRNA and cDNA were quantified as described in Chapter 2.1.4. All sequences obtained by PCR from cDNA were cloned as detailed in Chapter 2, section 2.1.10. Three clones were prepared for sequencing in the forward and reverse direction as detailed in Chapter 2, section 2.1.10.6.

A cDNA library from M. domestica thymus and spleen was donated by Dr. K. Belov and was used for elucidation of the $M$. domestica CD3ع gene as described in section 3.3.3. cDNA was also synthesized from RNA isolated from L. hirsutus spleen by K. Howard.

### 3.3.2 Reverse Transcription

RNA and mRNA were reverse transcribed as described in Chapter 2, section 2.1.5. The transcribed cDNA was verified with glucose-6-phosphate dehydrogenase (G6PD) and trialled with CD3ع.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.3.3 Primer design

### 3.3.3.1 CD3 $\varepsilon$, $\operatorname{TCR} \alpha$ and TCR $\beta$

Primers were designed as detailed in Chapter2, section 2.1.2. The primer sequences are presented in Table 3.1.

Table 3.1. Primer sequences used to deduce the open reading frames of $C D 3 \varepsilon$, and the partial open reading frames of TCR $\alpha$ and TCR $\beta$ in three marsupial species including the source tissue.

| Gene | Forward primer <br> $3^{\prime}-5^{\prime}$ | Reverse primer <br> $3^{\prime}-5^{\prime}$ | gaaataaacccaccaaaccctg <br> (5' untranslated region) | ccaggctggaagtggaggg ( $3^{\prime}$ <br> untranslated region) | $53^{\circ} \mathrm{C} / 63^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CD3ع |  | Size | Species and <br> source tissue |  |  |
|  | atgcattggaagctctctggact <br> gtg (START) | gatggctctctgattcaggccagc <br> ata <br> (STOP) | $61^{\circ} \mathrm{C} / 61^{\circ} \mathrm{C}$ | $\sim 567 \mathrm{bp}$ | O. fraenata <br> (spleen, thymus) <br> L. hirsutus <br> (spleen) <br> M. domestica <br> (cDNA library) |

*M13 reverse primer melt Temp. $47^{\circ} \mathrm{C}$ was used in the cDNA library of M . domestica

### 3.3.3.2 Polymerase Chain Reaction (PCR), cloning and sequencing

Generally used RT-PCR templates, concentrations of the PCR mixes, and preparation of the RT-PCR and RACE-PCR products are detailed in Chapter 2 sections 2.1.6, 2.1.8 and
2.1.10. Table 3.2 shows the PCR templates used in this Chapter.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

RACE primers were designed as outlined in Chapter 2, section 2.1.2 from the initial sequence derived from the RT-PCR products. RACE-PCRs were performed to obtain the 5' and $3^{\prime}$ ends of the molecules as described in Chapter 2 section 2.1.9.

Table 3.2. PCR and RACE -PCR templates used for amplification of CD3 $\varepsilon$, TCR $\alpha$ and TCR $\beta$ from three marsupial species.

| Species | Gene of interest | PCR template* | RACE PCR template |
| :--- | :--- | :---: | :---: |
| O. fraenata | CD3 | No.3 | --- |
| L. hirsutus |  | No.3 |  |
| M. domestica |  | No.3 |  |
| O. fraenata | TCR $\alpha$ | Nos.1 and 2 | No. 2 |
| M. eugenii |  | Nos.1 and 2 | No. 2 |
| O. fraenata | TCR $\beta$ | No.1 | Touchdown (60-50º$) ~$ |
| M. eugenii |  | No.1 | --- |

*These numbers relate to the templates specified in General Materials and Methods (Chapter 2).

### 3.3.4 Amplification of $3^{\prime}$ end of CD3 $\varepsilon$ from $M$. domestica cDNA library

A cDNA library constructed from M. domestica thymus and spleen tissue using the XZAPII vector was used to amplify the 3 ' end of $M$. domestica CD3 $\varepsilon$ to confirm the predicted coding domain of the molecule. A primer containing the start site of the CD3 $\boldsymbol{\varepsilon}$ molecule was paired with a primer complementary to the M13 universal sequencing site in $\lambda$ ZAPII. The annealing temperature of the RT-PCR reaction was $55^{\circ} \mathrm{C}$ and a Platinum ${ }^{\circledR} \mathrm{HiFi}$ Taq DNA polymerase (Invitrogen, Carlsbad, USA) was used. The product was excised and prepared for direct sequencing. When it was verified that the correct product was amplified, it was cloned as described in Chapter 2, section 2.1.10.6.

### 3.3.5 Phylogeny

A phylogenetic analysis was undertaken for CD3 $\varepsilon$ using Mega5. Phylogenetic analyses were undertaken for specific structurally important motifs in the TCR $\alpha$ and TCR $\beta$ sequences with a Dayhoff algorithm in the Mega5 program.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.3.6 Bioinformatics

All of the bioinformatics tools detailed in Chapter 2 were used to elucidate putative domain structures, putative glycosylation sites, possible disulphide bonds, putative amino acid sequences, putative secondary and tertiary structures, and homology searches.

### 3.4 Results

### 3.4.1 RNA and mRNA isolation

The RNA and mRNA concentrations determined with a Qubit ${ }^{\circ}$ Fluorometer and verified with a Nanodrop spectrophotometer (Thermofisher, Australia) as detailed in Chapter 2 are listed in Table 3.3. The yield of mRNA from total RNA was approximately $0.3 \%$.

Table 3.3. Concentrations of RNA, mRNA and cDNA for $O$. fraenata and concentrations of cDNA for $M$. eugenii, in various tissues.

| O. fraenata |  |  |  | M.eugenii |
| :--- | :--- | :--- | :--- | :---: |
| Tissue | Total RNA <br> Concentration | mRNA <br> Concentration | cDNA <br> Concentration | cDNA <br> Concentration |
| Spleen | $2.0 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.318 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.535 \mu \mathrm{~g} / \mu \mathrm{L}$ |  |
| Liver | $4.920 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.036 \mu \mathrm{~g} / \mu \mathrm{L}$ and $0.550 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.548 \mu \mathrm{~g} / \mu \mathrm{L}$ |  |
| Gut Node | $0.22 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.4 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.460 \mu \mathrm{~g} / \mu \mathrm{L}$ |  |
| Thymus | $0.56 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.202 \mu \mathrm{~g} / \mu \mathrm{L}$ | $0.510 \mu \mathrm{~g} / \mu \mathrm{L}$ |  |
| PHA stim. L $\phi$ | $*$ |  |  | $0.445 \mu \mathrm{~g} / \mu \mathrm{L}$ |
| ConA stim.L E | $*$ |  | $0.432 \mu \mathrm{~g} / \mu \mathrm{L}$ |  |

*(donated by Dr. Lauren Young)

### 3.4.2 CD3 epsilon (CD3\&)

### 3.4.2.1 CD3 - Homology

A homology search revealed a high conservation among the marsupials. The expressed $M$. domestica sequence had an identity to M. eugenii of $79 \%$ at the nucleotide level and $74 \%$ at the amino acid level. O. fraenata and L. hirsutus sequences each had an identity to $M$. eugenii of $93 \%$ at the nucleotide level and $85 \%$ and $87 \%$ respectively at the amino acid level. O. fraenata and L. hirsutus sequences had an identity to each other of $91 \%$ at the nucleotide level and $82 \%$ at the amino acid level. For the first time, a comparison could be made between the predicted and the expressed sequences of $M$. domestica CD3ع. A

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

BLASTx search showed a sequence identity of $95 \%$ between the predicted and expressed amino acid sequences of the $M$. domestica CD3 $\varepsilon$ molecule which indicates that the annotation might not be accurate.

The conservation of the marsupial CD3 $\varepsilon$ amino acid sequences to the human CD3 2 amino acid sequence varies among the species. The expressed $M$. domestica sequence had a $54 \%$ identity, while the predicted sequence had a $55 \%$ identity to the human sequence. The O. fraenata and L. hirsutus sequences had identities of $58 \%$ and $55 \%$ respectively to the human sequence. Since the amino acid sequence identity was above $50 \%$, it can be hypothesized that the tertiary structure may be similar to that of the human structure. The identity percentages of the CD3 2 nucleotide and amino acid sequences in the marsupial species are shown in Table 3.4.

Further examination of the results revealed that, in the three marsupial species, some of the amino acid sequences were of low complexity resulting in a lower protein identity percentage. Twenty three low complexity amino acid residues were found in $O$. fraenata, 34 were found in L. hirsutus and 6 were found in M. domestica. The low complexity sequences in the three marsupial species occurred in the helix region of the CD3 $\varepsilon$ molecule. In O. fraenata and L. hirsutus the low complexity sequences commenced prior to the helix region and extended beyond that motif indicating that this region was not modelled with a high confidence level.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

Table 3.4. Homology search results for the M. domestica, O. fraenata and L. hirsutus CD3ع nucleotide and amino acid sequences, their identities and their respective e-values.

| CD38 Homology search results for M. domestica, O. fraenata and L. hirsutus |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | To | Nucleotide | e-value | Amino acid | e-value |
| M. domestica (582bp, 193aa) | M. eugenii | 79\% | 2e. 142 | 74\% | 3 e .95 |
|  | O. fraenata(*) | 77\% | 2e.133 | 68\% | 3 e .66 |
|  | L. hirsutus (*) | 79\% | 1e.147 | 72\% | 3 e .74 |
|  | S. harisii | 79\% | 6e-142 | 74\% | 7 e .89 |
|  | C. jacchus | 77\% | 5 e .60 | 57\% | 4 e .65 |
|  | M. fascicularis | 77\% | 3 e .57 | 55\% | 1 e .60 |
|  | H. sapiens | 76\% | 5 e .54 | 54\% | 1 e .60 |
|  | F. catus | 75\% | 5 e .48 | 53\% | 2e. 58 |
|  | S. scrofa | 75\% | 2 e .47 | 55\% | 2 e .56 |
|  | M. musculus | 75\% | 8 e .45 | 50\% | 6 e .53 |
|  | R. norvegicus | 73\% | 1 e .42 | 50\% | 1e. 55 |
|  | C. familiaris | 73\% | 5 e .41 | 49\% | 8 e .56 |
|  | A. mexicanum | 69\% | 7 e .14 | 41\% | 1 e .37 |
|  | G. gallus | 67\% | 3 e .13 | 45\% | 8 e .34 |
| O. fraenata (567bp, 188aa) | M. eugenii | 93\% | 0.0 | 85\% | 2 e .93 |
|  | S. harisii | 83\% | 3e-165 | 79\% | 3 e .87 |
|  | M. domestica (predicted) | 79\% | 4 e .131 | 67\% | 1e-73 |
|  | M. domestica (expressed) | 77\% | 2e. 133 | 68\% | 8 e .82 |
|  | L. hirsutus | 91\% | 0.0 | 82\% | 2e. 102 |
|  | C. jacchus | 82\% | 1 e .79 | 59\% | 3 e .55 |
|  | M. fascicularis | 81\% | 3 e .75 | 59\% | 5 e .53 |
|  | H. sapiens | 81\% | 6 e .72 | 58\% | 1 e .54 |
|  | A. platyrhynchos | 86\% | 2e-13 | 48\% | 9 e .30 |
|  | M. musculus | 78\% | 5 e .60 | 53\% | 1 e .46 |
|  | C. familiaris | 77\% | 6 e .59 | 53\% | 7 e .54 |
|  | S. scrofa | 77\% | 3 e .56 | 56\% | 2 e .48 |
|  | R. norvegicus | 75\% | 5 e .54 | 54\% | 3 e .47 |
|  | B. taurus | 76\% | 7 e .52 | 55\% | 7 e .53 |
|  | F. catus | 76\% | 3 e .50 | 54\% | 1 e .52 |
|  | A. mexicanum | 69\% | 2 e .14 | 43\% | 1e. 29 |
|  | X. Iaevis | 77\% | 4 e .04 | 37\% | 2e. 21 |
| L. hirsutus (579bp, 192aa) | M. eugenii | 93\% | 0.0 | 87\% | 3 e .88 |
|  | S. harisii | 82\% | 3 e .165 | 79\% | 2 e .76 |
|  | M. domestica (predicted) | 78\% | 1e-132 | 68\% | 9e-65 |
|  | M. domestica (expressed) | 79\% | 1e-147 | 73\% | 3 e .92 |
|  | C. jacchus | 81\% | 4 e .74 | ----- | ------ |
|  | M. fascicularis | 80\% | 2 e .72 | 56\% | 9 e .41 |
|  | H. sapiens | 78\% | 1 e .68 | 55\% | 4 e .40 |
|  | F. catus | 75\% | 4 e .49 | 53\% | 5 e .41 |
|  | S. scrofa | 76\% | 3 e .50 | 51\% | 2e. 34 |
|  | M. musculus | 77\% | 1 e .55 | 53\% | 5 e .35 |
|  | R. norvegicus | 74\% | 1 e .49 | 46\% | 1 e .32 |
|  | B. taurus | 75\% | 5 e .48 | 51\% | 3 e .36 |
|  | C. familiaris | 77\% | 2e. 58 | 50\% | 3 e .36 |
|  | G. gallus | ----- | ----- | 43\% | 2e. 21 |

(*) carried out with BLAST 2 program, for Accession numbers see Appendix 3A.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.4.3.2 CD3 $\varepsilon$ - Structural motifs

Structural motifs such as leader sequences, disulphide bridges, the stalk region, ITAM and a helix and polyproline motif were detected in all three marsupial CD3 $\varepsilon$ sequences and are listed in Table 3.5.

When the CD3ع motif sequences in O. fraenata, L. hirsutus, M. domestica and M. eugenii were compared with those of the human, it was found that the least conserved motif was the leader sequence in $L$. hirsutus. The identity percentages of the putative leader sequences in L. hirsutus, O. fraenata, M. eugenii and M. domestica were 48\%, 52\%, 52\% and $71 \%$ respectively.

The polyproline motif sequences in O. fraenata, L. hirsutus, M. eugenii and M. domestica were highly conserved between those four marsupial species. The conservation percentage of each of those species compared to human was 100\% except for L. hirsutus which was $92 \%$. This high conservation level indicates that the polyproline motif in those marsupials is important in the function of the molecule.

In the stalk motif, the putative cysteine residues were conserved across the four marsupial species and human. In the marsupials, the stalk motif identity to the human sequence ranged from $67 \%$ to $70 \%$ except in $M$. domestica which had a $50 \%$ identity. In the marsupials, the transmembrane region identity to the human transmembrane region ranged from $59 \%$ to $77 \%$. The endoplasmic retention signal motif identity to the human endoplasmic retention signal motif ranged from $75 \%$ to $88 \%$. In each of the four marsupials, the helix motif identity to the human helix motif was $75 \%$. The ITAM motif identity to the human ITAM motif ranged from $80 \%$ to $93 \%$.

When all the motifs of the marsupial sequences were compared with each other it was found that there was $100 \%$ identity between $O$. fraenata and the published sequence of M. eugenii. Both L. hirsutus and M. domestica were also highly conserved with identity percentages above $75 \%$.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

Table 3.5. Comparison of CD3 $\varepsilon$ structural motifs in three macropod and one didelphid species to the human CD3ع sequence. The conservation percentages of the structural motifs were calculated in relation to $M$. eugenii and the $H$. sapiens putative amino acid sequences found in Genbank under Accession numbers AY028923 and NM_000733.3 respectively.

| Species | Functional motifs | Conservation \% |  |
| :---: | :---: | :---: | :---: |
| O. franeata (not yet deposited in Genbank) |  | M. eugenii | H. sapiens |
|  | MHLEALWTVVGFCLLSACVWG (Leader sequence) | 100\% | 52\% |
|  | CLLSAC/CEGC (disulfide bridge/stalk motif) | 100\% | 70\% |
|  | MDVLTVAGIVIADVFITLGVLLLVYYW (TM region) | 100\% | 70\% |
|  | RGGGGGGR (Helix motif) | 100\% | 75\% |
|  | RPPPVPNPDYEP (Polyproline motif/ Nck bind. site) | 100\% | 100\% |
| L. hirsutus (not yet deposited in Genbank) | YEPIRKGQRDLYAGL (ITAM motif) | 100\% | 93\% |
|  | DLYAGLNQ (ER retention motif) | 100\% | 88\% |
|  | MHLEALWTVVGFCQLSACVWG (Leader sequence) | 95\% | 48\% |
|  | CQLSAC/CEGC (disulfide bridge/stalk motif) | 90\% | 67\% |
|  | MDVLTVAGIVIADVFITLGVLLLVYYW (TM region) | 100\% | 77\% |
|  | RGGGGGGR (Helix motif) | 100\% | 75\% |
|  | RPPPVPNPDYDP (Polyproline motif)/Nck bind. site | 92\% | 92\% |
|  | YDPIRKGQQDLYAGL (ITAM motif) | 86\% | 80\% |
| M. domestica (not yet deposited in Genbank) | DLYAGLNH (ER retention motif) | 88\% | 75\% |
|  | MQLGSLWTVLGFFLLSACVWG (Leader sequence) | 76\% | 71\% |
|  | FLLSAC/CHGC (disulfide bridge/stalk motif) | 80\% | 50\% |
|  | MGVLTVAGIIIADVFITLGVLILVYHW (TM region) | 85\% | 59\% |
|  | RGGGAGGK (Helix motif) | 75\% | 75\% |
|  | RPPPVPNPDYEP (Polyproline motif/Nck bind. site) | 100\% | 100\% |
|  | YEPIRKGQRELYAGL (ITAM motif) | 93\% | 86\% |
| M. eugenii (Genbank Accession No. AYO28923) | ELYAGLNQ (ER retention motif) | 88\% | 75\% |
|  | MHLEALWTVVGFCLLSACVWG (Leader sequence) | 100\% | 52\% |
|  | CLLSAC/CEGC (disulfide bridge/stalk motif) | 100\% | 70\% |
|  | MDVLTVAGIVIADVFITLGVLLLVYYW (TM region) | 100\% | 70\% |
|  | RGGGGGGR (Helix region) | 100\% | 75\% |
|  | RPPPVPNPDYEP (Polyproline motif/Nck bind. site) | 100\% | 100\% |
|  | YEPIRKGQRDLYAGL (ITAM motif) | 100\% | 93\% |
|  | DLYAGLNQ (ER retention motif) | 100\% | 88\% |
| H. sapiens (Genbank Accession No. NM_000733.3) | MQSGTHWRVLGLCLLSVGVWG (Leader sequence) | 52\% | 100\% |
|  | CLLSVG/CENC (disulfide bridge/stalk motif) | 70\% | 100\% |
|  | MDVMSVATIVIVDICITGGLLLLVYYW (TM region) | 70\% | 100\% |
|  | RGAGAGGR (Helix motif) | 75\% | 100\% |
|  | RPPPVPNPDYEP (Polyproline motif)/Nck bind. site | 100\% | 100\% |
|  | YEPIRKGQRDLYSGL (ITAM motif) | 93\% | 100\% |
|  | DLYSGLNQ (ER retention motif) | 88\% | 100\% |

$\mathrm{TM}=$ transmembrane, $\mathrm{ER}=$ endoplasmic retention

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.4.3.3 CD3 $\varepsilon$ - Domain structure

In O. fraenata, L. hirsutus and M. domestica a putative Ig-like domain and an ITAM motif were identified. The e-values in Table 3.6 show the high sequence conservation of the Iglike domain and the ITAM motif indicating that these domains were conserved in the three marsupials.

Table 3.6. Significant e-values of important structural motifs in
O. fraenata, L. hirsutus and M. domestica.

| Structural domains of CD3 $\varepsilon$ in three marsupials and the respective e-values |  |  |
| :--- | :--- | :---: |
| Species | Domain | e-value |
| O. fraenata | Ig-like domain | $3.93 \mathrm{e}-01$ |
| L. hirsutus |  | $1.36 \mathrm{e}-01$ |
| M. domestica |  | $1.36 \mathrm{e}-01$ |
| O. fraenata | ITAM | $1.68 \mathrm{e}-03$ |
| L. hirsutus |  | $1.34 \mathrm{e}-02$ |
| M. domestica |  | $2.54 \mathrm{e}-03$ |

A putative signal peptide of 21 amino acid residues in length was predicted in the open reading frame of each of the three marsupial sequences. This was similar to the signal peptides found in other mammals. The prediction program indicated that $>99 \%$ probability of the sequence qualified it as a signal peptide. These results are listed in Table 3.7.

Table 3.7. Signal peptide length and cleavage probability as predicted by SignalIP 4.0 for O. fraenata, L. hirsutus and M. domestica.

| Predicted CD3ع signal peptide length and probability in three marsupials |  |  |
| :--- | :--- | :--- |
| Species | Signal peptide length | Probability |
| O. fraenata | 21 amino acids | $99.9 \%$ |
| L. hirsutus | 21 amino acids | $99.5 \%$ |
| M. domestica | 21 amino acids | $99.9 \%$ |

3.4.3.4 CD3 $\varepsilon$ - Glycosylation and glycation sites (non-enzymatic glycosylation)

Single putative O-linked glycosylation sites were predicted in O. fraenata at position 153, and in L. hirsutus and M. domestica at position 157. No putative N-linked glycosylation sites were predicted in any of the three marsupial CD3 $\varepsilon$ chains.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

Putative glycation sites were predicted only in $O$. fraenata and $M$. domestica (Table 3.8). It appeared that the CD3ع sequence in L. hirsutus was devoid of any putative glycation sites thus indicating a possible difference in post-translational modification. Conventional prediction methods are not sufficiently stringent to produce accurate data. Detection of glycated proteins with high confidence levels requires the method of MALDI-TOF-MS (Meltretter and Pischetsrieder, 2008) or high-resolution mass spectrometry (Stefanowicz et al., 2010), therefore the values produced in this study with N -glycate have to be treated with caution. Glycation or non-enzymatic glycosylation can be a measure of age as well as a diabetic marker. Most of the putative glycation sites were found in the oldest animal, $M$. domestica, while no glycation sites were found in the youngest animal $L$. hirsutus. This was an observation only since no experimental data were available.

Table 3.8. Positions of glycated lysine residues in O. fraenata, L. hirsutus and M. domestica $\mathrm{CD} 3 \varepsilon$ chains and their probabilities.

| CD3ع glycation sites and probabilities for three marsupials |  |  |
| :--- | :---: | :--- |
| Species | Positions of glycated lysine residues | Probability |
| O. fraenata | 44 | $82.1 \%$ |
|  | 52 | $51.6 \%$ |
| L. hirsutus | None predicted |  |
| M. domestica | 49 | $84.6 \%$ |
|  | 57 | $74.9 \%$ |
|  | 88 | $91.4 \%$ |
|  | 139 | $74.2 \%$ |
|  | 156 | $55.8 \%$ |

### 3.4.3.5 CD3 $\varepsilon$ - Phosphorylation sites

Putative phosphorylation sites were predicted in the three marsupial species however the location and frequency of those sites varied between the species. Three serine, two threonine and five tyrosine phosphorylation sites were predicted in the $O$. fraenata CD3\& sequence. The L. hirsutus sequence contained four serine, no threonine, and four tyrosine predicted phosphorylation sites. In M. domestica, there were six serine, one threonine and four tyrosine predicted phosphorylation sites. The positions of the predicted phosphorylation sites are shown in Table 3.9.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

Table 3.9. Predicted phosphorylation sites and their positions in the CD3 2 sequence in $O$. fraenata, L. hirsutus and M. domestica.

| Predicted phosphorylation sites and their positions in the CD3 $\varepsilon$ molecules of three marsupial species |  |  |  |
| :---: | :---: | :---: | :---: |
| Species | Serine | Threonine | Tyrosine |
| O. fraenata | $\begin{aligned} & 23 \\ & 33 \\ & 85 \end{aligned}$ | $\begin{aligned} & 45 \\ & 57 \end{aligned}$ | 31 |
| L. hirsutus | $\begin{aligned} & 35 \\ & 37 \\ & 73 \\ & 90 \end{aligned}$ |  | 79 |
| M. domestica | $\begin{gathered} \hline 35 \\ 37 \\ 73 \\ 90 \\ 145 \end{gathered}$ | 71 | 79 |

Putative phosphokinase binding sites were predicted in all three species investigated. In O. fraenata this predicted binding site was located at position 85 with a probability of $75 \%$. In L. hirsutus it was located at position 90 with a probability of $76 \%$, and in M. domestica it was located at position 138 with a probability of $85 \%$.

### 3.4.3.6 CD3 $\varepsilon$ - Disulphide bond predictions

Disulphide bonds are important for stabilizing regions like the stalk region in the CD3E molecule. Two putative disulphide bonds were found in the $O$. fraenata sequence of which one was an intrachain disulphide bond. L. hirsutus showed only one putative disulphide bond which was an interchain bond, while in $M$. domestica three putative disulphide bonds were predicted one of which was an intrachain disulphide bond. Predicted disulphide bonds which were identified using the DiANNA server are shown in

Table 3.10.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

Table 3.10. Disulphide bond predictions carried out with DiANNA showing residue number, type of bonds, and probabilities in M. domestica, O. fraenata and L. hirsutus CD3 $\varepsilon$ sequences.
Predicted disulphide bond residues, types and probabilities in three marsupials

| Species | Residue number | Interchain | Intrachain | Interchain probability |
| :--- | :--- | :---: | :---: | :---: |
| M. domestica | $18-85$ | $\checkmark$ |  | high |
|  | $46-105$ | $\checkmark$ |  | high |
|  | $106-109$ |  | $\checkmark$ | high |
| O. fraenata | $41-103$ | $\checkmark$ | $\checkmark$ | high |
| L. hirsutus | $43-18$ |  | $\checkmark$ | None predicted |

### 3.4.3.7 CD3 $\varepsilon$ - Primary sequence and secondary structure predictions

The open reading frame of $O$. fraenata CD3 $\varepsilon$ consisted of 567 bp which translated into 188 amino acid residues (Fig. 3.1). The open reading frame of L. hirsutus consisted of 579bp which translated into 192 amino acids (Fig. 3.2) and the open reading frame of $M$. domestica consisted of 582 bp which translated into 193 amino acids (Fig. 3.3). The secondary structures, such as alpha helices and beta strands, for each species are shown in the same figures. The endoplasmic retention signal found in eutherian mammals at positions 174-183 was conserved in the three marsupial sequences at the same positions.

Differences in strand and helix distributions were detected within the three marsupial sequences. The alpha helix which almost spanned the distance of the leader sequence in O. fraenata was shorter than the helix in the leader sequences of $L$. hirsutus and $M$. domestica. Despite its length, this helix does not qualify as a transmembrane helix. This alone may not be of significance. Additional beta sheets as found in O. fraenata and L. hirsutus might strengthen the tertiary structure due to increased hydrogen bonding. Additional alpha helices were found in $O$. fraenata and $M$. domestica. The second helix in O. fraenata and L. hirsutus appeared to be an amphipathic alpha helix, which stabilizes helix-helix packing, unlike the second helix in M. domestica. This indicates that in $O$. fraenata and L. hirsutus the area where the second helix is located interacts with polar residues. The third helix in $M$. domestica is located in the ITAM domain of the molecule. This was unusual since some of the residues could be buried in a turn therefore being

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

inaccessible to signalling moieties. Examination of the sequence of the helix (QRELYA; $\mathrm{Q}=$ glutamine, $R=\operatorname{arginine}, E=$ glutamic acid, $L=$ leucine, $Y=$ tyrosine, $A=$ alanine) found that most amino acid residues in this structure prefer a helix conformation and are polar in nature. Three of the residues are hydrophilic and three are hydrophobic thus balancing the ability to interact with an aqueous environment. It appeared that although some residues might be buried in an alpha helical turn, sufficient exposure to the outside environment occurs.

A transmembrane helix was predicted for the $M$. domestica putative amino acid sequence at position 113 reaching as far as position 135. In contrast, the $O$. fraenata prediction indicated the presence of two transmembrane helices. One helix was located in the area of the signal peptide, and the second transmembrane helix was at positions 109 to 131 in the stalk region. This prediction appeared to be accurate since the stalk region interacts with CD3 $\delta$ and the amino acid residues need to be accessible. The L. hirsutus putative amino acid sequence appeared to have only one predicted transmembrane helix located at positions 112 to 134 . The apparent differences in the secondary structure would influence the tertiary structure of these molecules.

# Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor 



Figure 3.1. O. fraenata CD3 $\varepsilon$ primary sequence and secondary structure prediction.

Black underlined = signal peptide. $\underline{C}=$ functionally important cysteines. $\underline{S}=$ putative serine phosphorylation site. $\ddagger=\operatorname{Ig}$ domain. $\lambda=$ C-terminal end of $\beta$ sheet. Yellow highlight = stalk region. |  |  |
| :---: | :---: |
| $=$ | putative Zinc finger domain. $\bullet=$ Extracellular domain. $T=$ Threonine glycosylation. | Red underlined = proline rich motif. $\bullet=\mathrm{SH}_{2}$ domain. K and $\mathrm{Q}=$ ITAMs motif. $\mathrm{G}=$ helix motif. $\mathrm{Y}=$ phosphorylated tyrosines. Amino acid residues 167-183 = ARAM (antigen recognition activation motif). Amino acid residues 174-183 = endoplasmic retention signal. $\square=$ Transmembrane helix, $\Rightarrow$ Strand. $\square=$ differences in secondary structure compared with M. eugenii.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.2. L. hirsutus $\mathrm{CD} 3 \varepsilon$ primary sequence and secondary structure prediction.
Black underlined = signal peptide. $\underline{C}=$ functionally important cysteines. $\underline{S}=$ putative serine phosphorylation site. $\ddagger=\operatorname{Ig}$ domain. $\lambda=$ C-terminal end of $\beta$ sheet. Yellow highlight = stalk region. $\square=$ putative Zinc finger domain. $\bullet=$ Extracellular domain. $T$ = Threonine glycosylation. Red underlined = proline rich motif. $\bullet=\mathrm{SH}_{2}$ domain. K and $\mathrm{Q}=\mathrm{ITAMs}$ motif. $\mathrm{G}=$ helix motif. $Y=$ phosphorylated tyrosines. Amino acid residues 167-183 = ARAM (antigen recognition activation motif). Amino acid residues 174-183 = endoplasmic retention signal. $\square=$ Transmembrane helix, $\rightarrow$ Strand. $O=$ differences in secondary structure compared with M. eugenii.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.3. M. domestica CD3ع primary sequence and secondary structure prediction.
Black underlined $=$ signal peptide. $\underline{\underline{C}}=$ functionally important cysteines. $\underline{\underline{S}}=$ putative serine phosphorylation site. $\ddagger=\lg$ domain. $\lambda=C$-terminal end of $\beta$ sheet. Yellow highlight = stalk region. ■ = putative Zinc finger domain. = Extracellular domain. T = Threonine glycosylation. Red underlined = proline rich motif. $\bullet=\mathrm{SH}_{2}$ domain. K and $\mathrm{Q}=$ ITAMs motif. $\mathrm{G}=$ helix motif. $\mathrm{Y}=$ phosphorylated tyrosines. Amino acid residues 167-183 = ARAM (antigen recognition activation motif). Amino acid residues 174-183 = endoplasmic retention signal.
= Transmembrane helix, $\Rightarrow=$ Strand. 0 = differences in secondary structure compared with M. eugenii.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.4.3.8 Tertiary structure modelling

Homology modelling produced a slightly different model for each marsupial CD3ع sequence investigated thus demonstrating that the differences in the secondary structure could impact on the tertiary structure of the CD3ع molecule. The models all had the same orientation. A structure prediction was also carried out for the published $C D 3 \varepsilon$ sequence of $M$. eugenii for comparison with the other two macropods, $O$. fraenata and L. hirsutus. The models that resulted in the highest C -score (confidence score) are the most probable and are shown in Fig. 3.4.

It appeared that the beta sheets were all in similar areas although the differences in length, and the addition of smaller beta sheets in the secondary structure, clearly made a difference to the predicted folding of the protein.


Figure 3.4. Most probable models of the CD3\& chain produced by I-TASSER in (a) O. fraenata (b) L. hirsutus (c) M. eugenii d) M. domestica.

### 3.4.3.9 CD3 $\varepsilon$ - Phylogenetic analysis

A phylogenetic analysis carried out for all known CD3ع sequences confirmed the high sequence homology of the CD3 $\varepsilon$ sequences in O. fraenata, L. hirsutus and M. domestica with those known sequences (Table 3.4). The evolutionary history was inferred with a Neighbor-Joining phylogenetic tree because, statistically it is the most consistent, and

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

generates a true tree with high probability. The optimal tree had a sum of branch lengths of 5.51. The branch lengths were different for each of the three marsupial species. M. domestica had the longest branch length. This indicated that, although O. fraenata and L. hirsutus are closely related to each other, there are differences in their sequences. This is consistent with the BLAST search. The percentage of replicate trees in the bootstrap test (1,000 replicates) in which the associated taxa are clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree (Fig. 3.5). The analysis involved 26 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 128 positions in the final dataset.
O. fraenata and L. hirsutus are clustered together, with M. domestica being slightly more distant. The marsupial clade is located between the primates and the birds indicating that, although the marsupial CD3 $\varepsilon$ gene is highly conserved, the marsupials are only distantly related to most eutherians.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.5. Neighbor-Joining phylogenetic tree for $\operatorname{CD} 3 \varepsilon$ (including the marsupials M. eugenii, O. fraenata, L. hirsutus and $M$. domestica). Branch lengths determine the evolutionary relationship between the species.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

3.4.3.10 CD3 $\varepsilon$ - Gene organization

The exon/intron boundaries of the CD3 $\varepsilon$ sequences in $M$. eugenii and $M$. domestica, which were investigated within the ensembl database, showed differences in the length of the exons when compared to humans and other mammals (supporting data are in Appendix 3A). The exon which is missing from the marsupial CD3 $\varepsilon$ chain has been crossed in the schematic of the human exon map (Fig. 3.6).

The lengths of the introns and exons are indicated in the schematic for the human and $M$. domestica CD3 $\varepsilon$ chains. The M. eugenii and $M$. domestica CD3 $\varepsilon$ sequences, which were identified in the ensembl database, extended over a number of scaffolds. A clear identification of the introns in M. eugenii was not achieved since there were a number of unidentified bases designated 'NNN' in ensembl. The human CD3ع gene consists of nine exons while the predicted $M$. domestica CD3 $\varepsilon$ gene appeared to consist of six exons. According to ensembl, the M. eugenii CD3ع sequence also consisted of six exons. Due to the close phylogenetic relationship of $O$. fraenata and $M$. eugenii it was assumed that the $\operatorname{CD} 3 \varepsilon$ gene in $O$. fraenata also consists of six exons. According to the ensembl database, the $M$. domestica exon-1 consists of 49bp, exon-2 contains 30bp, exon-3 consists of 219bp, exon-4 has 165bp, exon-5 has 47bp and exon-6 has 57bp. A comparison of the exon structures of the human and the four marsupial CD3ع genes revealed that the human exon-3 was missing in M. eugenii and in $O$. fraenata, while L. hirsutus and $M$. domestica both had a very small exon-3 consisting of only four and five amino acids. All four marsupial species were missing nine amino acids in exon-4 compared to the human CD3 $\varepsilon$ chain (Fig. 3.6, supporting data are in Appendix 3A).

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.6. Schematic for M. eugenii, L. hirsutus, $O$. fraenata and $M$. domestica CD3 $\varepsilon$ genes depicting exonic and intronic sequences. $\times$ indicates exon missing in marsupials. Exons are indicated by roman numerals. The arabic numerals indicate the number of base pairs in the intronic sequences for human and $M$. domestica.

### 3.4.4 T cell receptor alpha (TCR $\alpha$ )

The T cell receptor alpha chain was characterized in two marsupial species M. eugenii and O. fraenata. Important structural motifs were identified and investigated for amino acid substitutions and sequence homology. Comparisons were made with the published sequences of $T$. vulpecula and $M$. domestica.

### 3.4.4.1 TCR $\alpha$ - Homology

A homology search across the putative protein and the nucleotide sequences of $O$. fraenata and $M$. eugenii indicated a conservation of $>75 \%$ and $>55 \%$ respectively between those species. However the TCR $\alpha$ molecule was only $40 \%$ conserved at the putative amino acid level in the two marsupials when compared to other mammals (Table 3.11).

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

Low complexity sequences were detected thus lowering the identity score at the amino acid level. The $O$. fraenata sequence had 11 amino acid residues of low complexity while the $M$. eugenii sequence was devoid of low complexities. The nucleotide sequence was highly variable in the region amplified and therefore the amino acid percentage was much lower than expected. Up to $14 \%$ of sequence gaps were detected in some of the alignments generated by the BLAST algorithms, again lowering the identity percentage values. The sequence conservation at the nucleotide level was the highest between $O$. fraenata and $T$. vulpecula at $81 \%$, while at the amino acid level the conservation was only $66 \%$ and was associated with the high sequence variation between those two species. The identity level between $O$. fraenata and $M$. domestica was $77 \%$ at the nucleotide level and $55 \%$ at the amino acid level also due to high sequence variations. The M. eugenii sequence had an $80 \%$ identity to the $T$. vulpecula sequence at the nucleotide level and $64 \%$ identity at the amino acid level. Comparison of $O$. fraenata and M.eugenii to other mammals such as $H$. sapiens, $R$. norvegicus and $M$. mulatta revealed insufficient similarities to give an e-value that was of statistical significance at the nucleotide level. Those three mammalian species, although recognized at the nucleotide level, did not return any e-values for the amino acid sequence and were not recognized the amino acid level in the BLASTx search due to degeneracy in the genetic code (Table 3.11).

Table 3.11. Homology search results for the $O$. fraenata and $M$. eugenii partial TCR $\alpha$ nucleotide and amino acid sequences, their identities, and their respective e-values. The values are calculated over $295 \mathrm{bp} / 97$ aa length of the partial sequence.

| TCR $\alpha$ homology search results for O. fraenata and M. eugenii |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | To | Nucleotide | e-value | Amino acid | e-value |
| O. fraenata | T.vulpecula | 81\% | 1e-71 | 66\% | 2e-37 |
|  | M.domestica | 77\% | 2e-43 | 55\% | 5e-27 |
|  | H.sapiens | ------- | ------- | 43\% | 3e-17 |
|  | M.mulatta | ------- | ------- | 40\% | 3e-17 |
|  | R.norvegicus | ------ | ----- | 40\% | 1e-16 |
| M. eugenii | T.vulpecula | 80\% | 1e-65 | 64\% | 6e-35 |
|  | M.domestica | 75\% | 7e-36 | 55\% | 4e-29 |
|  | H.sapiens | ------- | ------- | 42\% | 6e-17 |
|  | R.norvegicus | ------- | ------- | 41\% | 9e-16 |
|  | M.mulatta | ------- | ------- | 41\% | 9e-18 |

[^0]
## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

3.4.4.2 TCR $\alpha$ - Structural domains and motifs

The Protein family (Pfam) domain DUF1968 was predicted in the partial sequences of $O$. fraenata and M. eugenii from position 1 to position 68 in $O$. fraenata and from position 1 to position 62 in M. eugenii. The statistically important e-values for this domain were $2.40 \mathrm{e}-13$ for $O$. fraenata and $2.40 \mathrm{e}-12$ for $M$. eugenii. This domain is found in most mammalian T cell antigen receptors and adopts an immunoglobulin-like beta-sandwich fold.

The structurally important transmembrane region and connecting peptide motifs were also identified in $O$. fraenata and $M$. eugenii TCR $\alpha$ sequences and when compared to the Genbank sequences of M.domestica, T. vulpecula and H. sapiens variations were detected. The transmembrane regions of both $O$. fraenata and $M$. eugenii had identity percentages of $77 \%$ to $T$. vulpecula, $80 \%$ to M. domestica but only $44 \%$ to human. The connecting peptide of both $O$. fraenata and M. eugenii had identity percentages of $100 \%$ to $T$. vulpecula, $87 \%$ to $M$. domestica but only $75 \%$ to human (Table 3.12).

Table 3.12. Sequences and conservation percentages of functional motifs of the TCR $\alpha$ chain in $O$. fraenata and M. eugenii compared to T. vulpecula, M. domestica and H. sapiens.

| Functional motifs for TCR $\alpha$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Functional motif | Conservation \% |  |  |
|  |  | T. vulpecula | M. domestica | H. sapiens |
| O fraenata | FLRVIFLKT(Transmembrane region) | 77\% | 80\% | 44\% |
|  | FETDKDLN (Connecting peptide) | 100\% | 87\% | 75\% |
| M. eugenii | FLRVIFLKT(Transmembrane region) | 77\% | 80\% | 44\% |
|  | FETDKDLN (Connecting peptide) | 100\% | 87\% | 75\% |
| M. domestica | VLRIIFLKT (Transmembrane region) | 88\% | 100\% | 44\% |
|  | FETDRDLN (Connecting peptide) | 87\% | 100\% | 75\% |
| T. vulpecula | FLRIIFLKT (Transmembrane region) | 100\% | 88\% | 44\% |
|  | FETDKDLN (Connecting peptide) | 100\% | 87\% | 75\% |
| H. sapiens | GFRILLLKV (Transmembrane region) | 44\% | 44\% | 100\% |
|  | FETDTNLN (Connecting peptide) | 75\% | 75\% | 100\% |

### 3.4.4.3 TCR $\alpha$ - Glycosylation and glycation sites

A single putative O-linked glycosylation site was predicted in the O. fraenata TCR $\alpha$ sequence at position 24, while in M. eugenii two putative O-linked glycosylation sites

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

were identified at positions 4 and 19. In O. fraenata, the threonine at position 24 only just exceeded the threshold with a probability of $50.7 \%$. This might not be sufficient for it to function as a glycosylation site. In M. eugenii, the threonine at position 4 had a probability of $58.8 \%$. However the threonine at position 19 just exceeded the threshold with a probability of $50.5 \%$ and therefore may not function as a glycosylation site.

Two putative glycation sites were predicted at positions 44 and 82 in the partial sequence of $O$. fraenata compared to four putative glycation sites at positions $39,46,60$ and 77 in the M. eugenii. It therefore appeared that M. eugenii had a higher capacity to nonenzymatically bind sugars. However validation of the results requires more sophisticated mass spectrometry analysis which was outside the scope of this study.

Four putative $N$-linked glycosylation sites were predicted in both $O$. fraenata and $M$. eugenii TCR $\alpha$ sequences. The putative N-linked glycosylation site had a probability of $73.58 \%$ and was located at position 19 in O. fraenata and had a probability of $64.2 \%$ at position 12 in M. eugenii. The NPTV site was identified in both species where a proline residue occurred just after an asparagine residue. This made it highly unlikely that the asparagine was glycosylated due to conformational constraints. This reduced the number of possible glycosylation sites to three in each species (Table 3.13).

Table 3.13. Putative $N$-linked glycosylation site sequences, positions and probabilities in TCR $\alpha$ of $O$. fraenata and $M$. eugenii.

| Putative N-linked glycosylation sites in TCR $\alpha$ of $O$. fraenata and M. eugenii |  |  |  |
| :---: | :---: | :---: | :---: |
| Species | Sequence | Position | Probability |
| O. fraenata | NGTN | 19 | $73.58 \%$ |
|  | NPTV | 22 | $62.78 \% \times$ |
|  | NSSC | 46 | $55.43 \%$ |
|  | NISL | 88 | $61.80 \%$ |
| M. eugenii | NTSG | 12 | $64.2 \%$ |
|  | NPTV | 17 | $69.06 \% \times$ |
|  | NISL | 83 | $62.06 \%$ |

(The proline-containing site is shown in red).

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.4.4.4 TCR $\alpha$ - Phosphorylation sites

The $O$. fraenata partial TCR $\alpha$ sequence had six predicted serine, two predicted threonine and one predicted tyrosine phosphorylation sites. The M. eugenii partial TCR $\alpha$ sequence had the same number of predicted serine phosphorylation sites, one predicted threonine and one predicted tyrosine phosphorylation site. The positions of these sites within the partial TCR $\alpha$ sequences are shown in Table 3.14.

In both $O$. fraenata and $M$. eugenii the predicted phosphorylated serine, threonine and tyrosine residues were all above the threshold of $50 \%$. The predicted serine residue in position 9 of $M$. eugenii had the highest probability of $98.6 \%$, while the predicted tyrosine residue in O. fraenata had the lowest probability of 54.7\% (Table 3.14).

Table 3.14. Positions and probabilities of predicted amino acid phosphorylation sites in the partial TCR $\alpha$ sequences of $O$. fraenata and M. eugenii.

| Sites in the partial TCR sequences of O. fraenata and M. eugenii. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O. fraenata |  |  | M. eugenii |  |  |
| Amino Acid | Position | Probability | Amino Acid | Position | Probability |
| Serine | 14 | $93.4 \%$ | Serine | 9 | $98.6 \%$ |
|  | 33 | $64.6 \%$ |  | 14 | $81.8 \%$ |
|  | 35 | $79.2 \%$ |  | 28 | $75.9 \%$ |
|  | 38 | $97.8 \%$ |  | 30 | $93.2 \%$ |
|  | 48 | $98.2 \%$ |  | 33 | $87.2 \%$ |
|  | 77 | $66.6 \%$ |  | 72 | $66.6 \%$ |
| Threonine | 68 | $54.7 \%$ | Threonine | 75 | $69.1 \%$ |
|  | 80 | $69.1 \%$ |  |  |  |
| Tyrosine | 36 | $86.2 \%$ | Tyrosine | 59 | $97.3 \%$ |

A phosphokinase binding site in the TCR $\alpha$ molecule was predicted for both species. This binding site was located in O. fraenata at position 101, and in M. eugenii at position 96 with probabilities of $76 \%$ and $77 \%$ respectively.

### 3.4.4.5 TCR $\alpha$ - Disulphide bond predictions

A single putative disulphide bond was predicted in the partial TCR $\alpha$ sequences in both 0 . fraenata and M. eugenii. In both species the predicted disulphide bridge appeared to begin at $C^{5}(C=$ cysteine $)$ and connect to $C^{69}$.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.4.4.6 TCR $\alpha$ - Primary sequence and secondary structure prediction

The O. fraenata partial sequence of 308 nucleotides translated into 102 putative amino acids, while for M. eugenii the partial sequence of 295 nucleotides translated into 96 putative amino acids.

The secondary structure prediction indicated that the distribution of helices and beta sheets in the TCR $\alpha$ chain differed between the two species. O. fraenata had four beta sheets and one helix and the M. eugenii contained three beta sheets and two alpha helices over the same length of sequence. Antigenic binding sites were found in the TCR $\alpha$ sequences of both species (Figs. 3.7 and 3.8).


Figure 3.7. O. fraenata partial TCR $\alpha$ chain primary sequence and secondary structure prediction. N -linked glycosylation sites are highlighted in yellow underlined. $\mathrm{C}=$ Disulfide bridge. $\mathbf{O}=$ Antigenic binding sites. Marks the differences in structure compared to M. eugenii. Green highlight = the connecting peptide. Blue highlight = the transmembrane region. $\square=$ Transmembrane helix. $\square=$ Strand.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.8. M. eugenii partial TCR $\alpha$ chain primary sequence and secondary structure prediction. N -linked glycosylation sites are highlighted in yellow underlined. C = Disulfide bridge. $\mathbf{O}=$ Antigenic binding sites. Marks differences in structure compared to O. fraenata. Green highlight = the connecting peptide. Blue highlight = the transmembrane region. $\square=$ Transmembrane helix. $\quad \square=$ Strand.

It was found that the first two beta strands in the $O$. fraenata TCR $\alpha$ sequence were quite long compared to the single beta strand found in M. eugenii. In the M. eugenii sequence an alpha helix was found following a very short beta strand which was absent in the $O$. fraenata sequence. This may indicate different fold properties compared to other marsupial TCR $\alpha$ sequences.

### 3.4.4.7 TCR $\alpha$ - Structure modelling

The homology models constructed from the $O$. fraenata and $M$. eugenii partial sequences of the TCR alpha chain, together with the positions of two phenylalanine residues that are in close proximity to each other, are illustrated in Fig. 3.9.

The models indicated that the ring structures of the phenylalanine residues in both species were in very close proximity. In O. fraenata they point towards each which may indicate steric hindrance. In $M$. eguenii the two phenylalanine residues point away from each other indicating a lack of steric hindrance which facilitates a better folding pattern.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

The alignment of the M. eugenii phenylalanine residues may be due to the different biochemical environment surrounding those residues.


Figure 3.9. Putative tertiary structures of TCR $\alpha$. (a) O. fraenata - arrows indicate the direction of the ring structure of the phenylalanine residues. (b) M. eugenii - arrows indicate the direction of the ring structure of the phenylalanine residues.

### 3.4.4.8 TCR $\alpha$ - Phylogenetic analysis - connecting peptide

The evolutionary history of the marsupial TCR $\alpha$ connecting peptide was inferred by using the Maximum Likelihood method based on the Dayhoff matrix model to produce a phylogenetic tree.

### 3.4.4.8.1 TCR $\alpha$ - Phylogenetic analysis - Connecting peptide of TCR $\alpha$

The program produced a phylogenetic tree with the highest logarithmic scale likelihood (-131.22). The percentage of trees in the resampling process in which the associated taxa are clustered together is shown next to the branches. The evolutionary rate difference among sites had a gamma distribution of 0.18 ( 5 categories). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 10 amino acid sequences. There were a total of 10 positions in the final dataset (Fig. 3.10).

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.10. Maximum likelihood phylogenetic tree for connecting peptide of the marsupial TCR $\alpha$ gene. A Dayhoff algorithm was used for this motif because of the high sequence conservation.

### 3.4.4.8.2 TCR $\alpha$ - Phylogenetic analysis - Transmembrane region of TCR $\alpha$

The program produced a phylogenetic tree with the highest logarithmic scale likelihood $(-11,470.38)$. The percentage of trees in which the associated taxa are clustered together is shown next to the branches. The evolutionary rate difference among sites had a gamma distribution of 200.0000 ( 5 categories). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 10 amino acid sequences. There were a total of 9 positions in the final dataset (Fig. 3.11).

The high conservation of the transmembrane region in both M. eugenii and O. fraenata is clearly shown in this tree. It was evident that the marsupial sequences were closely related to the monotreme sequences. Unexpectedly, the monotremes were embedded within the marsupials in this sequencing motif. This is unusual, since $M$. domestica and $T$. vulpecula are not close relatives and neither of them are closely related to the monotremes.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.11. A Maximum likelihood phylogenetic tree of the transmembrane region found in the marsupial TCR $\alpha$ gene using a Dayhoff algorithm.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.4.5 T cell receptor beta chain (TCR $\beta$ )

The full TCR $\beta$ constant domain was characterized in $O$. fraenata and a partial sequence of the domain was amplified in M. eugenii. Important functional motifs were identified and investigated for amino acid substitutions and sequence homology.

### 3.4.5.1 TCR $\beta$ - Homology

The M. eugenii partial sequence of the TCR $\beta$ chain had a sequence identity of $87 \%$ to $T$. vulpecula at the nucleotide level and $91 \%$ at the amino acid level. The O. fraenata sequence also had a high identity percentage at the nucleotide level to T. vulpecula (83\%) and an $84 \%$ sequence identity at the amino acid level. The identity percentage to the sequence of $M$. domestica was lower at the amino acid level for both $M$. eugenii and $O$. fraenata (84\% and 75\% respectively) (Table 3.15).

Both M. eugenii and $O$. fraenata showed an e-value of 0 to the $T$. vulpecula sequence indicating a significant match between the two. It appeared that the marsupial sequences did not have a high homology at the nucleotide level to mammalian species such as $M$. musculus, R. norvegicus, S. scrofa and M. mulatta and, in some cases at the amino acid level (Table 3.15).

Table 3.15. Homology search results for the $M$. eugenii and $O$. fraenata partial TCR $\beta$ nucleotide and amino acid sequences, their identities, and their respective e-values. The values are calculated over the $818 \mathrm{bp} / 186$ aa length of the partial sequence.

| TCR $\beta$ sequence homology search results for $O$. fraenata and $M$. eugenii |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M. eugenii |  |  |  | O. fraenata |  |  |  |
| Species | Nucleotide | e-value | Amino acid | e-value | Nucleotide | e-value | Amino acid | e-value |
| T. vulpecula | 87\% | 0.0 | 91\% | 2e-122 | 83\% | 0.0 | 84\% | 2e-109 |
| M. domestica | 86\% | 0.0 | 84\% | 3e-106 | 78\% | $3 \mathrm{e}-173$ | 75\% | 5e-89 |
| H. sapiens | 73\% | 2e-80 | 67\% | 2e-83 | 73\% | 2e-60 | 61\% | 1e-66 |
| M. musculus | 72\% | 1e-81 | 64\% | 3e-78 | --- | -- | 57\% | 6e-62 |
| R. norvegicus | 72\% | 5e-81 | 64\% | 1e-78 | ----- | ----- | ----- | ----- |
| S. scrofa | ----- | ----- | 67\% | 3e-81 | ---- | ----- | 59\% | 2e-66 |
| M. mulatta | ----- | ----- | 65\% | 3e-80 | ----- | ----- | 59\% | 7e-64 |

----- = not recognized by the BLAST algorithms.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

3.4.5.2 TCR $\beta$ - Structural domains and motifs

A putative IGc1 domain and a predicted transmembrane domain were identified in the partial sequences of both O. fraenata and M. eugenii. The IGc1 domain had an e-value of $2.04 \mathrm{e}-18$ in the $O$. fraenata sequence and $1.09 \mathrm{e}-18$ in the $M$. eugenii sequence. The predicted e-value of the transmembrane domain was too low to be identified.

A high identity score at the putative amino acid level was found in the loop motif sequences of both species. Of the three important structural motifs which were identified, the F and G -loops had the highest identity percentage at the putative amino acid level. The loop structures showed varying degrees of conservation. The $\mathrm{C} \beta$-loop was the lowest conserved structure with $50 \%$ identity, while the F loop was the highest with $92 \%$ identity. The G-loop had a conservation percentage identity of $88 \%$. The structural regions in the $\operatorname{TCR} \beta$ chain of $O$. fraenata and $M$. eugenii were compared to the sequences of $H$. sapiens,
T. vulpecula and M. domestica and the results are shown in Table 3.16.

Table 3.16. Conservation percentages of F-loop, $C \beta$ elbow loop, and G-loop of the TCR $\beta$ chain in 0 . fraenata, M. eugenii, T. vulpecula, M. domestica and H. sapiens.

| TCR $\beta$ structural motifs and their respective conservation percentages |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| Species | Functional motif sequence | Conservation \% |  |  |
|  |  | T. vulpecula | M. domestica | H. sapiens |
| O. fraenata (not | KNSFRCQVLFHGI (F-loop) | $92 \%$ | $77 \%$ | $62 \%$ |
| yet deposited in | GENETW (Cß elbow loop) | $66 \%$ | $83 \%$ | $50 \%$ |
| Genbank) | PITRNVSDQIWE (G-loop) | $83 \%$ | $75 \%$ | $58 \%$ |
| M. eugenii (not yet | KNSFRCQVLFHGI (F-loop) | $92 \%$ | $77 \%$ | $62 \%$ |
| deposited in | GENETW (Cß elbow loop) | $66 \%$ | $83 \%$ | $50 \%$ |
| Genbank) | PITQNVSDQIWG (G-loop) | $100 \%$ | $92 \%$ | $58 \%$ |
| L. hirsutus (not yet | KNSFRCQVLFHGI (F-loop) | $92 \%$ | $84 \%$ | $62 \%$ |
| deposited in | EENEIW (Cß elbow loop) | $66 \%$ | $83 \%$ | $50 \%$ |
| Genbank)* | PITQNVSDQIWG (G-loop) | $100 \%$ | $92 \%$ | $58 \%$ |
| T. vulpecula | KNSFRCQVLFNGI (F-loop) | $100 \%$ | $92 \%$ | $62 \%$ |
| (Accession Number | SENEPW (Cß elbow loop) | $100 \%$ | $67 \%$ | $66 \%$ |
| AF133098) | PITQNVSDQIWG (G-loop) | $100 \%$ | $92 \%$ | $58 \%$ |
| M. domestica | KNNFRCQVLFNGI (F-loop) | $92 \%$ | $100 \%$ | $62 \%$ |
| (Accession Number | EENETW (Cß elbow loop) | $66 \%$ | $100 \%$ | $50 \%$ |
| AY014506) | PVTQNVSDQIWG (G-loop) | $92 \%$ | $100 \%$ | $66 \%$ |
| H. sapiens | RNHFRCQVQFYGL (F-loop) | $62 \%$ | $62 \%$ | $100 \%$ |
| (Accession Number | SENDEW (Cß elbow loop) | $66 \%$ | $50 \%$ | $100 \%$ |
| AY232284) | PVTQIVSAEAWG (G-loop) | $58 \%$ | $66 \%$ | $100 \%$ |

*(characterized by K. Howard)

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.4.5.3 TCR $\beta$ - Glycosylation and glycation sites

Three putative O-linked glycosylation sites were predicted in the partial O. fraenata TCR $\beta$ sequence. These sites were located at positions 26, 29 and 34 with probabilities of $54 \%$, $58 \%$ and $52 \%$, respectively. M. eugenii had seven putative O-linked glycosylation sites located at positions $4,9,13,16,21$ and 82 with probabilities of $63 \%, 65 \%, 60 \%, 60 \%, 60 \%$, $54 \%$ and $51 \%$ respectively.

Five putative glycation sites were predicted in the $O$. fraenata partial TCR $\beta$ sequence compared to six putative sites in M. eugenii.

Five putative $N$-linked glycosylation sites were predicted in the $O$. fraenata partial TCR $\beta$ sequence at locations $7,92,128,134$ and 142 with probabilities of $61.39 \%, 48.72 \%$, $58.17 \%, 72.88 \%$ and $69 \%$ respectively. Three putative N -linked glycosylation sites were predicted in the M. eugenii partial TCR $\beta$ sequence at locations 79, 115 and 129 with probabilities of $47.77 \%, 58.63 \%$, and $74.1 \%$ respectively. The sites located at positions 92 in O. fraenata and 79 in M. eugenii did not reach the probability threshold of $50 \%$ and therefore were not recognized as viable sites (Table 3.17).

Table 3.17. Predicted $N$-linked glycosylation sites, their locations, and their probabilities in the $O$. fraenata and $M$. eugenii partial TCR $\beta$ sequences.

| Putative N-linked glycosylation sites in O. fraenata and M. eugenii TCR $\beta$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Species | Sequence | Location | Probability |
| O. fraenata | NYSE | 7 | $61.39 \%$ |
|  | NFSR | 92 | $48.72 \%$ |
|  | NETW | 128 | $58.17 \%$ |
|  | NLTK | 134 | $72.88 \%$ |
|  | NVSD | 142 | $69.00 \%$ |
| M. eugenii | NFST | 79 | $47.77 \%$ |
|  | NETW | 115 | $58.63 \%$ |
|  | NVSD | 129 | $74.10 \%$ |

Note: The sequences that did not reach the probability threshold are shown in red.

### 3.4.5.4 TCR $\beta$ - Phosphorylation sites

Ten predicted serine phosphorylation sites were found in $O$. fraenata and nine in M. eugenii. Two predicted threonine phosphorylation sites were found in both species

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

but only one putative tyrosine phosphorylation site was predicted in M. eugenii. The $O$. fraenata TCR $\beta$ chain did not have a putative tyrosine phosphorylation site. The serine in O. fraenata at position 97 had a probability of $50.3 \%$. This is marginally above the threshold and this residue may not be phosphorylated. A summary of the phosphorylation sites is presented in Table 3.18.

Table 3.18. Predicted serine, threonine and tyrosine amino acid phosphorylation sites in the TCR $\beta$ sequences of $O$. fraenata and $M$. eugenii including their position and probabilities.

| Phosphorylation sites of TCR $\beta$ in O. fraenata and M. eugenii |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Serine | Probability | Threonine | Probability | Tyrosine | Probability |
| O. fraenata | 20 | 99.6\% | 29 | 93.3\% | 147 | 82.4\% |
|  | 39 | 99.7\% | 74 | 81.8\% |  |  |
|  | 79 | 98.2\% |  |  |  |  |
|  | 85 | 99.2\% |  |  |  |  |
|  | 94 | 82.2\% |  |  |  |  |
|  | 97 | 50.3\% |  |  |  |  |
|  | 100 | 53.7\% |  |  |  |  |
|  | 105 | 92.8\% |  |  |  |  |
|  | 115 | 98.9\% |  |  |  |  |
|  | 144 | 75.0\% |  |  |  |  |
| M. eugenii | 26 | 99.7\% | 7 | 92.1\% | none | none |
|  | 66 | 95.3\% | 16 | 89.6\% |  |  |
|  | 72 | 99.2\% |  |  |  |  |
|  | 87 | 61.0\% |  |  |  |  |
|  | 92 | 92.8\% |  |  |  |  |
|  | 102 | 98.9\% |  |  |  |  |
|  | 143 | 53.4\% |  |  |  |  |
|  | 146 | 73.8\% |  |  |  |  |
|  | 186 | 86.6\% |  |  |  |  |

### 3.4.5.5 TCR $\beta$ - Disulphide bond prediction

A single putative disulphide bond was predicted for the $O$. fraenata $\operatorname{TCR} \beta$ partial sequence at position $\mathrm{C}^{53}$ connecting with $\mathrm{C}^{153}$. This prediction had a probability of $99.7 \%$. A single putative disulphide bond was also predicted for the $M$. eugenii TCR $\beta$ partial sequence at position $\mathrm{C}^{40}$ connecting with $\mathrm{C}^{105}$, a long bond spanning 65 amino acids.

### 3.4.5.6 TCR $\beta$ - Primary sequence and secondary structure prediction

A secondary structure prediction determined the distribution of helices and beta sheets for both $O$. fraenata and $M$. eugenii TCR $\beta$ chains (Figs.3.12 and 3.13). The confidence

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

levels of the helix and strand predictions at $>80 \%$ were high for both species (Appendix 3A.1, 3A. 3 and 3A.4).

In O. fraenata, a product of 576bp was amplified translating into 191 putative amino acids, while for M. eugenii a product of 561bp was amplified translating into 186 putative amino acids. A polyA sequence was detected in both species in the $3^{\prime}$ region. It appeared that this was not the actual polyA tail since no polyadenylation signal was detected prior to the polyA sequence.

The helix in the extracellular domain in $O$. fraenata was much shorter than in M. eugenii. A helix preceding the F-loop in $O$. fraenata was not found in M. eugenii. There were different distributions of beta strands in the F-loop and in the $\mathrm{C} \beta$-elbow loop between $O$. fraenata and $M$. eugenii, which suggested that the molecules may have different fold properties.

Transmembrane helices are stable structures in cell membranes and can be predicted with the three stage model of membrane protein folding (Cuthbertson et al., 2005). The transmembrane helices were predicted with two different programs and since the predictions were not always accurate they were investigated for their hydrophobicity. The O. fraenata TCR $\beta$ sequence had a predicted transmembrane helix at positions 160 to 182 and in M. eugenii the helix was located at positions 155 to 177 . The $M$. eugenii and $O$. fraenata transmembrane helices revealed an inside helix cap and an outside helix cap, both with a length of 6 amino acids followed by an inside loop.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

```
atgtataagactgtaactaactatagtgagcttcattttggacctggcacaaggctaagt 60
```



```
    M Y K T V T N Y S E L H F G P G T R L S 20
gtcgtagatgacctgaccagggcgactcccccaaaggtgactgtgtttca&ccatctgag 120
    V V D D L T R A T P P K V T V F F Q P
gaagagatggcgaataagggaaaggccacactggtctgtctggccacaggcttctaccct 180
```



```
gacctcgtggagctgaagtggtgggtgaatgggcaggaaacccaagttggggtcagcaca 240
    D L V E L K W W V N G Q E T Q V G V S T 
gaccctcagccctccaaggagcagccccataaaaatttctccagatactccctgagcagt 300
```



Figure 3.12. O. fraenata TCR $\beta$ chain primary sequence and secondary structure prediction.
$P=$ residue important in the loop architecture. $-=\beta$ strand characteristic residues pointing inside the sheet. $-=$ amino acids involved in domain-domain interaction. Black underlined amino acids indicate a glycosylation site. C = disulphide bridge. Letters in italics show hydrophobic residues buried in the domain core. Bold letters are conserved residues. $4=$ involved in TCR $\alpha$ - TCR $\beta$ interactions. $4>=$ the start and end of a domain. Highlighted in yellow = C $\beta$ loop. Highlighted in gray $=$ F-loop. Highlighted in light blue = TCR-C beta-beta strand E. o = conserved leucine motif involved in signal transduction. $\square=$ Transmembrane helix. $\longrightarrow=$ Strand.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor



Figure 3.13. M. eugenii TCR $\beta$ chain partial primary sequence and secondary structure prediction.
$P=$ residue important in the loop architecture. $-=\beta$ strand characteristic residues pointing inside the sheet. - = amino acids involved in domain-domain interaction. Black underlined amino acids show a glycosylation site. $\mathrm{C}=$ disulphide bridge. Letters in italics show hydrophobic residues buried in the domain core. Bold letters are conserved residues. $-4=$ involved in TCR $\alpha-$ TCR $\beta$ interactions. $\langle>=$ the start and end of a domain. Highlighted in yellow $=\mathrm{C} \beta$ loop. Highlighted in gray $=$ F-loop. Highlighted in light blue TCR-C beta-beta strand $\mathrm{E} . \mathrm{o}=$ conserved leucine motif involved in signal transduction.
$\square=$ Transmembrane helix. $\longrightarrow=$ Strand.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

### 3.4.5.7 TCR $\beta$ - Phylogenetic analysis - FG-loop

The Neighbor-Joining tree produced with a Dayhoff algorithm showed a branch length sum of 6.26. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test ( 1,000 replicates) is shown next to the branches. The branch length is shown in the same units as those of the evolutionary distances used to infer the phylogenetic tree and therefore the tree is drawn to scale. The evolutionary distances are in the units of the number of amino acid substitutions per site. The analysis involved 18 amino acid sequences, and all positions containing gaps and missing data were eliminated leaving a total of 19 positions in the final dataset (Fig. 3.14).

The marsupial clade is clustered together and is located between the human and the amphibian Ambystonum mexicanum.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor



Figure 3.14. Neighbor-Joining tree using the Dayhoff algorithm for the FG loop of the marsupial TCR $\beta$. Branch lengths give an indication of the evolutionary relationship between the species.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

### 3.5 Discussion

The sequence of the CD3 chain in M. eugenii has been published (Old et al., 2001). In the present study, this molecule was characterized in O. fraenata, L. hirsutus and M. domestica for the first time thus allowing a comparison of this molecule's structural motifs. It is evident from the results that CD3 $\varepsilon$ is a highly conserved molecule in those species as well as in other mammals. The four marsupials are located in the evolutionary tree between the primates and avian species. It is important to extend our knowledge of the marsupial immune system since marsupials are extant species and can provide an insight into changes of the immune system which have occurred over time. It also provides an opportunity to investigate why some of these animals are more disease resistant than others by allowing comparison of important immune system molecules within the marsupial clade to those of humans.

Until this study was undertaken, the M. domestica CD3 $\varepsilon$ sequence was only predicted (Genbank Accession No. XM_001380690). In this study a number of differences were found between the M. domestica CD3ع prediction in ensembl (http.//www.ensembl.org/) and the sequence of the expressed gene. An alignment between the predicted and the expressed sequence was carried out (supporting data are in Appendix 3A) and it appeared that the predicted sequence was missing five amino acids of which three are situated within the Ig-domain of the molecule. Ig-domains are found in the CD3 complex chains of all species indicating that this region is responsible for the formation of side-to-side configured dimers such as CD3عץ and CD3عס (Clements et al., 2006).

The difference in intron length between marsupial and human CD3 2 genes would have resulted from evolutionary changes over time. Intron-exon structures may therefore offer a means of gaining evolutionary information, however these matters are still the subject of debate (Yandell et al., 2006). Since the TCR interaction sites in the marsupial CD3ع molecule are little different to that of other mammals it appears that the function of the molecule is not impaired. All important amino acid residues necessary for the function of

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

the molecule are in locations in the molecule similar to those of humans thus suggesting that the marsupial CD3 $\varepsilon$, despite some differences, functions in the same manner.

Examination of the secondary structures showed that, while the structures in O. fraenata and L. hirsutus were almost identical to each other, they differed to that of M. eugenii, and were markedly different to the structure of $M$. domestica. The most interesting difference found was an extra helix in the cytoplasmic domain of the molecule in $M$. domestica (Fig. 3.3). The beta sheet in the extracellular domain appeared to be larger and an additional beta sheet was found in the transmembrane region of the $M$. domestica CD3 $\varepsilon$ molecule when compared with the sequences of $O$. fraenata and L. hirsutus. This may indicate that the folding profile of $M$. domestica CD3 $\varepsilon$ is different to that of the other marsupials and other mammals. Given the evolutionary distance between M. domestica and the other marsupials and mammals, its CD3ع structure may reflect an older mammalian version of that molecule. The number of structural differences increased when the marsupial CD3ع molecule was compared to that of bird and fish species.

The CD3 epsilon molecule contains a proline-rich region (PRR) motif which appeared to be highly conserved in the marsupial CD3 sequences. The proline-rich motif is also a $\mathrm{SH}_{3}$ binding domain containing a consensus sequence of $\operatorname{xPPxP}(x=$ any amino acid and $P=$ proline) (Pawson, 1995) through which binding to the non-catalytic region of the tyrosine kinase adaptor protein (Nck) occurs. It is this ligand binding that causes a conformational change in the cytoplasmic domain of the CD3 2 chain and exposes the proline-rich region (PRR) (Manolios et al., 1997). Mouse studies have indicated that this motif functions in the degradation of the TCR弓 chain resulting in the down regulation of TCR expression on the cell surface (Mingueneau et al., 2008). This is an important function in T cell regulation and the high conservation of this proline-rich motif in marsupials suggests that the same processes occur in the marsupial CD3ع molecule. This motif in M. eugenii, $O$. fraenata and M. domestica was shown to be $100 \%$ conserved compared to humans indicating this to be of high importance in the functionality of the marsupial CD3ع.

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

Proline is an interesting amino acid since it consists of a side chain that folds back toward the backbone and the amide position (Williamson, 1994). This means that the conformation of the proline backbone is restricted due to its bulkiness. This restricts the sequence conformation preceding the proline residue (Hurley et al., 1992). Proline cannot act as a hydrogen bond donor due to the amide proton being replaced by a $\mathrm{CH}_{2}$ group (Williamson, 1994). The PRR found in CD3ع is non-repetitive and it is thought to be involved in signal transduction (Ren et al., 1993). Examination of the secondary structure prediction of all the marsupial CD3ع chains investigated in this study revealed that no helices were located in the PRR motifs. This may indicate that the number of proline residues inhibit helix formation due to the bulkiness of their side chains. Due to the high conservation of this motif in the marsupial CD3 sequences it can be assumed that the function of this motif is the same as in other mammals where a similar number of prolines have been found.

The CD3 $\varepsilon$ chains of $O$. fraenata, L. hirsutus and $M$. domestica, were not $N$-linked glycosylated, unlike those of Marmota monax (woodchuck), Bos taurus (cattle) (Hagens et al., 1996), Anas platyrhynchos (duck) (Kothlow et al., 2005), Ambystoma mexicanum (axolotl) (Fellah et al., 1993) and some fish species (Ishiguro et al., 1990, Bello et al., 2009). The N-terminal end of the CD3 $\varepsilon$ in the three marsupial species differed in the number of acidic residues. M. domestica had five, $O$. fraenata had three, and $L$. hirsutus had four such acidic residues. The N -terminal end of this molecule was quite diverse and differs considerably in length in different species. For example, this study found that the metatherian $N$-terminal consisted of 7 residues in total which is two residues longer than the N-terminal sequence of fish (Bello et al., 2009). The overall acidity of the N-terminal end is important in exposing the PRR motif in the cytoplasmic domain therefore affecting a conformational change in the molecule (Manolios et al., 1997). Investigation of the acidity of the $N$-terminal in the marsupial CD3ع molecule by determining the side chains of the amino acid residues within the motif revealed an overall acidity. It was therefore concluded that the PRR motif would be exposed through a conformational change.

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

However this assumption will have to be confirmed with site-directed mutagenesis studies9.

The CD3 $\varepsilon$ sequences of the marsupial species which were studied were compared with those of other mammals, fish, and amphibians. This comparison revealed a high level of conservation in the transmembrane and cytoplasmic domains as well as in parts of the extracellular domain and this is reflected in the phylogenetic tree (Fig 3.5).

The marsupial CD3ع sequence included a small microdomain containing the CxxCxE motif ( $C=$ cysteine and $E=$ glutamate) which is involved in the interaction with the TCR and other CD3 chains. The cysteine residues in this motif stabilizes the secondary structure and flank a 30 amino acid variable motif which forms an immunoglobulin-like domain within the motif (Kirkham et al., 1996). This indicated that the marsupial CD3ع also interacts with the TCR in similar fashion to other mammalian CD3 $\varepsilon$ chains.

The level of phosphorylation and control of protein-protein interactions are a prerequisite for intracellular signal transduction (Wandless, 1996). These interactions are mediated by small protein sub-domains such as the src homology $2\left(\mathrm{SH}_{2}\right)$ domains (Cohen et al., 1995) which have become the hallmark of proteins involved in intracellular signal transduction (Pawson, 1995). The $\mathrm{SH}_{2}$ domains bind to phosphorylated tyrosine residues such as those found in the CT domain of the CD3 $\boldsymbol{\varepsilon}$ molecule. The consensus sequence $(Y x x L / I)\left(Y=\right.$ tyrosine, $L=$ leucine and $I=I$ soleucine) identifies the $\mathrm{SH}_{2}$ domains that are contained within the ITAM motif of the CD3 $\varepsilon$ molecule. The tyrosine residues $Y^{174}$ and $Y^{185}$ in M. domestica, $Y^{169}$ and $Y^{180}$ in O. fraenata, and $Y^{172}$ and $Y^{184}$ in L. hirsutus appeared to be the putative phosphorylation sites. Human studies have indicated that these two tyrosine residues are phosphorylated upon TCR-ligand binding (Ishiguro et al., 1990). This phosphorylation event is the beginning of the signalling cascade and leads to thymocyte differentiation (Ishiguro et al., 1990). In this study the molecular investigation of the marsupial CD3 $\varepsilon$ molecule confirmed the immunohistochemical surveys into T cell populations in marsupial tissues which indicated T cell differentiation and therefore a

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

highly conserved function (Old and Deane, 2003, Old and Deane, 2002b, Old and Deane, 2000).

A study undertaken by Dave (2009) examined the expression of the proline, ITAM, and the endoplasmic retention motifs at the different developmental stages of $T$ lymphocytes in mice and human. It was found that all those motifs are necessary for the T lymphocytes to progress in their development, and to determine the degree of TCR expression on the cell surface. It was also shown that it is the PRR that is important for VDJ gene rearrangement. This study demonstrated that all of these motifs are conserved in $O$. fraenata, L. hirsutus, M. eugenii and M. domestica thus indicating that the functionality of $\mathrm{CD} 3 \varepsilon$ is also conserved in those species. It therefore appeared that the first phase of signal transduction was also intact.

CD3 $\varepsilon$ is only a small part of the whole TCR-CD3 complex. In order for the CD3 $\varepsilon$ molecule to fulfill its functions as a signalling molecule some amino acid residues are required to interact with the receptor. For those residues to interact with the receptor, the receptor itself has to be assembled. Important motifs within the receptor, such as the transmembrane region and the core-peptide motif of the alpha chain together with important loops in the beta chain of the receptor. These fulfill key tasks in receptor assembly and subsequently in T cell activation, and are discussed in the following paragraphs.

This study found that the transmembrane region of the TCR $\alpha$ molecule was present in all the marsupial cDNA sequences which were investigated. However, when compared to the human transmembrane sequence, the conservation of $44 \%$ in each of the species was quite low (Table 3.7). This is also reflected in the phylogenetic tree (Fig. 3.9) that was constructed to show the evolutionary rate relationship of the marsupial sequences to other mammals.

The human transmembrane region of TCR $\alpha$ contains two positively charged amino acid residues, arginine ( $R$ ) and lysine ( $K$ ). It has been reported that these two amino acids are

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

critical in receptor assembly (Call et al., 2002, Manolios, 1995, Manolios et al., 1991). The arginine residue interacts with the TCR弓 chain and plays a major role in T cell receptor assembly. On the other hand, the lysine residue interacts with the CD3 $\delta$ part of the CD3 complex (Ali et al., 2006) and its deletion alters the charge distribution and prevents the assembly of the receptor complex (Arnaud et al., 1996). Both of these residues were shown to be conserved in the $O$. fraenata and $M$. eugenii TCR $\alpha$ sequences hence the assembly mechanism of the receptor appeared to be functioning in the same manner as in other mammals.

The secondary structure prediction of the marsupial partial TCR $\alpha$ chain carried out with PSIpred (Bryson et al., 2005) (Appendix 3B) indicated that there are differences between the two closely related species $O$. fraenata and M. eugenii. It also indicated that the two beta sheets found in the antigenic binding sites of $O$. fraenata stabilized the structure of TCR $\alpha$ in that species. The prediction algorithm awarded a higher confidence level to the $O$. fraenata secondary structure than to that of $M$. eugenii. However this assumption needs to be substantiated by X-ray crystallography.

Another interesting feature found in the marsupial TCR $\alpha$ sequence was the amino acid residue arrangement. In humans, a poly-leucine motif ILLL found within the transmembrane region is critical for the functioning of the molecule. However the marsupial transmembrane region is devoid of this motif. The activity of the transmembrane region is dependent on the poly-leucine motif since it exposes the molecule to lipid interactions. The spatial arrangement of this motif is also important for its function (Ali et al., 2006). In this study it was found that the structural integrity of the poly-leucine motif was not conserved in marsupials. Two phenylalanine residues were found in the marsupial sequence, one of which substitutes for the leucine found in the human transmembrane region. The side chain of phenylalanine is bulkier due to the ring structure of this amino acid. Molecular modelling in mouse studies have shown that the transmembrane region assumes a secondary structure which indicates that the positively charged lysine and arginine residues sit at opposite faces with the hydrophobic leucine

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

domain between them (Ali et al., 2006). The phenylalanine substitution found in marsupial species may interfere with the topography and spacing of the charged groups. This is important for the functioning of the transmembrane region due to the ring structure of the phenylalanine residue. Modelling of the marsupial TCR $\alpha$ chain indicated that the two phenylalanine residues do indeed compete for space in $O$. fraenata. However the model constructed with the same parameters for M. eugenii indicated that the two residues face away from each other and therefore do not compete for space (Fig 3.10). This may mean that the receptor in $O$. fraenata does not work as efficiently as in $M$. eugenii and in other mammals. Resolution of this paradox will require investigation of the torsion on these residues to confirm their alignment and any steric hindrance.

Human studies have shown that the charged residues within the transmembrane region permit the TCR $\alpha$ molecule to exist either in a stabilized form in the membrane or as a soluble molecule (Shin et al., 1993). The charged residues are also the link to the CD3 complex. This study found no evidence of a soluble form in marsupials. Further investigations are needed to solve the structural integrity of this motif in metatherian mammals.

The connecting peptide ( $\alpha$ CPM) is another motif located in the transmembrane domain of the TCR $\alpha$. The $\alpha$ CPM plays an important role in the positive selection of CD8 ${ }^{+}$and CD4 ${ }^{+}$ T lymphocytes and connects the transmembrane and Ig domains (Backstrom et al., 1996). This motif also plays a role in the interaction of the receptor with the CD3 complex by shaping a precise structure which is involved in the dimerization of the receptor (Arnaud et al., 1997). Deletion of this motif has shown that the receptor does not interact with the CD3 complex to the full extent and signal transduction is interrupted (Backstrom et al., 1997). Seven residues within the connecting peptide are responsible for the interaction with the CD3 complex. The seven main residues of the connecting peptide FETDXNLN (human sequence, $\mathrm{F}=$ phenylalanine, $\mathrm{E}=$ glutamic acid, $\mathrm{T}=$ threonine, $\mathrm{D}=\operatorname{aspartic}$ acid, $X$ is any amino acid, $\mathrm{N}=$ asparagine, $\mathrm{L}=$ leucine), are conserved in a number of mammals and the first four residues are conserved in marsupials. However the NLN portion of the

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

sequence is replaced with DLN in marsupials and is associated with a substitution of asparagine ( $N$ ) by aspartic acid (D). Both amino acids are polar but asparagine prefers to be on the surface of proteins and therefore exposed to an aqueous environment (Betts and Russell, 2003). Asparagine contains an amino group instead of one of the oxygen molecules found in aspartate and therefore lacks a negative charge. Both amino acid residues are known for their involvement with both the active sites and binding sites of proteins. This substitution does not appear to hinder the functionality of the molecule in marsupials since both amino acid residues have similar responsibilities in biological systems and one can carry out the function of the other (Betts and Russell, 2003).

Also located in the human transmembrane region are the amino acid residues leucine and phenylalanine which are conserved in a number of species (supporting alignment data are in Appendix 3B). Both of these residues are important for the expression of the TCR $\alpha$ chain as well as for the association with the CD3 complex (Bhatnagar et al., 2003). This study showed that in the species sequence alignment the phenylalanine residue was conserved in $O$. fraenata and $M$. eugenii but not in M. domstica.

The leucine was shown to be conserved in the $M$. domestica TCR $\alpha$ sequence while $M$. eugenii and $O$. fraenata had an isoleucine in place of leucine, and $T$. vulpecula had a methionine instead of the leucine. Given the close relationship of leucine and isoleucine, it was assumed that the function of both might either be conserved or be similar. Since methionine has quite different biochemical properties to leucine its function in the connecting peptide may not be conserved in T. vulpecula. Mutational studies will shed further light on the functionality of the marsupial TCR $\alpha$ chain.

The TCR $\alpha$ chain interacts with distinct regions of the TCR $\beta$ chain (Appendix 3C). One of these regions is located in the TCR-C beta-beta strand $E$ in humans with the sequence YCLSSRLRVSA compared to YSKSSRKRV(I)SA in $O$. fraenata and M. eugenii. The cysteine of the human sequence is substituted with a serine in the marsupial motif. Similar substitutions have been reported in other receptors resulting in reduced receptor activity

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

(Okamoto et al., 2009). If reduced receptor activity due to such substitutions in marsupials can be verified it would support the documented diminished T cell responses in marsupials (Stone et al., 1998, 1997a). Since the TCR-C beta-beta strand E motif is also an interaction site with the TCR $\alpha$ chain, this substitution could mean a diminished interaction with the TCR $\alpha$. The interaction between the $\alpha$ and $\beta$ chains of the receptor facilitates the necessary conformational changes to prepare for signal transduction.

It has been reported that the $\mathrm{C} \beta \mathrm{CP}$ (transmembrane) domain is an important region involved in signal transduction in the $\beta$ chain of the TCR. Mutational studies in human cell lines have shown that a signalling defect occurs downstream from the zeta associated protein of 70kDa (ZAP-70), and it appears that the calcium ion influx is diminished in that circumstance (Backstrom et al., 1997). It was also reported that the transmembrane domain interacts directly with the zeta chain of the CD3 complex (Backstrom et al., 1996). It is the glutamine ( Q ) residue of the $\mathrm{C} \beta \mathrm{CP}$ that is important in signal transduction. In this study the TCR $\beta$ sequence alignment (Appendix $3 C$ ) showed that the glutamine residue was not conserved in the marsupials and other mammals where the sequence had been characterized. M. eugenii and T. vulpecula had a histidine $(\mathrm{H})$ instead of a glutamine, while in $O$. fraenata the $C \beta C P$ region appeared to be missing. No investigation was carried out into possible polymorphisms or splice variants in $O$. fraenata. Future investigations of this may explain why this region appeared to be absent in the $O$. fraenata TCR $\beta$ clones.

The amino acid glutamine is often found at binding and active sites of proteins (Betts and Russell, 2003). In the present study it was found that the sequence alignment (Appendix $3 C$ ) in a number of marsupial and other mammals had the glutamine substituted with histidine, arginine (R), lysine (K) or serine (S). Histidine, like glutamine, is a polar amino acid and is also required at protein binding sites. The substitution of glutamine with arginine is found in birds and some fishes in the C $\beta$ CP domain but this does not appear to affect the functionality of the TCR molecule in those species. However, arginine will also interact at active sites of proteins, although it is more vigorous in its binding capacity than

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

histidine and glutamine and therefore builds very strong bonds (Waksman et al., 1992). It was therefore concluded that the active binding site of the marsupial TCR $\beta$ chain protein in this region identified in this study is conserved, even though several substitutions may occur at the active site of that protein.

In humans, the FG-loop is a hydrophobic region composed of the residues tryptophan $\left(\mathrm{W}^{225}\right)$, leucine $\left(\mathrm{L}^{219}\right)$ and proline $\left(\mathrm{P}^{232}\right)$. These form the base of the FG loop which connects with $L^{119}$ and valine $\left(V^{122}\right)$ at the start of the constant domain of the beta chain (Hennecke et al., 2000) and regulates the $\alpha \beta$-T cell development (Touma et al., 2006). This study found that, in marsupials, these residues are conserved but $\mathrm{L}^{219}$ is substituted for isoleucine. The structure of the FG loop produces a cavity large enough to accommodate a single Ig-domain (Wang et al., 1998a). In humans and mice, the CD3 $\varepsilon$ subunit has an acidic residue to basic residue ratio of $2: 1$ (Gold et al., 1987). This ratio was also found in the $O$. fraenata and $M$. eugenii CD3 $\varepsilon$ sequence in this study. CD3 $\varepsilon$ has a non-glycosylated single Ig-like extracellular domain with a length of 70 amino acid residues in $O$. fraenata and $M$. eugenii. This contrasts with the single Ig-like domain in humans which has 87 amino acid residues and has the correct complementary charge to the cavity which is created by the FG-loop (Touma et al., 2006, Ghendler et al., 1998). It appeared that the same structural components and biochemical properties were conserved in the sequences of $O$. fraenata and $M$. eugenii in this study.

The cysteine in the TCR $\beta$ sequence of humans, located at position 247 (Appendix 3C), forms an interchain disulfide bridge with the $\alpha$ chain. The $F$ strand cysteine $\left(C^{212}\right)$ (Appendix 3C) forms the intra-domain disulfide bridge with the $\beta$ strand cysteine ( $\mathrm{C}^{147}$ ) of the constant domain (Sasada et al., 2002). These disulphide bridges were found to be conserved in $O$. fraenata and $M$. eugenii, and a similar interaction between the TCR $\alpha$ and TCR $\beta$ chains was expected.

Of lesser importance is a region known as the elbow region in the TCR $\beta$ constant domain. In humans, this region was reported to be dispensable in the development of TCR $\alpha \beta$

## Chapter 3 - The diprotodontic T cell signalling unit and the corresponding receptor

bearing T lymphocytes, but was required for the NK T cell sub-set (Degermann et al., 1999a). Neither the $O$. fraenata nor the $M$. eugenii $\operatorname{TCR} \beta$ chains were investigated to this extent. Consequently it is not known whether or not this motif has the same function in those species. In humans, the transmembrane domain in the beta chain contains a number of polar residues which are highly conserved (Kunjibettu et al., 2001). This was also found to be the case in $O$. fraenata and $M$. eugenii in this study (Appendix 3C). A lysine residue ( $\mathrm{K}^{271}$ ) in the transmembrane domain of the human TCR $\beta$ chain is a key amino acid responsible for the assembly with the CD3 complex and the expression of the receptor complex on the cell surface (Alcover et al., 1990). Substitutions of this amino acid residue have shown that while it does not affect the formation of the T cell receptor dimer it does affect the cell surface expression of the molecule (Alcover et al., 1990). In this study, an alignment of all known TCR $\beta$ chain sequences found that the residues of importance were contained within the $O$. fraenata and $M$. eugenii sequences. It was also shown that the important amino acid residues for receptor assembly and dimerization were conserved thus implying that the functional aspect of the molecule is conserved in those species.

### 3.6 Conclusion

In this study it was found that despite the evolutionary distance of marsupials from humans the relatively high conservation found in the CD3 $\varepsilon$ chain and the TCR $\beta$ molecule in M. eugenii and $O$. fraenata indicate that they are not so different in their immunological makeup. It was evident from the results that the $\operatorname{CD} 3 \varepsilon$ and $\operatorname{TCR} \beta$ chains are highly conserved between the marsupial clade and other mammals. The CD3 $\varepsilon$ chain was determined for the first time in L. hirsutus and $M$. domestica. The functional motifs and domains were conserved and by investigating their biochemical makeup of the molecules it was shown that the interactions between the TCR $\beta$ chain and the CD3 $\varepsilon$ molecule were similar to those of other mammals. These sequences were characterized for the first time in $O$. fraenata and the sequences for TCR $\alpha$ and $\beta$ chains were determined for the first time in M. eugenii and $O$. fraenata. The results of the study indicated that the TCR $\alpha$ chain

## Chapter 3 - The diprotodontic $\mathbf{T}$ cell signalling unit and the corresponding receptor

in those species may function differently to that of other mammals. The additional phenylalanine residue in the TCR $\alpha$ chain found in those species was only four residues removed from another phenylalanine resulting in a different structure which may indicate steric hindrances in this molecule in marsupials.

Mutational studies in humans carried out by Ali et al., (2006) indicated that the spatial arrangement within this motif, and the presence of certain charged amino acid residues surrounding the motif, are crucial for its function. The area of this motif in the $O$. fraenata sequence differed from that in humans and further studies are needed to understand its function in that marsupial species. This was outside the scope of the present project.

## Chapter 4

The diprotodontic co-receptors and co-stimulators to the T cell receptor

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.0 Abstract

There are various TCR co-receptor and TCR co-stimulatory molecules that are important for T cell signal transduction. In this study five molecules (CD4, CD8, CD28, CTLA-4 and CD86) that are central to the $T$ cell signal transduction pathway in humans and mice were characterized in several macropods and a didelphid. The partial sequence of CD4 was characterized in $O$. fraenata using an RT-PCR approach. The same technique was used to characterize the open reading frames of the CD8 $\alpha$ and $\beta$ chains in $O$. fraenata and $L$. hirsutus. A sequence fragment of the MHC co-receptor CD86 was identified in the didelphid $M$. domestica. A RACE-PCR approach was used to characterize the TCR costimulator CD28 in M. eugenii and M. domestica. The CD28 antagonist CTLA-4, which is responsible for the regulation of T cell responsiveness, was also characterized with the RT-PCR technique. Comparative analyses were carried out for all of the mRNA transcripts of structurally important motifs. Comparative structure predictions were carried out for CD28, CD8 $\alpha$ and $\beta$, and CTLA-4 using the Modweb platform. Key findings of this study were the absence of the D4 domain in the $O$. fraenata CD4 sequence. A comparison of the marsupial CD8 sequences with other mammalian CD8 sequences revealed differences in the number of post-translational modifications highlighting possible differences in function. The marsupial sequences of CD28 and CTLA-4 exhibited high conservation when compared with other mammalian and non-mammalian sequences suggesting similarity in function.

### 4.1 Introduction

Peripheral T cell populations and secondary lymphoid organs are distinguished by the mutually exclusive expression of either the CD4 or CD8 T cell receptors. This is maintained throughout the post-thymic life of T lymphocytes where two distinct T cell lineages are distinguished (Bosselut, 2004). CD4 T lymphocytes are MHC II restricted and define the T helper cell sub-populations, whereas CD8 T lymphocytes are MHC class I restricted and

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

confer cytotoxicity to target cells such as cells infected by mycobacteria (Wang and Bosselut, 2009). The selection of either a CD4 or a CD8 lineage occurs after the rearrangement of the TCR $\alpha$ and $\beta$ genes in thymocytes, and then only in cells whose TCRs recognize MHC ligands (Starr et al., 2003). Activation of T lymphocytes occurs through the engagement of the T cell receptor, the CD28 located on the T cell, and the pMHC and B7 (CD80/CD86) family members located on the antigen presenting cell. However if CD28 is not expressed on the cell surface the cell adopts a state of anergy. Two mechanisms are considered to be important for anergy; one with a direct inhibitory effect on CD28 signalling, and the other with an indirect effect on cell-cycle progression via stimulation of growths factors such as IL-2 (Becker et al., 1995, Beverly et al., 1992, Jenkins, 1992). T cell receptor-antigen coupled signals are amplified by transduction through CD28 and are opposed by the CD28 antagonist CTLA-4 (Lenschow et al., 1996). T lymphocytes must therefore progress through the cell cycle in order to escape the fate of anergy (Wells et al., 2001). This is called the 'two-signal' model where both an activation signal and a recognition signal are necessary to avoid an anergic state (Baxter and Hodgkin, 2002, Chambers, 2001, Lafferty et al., 1978).

The four important molecules CD4, CD8, CD28 and CTLA-4 are at the centre of this 'twosignal' model for T cell activation. The literature reports differences in the T cell responses of marsupials when compared to humans and other mammals (Meyer-Lucht et al., 2008, Stone et al., 1996). Marsupial T lymphocytes appear to not react with co-cultured T lymphocytes of other species, thereby demonstrating no mixed lymphocyte responses (MLR) (Stone et al., 1998, Stone et al., 1997a, Stone et al., 1997b). Although no culturing of marsupial cells was undertaken in the present study, the involvement of these four molecules in the MLR was addressed by investigating differences in sequence and therefore in structure and possibly function. The question then arose as to whether or not the co-receptors and modulators are expressed in O. fraenata, L. hirsutus, M. eugenii and M. domestica. This question was partially answered when the CD4 and CD8 receptors were characterized in M. eugenii (Duncan et al., 2007, Duncan et al., 2008). While

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

infections with mycobacteria lead to the activation of both $\mathrm{CD}^{+}$and $\mathrm{CD} 8^{+} \mathrm{T}$ cell responses, it is the CD8 ${ }^{+}$T lymphocytes that play a major role in the control of such infections (Smith and Dockrell, 2000). Therefore differences in structural motifs that are implicated in the control of mycobacterial infections may compromise the immune response to such pathogens. While the M. eugenii sequences of CD4 and CD8 are available in Genbank (Accession Numbers EF490599 and EU152103 respectively) a characterization of these two molecules has not been reported in O. fraenata. Anecdotal reports by animal handlers suggested that $O$. fraenata has a greater degree of resistance to pathogens than other marsupial species. In order to determine the validity of those reports it was first necessary to characterize sequence motifs in both the CD4 and CD8 molecules which are responsible for antagonistic responses to pathogens. This was undertaken in this study.

CD4 and CD8 operate in conjunction with the T cell signalling modulatory molecules CD28 and the cytotoxic T lymphocyte antigen-4 (CTLA-4). They are both members of the immunoglobulin superfamily with an extracellular IgV-like domain (Linsley et al., 1995). A hexapeptide (MYPPPY) is found in the complementarity determining region 3 in the $\operatorname{lgV}$ fold of CD28 and CTLA-4. The localization of this motif in the solvent-exposed region and its conservation in a number of taxa suggests the possible presence of a ligand-binding epitope (Srinivasan et al., 2001).

As previously described, CD28 and CTLA-4 are important in the 'two-signal' model since they either accelerate or block the signal thus making them modulators of the T cell activation mechanism. The 'two-signal' theory is important in transplant science where, in marsupials, it is evident that there is a different response to skin grafts when compared to humans and other mammals (Stone et al., 1997a, Stone et al., 1997b). In recent times both CD28, CTLA-4, and their respective ligands CD80 and CD86, have been implicated in graft rejection, and have also been investigated for therapeutic applications to prevent graft rejection (Goldstein, 2011, Habicht et al., 2007). Differences in their structure may explain the different responses to skin grafts in marsupials. CD86 is part of the B7-CD28/CTLA-4 pathway and provides signals for the activation and survival of $T$

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

lymphocytes by acting as a ligand for CD28 and CTLA-4. The effects of CD86 are mainly seen in the early events of T cell activation of naïve T lymphocytes when the pathway to anergy or stimulation is determined. The MYPPPY motif is the binding site that ties CD28, CTLA-4 and CD86 together.

Characterization of the important sequencing motifs within the CD4 and CD8 molecules in marsupials is necessary to further our understanding of how some species resist bacterial infections while others succumb to them. Prior to this study CD28 and CTLA-4, the two molecules responsible for the T cell activation signal, had not been characterized in any marsupial species.

### 4.2 Aims and Objectives

The aims of the experiments reported in this Chapter were.

- To characterize important sequencing motifs of the co-receptor CD4 in O. fraenata for comparison with the same structures in the published $M$. eugenii sequence.
- To characterize the co-receptors CD8 $\alpha$ and CD8 $\beta$ in 0 . fraenata and L. hirsutus for comparison with the same structures in the published $M$. eugenii sequence.
- To characterize the T cell modulators CD28 in O. fraenata and CTLA-4 in O. fraenata and $M$. eugenii for comparison with the expressed and annotated sequences in the ensembl database (http.//www.ensembl.org) for M. eugenii.
- To characterize, at least in part, the molecule CD86 located on the antigen-presenting cell, and to establish the binding site to the immune modulators CD28 and CTLA-4 in M. domestica.
- To investigate the putative amino acid sequences of the O. fraenata CD4, CD8, CD28 and CTLA-4 genes for any apparent differences in their structural and functional motifs when compared to M.eugenii and M. domestica.
- To characterize CD8 in L. hirsutus to investigate the documented susceptibility of this species to mycobacterial infections.


## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

- To undertake phylogenetic analyses of the functional motifs of the open reading frames of CD8, CD28 and CTLA-4 in order to show evolutionary changes which have occurred in the genes or in the structurally important motifs.
- To conduct protein modelling from the putative amino acid sequences to deduce possible amino acid residue interactions and to determine a probable tertiary structure for the molecules in marsupials.


### 4.3 Specific Materials and Methods

The following materials and methods were unique to this chapter. General materials and methods are detailed in Chapter 2.

### 4.3.1 RNA, mRNA and cDNA

RNA was isolated from spleen, liver, gut node and thymus of $O$. fraenata. mRNA was isolated from total RNA, and cDNA was synthesized as described in Chapter 2. The CD4 sequence in $O$. fraenata was characterized from a gut node, while the molecules CD8 and CTLA-4 were characterized from a spleen of this species. The sequences obtained for $M$. eugenii originated from stimulated lymphocytes donated by Dr. L. J. Young. All sequences were cloned, and three clones were sequenced in the forward and reverse direction as outlined in Chapter 2, section 2.1.10.

### 4.3.2 Primer design

### 4.3.2.1 CD4, CD8 $\alpha$, CD8 $\beta$, CD28, CTLA-4 and CD86

Primers were designed as detailed in section 2.1.2. The primer sequences used are presented in Table 4.1.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.1. Primer sequences used to characterize the partial sequence of CD4 in $O$. fraenata, the open reading frames of CD8 $\alpha, \mathrm{CD} 8 \beta$ in 0 . fraenata and L. hirsutus, the open reading frame of CD28 in $M$. eugenii, a partial sequence in $M$. domestica, the open reading frames of CTLA-4 in $O$. fraenata and M. eugenii, and the partial sequence of CD86 in M. domestica.

| Gene/ Species | Forward primer $3^{\prime}-5^{\prime}$ | Reverse primer $3^{\prime}-5^{\prime}$ | $\mathrm{T}_{\mathrm{m}}$ | Size | Primer ID |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CD4 <br> O. fraenata | gactcggggatgtacttctgtgaggtggaa ga | gtgagaaaaagacctgccagtgt | $68^{\circ} \mathrm{C} / 56^{\circ} \mathrm{C}$ | 1009bp | CD4F/CD4ABR |
|  | gtgttcaaggtgacagcca | ggggacactggcaggtc | $\begin{aligned} & 55.4^{\circ} \mathrm{C} / 54 \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | 1094bp | CD4AF.2/CD4DR |
| CD8 $\alpha$ <br> O. fraenata <br> L. hirsutus | atgggctccctcttggct gtacgatccc (Start) | ttaagcatatctctctgatgggcc agcc (Stop) | $6^{\circ} \mathrm{C} / 61^{\circ} \mathrm{C}$ | 729bp | BCD8aF/BCD8aR |
| CD8 $\beta$ <br> O. fraenata <br> L. hirsutus | atggctcagcctctgcccattcag (Start) | ctatttcacgacgtggrgccgagc tac (Stop) | $61^{\circ} \mathrm{C} / 63^{\circ} \mathrm{C}$ | 613bp | BCD8bF/BCD8bR |
| CD28 <br> M. eugenii | gattttggtcaaacagccacatttgc <br> (Exon-2) | ```ggagtcatgttcatgtagtcacta tg (Exon-4)``` | $56^{\circ} \mathrm{C} / 56^{\circ} \mathrm{C}$ | 463bp | CD28F/CD28R |
|  | cgactggagcacgaggacactga <br> (3'RACE primer) | caaacggatatttagttctgtaaa attg <br> (Exon-2) | $74^{\circ} \mathrm{C} / 53^{\circ} \mathrm{C}$ | ~500bp | TR28F/3'RACE |
|  | caattttacagaagtaaatatccgtttg (Exon-2) | ```gctgtcaacgatacgctacgtaa cg (5'RACE primer)``` | $53^{\circ} \mathrm{C} / 76^{\circ} \mathrm{C}$ | ~300bp | TR28F/3'RACE |
| CTLA-4 <br> M. eugenii | rcattctccttcctgacattccgag (5' UTR) | ctatccctctttgcaccactcc (3'UTR) | $57^{\circ} \mathrm{C} / 57^{\circ} \mathrm{C}$ | 742bp | CTLA4-UTF/ <br> CTLA4-UTR |
|  | attgatgctcactctcacagg | tcaaagtctgggcaaggttc | $\begin{aligned} & 54.6^{\circ} \mathrm{C} / \\ & 55.2^{\circ} \mathrm{C} \end{aligned}$ | 125bp | CTLAfexp2/* <br> CTLArexp2 |
| CD86 <br> M.domestica | gcattgttcaacgggactgtagacctg | ctggattatccttgttcagaagag cagg | $61^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$ | 410bp | O86F/O86R |

* Expression primer

Primer combinations CD4AF.2/CD4DR and CD4CF/CD4ABR were used to determine partial sequences of the O. fraenata CD4 molecule and to produce 1009bp and 1094bp products. An overlap was created between the two products to permit verification of the CD4 sequence.

### 4.3.1.2 Polymerase chain reaction (PCR), cloning and sequencing

Generally used RT-PCR templates, concentrations of the PCR mixes, and preparation of the RT-PCR and RACE-PCR products are detailed in Chapter 2 sections 2.1.6, 2.1.8 and
2.1.10. The PCR and RACE-PCR templates used in this chapter are listed in Table 4.2.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

RACE primers were designed as outlined in Chapter 2, section 2.1.2 from the initial sequence derived from the RT-PCR products. RACE-PCRs were performed to obtain the 5' and 3 ' ends of the molecules as described in Chapter 2 section 2.1.9.

Table 4.2. PCR and RACE-PCR templates used for the amplification of CD4, CD8 $\alpha, C D 8 \beta, C D 28$, CTLA-4 and CD86 in O. fraenata, M. eugenii, L. hirsutus and M. domestica. PCR and RACE-PCR templates for CD4, CD8 $\alpha$, CD8 $\beta$, CD28, CTLA-4 and CD86

| PCR and RACE-PCR templates for CD4, CD8 $\alpha$, CD8 $\beta$, CD28, CTLA-4 and CD86 |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Gene | PCR template number | RACE-PCR template number |
| O. fraenata | CD4 | No.3 | - |
| O. fraenata <br> L. hirsutus | CD8 $\alpha$ | No. 3 | - |
| O. fraenata <br> L. hirsutus | CD8 $\beta$ | No.3 | - |
| M. eugenii | CD28 | No. 2 | Nos. 1 and 2 |
| M. eugenii <br> O. fraenata | CTLA-4 | No.3 | - |
| M. domestica | CD86 | No. 3 | - |

### 4.3.1.3 Phylogeny

A phylogenetic analysis using Mega5 was undertaken for all genes after the full coding domains were determined. The method is detailed in Chapter 2, section 2.3.

### 4.3.1.4 Bioinformatics

All of the bioinformatics tools detailed in Chapter 2 were used to elucidate putative domain structures, putative glycosylation sites, possible disulphide bonds, putative amino acid sequences, putative secondary and tertiary structures, and homology searches.

### 4.4 Results

### 4.4.1 CD4

A partial sequence of the CD4 molecule was characterized in $O$. fraenata and compared to the published sequences of $M$. eugenii and $M$. domestica.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.1.1 CD4 - Homology

The BLAST homology search showed that over the 862 bp partial sequence the $O$. fraenata CD4 nucleotide had a 97\% identity to the M. eugenii nucleotide sequence and a 77\% identity to the $M$. domestica nucleotide sequence. The predicted 292 amino acid sequence in O. fraenata had an identity of $80 \%$ to M. eugenii and $53 \%$ to M. domestica. The homology of the O. fraenata CD4 amino acid sequence was low (between $23 \%$ and $38 \%$ ) compared to the CD4 sequences in other vertebrates due to a sequence gap found in domain 4 of the $O$. fraenata CD4 (Table 4.3).

Table 4.3. Homology search results for the nucleotide and amino acid sequences and their respective e-values for the $O$. fraenata partial CD4 molecule. The values are calculated over the $862 \mathrm{bp} / 292$ aa length of the partial sequence.

| Homology search result for CD4 in O. fraenata |  |  |  |  |
| :--- | :---: | :--- | :---: | :--- |
| Species | Nucleotide | e-value | Amino acid | e-value |
| M. eugenii | $97 \%$ | 0.0 | $80 \%$ | 3 e .141 |
| M. domestica | $77 \%$ | 1 e .95 | $53 \%$ | 4 e .66 |
| B. taurus | --- | --- | $37 \%$ | 3 e .33 |
| C. familiaris | --- | --- | $38 \%$ | 8 e .31 |
| F. catus | --- | --- | $38 \%$ | 1 e .30 |
| C. hircus | --- | --- | $36 \%$ | 3 e .30 |
| O. aries | --- | --- | $36 \%$ | 6 e .30 |
| R. norvegicus | --- | --- | $34 \%$ | $3 \mathrm{e}-28$ |
| S. scrofa | --- | --- | $38 \%$ | 4 e .27 |
| O. cuniculus | --- | --- | $32 \%$ | 1 e .26 |
| I. punctatus | --- | --- | $23 \%$ | 0.71 |

For Accession numbers see Appendix 4A. --- = not recognized by the BLAST algorithms.

### 4.4.1.2 CD4 - Domain structure

The partial CD4 sequence in $O$. fraenata contained two putative Ig domains with e-values of $4.38 \mathrm{e}+00$ and $2.31 \mathrm{e}+00$ respectively. Within the two predicted Ig -domains, putative $\operatorname{Igc} 2$ and Igv domains were identified with e-values of $4.15 \mathrm{e}+00$ and $1.12 \mathrm{e}+03$ respectively. These e-values indicated that the occurrence of the domain structures was of high probability.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.1.3 CD4 - Glycosylation and glycation sites

Four predicted O-linked glycosylation sites were found in the partial 0 . fraenata sequence. The putative glycosylated threonines were at positions 4, 6, 165 and 167. Two putative Nlinked glycosylation sites NVT and NET were found in the partial O. fraenata CD4 sequence, and there were predicted glycated residues at positions $49,50,56,103,143$, 150, 161, 200, 251 and 255. However validation of this result requires more sophisticated mass spectrometry or Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFF) analysis which was outside the scope of this study.

### 4.4.1.4 CD4 - Phosphorylation sites

Eleven serine, six threonine and two tyrosine phosphorylation sites were predicted in the partial CD4 sequence of $O$. fraenata. The probabilities of the putative phosphorylation sites ranged from $56.5 \%$ to $99.6 \%$. The positions of these sites and their probabilities are shown in Table 4.4.

Only a single putative N -linked phosphorylation site was predicted in O . fraenata. The putative $N$-linked phosphorylation site in domain 4 which is observed in the published $M$. eugenii CD4 sequence is absent in $O$. fraenata.

Table 4.4. Predicted serine, threonine and tyrosine phosphorylation sites, their positions and probabilities in the partial $O$. fraenata CD4 sequence.

| Serine |  | Threonine |  | Tyrosine |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Position | Probabilities | Position | Probabilities | Position | Probabilities |
| 8 | $58.9 \%$ | 6 | $87.1 \%$ | 10 | $95.7 \%$ |
| 23 | $84.4 \%$ | 75 | $82.5 \%$ | 95 | $90.8 \%$ |
| 72 | $92.1 \%$ | 153 | $91.9 \%$ |  |  |
| 141 | $98.2 \%$ | 230 | $89.5 \%$ |  |  |
| 157 | $99.1 \%$ | 232 | $93.1 \%$ |  |  |
| 170 | $62.9 \%$ | 253 | $69.3 \%$ |  |  |
| 203 | $98.2 \%$ |  |  |  |  |
| 206 | $99.6 \%$ |  |  |  |  |
| 231 | $98.8 \%$ |  |  |  |  |
| 247 | $56.5 \%$ |  |  |  |  |
| 249 | $91.2 \%$ |  |  |  |  |

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.1.5 CD4 - Primary sequence and secondary structure prediction

The partial CD4 sequence of $O$. fraenata consisted of 876 bp that translated into 292 amino acids. A frame shift was found when translating the nucleotide sequence into the putative amino acid sequence. A premature stop codon, marked *, was found in domain 4 of CD4. This was verified in three clones and consequently a sequencing error was considered to be improbable. The sequence following the stop codon was in a different reading frame. A sequence gap was found in the $O$. fraenata CD4 sequence in domain No. 4 preceding the joining region No. 4 when compared with other mammalian sequences (Appendix 4A). If this is an actual sequence gap then this molecule will not fold in the same manner as other mammalian CD4 molecules. This may be evidence that the $O$. fraenata CD4 molecule is a soluble form of the receptor and not the membrane bound type. Despite a number of attempts, the full coding domain of $O$. fraenata CD4 could not be obtained and further attempts were abandoned. However important sequence motifs relevant to the function of the molecule in the $O$. fraenata partial sequence were elucidated in the present study.

A secondary structure prediction which was carried out for the partial sequence of $O$. fraenata is illustrated in Fig. 4.1. For the purpose of comparison, a secondary structure prediction was also carried out for the M. eugenii sequence which had been characterized previously by Duncan et al. (2007) (data in Appendix 4A). The variances in the secondary structures were mainly in the length of the beta sheets and may not affect the overall functionality of the molecule, although this will have to be verified once the full coding domain is determined in $O$. fraenata.

```
ttcaaggggacagccaccccaagtgactatgtgacctctggaaccaatgtgactttaact 60
    Ig-domain
    Domain 2
    F K G T A T T P S D D Y V T T S G T N N V T T L T 
ttgcacagctcttccaaccttcttgcattcaaggtggaatggaggggtccaggagataaa 120
    L
agtaaacagatcatgaatcaagacaagaagactttgaacttggtgaaaatggggccaaat 180
    S K Q I M N Q D K K K T L N N L V K M M M P
gaaacaggtctctgggactgtactgtctctgtgagtgagaaaaccctgaaactgggca\overline{c}c 240
    E T T G L W W D C C T V S llllllllllllllll
aaagtcacagcatttggtttcacaaaatcttctcagaccttctatacgatggtgggcaaa 300
    M H
gctgtcaaattctccttccctctgaatttaaatgaccaagagctgaacagggaacagcca 360
    A V K F F S F P L N L N N D D Q E E L N N
aatggagaactgaggtggaaggtggaagaccctgcttcttctctacaggtggccaagttt 420
    N G E L L R W K K V E D D P A S S S L L Q V V A N K F F 140
tcatggaagagtgactccttgactctaaaaacaacgactccacgtttcagtcgtgatccc 480
    #
aagttcccactcacgatcactctttcctccgtcttgccttctgatgctggctcaggagtc 540
    K
ttcttactaaagttttcttcggggactgtggaacagaaggtcaaccttgtggtaatgaaa 600
M
ctgggttggttctgacatggattcgagaagaccagcacagaaaaagaacaactgctattg 720
* Sransmembrane region
    L G Wr F |llllllllllllllllllll
cggaaaaagaaacaactaaaatcagattccttcaaactgyacagcaaaacaggagtggaac 780
    R K K K L L L K S D D S F K M T T A K Q Q E W N N 260
ctaccctttcatctgggcatcggtctgg%ggccggagcaaytctgttgcttctctctgga 840
    L P
ctctgtatattcttttgtgccagacgaaggcacagg 876
| }\quad->\mathrm{ Cytoplasmic tail
L Cllllllllllllll
```

Figure 4.1. O. fraenata CD4 partial primary sequence and secondary structure prediction. Underlined = glycosylation sites. $\rightarrow$ = domain regions. $O$ = differences compared to $M$. eugenii CD4. ${ }^{*}=$ premature stop codon. $\square=$ Transmembrane helix. $\longrightarrow=$ Strand.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.2 CD8 alpha (CD8 $\alpha$ )

The open reading frames of the CD8 $\alpha$ molecule were characterized in $O$. fraenata and $L$. hirsutus and these were compared to the published sequences of $M$. eugenii and $M$. domestica.

### 4.4.2.1 CD8 $\alpha$-Homology

The BLAST homology search indicated that the O. fraenata CD8 $\alpha$ sequence had a $97 \%$ identity to the $M$. eugenii sequence at the nucleotide level and a $95 \%$ sequence identity at the amino acid level. The BLAST search for the L. hirsutus CD8 $\alpha$ chain showed a sequence identity of $98 \%$ at the nucleotide level and $96 \%$ identity to $M$. eugenii at the amino acid level. The L. hirsutus CD8 $\alpha$ had a sequence identity of $97 \%$ at the nucleotide level and $96 \%$ at the amino acid level to $O$. fraenata. In contrast, the $O$. fraenata and L. hirsutus CD8 $\alpha$ putative amino acid sequences had a sequence homology of only $45 \%$ and $46 \%$ respectively to the human amino acid sequence (Table 4.5).

Low complexity amino acid sequences were found in the BLAST homology search in both O. fraenata and L. hirsutus. The $O$. fraenata sequence contained 38 such residues while $L$. hirsutus had 36 . This significantly lowered the amino acid identity percentages in both species.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.5. Homology search results for the $O$. fraenata and $L$. hirsutus CD8 $\alpha$ nucleotide and amino acid sequence, their identities and respective e-values.

| CD8 $\alpha$ homology search results for $O$. fraenata and L. hirsutus |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O. fraenata |  |  |  | L. hirustus |  |  |  |
| Species | Nucleotide |  | Amino acid |  | Nucleotide |  | Amino acid |  |
|  | Identities | e-value | Identities | e-value | Identities | e-value | Identities | e-value |
| M. eugenii (*) | 97\% | 0.0 | 95\% | 5e-118 | 98\% | 0.0 | 96\% | 5e-120 |
| L. hirsutus (*) | 97\% | 0.0 | 96\% | 2e-97 | 100\% | 0.0 | 100\% | 2e-97 |
| T. truncatus | 97\% | $1 \mathrm{e}-11$ | 48\% | 2e-38 | 97\% | 1e-11 | 47\% | 3e-37 |
| F. catus | 85\% | 5e-36 | 48\% | 4e-37 | 85\% | 1e-37 | 46\% | 2e-38 |
| C. I. familiaris | 87\% | $9 \mathrm{e}-27$ | 50\% | 2e-39 | 87\% | 4e-25 | 50\% | 1e-38 |
| M. domestica | 76\% | 1e-150 | 64\% | 8e-66 | 77\% | 7e-149 | 64\% | 1e-66 |
| H. sapiens | 94\% | 5e-11 | 45\% | 3e-33 | 94\% | 5e-11 | 46\% | 9e-34 |
| S. scrofa | 93\% | 1e-18 | 44\% | 4e-33 | 93\% | 1e-18 | 48\% | 2e-39 |
| S. sciureus | 66\% | 1e-18 | 47\% | 6e-42 | 66\% | 2e-17 | 47\% | 2e-39 |
| S. hispidus | 66\% | 2e-15 | 42\% | 3e-29 | 71\% | $8 \mathrm{e}-15$ | 50\% | 7e-40 |
| B. taurus | 65\% | 3e-07 | 48\% | 6e-42 | 64\% | 4e-05 | 46\% | 5e-40 |

For Accession numbers see Appendix 4B. (*) = BLAST2 algorithm was used.

### 4.4.2.2 CD8 $\alpha$ - Domain structure

A leader sequence was predicted in both O. fraenata and L. hirsutus CD8 $\alpha$ chains. For both species the leader sequence had a predicted cleavage site between amino acid residues 25 and 26. In both sequences, a predicted Igv domain at positions 44 to 124 and a predicted transmembrane domain at positions 190 to 212 were detected.

### 4.4.2.3 CD8 $\alpha$ - Glycosylation and glycation sites

Neither the $O$. fraenata nor the $L$. hirsutus CD8 $\alpha$ chain sequence contained putative $N$ linked glycosylation sites; however eight putative O-linked glycosylation sites were predicted within the CD8 $\alpha$ hinge region of $O$. fraenata and seven in $L$. hirsutus. The Olinked glycosylation sites had probabilities ranging from 51\% to $72.4 \%$. Six of these glycosylation sites were found to be in the same position in both species.

Six putative glycation sites were predicted in the CD8 $\alpha$ chains for $O$. fraenata while five sites were predicted for L. hirsutus. In both marsupials, the probabilities ranged from 49\% to $85.45 \%$. The probability of the glycated lysine residue at position 36 in $O$. fraenata was $49 \%$ which was below the threshold of $50 \%$ thus making the probability unreliable (Table 4.6). However validation of this result requires more sophisticated mass spectrometry or

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDITOFF) analysis which was outside the scope of this study.

Table 4.6. Predicted O-linked glycosylation and glycation sites and their probabilities in in the CD8 $\alpha$ molecule in 0 . fraenata and L. hirsutus.

| O-linked glycosylation and glycation sites for CD8 $\alpha$ in O. fraenata and L. hirsutus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | O-linked glycosylation sites | Probability | Glycation sites | Probability |
| O. fraenata | $\begin{aligned} & 144 \\ & 145 \\ & 146 \\ & 147 \\ & 154 \\ & 155 \\ & 160 \\ & 161 \end{aligned}$ | $\begin{aligned} & \hline 62.0 \% \\ & 63.1 \% \\ & 66.3 \% \\ & 68.2 \% \\ & 72.4 \% \\ & 71.7 \% \\ & 67.6 \% \\ & 63.3 \% \end{aligned}$ | $\begin{gathered} 36 \\ 68 \\ 151 \\ 177 \\ 181 \\ 233 \end{gathered}$ | $\begin{gathered} \hline 49 \% \\ 66.5 \% \\ 60.1 \% \\ 52.7 \% \\ 85.3 \% \\ 73.2 \% \end{gathered}$ |
| L. hirsutus | $\begin{aligned} & 145 \\ & 146 \\ & 147 \\ & 154 \\ & 155 \\ & 160 \\ & 163 \end{aligned}$ | 61.6\% <br> 63.3\% <br> 65.2\% <br> 68.1\% <br> 67.4\% <br> 64.1\% <br> 51.0\% | $\begin{gathered} \hline 68 \\ 153 \\ 182 \\ 186 \\ 238 \end{gathered}$ | $\begin{aligned} & \hline 66.8 \% \\ & 82.5 \% \\ & 52.7 \% \\ & 85.4 \% \\ & 54.2 \% \end{aligned}$ |

### 4.4.2.4 CD8 $\alpha$ - Phosphorylation sites

A number of putative phosphorylation sites were predicted in both $O$. fraenata and $L$. hirsutus CD8 $\alpha$ sequences. The $O$. fraenata sequence had the least number of putative phosphorylation sites when compared with L. hirsutus. Six serine, five threonine and two tyrosine phosphorylation sites were predicted in the $O$. fraenata sequence. In the $L$. hirsutus sequence, seven serine, four threonine and four tyrosine phosphorylation sites were predicted. The variance in the number of putative phosphorylation sites in the $O$. fraenata and L. hirsutus CD8 $\alpha$ chains indicated a possible difference in post-translational modification in those species (Table 4.7).

The $O$. fraenata sequence, unlike the $L$. hirsutus sequence, was devoid of tyrosine residues. This suggested that the $O$. fraenata molecule does not have the capability to

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

phosphorylate tyrosines. This would indicate a different post-translational modification for $O$. fraenata and could influence the functionality of the molecule.

Table 4.7. Predicted amino acid phosphorylation sites in the CD8 $\alpha$ chain, their locations and their confidence levels in O. fraenata and L. hirsutus.

| Predicted phosphorylation sites in CD8 $\alpha$ for O. fraenata and M. eugenii |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Serine | Confidence level | Threonine | Confidence level | Tyrosine | Confidence level |
| O. fraenata | 42 | 99.7\% | 104 | 75.8\% | 190 | 98.5\% |
|  | 55 | 82.1\% | 145 | 58.1\% | 240 | 84.5\% |
|  | 101 | 98.0\% | 147 | 93.2\% |  |  |
|  | 103 | 90.6\% | 155 | 64.2\% |  |  |
|  | 216 | 98.7\% | 161 | 87.0\% |  |  |
|  | 237 | 83.5\% |  |  |  |  |
| L. hirsutus | 42 | 99.7\% | 104 | 75.8\% | 119 | 80.8\% |
|  | 55 | 90.5\% | 147 | 94.7\% | 120 | 85.4\% |
|  | 82 | 54.9\% | 155 | 64.2\% | 190 | 98.5\% |
|  | 101 | 98.0\% | 161 | 87.0\% | 240 | 84.5\% |
|  | 103 | 90.6\% |  |  |  |  |
|  | 216 | 98.7\% |  |  |  |  |
|  | 237 | 83.5\% |  |  |  |  |

### 4.4.2.5 CD8 $\alpha$ - Disulphide bond prediction

Four disulphide bonds were predicted in the $O$. fraenata and L. hirsutus CD8 $\alpha$ chains. For both species, the predicted disulphide bonds were in the same positions. Comparison of those results with the published sequences of $M$. eugenii and $M$. domestica indicated that these bonds are highly conserved among marsupials. Conservation of those bonds is also evident in all other mammals (alignment in Appendix 4A).

### 4.4.2.6 CD8 $\alpha$ - Primary sequence and secondary structure prediction

It was found that the O. fraenata CD8 $\alpha$ chain consisted of 726bp which translated into 241 amino acids. The $L$. hirsutus CD8 $\alpha$ chain had the number of base pairs as the $O$. fraenata CD8 $\alpha$ sequence (Figs. 4.1 and 4.2).

The sequence had a common pattern of one leucine for every seven amino acid residues. Therefore it was assumed that the putative leader sequence contained a possible leucine zipper. The amino acid residues in the predicted leader sequence were mainly

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor
hydrophobic, which is a prerequisite for a leucine zipper. The leucine zipper is necessary for the dimerization of the molecule. There were eleven beta sheets and three alpha helices in both the $O$. fraenata and the $L$. hirsutus sequences. The lengths of the beta sheets and alpha helices varied between the two species, however there appeared to be no change in structure. The p56 ${ }^{\text {lck }}$ binding site was identified in both sequences and is fully conserved when compared to the sequence of humans.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.2. O. fraenata CD8 $\alpha$ primary sequence and secondary structure prediction.
Underlined in bold = Signal peptide. $K=$ putative glycation sites. $S$ = Serine phosphorylation sites. $T=$ threonine phosphorylation site. $Y=$ tyrosine phosphorylation sites. $T=$ PKC binding site.
$\bullet=$ Transmembrane helix. $\boldsymbol{\square}=\mathrm{IgSF}$-domain. $\mathrm{CRC}=\mathrm{p} 56^{\text {lck }}$ binding site. $\mathrm{I}=$ marks the putative 0 linked glycosylation sites. Coloured circles = disulphide bond formations.
$\square=$ Transmembrane helix. $\longrightarrow$ = Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.3. L. hirsutus CD8 $\alpha$ primary sequence and secondary structure prediction.
Underlined in bold = Signal peptide. $K=$ putative glycation sites. $S=$ Serine phosphorylation sites.
$T=$ threonine phosphorylation site. $Y=$ tyrosine phosphorylation sites. $T=P K C$ binding site.
$\bullet=$ Transmembrane helix. $\boldsymbol{\square}=\lg 5$ F-domain. $C R C=p 56^{\text {lck }}$ binding site. $I=$ marks the putative 0 linked glycosylation sites. Coloured circles = disulphide bond formation.
$\square=$ Transmembrane helix. $\longrightarrow$ = Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.2.7 CD8 $\alpha$ - Tertiary structure and ligand binding predictions

A tertiary structure prediction was carried out for the CD8 $\alpha$ sequences of $O$. fraenata, $L$. hirsutus, M. eugenii and M. domestica and the results are shown in Fig.4.4. There were differences in the loops and $\beta$-strand positions of the CD8 $\alpha$ chains but overall it appeared that the structure was conserved between the species (Fig. 4.4a). However the putative ligand binding sites of the CD8 $\alpha$ chain differed between the four marsupial species (Fig. 4.4b). Whether or not the function is conserved despite the differences in the accessibility of the ligands is yet to be determined.


Figure 4.4. (a) Tertiary structure predictions for CD8 $\alpha$ using the Phyre2 protein structure prediction server for O. fraenata, L. hirsutus, M. domestica and M. eugenii. (b) Ligand binding capacity of the CD8 $\alpha$ chain using the 3D Ligand server for O. fraenata, L. hirsutus, M. domestica and M. eugenii.

The number of ligands bound by the CD8 $\alpha$ chain and the amino residues making contact with the ligands in the four species is shown in Table 4.8. It is clear from the table that $M$. domestica and $M$. eugenii have different abilities to bind ligands. The number of residues putatively binding a ligand is reduced in M. domestica.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.8. Predicted ligand binding sites showing residue positions and residues in the CD8 $\alpha$ of O. fraenata, L. hirsutus, M. domestica and M. eugenii using the 3D Ligand server.

Ligand binding capacity of CD8 $\alpha$ for four marsupials

| Ligand binding capacity of CD8 $\alpha$ for four marsupials |  |  |  |
| :--- | :---: | :--- | :---: |
| Species | Residue <br> position | Residue | Predicted binding site <br> (contacts) |
| O. fraenata | 57 | Threonine | 11 |
|  | 58 | Glycine | 6 |
|  | 125 | Threonine | 8 |
|  | 126 | Arginine | 13 |
|  | 127 | Asparagine | 6 |
| L. hirsutus | 57 | Threonine | 11 |
|  | 58 | Glycine | 6 |
|  | 125 | Threonine | 8 |
|  | 126 | Arginine | 13 |
|  | 127 | Asparagine | 6 |
| M. domestica | 57 | Threonine | 3 |
| M. eugenii | 56 | Serine | 4 |
|  | 57 | Threonine | 5 |

The Swiss-Model prediction server from EXPASY was used to compare the O. fraenata and L. hirsutus CD8 $\alpha$ putative amino acid sequences with models within the pdb database. This comparison indicated that both CD8 $\alpha$ molecules in both species compared well with other CD8 $\alpha$ structures (Fig. $4.4 \mathrm{a}, \mathrm{c}$ ). The model of best fit was the pdb structure 2q3a which was annotated as a dimer. The CD8 $\alpha$ structures of both of $O$. fraenata and $L$. hirsutus could only be predicted as a single chain by the software.

Both the Swiss-Model server and the Modweb server were used to compare the structure $2 q 3 a$, which in the pdb database was shown to be the $M$. mulatta CD8 $\alpha$ chain, with the 0 . fraenata and $L$. hirsutus CD8 $\alpha$ chains. The $Z$ score slider indicated that for both $O$. fraenata and L. hirsutus the structure predictions were moderately accurate. Both CD8 $\alpha$ chains were found to have good Z-scores in the non-redundant comparison (Fig. 4.5 b, d). The amino acid residues at positions 28 to 145 were modelled with high probability while the amino acid residues at positions 1 to 27 and at positions 146 to 241 could not be modelled with any degree of accuracy by the software.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.5. Comparison of $O$. fraenata and $L$. hirsutus $\operatorname{CD} 8 \alpha$ structures with the pdb structure. (a) $\otimes=0$. fraenata $C D 8 \alpha$ sequence compared to homologous structures in the pdb database. (b) Z-score slider indicating the quality of the $O$. fraenata CD8 $\alpha$ model showing a good QMEAN. (c) $\mathbb{\otimes}=$ L. hirsutus CD8 $\alpha$ sequence compared to homologous structures in the pdb database. (d) Z-score slider indicating the quality of the L. hirsutus CD8 $\alpha$ model showing a good QMEAN.

### 4.4.2.8 CD8 $\alpha$ - Phylogenetic analysis

The evolutionary history was inferred with a Neighbor-Joining phylogenetic tree. The optimal tree had a sum of branch lengths of 6.28. The branch lengths were similar for the three macropods $O$. fraenata, M. eugenii and L. hirsutus, however the didelphid $M$. domestica had the longest branch length which indicated that, in an evolutionary sense, it is further removed from the other marsupials. This would be expected since this animal is

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

not a close relative of the macropods and a greater sequence variation should occur. The percentage of replicate trees in the bootstrap test (1,000 replicates) in which the associated taxa are clustered together are shown next to the branches (Fig. 4.6). The marsupial species were clustered together but the distance between them and the primates, including H. sapiens, was significant. This was verified in the alignment shown in Appendix 4B. The phylogenetic tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree. This analysis involved 28 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 138 positions in the final dataset (Fig. 4.6).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.6. Phylogenetic tree for CD8 $\alpha$ (including the marsupials M. eugenii, O. fraenata, L. hirsutus and M. domestica). Branch lengths give an indication of the evolutionary relationship between the taxa.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.3 CD8 beta (CD8 $\beta$ )

The CD8 $\beta$ chain was characterized in 0 . fraenata and $L$. hirsutus and compared with the published sequences of $M$. eugenii and $M$. domestica.

### 4.4.3.1 CD8 $\beta$ - Homology

The homology search conducted with the BLAST algorithm revealed a close relationship between the macropods ( $\geq 94 \%$ identity at both the nucleotide and amino acid levels), while the conservation to other mammals was much lower ( $\leq 71 \%$ identity at the nucleotide and amino acid levels). The sequences of $O$. fraenata and $L$. hirsutus both had a 69\% identity to $M$. domestica at the nucleotide level, while at the amino acid level the identity percentages were $44 \%$ and $57 \%$ respectively. A low complexity sequence of 32 amino acid residues was found in both $O$. fraenata and L. hirsutus CD8 $\beta$ chains thus lowering the identity scores at the amino acid level (Table 4.9).

Table 4.9. Homology search results for the $O$. fraenata and L. hirsutus CD8 $\beta$ nucleotide and amino acid sequences, their identity and respective e-values. The values are calculated over the 786 $786 \mathrm{bp} / 192 \mathrm{aa}$ length of the partial sequence.

| CD8 $\beta$ homology search results for O. fraenata and L. hirsutus |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O. fraenata |  |  |  | L. hirsutus |  |  |  |
| Species | Nucleotide |  | Amino acid |  | Nucleotide |  | Amino acid |  |
|  | Identities | e-value | Identities | e-value | Identities | e-value | Identities | e-value |
| O. fraenata | 100\% | 0.0 | 100\% | 0.0 | 99\% | 0.0 | 96\% | 3e-116 |
| L. hirsutus | 99\% | 0.0 | 96\% | 3e-116 | 100\% | 0.0 | 100\% | 0.0 |
| M. eugenii | 96\% | 0.0 | 95\% | 2e-105 | 96\% | 0.0 | 94\% | 1e-107 |
| F. catus | 71\% | 2e-08 | 44\% | $3 \mathrm{e}-24$ | 71\% | 9e-07 | 38\% | 2e-25 |
| S. scrofa | 71\% | 1e-10 | 37\% | 5e-18 | ----- | ---- | 35\% | 1e-17 |
| T. truncates | 70\% | 1e-11 | 40\% | $4 \mathrm{e}-23$ | 70\% | 1e-11 | 39\% | $7 \mathrm{e}-24$ |
| M. domestica | 69\% | 1e-68 | 44\% | 5e-26 | 69\% | 5e-67 | 57\% | 7e-55 |
| H. sapiens | 69\% | 3e-06 | 44\% | $9 \mathrm{e}-24$ | 68\% | $1 \mathrm{e}-04$ | 43\% | 1e-24 |
| R. norvegicus | 69\% | 9e-07 | 36\% | $3 \mathrm{e}-21$ | 69\% | $4 \mathrm{e}-05$ | 35\% | 8e-22 |
| M. musculus | ----- | ----- | 38\% | $8 \mathrm{e}-24$ | ----- | ----- | 38\% | 1e-24 |
| C. porcellus | ----- | ----- | 37\% | 2e-25 | ----- | -- | 36\% | 2e-26 |
| G. gallus | ----- | ----- | 32\% | 1e-08 | -- | --- | 32\% | 9e-08 |
| A. mexicanum | ----- | ----- | ----- | ----- | ----- | ----- | 30\% | 1e-08 |
| X. Iaevis | ----- | ----- | ----- | ----- | ----- | ----- | 28\% | 2e-08 |

For Accession numbers see Appendix 4C. ---- = not recognized by the BLAST algorithms.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.3.2 CD8 $\beta$ - Domain structure

Predicted Ig domains were identified in both $O$. fraenata and L. hirsutus at positions 23 to 130 with e-values of $3.51 \mathrm{e}-08$. In both species, a predicted sub-domain called Igc2 lies at positions 29 to 188 within that predicted Ig domain and this sub-domain had an e-value of 2.20e-01. Predicted Igv domains (variable region) were located at positions 33 to 113 with e-values of $3.71 \mathrm{e}-01$. Predicted transmembrane domains at positions 166 to 188 were also identified. A predicted signal peptide cleavage site was located at position 15 in the CD8 $\beta$ sequences of both species.

### 4.4.3.3 CD8 $\beta$ - Glycosylation and glycation sites

Five predicted O-linked glycosylation sites were found in the mature CD8 $\beta$ chain of both $O$. fraenata and L. hirsutus. Four predicted glycation sites were also identified in the CD8 $\beta$ chains of both species. No predicted N -linked glycosylation sites were detected in either species. The locations of the predicted O-linked glycosylation and glycation sites are shown in Table 4.10. However, validation of the glycated residues requires more sophisticated mass spectrometry or Matrix-assisted laser desorption/ ionization-time of flight mass spectrometry (MALDI-TOFF) analysis which was outside the scope of this study.

Table 4.10. Predicted O-linked glycosylation and glycation sites in the CD8 $\beta$ chains of both O. fraenata and L. hirsutus, and their positions and probabilities.

| O-linked glycosylation and glycation sites in CD8ß of O. fraenata and L. hirsutus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | O-linked <br> glycosylation sites | Probability | Glycation sites | Probability |
| O. fraenata | 135 | $56 \%$ | 32 | $92 \%$ |
|  | 140 | $56 \%$ | 141 | $72 \%$ |
|  | 143 | $63 \%$ | 147 | $73 \%$ |
|  | 144 | $64 \%$ | 203 | $78 \%$ |
|  | 152 | $52 \%$ |  |  |
| L. hirsutus | 137 | $56 \%$ | 32 | $92 \%$ |
|  | 142 | $56 \%$ | 143 | $80 \%$ |
|  | 145 | $62 \%$ | 149 | $73 \%$ |
|  | 146 | $64 \%$ | 205 | $78 \%$ |
|  | 154 | $52 \%$ |  |  |

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.3.4 CD8 $\beta$ - Phosphorylation sites

There were a number of predicted phosphorylation sites within the $O$. fraenata and $L$. hirsutus $C D 8 \beta$ sequences. Predicted phosphorylation sites for $O$. fraenata included twelve serine, seven threonine and two tyrosine residues while L. hirsutus had twelve serine, six threonine and one tyrosine predicted phosphorylation sites. These positions together with their confidence levels are shown in Table 4.11.

The confidence levels of the predicted phosphorylation sites were mostly above $90 \%$. Notable exceptions included the serine in positions 104 and 106 both of which had a confidence percentage of $59 \%$. This low confidence level suggests that those two sites may not be phosphorylated.

Table 4.11. Predicted phosphorylation sites of CD8 $\beta$ in $O$. fraenata and $L$. hirsutus, their positions, and their respective confidence levels.

| Phosphorylation sites of CD8 $\beta$ in O. fraenata and L. hirsutus |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Serine | Confidence level | Threonine | Confidence level | Tyrosine | Confidence level |
| O. fraenata | 18 | 95\% | 30 | 92\% | 76 | 93\% |
|  | 22 | 87\% | 75 | 94\% | 92 | 82\% |
|  | 43 | 73\% | 87 | 98\% |  |  |
|  | 44 | 76\% | 95 | 97\% |  |  |
|  | 45 | 99\% | 140 | 90\% |  |  |
|  | 59 | 91\% | 144 | 97\% |  |  |
|  | 62 | 91\% | 152 | 98\% |  |  |
|  | 88 | 99\% |  |  |  |  |
|  | 91 | 99\% |  |  |  |  |
|  | 94 | 94\% |  |  |  |  |
|  | 104 | 59\% |  |  |  |  |
|  | 136 | 99\% |  |  |  |  |
| L. hirsutus | 18 | 95\% | 30 | 92\% | 94 | 82\% |
|  | 22 | 87\% | 77 | 64\% |  |  |
|  | 43 | 73\% | 97 | 97\% |  |  |
|  | 44 | 74\% | 142 | 90\% |  |  |
|  | 45 | 98\% | 146 | 97\% |  |  |
|  | 59 | 91\% | 154 | 97\% |  |  |
|  | 62 | 90\% |  |  |  |  |
|  | 90 | 99\% |  |  |  |  |
|  | 93 | 99\% |  |  |  |  |
|  | 96 | 94\% |  |  |  |  |
|  | 106 | 59\% |  |  |  |  |
|  | 138 | 99\% |  |  |  |  |

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.3.5 CD8ß - Disulphide bond prediction

Five cysteines were located in the CD8 $\beta$ sequence of both $O$. fraenata and L. hirsutus. The O. fraenata CD8 $\beta$ chain formed two disulphide bonds while the $L$. hirsutus sequence formed three possible bonds. These bonds were formed between $\mathrm{C}^{38}$ and $\mathrm{C}^{113}$ and between $\mathrm{C}^{152}$ and $\mathrm{C}^{167}$. The DiANNA server also predicted a possible bond for $O$. fraenata between $C^{165}$ and $C^{176}$ but it appeared, after visual inspection of the sequence, that a bond between $\mathrm{C}^{150}$ and $\mathrm{C}^{165}$ or between $\mathrm{C}^{150}$ and $\mathrm{C}^{176}$ was more likely. Identifying the correct bonding of the disulphide bridge is important to define the tertiary structure. To detect disulphide bonds, an NMR (nuclear magnetic resonance spectrometry) or mass spectrometric approaches are more accurate methods, but this was outside the scope of this project.

The disulphide bond formation and the probability of connectivity for both species are detailed in Table 4.12.

Table 4.12. Predicted disulphide bond locations in CD8 $\beta$ and their connectivity probabilities for $O$. fraenata and L. hirsutus.

| Predicted disulphide bonds in CD8ß for O. fraenata and L. hirsutus |  |  |
| :---: | :---: | :---: |
| Species | Position | Probability |
| O. fraenata | $38-111$ | $99.7 \%\left(^{* *}\right)$ |
|  | $165-176$ | $99.0 \%\left(^{* *}\right)$ |
| L. hirsutus | $38-113$ | $99.7 \%\left(^{* *}\right)$ |
|  | $38-167$ | $99.7 \%\left(^{*}\right)$ |
|  | $152-167$ | $99.5 \%\left(^{* *}\right)$ |

$\left(^{*}\right)=$ not predicted to form a disulphide bridge. $\left(^{* *}\right)=$ predicted to have connectivity.

### 4.4.3.6 CD8 $\beta$ - Primary sequence and secondary structure prediction

The mature CD8 $\beta$ protein of $O$. fraenata and L. hirsutus consisted of 613bp which translated into 189 amino acids. The start site could not be determined, however the putative signal peptide cleavage site was found and this permitted the characterization of the mature molecule. The putative protein sequence was used for a secondary structure prediction to obtain the order of alpha helices and beta strands in the CD8 $\beta$ chains of the two marsupial species (Figs. 4.6 and 4.7). There was a similar distribution of alpha helices

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor
and beta strands in the two CD8 $\beta$ chain sequences. Only a single alpha helix was detected in the partial putative leader sequence of both the CD8 $\beta$ chains.


Figure 4.7. O. fraenata CD8 $\beta$ primary sequence and secondary structure prediction.
$\underline{G}=$ start of the mature protein. $S=$ Serine O-linked glycosylation sites. $K=$ glycation sites.
$\bar{T}=$ Threonine O-linked phosphorylation. $\mathrm{C}=$ disulphide bridges. $\mathrm{Y}=$ phosphorylated tyrosine.
$\square$ = Transmembrane helix. $\longrightarrow$ = Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.8. L. hirsutus CD8 $\beta$ primary sequence and secondary structure prediction.
$\underline{G}=$ start of the mature protein. $S=$ Serine O-linked glycosylation sites. $K=$ glycation sites.
$T=$ Threonine O-linked phosphorylation. $C=$ disulphide bridges. $Y=$ phosphorylated tyrosine. $=$ Transmembrane helix. $\longrightarrow=$ Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.3.7 CD8 $\beta$ - Tertiary structure and ligand binding predictions

The tertiary structure and the ligand binding prediction were determined for the mature CD8 $\beta$ chains in $O$. fraenata and $L$. hirsutus and also for the published sequences of $M$. eugenii and M. domestica. The results are shown in Fig. 4.9 (a, b). The tertiary structures appeared to be very similar in the four marsupial CD8 $\beta$ chains but a closer examination of the ligand binding capacity showed differences between the species (Fig. 4.9b). The Swiss Model platform was used to compare the results with the pdb structure 3dmm_1, which is an immune co-receptor complex. This particular model is annotated as a heterotetramer but the marsupial sequences could only be modelled as a single chain by the software.


Figure 4.9. Prediction of the mature CD8 $\beta$ chains in $M$. domestica, M. eugenii, O. fraenata and L. hirsutus. (a) Tertiary structures. (b) Ligand binding capacities. The areas of the CD8 8 molecule involved in the ligand binding are circled in red.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

The Z-scores for the $O$. fraenata and L. hirsutus CD8 $\beta$ chains were -3.29 and -1.96 respectively (Fig. $4.10(\mathrm{a}, \mathrm{c})$ ). The model predictions for the two species were very similar in the values for the $\mathrm{C} \beta$ interaction, all-atom interaction and solvation. However the torsion value was significantly different between $O$. fraenata and $L$. hirsutus and this is reflected in the lower QMEAN value. This is illustrated in Fig. 4.10.


Figure 4.10. Comparison of $O$. fraenata and $L$. hirsutus $C D 8 \beta$ structures with the pdb structures.
(a) $X=0$. fraenata $C D 8 \beta$ sequence compared to homologous structures in the pdb database. (b) Z-score slider indicating the quality of the $O$. fraenata CD8 $\beta$ model showing the QMEAN. (c) $X$ = L. hirsutus CD8 $\beta$ sequence compared to homologous structures in the pdb database. (d) Z-score slider indicating the quality of the $L$. hirsutus CD8 8 model showing the QMEAN.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Unlike the Swiss-Model program, the Modweb software utilizes the Modeller 9.10 platform. This program was used to compare the $O$. fraenata and $L$. hirsutus CD8 $\beta$ chains with the pdb structure 2atpB (crystal structure of a CD8 $\alpha \beta$ heterodimer). The Modweb software was able to model the L. hirsutus CD8 $\beta$ residues at positions 19 to 132 with a reliability of $44 \%$. In contrast, the same segment in $O$. fraenata could only be modelled with $26 \%$ reliability. The Modweb program identified the model 2atpB from the pdb database as the closest related structure to the $O$. fraenata and $L$. hirsutus CD8 8 models.

The data shown in Table 4.13 strengthens the ligand prediction shown in Fig. 4.8(b). There were differences in the number of residues involved in ligand binding in all four marsupial CD8 $\beta$ chains and this is pictorially illustrated in Fig. 4.8(b). The tertiary structures were all similar to each other thus indicating that the function of the molecule is most likely conserved in all four species. The O. fraenata and L. hirsutus CD8 $\beta$ sequences showed little difference to the $M$. eugenii sequence, but when compared to the $M$. domestica CD8 $\beta$ molecule the difference in their ligand binding ability was significantly lower. Therefore the ability of the macropod CD8 $\beta$ to bind with important ligands differs to that of the didelphid. This indicates that the CD8 $\beta$ chain in the didelphid $M$. domestica is more active than the CD8 $\beta$ chain in the macropods due to the greater number of available binding sites (Table 4.13).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.13. Predicted ligand binding sites of the mature protein CD8 $\beta$. The residues, their positions and the predicted number of binding sites are shown for $O$. fraenata, L. hirsutus, M. domestica and M. eugenii.

| Ligand binding capacity of CD8 $\beta$ in four marsupials |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Residue <br> position | Residue | Predicted binding site <br> (contacts) |
| O. fraenata | 72 | Serine | 5 |
|  | 74 | Threonine | 3 |
| L. hirsutus | 72 | Serine | 5 |
|  | 74 | Threonine | 3 |
| M. domestica | 51 | Tyrosine | 20 |
|  | 54 | Tyrosine | 8 |
|  | 76 | Glutamine | 11 |
|  | 78 | Arginine | 9 |
| M. eugenii | 121 | Isoleucine | 10 |

### 4.4.3.8 CD8 $\beta$ - Phylogenetic analysis

The evolutionary history was inferred using a Neighbor-Joining tree. The optimal tree had a branch length sum of 8.20. The percentages of replicate trees in which the associated taxa were clustered together in the bootstrap test (1,000 replicates) were shown next to the branches. The marsupial species cluster together and are situated between the rodents and the birds. There is a clear distinction between the macropods M. eugenii, $O$. fraenata and L. hirsutus and the didelphid $M$. domestica. This was expected since $M$. domestica is only a distant relative of the macropods. The branch length of the macropod species was short indicating a close relationship between them. On the other hand, the M. domestica branch is longer than that of the macropods thus indicating a greater evolutionary distance between those groups. The evolutionary distances were computed using the Poisson correction method and the units are the number of amino acid substitutions per site.

The phylogenetic tree is drawn to scale, and the branch lengths are in the same units as those of the evolutionary distances used to infer the tree. This analysis involved 25 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 133 positions in the final dataset (Fig. 4.11).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.11. Neighbor-Joining phylogenetic tree of the CD8 $\beta$ chain. Short branch lengths of the macropods M. eugenii, $O$. fraenata and L. hirsutus indicates the close relationship between those species. $M$. domestica has a longer branch length and is therefore more distantly related.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.4 CD28

A product of the M. eugenii CD28 molecule was obtained by RT-PCR and portions of the $5^{\prime}$ and $3^{\prime}$ ends of the sequence were subsequently elucidated with RACE-PCRs. The same strategy was unsuccessful for $O$. fraenata. A polymerase chain reaction was carried out for O. fraenata CD28 and an amplicon of the correct size was visualized. However the product was faint and a cloning procedure failed to produce a clone with the correct insert. A number of optimizations were carried out but the sequence of CD28 could not be determined in $O$. fraenata. Consequently the following sub-sections relate only to the M. eugenii CD28 molecule.

### 4.4.4.1 CD28 - Homology

A BLAST homology search showed that the M. eugenii CD28 had an 84\% identity at the nucleotide level and $65 \%$ at the putative amino acid level to the predicted CD28 sequence of $M$. domestica. The sequence homology of $M$. eugenii CD28 to the human sequence was $77 \%$ at the nucleotide level and $54 \%$ at the putative amino acid level. Interestingly, the M. eugenii CD28 sequence had a $70 \%$ identity to the chicken CD28 sequence at the nucleotide level and 51\% identity at the putative amino acid level. The closeness of the identities in those three species, which are far removed from each other in an evolutionary sense, indicates that the CD28 molecule has an important function in the immune system. Overall, the amino acid identity percentages were much lower than the nucleotide percentages thus indicating gap penalties and low complexity sequences. The results of the homology search are shown in Table 4.14.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.14. Homology search results for the M.eugenii CD28 nucleotide and amino acid sequences and their identities and respective e-values.

| CD28 homology search results for M. eugenii |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Nucleotide | e-value | Amino acid | e-value |
| M. domestica (predicted) | 84\% | $4 \mathrm{e}-170$ | 65\% | 6e-100 |
| H. sapiens | 77\% | 1e-30 | 54\% | 1e-71 |
| G. gallus | 70\% | 3e-19 | 51\% | 2e-57 |
| M. fascicularis | 69\% | 8e-52 | 54\% | 3e-71 |
| E. maximus | 69\% | 1e-49 | 55\% | 6e-74 |
| G. camelopardalis | 68\% | 3e-57 | 58\% | 3e-83 |
| B. taurus | 68\% | 7e-53 | 57\% | 3e-82 |
| R. unicornus | 68\% | 5e-55 | 58\% | 7e-78 |
| M. mulatta | 67\% | 6e-54 | 56\% | 2e-69 |
| S. caffer | 67\% | 1e-50 | ------ | ------- |
| B. bonasus | 67\% | 4e-49 | ------- | ------- |
| E. grevyi | 67\% | 4e-49 | 57\% | 3e-77 |
| E. zebra hartmannae | 67\% | 4e-49 | 57\% | 3e-77 |
| O. aries | 67\% | 4e-49 | 57\% | 2e-81 |
| E. asinus somalicus | 67\% | 2e-46 | 56\% | 1e-76 |
| M. monax | 67\% | 2e-40 | 55\% | 6e-74 |
| O. cuniculus | 65\% | 2e-33 | 56\% | 3e-78 |
| R. norvegicus | 65\% | 3e-32 | 55\% | 1e-69 |
| X. silurana | ------- | ------- | 32\% | 1e-21 |

For Accession numbers see Appendix 4D. ----- = not recognized by the BLAST algorithms

### 4.4.4.2 CD28 - Domain structure

The M. eugenii CD28 sequence contained a putative signal peptide spanning 18 amino acids beginning at position 1 (Methionine). The putative signal peptide was followed by a predicted Ig-like domain starting at positions 36 to 115 . This region had an e-value of $2.45 \mathrm{e}-01$. The sequence also contained a predicted transmembrane domain at positions 154 to 176.

### 4.4.4.3 CD28 - Glycosylation and glycation sites

The M. eugenii CD28 sequence contained six predicted $N$-linked glycosylation sites. In contrast, the $M$. domestica partial sequence had only four putative $N$-linked glycosylation sites. Two putative O-linked glycosylation sites at positions 144 and 147 were also contained within the M. eugenii CD28 sequence. Predicted glycation sites were found at positions $4,47,97,128,184$ and 199. Position 162 in the sequence was one of the six predicted N -linked glycosylation sites. However the confidence level was only 11\%, and

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

the location of the motif in the cytoplasmic domain made it highly unlikely that it was a functional N -linked glycosylation site (Table 4.15).

Table 4.15. Predicted O - and N -linked glycosylation and glycation sites in the M. eugenii CD28 and their confidence levels.

| Predicted O- and N-linked glycosylation and glycation sites in M. eugenii CD28 |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| O-linked glycosylation <br> sites | Confidence <br> level | N-linked glycosylation <br> sites and sequences |  | Confidence <br> level | Glycation <br> sites | Confidence <br> level |  |
| 144 | $57.2 \%$ | 40 | NGTH | $74 \%$ | ++ | 4 | $95.5 \%$ |
| 147 | $54.0 \%$ | 54 | NCSV | $61 \%$ | + | 47 | $90.3 \%$ |
|  |  | 61 | NKTV | $58 \%$ | + | 97 | $91.8 \%$ |
|  |  | 70 | NMSI | $68 \%$ | ++ | 128 | $76.7 \%$ |
|  |  | 74 | NQTD | $61 \%$ | + | 184 | $93.4 \%$ |
|  |  | 98 | NGTI | $70 \%$ | ++ | 199 | $62.2 \%$ |
|  |  | 162 | NMTP* | $11 \%$ | ----- |  |  |

+ = below 65\%. ++ = above 65\%. * = highly unlikely, located in the cytoplasmic domain. ----- = no signal strength.

Validation of the glycated residues required more sophisticated mass spectrometry or Matrix-assisted laser desorption/ ionization-time of flight mass spectrometry (MALDITOFF) analysis which was outside the scope of this study.

### 4.4.4.4 CD28 - Disulphide bond prediction

Four disulphide bonds were predicted in the M. eugenii CD28 sequence together with their connectivity (Table 4.16). Since two half-cysteines are in involved in a disulphide bond it was assumed that the CD28 sequence, which contains eight cysteines, would form four disulphide bonds. Since unpaired cysteine residues can lead to protein agglomeration due to the thiol-thiol interaction, it was assumed that all cysteine pairs naturally would form a disulphide bond. However the prediction program only showed a single possible disulphide bond for the $M$. eugenii CD28 sequence. This may be the reason why the $M$. eugenii CD28 molecule could only be modelled as a monomer.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.16. Predicted disulphide bonds in M. eugenii CD28, their locations and their corresponding sequences.

| Predicted disulphide bonds in $M$. eugenii CD28 |  |
| :--- | :--- |
| Residue number | Corresponding sequences |
| $41-113$ | VATLSNYOCD - TDIYFCKIEFM $~$ |

* = highest probability. C = cysteine residues.


### 4.4.4.5 CD28 - Phosphorylation sites

Five serine, six threonine and three tyrosine predicted phosphorylation sites were identified in the M. eugenii CD28 sequence by the EXPASY suite of programs. The confidence levels of the predicted phosphorylation sites ranged from $52 \%$ to $92 \%$. Their positions are shown in Table 4.17.

Table 4.17. Predicted phosphorylation sites in M. eugenii CD28, their positions and confidence levels.

| M. eugenii CD28 phosphorylated sites and their confidence levels |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Serine |  | Threonine |  | Tyrosine |  |
| Position | Confidence level | Position | Confidence level | Position | Confidence level |
| 55 | $97 \%$ | 48 | $90 \%$ | 70 | $65 \%$ |
| 80 | $71 \%$ | 50 | $52 \%$ | 123 | $86 \%$ |
| 81 | $99 \%$ | 74 | $72 \%$ | 192 | $76 \%$ |
| 148 | $81 \%$ | 147 | $64 \%$ |  |  |
| 150 | $92 \%$ | 196 | $98 \%$ |  |  |
|  |  | 203 | $74 \%$ |  |  |

### 4.4.4.6 CD28 - Primary sequence and secondary structure prediction

The open reading frame of $M$. eugenii CD28 contained 666bp that translated into 333 amino acids. In M. domestica this gene was partially amplified obtaining 466bp that translated into 155 amino acids.

The putative M. eugenii CD28 protein sequence was used for a secondary structure prediction to obtain the order of helices and strands. A transmembrane helix was found at position 160 with the sequence WAVVAALCVLAFYVLLMTVTFFNCW in the transmembrane region. This transmembrane helix appeared to be a conserved structure,

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor
however the sequence was not conserved between $M$. eugenii and $M$. domestica. The functionally important MYPPPY motif was conserved in both species.

Twelve beta sheets were detected in the partially amplified $M$. domestica CD28 sequence mentioned above. When these were compared with the beta sheets in the equivalent section of the $M$. eugenii sequence, variations in the sheet lengths were detected (Figs. 4.12 and 4.13).

# Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor 

```
5' end
gcaaactggcctgtctcacagctctttgtgaaaagaggaggccacagctttcag
ctcaacgctacca
atgatccgcaaggtgcttctggtcctcagtttcttcccttcagttcaagtaacagataag 60
    \longrightarrow
M I R R 
attttggtcaaacagccaccttggctgttggtggataatcacgaagtggcaaccctttcc 120
I Lllllllllllllllllllllllllll
tgtaactacatctgtgataaaactccaacggaatttcgagcttcactccaaaagggaacg 180
    Clllllllllllllllllllllllllll
aacagtgcccttgaagtctgttttgtgtatgtaaatggaacccätaagcccttgctttcc 240
N
tcaatggaggacttcaactgctccgtgaattttgataataaaacagtgaagtttctactcc 300
S
cagaatatgagtatcaaccaaacggatatttacttctgtaaaattgaattcatatotcct 360
```




```
\(\left.\begin{array}{lllllllllllllllllll}\hline & C & V & L & A & F & Y & V & L & L & M & T & V & T & F & F & N & C & W\end{array}\right)\) aaaatcaaaaaagcacaattcttcagtgggactacatgaacatgactcctcgaaaaccg 580
    K I Klllllllllllllllllllllllll
agaccaactaataagctttgtctgccttatgccccactttgggactatgccgcctatcga 640
```



```
tcctga 646
S - 222
3'end
ctcctcgaaaaccgagaccaactaataagctttgtctgccttatgcccca
ctttgggactatgccgcctatcgatcctgaaactaactcctatccttaat
ccagccggttaaaacccctctacctcctcaaccctgtttgtctggatagg
aaatgaccatctcccatctctagccggttatattctgccttttacaggtc
actcctgtcttttttcatgaagagaaaaaaaaa
```

Figure 4.12. M. eugenii CD28 primary sequence and secondary structure prediction.
NGT = N-linked glycosylation sites. $K=$ Glycation sites. $\underline{S}=$ Serine phosphorylation sites. T = O-linked glycosylation sites. $T=$ threonine phosphorylation sites. $Y=$ tyrosine phosphorylation sites. $\cdot=$ PKC binding site. ■ = Ig like domain, ITIM = immunoreceptor tyrosine-based inhibitory motif. * = Transmembrane domain. $\star=$ AARP2CN similar to GTP binding domain. NMT = not a possible N-linked glycosylation site. $O=$ MYPPPY binding site. = Transmembrane helix. $\rightarrow=$ Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.13. $M$. domestica CD28 partial primary sequence and secondary structure prediction. NGT = N-linked glycosylation sites. $\square=$ Transmembrane helix. $\Rightarrow$ = Strand. Highlighted in yellow = MYPPPY binding motif.
4.4.4.7 CD28 - Tertiary structure and ligand binding predictions

The beta strands predicted in the secondary structure were clearly seen in the predicted tertiary structure (Fig. 4.14a). The predicted ligand binding sites of M. eugenii CD28 are illustrated in Fig. 4.14b and the residues involved in ligand binding as predicted by the ITASSER program are shown in Table 4.18.


Figure 4.14. M. eugenii CD28 tertiary structure and ligand binding sites predicted with the I-TASSER program. (a) Tertiary structure of $M$. eugenii CD28. (b) Ligand binding sites of M. eugenii CD28 (dark blue).

Table 4.18 M. eugenii CD28 predicted ligand binding sites, positions, and amino acid identities.

| M. eugenii CD28 ligand binding sites |  |  |
| :--- | :---: | :---: |
| Species | Residue position | Amino Acid identity |
| M. eugenii | 38 | Threonine |
|  | 39 | Leucine |
|  | 90 | Asparagine |
|  | 97 | Lysine |
|  | 98 | Phenylalanine |
|  | 99 | Leucine |

The Z-score slider in Fig. 4.15 (a) indicated the location of the model in relation to CD28 structures solved by X-ray crystallography. The quality of the M. eugenii CD28 model, evidenced by the QMEAN statistics, was better than that of any other molecular model reported in this thesis. The Modweb program, which was used to investigate the $M$. eugenii CD28 sequence, showed that the structure prediction for that sequence was very close to other predicted structures found in the pdb database. The QMEAN was located between -1 and zero which indicated that the prediction was highly probable. When normalized by the program, the M. eugenii CD28 model was shown to be closely positioned to the known CD28 structures of other species (Fig. 4.13b).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.15. M. eugenii CD28 statistics. (a) Z-score slider for CD28. (b) Comparison of M. eugenii CD28 model $X$ to other mammalian structures in the pdb resolved using X-ray crystallography.

### 4.4.4.8 CD28 - Phylogenetic analysis

The phylogenetic analysis indicated that the M. eugenii CD28 molecule was well removed from $M$. domestica in an evolutionary sense. The branch length suggested that $M$. eugenii was more closely related to rodents, cats and dogs rather than to M. domestica. This is an unusual result since $M$. eugenii and $M$. domestica, although not closely related, are both marsupials and it would be expected that they would be closer together on the phylogenetic tree. This apparent anomaly may be due to sequence variation in the $5^{\prime}$ end of the molecule and the Ig-domain (Appendix 4C), or the predicted M. domestica CD28 sequence may have been incorrectly annotated.

The optimal phylogenetic tree with a sum of branch length of 8.18 is shown in Fig. 4.16. The percentages of the replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree. The analysis involved 22 amino acid sequences and all positions containing gaps and missing data were eliminated. There were a total of 152 positions in the final dataset

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.16. Neighbor-Joining phylogenetic tree for CD28. Branch lengths of the marsupials M. eugenii and $M$. domestica show great variation indicating the evolutionary distance between the two species.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.5 Cytotoxic T lymphocyte antigen-4 (CTLA-4)

CTLA-4 was characterized in $O$. fraenata and $M$. eugenii and a partial sequence was characterized in M. domestica.

### 4.4.5.1 CTLA-4 - Homology

A homology search was carried out with the BLAST2 program to compare the sequences of $O$. fraenata and $M$. eugenii to each other, while the BLAST algorithm was used to compare the predicted $M$. domestica sequence to that of the macropods and other vertebrate species. This investigation revealed that the M. eugenii CTLA-4 sequence had an $88 \%$ identity to the predicted $M$. domestica sequence and a $97 \%$ identity to that of $O$. fraenata. Homology percentages to other species are shown in Table 4.19.

Table 4.19. Homology search results for the $O$. fraenata and $M$. eugenii CTLA-4 nucleotide and amino acid sequences, their identities and their respective e-values.

| CTLA-4 homology search results for O. fraenata and M. eugenii |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O. fraenata |  |  |  | M. eugenii |  |  |  |
| Species | Nucleotide | e-value | Amino acid | e-value | Nucleotide | e-value | Amino acid | e-value |
| M. domestica (predicted) | 86\% | 0.0 | 81\% | $4 \mathrm{e}-133$ | 88\% | 0.0 | 83\% | 1e-136 |
| C. porcellus | 76\% | 3e-57 | 62\% | 4e-96 | 84\% | 0.91 | 62\% | 1e-95 |
| F. catus | 73\% | 3e-102 | 66\% | 4e-104 | 74\% | 1e-107 | 69\% | 2e-102 |
| M. mulatta | 73\% | 1e-94 | 64\% | 2e-100 | 73\% | 5e-105 | 65\% | 1e-100 |
| M. monax | 73\% | 2e-97 | 66\% | 3e-104 | 74\% | 1e-106 | 66\% | 4e-105 |
| M. nemestrina | 73\% | 5e-93 | ----- | --- | 73\% | 2e-103 | ----- | ------ |
| C. familiaris | 73\% | 7e-97 | 69\% | 1e-102 | 73\% | 2e-103 | 70\% | 2e-103 |
| P. abelii | 72\% | 2e-92 | 65\% | 1e-103 | 73\% | 3e-102 | 65\% | 1e-102 |
| H. sapiens | 72\% | 2e-97 | 64\% | 5e-103 | 73\% | 1e-100 | 58\% | 4e-64 |
| C. jacchus | 72\% | 2e-84 | 65\% | 2e-102 | 73\% | 1e-100 | 71\% | 4e-92 |
| S. scrofa | 72\% | 1e-88 | 67\% | 3e-100 | 73\% | 1e-99 | 68\% | 1e-100 |
| A. melanoleuca | 72\% | 2e-91 | 65\% | 4e-102 | 73\% | 6e-98 | 65\% | 1e-101 |
| L. Africana | 72\% | 9e-96 | 67\% | 1e-105 | 74\% | 1e106 | 70\% | 1e-105 |
| N. leucogenyx | 72\% | 4e-94 | 65\% | 4e-103 | 73\% | 2e-103 | 65\% | 1e-102 |
| O. aries | 71\% | 5e-86 | 68\% | 7e-100 | 72\% | 4e-94 | 67\% | 3e-99 |
| B. bubalis | 71\% | 2e-86 | 67\% | 3e-100 | 72\% | 6e-92 | 67\% | 1e-99 |
| B. taurus | 71\% | 8e-84 | 67\% | 7e-100 | 72\% | 3e-89 | 66\% | 3e-99 |
| G. gallus | 65\% | 6e-16 | 44\% | 2e-59 | 65\% | 5e-17 | 47\% | 1e-59 |

For accession number see Appendix 4D. ------ = not recognized by BLAST algorithms.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.5.2 CTLA-4 - Domain structure

CTLA-4 of $O$. fraenata and $M$. eugenii consisted of a predicted signal peptide, an Ig-like domain and a predicted transmembrane domain. The Ig-like domain of $O$. fraenata was predicted with an e-value of $2.63 \mathrm{e}-01$, while the Ig -like domain of $M$. eugenii was predicted with an e-value of $4.48 \mathrm{e}-02$. This indicated that they both had a high probability.

### 4.4.5.3 CTLA-4 - Glycosylation and glycation sites

One predicted O-linked glycosylation site was found in both the O. fraenata and $M$. eugenii CTLA-4 sequences at position 40 . Three putative glycation sites were predicted at positions 12, 111, and 192 in 0 . fraenata, while the M. eugenii sequence showed five putative glycation sites at positions 12, 17, 50, 111 and 192. Two N-linked glycosylation sites at positions 63 and 145 were predicted with probability values of $66 \%$ and $80 \%$ respectively in both O. fraenata and M. eugenii (Table 4.20).

Table 4.20. Predicted O - and N -linked glycosylation and glycation sites in O. fraenata and M. eugenii CTLA-4 and their respective confidence levels.

| Predicted O-and N-linked glycosylation and glycation sites for CTLA-4 in O. fraenata and M. eugenii |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Species | O-linked <br> glycosylation <br> sites | Confidence <br> levels | N-linked <br> glycosylation <br> sites and sequences | Confidence <br> levels | Glycation <br> sites | Confidence <br> levels |  |
| M. eugenii | 40 | $63 \%$ | 63 | NKKT | $65 \%$ | 12 | $95.6 \%$ |
|  |  |  | 145 NGTQ | $79 \%$ | 17 | $83.1 \%$ |  |
|  |  |  |  |  | 50 | $85.2 \%$ |  |
|  |  |  |  |  | 111 | $92.4 \%$ |  |
|  |  |  |  |  |  | 192 | $92.8 \%$ |
| O. fraenata | 40 |  | 63 | NKTT | $66 \%$ | 12 | $95.8 \%$ |
|  |  |  | 145 | NGTQ | $80 \%$ | 111 | $84.5 \%$ |
|  |  |  |  |  | 192 | $92.8 \%$ |  |

### 4.4.5.4 CTLA-4 - Phosphorylation sites

Three serine and three tyrosine phosphorylation sites were predicted in O. fraenata and M. eugenii CTLA-4. Only one phosphorylated threonine site was predicted in M. eugenii, and none were predicted in O. fraenata (Table 4.21).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Table 4.21. Predicted phosphorylation sites of CTLA-4 and their respective probabilities in $O$. fraenata and $M$. eugenii.

| Predicted phosphorylation sites of CTLA-4 in O. fraenata and M. eugenii |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | O. fraenata |  | M. eugenii |  |
| Amino acid | Location | Probabilities | Location | Probabilities |
|  |  |  |  |  |
| Serine | 48 | $77 \%$ | 6 | $61 \%$ |
|  | 62 | $79 \%$ | 48 | $94 \%$ |
|  | 122 | $94 \%$ | 122 | $69 \%$ |
| Threonine | none | none | 62 | $85 \%$ |
| Tyrosine | 127 | $56 \%$ | 127 | $56 \%$ |
|  | 140 | $63 \%$ | 140 | $63 \%$ |
|  | 201 | $84 \%$ | 201 | $84 \%$ |

### 4.4.5.5 CTLA-4 - Disulphide bond prediction

Seven cysteine residues were predicted in the $O$. fraenata CTLA-4 sequence and six were predicted in the $M$. eugenii sequence. This indicated that the possible disulphide bond distribution was different in the two species. The locations of the putative disulphide bonds for each species are shown in Table 4.22.

The third putative disulphide bond in the CTLA-4 molecule in $O$. fraenata contained 19 amino acids while that of $M$. eugenii contained 45 amino acids. The difference in the lengths of the third disulphide bond may indicate different fold properties of the molecule in the two species (Table 4.22).

Table 4.22. Positions and probabilities of predicted disulphide bonds in CTLA-4 in O. fraenata and M. eugenii.

| Predicted disulphide bonds in O. fraenata and M. eugenii |  |  |
| :--- | :--- | :---: |
| Species | Amino Acid residue positions | Probability |
| O. fraenata | $21-129$ | $99.6 \%$ |
| (7 cysteines) | $57-157$ | $69.1 \%$ |
|  | $84-103$ | $88.5 \%$ |
| M. eugenii | $21-129$ | $99.7 \%$ |
| (6 cysteines) | $57-157$ | $99.8 \%$ |
|  | $84-129$ | $87.2 \%$ |

### 4.4.5.6 CTLA-4 - Primary sequences and secondary structure prediction

The open reading frames of both $O$. fraenata and $M$. eugenii CTLA- 4 sequences consisted of 669bp that translated into 223 amino acids. The $M$. domestica partial CTLA-4 sequence

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

had 210bp which translated into 70 amino acid residues. An intracellular localization motif was found in all three CTLA-4 sequences.

Fourteen strands and a single helix were found in the putative secondary structure of $O$. fraenata, and 13 strands and two helices were found in M. eugenii. There is a clear difference in the secondary structures of the $O$. fraenata and the $M$. eugenii sequences. While M. eugenii has a PKC binding site at position 6 of the putative amino acid sequence, the $O$. fraenata sequence is devoid of this binding site. The $M$. eugenii sequence showed an alpha helix beginning at position 21 , but this is missing in the $O$. fraenata sequence. There are also differences in the number of beta sheets that are contained within the sequences. The effect of this on the structures of the $O$. fraenata and $M$. eugenii CTLA-4 molecule is not known. While the lengths of the beta sheets might not have a great impact on the functionality of the molecule, the extra helix in the $M$. eugenii sequence will change the topography of that molecule. Even if the helix is buried, the molecule will be bulkier and will have a different torsion. This appeared to be reflected in the structure prediction (Figs.4.20 and 4.21).


Figure 4.17. O. fraenata CTLA-4 primary sequence and secondary structure prediction.
$\mathrm{K}=$ glycation sites. $\mathrm{NGT}=\mathrm{N}$ - linked glycosylation sites. $\mathrm{Y}=$ tyrosine phosphorylation sites. $\underline{\mathrm{S}}=$ serine phosphorylation sites, $\underline{C}=$ disulphide bonds. TGVYVKM $=$ intracellular localization motif.
$=$ differences to the $M$. eugenii sequence. Other circles = disulphide bonds. $\square$ = Leucine zipper. TEPE = Casein kinase II binding site. $\square=$ Transmembrane helix. $\longrightarrow=$ Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.18. $M$. eugenii CTLA-4 primary sequence and secondary structure prediction.
$\mathrm{K}=$ glycation sites. $\mathrm{NGT}=\mathrm{N}$ - linked glycosylation sites. $\mathrm{Y}=$ tyrosine phosphorylation sites. $\underline{\mathrm{S}}=$ serine phosphorylation sites. TGVYVKM = intracellular localization motif.
0 = differences to the $M$. eugenii sequence. Other circles = disulphide bonds. $\square=$ Leucine
zipper. TEPE = Casein kinase II binding site. $\square=$ Transmembrane helix. $\longrightarrow=$ Strand.

Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor


Figure 4.19. $M$. domestica CTLA-4 partial sequence.
TGVYVMPPT = intracellular localization motif. $\square$ = Transmembrane helix.
$\longrightarrow=$ Strand.

### 4.4.5.7 CTLA-4 - Tertiary structure and ligand binding site predictions

The tertiary structures of the O. fraenata and M. eugenii CTLA-4 molecules predicted by ITASSER appeared to be similar to each other (Fig. 4.20 a, c). The ligand binding abilities and their positions in the CTLA-4 sequence, also predicted by I-TASSER, were identical in both species (Fig. 4.20 b, d, and Table 4.23).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.20. CTLA-4 tertiary structures and ligand binding capacities for $O$. fraenata and M. eugenii predicted by I-TASSER. (a) O. fraenata tertiary structure. (b) O. fraenata ligand binding sites. (c) M. eugenii tertiary structure. (d) M. eugenii ligand binding sites.

Table 4.23. Predicted ligand binding sites, the residues involved and their positions in CTLA-4 in O. fraenata and M. eugenii.

| Predicted ligand binding sites in CTLA-4 in O. fraenata and L. hirsutus |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Residue <br> position | Residue | Predicted binding site <br> (contacts) |
| O. fraenata | 54 | Serine | 31 |
|  | 55 | Phenylalanine | 16 |
|  | 106 | Asparagine | 45 |
|  | 113 | Methionine | 39 |
|  | 115 | Threonine | 37 |
| M. eugenii | 54 | Serine | 31 |
|  | 55 | Phenylalanine | 16 |
|  | 106 | Asparagine | 45 |
|  | 113 | Methionine | 39 |
|  | 115 | Threonine | 37 |

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.4.8 CTLA-4 - Structure modelling

Homology protein modelling was undertaken with the putative amino acid sequences of M. eugenii and $O$. fraenata CTLA-4. In the case of $O$. fraenata, the model prediction carried out with RaptorX was based on the 1 hzh template from the pdb database, while the template for $M$. eugenii was 3osk. The quaternary structure of 1 hzh is annotated as a hetero-tetramer but the final model for the $O$. fraenata CTLA-4 molecule was calculated as a single chain (Fig. 4.21). The model produced for M. eugenii with I-TASSER was also a single chain, but the Modweb program modelled the M. eugenii CTLA-4 as a dimer with high probability (Fig. 4.22).

There are significant differences in the models of the $O$. fraenata and $M$. eugenii CTLA-4 molecules produced by RaptorX. It is clearly shown that some coils are in different positions and the beta sheets are at different locations. This indicates that although the tertiary structure was predicted as similar the homology modelling program was able to differentiate the difference in the topography of the CTLA-4 molecule in $O$. fraenata and M. eugenii (Fig. 4.21).


Figure 4.21. RaptorX homology model of CTLA-4. (a) O. fraenata. (b) M. eugenii. Differences are indicated with red circles.


Figure 4.22. CTLA-4 homology models for $O$. fraenata and $M$. eugenii. (a) I-TASSER modelled $O$. fraenata as a single chain. (b) Modweb modelled $M$. eugenii as a dimer.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.23. Homology models of $O$. fraenata and $M$. eugenii CTLA- 4 compared to other mammalian structures in the pdb solved by X-ray crystallography. (a) $X=0$. fraenata structure (b) $X=M$. eugenii structure.

All statistical values, including their Z-scores, were measured against scores obtained from high-resolution experimental structures of similar size by the SWISS-MODEL program (Table 4.24). Only the mature protein was used in the modelling procedure.

Table 4.24. Statistical values of CTLA-4 model predictions by the Swiss-Model program for O. fraenata and M. eugenii showing the Z-scores and raw scores against the prediction markers.

| Statistics for CTLA-4 model of O. fraenata and M. eugenii |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Prediction markers | O. fraenata |  | M. eugenii |  |
|  | Raw score | Z score | Raw score | Z-score |
|  | -48.36 | -0.50 | -124.53 | -0.85 |
| All-atom pairwise energy | -1677.01 | -1.77 | -5416.92 | -2.41 |
| Solvation energy | 11.29 | -3.92 | -19.09 | -5.02 |
| Torsion angle | 6.35 | -3.73 | -60.59 | -3.78 |
| QMEAN4 score | 0.292 | -5.56 | 0.729 | -6.35 |

### 4.4.4.9 CTLA-4 - Phylogenetic analysis

The evolutionary history of CTLA-4 was inferred using a Neighbor-Joining tree. The optimal tree has a branch length sum of 2.02. The percentages of replicate trees in which the associated taxa are clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. The predicted $M$. domestica sequence was used in this

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

analysis and it was shown that the marsupial clade form a distinct group separated from the monotreme $O$. anatinus and mammals such as L. africana, C. familiaris, F. catus and S. scrofa. The branch length varies between the marsupials species. The $O$. fraenata and $M$. eugenii branch lengths are shorter than the branch length of $M$. domestica indicating that the macropods are further removed from the didelphid. Only a minor distance separated the two macropods $O$. fraenata and $M$. eugenii indicating a close evolutionary relationship. The analysis involved 32 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 158 positions in the final dataset (Fig. 4.24).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor



Figure 4.24. Phylogenetic Neighbor-Joining tree for known CTLA-4 sequences. Branch lengths indicate the evolutionary relationship between the taxa.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.6 CD86

A partial sequence of CD86 was characterized only in the didelphid $M$. domestica.

### 4.4.6.1 CD86 - Homology

A homology search carried out with the BLAST algorithm indicated that the M. domestica CD86 partial nucleotide sequence of 381 bp which translated into 127 amino acids had an identity of $74 \%$ to H . sapiens at the nucleotide level and $45 \%$ identity at the amino acid level. Identity percentages to other mammals are shown in Table 4.25.

Table 4.25. Homology search results for the partial $M$. domestica CD86 nucleotide and amino acid sequence, its identity and respective e-values. The values are calculated over the $391 \mathrm{bp} / 127$ aa length of the sequence.

| CD86 homology search results for M. domestica |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Species | Nucleotide | e -value | Amino acid | e -value |
| B. taurus | $78 \%$ | $2 \mathrm{e}-07$ | $48 \%$ | $5 \mathrm{e}-36$ |
| C. jacchus | $76 \%$ | 0.17 | $43 \%$ | $2 \mathrm{e}-32$ |
| H. sapiens | $74 \%$ | 0.58 | $45 \%$ | $5 \mathrm{e}-35$ |
| S. scrofa | $73 \%$ | 0.048 | $52 \%$ | $3 \mathrm{e}-37$ |
| L. Africana | $73 \%$ | 0.17 | $46 \%$ | $1 \mathrm{e}-30$ |
| A. melanoleuca | $71 \%$ | $3 \mathrm{e}-05$ | $47 \%$ | $9 \mathrm{e}-34$ |
| F. catus | $71 \%$ | 0.001 | $47 \%$ | $8 \mathrm{e}-33$ |
| M. monax | $63 \%$ | 0.048 | $53 \%$ | $5 \mathrm{e}-38$ |

Accession numbers are in Appendix 4D.

### 4.4.6.2 CD86 - Domain structure

The domain architecture investigated with the SMART program indicated a putative Iglike domain from positions 2 to 79 with an e-value of $5.02 \mathrm{e}-02$ in the partial sequence. A putative IGc2 domain was also predicted with an e-value of $5.31 \mathrm{e}+01$.

### 4.4.6.3 CD86 - Glycosylation sites

Three glycosylation sites were predicted in the $M$. domestica CD86 partial sequence. The glycosylation sites were predicted at positions 51, 56 and 113 with confidence levels of $79 \%, 53 \%$ and $61 \%$ respectively. A fourth putative glycosylation site was predicted at position 123 but the confidence level for this site was only $36 \%$ and it was therefore disregarded.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.4.6.4 CD86 - Phosphorylation sites

Two serine and 2 tyrosine phosphorylation sites were predicted in the M. domestica partial CD86 amino acid sequence. The putatively phosphorylated serine sites were found at position 16 with a $94 \%$ probability and at position 83 with an $83 \%$ probability. Two tyrosine sites were predicted at position 49 with a probability of $67 \%$ and at position 55 with a $63 \%$ probability.

A PKA binding site was predicted at position 94 with a $66 \%$ probability.

### 4.4.6.5 CD86 - Primary sequence and secondary structure prediction

The CD86 molecule is the ligand for cell surface proteins CD28 and CTLA-4. This molecule was found to be composed of a membrane-distal receptor binding domain and a membrane-proximal constant immunoglobulin domain.

The secondary structure prediction was carried out to elucidate the distribution of alpha helices and beta strands within CD86. Eleven beta strands were found in the $M$. domestica CD86 partial sequence and no transmembrane helices were detected in this partial sequence (Fig. 4.26).


Figure 4.25. M. domestica CD86 partial sequence and secondary structure prediction.
NRT $=\mathrm{N}$-linked glycosylation sites. $\mathrm{Y}=$ tyrosine phosphorylation sites. $>\mathbf{\nabla}=\lg$ domain. $>4=$ IGc2 domain. $\underline{s}=$ serine phosphorylation sites..$=$ PKA binding site. $\longrightarrow=$ Strand.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

### 4.5 Discussion

The two co-receptors to the T cell receptor, CD4 and CD8 have been characterized in $M$. eugenii and M. domestica by (Duncan et al., 2008, Duncan et al., 2007). In the present study a further characterization of this molecule was conducted in $O$. fraenata that allowed for a comparison of structurally important motifs between $O$. fraenata and its close relative $M$. eugenii. The $O$. fraenata CD4 sequence contained a sequence gap in domain 4 which was found to be absent in M. eugenii and eutherian mammals suggesting that this CD4 could be a soluble form of the receptor. It has been reported that a soluble form of the glycoprotein CD4 which lacks the transmembrane and cytoplasmic domains does exist but is not naturally occurring (Deen et al., 1988). It is usually manufactured by transfection of mammalian or insect cells with vectors encoding forms of the CD4 gene that lack the two domains (Deen et al., 1988, Fisher et al., 1988, Smith et al., 1987). In the present study it was found that the $O$. fraenata $C D 4$ sequence continued after a premature stop codon in a different reading frame encoding the transmembrane and cytoplasmic domains. This suggested that the $O$. fraenata CD4 molecule may have different fold properties to that of other marsupials and mammals. Different transcripts of the CD4 gene can be found in the ensembl database (http.//www.ensembl.org) which suggests that variations in the CD4 molecule are not rare occurrences. Splenic mouse macrophages display a CD4 marker on their cell surface that is truncated in the $3^{\prime}$ end of the coding domain (Moore et al., 1992). This is similar to the truncation observed in $O$. fraenata and supports the finding in the present study. It will be important to investigate the frame shift found in three clones of the $O$. fraenata CD4 molecule further in order to determine if this sequence translates into a functional protein and if it may represent a splice variant of the more common CD4 gene.

CD8 has also been characterized in M. eugenii and M. domestica by (Duncan et al., 2008). In the present study this molecule was investigated in $O$. fraenata and $L$. hirsutus, two other macropod species which appeared to have opposing immunological competency with regard to mycobacterial infections. Like other marsupials, L. hirsutus is reported to

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

readily succumb to mycobacterial infections (Montali et al., 1998, Gaynor et al., 1990, Peet et al., 1982) while anecdotal evidence from animal handlers suggests that $O$. fraenata is less susceptible to such infections. The literature is silent as to possible reasons for the differences in this macropod's response to mycobacterial infections. It is noted that in humans, $\mathrm{CD}^{+} \mathrm{T}$ lymphocytes have been implicated in the control of intracellular mycobacterial infections (Lewinsohn et al., 2003, Smith and Dockrell, 2000). In the present study, characterization of the CD8 $\alpha$ and CD8 8 chains in 0 . fraenata and $L$. hirsutus was conducted to detect differences in the sequences of the two molecules that may explain the different responses to mycobacterial infection in those two species.

It was found in this study that the number of putative O-linked glycosylation sites was the most obvious difference between the marsupial CD8 $\alpha$ hinge region and the human hinge region. Five O-linked glycosylated threonine residues were found in the human CD8 $\alpha$ sequence compared to eight such sites in O. fraenata and seven in L. hirsutus. A sequence alignment revealed that the eight O-linked glycosylation sites in $O$. fraenata is the highest number of such sites found in any vertebrate. O-linked glycosylation sites are comprised of negatively charged sialic acids (Devine et al., 1999). These negatively charged residues add mass and interact with positively charged amino acid residues on the lateral surface of the variable domain of the TCR $\alpha$ chain. These glycosylation sites are also involved in the dimerization of CD8 $\alpha$ with CD8 $\beta$ (Fares, 2006). The difference in the number of the Olinked glycosylation sites may also be associated with a change in structure and may either inhibit or favour the dimerization process. In any case, this post-translational modification may change the folding properties of the marsupial CD8 $\alpha$ chain. Another post-translational modification is the N -linked glycosylation site. A sequence alignment revealed that all mammals except O. fraenata, M. eugenii, L. hirsutus and M. domestica have an N -linked glycosylation site. N -linked glycosylation alters proteolytic resistance, changes protein solubility and stability, changes local structure and immunogenicity (Lis and Sharon, 1993), and influences protein folding (Kim et al., 2009). In summary, a higher number of O-linked glycosylation sites, as found in $O$. fraenata and L. hirsutus, may

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

indicate a better ability to modulate the biological activity of the molecule. However functional studies, which were outside the scope of this project, are needed to confirm this assumption. The predicted folding pattern of the marsupial CD8 $\alpha$ was shown to have good QMEAN scores. This indicates that the prediction was of high quality and that the structure of the marsupial molecules compared well with those of other CD8 $\alpha$ protein structures found in the protein database. Consequently, the absence of N-linked glycosylation may not have affected the structure of the marsupial CD8 $\alpha$ chain.

In this study it was found that the marsupial CD8 $\alpha$ molecule binds a number of external ligands including a zinc ion at distinct residues. In humans, this event transmits a signal inside the cell which facilitates the interaction with signalling proteins downstream. The CXC motif is part of a zinc finger domain where one cysteine in the cytoplasmic domain and a corresponding cysteine in the N -terminal end of the $\mathrm{p} 56^{\text {lck }}$ molecule interact with a single zinc atom (Moore et al., 2005, Bosselut et al., 1999). This motif was identified in both $O$. fraenata and L. hirsutus CD8 $\alpha$ sequences and is conserved. Zinc ions emulate the action of cytokines and are essential for the biological activity of transcription factors (Beyersmann and Haase, 2001). This suggested that the marsupial CD8 $\alpha$ molecule may transfer a similar biological activity to its transcription factors. However, this assumption is based on high sequence conservation and a high QMEAN score for the structure. Further investigation is therefore warranted to confirm the biological activity of the transcription factors.

In most mammals, the CDR loops of CD8 $\alpha$ are the main regions that interact with the MHC class I molecule and are important for the biological function of CD8 $\alpha$ (Li et al., 1998). In human CD8 $\alpha, L^{73}, N^{75}$ and $T^{76}$ which are located on the tip of the $\beta$ turn, form the bioactive core of the DE loop (Li et al., 1998). By comparing the marsupial DE loop sequences, as determined in this study, with other mammalian DE loop sequences it was apparent that the sequences of the marsupial DE loops are unique. It has been reported that, apart from its role in CD8 $\alpha$ bioactivity, the DE loop is involved in graft versus host responses (Li et al., 1998).

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

The apparent differences in the DE loop together with the absence of the N -linked glycosylation sites found in this study may affect the bioactivity of the marsupial CD8 $\alpha$ molecule. However, the conservation of the $\mathrm{p}^{56} \mathrm{Ick}$ binding motif and the high homology of the structure prediction suggests that the marsupial CD8 $\alpha$ molecule is not dissimilar to that of other mammalian CD8 $\alpha$ molecules.

The CD8 $\alpha$ molecule dimerizes with the $\beta$ chain of the CD8 co-receptor. It was found in this study that the mature CD8 $\beta$ protein in marsupials contained a V-like domain followed by a well conserved J-like region. The J-like region is typical of the CD8 $\beta$ chain and is not found in the CD8 $\alpha$ chain (Chida et al., 2011). The FGXG motif ( $F=$ phenylalanine, $G=$ glycine and $X=$ any amino acid) in the $\beta-G$ strand is found in the $V$ region of CD8 $\beta$ where it creates a ' $\beta$-bulge' which is necessary for VH/VL dimerization (Chothia et al., 1985). It was found in the present study that the FGXG motif is conserved in the $O$. fraenata and $L$. hirsutus CD8 $\beta$ chains but not in $M$. domestica. It appeared that the CD8 $\beta$ chains in O. fraenata and L. hirsutus, as in humans, will also dimerize with the CD8 $\alpha$ chain, however the implications of this for the didelphid $M$. domestica are not known. It was found that in M. domestica, the phenylalanine residue (F) is substituted with a serine (S). This is unusual since it has been reported that phenylalanine is usually only substituted with other aromatic or hydrophobic amino acids (Betts and Russell, 2003). Phenylalanine is a non-reactive amino acid and therefore is rarely involved in protein function but plays a role in substrate recognition of $\mathrm{SH}_{3}$ and WW domains as part of a polyproline binding site (Macias et al., 2002). Serine can be located either within a protein or on its surface. The substitution of phenylalanine with serine in $M$. domestica appears to be benign and no structural hindrance was expected in its CD8 $\beta$ chain.

It was found that the hinge region containing the glycosylated threonine sites followed the FGXG motif in O. fraenata and L. hirsutus. As in the CD8 $\alpha$ chain, the number of Olinked glycosylation sites in the CD8 8 chain differed between marsupials and other mammals. O. fraenata and L. hirsutus had five O-linked glycosylation sites while M. domestica had seven such sites. This contrasts with the four glycosylated residues in

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

humans. O-linked glycosylation occurs in post-translational modifications which are initiated in the Golgi-apparatus and takes place instead of tyrosine phosphorylation, thus affecting the signalling process (Van den Steen et al., 1998). As previously described, the marsupial alpha chain of the CD8 molecule also has a different number of O-linked glycosylation sites. The effects of those differences in the CD8 $\alpha$ and CD8 $\beta$ chains could influence the functionality of the marsupial CD8 molecule. Neither the alpha chain nor the $\beta$ chain of the CD8 molecule had any $N$ - linked glycosylation sites. This is in contrast to $M$. musculus (mouse), Felis catus (cat), Ailuropoda melanoleuca (giant panda) and the primates which all have a single N -linked glycosylation site in the CDR2 region of the CD8 $\beta$ chain.

The connecting peptide (CP) region of CD8 3 in $O$. fraenata, L. hirsutus, $M$. eugenii and $M$. domestica is a lysine rich region and could be a suitable site for proteolytic cleavage. The connecting peptide core in the human CD8 $\beta$ sequence is less pliable due to the proline residues found in this domain, and has an extended conformation which allows contact with MHC class I molecules (Fellah et al., 2002). The present study found a similar number of proline residues in the $O$. fraenata and L. hirsutus CD8 $\beta$ chain and it is therefore expected that the function of this motif in those species is the same as in humans.

The cytoplasmic tails (CT) of both the CD8 $\alpha$ and $\beta$ chains are important in signal transduction due to the location of the Ick binding site within that region. The marsupial CT domain in CD8 $\alpha$ is 30 amino acids long which is the same length as in humans. However the marsupial CT domain in the CD8 $\beta$ chain is 14 amino acid residues long compared to 19 residues in humans. It has been found that, in humans, the CT regions play an important role for the activation of $\mathrm{CD}^{+}$T lymphocytes by binding the signalling molecule p56 ${ }^{\text {lck }}$ via a zinc ion complex (Arcaro et al., 2001, Bosselut et al., 2000, Zamoyska, 1994). The Ick binding site is conserved in the marsupial CD8 $\beta$ chain. Although its effect on the signalling capacity of the marsupial $C D 8 \alpha$ and $\beta$ CT regions is not known, a ligand binding prediction for the marsupial molecules indicated the presence of a zinc binding site which activates signal transduction.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

Differences in the number of O - and N -linked glycosylation sites and the lengths of the cytoplasmic tails were observed in the marsupial CD8 $\beta$ chain compared to the CD8 $\alpha$ chain. However, the conservation of important structural motifs in the marsupial CD8 molecule suggests a similar function to that of other mammalian CD8 molecules.

In contrast to the CD4 and CD8 receptors, the co-stimulators responsible for T cell signalling and activation had not been characterized in any marsupial prior to this study. CD28 and CTLA-4 were characterized in O. fraenata, M. eugenii, L. hirsutus and M. domestica for the first time in this study to support the hypothesis that all the key elements of a functional T cell signalling cascade are expressed in marsupials. The TCR costimulators CD28 and CTLA-4 are members of the immunoglobulin superfamily and are glycoproteins expressed on mature T lymphocytes (Hansen et al., 1980). The ensembl database contains an annotation for both CD28 and CTLA-4 in M. eugenii. However, when the expressed $M$. eugenii CD28 sequence was compared to its annotated sequence it was found that the annotated sequence was a partial sequence only (supporting data are Appendix 4C). The annotation of the CTLA-4 sequence in M. eugenii was confirmed by the expressed sequence of the gene.

In this study it was found that the hexapeptide MYPPPY, which is essential for the interactions between CD80, CD86 and CTLA-4, was conserved in the M. eugenii CD28 sequence. In humans and other mammals this motif is located on the tips of a " Y " (Margulies, 2003) and a sequence alignment showed that the M. eugenii motif is located in the same position. In this study, the binding motif (YMNMTPR) for the p85 subunit of phosphoinositide 3-kinase (PI 3-kinase) which delivers the second signal that regulates cell growth by interaction with the cytoplasmic tail of CD28 or CTLA-4 (Pages et al., 1994, Prasad et al., 1994) was found in the M. eugenii CD28 sequence. The YMNMTPR motif in the marsupial CD28 sequence is conserved when compared with that of other mammals. However the expressed partial sequence of $M$. domestica differed in the last amino acid of this motif where the arginine $(R)$ was replaced with a glutamate $(Q)$.

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

The marsupial CD28 sequence contained 8 cysteine residues, 5 of which were located in the IgV-like region. This is in contrast to 5 cysteine residues in total found in other mammals (supporting data are in Appendix 4C). An extracellular interchain disulphide bond, residing in the linker region connecting the IgV domain with the transmembrane domain (Lazar-Molnar et al., 2006), is responsible for the heterodimerization of the CD28 molecule in humans (June et al., 1990). Although the unpaired cysteine residue responsible for the dimerization (Lenschow et al., 1996) is conserved in the M. eugenii sequence, the marsupial CD28 molecule was modelled as a monomer.

The secondary structure of the $M$. eugenii CD28 appeared to be similar to that of the human secondary structure, but there was a notable difference in the tertiary structure prediction. The beta strands and the helices had a similar distribution in the M. eugenii CD28 when compared to the human CD28 suggesting a similarity in structure. However tertiary homology modelling did not produce similar structures despite the modelling statistics indicating a good match to other pdb structures.

The sequence homology between human CD28 and CTLA-4 is $20 \%$, while the marsupial sequence homology between those two molecules is $28 \%$. This suggests that the gene duplication theory (Balzano et al., 1992) may also apply to the marsupials CTLA-4 and CD28 sequences.

It has been reported that the human CTLA-4 sequence has a short cytoplasmic tail with two potential src homology $\left(\mathrm{SH}_{2}\right)$ domain binding sites centered at $Y^{165}$ and $Y^{182}$, spaced by a proline-rich stretch (Baroja et al., 2000). In this study it was confirmed that those two residues are conserved in O. fraenata and M. eugenii (supporting data in Appendix 4D). Human $Y^{165}$ is involved in the expression of CTLA-4 on the cell surface (Baroja et al., 2000) and the conservation of this residue in the two marsupial species suggested a similar function.

Once T cell activation occurs, an increase in the levels of CTLA-4 mRNA and protein takes place. Baroja et al. (2000) reported that the expression of CTLA-4 occurred only in

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

stimulated tissue. However, in this study it was demonstrated that the molecule was expressed in stimulated lymphocytes in M. eugenii, and in un-stimulated healthy thymus and spleen tissue of $O$. fraenata.

This study showed that the intracellular domain of the marsupial CTLA-4 contained the YVKM motif and that it was highly conserved in M. eugenii and O. fraenata (supporting data are in Appendix 4D). According to Qureshi (2012) the YVKM motif controls localization and trafficking of the CTLA-4 molecule. In the human CTLA-4 sequence, the tyrosine residue contained within that motif binds adaptor proteins 1 and 2 (AP-1 and AP2) in its un-phosphorylated state and, since it is conserved in the two marsupial species, this binding may also occur in them.

The predicted tertiary structure of CTLA-4 and the residues that have the ability to bind ligands appeared to be identical in both $M$. eugenii and $O$. fraenata. As expected, the $O$. fraenata CTLA-4 could only be modelled as a single chain which is the resolved structure of this molecule. However, homology modelling showed that M. eugenii CTLA-4 could only be successfully modelled as a dimer (Fig. 4.19). This structural difference may be attributable to the different forms of CTLA-4. The membrane-bound isoform functions as a homodimer while the soluble isoform has been shown to function as a monomer (Oaks and Hallett, 2000). It may be possible that one of the marsupial molecules is a different isoform of the CTLA-4 molecule, however this is an assumption which will have to be substantiated by functional studies which were outside the scope of this study. It has also been documented that the soluble form of CTLA-4 is associated with autoimmune diseases in humans and inhibits the mixed lymphocyte reaction (MLR) (Berry et al., 2008, Oaks and Hallett, 2000). Stone et al. (1996) reported that marsupials have no mixed lymphocyte reaction.

Since the soluble form of the CTLA-4 molecule is responsible for inhibition of the MLR it is possible that the monomeric form found in marsupials is the soluble form of the receptor which was indicated by the structure prediction in $O$. fraenata. However, further

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

investigations need to be conducted to confirm the existence of two different isoforms of this molecule in marsupials.

Since homology modelling showed that the $O$. fraenata CTLA-4 is a single chain structure, and since this is one of the resolved states of that molecule, the single chain structure may explain the reported resistance of $O$. fraenata to mycobacterial infections as discussed earlier. M. eugenii is reported to be more susceptible to such infections, and homology modelling of its CTLA-4 molecule in this study showed that it was a dimer. $O$. fraenata and $M$. eugenii are the only marsupial species for which CTLA-4 has been fully characterized. If the CTLA-4 molecules in other marsupial species are shown to be dimers then the resistance displayed by 0 . fraenata may well be attributed to that single chain structure.

Human studies have established that the interaction of CTLA-4 and CD28 with their natural ligands CD80 and CD86, together with TCR signalling, enhances the production of interleukin-2, thereby completing the T cell signalling cascade (Bugeon and Dallman, 2000). In this study, the amplification of a partial sequence of the M. domestica CD86 molecule showed conclusively that CD86 is expressed in marsupials, and demonstrated that the communication link between $T$ lymphocytes and antigen presenting cells in marsupials is similar to that in other mammals.

### 4.6 Conclusion

This study showed that all of the functional and structural motifs discussed in this chapter are conserved in the expressed genes which were investigated in marsupials. Identifying structural motifs from sequence information presents challenges since many different amino acid sequences are compatible with the same secondary structure. By making comparisons with other secondary and tertiary structures that have been resolved by XRay crystallography, and by reference to the literature, it was possible to annotate most of the functional motifs contained within the sequences discussed in this chapter. By using Modeller 9.10, a program that allows manipulation of the sequences by the user, it

## Chapter 4 - The diprotodontic co-receptors and co-stimulators to the T cell receptor

was possible to build a structure from the putative amino acid sequence and to compare it with homologous structures deposited in the protein database (pdb). Inspection of the structures obtained from the modelling process found that all the genes investigated in this chapter had homologous counterparts. It also appeared that the marsupial structures were very similar to other mammalian structures and, consequently, it is concluded that the functionality of the genes investigated in marsupials in this chapter is not dissimilar to that of other mammals.

One exception was the predicted CTLA-4 structure in $O$. fraenata. While this molecule was modelled as a dimer in $M$. eugenii, the $O$. fraenata CTLA-4 could only be modelled as a monomer. The monomeric form of this molecule has been linked to the soluble form of CTLA-4 and is implicated in either disease resistance or susceptibility depending on its expression kinetics (Toussirot et al., 2009). It may therefore be possible that this monomeric structure may contribute to the reported resistance of $O$. fraenata to mycobacterial infections as discussed in this chapter. It may also be possible that the monomeric structure has implication for the diminished mixed lymphocyte reaction reported in marsupials (Stone et al., 1996).

The characterization of the CD28 molecule in M. eugenii, and the subsequent comparison with the annotated sequence in the ensembl database, revealed shortcomings in the annotation and demonstrated that the annotated sequence is incorrect when compared with the expressed sequence.

## Chapter 5

Signalling molecules - TCRZ, ZAP-70 and Lck

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

### 5.0 Abstract

The signalling molecules, $T$ cell receptor zeta chain (TCR३), zeta associated protein of 70kDa (ZAP-70) and the lymphocyte specific kinase (Lck) have been characterized in many mammals, but no characterization of these molecules has taken place for any marsupial prior to the present study.

The sequences of these molecules were obtained using RT-PCR and RACE PCR strategies in M. eugenii, O. fraenata and M. domestica either in full or as fragments. The sequences were investigated for important structural motifs that show similarity to the known functional regions found in human and other vertebrates. Where possible, a comparison with the published wallaby genome was carried out with the result that sequence gaps were identified in the genome, which in turn identified further areas of research. Structure modelling was conducted for all molecules where the open reading frame was obtained. For the molecule ZAP-70 in particular, a customized python shell was written in order to obtain the most probable structure. The main findings of this chapter were the discovery of sequence differences in the transmembrane domain of the marsupial TCR $\zeta$ chain and the catalytic loop of the marsupial ZAP-70 molecule. The sequence of Lck was found to be highly conserved between marsupials and eutherian mammals. Of interest was the absence of a signal peptide in the $M$. eugenii TCR弓 chain. In contrast, the $O$. fraenata TCR弓 chain showed a predicted $N$-terminal signal peptide as is observed in all other mammals. A human anti-ZAP-70 and anti-Lck antibodies were trialled for cross reactivity in $M$. eugenii tissue but both antibodies failed to recognize the marsupial ZAP70 and Lck proteins.

### 5.1 Introduction

Signalling molecules are characterized by the presence of $\mathrm{SH}_{2}$ and $\mathrm{SH}_{3}$ domains. The $\mathrm{SH}_{2}$ domains transmit intracellular signals by mediating protein-protein interactions and exert their effects by recognizing phosphotyrosine residues. When the TCR engages an antigen

## Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck

receptor，protein tyrosine kinases dimerize and trans－phosphorylate each other．The phosphotyrosine sites thus created recruit $\mathrm{SH}_{2}$－containing proteins that in turn mediate downstream signal transduction（Yu and Schreiber，1994）．
$\mathrm{CD} 3 \varepsilon$ ，together with the T cell receptor zeta（TCRZ）are the molecules that ready the cell for signal transduction．TCR弓 is required for the expression of the TCR／CD3 complex as outlined in Chapter 1 （section 1．4．1．2．5．1）and in the present study this molecule was identified in the macropods $O$ ．fraenata and $M$ ．eugenii，and in the didelphid $M$ ． domestica．The activation of T lymphocytes through the antigen receptor triggers a number of intracellular signalling events which result in the transcription of the IL－2 gene in the nucleus of T lymphocytes（Okoye et al．，2007）．This has not been described in marsupials prior to this study．

The TCR弓 chain is the molecule that initiates the signalling cascade through a unique motif called the immunoreceptor tyrosine activation motif（ITAM）located in the cytoplasmic tail of the molecule．The ITAMs interact with the tandem $\mathrm{SH}_{2}$ domains of the zeta associated protein of 70 kDa （ZAP－70）which phosphorylates the transmembrane protein Linker of Activated T lymphocytes（LAT）（Deindl et al．，2007）．ZAP－70 has been identified as an indispensable link in directing the signalling cascade towards the nucleus and affecting the gene transcription of the cytokine IL－2 and therefore T cell activation（Blanchard et al．， 2002）．The molecular identification of ZAP－70 in the marsupials in the present study provides an important step in the elucidation of the biochemical T cell signalling cascade．

ZAP－70 promotes the phosphorylation of TCR and the association of TCR with Lck（Ashe et al．，1999）．In double positive thymocytes（CD4 ${ }^{+} / \mathrm{CD}^{+}$）the phosphorylation of tyrosines in the ITAM motifs by Lck is dependent on the presence of the ZAP－70 protein but independent of the kinase activity of ZAP－70（Ashe et al．，1999）．Lck controls T cell activation by amplifying the signal through the CD4 co－receptor and enhances the activation of ZAP－70 by phosphorylating distinct residues in the interdomain $B$ and the activation loop of ZAP－70（Dong et al．，2010）．In order to show that the marsupial T cell signalling cascade involves key molecules it was necessary to show the expression of Lck，

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

a non-receptor tyrosine kinase, and identify the important domains that include $\mathrm{SH}_{2}, \mathrm{SH}_{3}$ and the tyrosine kinase domains. The Lck transduced signal is required for T lymphocyte development and for antigen-dependent activation of mature T lymphocytes. Lck is known to drive T lymphocytes to reach the $\mathrm{CD4}^{+} / \mathrm{CD8}^{+}$double positive stage (Molina et al., 1992). It is also required for efficient antigen-induced T cell activation (Glaichenhaus et al., 1991). Due to its association with the short cytoplasmic tails of CD4 and CD8, Lck phosphorylates the TCR- $\zeta$ chain (Iwashima et al., 1994). This interaction is an important step in the T cell signalling cascade. Identification of the residues in Lck that interact with CD4, CD8 and TCŖ in marsupials demonstrated the sophistication of the marsupial adaptive immune system.

### 5.2 Aims and Objectives

The aims of the experiments reported in this chapter were to characterize the signalling molecules TCRZ, ZAP-70 and Lck in O. fraenata, M. eugenii and M. domestica and in particular:

- To identify structural motifs such as post-translational modifications and to model a realistic structure from the putative amino acid sequences of TCRZ, ZAP-70 and Lck.
- To determine whether or not a Western Blot procedure is able to identify the marsupial proteins ZAP-70 and Lck in a crude cell lysate using human specific antibodies for the first time.


## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

5.3 Specific Materials and Methods

The following materials and methods were unique to this chapter. General materials and methods are detailed in Chapter 2.

In this chapter the TCR弓 and ZAP-70 molecules were characterized in O. fraenata, $M$. eugenii and $M$. domestica. The Lck molecule was characterized in $O$. fraenata and $M$. eugenii only.

### 5.3.1 RNA, mRNA and cDNA

RNA was isolated from spleen, liver, lung, gut node and thymus tissues of $O$. fraenata as described in Chapter 2, section 2.1.3. mRNA was isolated from total RNA, and cDNA was synthesized as described in Chapter 2, sections 2.1.3.2, and 2.1.5. RNA, mRNA and cDNA were quantified as described in Chapter 2, section 2.1.4.

The TCR $\zeta$ and Lck sequences in $O$. fraenata were obtained from spleen tissue, while ZAP70 was amplified from thymus tissue. The sequences for M. eugenii originated from stimulated lymphocytes donated by Dr. L. J. Young. All such sequences were cloned as outlined in Chapter 2, section 2.1.10. Three clones were prepared for sequencing in the forward and reverse direction as described in Chapter 2, section 2.1.10.6.

### 5.3.2 Primer design

### 5.3.2.1 TCRZ, ZAP-70 and Lck

Primers were designed as detailed in Chapter 2, section 2.1.2. The primer sequences used and their respective melt temperatures for TCR弓 are presented in Table 5.1.

## Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck

Table 5．1．Primer sequences for TCR弓 used to elucidate the sequence of the TCR弓 gene in $O$ ．fraenata，M．eugenii and $M$ ．domestica．

| Primer | Species specificity | Source tissues | Primer Sequence | $\mathrm{T}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { CD3zFc } \\ & \text { CD3zRc } \end{aligned}$ | M．domestica | spleen，thymus cDNA library | ctcttcmtmtaygghgtcatyvtcacngc actccattacagtcttgacagatggcaaaac | $\begin{aligned} & 60.8^{\circ} \mathrm{C} \\ & 60.3^{\circ} \mathrm{C} \end{aligned}$ |
| $\begin{aligned} & \text { TCR2_F1 } \\ & \text { TCR2_R1 } \end{aligned}$ | M．domestica， O．fraenata， M．eugenii | spleen <br> PHA stim．$\phi$ | atgcaattcctttccacagaggcccag ttaacggggaggcaggggctg | $\begin{aligned} & 61^{\circ} \mathrm{C} \\ & 60^{\circ} \mathrm{C} \end{aligned}$ |
| B247F <br> B247R | O．fraenata | spleen | （3＇RACE primer）． <br> gaggcaaaggaaatgatgtcctgtac <br> 5＇RACE primer）． <br> gagttgattctggtcctgttggtag | $\begin{aligned} & 58^{\circ} \mathrm{C} \\ & 58^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \hline \text { TRR } \\ & \text { TRF } \end{aligned}$ | O．fraenata M．eugenii | spleen <br> PHA stim．$\phi$ | 5＇RACE primer）． <br> cttctctgttttcctcccatctctg <br> 3＇RACE primer）． <br> cagagatgggaggaaaacagagaag | $\begin{aligned} & 56.9^{\circ} \mathrm{C} \\ & 56.9^{\circ} \mathrm{C} \end{aligned}$ |
| TCRzSTART TCRzSTOP | O．fraenata <br> M．eugenii | spleen <br> PHA stim．$\phi$ | atgaagtggaaggggattgttatc <br> catgcagcccctgcctccccgttaa | $\begin{aligned} & 54.8^{\circ} \mathrm{C} \\ & 67.1^{\circ} \mathrm{C} \end{aligned}$ |
| TTCRzF TTCRzR | O．fraenata M．eugenii | spleen <br> PHA stim．$\phi$ | cagagatgggaggaaaacagagaag cttctctgttttcctcccatctctg | $\begin{aligned} & 58^{\circ} \mathrm{C} \\ & 58^{\circ} \mathrm{C} \end{aligned}$ |
| TCRzSTOP | O．fraenata M．eugenii | spleen <br> PHA stim．$\phi$ | gttgttcttgttaacggggaggcag | $59^{\circ} \mathrm{C}$ |
| TCRzexF TCRzexR | Expression study primers for O．fraenata | spleen | cctcttcatttatggagtcatcatcac cggtttctgtaggattcttccttctc | $\begin{aligned} & 57^{\circ} \mathrm{C} \\ & 58^{\circ} \mathrm{C} \end{aligned}$ |

Primers for ZAP－70 are presented in Table 5.2 together with their respective melt temperatures，RACE primers and expression primers．

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.2. Primer sequences for ZAP-70 used to elucidate the sequence of the ZAP-70 gene in 0 . fraenata, M. eugenii and M. domestica.

| Primer | Species specificity | Source tissues | Primer Sequence | $\mathrm{T}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { ZAPFc } \\ & \text { ZAPRc } \end{aligned}$ | M. eugenii | PHA stim. $\phi$ | gccaggcmcctcaggtggagaagctyattgc gcttcccacatggtgactccrtagctcc | $\begin{aligned} & 69^{\circ} \mathrm{C} \\ & 65^{\circ} \mathrm{C} \end{aligned}$ |
| $\begin{aligned} & \text { OZF_2 } \\ & \text { OZ-R1 } \end{aligned}$ | M. domestica | thymus cDNA library | atgccvgaycccgcggcgcacctg tcaggcactggccacctcttgtgtttgag | $\begin{aligned} & 68^{\circ} \mathrm{C} \\ & 64^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |
| 70TSQ_1 | O. fraenata | thymus | 5’RACE primer. cgtagctgccttgttccttcctg | $59^{\circ} \mathrm{C}$ |
| 70TSQ_F | M. eugenii | PHA stim. $\phi$ | 3'RACE primer. gcctctgcacaagtttctggccgc | $62.9^{\circ} \mathrm{C}$ |
| ZAPSTART ZAPSTOP | M. eugenii | PHA stim. $\phi$ | atgccagatgcagctgcccatttgc tcaggcaggagtagccccctctgattg | $\begin{aligned} & 61^{\circ} \mathrm{C} \\ & 64^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |
| RBZAPF-1 | O. fraenata | thymus | 3' RACE primer. catatgccagtgcttctactgctac | $58^{\circ} \mathrm{C}$ |
| RBZAPR-1 | O. fraenata | thymus | 5'RACE primer. caggggtgtatccatcagagttgagggtgtc | $66^{\circ} \mathrm{C}$ |
| RBZAPF-2 | O. fraenata | thymus | 3'RACE primer. cgaaatgttcttctggtcaaccagcac | $60^{\circ} \mathrm{C}$ |
| RBZAPR-2 | O. fraenata | thymus | 5'RACE primer. gtcctggttgatgaggtagtggtagacag | $63^{\circ} \mathrm{C}$ |
| ST3F1 ${ }^{(1)}$ | O. fraenata and M. eugenii | thymus PHA stim. $\phi$ | 3'RACE primer. <br> gtgacagggatctggctgcaagaaatg | $63.5^{\circ} \mathrm{C}$ |
| BZAPexF BZAPexR | Expression studies in O. fraenata | thymus | cctgagggcacaaagtttgacacc cagggagtgtgggagcagcagtcac | $\begin{aligned} & 59^{\circ} \mathrm{C} \\ & 64^{\circ} \mathrm{C} \end{aligned}$ |

${ }^{1)}$ designed by A. Suthers.
Primers for the lymphocyte specific kinase (Lck) are presented in Table 5.3 together with their respective melt temperatures $\left(\mathrm{T}_{\mathrm{m}}\right)$.

Table 5.3. Primer sequences for Lck used to amplify the Lck gene in both O. fraenata and M. eugenii.

| Primer | Species specificity | Source tissue | Primer Sequence | $\mathrm{T}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: | :---: |
| LckF <br> LckR | O. fraenata | spleen | gactggatggaaaayatygacgtgtg gccctcygtggchgtgaagaagtc | $\begin{aligned} & 57.9^{\circ} \mathrm{C} \\ & 63.4^{\circ} \mathrm{C} \end{aligned}$ |
| TRLCKF | O. fraenata M.eugenii | spleen PHA stim. $\phi$ | ccatcaagtcagatgtctggtcttttggc | $61^{\circ} \mathrm{C}$ |
| LckSTART LckSTOP | O. fraenata <br> M. eugenii | spleen PHA stim. $\phi$ | atgggctgctcctgcagctccagc tcatggctggggctggtactggccctc | $\begin{aligned} & 64^{\circ} \mathrm{C} \\ & 67^{\circ} \mathrm{C} \end{aligned}$ |
| Lckexpf <br> Lckexpr | O. fraenata | thymus, spleen, axial node | gcacgctcccaatgaggaatggctctgac ccattttccattttgctccaggatc | $\begin{aligned} & 66^{\circ} \mathrm{C} \\ & 56^{\circ} \mathrm{C} \end{aligned}$ |

### 5.3.2.2 Polymerase chain reaction, cloning and sequencing

Generally used RT-PCR templates, concentrations of the PCR mixes, and preparation of the RT-PCR and RACE-PCR products are detailed in Chapter 2 sections 2.1.6, 2.1.8 and
2.1.10. The PCR templates used to amplify TCRZ, ZAP-70 and Lck are listed in Table 5.4.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.4. PCR and RACE-PCR templates used for TCRZ, ZAP-70 and Lck in O. fraenata, M. eugenii and M. domestica.

| Species | Gene of interest | PCR template | RACE PCR template |
| :---: | :---: | :---: | :---: |
| O. fraenata | TCR弓 | No. 3 | - |
| M. eugenii |  | No. 3 | No. 2 |
| M. domestica |  | No. 3 | - |
| O. fraenata | ZAP-70 | Nos. 1 and 2 | No. 2 |
| M. eugenii |  | Nos. 1 and 2 | No. 2 |
| O. fraenata | Lck | No. 1 | Touchdown (60-50 ${ }^{\circ} \mathrm{C}$ ) |
| M. eugenii |  | No. 1 | --- |

The templates are described in Chapter 2, section 2.1.8.1. The obtained products were visualized and prepared as detailed in Chapter 2, sections 2.1.8.3 and were subsequently cloned as described in Chapter 2, section 2.1.10. The obtained plasmids were prepared and enzyme digested to verify that the gene of interest was contained within the plasmids. Sequencing reactions were prepared as detailed in Chapter 2, section 2.1.10.6 in accordance with the specifications of the Australian Genome Research Facility (AGRF).

RACE primers were designed as outlined in Chapter 2, section 2.1.2 from the initial sequence derived from the RT-PCR products. RACE-PCRs were performed to obtain the 5' and $3^{\prime}$ ends of the molecules as described in Chapter 2 section 2.1.9.

### 5.3.2.3 Phylogeny

A phylogenetic analysis using Mega5 was undertaken for all genes after the full coding domains were determined. The method is detailed in Chapter 2, section 2.3.

### 5.3.2.4 Bioinformatics

All of the bioinformatics tools detailed in Chapter 2 were used to elucidate putative domain structures, putative glycosylation sites, possible disulphide bonds, putative amino acid sequences, putative secondary and tertiary structures, and homology searches.

### 5.3.3 Protein extraction and protein concentration

Protein extraction was carried out as described in Chapter 2, section 2. 8.1. The concentration of the protein was determined by BCA assay using a Nanodrop

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

spectrophotometer (Thermo Fisher Scientific, Scoresby, Victoria, Australia) and a Qubit ${ }^{\circledR}$ fluorometer 1.0 as outlined in Chapter 2, sections 2.8 .2 and 2.8.2.1 respectively.

### 5.3.3.1 Protein Gels

The extracted proteins were electrophoresed on a $12 \%$ SDS-PAGE gel at concentrations of 30,40 and $50 \mu \mathrm{~g} /$ lane as described in Chapter 2, section 2.8.3. Staining was carried out with either Coomassie Blue or SYPRO ${ }^{\circledR}$ Ruby.

### 5.3.4 Western Blots

### 5.3.4.1 Western Blot ZAP-70

An amino acid alignment between $H$. sapiens and M. eugenii was investigated for sequence identity in order to trial a human ZAP-70 antibody. The alignment (Appendix 5B) shows the sites of the different available antibodies. A ZAP-70 (G4) antibody together with an HRP conjugated anti-mouse IgG secondary antibody (Santa Cruz Biotechnology, USA) was used for detection of the marsupial ZAP-70 protein. The human Jurkat cell lysate (Santa Cruz Biotechnology, USA, sc-2204) was used as a positive control. The Western Blot was carried out as outlined in Chapter 2 sections 2.8.4.

### 5.3.4.2 Western Blot Lck

The Lck antibody (2102): sc-13 from Santa Cruz Biotechnology (USA) was used in a Western Blot together with a HRP conjugated secondary antibody goat-anti rabbit IgG (Promega, Madison, USA) for the detection of the marsupial Lck protein. The human Jurkat cell line was used as a positive control. The Western Blot was carried out as outlined in Chapter 2, sections 2.8.4.

### 5.3.5 Expression studies

The concentration of the cDNA was maintained across the different tissue types used (spleen, liver, thymus, gut node) and was normalized against the house keeping gene GAPDH.

## Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck

## 5．3 Results

## 5．3．1 Protein extraction and determination of concentration

The protein extracted from the different tissues and their concentrations are shown in
Table 5．5．The extracted proteins were also used in subsequent experiments．

Table 5．5．Protein concentrations determined by BCA assay in O．fraenata，M．eugenii and H．sapiens．

| Species | Tissue | Protein concentration |
| :--- | :--- | :--- |
| O．fraenata | Lung | $36.83 \mu \mathrm{~g} / \mu \mathrm{L}$ |
|  | Spleen | $38.80 \mu \mathrm{~g} / \mu \mathrm{L}$ |
|  | Thymus | $11.5 \mu \mathrm{~g} / \mu \mathrm{L}$ |
|  | Axial Node | $26.0 \mu \mathrm{~g} / \mu \mathrm{L}$ |
|  | Gut Node | $18.0 \mu \mathrm{~g} / \mu \mathrm{L}$ |
| M．eugenii | Thymus | $10.44 \mu \mathrm{~g} / \mu \mathrm{L}$ |
| H．sapiens | PBMC（＊） | $4.25 \mu \mathrm{~g} / \mu \mathrm{L}$ |

（＊）PBMC＝peripheral mononuclear cell．H．sapiens PBMCs were donated by Dr．L．J．Young．

## 5．3．2 Molecular characterization

## 5．3．2．1 Homology－T cell receptor zeta（TCR 弓）

A BLAST homology search revealed that the M．eugenii TCR弓 sequence had an $89 \%$ sequence identity to the predicted sequence of $M$ ．domestica at the amino acid level， while at the nucleotide level the identity percentage was $88 \%$ with an e－value of $2 \mathrm{e}-158$ ． The closest identity at the nucleotide level was to the Macaca mulatta（rhesus monkey） sequence with $80 \%$ identity an e－value of $7 \mathrm{e}-108$ ，and at the amino acid level had an $83 \%$ identity with an e－value of $1 \mathrm{e}-87$ ．The 0 ．fraenata TCR nucleotide sequence had an $87 \%$ identity to the predicted $M$ ．domestica sequence and $79 \%$ to $M$ ．mulatta．At the amino acid level，$M$ ．domestica had an $81 \%$ identity to $M$ ．mulatta．Identity percentages to different species for TCR弓 are shown in Table 5．6．The identity percentage between the two macropods O．fraenata and M．eugenii was $82 \%$ at the nucleotide level and $87 \%$ at the amino acid level．

## Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck

Table 5．6．Homology search result for the M．eugenii and O．fraenata TCR nucleotide and amino acid sequences，their identities，and their respective e－values．

| Homology search for M．eugenii and O．fraenata TCR弓 chain |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M．eugenii（＊＊＊） |  |  |  | O．fraenata（ ${ }^{* * * \text { ）}}$ |  |  |  |
| Species | Nucleotide | e－value | Amino acid | e－value | Nucleotide | e－value | Amino acid | e－value |
| M．eugenii | 100\％ | －－－ | 100\％ | －－－－－－ | 82\％ | －－－－－－ | 87\％ | －－－－－－ |
| M．domestica | 88\％ | 2e－158 | 89\％ | 2e－88 | 87\％ | 2e－154 | 89\％ | 5e－88 |
| M．mulatta | 80\％ | 7e－108 | 83\％ | 1e－87 | 79\％ | 3e－119 | 81\％ | 2e－94 |
| M．fascicularis | 80\％ | 7e－108 | 83\％ | 1e－86 | 79\％ | 3e－119 | 81\％ | 5e－94 |
| P．abelii | 79\％ | 1e－99 | 82\％ | 3e－82 | 78\％ | 5e－110 | 81\％ | 4e－90 |
| H．sapiens | 79\％ | 1e－99 | 82\％ | 6e－82 | 77\％ | 4e－105 | 79\％ | 6e－90 |
| E．caballus | －－－－－ | －－－－－－ | 75\％ | 2e－73 | 77\％ | 6e－65 | 73\％ | 5e－82 |
| O．cuniculus | 78\％ | 5e－97 | 78\％ | 1e－80 | 76\％ | 7e－102 | 77\％ | 1e－88 |
| S．scrofa | 78\％ | 5e－97 | 78\％ | $4 \mathrm{e}-80$ | 76\％ | 9e－101 | 77\％ | $4 \mathrm{e}-88$ |
| M．musculus | 77\％ | 4e－97 | 76\％ | 2e－76 | 75\％ | 4e－92 | 74\％ | 6e－81 |
| C．griseus | －－－－－－ | －－－－－－ | 67\％ | 6e－59 | 75\％ | 5e－79 | 78\％ | 1e－73 |
| B．taurus | 75\％ | 1e－80 | 76\％ | 2e－77 | 74\％ | 3e－88 | 75\％ | 2e－85 |
| O．aries | 74\％ | 3e－75 | 75\％ | 1e－76 | 73\％ | 3e－81 | 74\％ | 5e－84 |
| G．gallus | 71\％ | 9e－56 | 67\％ | 1e－59 | 71\％ | 1e－60 | 63\％ | 4e－67 |
| A．carolinensis | 67\％ | 4e－28 | 59\％ | 5e－51 | 68\％ | 5e－41 | 61\％ | 1e－62 |
| X．Iaevis | －－－－－－ | －－－－－－ | 50\％ | 1e－43 | －－－－ | －－－－－ | 49\％ | 3e－45 |
| S．salar | －－－－－－ | －－－－－－ | 47\％ | 2e－27 | －－－－－ | －－－－－－－ | 47\％ | 9e－30 |
| O．mykiss | －－－－－－ | －－－－－－ | 44\％ | 3 e 27 | －－－－－－－ | －－－－－－－ | 42\％ | 6e－28 |
| I．punctatus | －－－－－－ | －－－－－－ | 43\％ | 1e－26 | －－－－－－－ | －－－－－－－ | 44\％ | 8e－27 |
| O．niloticus | －－－－－－ | －－－－－－ | 40\％ | 9e－25 | －－－－－－－ | －－－－－－－ | 38\％ | 3e－25 |
| H． hippoglossus | －－－－－－ | －－－－－－ | 38\％ | 1e－17 | －－－－－－－ | －－－－－－－ | 38\％ | 6e－18 |
| D．rerio | －－－－－－ | －－－－－－ | 39\％ | 3e－19 | －－－－－－－ | －－－－－－－ | 36\％ | 7e－22 |

－－－－－－＝not recognized by BLAST，（ ${ }^{* * *)}$ sequence reported for the first time

## 5．3．2．2 TCR弓－Domain structure

The $M$ ．eugenii $T C R \zeta$ molecule appeared to have no putative leader sequence，while the $O$ ． fraenata sequence had a predicted putative leader cleavage site at position 21．The result for the $M$ ．eugenii TCTR弓 molecule is unusual since the TCR弓 chain is a single－pass type I membrane protein and usually needs a signal sequence for integration into the endoplasmic reticulum．Other domains were identified and are listed in Table 5．7．Three ITAM motifs were identified in the TCR弓 sequence in both species．

## Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck

Table 5．7．Predicted structural domains，their positions，and their respective e－values within the TCR $\zeta$ sequences of $M$ ．eugenii and $O$ ．fraenata．

| Structural domains in the TCR弓 chain of M．eugenii and O．fraenata |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | M．eugenii |  |  | O．fraenata |  |  |
| Domain | Begin | End | e－value | Begin | End | e－value |
| PFAM | 15 | 47 | $3.50 \mathrm{e}-19$ | 28 | 60 | $1.20 \mathrm{e}-18$ |
| Transmembrane | 20 | 38 | ------ | 31 | 53 | ------ |
| ITAM | 56 | 76 | $7.70 \mathrm{e}-03$ | 69 | 89 | $7.70 \mathrm{e}-03$ |
| ITAM | 94 | 115 | $1.32 \mathrm{e}-01$ | 107 | 128 | $1.52 \mathrm{e}-01$ |
| ITAM | 127 | 147 | $1.90 \mathrm{e}-02$ | 140 | 160 | $1.90 \mathrm{e}-02$ |

－－－－－－＝not a significant e－value

## 5．3．2．3 TCR弓－Glycosylation and glycation sites

There were no putative O－linked glycosylation sites observed in any of the marsupial TCR弓 sequences．At amino acid position 104，a single N－linked glycosylation site was predicted in the M．eugenii and $O$ ．fraenata TCR弓 chains．The prediction for the N－linked glycosylation sites in both species carried a probability of $69 \%$ ．

A number of putative glycation sites were observed in the marsupial TCR弓 chains and these are shown in Table 5．8．However，validation of these results requires more sophisticated mass spectrometry or Matrix－assisted laser desorption／ionization－time of flight mass spectrometry（MALDI－TOFF）analysis．This was outside the scope of this study．

Table 5．8．Predicted glycated lysine residues in the TCR弓 chains of $M$ ．eugenii，$O$ ．fraenata and $M$ ．domestica showing their positions and confidence levels ．

| Glycated lysine residues |  |  |
| :--- | :--- | :--- |
| Species | Position | Confidence level |
| M．eugenii | 44 | $74.9 \%$ |
|  | 47 | $93.8 \%$ |
|  | 102 | $79.1 \%$ |
|  | 124 | $84.5 \%$ |
|  | 138 | $89.6 \%$ |
| O．fraenata | 2 | $91.9 \%$ |
|  | 57 | $73.4 \%$ |
|  | 60 | $93.6 \%$ |
|  | 137 | $84.3 \%$ |
|  | 151 | $89.6 \%$ |
| M．domestica | 122 | $83.1 \%$ |
|  | 126 | $80.5 \%$ |

## Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck

5．3．2．4 TCR弓－Phosphorylation sites

Both O．fraenata and M．eugenii sequences contained predicted phosphorylation sites．
The $M$ ．eugenii TCR弓 sequence contained five serine and three tyrosine phosphorylation sites which are the ITAMs．The $O$ ．fraenata sequence contained four serine，one threonine and four tyrosine phosphorylation sites．The confidence levels of these predictions ranged from $64 \%$ to $97 \%$ for M．eugenii，and from $59 \%$ to $92 \%$ for O．fraenata．The positions of these putative phosphorylation sites are shown in Table 5．9．

Table 5．9．Predicted serine，threonine and tyrosine phosphorylation sites in M．eugenii， $O$ ．fraenata and in the partial sequence of $M$ ．domestica．

| Distribution of phosphorylation sites |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M．eugenii |  | O．fraenata |  | M．domestica（partial sequence） |  |
| Amino Acid | Position | Amino Acid | Position | Amino Acid | Position |
| Serine | 10 | Serine | 23 | Serine | 36 |
|  | 49 |  | 62 |  | 98 |
|  | 63 |  | 76 |  |  |
|  | 95 |  | 123 |  |  |
|  | 110 |  |  |  |  |
| Threonine | none | Threonine | 108 | Threonine | 32 |
|  |  |  |  |  | 83 |
| Tyrosine | 70 | Tyrosine | 83 | Tyrosine | 57 |
|  | 109 |  | 110 |  | 85 |
|  | 141 |  | 122 |  | 97 |
|  |  |  | 154 |  |  |

## 5．3．2．5 TCR弓－Disulphide bonds

No predicted disulphide bonds were found in the TCR弓 chains in any of the three marsupial species，O．fraenata，M．eugenii and M．domestica．

## 5．3．2．6 TCR弓－Primary sequence and secondary structure prediction

The M．eugenii TCR弓 chain consisted of 459bp which translated into 152 amino acids．The O．fraenata TCR弓 chain consisted of 498bp which translated into 165 amino acids．The putative amino acid sequences are shown above the nucleotide sequences in Figs．5．1，5．2 and 5．3．A central transmembrane helix segment with the sequence GILFIYGVIIT was detected．No leader sequence was predicted in the topology search thus confirming the leader sequence prediction．The secondary structure of each species is shown above the
putative amino acid sequence in Figs．5．1，5．2，and 5．3．There was a difference in the number of alpha helices between the M．eugenii and the $O$ ．fraenata TCR弓 chains．The M． eugenii sequence contained eight helices while the $O$ ．fraenata sequence contained ten helices．How this affects the structure of the molecules is not known．An mRNA instability motif was found in the M．eugenii TCR弓 3＇end．

```
atgcaattcctttccacagaggcccagagttttggactggcagacccaagactgtgctac 60
    M Q F L S T F A Q S S F G L A A D P R L L C F
cttctagatggcatcctcttcatttatggagtcatcatcacggccctgttcctgagagca 120
L
aagttcagtaagactgccaaaatctccagctaccaacaggaccagaatcaactctacaat 180
V FPKC binding site S S Y Q Q D Q N Q L M ITAM
Klllllllllllllllllllllll
gagctctcc\overline{c}caggacgaāgagaagaatatgacattttagataagagaagaggccgtgac 240
E L Slllllllllllllllllllllll
ccagagatgggaggaaaacagagaaggaagaatcctacagaaagcgtctacaatgcactg 300
                                    AITAM
P E M G G K Q R R K N N P T T E S S V Y N N A A L 100
cagaaagacaagatggcggatgcatacagtgagattggaatgaaaggagagaaccagcgg 360
Q Kllllllllllllllllllllll
agacgaggcaaaggaaatgatgtcctgtaccagggcctcagtccagccaccaaggacacc 420
R
tatgatgct\overline{ctccacatgcagccoctgcotcccogttaa - - 459}
\square
M D Fllllllllllllll
aaagaacaaccatcactgctccactgaccaggtttgccaggacgcagcatttaaaaccgaccccc
accaaaaaaaaaaaaaaaaaaaagggggggggggttttgtggggttttttaaaaaaaaaaaaaaa
aaaaaa
```

Figure 5．1．M．eugenii TCR弓 chain primary sequence and secondary structure prediction．
Highlighted in yellow and black underlined＝single $N$－linked glycosylation site．$\underline{Y}=$ tyrosine phosphorylation sites．$\underline{\underline{S}}=$ serine phosphorylation sites． $\boldsymbol{\nabla}=\mathrm{PKC}$ binding site．$\Rightarrow$＝ITAM domains．$\underline{\underline{K}}=$ glycation sites．Bold and underlined is the mRNA instability（attta）motif． ＝Transmembrane helix．

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck


$\begin{array}{lllllllllllllllllllll}\text { I } & Y & G & V & I & I & T & A & L & F & L & R & A & K & F & S & \underline{K} & I & A & \underline{K} & 60\end{array}$ atctccagctaccaacaggaccaaaatcaactctacaatgagctttccccaggacgcaga 240
 agaaggaägaatcctacagaaaccgtctacaatgcactgcagaaagacaagatggcggac 360

 gtcctgtaccagggcctcagtccagccaccaaggacacctatgatgctct̄ccacatgcag 480


Figure 5.2. O. fraenata TCR弓 chain primary sequence and secondary structure prediction.
Highlighted in yellow and black underlined = single $N$ - linked glycosylation site. $\underline{\underline{Y}}=$ tyrosine phosphorylation sites. $\underline{=}=$ serine phosphorylation sites. $\boldsymbol{\nabla}=$ PKC binding site. $\Rightarrow=$ ITAM domains. $\underline{K}=$ glycation sites. $\underline{T}=$ Threonine phosphorylation sites. Bold and underlined is the mRNA instability (attta) motif.
= Transmembrane helix.

## Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck



Figure 5．3．M．domestica TCR弓 partial primary sequence and secondary structure prediction．

$$
\begin{aligned}
& \underline{Y}=\text { tyrosine phosphorylation sites. } \underline{S}=\text { serine phosphorylation sites. } \underline{T}=\text { Threonine } \\
& \text { phosphorylation sites. } V=\text { PKC binding site. } K=\text { glycation sites. } \\
& =\text { Transmembrane helices. }
\end{aligned}
$$

## 5．3．2．7 TCR弓－Phylogenetic analysis

A Neighbor－Joining phylogenetic tree revealed a clustering of the marsupial clade and a close phylogenetic relationship between the M．eugenii and $O$ ．fraenata TCR弓 chains（Fig． 5．4）．As expected，it appeared that the $M$ ．domestica sequence was further removed from the two macropods since the homology was lower．The optimal tree is shown with a sum of branch length $=2.18$ ．The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test（1，000 replicates）is shown next to the branches．The tree in Fig． 5.4 is drawn to scale with branch lengths in the same units as those of the evolutionary distances．This particular analysis involved 27 amino acid sequences where all positions containing gaps and missing data were eliminated leaving 135 positions in the final data set．

The marsupial clade is a sister clade to the avian clade as shown in the phylogenetic tree （Fig．5．4）．


Figure 5.4. TCR弓 Phylogenetic analysis by Neighbor-Joining method.

## Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck

## 5．3．2．8 TCR $\zeta$－Structure modelling

Homology modelling indicated that both $O$ ．fraenata and M．eugenii TCR弓 structures are closest to the structure with the pdb identifier 2hacA（Fig．5．5）．


Figure 5．5．pdb structure 2hacA

Homology model predictions carried out with a number of different programs showed that the region with the highest confidence level was located between amino acid residues 28 and 60．The Phyre program prediction indicated a hydrogen bonded turn at amino acid residue 29 and two bends at residues 58 and 59 in the 2 hacA model but this could not be confirmed in the $O$ ．fraenata and $M$ ．eugenii sequences．

The Swiss model homology prediction executed through EXPASY indicated a low Q－mean Z－score of -4.98 for the M．eugenii TCR弓 chain（Fig． 5.6 （a）and（b））．The homology model 2 hacA showed an $81.25 \%$ sequence identity to the M．eugenii TCR弓 chain．The quaternary structure is a dimer and it appeared that the M．eugenii TCR弓 putative protein could also be modelled as a dimer．However，the model illustrated in Fig． 5.6 （a）falls outside the mean shown in the figure as $\mathbf{x}$ ．The Z－score slider confirmed the very low Z－score readings （Fig． 5.6 （b））．This result is the same as the $O$ ．fraenata TCR弓 chain，consequently only the M．eugenii result is shown．
a)
b)

## Comparison with non-redundant set of PISA assemblies




Figure 5.6. QMean Z-score for both $O$. fraenata and M. eugenii TCR $\zeta$ chains produced by Swiss Model. Red circles indicate the low values.

Five homology models identified with the I-TASSER program for the $M$. eugenii and $O$. fraenata TCR弓 putative protein sequence showed C-scores above -4 except for model 1 which had a distinctly higher value of -3.77 (Table 5.10).

Table 5.10. Homology models of TCR弓 for $O$. fraenata and $M$. eugenii. The model with the highest C -score was selected as the most probable and is highlighted in red.


The I－TASSER program predicted model No． 1 in both cases as having the highest estimated accuracy of $0.31 \pm 0.10$（TM－score）．Models 1,4 ，and 5 had similar topologies． Models 2 and 3 did not conform to the secondary structure predictions shown in Figs．5．1 and 5．2．

The Modweb program which uses modeller 9.10 as a platform constructed the structures directly from the putative protein sequences．The models with the highest confidence values for M．eugenii and O．fraenata were selected and are shown in Figure 5．7．


Figure 5．7．The homology models of the putative TCR弓 proteins produced by Modweb（a）O．fraenata and（b）M．eugenii．

The 3D－Jigsaw program identified alternative homology models for the $O$ ．fraenata and $M$ ． eugenii TCR弓 chains．A different arrangement of the helices was observed in the models and these are shown in Figure 5．8．In addition，coils and loops which were not visible in the Modweb generated models were detected in Fig．5．8．


Figure 5．8．Alternative TCR弓 homology models produced by 3D－Jigsaw for （a）O．fraenata and（b）M．eugenii．

Ligand connectivity studies could not be conducted for M．eugenii and O．fraenata TCR弓 due to there being no data in the ligand database for this protein．However，binding sites determined by the I－TASSER program are illustrated in Figure 5．9．The ligand binding sites in the $M$ ．eugenii sequence are much bulkier than those in the $O$ ．fraenata sequence．


Figure 5．9．TCR弓 putative binding sites identified with I－TASSER（a）O．fraenata and（b）M．eugenii．
Sixty two percent（62\％）of both the O．fraenata and M．eugenii TCR弓 chains were predicted as being disordered and hence did not adopt a stable structure．These areas are of interest since they have a close relationship with protein expression and functionality． In the case of the marsupial TCR弓 chain this indicated that the fold property of this protein is different to that of other TCR弓 proteins deposited in the pdb databank．

## 5．3．2．9 TCR弓－Semi－quantitative expression studies

The image of the $2 \%$ agarose gel in Fig． 5.10 revealed a high intensity of expression of the TCR $\zeta$ gene in $O$ ．fraenata spleen and thymus tissue，and much lower intensity in lung and axial node tissue．This may indicate that the TCR gene is upregulated in the spleen and to a lesser extent in the thymus，and is perhaps down－regulated in the lung and the axial node．


Figure 5.10. Image of $2 \%$ agarose gel showing the expression of the TCR弓 gene in $O$. fraenata against the housekeeping gene GAPDH ( $\mathrm{T}=$ thymus, $\mathrm{S}=$ spleen, $\mathrm{L}=$ lung, $\mathrm{AN}=$ axial node).
5.3.3 Zeta associated protein of 70 kDa (ZAP-70)
5.3.3.1 ZAP-70 - Homology

A BLAST homology search for the M. eugenii ZAP-70 sequence showed an $87 \%$ sequence identity to the predicted sequence of $M$. domestica with the closest sequence being that of $S$. scrofa which had a sequence identity of $78 \%$. E-values from the BLAST search were 0.0 for both of these sequence identities. The $O$. fraenata partial sequence showed an $88 \%$ identity to $M$. domestica at the nucleotide level and $93 \%$ identity at the amino acid level over the 338 amino acids in the partial sequence. Other identity percentages and evalues for various mammalian species compared to the $M$. eugenii open reading frame and the $O$. fraenata partial sequence are shown in Table 5.11.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.11. Homology search results for the $M$. eugenii and $O$. fraenata ZAP-70 nucleotide and amino acid sequences, their identity and respective e-values. For the $O$. fraenata partial sequence the values were calculated over the 1016bp/338aa length of the partial sequence.

| Homology search for ZAP-70 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | M. eugenii |  |  |  | O. fraenata (partial sequence 1016 bp , 338 aa) |  |  |  |
|  | nt | e-value | aa | e-value | nt | e-value | aa | e-value |
| M. eugenii | 100\% | 0.0 | 100\% | 0.0 | 100\% | 0.0 | 93\% | 0.0 |
| M. domestica | 87\% | 0.0 | 89\% | 0.0 | 88\% | 0.0 | 90\% | 0.0 |
| S. scrofa | 78\% | 0.0 | 82\% | 0.0 | 79\% | 0.0 | 80\% | 2e-173 |
| P. abelii | 78\% | 0.0 | 74\% | 0.0 | ----- | ----- | 68\% | 9e-134 |
| O. cuniculus | 77\% | 0.0 | 82\% | 0.0 | 78\% | 0.0 | 80\% | $8 \mathrm{e}-171$ |
| $N$. leucogenys | 77\% | 0.0 | 79\% | 0.0 | 78\% | 0.0 | 81\% | 6e-172 |
| H. sapiens | 77\% | 0.0 | 79/5 | 0.0 | 78\% | 0.0 | 80\% | 7e-171 |
| A.melanoleuca | 77\% | 0.0 | 80\% | 0.0 | 79\% | 0.0 | 79\% | 2e-167 |
| M. mulatta | 77\% | 0.0 | 82\% | 0.0 | 78\% | 0.0 | ----- | ----- |
| B. taurus | 77\% | 0.0 | 81\% | 0.0 | 78\% | 0.0 | 80\% | 4e-171 |
| C. griseus | 77\% | 0.0 | 76\% | 0.0 | 78\% | 0.0 | 79\% | 1e-166 |
| R. norvegicus | 77\% | 0.0 | 81\% | 0.0 | 78\% | 0.0 | 79\% | 4e-169 |
| E. caballus | 77\% | 0.0 | ------ | ------ | 79\% | 0.0 | 81\% | 1e-170 |
| M. musculus | 77\% | 0.0 | 81\% | 0.0 | 78\% | 0.0 | 80\% | 1e-169 |
| C. jacchus | 77\% | 0.0 | 81\% | 0.0 | 77\% | 0.0 | 80\% | 6e-171 |
| T. guttata | 75\% | 0.0 | ------ | ------ | 73\% | 0.0 | 74\% | 1e-156 |
| C.I. familiaris | 74\% | 0.0 | 86\% | 0.0 | 79\% | 0.0 | 80\% | 1e-172 |
| M. gallopavo | 74\% | 0.0 | 75\% | 0.0 | 73\% | 0.0 | 74\% | 1e-158 |
| H. hippoglossus | 73\% | 5e-123 | 62\% | 0.0 | ----- | --- | 60\% | 1e-124 |
| X. laevis | 71\% | 0.0 | 73\% | 0.0 | 72\% | 2e-176 | 72\% | 6e-151 |
| D. rerio | 70\% | 2e-96 | 64\% | 0.0 | ----- | ----- | 63\% | 2e-131 |

nt = nucleotide, aa = amino acid, ----- = not recognized by BLAST algorithms.
Table 5.12 lists the results of the BLAST homology search for the partial sequences of the macropod $L$. hirsutus and the didelphid $M$. domestica. A comparison of the partial $M$. domestica sequence to the predicted sequence showed multiple differences between them (supporting data in Appendix 5B). This may be due to polymorphisms in the gene however no investigations into polymorphisms were carried out in this study.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Table 5.12. Homology search results showing sequence identities for the L. hirsutus and M. domestica partial ZAP- 70 sequences at the nucleotide and putative amino acid levels and the respective e-values.

| Homology search for L. hirsutus and M. domestica ZAP-70 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | L. hirsutus (partial sequence 732 nt , 243aa) |  |  |  | M. domestica (partial sequence 819nt, 272aa) |  |  |  |
|  | nt | e-value | aa | e-value | nt | e-value | aa | e-value |
| M. domestica (predicted) | 89\% | 0.0 | 92\% | 3e-130 | 89\% | 0.0 | 90\% | $6 \mathrm{e}-144$ |
| S. scrofa | 79\% | 0.0 | 90\% | 1e-115 | 79\% | 0.0 | 90\% | $4 \mathrm{e}-143$ |
| P. abelii | 84\% | 1e-83 | ----- | ----- | 83\% | 6e-107 | 78\% | 1e-88 |
| O. cuniculus | 79\% | 0.0 | 88\% | 4e-115 | 78\% | 0.0 | 90\% | 8e-142 |
| $N$. leucogenys | 79\% | 0.0 | 90\% | 1e-115 | 78\% | 0.0 | 90\% | 1e-142 |
| H. sapiens | 79\% | 0.0 | 88\% | 2e-114 | 78\% | 0.0 | 90\% | 8e-142 |
| A.melanoleuca | 79\% | 0.0 | 86\% | $4 \mathrm{e}-112$ | 78\% | 0.0 | 89\% | 4e-139 |
| M. mulatta | ----- | ----- | ----- | ----- | ----- | ----- | 90\% | 6e-143 |
| B. taurus | 78\% | 0.0 | 90\% | 1e-114 | 78\% | 0.0 | 90\% | 2e-141 |
| C. griseus | 78\% | 0.0 | 90\% | 1e-111 | 78\% | 0.0 | 91\% | 3 e 138 |
| R. norvegicus | 78\% | 0.0 | 92\% | 1e-113 | 77\% | 0.0 | 91\% | 2e-140 |
| E. caballus | 79\% | 0.0 | 88\% | 8e-116 | 79\% | 0.0 | 90\% | 1e-142 |
| M. musculus | 78\% | 0.0 | 90\% | $3 \mathrm{e}-114$ | 78\% | 0.0 | 91\% | 9e-141 |
| C. jacchus | 77\% | 0.0 | 90\% | $4 \mathrm{e}-115$ | 77\% | 0.0 | 90\% | $4 \mathrm{e}-142$ |
| T. guttata | 75\% | 1e-177 | 84\% | 4e-109 | 74\% | 0.0 | 90\% | 9e-130 |
| C.I. familiaris | 79\% | 0.0 | 86\% | 4e-115 | 79\% | 0.0 | 89\% | 3e-142 |
| M. gallopavo | ----- | ----- | 86\% | 4e-109 | ----- | ----- | 92\% | 3e-132 |
| H. hippoglossus | 82\% | 1e-88 | 76\% | 2e-79 | 78\% | 1e-96 | 86\% | 9e-101 |
| X. Iaevis | 72\% | 9e-123 | 82\% | 2e-100 | 71\% | 8e-137 | 89\% | $6 \mathrm{e}-125$ |
| D. rerio | 75\% | 3e-78 | 75\% | 1e-87 | 72\% | 3e-78 | 84\% | 3e-108 |

nt = nucleotide, aa = amino acid, ----- = not recognized by BLAST.

### 5.3.3.2 ZAP-70 - Domain structure

A variety of domains were identified by SMART in the ZAP-70 open reading frames in $M$. eugenii, O. fraenata, L. hirsutus and M. domestica and their locations and respective evalues are shown in Table 5.13. The principal domains identified were the $\mathrm{SH}_{2}$ and tyrosine kinase domains.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Table 5.13. Predicted domain structures identified by SMART together with locations in the sequence and e-values in M. eugenii, O. fraenata, L. hirsutus and M. domestica.

| Domain structures |  |  |  |
| :--- | :--- | :--- | :--- |
| Species | Domain structure | Location | e-value |
| M. eugenii | $\mathrm{SH}_{2}$ | $8-93$ | $1.68 \mathrm{e}-25$ |
|  | $\mathrm{SH}_{2}$ | $161-245$ | $5.30 \mathrm{e}-23$ |
|  | Tyrosine kinase | $336-591$ | $3.03 \mathrm{e}-105$ |
|  | Internal repeat | $4-102$ | $3.14 \mathrm{e}-12$ |
| O. fraenata | $\mathrm{SH}_{2}$ | $1-68$ | $6.92 \mathrm{e}-04$ |
|  | Tyrosine kinase | $159-337$ | $4.09 \mathrm{e}-29$ |
|  | $\mathrm{STYKc}^{3}$. domestica | $\mathrm{SH}_{2}$ | $121-140$ |
|  | STYKc | $1.25 \mathrm{e}-04$ |  |

SignalP-4.0 predicted a single spike that indicated a signal peptide with a cleavage site at amino acid residue 21. However, the predicted site did not reach the threshold at $50 \%$ but held at $45 \%$. This was not high enough to identify it as a signal peptide even though the open reading frame had a number of putative N -linked glycosylation sites which require a signal peptide.

### 5.3.3.3 ZAP-70 - Glycosylation and glycation sites

The ZAP-70 sequence of $M$. eugenii contained a single putative $C$-mannosylated site at position 528 with a confidence level of $61.8 \%$. Three possible O-linked glycosylation sites were predicted at positions 263, 265 and 615. Only position 265 with a confidence level of $59.1 \%$ was above the threshold of $50 \%$. A number of possible glycation sites were predicted in the M. eugenii (27), O. fraenata (24), L hirsutus (12) and M. domestica (15) ZAP-70 sequences.

Four putative N -linked glycosylation sites were predicted in the $M$. eugenii and $O$. fraenata sequences of ZAP-70, while M. domestica and L. hirsutus had three predicted Nlinked glycosylation sites. The positions, the confidence levels and the signal strengths of these sites are shown in Table 5.14.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.14. Predicted N -linked glycosylation sites in ZAP-70 their positions, sequences, confidence levels, and signal strengths in M. eugenii, O. fraenata, L. hirsutus and $M$. domestica.

| Predicted N-linked glycosylation sites in ZAP-70 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Species | Position | Sequence | Confidence level | Signal strength |
| M. eugenii | 66 | NGTY | $71.06 \%$ | ++ |
|  | 256 | NASA | $57.32 \%$ | + |
|  | 280 | NDTL | $60.27 \%$ | ++ |
|  | 296 | NKSQ | $69.36 \%$ | ++ |
| O. fraenata | 79 | NASA | $60.9 \%$ | + |
|  | 103 | NDTL | $63.6 \%$ | ++ |
|  | 119 | NKSQ | $71.1 \%$ | ++ |
|  | 406 | NFSD | $54.6 \%$ | + |
| L. hirsutus | 41 | NASA | $62.1 \%$ | + |
|  | 65 | NDTL | $64.5 \%$ | ++ |
|  | 81 | NKSQ | $72.1 \%$ | ++ |
| M. domestica | 82 | NASA | $59.9 \%$ | + |
|  | 106 | NDTL | $62.2 \%$ | ++ |
|  | 122 | NKSQ | $70.0 \%$ | ++ |

### 5.3.3.4 ZAP-70 - Phosphorylation sites

Several putative phosphorylation sites including nineteen serines, five threonines and fourteen tyrosines were predicted in M. eugenii. The partial sequences of O. fraenata, and $M$. domestica each had six serine, four threonine, and eight tyrosine predicted phosphorylation sites. L. hirsutus had six serine, three threonine, and four tyrosine predicted phosphorylation sites. The positions of these putative phosphorylation sites are shown in Table 5.15.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.15. Predicted amino acid phosphorylation sites within the ZAP-70 sequences of M. eugenii, O. fraenata, L. hirsutus and $M$. domestica.

| Predicted amino acid phosphorylation sites in ZAP-70 |  |  |  |
| :---: | :---: | :---: | :---: |
| Species | Serine positions | Threonine positions | Tyrosine positions |
| M. eugenii | $\begin{aligned} & \hline 14 \\ & 16 \\ & 42 \\ & 106 \\ & 117 \\ & 121 \\ & 169 \\ & 179 \\ & 181 \\ & 201 \\ & 218 \\ & 298 \\ & 311 \\ & 315 \\ & 318 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 130 \\ & 227 \\ & 282 \\ & 289 \\ & 492 \end{aligned}$ | $\begin{aligned} & \hline 46 \\ & 69 \\ & 164 \\ & 198 \\ & 221 \\ & 288 \\ & 313 \\ & 317 \\ & 355 \end{aligned}$ |
| O. fraenata | $\begin{aligned} & \hline 41 \\ & 121 \\ & 134 \\ & 138 \\ & 194 \\ & 338 \\ & 339 \\ & 341 \\ & 345 \\ & 408 \\ & 423 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 50 \\ & 105 \\ & 112 \\ & 315 \end{aligned}$ | $\begin{aligned} & \hline 44 \\ & 111 \\ & 136 \\ & 140 \\ & 178 \\ & 295 \\ & 313 \\ & 314 \\ & 356 \\ & 390 \end{aligned}$ |
| L. hirsutus | $\begin{aligned} & 83 \\ & 96 \\ & 100 \\ & 103 \\ & 156 \\ & 228 \end{aligned}$ | $\begin{aligned} & 12 \\ & 67 \\ & 74 \end{aligned}$ | $\begin{aligned} & \hline 6 \\ & 73 \\ & 98 \\ & 102 \end{aligned}$ |
| M. domestica | $\begin{array}{\|l\|} \hline 5 \\ 7 \\ 124 \\ 137 \\ 141 \\ 144 \\ 197 \end{array}$ | $\begin{aligned} & 53 \\ & 108 \\ & 115 \end{aligned}$ | $\begin{aligned} & 24 \\ & 47 \\ & 114 \\ & 139 \\ & 143 \\ & 181 \end{aligned}$ |

In addition to the putative amino acid phosphorylation sites, a number of putative O-
linked glycosylation sites were also predicted in the four marsupial ZAP-70 sequences and are shown in Table 5.16. The confidence levels of the predicted O-linked glycosylation sites ranged from the threshold level of $50 \%$ up to $61 \%$.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.16. Predicted O-linked glycosylation their positions and confidence levels sites in the ZAP-70 sequences of four marsupial species.

| Species | Position | Confidence level |
| :--- | :--- | :--- |
| M. eugenii | 263 | $50.5 \%$ |
|  | 269 | $52.9 \%$ |
|  | 615 | $56.8 \%$ |
| O. fraenata | 86 | $57.2 \%$ |
|  | 88 | $55.9 \%$ |
|  | 92 | $58.9 \%$ |
| L. hirsutus | 46 | $53.6 \%$ |
|  | 48 | $59.9 \%$ |
|  | 50 | $58.6 \%$ |
|  | 54 | $61.4 \%$ |
|  | 60 | $52.5 \%$ |
|  | 67 | $52.1 \%$ |
| M. domestica | 87 | $52.6 \%$ |
|  | 89 | $58.9 \%$ |
|  | 91 | $57.7 \%$ |
|  | 95 | $60.5 \%$ |
|  | 101 | $51.5 \%$ |
|  | 108 | $51.1 \%$ |

### 5.3.3.5 ZAP-70 - Disulphide bonds

The M. eugenii open reading frame contained fifteen predicted cysteines. Six of these cysteines formed predicted disulphide bonds. Twelve predicted cysteines which formed six predicted disulphide bonds were found in the partial sequence of $O$. fraenata. Four predicted cysteines which formed two predicted disulphide bonds were found in the $L$. hirsutus partial sequence, and six predicted cysteines which formed three predicted disulphide bonds were found in M. domestica. Both the M. eugenii and O. fraenata ZAP70 sequences had cysteine residues that bind a Zinc ligand. The location of the predicted disulphide bridges and the status of the cysteines involved are shown in Table 5.17.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Table 5.17 Predicted disulphide bonds, their connectivity and locations in the ZAP-70 sequences of four marsupial species.
Predicted disulphide bonds in the ZAP-70 sequence of four marsupial species

| Predicted disulphide bonds in the ZAP-70 sequence of four marsupial species |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Disulphide bond |  | Location | Cysteine type |
| M. eugenii | FLLRQCLRSLGGGKPHCGPAEL |  | 39-78 | free |
|  | GPAELCEFYSK DPPPECPPNMY |  | 84-562 | 112 cysteine binds free cysteine |
|  | ADGLPCALRKP SGNFGCVRKGV |  | 96-349 | 1/2 cysteine binds free cysteine |
|  | $\begin{aligned} & \text { ALRKPCNRPSG } \\ & \text { CLKEICPNASA } \end{aligned}$ |  | 102-254 | 1/2 cysteine binds free cysteine |
|  | ALRKPCNRPSG CLKEICPNASA |  | 222-294 | 1/2 cysteine binds free cysteine |
|  | RIIGVCKAEAL <br> TLMKKCWIYKW |  | 403-573 | free |
|  | WYAPECINYRK YRKFSCQSDVW |  | 508-516 | Binds zinc ligand |
| O. fraenata | KSGKYCIPEGT CLKEICPNASA |  | 45-77 | 1/2 cysteine binds free cysteine |
|  | NGLIYCLKEIC SGNFGCVRKGV |  | 72-172 | free |
|  | RIIGVCKAEAL TLMKDCWIYKW |  | 226-396 | Binds zinc ligand |
|  | WYAPECINYRK DRPPECPPDMY |  | 331-385 | ligand binding cysteines (Zn) |
| L. hirsutus | KSGKYCIPEGT CLKEICPNASA |  | 7-39 | free |
|  | DGLIYCLKEIC <br> SGNFGCVRKGV |  | 34-134 | free |
|  | RIIGVCKAEAL KGGGPCKQCRG |  | 188-218 | free |
|  | GPCKQCRGAAA RRKKFCAPXXX |  | 221-241 | 1/2 cysteine |
| M. domestica | $\begin{aligned} & \hline \text { KSGKYCIPEGT } \\ & \text { NGLIYCLKEIC } \end{aligned}$ |  | 48-75 | 1⁄2 cysteine-free cysteine |
|  | CLKEICPNASA SGNFGCVRKGV |  | 80-175 | free |
|  | TPEPACLNKSQ SNVVSCCTKWP |  | 120-265 | free |
|  | RIIGVCKAEAL NVVSCCTKWPW |  | 229-266 | free |

Yellow highlights = zinc ligand binding cysteine residue.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

5.3.3.6 ZAP-70 - Primary sequence and secondary structure prediction

The M. eugenii ZAP-70 (Fig. 5.11) coding domain was found to be 1,854bp long which translated into 617 amino acids compared to 619 amino acids in the $H$. sapiens sequence. The alpha helices and beta strands were distributed differently within the marsupial ZAP70 molecule. There were 18 beta strands in the open reading frame of $M$. eugenii and 27 beta strands in the partial sequence of $O$. fraenata (Fig. 5.12). Seven beta strands were found in L. hirsutus (Fig. 5.13) and 10 beta strands were found in M. domestica (Fig. 5.14). In contrast, 19 helices were found in M. eugenii, and in the partial sequences, 12 were found in O. fraenata, six in L. hirsutus and five in M. domestica. The length of the helices, and the lengths of the beta strands differed in the ZAP-70 molecules of each species. The effects of this on the folding properties of the molecules are unknown.
 gaggagcacctgaagctggcaggcatggcggatgggcttttcctgctccgccagtgcctc 120
 $\begin{array}{llllllllllllllllllll}R & S & L & G & G & \underline{Y} & V & L & S & L & V & Y & D & L & H & I & H & H & Y & P\end{array} 60$ atcgagcgtcagctgaacggcacctatgccattgctgggggcaagcctcattgcggcccg 240 $\begin{array}{llllllllllllllll}\text { I } & E & R & Q & L & N & G & T & \underline{Y} & A & I & A & G & G & K & P \\ \text { gctgagctctgtgagttttactccaaggatgctgatggcctcccctatgdtttadgcaag } & 300\end{array}$

$\begin{array}{lllllllllllllllllllll}\mathrm{T} & \mathrm{A} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{P} & \mathrm{T} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{H} & \mathrm{P} & \mathrm{S} & \mathrm{M} & \mathrm{P} & \mathrm{R} & \mathrm{R} & \mathrm{N} & 280\end{array}$ gacaccctcaactctgatggatacacccctgagccagcatgtttaaacaagagtcaaggt 900
 gagaagtctcgggtcctgcccatggacaccagtgtgtatgagzgcccctacagtgatccc 960
 gaagagctcaaggacaagaaactcttcctcaagagagagaatctgatgatcgatgaggtg 1020
 gagctgggctcaggcaactttggctgtgtccgcaagggggtctacaagatgaggaagaag 1080


 atgatgaaggaggcccagatcatgcacctgctggacaacccctacatcgtgcggatcatc 1200 | $M$ | $M$ | $K$ | $E$ | $A$ | $Q$ | $I$ | $M$ | $H$ | $L$ | $L$ | $D$ | $N$ | $P$ | $Y$ | $I$ | $V$ | $R$ | $I$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ggcgtgtgcaaggctgaggccctcatgctcgtcatggagatggccatcgcggggcctctg 1260


 caccaggtggccatgggaatgaaatacctagaagaaaaaaattttgtgcaccgtgacctg 1380

 gctgcccgaaatgttcttctggtcaaccagcactatgccaagattagtgactttggttta 1440 \begin{tabular}{llllllllllllllllll}
$A$ \& $A$ \& $R$ \& $N$ \& $V$ \& $L$ \& $L$ \& $V$ \& $N$ \& $Q$ \& $H$ \& $\underline{Y}$ \& $A$ \& $K$ \& $I$ \& $S$ \& $D$ \& $F$ <br>
\hline

 tccaaggcactgggggctgatgacagctactacaccgcccgctctgcagggaaatggcca 1500 $\begin{array}{lllllllllllllllllllll}S & K & A & L & G & A & D & D & S & \underline{Y} & \underline{Y} & \underline{I} & A & R & S & A & G & K & W & P & 500\end{array}$ ctcaaatggtatgctccagagtgcatcaactaccggaaattctcctgccaaagcgacgtg 1560 

\& \& $K$ \& $W$ \& $Y$ \& $A$ \& $P$ \& $E$ \& $\underline{C}$ \& $I$ \& $N$ \& $Y$ \& $R$ \& $K$ \& $F$ \& $\underline{S}$ \& $\underline{C}$ <br>
\hline
\end{tabular} tggacctatggattcaccatgtggaaacctttcacctatggccagaācccttataagaaa 1620 $\begin{array}{lllllllllllllllllll} & W & T & Y & G & F & T & M & W & K & P & F & T & \underline{Y} & G & Q & N & P & Y \\ & K & K & 540\end{array}$ atgaaaggccctgaggtcctcaaattcattgaaaaggḡtaagcggatggatccccctcct 1680 $M \begin{array}{lllllllllllllllll} & K & \text { G } & \text { P } & \text { E } & \text { V } & \text { L } & \text { K } & F & I & E & K & G & K & R & M & D\end{array}$ gagtgcccaccaaacatgtacacactcatgaaaaaatgctggatatacaaatgggaacat 1740



Figure 5.11. M. eugenii ZAP-70 primary sequence and secondary structure prediction.
$K=$ glycation sites. $\underline{\underline{Y}}=$ tyrosine phosphorylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites.
$\underline{I}=$ threonine phosphorylation sites. Highlighted in yellow $=N$-linked glycosylation sites.
$N=C$ - mannosylation site. $T$ = threonines are O-linked glycosylation sites. Different colours = disulphide bridges. $\underline{C}=$ ligand binding cysteine. $\mathbf{\nabla}=$ PKC binding sites.
$\square=$ Transmembrane helix. $\longrightarrow=$ Strands.
tactcaggctcccagcatgatggcaagttcttgcttaaacccaggaaggaacaaggcacc 60 $\Rightarrow \quad \mathrm{SH} 2$
$\begin{array}{lllllllllllllllllllll}Y & S & G & S & Q & H & D & G & K & F & L & L & K & P & R & K & E & Q & G & T & 20\end{array}$ tacgctttgtccctcatctatggcaaaactgtctaccactacctcatcaaccaggacaag 120
 tctggcaagtactgtattcctgagggcacaaagtttgacaccttgtggcagctggtaaag 180 S G K C $\quad$ K E G I K F $\quad$ I tatctgaagctgaaggcaaatgggcttatctactatctgaaggagatttatcctaatgcc 240
 $\begin{array}{lllllllllllllllll}\text { S A } & \mathrm{S} & \mathrm{T} & \mathrm{A} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{P} & \mathrm{T} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{H} & \mathrm{P} & \mathrm{S} \\ \mathrm{M} & \mathrm{P} & 100\end{array}$ agaaggaatgacaccctcaactctgatggatacacccctgacccagcatgtttaaacaaa 360
$\begin{array}{llllllllllllllllllllll}R & R & N & D & I & L & N & S & D & G & \underline{Y} & \underline{T} & P & D & P & A & C & L & N & K & 120\end{array}$ agtcaaggtgaaaagtctcgggtcctgcccatggacaccagtgtgtatgaaagcccttac 420 $\begin{array}{lllllllllllllllllllll}S & Q & G & E & K & S & R & V & L & P & M & D & T & S & V & Y & E & S & P & Y & 140\end{array}$ agtgaccccaaaaagctcaaggacaaaaaactcttcctcaaaagagagaatctgatgatt 480


 aggaaaaagcaaattgatgtacccatcaaggtqcttalaaagtaccaatgaaaāggctgaa 600
 aaggacaagatgatgaaggaggcccaaatcatgcaccagctggacaacccctacatcgtg 660
 cgtatcatcggcgtgtgcaaggctgaggccctcatgctcgtcatgaagatggccatcgcg 720
 gggcctctgcacaagttcetggccgccaagaaggaggaggtccctgtaagcaatgttgtg 780
 gagctactgcaccāggtggccatgggaatgaäatacctggaagaaaaaaattttgtgcac 840
 cgtgacctggctgcccgaaatgttcttctggtcaaccagcactatgccaagattagtgac 900
 tttggtttatccaaggcactgggggctgatgacagctactacaccgcccgctctgcaggg 960
 aagtggccactcaaatggtatgccccagaatgcatcaactatcgcaaatctgcagc 1016


 tctggcaagtactgtattcctgagggcacaaagtttgacaccttgtggcagctggtaaag 180
 tatctgaägctgaaggcaaatgggcttāctactatctgaaggagatttatcctaatgcc 240
 agtgcttctactgctactgtgactgctgctco acactccctgtccatccctecatgcct 300 vPKC binding site
 agaaggaatgacaccctcaactctgatggatacacccctgacccagcatgtttaaacaaa 360
$\begin{array}{lllllllllllllllllllll}R & R & N & D & \underline{T} & L & N & S & D & G & \underline{Y} & \underline{I} & P & D & P & A & C & L & N & \underline{K} & 120\end{array}$ agtcaaggtgaaaagtctcgggtcctgcccatggacaccagtgtgtatgaaagccottac 420
 agtgaccccaaaaagctcaaggacaaaaaactcttcctcaaaagagagaatctgatgatt 480


 | D | E | $V$ | $E$ | L | $S$ | $G$ | $N$ | $F$ | $C$ | $R$ | $K$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| aggaaaaagcaaattgatgtacccatcaaggtactt | Gaaagtaccaatgaaaaggctgaa | 600 |  |  |  |  |  |  |  |  |  |

 aaggacaagatgatgaaggaggcccaaatcatgcaccagctggacaacccctacatcgtg 660
 cgtatcatcggcgtgtgcaaggctgaggccctcatgctcgtcatgaagatggccatcgcg 720
 gggcctctgcacaagttcotggccgccaagaaggaggaggtccctgtaagcaatgttgtg 780
 gagctactgcaccaggtggccatgggaatgaaatacctggaagaaaaaaattttgtgcac 840
 cgtgacctggctgcccgaaatgttcttctggtcaaccagcactatgccaagattagtgac 900
 tttggtttatccaaggcactgggggctgatgacagctactacaccgcccgctctgcaggg 960


Figure 5.12. O. fraenata partial ZAP-70 primary sequence and secondary structure prediction.
$K=$ glycation sites. $\underline{\underline{Y}}=$ tyrosine phosphorylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites.
$\underline{\underline{T}}=$ threonine phosphorylation sites. Highlighted in yellow = N-linked glycosylation sites.
$\bar{T}=$ threonines are O-linked glycosylation sites. Different colours = disulphide bridges. $\underline{C}=$
ligand binding cysteine. $\boldsymbol{\nabla}=$ PKC binding sites $\square=$ Transmembrane helix. $\longrightarrow=$ Strands.


Figure 5.13. L. hirsutus ZAP-70 partial primary sequence and secondary structure prediction.
$K=$ glycation sites. $\underline{\underline{Y}}=$ tyrosine phosphorylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites.
$\underline{\underline{T}}=$ threonine phosphorylation sites. Highlighted in yellow $=\mathrm{N}$-linked glycosylation sites.
$\mathrm{W}=\mathrm{C}$ - mannosylation site. $\mathrm{T}=$ threonines are O-linked glycosylation sites. Different colours = disulphide bridges. $\boldsymbol{\nabla}=$ PKC binding sites.
$\square=$ Transmembrane helix. $\longrightarrow=$ Strands.


Figure 5.14. M. domestica partial ZAP-70 primary sequence (partial) and secondary structure prediction.
$K=$ glycation sites. $\underline{\underline{Y}}=$ tyrosine phosphorylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites.
$\underline{\underline{I}}=$ threonine phosphorylation sites. Highlighted in yellow $=$ N-linked glycosylation sites.
W = C- mannosylation site. $\boldsymbol{T}=$ threonines are O-linked glycosylation sites. Different colours = disulphide bridges. $\underline{C}=$ ligand binding cysteine. $\mathbf{\nabla}=$ PKC binding sites.
$\square=$ Transmembrane helix. $\longrightarrow=$ Strands.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

### 5.3.3.7 ZAP-70 - Phylogenetic analysis

The evolutionary history of ZAP-70 was inferred by the Maximum Likelihood method based on the Poisson correction model. The highest logarithmic likelihood in the phylogenetic tree was $-9,093.93$. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 26 amino acid sequences. There were a total of 745 positions in the final dataset (Fig. 5.15).

The marsupial clade is sister to a clade containing eutherian mammals. The amphibian clade is basal to both groups. The branch lengths of M. eugenii and O. fraenata are short indicating a close relationship. By comparison, M. domestica had an extended branch length indicating a more distant relationship. Although only a partial sequence was used for $O$. fraenata it was confirmed in the phylogenetic analysis as being part of the marsupial clade due to the high conservation of this molecule in both $M$. eugenii and $O$. fraenata.

## Chapter 5 - Signalling molecules - TCRЗ, ZAP-70 and Lck



Figure 5.15. Phylogenetic tree for ZAP-70 compiled using the Maximum Likelihood method.

### 5.3.3.8 ZAP-70 - Structure modelling

Homology modelling carried out with a number of programs indicated that the I-TASSER (Fig. 5.16 c) and Modweb (Fig. 5.16 b) programs were in agreement with the template 1m61. RaptorX could not model the full open reading frame of the M. eugenii ZAP-70 sequence but modelled the domains. The template 1 m 61 is annotated as a monomer. The Phyre2 program built the model on the template c2ozoA with a confidence level of $100 \%$ over $87 \%$ of the sequence (Figure 5.16a). A model constructed using the Modeller 9.10 program had a customized Python shell (Appendix 5B) and the model obtained is shown in Figure 5.16 (b).


Figure 5.16. Homology models and binding site predictions of ZAP-70 molecule in M. eugenii (a) Phyre2 model, (b) Modweb model, (c) I-TASSER model, (d) Binding site prediction by 3D ligand prediction server (buried binding sites).

The 3D ligand prediction server was used to predict exposed binding sites. 20 exposed residues were revealed in contrast to the 15 predicted buried residues (Fig. 5.17). A binding site prediction carried out with I-TASSER revealed a slightly different number of residues involved in the ligand binding to that predicted by the 3D ligand binding
prediction server (diagram not shown). Residues involved in ligand binding according to the I-TASSER prediction were amino acid residues $342,344,345,347,350,365,367,397$, $412,413,414,415,416,419,463,464,466,476,477$ and 480.


Figure 5.17. Exposed ligand binding sites in M. eugenii ZAP-70 predicted by 3D ligand prediction server.

### 5.3.3.9 ZAP-70 - Western Blot analysis

The human anti-ZAP-70 antibody was unsuccessful in detecting the marsupial ZAP-70 protein in M. eugenii thymus and in O. fraenata spleen, thymus, liver and lung tissues (Fig. 5.18).


Figure 5.18. Western Blot analysis of human anti-ZAP-70 antibody in $O$. fraenata tissues and M. eugenii thymus tissue.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

5.3.4 Lymphocyte specific kinase (Lck)

### 5.3.4.1 Lck - Homology

A BLAST homology search showed that the $O$. fraenata sequence had a $90 \%$ identity to the predicted $M$. domestica sequence at the nucleotide level and a $95 \%$ identity at the putative amino acid level. The $M$. eugenii partial Lck sequence had a $90 \%$ identity to $M$. domestica at the nucleotide level and $95 \%$ identity at the amino acid level. These and other homology percentages and their respective e-values are shown in Table 5.18. The high identity levels indicated a conserved function of this molecule across mammalian taxa.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.18. Homology search results for the $O$. fraenata and $M$. eugenii Lck nucleotide and amino acid sequences, their identities and their respective e-values. The values are calculated over the $1528 \mathrm{bp} / 503 \mathrm{aa}$ length of the partial 0 . fraenata sequence.

| Homology search results for M. eugenii and O. fraenata Lck |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O. fraenata |  |  |  | M. eugenii |  |  |  |
| Species | nt | e-value | aa | e-value | nt | e-value | aa | e-value |
| M.domestica | 91\% | 0.0 | 96\% | 0.0 | 90\% | 0.0 | 95\% | 0.0 |
| $N$. leucogenys | ---- | ---- |  |  | 85\% | 8 e .138 | ---- | ---- |
| E. caballus | 81\% | 0.0 | 91\% | 0.0 | 83\% | 0.0 | 92\% | 0.0 |
| P. toglodytes | 80\% | 0.0 |  |  | 83\% | 0.0 | ---- | ---- |
| Hylobates | 82\% | 0.0 | 92\% | 0.0 | 82\% | 0.0 | 92\% | 0.0 |
| A. nancymaae | 82\% | 0.0 | ---- | ---- | ---- | ---- | 92\% | 0.0 |
| C.familiaris | 81\% | 0.0 | 93\% | 0.0 | 82\% | 0.0 | 92\% | 0.0 |
| S.scrofa | 81\% | 0.0 | 92\% | 0.0 | 81\% | 0.0 | 91\% | 0.0 |
| H.sapiens | 82\% | 0.0 | 91\% | 0.0 | 81\% | 0.0 | 92\% | 0.0 |
| S. sciureus | 81\% | 0.0 | 90\% | 0.0 | 81\% | 0.0 | ---- | ---- |
| A.melanoleuca | 82\% | 0.0 | 93\% | 0.0 | 81\% | 0.0 | 92\% | 0.0 |
| C. griseus | 81\% | 0.0 | ---- | ---- | 81\% | 0.0 | 91\% | 0.0 |
| L. africana | 81\% | 0.0 | 93\% | 0.0 | 80\% | 0.0 | 92\% | 0.0 |
| C. porcellus | 81\% | 0.0 | 91\% | 0.0 | 80\% | 0.0 | 91\% | 0.0 |
| R. norvegicus | 81\% | 0.0 | 91\% | 0.0 | 82\% | 0.0 | 91\% | 0.0 |
| B. taurus | 81\% | 0.0 | 91\% | 0.0 | 81\% | 0.0 | 90\% | 0.0 |
| O. aries | 81\% | 0.0 | 92\% | 0.0 | 81\% | 0.0 | 91\% | 0.0 |
| O. cuniculus | 81\% | 0.0 | 92\% | 0.0 | 81\% | 0.0 | 91\% | 0.0 |
| M. musculus | 81\% | 0.0 | 92\% | 0.0 | 80\% | 0.0 | 91\% | 0.0 |
| G. gallus | 77\% | 0.0 | 91\% | 0.0 | 79\% | 0.0 | 84\% | 0.0 |
| O. mykiss | 74\% | 0.0 | 81\% | 0.0 | 75\% | 0.0 | 74\% | 0.0 |
| S. salar | 74\% | 0.0 | 70\% | 0.0 | 75\% | 0.0 | 74\% | 0.0 |
| A.carolinensis | 75\% | 0.0 | 71\% | 0.0 | 74\% | 2e. 133 | ---- | ---- |
| X. silurana | 72\% | 0.0 | 76\% | 0.0 | 73\% | 1e. 173 | 79\% | 0.0 |
| C. auratus | 71\% | 0.0 | 68\% | 0.0 | 72\% | 9 e .150 | 74\% | 0.0 |
| H. hippoglussus | ---- | ---- | 72\% | 0.0 | 72\% | 2e-152 | 73\% | 0.0 |
| S. maximus | 71\% | 0.0 | 69\% | 0.0 | 72\% | 1e-153 | 74\% | 0.0 |

nt = nucleotide, aa = amino acid, ---- = not recognized by BLAST.

### 5.3.4.2 Lck - Domain structure

Three principal domains ( $\mathrm{SH}_{3}, \mathrm{SH}_{2}$ and tyrosine kinase) were identified in the O . fraenata and $M$. eugenii Lck sequences. The identified domain structures showed high e-values ranging from 1.39e-35 to 2.03e-17 indicating a high probability that these domains occur within the sequences. The locations and respective e-values are shown in Table 5.19.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Table 5.19. Predicted domain structures, locations, and e-values for the O. fraenata and M. eugenii Lck sequences.

| Domain structures in O.fraenata and M. eugenii Lck sequences |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | O. fraenata |  | M. eugenii |  |
| Domain | Location | e-value | Location | e-value |
| $\mathrm{SH}_{3}$ | $43-99$ | $2.03 \mathrm{e}-17$ | $64-120$ | $1.56 \mathrm{e}-18$ |
| $\mathrm{SH}_{2}$ | $104-194$ | $1.39 \mathrm{e}-35$ | $125-215$ | $1.39 \mathrm{e}-35$ |
| TyrKc | $224-473$ | $2.20 \mathrm{e}-134$ | $245-494$ | $1.42 \mathrm{e}-128$ |

An $\mathrm{SH}_{4}$ domain (unique domain) was identified in $O$. fraenata by comparing its domains with the published Lck sequences for C. auratus langsdorfii (Araki et al., 2007), O. aries (Yu et al., 2010) and H. sapiens (Perlmutter et al., 1988).

An $N$-terminal signal peptide was not identified in the coding domain of the $O$. fraenata Lck molecule because the program identified the molecule as being soluble.

### 5.3.4.3 Lck - Glycosylation and glycation sites

One predicted O-linked glycosylation site was found in the O. fraenata Lck coding domain at position 226 with a confidence value of $55 \%$. The $M$. eugenii partial sequence also contained a predicted O-linked glycosylation site at position 205 with a $55 \%$ probability. Two putative $N$-linked glycosylation sites were found in both the $O$. fraenata and the $M$. eugenii Lck sequences. In O. fraenata, one predicted $N$-linked glycosylation site was located at position 40 with a probability of $72.3 \%$, and the second site was at position 321 and had a $62 \%$ probability. In M. eugenii, one $N$-linked glycosylation site was located at position 19 with a probability of $76.36 \%$ and the second site was at position 300 and had a probability of $64 \%$. The sequences and locations are shown in Table 5.20.

Table 5.20. Predicted N-linked glycosylation sites their sequence, location, probability, and signal strength in the $O$. fraenata and $M$. eugenii Lck sequences.

| Putative N-linked glycosylation sites in O. fraenata and M. eugenii Lck sequences. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O. fraenata |  |  | M. eugenii |  |  |
| Sequence/location | Probability | Signal | Sequence/location | Probability | Signal |
| NGSD (40) | $72.32 \%$ | ++ | NGSD (19) | $76.36 \%$ | +++ |
| NGSL (321) | $62 \%$ | + | NGSL (300) | $64 \%$ | + |

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Predicted glycation sites were found in both $O$. fraenata and $M$. eugenii indicating the presence of covalent bonding sites to sugar moieties. The location of the putative glycated lysines are shown with their respective confidence levels in Table 5.21.

Validation of this result requires sophisticated mass spectrometry or Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFF) analysis which was outside the scope of this study.

Table 5.21. Predicted glycated lysine residues, their locations, and confidence levels in $O$. fraenata and M.eugenii Lck sequences.

| Locations and confidence levels of glycated lysine residues |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| O. fraenata |  |  | M. eugenii |  |
| Location | Confidence | Location | Confidence |  |
| 73 | $82.7 \%$ | 52 | $82.5 \%$ |  |
| 84 | $89 \%$ | 63 | $88.9 \%$ |  |
| 118 | $93.8 \%$ | 97 | $94 \%$ |  |
| 182 |  | $93.8 \%$ | 161 |  |
| 269 | $79 \%$ | 248 | $94 \%$ |  |
| 276 | $92.5 \%$ | 255 | $84 \%$ |  |
| 340 | $91 \%$ | 319 | $92.7 \%$ |  |

### 5.3.4.4 Lck - Phosphorylation sites

Predicted phosphorylated amino acid residues were found in the $O$. fraenata and $M$. eugenii Lck sequences. Thirteen serine, five threonine and seven tyrosine phosphorylation sites were predicted in the $O$. fraenata Lck sequence by the EXPASY prediction program. A similar distribution was found in the partial M. eugenii Lck sequence with the exception that there were six predicted threonine and eight predicted tyrosine phosphorylation sites. The confidence levels of the predictions ranged from $50 \%$ to $98 \%$ in the O. fraenata Lck sequence and $54 \%$ to $99 \%$ in the M. eugenii Lck sequence. Their locations and the predicted confidence levels are shown in Table 5.22.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.22. Predicted phosphorylation sites and their confidence levels for Lck sequences in O. fraenata and M. eugenii.

| Predicted phosphorylation sites in Lck of O. fraenata and M. eugenii |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Serine <br> Positions | Confidence levels | Threonine Positions | Confidence levels | Tyrosine Positions | Confidence levels |
| O. fraenata | $\begin{aligned} & \hline 7 \\ & 42 \\ & 121 \\ & 133 \\ & 156 \\ & 164 \\ & 166 \\ & 194 \\ & 221 \\ & 274 \\ & 279 \\ & 281 \\ & 323 \end{aligned}$ | $96.1 \%$ $97.4 \%$ $91.2 \%$ $99.8 \%$ $86.3 \%$ $58.8 \%$ $99.7 \%$ $83.2 \%$ $63.9 \%$ $98.4 \%$ $89.1 \%$ $90.8 \%$ $61.7 \%$ | $\begin{aligned} & 159 \\ & 226 \\ & 244 \\ & 395 \\ & 418 \end{aligned}$ | 66.5\% <br> 95.9\% <br> 98.4\% <br> 94.4\% <br> 93\% | $\begin{aligned} & 25 \\ & 110 \\ & 192 \\ & 313 \\ & 318 \\ & 360 \\ & 394 \end{aligned}$ | $\begin{aligned} & \hline 50.1 \% \\ & 68.4 \% \\ & 54.1 \% \\ & 97.3 \% \\ & 56.4 \% \\ & 75.6 \% \\ & 85.4 \% \end{aligned}$ |
| M. eugenii | $\begin{aligned} & 21 \\ & 50 \\ & 100 \\ & 112 \\ & 135 \\ & 143 \\ & 145 \\ & 173 \\ & 200 \\ & 253 \\ & 258 \\ & 260 \\ & 302 \end{aligned}$ | $\begin{aligned} & \hline 89.7 \% \\ & 90.9 \% \\ & 91.2 \% \\ & 99.8 \% \\ & 86.3 \% \\ & 58.8 \% \\ & 99.7 \% \\ & 83.2 \% \\ & 63.9 \% \\ & 98.4 \% \\ & 89.1 \% \\ & 90.8 \% \\ & 61.7 \% \end{aligned}$ | $\begin{aligned} & 138 \\ & 205 \\ & 223 \\ & 374 \\ & 397 \\ & 424 \end{aligned}$ | $\begin{aligned} & \hline 66.5 \% \\ & 95.9 \% \\ & 98.4 \% \\ & 94.4 \% \\ & 93 \% \\ & 69.6 \% \end{aligned}$ | 89 <br> 171 <br> 292 <br> 297 <br> 339 <br> 373 <br> 449 <br> 484 | $\begin{aligned} & \hline 68.4 \% \\ & 54.1 \% \\ & 97.3 \% \\ & 56.4 \% \\ & 75.6 \% \\ & 85.4 \% \\ & 95 \% \\ & 68 \% \end{aligned}$ |

### 5.3.4.5 Lck - Disulphide bonds

The O. fraenata Lck sequence contained nine cysteines of which four can build predicted disulphide bridges. In the $O$. fraenata Lck sequence, four predicted disulphide bridges were detected compared to three in the partial Lck sequence of $M$. eugenii. The sequences and locations of these predicted bridges are shown in Table 5.23. The software predicted a disulphide bond located at position 217-224, however the construction of the sequence suggested that this might be an intrachain disulphide bond.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

Table 5.23. Predicted disulphide bonds and their locations and sequences in the $O$. fraenata and $M$. eugenii Lck sequences.

| Predicted disulphide bridges in O. fraenata and M. eugenii Lck sequences |  |  |  |
| :--- | :--- | :--- | :--- |
| O. fraenata |  | M. eugenii |  |
| Sequence | Location | Sequence | Location |
| XXXMGCSCSSS - <br> VRPDNCPEELY | $3-465$ | XXXXRCHYPIV - <br> KLMMLCWKERP | $2-455$ |
| XMGCSCSSSLD - <br> KPMMLCWKERP | $5-476$ | VSDGLCTRLSR - <br> SDTLNCKIADF | $196-357$ |
| DVCERCHYPIV - <br> SDTLNCKIADF | $23-378$ | RLSRPCQTQKP - <br> VRPDNCPEELY | $203-444$ |
| VSDGLCTRLSR - <br> RLSRPCQTQKP | $217-224$ |  |  |

### 5.3.4.6 Lck - Primary sequence and secondary structure prediction

The $O$. fraenata Lck coding domain consisted of 1,528bp which translated into 509 amino acids compared to the human Lck sequence that consisted of 1,530 bp and translated into 510 amino acids (Fig. 5.19). For M. eugenii, a 1,467bp long partial nucleotide sequence was amplified. This translated into 488 amino acids to the stop codon and a further 426bp in the $3^{\prime}$ untranslated region to a polyA tail (raw data in Appendix 5C) (Fig. 5.20).

The distribution of the alpha helices and beta strands differ between the two species over the same areas. The O. fraenata secondary structure prediction indicated that it had two more beta strands than M. eugenii. This may indicate a different fold pattern since the beta strands are more rigid than the alpha helices thus rendering the molecule less flexible.

In the M. eugenii Lck a portion of the $3^{\prime}$ end which was amplified appeared to have a polyA tail. However upon closer inspection no polyadenylation sequence was observed, hence this may not have actually been the polyA tail.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck




Figure 5.19. O. fraenata Lck primary sequence and secondary structure prediction.
$\rightarrow\langle=$ Myristoylation sites. $>\langle=$ Protein kinase ATP- binding region. $\boldsymbol{\bullet}=$ = Tyrosine protein kinases specific active sites. $>\langle=$ Zinc finger domain. $ا\langle=$ Tyrosine kinase phosphorylation site. $><=$ Casein kinase II phosphorylation site. Highlighted in yellow $=\mathrm{N}$-linked glycosylation sites. $K=$ glycation sites. Protein kinase $C$ phosphorylation sites. $T=$ threonine phosphorylation sites. $\boldsymbol{Y}=$ tyrosines phosphorylation sites. Different colours = disulphide bonds. $\square=$ Transmembrane helix, $\square=$ Strand.



Figure 5.20. M. eugenii partial primary Lck sequence and secondary structrure prediction. $>\langle=$ Myristoylation sites. $>\langle=$ Protein kinase ATP- binding region. $\downarrow \boldsymbol{4}=$ Tyrosine protein kinases specific active sites. $>\langle=$ Zinc finger domain. $>\langle=$ Tyrosine kinase phosphorylation site. $>\langle=$ Casein kinase II phosphorylation site. Highlighted in yellow $=\mathrm{N}$-linked glycosylation sites. $K=$ glycation sites. Protein kinase $C$ phosphorylation sites. $T=$ threonine phosphorylation sites. $\mathbf{Y}=$ tyrosines phosphorylation sites. Different colours = disulphide bonds. $\square=$ Transmembrane helix, $\square=$ Strand.

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

5.3.4.7 Lck - Phylogenetic analysis

The Neighbor-Joining phylogenetic tree inferred the evolutionary history of Lck and indicated that Lck is highly conserved in mammals. The optimal tree showed the sum of the branch length was 2.01 (Fig. 5.21). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The tree is drawn to scale with the branch length showing the same units as those of the evolutionary distances used to infer the tree. The evolutionary distances are in the units of the number of amino acid substitutions per site. This analysis involved 31 amino acid sequences and all positions containing gaps and missing data were eliminated. There were a total of 57 positions in the final dataset. A clear clustering of the marsupial sequences with those of other mammals was observed. There is a distinct separation between the macropods within the marsupial clade. The clustering of the taxa was intact despite the fact that only a partial sequence of the M. eugenii Lck molecule was included in the phylogenetic analysis.


Figure 5.21. Phylogenetic tree for Lck compiled using the Neighbor-Joining method based on the Poisson correction model.

### 5.3.4.8 Lck - Structure modelling

Homology modelling of Lck carried out with different programs showed that the closest template was the pdb structure 2ofu_1. RaptorX did not model the full open reading frame of the $O$. fraenata Lck sequence but modelled the individual domains (data not shown). The Phyre 2 program modelled $85 \%$ of the $O$. fraenata putative protein sequence with more than a $90 \%$ confidence value. The interactive program Modeller 9.10 used the template 1qpc to generate a model for the $O$. fraenata Lck sequence. The different structural models are shown in Fig. 5.22.


Figure 5.22. Structure models of Lck in O. fraenta (a) I-Tasser model (b) ligand binding capacity model (c), Swiss Model model (d) Modeller 9.10 interactive model.

Sixteen predicted amino acid residues involved in ligand binding and their locations were identified in the $O$. fraenata Lck sequence with the 3DLigand binding site prediction server (http.//www.sbg.bio.ic.ac.uk/3dligandsite/3dligand). These are shown in Table 5.24 .

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

Table 5.24. Predicted ligand binding sites and their
locations within the $O$. fraenata Lck sequence.

| Predicted ligand binding residues of O. fraenata Lck |  |  |  |
| :--- | :--- | :--- | :--- |
| Residue | Amino Acid | Residue | Amino Acid |
| 251 | Leucine | 319 | Methionine |
| 259 | Valine | 322 | Glycine |
| 271 | Alanine | 323 | Serine |
| 273 | Lysine | 368 | Alanine |
| 301 | Valine | 369 | Asparagine |
| 316 | Threonine | 371 | Leucine |
| 317 | Glutamine | 382 | Aspartic acid |
| 318 | Tyrosine | 385 | Leucine |

It can be seen from the statistics in Fig. 5.23a that the structure prediction indicated a close relationship to the template selected. The Z-score slider indicated that the model predicted for the $O$. fraenata Lck is close to Lck structures that were solved by others using X-ray crystallography (Fig. 5.23a,b). A density plot based on the QMEAN score of all reference models indicated the location of the $O$. fraenata Lck model (Fig. 5.23a). The number of reference models used in the calculation is given at the bottom of the plot (Fig.
5.23 c ).


Figure 5.23. Statistical evaluation of $O$. fraenata Lck model prediction (a) location of $O$. fraenata homology model compared with structures in pdb, (b) Z-score slider indicating quality of the model, (c) Bell curve for QMEAN.

### 5.3.4.9 Lck - Expression studies

The gene expression measured against the housekeeping gene GAPDH indicated that the Lck molecule is highly expressed in all tissues which were investigated. The image of the 2\% agarose gel revealed a high intensity of expression of the Lck gene in spleen and thymus tissue. This may indicate that the Lck gene is upregulated in all tissues investigated (Fig. 5.24).


Figure 5.24. Gel image showing expression of $O$. fraenata Lck across four tissue types.
$\mathrm{T}=$ thymus, $\mathrm{S}=$ spleen, $\mathrm{L}=$ lung, $\mathrm{AN}=$ axial node, $\mathrm{M}=$ marker.

## Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck

## 5．3．4．10 Lck－Western Blot analysis

The selected N －terminal anti－human Lck antibody did not detect the Lck protein in the spleen，axial node，gut node，thymus，liver and lung tissues from $O$ ．fraenata and thymus tissue from M．eugenii（Fig．5．25）．


Figure 5．25．Western Blot image for Lck protein in spleen，axial node，gut node，thymus，liver and lung tissues from $O$ ．fraenata and thymus tissue from $M$ ．eugenii．

## 5．4 Discussion

The TCR弓 chain is one of the main signalling units in the $T$ cell signalling cascade．The $M$ ． eugenii molecule is not annotated in the ensembl database．This is the first time that the $T C R \zeta$ sequences of $M$ ．eugenii and $O$ ．fraenata have been characterized．While the identity percentage of the putative amino acid residues is high among mammals（Table 5．2）there were differences in the structurally important motifs of the TCR弓 chains in the two marsupial species when compared to humans and mice．In this study，a glycine rich region similar to that found in humans was found in the TCR弓 in the two marsupials．It was also found that the marsupial glycine region had a different topology when compared to humans and mice（Fig．5．26）．Two additional amino acid residues，asparagine（ N ）and glutamine $(Q)$ ，were found in the marsupial sequences．While the human and rodent sequences have the consensus sequence G（129）XXXXGKGXXGX XXG（143）（Peter et al．，

# Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck 

1992), the corresponding marsupial sequence was found to be

G(130)XXXXXXGKGXXXXXXXG(146).

## Human and rodents

putative GTP/GDP interaction site

H Loop
H

## Marsupial



Figure 5.26. Structural differences in the cytoplasmic tail of the marsupial TCR弓 chain compared with human and rodents.

The conserved arginine motif in the glycine region is responsible for the maintenance of the tertiary structure of the molecule (Borders et al., 1994). The marsupial arginine motif is preceded by two additional amino acid residues similar to that found in other mammals. However, the human and rodent sequences were devoid of the asparagine and glutamine residues in the glycine region. Another interesting finding was the substitution of one of the glycine residues $\left(\mathrm{G}^{128}\right)$ with valine in the marsupial sequence. There are reports of mutation of $\mathrm{G}^{134}$ to valine which in humans reduces antigen induced IL-2 production and phosphorylation of the zeta chain (Frank et al., 1990). It would therefore appear that this glycine is functionally important. However, no studies have been undertaken to determine whether or not the substitution of glycine to valine in marsupials has similar effects.

This study found that the $O$. fraenata $T C R \zeta$ amino terminus resembles a leader sequence with the signal peptidase cleavage site located between residues 21 and 22 , yielding a

# Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck 

mature peptide of 143 amino acid residues which is consistent with other known TCR弓 sequences（Appendix 5A）．However，in this study it was found that the putative amino acid sequence for the $M$ ．eugenii TCR弓 did not show the presence of a signal peptide．The TCR弓 chain is a single－pass membrane protein with an internal signal sequence into the endoplasmic reticulum membrane．The hydrophobic residues in the domains that traverse the plasma membrane and the low occurrence of these types of transmembrane proteins define the ability of the cell to transduce a signal or take part in cell to cell contact（Bledi et al．，2003）．The leader sequence is cleaved off．The motifs of the mature protein are conserved in marsupials．

A single cysteine at position 32 of the putative $O$ ．fraenata amino acid sequence was present on the external face of the transmembrane region．This indicated that all disulphide interactions between the zeta chain and other CD3 polypeptide chains occur through this residue．The M．eugenii sequence has a single cysteine residue at position 19 due to the absence of the leader sequence and all disulphide interactions therefore occur through this residue．It was found in this study that the transmembrane region DPRL ${ }^{1}{ }^{1}$ YLLDGILF ${ }^{10}$ IYGVIITALF ${ }^{20}$ LRA KFSKIAK of the marsupial TCR chain contained two aspartic acid residues．These play an important part in TCR assembly and in the dimerization of the molecule as well as in the formation of a disulphide bridge．This was established by others in experiments carried out in the human TCR $\zeta$ chain（Call et al．， 2006，Rutledge et al．，1992）．Due to the conservation of these residues in marsupials it was concluded that the aspartic acid residues had the same function as in humans．It is the negative charge of these asparagine residues that are of importance as well as their location in the transmembrane domain（Weissman et al．，1988）．The residues involved in the dimerization of the marsupial TCR $\zeta$ chain were found to be $C^{2}, D^{6}, L^{9}, Y^{12}, L^{16}, T^{17}$ and $\mathrm{F}^{20}$ which are the same residues responsible for the dimerization of the human molecule． Residue $\mathrm{V}^{23}$（numbering from motif only）in humans is also involved in this process but the marsupial TCR弓 chain has a substitution to alanine in that position．Three of the residues are polar and mutational analyses in humans have identified $D^{6}, Y^{12}$ and $T^{17}$ as the most important residues in the dimerization process（Call et al．，2006，Rutledge et al．，1992）．

## Chapter 5 －Signalling molecules－TCRZ，ZAP－70 and Lck

The glycine residue in the second part of the motif（GVXXT）drives the homodimerization of this molecule（Bolliger and Johansson，1999）．Residue $D^{6}$ contacts the TCR $\alpha$ chain at the arginine residue and stabilizes the TCR／CD3 complex（Bolliger and Johansson，1999）．It appeared that these residues are conserved in O．fraenata and M．eugenii（Appendix 5A） and therefore may have the same function．The ability of the residues，especially the aspartic acid residues，to assist in the dimerization of the molecule is dependent on their positions within the helix．It was found in the present study that the marsupial models show the locations of the two aspartic residues at similar positions to those in the human molecule．

The extracellular domain of TCR弓 consists of nine amino acid residues across all mammalian sequences．Mutational studies in humans have highlighted the importance of this short region by reducing the extracellular domain to two residues with the result that the receptor assembly was inhibited（Johansson et al．，1999）．The conservation of this domain across marsupials therefore indicated a similar function．It was further reported that architectural changes occurred in human T lymphocytes which had been stimulated for an unstated but lengthy period of time（La Gruta et al．，2004，Osono et al．，1997）．The characterization of TCR弓 in M．eugenii was carried out on CDNA from stimulated lymphocytes and the sequences appeared to have conventional domain structures as shown in Table 5．15．The stimulation time point for the M．eugenii lymphocytes was 48 h ． This was not regarded as＇lengthy＇，and a comparison with the work of La Gruta et al． （2004）and Osono et al．（1997）may not therefore be valid．Further stimulation assays may have to be conducted to determine if the changes in the domain structure of the marsupial TCR弓 chain molecules do in fact occur．

In humans，the binding of Lck to the TCR弓 via the phosphorylation event on the ITAM recruits additional signalling molecules such as ZAP－70 via the Src homology $2\left(\mathrm{SH}_{2}\right)$ domains（Straus and Weiss，1993，Wange et al．，1992，Wange et al．，1993）．The activation of ZAP－70 is possible through the interaction between ZAP－70，Lck and the TCR弓－CD4－CD8 complex（Chan et al．，1995，Neumeister et al．，1995）．Due to the signalling function of Lck

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

it was not surprising to find that the marsupial Lck had a greater than $90 \%$ identity to other mammalian Lck molecules, thus indicating that this gene is highly conserved and serves an important function.

A domain structure search conducted in this study indicated that the marsupial Lck molecule, like its human counterpart (Pawson et al., 2001) contained $\mathrm{SH}_{2}, \mathrm{SH}_{3}$, and $\mathrm{SH}_{4}$ domains and a tyrosine kinase domain (Table 5.15) (supporting data in Appendix 5C). In 0. fraenata and $M$. eugenii the structure of the $\mathrm{SH}_{2}$ domain encompasses a central antiparallel $\beta$-sheet sandwiched between two alpha helices. This is a module of approximately 100 amino acids that bind specific phospho-tyrosine motifs. This study also found that the hydrophobic core and the invariant arginine residue that coordinates the phosphate oxygen of the phosphorylated tyrosine were conserved in the O. fraenata Lck molecule. These findings support the work of Pawson et al. (2001) in the human $\mathrm{SH}_{2}$ domain. It was also reported by Pawson et al. (2001) that the $\mathrm{SH}_{3}$ domains in humans contain five-antiparallel beta strands which are packed to form two perpendicular beta sheets. In this study both the $\mathrm{SH}_{3}$ and the $\mathrm{SH}_{2}$ domains were found to be conserved in the marsupial sequences.

In the human $\mathrm{SH}_{2}$ domain a hydrophobic patch consisting of a cluster of conserved aromatic residues resides in the $\mathrm{SH}_{3}$ domain (Nguyen et al., 1998). This feature was also identified in the $O$. fraenata sequence in the present study. $\mathrm{SH}_{3}$ domains recognize RKXXPXXP or PXXPXR motifs and these motifs together with the two proline residues that bind within the two hydrophobic pockets of the $\mathrm{SH}_{3}$ domain were also identified in the $O$. fraenata Lck molecule. $\mathrm{SH}_{4}$ has a consensus sequence of MGC (methionine, glycine, cysteine) which is located at the $N$-terminal end, and is responsible for promoting membrane binding and plasma membrane targeting (Liang et al., 2004). In the case of Lck, the $\mathrm{SH}_{4}$ domain is essential for membrane localization and function which is dependent on the myristoylation of the glycine residue in position two of the Lck N - terminal sequence. Human studies have shown that the serine at position six is responsible for the localization of the Lck molecule (Yasuda et al., 2000). In the present study this residue was

## Chapter 5 - Signalling molecules - TCR弓, ZAP-70 and Lck

identified in the $O$. fraenata and $M$. eugenii sequences and therefore it is proposed that the function of this motif is conserved in those species.

Lck not only interacts with ZAP-70 but also interacts with CD4. This interaction occurs between the short cytoplasmic domain of CD4 and the $\mathrm{NH}_{2}$-terminal domain of Lck through the sequence motifs CXC and CXXC. These motifs were not only identified in the O. fraenata and M. eugenii sequences in Lck, but were also found to be located in their CD8 sequences indicating the interaction between these two molecules also occurs in marsupials. The $\mathrm{NH}_{2}$ terminal is located in the unique domain of Lck and holds the CXXC motif representing the site of signal transduction (Isakov and Biesinger, 2000). The dissociation of Lck from the cytoplasmic tail of CD4 occurs during T cell activation. This induces serine phosphorylation of CD4, internalization and degradation of the Lck molecule (Pelchen-Matthews et al., 1992). It was found in the present study that these binding sites were conserved in all vertebrates with the exception of the teleost fish (supporting data in Appendix 5C). It was found in this study that the Lck sequence of $O$. fraenata also contained this binding site and it is concluded that the interaction of the marsupial CD4 and CD8 molecule with Lck is conserved.

It was also found in this study that in $O$. fraenata, and in the partial sequence from $M$. eugenii, the catalytic domain HRDLRAAN was conserved. In human studies it has been determined that RDL accommodates the binding of protein phosphatase 2 (PP2-an Src family selective tyrosine kinase inhibitor) (Zhu et al., 1999). A portion of this catalytic domain (DLRAAN) was also found in the M. eugenii ZAP-70 sequence indicating the interaction of the two molecules was conserved. The composition of the hydrophobic pocket of the marsupial Lck appears to be unique to the Src kinase family as is the case in other mammals (supporting data in Appendix 5C). Two lysine (K) residues which interact with adenosinetriphosphate (ATP) in the Lck molecule were found to be conserved in both O. fraenata and M. eugenii (supporting data in Appendix 5C).

A major event in the T cell signalling cascade is the activation of ZAP-70 which occurs after the Lck has bound the CD4 or CD8 TCR co-receptors. In order to draw any conclusions as

## Chapter 5 - Signalling molecules - TCRЗ, ZAP-70 and Lck

to the sophistication of the marsupial adaptive immune system it was therefore important to investigate the main motifs for any differences in sequence and secondary structure. Prior to this study, the sequence of ZAP-70 in marsupials was unknown although a partial annotation exists in the ensembl database. A comparison of the ensembl sequence and the $M$. eugenii sequence expressed in this study revealed that there were significant differences between the two (supporting data are in Appendix 5B). The expressed $M$. eugenii sequence differed in important sequence motifs such as the loop motifs and in the interdomain $B$ region to those in the annotated sequence.

Like other characterized mammalian ZAP-70 molecules, ZAP-70 in M. eugenii interacts with the CD3 chains and is comprised of two $\mathrm{SH}_{2}$ domains $\left(\mathrm{SH}_{2}-\mathrm{N}\right.$ and $\left.\mathrm{SH}_{2}-\mathrm{C}\right)$ that bind the phosphorylated ITAMs on TCRZ. This phosphorylation event allows for the recruitment of ZAP-70 to the TCR via the $\mathrm{SH}_{2}$ domains consequently phosphorylating the tyrosine residues in ZAP-70 which affects the catalytic activation of the molecule. This was deduced by reference to experiments carried out in humans where it was found that the cytoplasmic ZAP-70 molecule rapidly translocated the TCR-CD3 complex upon ligand binding in preparation for signal transduction (Wange et al., 1993, Chan et al., 1992).

In this study a comparison of the M. eugenii ZAP-70 with the human sequence of ZAP-70 revealed similarities in the P -loop and the functional motifs contained therein. The glycine loop or P-loop was identified in the $M$. eugenii sequence. This lies between the $\beta 1$ and $\beta 2$ strands that are important for localizing the phosphates of ATP, substrate binding, catalysis and regulation of kinase activity. The P-loop has a consensus sequence of $G x G x \phi G$ ( $G=$ glycine, $x$ represents any amino acid, and $\phi$ is either a phenylalanine or a tyrosine) and is conserved in the O. fraenata, M. eugenii, L. hirsutus and M. domestica ZAP-70 sequences. In humans, this loop forms the upper side of the ATP-binding cleft and because this loop is located in the same area in the marsupial sequence and with the same topology a similar function is indicated. It was found in this study that the $\mathrm{F}^{349}$ residue in the four marsupial sequences is conserved. Human studies have shown that this residue has a side chain that is folded back into the binding cleft (Jin et al., 2004a).

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

This appears to be same for the marsupial ZAP-70 sequence due to conservation of the topography. The glycine residues increases the flexibility of this structure which enables it to adopt different conformations to accommodate different inhibitors (Jin et al., 2004a). The sequence VELGAGNF (V = valine, $\mathrm{E}=$ glutamic acid, $\mathrm{L}=$ leucine, $\mathrm{G}=$ glycine, $\mathrm{A}=$ alanine, $\mathrm{N}=$ asparagine, $\mathrm{F}=$ phenylalanine) of the marsupial P -loop is conserved except for the first amino acid. In marsupials, amphibians, fish and birds the first amino acid of this motif is a valine whereas in all other vertebrates, except for L. Africana, this is substituted with isoleucine. However, no reports have indicated any functional impairment due to this substitution and with the biochemical activity being similar between the two residues it is highly unlikely that the function is compromised in marsupials.

The negative regulator in the linker region $\left(\mathrm{Y}^{288}\right)$ is located between the carboxyl terminal $\mathrm{SH}_{2}$ and the catalytic domains and is conserved across species including the marsupials. The phosphorylation of residue $\mathrm{Y}^{292}$ in humans down-regulates antigen receptor function through mechanisms independent of ZAP-70 activity (Ahmed et al., 2005).
Phosphorylation of $\mathrm{Y}^{292}$ may induce a conformational change in ZAP-70 to stabilize its enzymatic activity following antigen receptor cross-linking while phosphorylation on $Y^{319}$ is important for the interferon-stimulated ERK activation (Ahmed et al., 2005). A species alignment of ZAP-70 shows that the four marsupial sequences all have the same biochemical environment around the negative regulatory site, and it was therefore concluded that the function of this molecule is conserved.

The lysine ( $\mathrm{K}^{369}$, human numbering) is responsible for transferring phosphate groups and was found to be conserved in marsupial ZAP-70. The methionine ( $\mathrm{M}^{411}$, human numbering) which is the gatekeeper in the gatekeeper pocket were shown to be conserved across all species, including marsupials, which indicated that both the lysine and the methionine are functionally important residues.

Human functional studies have shown that the function of ZAP-70 is regulated by phosphorylation on multiple tyrosine residues (Di Bartolo et al., 1999, Chan et al., 1992) including the conserved tyrosine ( $\mathrm{Y}^{493}$ human numbering) located in the catalytic loop.

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

The phosphorylation of ZAP-70 on $\mathrm{Y}^{493}$ is essential for antigen receptor mediated activation of calcium and the ras pathways. ZAP-70 is first phosphorylated by Lck at $Y^{493}$ which up-regulates the catalytic activity of ZAP-70. This residue was shown to be conserved in the four marsupial sequences thus indicating a conservation of function.

The motif $S^{520}$ DVWS $^{524}$ (human numbering) is present in all phosphotyrosine kinases and especially the amino acid residue $S^{520}$ and is important in the enzymatic activity and function of ZAP-70 in the signalling cascade (Yang et al., 2003b, Qian and Weiss, 1997). The extended sequence for this motif in humans is FRKFSSRS ${ }^{520}$ DVWS ${ }^{524} \mathrm{YGV}$. It was shown in this study that the M. eugenii sequence YRKFSCQS ${ }^{520}$ DVWTYGF and the 0 . fraenata sequence YRKFSSRS ${ }^{520}$ DVWSYGV differ in their amino acid compositions and are both different to the human sequence. The $O$. fraenata sequence is closer to the human sequence, by differing only in one amino acid residue, than to that of the other macropod M. eugenii. Human studies have shown that $D^{521}$ stabilizes the catalytic loop by hydrogen bonding to the arginine residue in the catalytic loop (HRDLAARN) (Taylor et al., 1995). In humans, the catalytic loop determines the substrate specificity of the protein kinase (Taylor et al., 1995). This appeared to be the same for the marsupials since the catalytic loop sequence, including the residue $\mathrm{S}^{520}$, is $100 \%$ conserved.

In humans, the first two residues of the SDVWS motif are responsible for the activation of NFkB and the IL-2 promoter (Yang et al., 2003b). The present study did not investigate the functionality of this motif in marsupials, however the sequence is conserved thus indicating it has a similar function.

The DLAARN motif is $100 \%$ conserved among vertebrates. The amino acid residues in this motif are responsible for generating a signal that induces thymocyte development (Wiest et al., 1997). Human studies have shown that mutations in this motif halt thymocyte development at the $\mathrm{CD4}^{+} \mathrm{CD}^{+}$stage (Wiest et al., 1997). In the present study it was found that the DLAARN motif is $100 \%$ conserved in the four marsupials thus indicating that the function of this motif is also conserved.

# Chapter 5 －Signalling molecules－TCR弓，ZAP－70 and Lck 

The N－terminal human ZAP－70 antibody did not detect the marsupial ZAP－70 molecule in the $O$ ．fraenata spleen，axial node，gut node，thymus，liver and lung tissues，because the sequence conservation in this area of the putative marsupial amino acid sequence was only $60 \%$ ．

## 5．5 Conclusion

Marsupial genomes have been published only for M．eugenii and M．domestica．The TCR弓 chain，one of the main signalling units in the T cell signalling cascade，has not been annotated for those two species in ensembl．In this study，TCR弓 was characterized in $O$ ． fraenata，M．eugenii and M．domestica，ZAP－70 was characterized in $O$ ．fraenata，M． eugenii，L．hirsutus and M．domestica，and Lck was characterized in O．fraenata and M． eugenii．This is the first time these signalling molecules have been characterized in those marsupial species．

The predicted marsupial TCRZ，ZAP－70 and Lck structures determined in this study were compared to the molecular structures of other mammals resolved by others using X－ray crystallography．It was found that the amino acid sequences were highly conserved in different areas of the molecules and the structures appeared to be similar to those of other mammals．It was demonstrated that the signalling molecules TCRZ，ZAP－70 and Lck have homologies well above $70 \%$ to the same signalling molecules in other mammals．This study showed that the $\mathrm{SH}_{2}, \mathrm{SH}_{3}$ and tyrosine kinase domains were present in the TCR弓 chain of $O$ ．fraenata and $M$ ．eugenii．These domains were also found in the ZAP－70 sequences of $O$ ．fraenata，M．eugenii，L．hirsutus（in part）and M．domestica（in part）．The $\mathrm{SH}_{4}$ domain in Lck was detected in $O$ ．fraenata and M．eugenii（in part）．The triple ITAM motif found in other mammalian TCR弓 chains was found in the $O$ ．fraenata and M．eugenii TCR弓 molecules．The catalytic domain in ZAP－70，which is important in the enzymatic function of the molecule，was shown to be conserved in the $O$ ．fraenata and $M$ ．eugenii ZAP－70 sequences．The classic CxxC motif was identified in the $O$ ．fraenata and $M$ ．eugenii Lck molecules and it was therefore concluded that the attachment of Lck to the co－ receptors CD4 and CD8 also occurs in those species．

## Chapter 5 - Signalling molecules - TCRZ, ZAP-70 and Lck

The functions of many of the motifs discussed in this chapter are known in humans and other mammals. Because those motifs have now been shown to be conserved in the 0 . fraenata and $M$. eugenii immune molecules it is concluded that their functionality is also conserved. Functional studies were outside the scope of this study. Future work should therefore include functional studies to confirm that these marsupial immune molecules have the same functional capabilities as in other mammals. It would also be useful to investigate whether or not the calcium ion influx upon ZAP-70 activation also occurs in marsupials. This event in humans stimulates the Linker of activated T lymphocytes and therefore boosts the T cell signal.

Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

## Chapter 6

## Cytokines - Interleukin-2, Interleukin-17 and the regulatory T cell surface

 marker
# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

## Chapter 6-Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

### 6.0 Abstract

The cytokine IL-2 is the principal T cell growth factor and, prior to this study, had been identified in various vertebrates but not in marsupials. The full open reading frame of the T. vulpecula IL-2 sequence was characterized in this study and was published by Young et al. (2011). The full M. eugenii IL-2 sequence was also identified in this study for the first time but has yet to be published.

The mRNA derived IL-2 sequences, including the $5^{\prime}$ and $3^{\prime}$ ends of the molecule, were identified in both $T$. vulpecula and $M$. eugenii using RACE-PCR. The IL- 2 sequences were investigated for polymorphisms, using RT-PCR, in both T. vulpecula and M. eugenii. The promoter region of the M. eugenii IL-2 gene was identified by data mining the published wallaby genome in the ensembl database. A marsupial-specific antibody was designed by predicting the secondary structure and finding a hydrophobic stretch using the Kyte Doolittle and Hopp- Woods plots. A Dot Blot was used to determine the binding of the $M$. eugenii IL-2 antibody to its peptide while a Western Blot was used to determine that the M. eugenii IL-2 antibody binds the IL-2 protein in a cell lysate made from thymus. IL-17 and Foxp3 were also identified in M. eugenii using RT-PCR. Structure prediction tools were used to elucidate a probable tertiary structure and the ligand binding properties of the two cytokines were investigated using bioinformatics tools.

It was found that the $T$. vulpecula IL-2 gene sequence was devoid of both synonymous and non-synonymous substitutions. In contrast, the M. eugenii IL-2 sequence contained both types of substitutions. It appeared that the TATA box, the NFкB, AP-1 and Oct-1 binding sites were present in the M. eugenii IL-2 gene. The marsupial-specific antibody for M. eugenii was successfully tested in a tissue lysate. The cytokine IL-17 was characterized, and it identified the $\mathrm{T}_{\mathrm{h}} 17$ cell sub-population and the specific knot motif characteristic for

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

the IL-17 cytokine family in M. eugenii. The $\mathrm{T}_{\text {reg }}$ sub-population was also identified in $M$. eugenii and $O$. fraenata by characterizing the Foxp3 molecule.

### 6.1 Introduction

Interleukin-2 promotes T cell proliferation, activation, and differentiation, and is produced mainly by an activated $T_{h} 1$ cell population (Weaver et al., 2007, Smith, 1988a, Morgan et al., 1976). The activation of IL-2 producing CD4 ${ }^{+}$T lymphocytes occurs in response to TCR stimulation (Bendiksen and Rekvig, 2004, Nelson et al., 1996). IL-2 can be produced by a number of events such as activation of dendritic cells by gram negative bacteria (Granucci et al., 2003), activation of natural killer (NK) cells (Yu et al., 2000) and immunoglobulin synthesis by B lymphocytes (Gold and DeFranco, 1994). IL-2 has been identified in a number of vertebrates (Table 6.1, Appendix 6A) and activity analogous to IL-2 has been detected in lower vertebrates such as Spalerosophis diadema (Egyptian or diadem rat snake) (El-Ridi et al., 1986). Once the cytokine is produced, the magnitude of the response is regulated at the genetic level, however IL-2 is difficult to detect due to the low level of expression in resting T lymphocytes (Margeta-Mitrovic, 2002). A review of the literature revealed that this cytokine can only be detected in cells that were either stimulated with a mitogen, such as ConcanavalinA (ConA) or Phytohaemagglutinin (PHA) (Bird et al., 2005b), or in cells where the TCR complex interacted with an antigen/MHC complex (Smith, 1988b).

IL-2 is implicated in a multitude of functions in the immune system and it also plays an important role in providing homeostasis for regulatory $T$ lymphocytes ( $\mathrm{T}_{\text {reg }}$ ) (Fehérvari and Sakaguchi, 2004). Regulatory T lymphocytes are characterized by a high expression of the forkhead box protein 3 (Foxp3) gene which can up- or down-regulate around 700 genes (Campbell and Ziegler, 2007). Foxp3 is a multifunctional protein acting either as a transcriptional repressor by inactivating the transcription of the cytokine IL-2, or as a transcriptional activator (Moon et al., 2009, Chen et al., 2006, Wu et al., 2006). It is thought that Foxp3 is essential for the development of the $\mathrm{T}_{\text {reg }}$ population as immune

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

cells, and is involved in the molecular mechanism which controls immune tolerance (Moon et al., 2009, Mantel et al., 2006).

The differentiation of $T_{\text {regs }}$ is tightly linked to the development of IL-17 producing $T_{h} 17$ cells. The $\mathrm{T}_{\mathrm{h}} 17$ cell population was not identified in humans until 2007 (Beriou et al., 2009, Stockinger and Veldhoen, 2007). The M. eugenii sequence for IL-17 is annotated in ensembl. In this study, the mRNA derived expressed sequence of the M. eugenii IL-17 was obtained and characterized for important functional motifs.
$\mathrm{CD} 4^{+} \mathrm{IL}-17^{+}$cells have been implicated in allograft rejection and several autoimmune diseases (Kappel et al., 2009). Given the fact that marsupials present with a difference in skin graft rejection response time, it was considered that an investigation of the $M$. eugenii sequence would reveal important differences when compared to other mammalian IL-17 sequences. IL-17 is produced in response to IL-23 which is induced, for example, by M. tuberculosis infected cells (Lockhart et al., 2006). The evidence that marsupials suffer from mycobacterial infections meant that the structural components of IL-17 in M. eugenii warranted investigation.

This study investigated the Foxp3 gene in M. eugenii and O. fraenata, the cytokine IL-17 in M. eugenii, and identified the protein of IL-2 in M. eugenii.

### 6.2 Aims and Objectives.

The aims of the study were to determine whether or not the marsupial immune system overall is as sophisticated as that of other mammals by identifying important regulatory molecules and, in particular:

- To characterize the mRNA derived IL-2 molecule and to design a custom made marsupial IL-2 antibody to verify that the mRNA product was translated into a protein.


## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

- To characterize the expressed sequence of IL-17 and identify the cysteine knot family motif of the IL-17 cytokine family.
- To demonstrate that $\mathrm{T}_{\text {reg }}$ cells were also present in the repertoire of the marsupial immune system by characterizing the cell surface marker Foxp3 that identifies a T cell as belonging to the $\mathrm{T}_{\text {reg }}$ cell sub-population.


### 6.3 Specific Materials and Methods

The following materials and methods were unique to this chapter. General materials and methods are detailed in Chapter 2.

### 6.3.1 RNA, mRNA and cDNA

RNA and RACE DNA from $M$. eugenii PHA stimulated lymphocytes and RACE DNA from $T$. vulpecula stimulated lymphocytes were donated by Dr. L. J. Young. cDNA was synthesized from the RNA of $M$. eugenii PHA stimulated lymphocytes as described in Chapter 2.

RNA and mRNA were isolated from spleen, gut node, thymus and liver, and Foxp3 was isolated from spleen and thymus from $O$. fraenata.

### 6.3.2 Primer design for Interleukin-2 (IL-2), Interleukin-17 (IL-17) and Forkhead box P3

 (Foxp3).Primers were designed as detailed in Chapter 2, section 2.1.2. The primer sequences used are presented in Table 6.1.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

Table 6.1. Primer sequences employed to deduce the open reading frames of IL-2, IL-17, the partial open reading frame of Foxp3 in M. eugenii, and primers for the deduction of potential polymorphisms in M. eugenii and T. vulpecula IL-2.

| Species/ Gene | Forward primer $3^{\prime}-5^{\prime}$ | Reverse primer $3^{\prime}-5^{\prime}$ | $\mathrm{T}_{\mathrm{m}}$ | Size | Primer ID |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IL-2 |  |  |  |  |  |
| M. eugenii | ctcctgtybtgcrtbgcactaactcttg (Exon-1) 3'RACE | gctgtcaacgatacgctacgtaacg <br> (3'RACE primer) <br> cgctacgtaacggcatgacagtg <br> ( $3^{\prime}$ Nested RACE primer) | $61.6^{\circ} \mathrm{C} / 76^{\circ} \mathrm{C}$ $72^{\circ} \mathrm{C}$ | ~700bp | $2 F W_{c}-5$ |
|  | cgactggagcacgaggacactga (5'RACE primer) ggacactgacatggactgaaggagta (5’Nested RACE primer) | catgttagtgcatgaatctttggcag <br> ac (Exon-4) 5'RACE | $\begin{aligned} & 74^{\circ} \mathrm{C} / 58^{\circ} \mathrm{C} \\ & 78^{\circ} \mathrm{C} \end{aligned}$ | 550bp | 2TR-R |
|  | ccactctctaatcatctacccagag (Exon-1) 3'UTR | cagttaggatcataagatctattac (Exon-4) 5' UTR | $55^{\circ} \mathrm{C} / 61^{\circ} \mathrm{C}$ | 607bp | $\begin{aligned} & \text { IL2-UTF/* } \\ & \text { IL2-UTR } \end{aligned}$ |
|  | atgaacaaggtcccgctcttgtcctg (Exon-1) | ttaagatccttcaatcctcatcttgg (Exon-4) | $57^{\circ} \mathrm{C} / 51^{\circ} \mathrm{C}$ | 420bp | $\begin{aligned} & \text { IL2START/ } \\ & \text { IL2STOP } \end{aligned}$ |
|  | cccgtctcttgtcctgtattg (Exon-1) | ctacgtgacttaatggaggtcc (Exon-2) | $54.6{ }^{\circ} \mathrm{C} / 54.6^{\circ} \mathrm{C}$ | 150bp | $\begin{aligned} & \text { IL-2fexp/** } \\ & \text { IL-2rexp } \end{aligned}$ |
| T. vulpecula | attccactctctaatcactactcag ( $5^{\prime}$ UTR) | actgctgttggtcttagtcgtc (3'UTR)) | $53.4{ }^{\circ} \mathrm{C} / 56.8^{\circ} \mathrm{C}$ | 650bp | P2UTRF/ P2UTR* |
| O. fraenata | ccaccactgtgctgcagtacttactacg | cgatgactgctggtattacttgggat gtag | $63^{\circ} \mathrm{C} / 61^{\circ} \mathrm{C}$ | 122bp | HRM2TF/ <br> HRM2TR*** |
| IL-17 |  |  |  |  |  |
| M.eugenii | atgtcttctctgggcaacttgccaggg <br> (Exon-1) | tcaggacactgtgcgtggggtcacac (Exon-3) | $64^{\circ} \mathrm{C} / 64^{\circ} \mathrm{C}$ | 460bp | T17F/T17R |
| Foxp3 |  |  |  |  |  |
| M. eugenii | ggccygghtgkgaraaggtcttc | gatctcrttgagkgtccgctgyttctc | $60^{\circ} \mathrm{C} / 62^{\circ} \mathrm{C}$ | $\sim 500 \mathrm{bp}$ | FoxF/FoxR |
|  | gagaaacagcggacactcaatgagatc $3^{\prime} \text { RACE }$ | gctgtcaacgatacgctacgtaacg | $60^{\circ} \mathrm{C} / 76^{\circ} \mathrm{C}$ | ~1200bp | TFORKF |

* designed by Dr. L.J. Young and used to deduce IL-2 polymorphisms in M. eugenii and T. vulpecula. ** used for expression studies. ${ }^{* * *}$ used in qPCR.


### 6.3.3 Trichosurus vulpecula PHA stimulated lymphocytes.

IL-2 was identified in PHA stimulated lymphocytes of $T$. vulpecula. The animal was taken from the wild and euthanized with appropriate approval from the Animal Ethics Committee of Landcare Research, Lincoln in accordance with the 1987 Animals Protection Regulation of New Zealand (Approval No. 10/02/01). Blood and spleen suspensions were prepared from homogenized tissues of the retropharyngeal lymph nodes and the mesenteric lymph node, and were used in a stimulation assay carried out by New Zealand collaborators. Control and stimulated cells were harvested for molecular studies at the 24 h and 72 h time points, shipped to Australia and processed in the Young laboratory.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

6.3.4 Macropus eugenii stimulated lymphocytes.

The stimulation assay was performed by Dr. L. J. Young and the donated cell pellet was used in this study. RNA and mRNA were isolated from the cell pellet, as described in Chapter 2, sections 2.1.3-2.1.3.3, from which cDNA was subsequently synthesized as outlined in Chapter 2, section 2.1.5.
6.3.5 Polymerase chain reaction, cloning and sequencing.

The PCR conditions used, and the concentration of the PCR mixes employed, are stated in Chapter 2, section 2.1.8. Table 6.2 lists the PCR templates used. A detailed description of the templates can be found in Chapter 2, section 2.1.8.1.

Table 6.2. RT-PCR and RACE-PCR templates used for amplification of IL-2, IL-17
and Foxp3.

| Species | Gene of interest | PCR template | RACE PCR template |
| :--- | :--- | :---: | :---: |
| M. eugenii | IL-2 | Nos. 2 and3 | No. 2 |
| T. vulpecula | IL-2 | No. 2 | --- |
| M. eugenii | IL-17 | No. 3 | --- |
| M. eugenii | Foxp3 | Nos. 1, 2 and 3 | No. 2 |

RACE primers were designed from initial sequences derived from the RT-PCR products, and RACE PCRs were performed to obtain the $5^{\prime}$ and $3^{\prime}$ ends of the molecule as described in Chapter 2, section 2.1.9.

### 6.3.6 Investigation of polymorphisms in $T$. vulpecula and M. eugenii IL-2 sequences.

Primers were designed in the untranslated (UTR) regions of the IL-2 gene in M. eugenii and $T$. vulpecula. Initial PCR's were run for 35 cycles but to ensure minimal mispriming the annealing cycles were reduced to the point of clear visibility of the products on a $0.8 \%$ agarose gel matrix. This meant that 29 cycles for the $M$. eugenii and 30 cycles for $T$. vulpecula were necessary. Three PCR's (Table 6.3) were performed for the IL-2 molecules from each species. The resultant products were visualized on a $0.8 \%$ agarose gel and subsequently purified as outlined in Chapter 2, section 2.1.8.3. The purified cDNA was

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

inserted into the $\mathrm{PCR}^{\text {TM }} 4 \mathrm{TOPO}^{\circledR}$ vector (Invitrogen, Carlsbad, USA) for cloning as described in Chapter 2, section 2.1.10.

Table 6.3. RT-PCR and RACE-PCR conditions for polymorphism investigation.

| Species | Primers | Cycling conditions | Product size |
| :---: | :---: | :---: | :---: |
| M. eugenii | IL-2UTF/IL-2UTR | $\left.\begin{array}{l} 94^{\circ} \mathrm{C}-2 \min \\ 94^{\circ} \mathrm{C}-30 \mathrm{~s} \\ 55^{\circ} \mathrm{C}-50 \mathrm{~s} \\ 68^{\circ} \mathrm{C}-55 \mathrm{~s} \\ 68^{\circ} \mathrm{C}-5 \min \end{array}\right\} 29 \mathrm{x} ; 30 \mathrm{x} ; 35 \mathrm{x}$ | 600 bp |
| T. vulpecula | P2UTF/P2UTR | $\left.\begin{array}{l} 94^{\circ} \mathrm{C}-2 \min \\ 94^{\circ} \mathrm{C}-30 \mathrm{~s} \\ 50^{\circ} \mathrm{C}-55 \mathrm{~s} \\ 68^{\circ} \mathrm{C}-50 \mathrm{~s} \\ 68^{\circ} \mathrm{C}-5 \min \end{array}\right\} 30 \mathrm{x} ; 35 \mathrm{x}$ | 650 bp |

The products were excised under minimal exposure to UV light in order to reduce any UV induced alteration of DNA. Ten clones of $M$. eugenii IL-2 and $T$. vulpecula IL- 2 were sent for sequencing in both directions to AGRF as outlined in Chapter 2, section 2.1.10.6. These were subsequently investigated for possible polymorphisms (alignments of IL-2 sequences and highlighted polymorphic sequences are shown in Appendix 6A).

### 6.3.7 Genomic DNA isolation and amplification

A genomic DNA isolation was carried out as detailed in Chapter 2, section 2.4. An amplification of the IL-2 gene was carried out using primers positioned in exon-3 and in the $3^{\prime}$ UTR end of the IL-2 gene. Polymerase chain reaction conditions were $94^{\circ} \mathrm{C}$ denaturation for $30 \mathrm{~s}, 94^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 65^{\circ}$ for $4 \min 15 \mathrm{~s}$ (repeated for 35 cycles), and an extension at $65^{\circ} \mathrm{C}$ for 10 min . A special enzyme that is able to amplify longer products (Long-Amp Taq, Biolabs New England, Australia) was used for the amplification of IL-2 in genomic DNA. This was carried out to confirm the shorter M. eugenii IL-2 sequence by investigating the sequence downstream from exon-3. The obtained gDNA was investigated with Genscan as described in Chapter 2, section 2.4.2 to determine the exon/intron boundaries.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.3.7.1 Gel electrophoresis for gDNA

Gel electrophoresis was carried out on a $0.8 \%$ agarose gel containing $0.3 \mu \mathrm{~g} / \mathrm{mL}$ of ethidium bromide and run for 1.5 h at 100 V in a Bio-rad gel electrophoresis tank. A Lambda DNA/HindIII marker (Fermentas, Thermofisher, Australia), which was vortexed prior to use, was employed. The marker was prepared by adding $1 \mu \mathrm{~L}$ of DNA marker ( $0.5 \mu \mathrm{~g}$ concentration) together with $1 \mu \mathrm{~L}$ of 6 X DNA Loading dye and $4 \mu \mathrm{~L}$ of deionized water. The mixture was heated for 5 min at $65^{\circ} \mathrm{C}$ and then cooled on ice for 3 min . This was then used in a $0.3 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide gel for visualization of the genomic DNA.

### 6.3.8 Real Time PCR (qPCR) for IL-2

Real Tim PCR was performed as described in Chapter 2, section 2.7-2.7.1.1. The primer pair used for the qPCR experiment was HRM2TF and HRM2TR. These primers spanned a 122 bp product and were verified in a RT-PCR where they yielded the correct product for M. eugenii prior to use in qPCR. The product of the one step qPCR was visualized on a $1 \%$ gel matrix excised and processed as outlined in Chapter 2, section 2.1.8.2 and sent for sequencing to identify the amplicon as outlined in Chapter 2, section 2.1.10.6.

A High Resolution Melt analysis approach was used and a HRM kit from Qiagen (Doncaster, Vic, Australia) was employed (Chapter 2, section 2.7.2). A Melt analysis was carried out using the Rotorgene Gene Q HRM Software which characterized the doublestranded PCR products based on their dissociation (melt) behavior.

### 6.3.9 Annotation of the M. eugenii IL-2 promoter region

The IL-2 promoter region sequence was extracted from the ensembl database. The 5' region amplified from the RACE-DNA by RACE-PCR was investigated for the presence of any functional motifs such as the start site (atg), and then used in the ensembl BLAST function to determine the scaffolds on which the M. eugenii IL-2 gene was located. It was noted that the IL-2 gene was fractionated and different segments of the gene were

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

located on different scaffolds. Once the IL-2 sequence was located, the TATA box was localized by searching approximately 52 bp upstream from the start site. When the TATA box was located, the search for the promoter region was extended by searching 1,000 bp at a time upstream from the TATA box. This included a search for important motifs such as the NFAT, Oct1, NFkB, and AP-1 binding sites. The identified sequences were investigated with Promoter Scan to identify the threshold percentages for valid promoter motifs.

### 6.3.10 Peptide design

A custom designed antibody was used to show that the expressed gene sequence translated into a protein. The peptide to produce the antibody was designed using the PSIpred bioinformatics tool. This was used to predict the secondary structure as described in Chapter 2, section 2.2.6.1. The Kyte Doolittle and Hopp- Woods plots were used to identify a region suitable for an antigenic peptide. Areas that indicated a buried helix were avoided and hydrophilic residues were preferred. Cysteine, methionine, multiple serine, and proline residues were avoided, where possible, because of their negative effect on peptide purification.

The electrochemical property of the chosen amino acid sequence was determined using Prot Param from the EXPASY suite of programs. A Kyte Doolittle plot was employed to visualize the hydrophilicity over the length of the chosen peptide sequence. A moving 'window' determined the summed hydropathy at each point in the sequence (this represented the Y coordinate), and these were plotted against their respective positions ( X coordinate). The Kyte-Doolittle scale indicated hydrophobic amino acids while the Hopp-Woods scale measured hydrophilic residues. While the 'window' used in the KyteDoolittle scale is between 19 and 21 amino acid residues in length, the Hopp-Woods scale used a 'window' of between 5 and 7 amino acid residues in length. The optimal length of the peptide is between 10 and 15 amino acid residues. Although longer peptides are preferable, the number of possible epitopes increases and the synthesis becomes more

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

difficult. Problems can arise in the purification and coupling to carrier proteins if the peptide is too long.

The theoretical isoelectric point was calculated at 4.43 and a hydrophilicity plot was established using the Innovagen website (http.//www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp).

The area chosen was a unique stretch of sequence not affected by any post-translational modifications and was not important for the functionality of the molecule. The aim was to find a peptide that generated an antibody that would react specifically with its target protein. The sequence of the designed peptide was sent to Sapphire Bioscience (http.//www.sapphirebioscience.com) for synthesis. The peptide was synthesized in conjunction with ProSci Incorporated (Poway, CA, USA - www.prosci-inc.com) with an Nterminal cysteine.

The antibody produced was a polyclonal antibody, although preference is normally given to a monoclonal antibody to avoid indiscreet binding to non-target proteins. In this case the polyclonal antibody was preferred since it had a better chance of recognizing the target protein in a crude cell lysate. An antibody titer was carried out by the manufacturer of the antibody. A lower percentage of sodium azide ( $0.05 \%$ ) was added by the manufacturer to the antibody primarily for preservation during the journey and to stop any interference with target protein detection. The target animal was rabbit, and two rabbits were used for the antigen production. The antibody was affinity purified by the manufacturer and diluted by the user to $1.0 \mathrm{mg} / \mathrm{mL}$ using $1 \times$ PBS.

### 6.3.11 Western Blot

Western Blot analyses were carried out as described in Chapter 2, section 2.8.4. The isotype control was carried out beforehand in a Dot Blot (Chapter 2, section 2.8.4.2) as well as by Western Blot to prove that the antibodies did not recognize each other. The M. eugenii customized IL-2 antibody (mpIL-2) lyophilized powder was mixed with PBS to

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

make a stock solution with a concentration of $0.2 \mathrm{mg} / \mathrm{mL}$. Decimal dilutions of the stock solution were prepared and then tested against the peptide.

### 6.3.12 Phylogeny

A phylogenetic analysis using Mega5 was undertaken for all genes after the full coding domains were determined. The method is detailed in Chapter 2, section 2.3.

### 6.3.13 Bioinformatics

All of the bioinformatics tools detailed in Chapter 2 were used to elucidate putative domain structures, glycosylation sites, disulphide bonds, amino acid sequences, as well as to predict secondary and tertiary structures, and to conduct homology searches.

### 6.4 Results

### 6.4.1 Interleukin-2

The M. eugenii IL-2 sequence was characterized in this study for the first time, while the gene sequence for IL-2 in $T$. vulpecula was elucidated by a collaborative effort between the Young laboratory and a New Zealand research team (Young et al., 2011). Both molecules were investigated for post-translational modifications and important structural motifs as well as for gene polymorphisms. Structural comparisons were also made between the M. eugenii and the human IL-2 molecules.

### 6.4.1.1 IL-2 - Homology

A homology search conducted with the BLAST algorithm found that the M. eugenii IL-2 had an $87 \%$ identity to $T$. vulpecula and a $76 \%$ identity to the predicted sequence of $M$. domestica at the nucleotide level. At the amino acid level the identity percentage was $78 \%$ to $T$. vulpecula and $63 \%$ to $M$. domestica. The identity percentages fell sharply to $38 \%$ and $37 \%$ when compared with M. monax and S. scrofa respectively. The lowest identity percentage was detected in M. musculus with $28 \%$. The nucleotide and amino

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

acid identity percentages are listed in Table 6.4. Many of the species only had identities to the M. eugenii IL-2 at the amino acid level while they were not recognized at the nucleotide level. The identity percentages at the amino acid levels were, on average, around $35 \%$ which was expected since IL-2 is species and tissue specific. A similar outcome was observed for $T$. vulpecula. The IL-2 sequence of this marsupial had an identity of $73 \%$ to the predicted sequence of $M$. domestica with an e-value of $8 \mathrm{e}-63$ at the nucleotide level, while at the amino acid level the sequence identity was $63 \%$ with an evalue of $8 \mathrm{e}-50$.

Table 6.4. Homology search results for the M. eugenii and T. vulpecula IL-2 nucleotide and amino acid sequences, their identities and their respective e-values.

| Homology search result for IL-2 in M. eugenii and T. vulpecula |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . | M. eugenii |  |  |  | T. vulpecula |  |  |  |
| Species | Nucleotide | e-value | Amino acid | e-value | Nucleotide | e-value | Amino acid | e-value |
| T. vulpecula | 87\% | $4 \mathrm{e}-142$ | 78\% | 9e-69 | 100\% | 0.0 | 100\% | 4e-87 |
| M. domestica | 76\% | 3e-80 | 63\% | 1e-58 | 73\% | 8e-63 | 63\% | 8e-50 |
| S.scrofa | ----- | ------ | 37\% | 1e-18 | ------ | ------ | 36\% | 4e-15 |
| S. caffer | 79\% | 3e-80 | 32\% | 3e-11 | 79\% | 0.049 | 34\% | 3e-10 |
| O. aries | 79\% | 8e-06 | 33\% | 3e-10 | 79\% | 0.049 | 34\% | 6e-10 |
| B. bison | 79\% | 8e-06 | 31\% | $3 \mathrm{e}-10$ | 79\% | 0.049 | ------ | ------ |
| B. bubalis | 79\% | 8e-06 | 31\% | 6e-10 | 79\% | 0.049 | 34\% | 4e-10 |
| B. taurus | 79\% | 8e-06 | 33\% | 3e-10 | 79\% | 0.049 | 33\% | 9e-10 |
| C. falconeri | 79\% | 8e-06 | 32\% | 2e-10 | 80\% | 0.04 | 34\% | 1e-09 |
| O. cuniculus | ------- | ------- | 35\% | 1e-18 | ------ | ------ | 34\% | 4e-15 |
| M. monax | ------- | ------- | 38\% | 1e-18 | ------ | ------ | 37\% | 3e-16 |
| D. leuca | ------- | ------- | 35\% | 5e-16 | ------ | ------ | 34\% | 1e-11 |
| A.melanoleuca | ------- | ------- | 36\% | 1e-15 | ------ | ------ | 34\% | 2e-11 |
| F. catus | ------- | ------- | 35\% | 1e-14 | ------ | ------ | 34\% | 4e-12 |
| H. sapiens | ------- | ------- | 36\% | 1e-14 | ------ | ------ | 36\% | 7e-12 |

For Genbank Accession number refer to Appendix 6A. ------ = not recognized by BLAST algorithms.

### 6.4.1.2 IL-2 - Domain structure

A domain search for $M$. eugenii indicated that 138 of the 139 amino acid residues belong to the interleukin-2 family. This result carried an e-value of $3.20 \mathrm{e}-08$. Also identified was a predicted signal peptide of 20 amino acids in length leaving a mature protein of 109 amino acid residues in length. The putative signal peptide cleavage site was predicted

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

with a $98 \%$ probability to lie between residues 20 and 21 . The $T$. vulpecula IL-2 sequence was also mapped to the IL-2 family from amino acid residue 1 through to 141. A putative signal peptide was predicted in this sequence with the cleavage site being predicted between residues 20 and 21 with a probability of $80.5 \%$.

### 6.4.1.3 IL-2 - Glycosylation and glycation sites

Two putative N-linked glycosylation sites were predicted in the M.eugenii IL-2 at positions 62 and 101 respectively. The sequence NTSS had a probability of $73.6 \%$ and the sequence NVTV had a probability of $59.9 \%$, both being predicted phosphorylation sites. Both sites were above the threshold of $50 \%$ and were therefore highly probable. The T. vulpecula sequence contained two predicted $N$-linked glycosylation sites at positions 47 (NVSE) and 62 (NTSS). The latter location was also conserved in the M. eugenii sequence.

A single putative O-linked glycosylation site was predicted at position 23 with a probability of $67.9 \%$ in $M$. eugenii and $65.6 \%$ in T. vulpecula. Further inspection of the sequence established that the threonine in position 23 was the only one surrounded by a number of prolines (at positions -1 and +3 ) and threonines making it a prime site for an 0 linked glycosylation event. Three glycation sites were also predicted in the M. eugenii IL-2 sequence at positions 3,53 and 88 with probabilities of $94 \%, 58 \%$ and $79 \%$ respectively. The $T$. vulpecula sequence had four predicted glycation sites at positions 46, 77, 84 and 122 with probabilities of $82 \%, 78 \%, 72 \%$ and $83 \%$ respectively.

Validation of the predicted glycation sites requires more sophisticated mass spectrometry or Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDITOFF) analysis which was outside the scope of this study.

### 6.4.1.4 IL-2 - Phosphorylation sites

In total, six predicted phosphorylation sites were found in the M. eugenii IL-2 amino acid sequence. These included three serines, one threonine and two tyrosines residues. In

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

total, ten putative phosphorylation sites were predicted in the T. vulpecula IL-2 amino acid sequence. These included five serines, four threonines, and one tyrosine residues. The respective locations and probability percentages of those predicted phosphorylation sites are listed in Table 6.5.

Table 6.5. Predicted phosphorylation sites of IL-2 in M. eugenii and T. vulpecula.

| Predicted phosphorylation sites of M. eugenii and T. vulpecula IL-2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M. eugenii |  |  | T. vulpecula |  |  |
| Amino Acid | Sequence | Location | Probability | Sequence | Location | Probability |
| Serine | LKIVSERMK | 49 | 90.1\% | LKNSERMK | 49 | 90.8\% |
|  | PSNTSSIEN | 64 | 98.7\% | PSNTSSIEA | 64 | 98.8\% |
|  | SNTSSIENL | 66 | 81.2\% | SNTSSIEAL | 65 | 62.9\% |
|  |  |  |  | LKYESEDAQ | 87 | 92.5\% |
|  |  |  |  | CHYASKKKI | 119 | 86.6\% |
|  | GPEITQCHY | 113 | 58.5\% | NGAPTSRPP | 23 | 96.4\% |
|  |  |  |  | RPPTTVLQF | 29 | 59.8\% |
|  |  |  |  | VNRLTGPET | 108 | 89.3\% |
| Threonine |  |  |  | GPETTQCHY | 113 | 92\% |
| Tyrosine | KYELYIPSN | 58 | 56.1\% | GALKYESED | 85\% | 65\% |
|  | GALKYESKD | 85 | 81.2\% |  |  |  |

### 6.4.1.5 IL-2 - Disulphide bonds

Two disulphide bonds were predicted in the M. eugenii IL-2 sequence. The cysteines involved in the predicted disulphide bridges were located at position 9, 71, 115 and 134. The connectivity patterns were 9 to 71 and 115 to 134 (Fig. 6.1). The cysteines involved in the predicted disulphide bridges for $T$. vulpecula were located at positions 9, 71, 115 and 134. The connectivity patterns for those predicted disulphide bridges were 9 to 115 and 71 to 134 (Fig. 6.2).

### 6.4.1.6 IL-2 - Primary sequence and secondary structure prediction

The M. eugenii IL-2 molecule consisted of 420bp which translated into 139 putative amino acids. The T. vulpecula IL-2 molecule consisted of 429bp which translated into 142 putative amino acids. Eight alpha helices were predicted in the IL-2 sequences of both species. The sequence of $T$. vulpecula had a single beta strand while $M$. eugenii had no beta strands in its sequence.

Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

```
atgaacaaggtcccgctcttgtcctgtattgcactaactcttgttttggttgccaacggg60
```





```
Alpha Helix B
```



``` ggtgcgttgaaatatgaatccaaagatgctcagaatattcaggaatacatcaacaacatt 300
```



``` aatgtgactgttaatagcttaatgggaccagaaataacacagtgtcactacgcctccaag 360
```


## Alpha Helix C



``` atgaggattgaaggattctttaaagaatttgtttccgtctgccaaagattcatgcactaa 420 Alpha Helix D
```



``` 3'end catgtctggatgaagttatttatttaaatatttaaattttataatttatttctgaatgtgtggtttattatca tttactaccactgattttagtcgtcagataatgaatgtaatagatcttatgatcctaactgtaagccctaggg gctcaaagactactttaagttatcatctcaaaaattatttattaaattatgacttgttaaatgtaatgtctgt gaaggtcagtaaagttatttaataaatctgatgatggataataaaaaaaaaaaaaaaaaaaaaaaaa
```

Figure 6.1. M. eugenii IL-2 primary sequence and secondary structure prediction.
$\rightarrow$ Signal peptide is underlined $4 . \mathrm{K}=$ glycation sites. Yellow highlight $=\mathrm{N}$-linked glycosylation sites. T = O-linked glycosylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites. $\mathrm{T}=$ threonine phosphorylation sites. $Y=$ tyrosine phosphorylation sites. Different colours = disulphide bridges.■ = biologically important residues. Red underlined = custom made M. eugenii antibody sequence. ataaa $=$ polyadenylation signal. attta $=$ mRNA instability motifs. $\square=$ Helices.

Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor


Figure 6.2. T. vulpecula IL-2 primary sequence and secondary structure prediction.

- Signal peptide is underlined $4 . K=$ glycation sites. Yellow highlight $=N$-linked glycosylation sites. $\mathrm{T}=\mathrm{O}$-linked glycosylation sites. $\underline{\underline{S}}=$ serine phosphorylation sites. $\mathrm{T}=$ threonine phosphorylation sites. $Y=$ tyrosine phosphorylation sites. Different colours $=$ disulphide bridges.■ = biologically important residues. Red underlined = custom made M. eugenii antibody sequence. ataaa $=$ polyadenylation signal. $\underline{\text { attta }}=$ mRNA instability motifs. O = different to $M$. eugeneii IL-2.



# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.1.7 IL-2 amplification in genomic DNA

Genomic DNA was used to amplify and confirm the $3^{\prime}$ end of the $M$. eugenii IL-2 exon-4 sequence (gel picture in Appendix 6A). When compared to other IL-2 sequences, including the IL-2 sequence of $T$. vulpecula, the M. eugenii sequence was found to be three amino acid residues shorter. This may indicate that the $M$. eugenii IL- 2 sequence is truncated. The implications of a truncated IL-2 gene are not known. Exon/intron boundaries were also identified in M. eugenii and are detailed in Appendix 6A.

### 6.4.1.8 IL-2 gene polymorphisms

Initially, sequence discrepancies were found in the M. eugenii IL-2 sequence in different clones, which led to a search for polymorphisms within the IL-2 gene for both M. eugenii and $T$. vulpecula. Polymorphisms were suspected at the 3 ' end of exon-4 because of sequence variations. Although polymorphisms were found in the M. eugenii IL-2 Nterminal region they were not confirmed at the suspected position in exon-4. A single non-synonymous substitution of an asparagine ( N ) for a lysine ( K ) was found in the expressed IL-2 gene of M. eugenii. In contrast, no substitutions were detected in the $T$. vulpecula IL-2 sequence.

### 6.4.1.9 IL-2 promoter annotation using the ensembl database

The ensembl database was used to ascertain the promoter region of the M. eugenii IL-2 gene. On scaffolds where the TATA box could not be identified, a search for the characteristic sequence of the individual transcription factors was carried out. A number of transcription elements such as IgNF-A (ATTGCAT), NFAT (GGAGGA), AP1(TTCAGTCAGT), NFkB (GGGATTTCAC), Oct-1 (AATTGCAT), and NF-IL2-D (ATGCAATTAA) were identified. The TATA box (TATAAAT) was located 85 bp upstream from the START site. Promoter sites with a threshold of $>53 \%$ were considered to be valid. Scaffolds 846545 and 332747 were found to contain several important transcription factors (Appendix 6A).

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

### 6.4.1.10 IL-2 - Real Time Polymerase Chain Reaction (qPCR)

The Melt curve shows the appropriate melt temperature for a correct product in $M$. eugenii (Fig. 6.3). However, the gel did not resolve the second product.


Figure 6.3. Melt curve for M. eugenii IL-2. The lines represent the duplicates from each tissue (thymus, spleen, liver, gut node and mesenteric lymph node). The lower curves (green) were observed from liver tissue.

Because the IL-2 sequence in O. fraenata has not been characterized or annotated, it was not possible to design a primer specific for that species. M. eugenii specific primers were therefore trialled in $O$. fraenata tissue with an HRM approach, and initially appeared to show a good result. However after data analyses and gel electrophoresis it was found that the gene amplified was not interleukin-2 (Fig. 6.4).

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 



Figure 6.4. O. fraenata IL-2 melt curve (Melt curves depicted to the right), against GAPDH (curves to the left). Although the peaks are in the correct region of the melt temperature the IL-2 curve did not sequence as IL-2. The GAPDH curves are in fact the GAPDH product.

This indicated that a consensus approach was not appropriate for a qPCR method. Expression primers used for $M$. eugenii were used for $O$. fraenata cDNA in a real time approach but, due to the specificity of the primer to the $M$. eugenii sequence, an incorrect product was found. While the the qPCR for M. eugenii yielded the correct result, the $O$. fraenata qPCR was unable to detect the IL-2 gene in the cDNA from unstimulated tissue.

### 6.4.1.11 IL-2 - Phylogenetic analysis

The Maximum Likelihood phylogenetic tree inferred the evolutionary history of IL-2 through the Poisson correction model with the highest log likelihood of -7709.06. The percentage of replicate trees in which the associated taxa were clustered together in the bootstrap test ( 1,000 replicates) is shown next to the branches. A discrete Gamma distribution was used to model evolutionary rate differences among sites ( 5 categories (+G, parameter=3.13)). The tree is drawn to scale with branch lengths measured in the number of substitutions per site. The analysis involved 62 amino acid sequences with a

Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor
total of 193 positions in the final dataset. The marsupial sequences cluster with the mammals and are located between the rodents and the amphibian clade (Fig. 6.5).


# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.1.12 IL-2 - Structure modelling

Homology modelling indicated that both the M. eugenii and $T$. vulpecula IL-2 molecules had a four helix bundle structure. The models for M. eugenii and T. vulpecula IL-2 molecules as predicted by the I-TASSER program are illustrated in Fig. 6.6 (a). The models show a different orientation of the helices, and a different distribution of the loops and strands between the two species. The IL-2 models produced by Phyre illustrate the four helices, loops, and beta strands for each species, and the differences in their distribution (Fig. 6.6 b). Those models also show the closest homology to the structure d1m47a. In order to obtain a Phyre model, 30 residues were modelled $a b$ initio and are therefore unreliable with regard to their positions within the structure. Seventy eight percent (78\%) of the residues were modelled with $>90 \%$ confidence for M. eugenii, while $77 \%$ of the sequence from T. vulpecula was modelled with $100 \%$ confidence. This suggested that the folding pattern of the protein for the two species may be different and this possibility was confirmed by the visual representation of the molecules in Fig. 6.6 (b). The RaptorX program produced a very different model for each of the two marsupial IL-2 molecules (Fig. 6.6 c ). Both molecules showed the typical four helical structure, however the $T$. vulpecula model is clearly elongated and the loops and beta strands are further apart. This may suggest that the torsion angles in the $T$. vulpecula IL- 2 molecule are different to that of M. eugenii. The RaptorX program showed that the closest homology to the pdb was 1irlA, and the second closest template was 1 m 47 a. Similarly, the Modeller 9.10 models for the two species confirms the four helical structure but again shows clear differences between the structures of the two molecules (Fig. 6.6d).

## M. eugenii IL-2



I-TASSER model


Phyre model


RaptorX model
d


Modeller 9.10 model

## T. vulpecula IL-2



I-TASSER model


Phyre model


RaptorX model
d


Modeller 9.10 model

Figure 6.6. M. eugenii and T. vulpecula IL-2 models.. (a) the I-TASSER models showing the four helix bundle structure, (b) the Phyre models showing small variations between the two models. (c) RaptorX models showing considerable variation between the torsion angles of the molecules. (d) Modeller 9.10 models showing the difference in the loop lengths of the molecules.

The M. eugenii and T. vulpecula IL-2 structures are indicated by X in Figs. 6.7 (a) and (c) and in both cases were clearly outside the non-redundant set of pdb structures. The QMEAN for both species is shown in Figs. 6.7 (b) and (d) and was well below zero in both cases. Both models were poor when compared to the structures resolved by X-ray crystallography deposited in the pdb database.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor



Figure 6.7. Comparison of $O$. fraenata and $T$. vulpecula IL-2 structures with the pdb structure.
a) $\mathbf{8}=$ M. eugenii IL-2 sequence compared to homologous structures in the pdb database.
b) Z- score slider indicating the quality of the M. eugenii IL-2 model showing a very low QMEAN.
c) $\otimes=T$. vulpecula IL-2 sequence compared to homologous structures in the pdb database.
(d) Z-score slider indicating the quality of the T. vulpecula IL-2 model showing a low QMEAN but is higher than the QMEAN for M. eugenii.

### 6.4.1.12.1 IL-2 - Ligand binding

The IL-2 molecules from both M. eugenii and T. vulpecula were found to bind a number of ligands, however differences were found in the residues involved in this process. Eight amino acid residues at positions $35,38,39,42,131,135,136$ and 138 were recognized as being the sites involved in ligand binding for M. eugenii. T. vulpecula engaged the

Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor
residues 32, 33, 37 and 99. The binding site areas are illustrated in Fig. 6.8. These sites were quite different to each other in the structures. An examination of the IL-2 sequences indicated a different biochemical environment surrounding these amino acid residues in each of the two species. This may explain why different residues in the two species are available for ligand contact.


Figure 6.8. Ligand binding sites of a) M. eugenii and b) T. vulpecula. The M. eugenii model shows a much larger ligand binding area than does T. vulpecula. Circled areas are the ligand binding sites. The positions of the amino acid residues involved are listed in Chapter 6, section 6.4.1.12.1.

### 6.4.1.13 IL-2 - Peptide design

The M. eugenii IL-2 sequence ALKYESKDAQNIQE was the most promising in terms of hydrophilicity, isoelectric properties and solubility, and this was confirmed by the KyteDoolittle plot shown in Fig. 6.9.

Because of the properties illustrated in Figs. 6.9 and 6.10, the M. eugenii sequence ALKYESKDAQNIQE was selected as the peptide most suitable for an antibody. Analysis revealed an overall acidic profile of this peptide at -1 with a pl of 4.4. This 14 amino acid Iong peptide presented with a predicted MW of 1,636.8 with an average hydrophilicity of 0.6. A Hopp and Woods plot is illustrated in Fig. 6.10.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the

 Foxp3 transcription factor

Figure 6.9. Kyte-Doolittle plot obtained through EXPASY for M. eugenii IL-2 (Kyte and Doolittle, 1982). This plot shows the hydrophobicity of the selected peptide sequence and allows for the selection of suitable amino acid residues.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

Net charge
Hydrophilicity
Hopp \& Woods


Net charge at $\mathrm{pH} 7.0 .-1$
Iso-electric point, pl.4.4
Average hydrophilicity. 0.6
Ratio hydrophilic residues / total number of residues. 64\%

Figure 6.10. Hydrophilicity depicted in a Hopp and Woods diagram (Hopp and Woods, 1983). The plot shows the hydrophilicity of the amino acid residues. It also calculates the net charge and the pl of the selected peptide sequence and indicates the ratio between the hydrophilic and other residues within the peptide sequence.

### 6.4.1.14 IL-2 - Dot Blot and Western Blot

The Dot Blot carried out to test the custom designed antibody against the peptide with the necessary isotype control is illustrated in Fig. 6.11. The isotype control for the antiRabbit lgG was negative while the peptide was recognized by the antibody.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor


$1 / 1000$

$1 / 500$

$1 / 200$


Isotype control

Figure 6.11. Dot Blot of marsupial IL-2 peptide including isotype control for secondary antibody (anti-Rabbit $\operatorname{lgG})$. a) Peptide dot incubated with $\mathrm{mpIL}-2$ antibody $(0.1 \mu \mathrm{~g} / \mu \mathrm{L}$ diluted to $1 / 1000$ ). b) Peptide dot incubated with mpIL-2 antibody ( $0.1 \mu \mathrm{~g} / \mu \mathrm{L}$ diluted to $1 / 500$ ). c) Peptide dot incubated with mpIL-2 antibody $(0.1 \mu \mathrm{~g} / \mu \mathrm{L}$ diluted to $1 / 200)$.

A $12 \%$ SDS-PAGE gel confirmed the $M$. eugenii IL-2 protein at $\sim 21 \mathrm{kDa}$ which is consistent with an IL-2/IL-2 receptor complex. IL-2 is often found complexed to its receptor rather than as a free molecule in a crude cell lysate (Fig. 6.12).


Figure 6.12. Western Blot for IL-2 in M. eugenii thymus tissue. O. fraenata gut node and O.fraenata axial node (L1-L8 are the line numbers).

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.2 Interleukin-17

### 6.4.2.1 IL-17 - Homology

The homology search revealed that the M. eugenii IL-17A had a sequence identity of $84 \%$ to the predicted $M$. domestica IL-17A at the nucleotide level, and $81 \%$ at the amino acid level. The results of the homology search of a number of mammalian species are listed in Table 6.6. The identity percentage to human IL-17A at the nucleotide level was 73\% (Table 6.6).

Table 6.6. Homology search results for the $M$. eugenii IL-17 nucleotide and amino acid sequences their identities and respective e-values.

| Homology search result for M. eugenii for IL-17A |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Species | Nucleotide | $\mathrm{e}-\mathrm{value}$ | Amino acid | $\mathrm{e}-\mathrm{value}$ |
| M. domestica | $84 \%$ | $7 \mathrm{e}-127$ | $81 \%$ | $2 \mathrm{e}-74$ |
| H. sapiens | $73 \%$ | $4 \mathrm{e}-40$ | $61 \%$ | $4 \mathrm{e}-51$ |
| N. leucogenys | $72 \%$ | $1 \mathrm{e}-55$ | $61 \%$ | $5 \mathrm{e}-52$ |
| B. taurus | $73 \%$ | $1 \mathrm{e}-54$ | $63 \%$ | $4 \mathrm{e}-53$ |
| P. abelii | $72 \%$ | $5 \mathrm{e}-53$ | $60 \%$ | $6 \mathrm{e}-51$ |
| C. hircus | $72 \%$ | $3 \mathrm{e}-50$ | $63 \%$ | $6 \mathrm{e}-53$ |
| M. mulatta | $72 \%$ | $7 \mathrm{e}-51$ | $59 \%$ | $3 \mathrm{e}-49$ |
| C. Jacchus | $71 \%$ | $3 \mathrm{e}-50$ | $60 \%$ | $4 \mathrm{e}-51$ |
| E. caballus | $71 \%$ | $1 \mathrm{e}-48$ | $60 \%$ | $1 \mathrm{e}-50$ |
| S. scrofa | $71 \%$ | $6 \mathrm{e}-46$ | $61 \%$ | $4 \mathrm{e}-51$ |
| C. familiaris | $70 \%$ | $1 \mathrm{e}-42$ | $59 \%$ | $2 \mathrm{e}-50$ |

For Accession number refer to Appendix 6B

The members of this particular cytokine family are the only molecules with a characteristic knot structure. The homology search indicated that there was a high sequence homology of IL-17A to IL-17F, another member of the IL-17 family. The sequence conservation of IL-17A to IL-17F is $\geq 50 \%$ at the amino acid level for a number of mammalian species including the marsupial M. eugenii (Table 6.7).

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

Table 6.7. Conservation of nucleotide and amino acid residues of $M$. eugenii IL-17A to IL-17F of other vertebrate species.
Conservation of $M$. eugenii IL-17A compared to other vertebrate IL-17F molecules

| Conservation of M. eugenii IL-17A compared to other vertebrate IL-17F molecules |  |  |
| :--- | :---: | :---: |
| Species | Nucleotide conservation to IL-17F | Amino acid conservation to IL-17F |
| N. leucogenys | $74 \%$ | $55 \%$ |
| S. scrofa | $74 \%$ | $59 \%$ |
| H. sapiens | $73 \%$ | $54 \%$ |
| L. africana | $73 \%$ | $52 \%$ |
| M. domestica | $73 \%$ | $52 \%$ |
| M. mulatta | $73 \%$ | $50 \%$ |
| M. gallopavo | $72 \%$ | $52 \%$ |

### 6.4.2.2 IL-17 - Domain structure

In M. eugenii, a putative protein family domain (PFAM) was identified at positions 8 to 148 with an e-value of $2.20 \mathrm{e}-51$. A possible PAN domain, which is important in proteinprotein or protein-carbohydrate interaction, was identified at positions 10 to 83 . PAN domains contain a hair-pin loop-like structure, similar to knottins, but have a different disulphide bond pattern (Tordai et al., 1999). The PAN domain had a high probability since IL-17A belongs to a knot structure protein family. This was substantiated by a putative Cterminal cystine knot-like domain (CTCK) at positions 82 to 152. McDonald and Hendrickson (1993) reported that this domain has been found in growth factors but with little sequence homology. These growth factors have an unusual arrangement of six cysteines linked to form a 'cystine knot' formation (Isaacs, 1995).

A predicted nuclear receptor box motif (LxxLL) was found in IL-17A of M. eugenii thus conferring binding properties to its nuclear receptors. This structure was highly hydrophobic. It should be noted that it is often identified incorrectly when buried in globular structures (Heery et al., 1997).

The M. eugenii IL-17 sequence had a long signal peptide of 28 amino acids. The potential signal peptide cleavage site was located between positions 28 and 29.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

### 6.4.2.3 IL-17 - Glycosylation sites

The program employed to elucidate any putative N -linked glycosylation sites in the M . eugenii IL-17A sequence indicated three possible positions. However, upon inspection of the sequence and the probability values, two sites were rejected since they were below the threshold of $50 \%$. The site with the highest probability of $57.49 \%$ was found at position 41 and had the sequence NDSS.

### 6.4.2.4 IL-17 - Phosphorylation sites

The predicted amino acid sequence of $M$. eugenii IL-17A contained seven phosphorylated serines, three threonines and one tyrosine. The positions of these predicted residues, and the probabilities of phosphorylation occurring at these sites, are listed in Table 6.8.

Table 6.8. Predicted phosphorylation sites their location, sequences and probabilities in M. eugenii IL-17.

| M. eugenii IL-17 phosphorylation sites |  |  |  |
| :--- | :--- | :--- | :---: |
| Amino Acid | Sequence | Location | Probability |
| Serine | KNDSSQRVS | 44 | $92.1 \%$ |
|  | SQRVSINMN | 48 | $96.4 \%$ |
|  | YKNRSTSPW | 70 | $97.0 \%$ |
|  | NRSTSPWDM | 72 | $99.8 \%$ |
|  | KCRHSGCIN | 97 | $96.7 \%$ |
|  | NCSTSFRLE | 132 | $74.3 \%$ |
|  | PRTVS--- | 153 | $77.1 \%$ |
| Threonine | KNRSTSPWD | 71 | $52.4 \%$ |
|  | RLPRTIWEA | 88 | $54.5 \%$ |
|  | CTCVTPRTV | 148 | $77.4 \%$ |
| Tyrosine | ISPDYKNRS | 66 | $89.8 \%$ |

6.4.2.5 IL-17 - Disulphide bonds

Three disulphide bonds were predicted in the M. eugenii IL-17A sequence. The six cysteines needed to form the cystine knot in IL-17A were located at positions 35, 129, 94, 144, 99 and 146. The connectivity patterns of the three resultant disulphide bridges were 35 to 144,99 to 129 , and 94 to 146.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.2.6 IL-17 - Primary sequence and secondary structure prediction

The M. eugenii IL-17A consisted of 462bp which translated into 153 amino acids. The secondary structure prediction revealed a single transmembrane helix located in the N terminal end and therefore situated in the leader sequence. Five beta sheets of varying length were also identified in the M. eugenii IL-17A sequence (Fig.6.13).


Figure 6.13. M. eugenii IL-17 primary sequence and secondary structure prediction. Signal peptide = underlined. $K=$ glycation sites. $\underline{S}=$ serine phosphorylation. $T=$ threonine phosphorylation sites. $\mathrm{Y}=$ tyrosine phosphorylation sites. $\mathrm{T}=\mathrm{O}$-linked glycosylation sites. Yellow highlighted $=\mathrm{N}$-linked glycosylation sites $\Longrightarrow$ Transmembrane helices. $\longrightarrow=$ Strands

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.2.7 IL-17 - Phylogenetic analysis

The optimal phylogenetic tree inferred using a Neighbor-Joining method and with the sum of branch length of 4.63 is illustrated in Fig. 6.14. The percentages of replicate trees in which the associated taxa are clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. The tree is drawn to scale with branch lengths in the same units as those of the evolutionary distances used to infer the tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. The analysis involved 25 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 114 positions in the final dataset. A clear distinction within the marsupial clade was observed with the branch length of $M$. eugenii being shorter than the branch length of $M$. domestica thus indicating a distant relationship.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor



Figure 6.14. Neighbor-Joining phylogenetic tree for IL-17 showing the M. eugenii IL-17 evolutionary relationship to other taxa.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.2.8 IL-17 - Structure modelling

The models produced by the different structure prediction programs are shown in Fig. 6.15. All structures in Fig. 6.15 (a-c) show a knot configuration indicating that the $M$. eugenii IL-17 molecule, like other mammalian IL-17 molecules, belongs to the cysteine knot family of cytokines. Each prediction program produced a significantly different model. Although all three models have the classic cysteine knot structure, there are significant differences in the loop and strand positions. The I-TASSER model indicated the possible existence of a number of loops which were only modelled with a $40 \%$ probability (Fig. 6.15 a). The RaptorX model (Fig. 6.15 b) had a high homology to the Modweb model structure (Fig. 6.15 c ). The Modweb program produced two models of high probability using the templates 1 jpyA and 2 vxsA . The model 1 ijpyA predicted the amino acid residues at positions 29 to 149 successfully, and is annotated in the pdb library as the crystal structure of IL-17F. The model 2 vxsA predicted amino acid residues at positions 58 to 151 with a high probability, and this concurred with the structure of human IL-17A in the pdb database. 1ijpyA had a sequence identity of $50 \%$ to M. eugenii IL-17A, and the cysteine knot domain 1jpyA00 was $97 \%$ conserved. The sequence identity of 2 vxsA was 70\% conserved to the M. eugenii IL-17 in the region encompassing amino acid residues 58 to 151 . The predicted folded protein is illustrated in Fig. 6.15 (c).


Figure 6.15. Structure predictions for M. eugenii IL-17A using different prediction software programs.
(a) I-TASSER predicted structure of IL-17, (b) RaptorX predicted structure of IL-17, (c) Modweb prediction of cystine-knot in IL-17.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

The QMEAN for the M. eugenii IL-17A SWISS-Model was negative. It appeared at the edge of the homologous structures found in the pdb database (Fig. 6.16 a), and the Z- score slider indicated that the model was not a good fit (Fig. 6.16 b). This indicated that, although the different prediction software programs selected the same homology model, the sequence conservation and the resultant structural comparisons could only be mapped to the model selected by each program and no other comparison was possible.


Figure 6.16. Comparison of the M. eugenii IL-17structure with the pdb structures. a) $\mathbb{Q}=\mathrm{M}$. eugenii IL-17 sequence compared to homologous structures in the pdb database. b) Z-score slider indicating the quality of the $M$. eugenii IL-17 model showing a low QMEAN.

### 6.4.3 Forkhead box protein 3 (FOXP3)

Foxp3 is a regulator in the development of natural regulatory $T$ lymphocytes ( $n T_{\text {regs }}$ ) and induced regulatory T lymphocytes ( $\mathrm{i} \mathrm{T}_{\text {regs }}$ ). The homology and phosphorylation status is reported in the following sections.

### 6.4.3.1 Foxp3 - Homology

The BLAST homology search of the partial 426bp long M. eugenii nucleotide sequence revealed a sequence identity of $89 \%$ with an e-value of $2 \mathrm{e}-146$ to the annotated sequence

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

of $M$. domestica. At the amino acid level the identity percentage was $88 \%$ with an e-value of $2 \mathrm{e}-74$. The 0 . fraenata 421 bp long partial nucleotide sequence had an identity percentage of $89 \%$ with an $\mathrm{e}-$ value of $9 \mathrm{e}-151$ to the annotated $M$. domestica sequence.

At the amino acid level the identity percentage was $91 \%$ with an e-value of $1 \mathrm{e}-75$. The identity percentages to other mammalian nucleotide and amino acid sequences are listed in Table 6.9.

Table 6.9. Homology search results for the O. fraenata and M. eugenii partial nucleotide and amino acid residues, their identities and respective e-values for the $M$. eugenii and $O$. fraenata partial Foxp3 sequences. The values were calculated over the $426 \mathrm{bp} / 133 \mathrm{aa}$ and $421 \mathrm{bp} / 140 \mathrm{aa}$ respectively.

| Homology search for M. eugenii and O. fraenata partial Foxp3 sequences |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M. eugenii Foxp3 426bp/139aa |  |  |  | O. fraenata Foxp3 421bp/140 aa |  |  |  |
| Species | Nucleotide | e-value | Amino acid | e-value | Nucleotide | e-value | Amino acid | e-value |
| M. domestica | 89\% | 2e-146 | 88\% | 2e-74 | 89\% | 9e-151 | 91\% | 1e-75 |
| E. caballus | 69\% | $1 \mathrm{e}-40$ | 59\% | 8e-39 | 69\% | 6e-71 | 61\% | 1e-38 |
| A.melanoleuca | 69\% | 6e-39 | 59\% | 5e-39 | 68\% | 2e-38 | 61\% | 7e-41 |
| F. catus | 69\% | 2e-38 | 58\% | 8e-38 | 69\% | 7e-38 | 61\% | 1e-38 |
| H. sapiens | 69\% | 9e-37 | 59\% | 2e-38 | 69\% | 1e-35 | 60\% | 1e-39 |
| O. aries | 68\% | 1e-34 | ------ | ------ | 68\% | $4 \mathrm{e}-35$ | 62\% | 1e-39 |
| B. taurus | 68\% | 2e-32 | 60\% | 3e-39 | 69\% | 9e-37 | 62\% | 1e-39 |
| L. africana | 68\% | 2e-32 | 59\% | 3e-39 | 67\% | 2e-31 | 61\% | 3e-39 |
| N. leucogenys | 68\% | 2e-32 | ---- | ------ | 68\% | 7e-32 | ---- | ---- |
| C. familiaris | 68\% | 8e-31 | 57\% | 3e-37 | 68\% | 7e-32 | 59\% | 7e-39 |
| P. abelii | 68\% | $1 \mathrm{e}-29$ | 58\% | 3e-37 | 67\% | 4e-29 | 60\% | 1e-37 |
| S. scrofa | 68\% | 1e-29 | 59\% | 1e-37 | 69\% | 4e-35 | 60\% | 7e-38 |
| M. fascicularis | 67\% | 1e-29 | 58\% | 2e-37 | 67\% | 4e-29 | 60\% | 1e-37 |
| C. jacchus | 67\% | $4 \mathrm{e}-29$ | 58\% | 7e-37 | 67\% | 4e-29 | 58\% | 9e-36 |
| M. musculus | 68\% | 2e-27 | 61\% | 3e-39 | 68\% | 1e-27 | 61\% | 1e-38 |
| O. cuniculus | 67\% | 2e-27 | 57\% | 2e-36 | 67\% | 1e-27 | 58\% | 7e-36 |
| C. porcellus | 67\% | $5 \mathrm{e}-27$ | 61\% | 4e-35 | 67\% | 5e-27 | 61\% | 1e-36 |
| M. auratus | 67\% | 2e-26 | 59\% | 1e-39 | 67\% | 4e-29 | 62\% | 8e-41 |
| C. elaphus | 67\% | 3e-24 | 58\% | 4e-33 | 68\% | 1e-27 | 59\% | 5e-34 |
| R. norvegicus | 81\% | $3 \mathrm{e}-23$ | 58\% | 3e-37 | 80\% | 8e-25 | 59\% | 1e-36 |
| C. griseus | 78\% | $6 \mathrm{e}-20$ | 59\% | 1e-37 | 66\% | 1e-22 | 61\% | 4e-38 |
| M. agrestis | 67\% | $9 \mathrm{e}-18$ | 58\% | 1e-33 | --- | ----- | 59\% | 4e-34 |
| P. maniculatus | 77\% | 1e-16 | 60\% | 1e-39 | 66\% | 1e-22 | 63\% | 4e-41 |
| M. mulatta | 80\% | 6e-07 | ------ | ------ | 67\% | 5e-27 | 59\% | 1e-37 |
| O. anatinus | -- | ------ | 60\% | 1e-37 | 67\% | 2e-26 | 61\% | 7e-38 |
| H. glaber | ------ | ------ | 59\% | 5e-34 | ------ | ------ | 60\% | 4e-36 |
| M. furo | ------ | ------ | 56\% | 3e-28 | ------ | ------ | 58\% | 2e-30 |

For Accession numbers refer to Appendix 6D. ------ = not recognized by BLAST algorithms.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

It was found that the M. eugenii partial sequence had 12 amino acids that were low complexity sequences and none were detected in the $O$. fraenata partial sequence. A sequence variation was detected in the $3^{\prime}$ end of the $M$. eugenii forkhead domain which may imply an isoform of the Foxp3 gene (Appendix 6C).

### 6.4.3.2 Foxp3 - Domain structure

Two putative domains were identified in both M. eugenii and O. fraenata partial Foxp3 sequences. The domain from positions 116 to 140 was predicted as a Transcription DNABinding factor (nucleus regulation Full Forkhead Box factor) with an e-value of $2 \mathrm{e}-06$. The other domain from positions 2 to 38 was predicted as a metal ion binding domain with an e -value of $1 \mathrm{e}-08$. In the $M$. eugenii sequence, the metal binding domain was identified as the isoform Foxp2.

### 6.4.3.3 Foxp3-Glycosylation and glycation sites

Six putative O-linked glycosylation sites were identified in the partial sequence of $M$. eugenii and their confidence values ranged from $57 \%$ to $64 \%$. There were seven putative O-linked glycosylation sites found in O. fraenata with confidence values ranging from 55\% to $64 \%$ (Table 6.10). Glycation sites were also predicted in both species and, together with their positions and confidence levels, are listed in Table 6.10. However validation of the predicted glycation sites requires more sophisticated mass spectrometry or Matrixassisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFF) analysis which was outside the scope of this study. No putative N -linked glycosylation sites were predicted in the partial Foxp3 sequence of either of the two species.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

Table 6.10. Predicted O-linked glycosylation and glycation sites in M. eugenii and $O$. fraenata Foxp3 and their probabilities.

| Predicted O-linked glycosylation sites in M. eugenii and O. fraenata |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Species | O-linked glycosylation site <br> positions | Probability | Glycation site positions | Probability |
| M. eugenii | 71 | $57 \%$ | 1 | $77.7 \%$ |
|  | 75 | $64.6 \%$ | 11 | $64.1 \%$ |
|  | 79 | $59.8 \%$ | 31 | $79.1 \%$ |
|  | 81 | $56.8 \%$ | 40 | $92.2 \%$ |
|  | 85 | $61.2 \%$ | 58 | $82.8 \%$ |
|  | 92 | $58.8 \%$ | 63 | $79.7 \%$ |
|  |  |  | 73 | $57.9 \%$ |
| O. fraenata | 54 | $55.5 \%$ | 5 | $95.8 \%$ |
|  | 58 | $63.6 \%$ | 7 | $81 \%$ |
|  | 62 | $59.4 \%$ | 1 | $81.5 \%$ |
|  | 64 | $56.3 \%$ | 23 | $92.8 \%$ |
|  | 68 | $61.7 \%$ | 41 | $68.7 \%$ |
|  | 75 | $59.8 \%$ | 46 | $94.4 \%$ |
|  | 140 | $54.7 \%$ |  |  |

### 6.4.3.4 Foxp3 - Phosphorylation sites

There were four serine, two threonine and one tyrosine phosphorylation sites predicted for both the M. eugenii and O. fraenata Foxp3 partial sequences. The positions of the phosphorylation sites and their respective confidence levels are shown in Table 6.11.

Table 6.11. Predicted phosphorylation sites, their positions and probabilities of Foxp3 in O.fraenata and M. eugenii.

| Predicted phosphorylation sites of Foxp3 in O. fraenata and M. eugenii |  |  |  |  |  |
| :--- | :---: | :---: | :--- | :---: | :---: |
| O. fraenata |  |  | M. eugenii |  |  |
| Amino acid | Position | Probability | Amino acid | Position | Probability |
| Serine | 39 | $75.7 \%$ | Serine | 56 | $75.7 \%$ |
|  | 51 | $98.0 \%$ |  | 68 | $97.4 \%$ |
|  | 53 | $55.6 \%$ |  | 70 | $86.5 \%$ |
|  | 102 | $59.8 \%$ |  | 119 | $59.8 \%$ |
| Threonine | 54 | $92.2 \%$ | Threonine | 71 | $91.5 \%$ |
|  | 75 | $91.9 \%$ |  | 92 | $91.9 \%$ |
| Tyrosine | 59 | $73.1 \%$ | Tyrosine | 76 | $80.3 \%$ |

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.4.3.5 Foxp3 - Disulphide bond prediction

There were two predicted cysteines in both the M. eugenii and O. fraenata Foxp3 sequences. These formed single disulphide bonds and therefore formed a cystine in both species.

### 6.4.3.6 Foxp3 - Primary sequence and secondary structure prediction

The O. fraenata partial Foxp3 sequence contained 426bp which translated into 139 amino acids, while the M. eugenii sequence contained 421bp which translated into 140 amino acids. There were differences in the secondary structures of the sequence fragments. The O. fraenata sequence contained four helices compared to M. eugenii which contained six helices. No beta strands were detected in either of the partial sequences.
cgcttggatgagaaggggaaggcccagtgtctcatccagaaggaggtggtacagaatctt



Figure 6.17. O. fraenata partial Foxp3 primary sequence and secondary structure prediction. $\underline{s}=$ serine phosphorylation sites. $\mathrm{T}=$, threonine phosphorylation sites. $\mathrm{Y}=$ tyrosine phosphorylation sites. $O=$ disulphide bridge. $\square$ = Helices.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

aaggtcttcctggactcaggggatctcttaaaacacctccaagaagaccaccgcctggat


```
A T T L I I R W W Alllllllllllllllll
```

Figure 6.18. M. eugenii partial Foxp3 primary sequence and secondary structure prediction. $\underline{S}=$ serine phosphorylation sites. $T=$, threonine phosphorylation sites. $Y=$ tyrosine phosphorylation sites. $O=$ disulphide bridge. $\square=$ Helices.

### 6.5 Discussion

This investigation provided the first conclusive evidence of the existence of IL-2 in marsupials. IL-2 was initially described as the T cell growth factor and was purified from mitogen-stimulated lymphocyte cultures (Morgan et al., 1976). This cytokine controls the amplification of naïve $T$ lymphocytes by initially stimulating growth following antigen activation but later it also promotes an activation-induced cell death (Bird et al., 2005a, Waldmann et al., 2001, Smith, 1988a). The T. vulpecula IL-2 sequence was characterized in this study and was published by Young et al. (2011). The M. eugenii sequence was also characterized in this study and is yet to be published.

It has been reported that IL-2 is tissue-specific and the DNA sequence can vary when isolated from different tissue types. It has also been reported that human placental IL-2 cDNA is 247 nucleotides longer in the $5^{\prime}$ untranslated region than cDNA derived from T

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

lymphocytes (Chernicky et al., 1996). In the present study, the M. eugenii IL-2 molecule was identified in PHA stimulated lymphocytes only, therefore no conclusion can be drawn as to the length of the sequence in other tissue types and how much the sequence may vary. Two splice variants of this gene have been reported in humans. One of the splice variants is missing exon-2 (21bp) and the other is missing exon-3 (22bp) (Tsytsikov et al., 1996). The M. eugenii interleukin-2 was amplified with primers located in the $5^{\prime}$ and $3^{\prime}$ untranslated regions in order to examine the sequence for possible splice variants. No splice variants could be detected in either M. eugenii or T. vulpecula.

Two putative N -linked glycosylation sites were identified in the M. eugenii and the $T$. vulpecula sequences but the locations of those sites differed in the two species. The consequence of this is unknown, however it has been reported that location changes of $N$-linked glycosylated sites can have an effect on transcription activity (Chan et al., 2010). The IL-2 molecule in humans and other mammals has a distinct family signature (TELxxLxCLxxE). This family signature sequence was shown to be only partially conserved in M. eugenii and $T$. vulpecula and is located in the alpha helix B region. In position five of the family signature sequence a substitution occurred from asparagine ( N ) in M. eugenii to alanine (A) in T. vulpecula. Structure modelling indicated that this substitution does not change the four helical structure of the molecule even though alanine has a non-polar side chain compared to a polar side chain in asparagine. The consensus sequence in mammals showed a histidine in this position which also has a polar side chain, while the bird sequence has a leucine residue which has a non-polar side chain. Within this motif in both the M. eugenii and $T$. vulpecula sequences is one cysteine at position 71 which builds a disulphide bond with the cysteine located at position 131. Strict conservation of these cysteines is essential for bioactivity of many mammalian IL-2 molecules (Gaffen et al., 1998). This may indicate that the bioactivity of the marsupial interleukin-2 gene is preserved.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

When examining the species alignment of IL-2 (Appendix 6A) it was noted that the M.eugenii sequence was three amino acid residues shorter than that of all other mammals including $T$. vulpecula. The $M$. eugenii sequence is similar in length to the sequence of birds. Kaiser and Mariani (1999) reported that human and mouse IL-2 molecules have a four helical structure. It was shown in the present study that the $M$. eugenii and $T$. vulpecula molecules also have a four alpha helical structure. Neither of the two marsupial sequences have the glutamine repeat that has been found in the mouse IL2 sequence. The phylogenetic analysis showed the marsupials are basal to the eutherian mammals while the amphibians are basal to both groups. This indicates an evolutionary trend that was found in many of the molecules investigated in marsupials in this study.

The stability of the mRNA is regulated by AU-rich elements (AREs) which lead to a rapid degradation of the mRNA. AREs differ in length and sequence but contain several copies of the AUUUA pentamers which are the RNA instability motifs (Chen and Shyu, 1995). These sequence elements serve as binding sites for proteins that regulate mRNA stability and have a dual function. The mRNA can either be stabilized or marked for degradation (Graham et al., 2010). Expression of cytokines is dependent on the highly conserved instability motifs. Transcriptional and translational regulation and modulation of mRNA is an important part of gene expression by altering the amount of translatable mRNA (Hargrove and Schmidt, 1989). Studies carried out on human cDNA have shown that the number of AUUUA cassettes plays a role in mRNA degradation (Akashi et al., 1994) and can also affect mRNA translational efficiency (Kruys and Huez, 1994). It was shown in this study that the M. eugenii $3^{\prime}$ untranslated region has seven mRNA instability motifs (ATTTA) in contrast to the $T$. vulpecula $3^{\prime}$ untranslated region which had only one. These compare to the Fugu rubripes (tiger blowfish) which has eight (Bird et al., 2005a) and humans which, like M. eugenii, has seven mRNA instability motifs. T. vulpecula had the lowest number of instability motifs in the $3^{\prime}$ untranslated region compared to all other vertebrates. This may indicate that the half-life of the T. vulpecula IL-2 molecule is longer than the IL-2 molecules in other mammals including M. eugenii. The $T$. vulpecula IL-2

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

molecule may therefore be more stable than that of $M$. eugenii. This would mean that the T. vulpecula IL-2 molecule would not disappear as rapidly from the cytoplasm after a decrease in transcription which occurs in humans as reported by Ohme-Takagi et al. (1993).

In this study it was found that the M. eugenii IL-2 sequence contained a non-synonymous substitution where a lysine (K) was substituted with asparagine (N). Both amino acids have polar side chains and positive charges. Due to the polar nature of asparagine it generally prefers to be exposed to an aqueous environment and can therefore be located on the surface of proteins. Asparagine is often found in the active sites of proteins and if found in an N-linked glycosylated site it cannot be substituted (Betts and Russell, 2003). This is certainly not the case in the M. eugenii IL-2 sequence. However a substitution to lysine is quite possible since this amino acid is also polar and carries the same charge as asparagine. Similarly, lysine is also found in the active sites of proteins and fulfills the same function as asparagine (Betts and Russell, 2003). There appeared to be no change in function of the M. eugenii IL-2 molecule.

IL-2 belongs to the four helical cytokine family. In contrast, IL-17A belongs to the cysteine knot family and represents a link between innate and adaptive immunity. Prior to this study, the expressed sequence of IL-17A had not been identified in marsupials although an annotation of the gene sequence is in the ensembl database. This cytokine has only recently been discovered in human tissues and has been reported as belonging to the $\mathrm{T}_{\mathrm{h}} 17$ T cell sub-population (Korn et al., 2009). While IL-2 was thought to be the principal T cell growth factor it appears to restrain IL-17 production (Adler, 2007). IL-17 has been found to play a role in inducing and mediating pro-inflammatory responses (Gaffen, 2009). IL-17A has a unique sequence and is one of six members of the cysteine knot family of cytokines. Human IL-17(A) has a $\sim 60 \%$ sequence homology to IL-17(F). A BLAST homology search showed a similar homology in M. eugenii.

## Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor

The M. eugenii IL-17A sequence was two amino acids shorter than the IL-17A sequence found in other mammals and one amino acid shorter than the IL-17A of teleost fish. The human IL-17 gene consists of a 19 amino acid residue signal sequence and a 136 amino acid residue mature segment (Fossiez et al., 1996). Six cysteine residues and one potential N-linked glycosylation site are contained within the sequence (Yao et al., 1995a). In this study, it was found that the M. eugenii IL-17 putative leader sequence had a length of 30 amino acids which was almost double the length of the human sequence. The purpose of such a long leader sequence is unknown. It has been reported that, in humans, two sets of paired $\beta$-strands connect the disulphide linkages between strands 2 and 3 , and a third disulphide bridge connects strands 1 and 3 . These characterize the cysteine knot fold of IL-17 (Hymowitz et al., 2001). This typical fold configuration was also observed in the M. eugenii IL-17 molecule (Fig. 6.15 c ).

The predicted IL-17A sequence of $M$. domestica was quite different to the same sequences in all other vertebrates. No comparison could be made between the expressed gene sequence of $M$. eugenii and the predicted sequence of $M$. domestica. The $M$. domestica sequence was 206 amino acid residues long compared to the 153 amino acid residues of $M$. eugenii. The $M$. domestica IL-17A sequence is the longest ever reported in any vertebrate. A multi-valine motif was found in the $M$. domestica sequence and this was absent in all other mammalian and non-mammalian IL-17 sequences. Such a large number of valines following each other have not been previously reported. The closest sequence motif that was found to be conserved in the $M$. domestica IL-17 sequence was the DART motif which is contained in receptors where this motif features as an alpha helical structure. In this study, this motif was also identified in the M. eugenii IL-17 molecule. This is often associated with an inhibition of receptor homomultimerization. However IL-17 is a cytokine, not a cytokine receptor, and no reference can be found as to the high level of valines in such a circumstance (del Rio et al., 2007).

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

The multi-leucine motif identified in the M. eugenii IL-17A sequence is a potential leucine zipper and was present in all vertebrate IL-17 sequences with the exception of Cavia porcellus (guinea pig).

The expressed $M$. eugenii IL-17A sequence found in the present study differs from the annotated sequence. The expressed sequence had an extra two amino acids in the leader sequence. No other substitutions were detected between the two sequences. By comparing the 3 ' end of IL-17A with the $3^{\prime}$ end of IL-2 it was found that IL-17A does not contain the mRNA instability motif. This was assumed by using the ensembl database and may not be correct since the full $3^{\prime}$ end has not been annotated.

The two cytokines IL-17(A) and IL-17(F) have pro-inflammatory functions similar to the regulatory $T$ lymphocytes, another new addition to the $T$ cell lineage. $T_{\text {reg }}$ cells are identified by the expression of the transcription factor Foxp3 and are reliant on IL-2 for maintaining homeostasis (Fontenot et al., 2005a). It was reported that circulating memory Foxp3 ${ }^{+} \mathrm{T}_{\text {reg }}$ cells also secrete IL-17 (Ayyoub et al., 2009). In order to show that marsupials have the full range of T cell sub-populations compared with humans and mice, it was important to show that the cell surface marker of the $\mathrm{T}_{\text {reg }}$ cells was expressed. An annotation of a small fragment of the Foxp3 molecule is found in ensemble, however that fragment is too small to find important structural motifs. O. fraenata and M. eugenii Foxp3 partial sequences were therefore amplified to identify structural motifs in Foxp3.

The human full length protein of Foxp3 contains a forkhead DNA-binding domain at the C terminal end which, directly or by forming a repressor complex with nuclear factor of activated T lymphocytes (NFAT), can bind to the IL-2 promoter and repress IL-2 mRNA transcription. That protein encodes a zinc-finger $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ (aa 200-223) and a leucine zipper (aa 240-261) domain that permit homodimerization or heterodimerization with other forkhead family members or other DNA-binding co-factors (Li et al., 2007, Lopes et al., 2006). Little is known about the molecular mechanism by which Foxp3 functions although it has been established that it plays an important role in the maintenance of self-

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

tolerance within the immune system (Floess et al., 2007). This molecule acts as a transcriptional repressor when expressed in either non-lymphoid cells or T cell lines where it inhibits activation induced cytokine expression (Schubert et al., 2001).

The cloned fragments of the expressed Foxp3 genes characterized in this study for $M$. eugenii and $O$. fraenata revealed a zinc finger domain in both species. In mammals, the main motif in the zinc finger has either the sequence DFLKH ( $\mathrm{D}=$ aspartic acid, $\mathrm{F}=$ phenylalanine, $\mathrm{L}=$ leucine, $\mathrm{K}=$ lysine, $\mathrm{H}=$ histidine ) or EFLKH ( $\mathrm{E}=$ glutamic acid, $\mathrm{F}=$ phenylalanine, $L=$ leucine, $K=$ lysine, $H=$ histidine). The $M$. eugenii sequence is DLLKH ( $D$ = aspartic acid, $\mathrm{L}=$ leucine, $\mathrm{K}=$ lysine, $\mathrm{H}=$ histidine) and in M . domestica the sequence is ELLKH ( $\mathrm{E}=$ g glutamic acid, $\mathrm{L}=$ leucine, $\mathrm{K}=$ lysine, $\mathrm{H}=$ histidine) indicating a substitution in the second position of this motif. In this study, it was found that the substitution of the second amino acid phenylalanine to leucine is unique in $M$. eugenii. Since both amino acids are non-polar and neutral, this substitution does not appear to change the functionality of the zinc finger domain. Unfortunately, the $O$. fraenata sequence did not extend far enough to be able to investigate this particular sequence motif in that species.

The Foxp3 gene also contains a DNA-binding domain which independently folds and recognizes double or single-stranded DNA. The domain sequence for most mammals is GAMQ ( $G=$ glycine, $A=$ alanine, $M=$ methionine, $Q=$ glutamine). It was found in this study that the $M$. eugenii amino acid sequence in the motif changes to SAMQ ( $S=$ serine, $\mathrm{A}=$ alanine, $\mathrm{M}=$ methionine, $\mathrm{Q}=$ glutamine). The substitution in position one of the M . eugenii motif does not appear to change the functionality of the domain.

The forkhead domain of Foxp3 is highly conserved among all mammalian species. Since it was also shown to be conserved in M. eugenii, the functionality of this important transcription factor must also be conserved in that species.

# Chapter 6 - Cytokines - Interleukin-2 (IL-2), Interleukin-17 (IL-17) and the Foxp3 transcription factor 

### 6.6 Conclusion

Marsupials are an ancient mammalian lineage, and consequently, it would be expected that the sequences in their immune modulatory molecules may be different to those of more recent lineages. Some, but not all, of the marsupial cytokines have been characterized and reported by others. However, prior to this study, the cytokines IL-2 and IL-17, together with the transcription factor Foxp3, have been characterized in many mammals but not in marsupials. IL-2 and Foxp3 immune molecules are vital for the effective functioning of the T lymphocyte responses in mammals, and have now been characterized in marsupials for the first time. It has been reported that marsupials have diminished T lymphocyte responses compared to other mammals (Infante et al., 1991, Stone et al., 1996). However, the presence of these vital immune molecules in M. eugenii, as demonstrated in this study, suggests that their T lymphocyte responses should not be notably different to those of other mammals. The apparent contradiction therefore suggests that the reported impaired T lymphocyte responses in marsupials may be linked to factors other than the IL-2 and Foxp3 molecules. IL-17 is the main cytokine in the $\mathrm{T}_{\mathrm{h}} 17$ cell sub-population, and Foxp3 is the cell surface marker for the $\mathrm{T}_{\text {reg }}$ sub-population. Since IL-17 and Foxp3 were shown to be expressed in M. eugenii, it follows that the $\mathrm{T}_{\mathrm{h}} 17$ and $\mathrm{T}_{\text {reg }}$ cell sub-populations were also present. It is therefore concluded that the marsupial adaptive immune system is not significantly different to that of other mammals.

Future work should include functional studies of IL-2 and IL-17 to confirm the bioactivity of those cytokines in marsupials.

## Chapter 7

Research summary, concluding discussion and future work

# Chapter 7 - Research summary, concluding discussion and future work 

7.0 Research summary, concluding discussion and future work

### 7.1 Research summary and discussion

It has been reported in the literature that marsupials have diminished $T$ cell responses such as an absent mixed lymphocyte reaction (Stone et al., 1998, 1997a, 1997b, Infante et al., 1991). Anecdotal evidence from zoo keeper observations also indicates that there is considerable variation in disease resistance among marsupial species. For example, $O$. fraenata appears to be more resistant to mycobacterial infections, while L. hirsutus is reported to be highly susceptible to such infections. This study was undertaken to characterize key molecules in the marsupial immune system to help explain those different immune responses, and to form the direction of further immunological studies. Specifically, the key receptors and signalling molecules of the T cell signalling cascade and the resultant expression of the main cytokines were investigated. The expressed sequences were compared with the sequences of the recently published wallaby genome (Renfree et al., 2011) since any differences between the predicted and expressed sequences may indicate splice variants or polymorphisms. Such differences were encountered in the molecules CD28 and ZAP-70. CD28 is only partially annotated in ensembl for $M$. eugenii since the start and stop sites are missing. The CD28 5' annotated sequence is missing 51bp, while the $3^{\prime}$ end is missing 163bp. On the other hand, ZAP-70 was fully annotated for M. eugenii, however significant differences were found between the annotated sequence and the expressed sequence reported in this study. It is possible that the annotated sequence is incorrect and, if so, the expressed sequence will provide a better template for further studies.

These findings were substantiated by the identification of important structural motifs contained within the putative amino acid sequences of the molecules investigated in this study. It was also found that, in most cases, these motifs were highly conserved between marsupial species and between marsupials and eutherian mammals. This high sequence homology did not always translate into structural homologies. Tertiary structures were determined by using various bioinformatics tools. Although there were similarities in the

# Chapter 7 - Research summary, concluding discussion and future work 

structures, there were often differences in the torsion angles and only a few of the structures, such as the CD8 $\alpha$ and CD28 receptors and the signalling molecules TCR弓 and CD3 $\varepsilon$, could be modelled with a high confidence level. It was also found that the transmembrane region in the TCR $\alpha$ chain appeared to differ between $O$. fraenata and $M$. eugenii. This region is an important functional motif of this molecule. A structure prediction indicated that the $O$. fraenata sequence had two phenylalanines where the ring structures faced each other while in M. eugenii, which also had two phenylalanines, the ring structures faced away from each other. The positions of the phenylalanines in the marsupial TCR $\alpha$ are unique to marsupials and monotremes. In other mammals, leucine and valine take the place of phenylalanines in those positions. Human studies have shown that the leucines in those positions are important for the function of the receptor. Whether or not this substitution in marsupials has any effect on the biological function of the TCR $\alpha$ receptor is not known.

It was also found that the $\beta$-chain of the TCR receptor is highly conserved in marsupials. However in this study, one important difference was identified in the TCR-C beta-beta strand E where eight amino acids were found to be missing in the $O$. fraenata sequence. This may have implications for the T cell responses in that species. This motif represents the site of interaction between the TCR $\alpha$ and TCR $\beta$ chains and, since this motif determines the regulatory function of the TCR $\beta$ chain, its absence may indicate a downregulation of the receptor.

The molecules CD3 $\varepsilon$, CD4, CD8 $\alpha \beta$, CD28, CD86, and CTLA-4 belong to the immunoglobulin superfamily. The prominent Ig-fold, which characterizes this superfamily, consists of two beta sandwiches, highly conserved disulphide bonds, and the complementarity determining region. These features were all found in the marsupial molecules investigated in this study but some differences were identified. CD8 $\alpha \beta$ and CD28 were modelled with high QMEAN scores indicating a high probability of the determined structures. However CTLA-4, although highly conserved between $M$. eugenii and $O$. fraenata, was an exception. The prediction markers for that molecule in both species

## Chapter 7 - Research summary, concluding discussion and future work

were highly negative and the software, although able to make a comparison with other pdb structures, was unable to produce the Z-score slider and Bell curve for this molecule in those species. While the M. eugenii CTLA-4 was modelled as a dimer, the $O$. fraenata molecule could only be produced as a monomer, a structure that has been shown in humans to be linked to the inhibition of the mixed lymphocyte response (Oaks et al., 2000). This monomer represents the soluble form of the receptor which has been shown to function in the up- and down-regulation of CTLA-4 in different disease states (Toussirot et al., 2009). It has been suggested that CTLA-4 has the ability to confer either resistance or susceptibility to disease depending on its expression kinetics (Walker and Sansom, 2011). The difference in the $O$. fraenata CTLA-4 structure may therefore explain the reported disease resistance of that species.

The characterization of CD4 in $O$. fraenata showed that almost an entire domain (D4) was missing in this species. A literature search revealed that there are CD4 molecules with unusual transcripts in various species (Moore et al., 1992, Lonberg et al., 1988). The missing D4 domain in O. fraenata may indicate that this CD4 is an isoform and, if so, this would be the first time an isoform of a main receptor has been identified in a marsupial. This missing D4 domain may also be a factor in the reported disease resistance of $O$. fraenata.

Historically, the immune regulatory molecule IL-2 has been difficult to find in marsupials, but in this study it was successfully characterized in PHA stimulated M. eugenii lymphocytes for the first time. The wallaby genome was published by Renfree et al. (2011) but the IL-2 gene was not annotated. When mining the genome for the promoter region of the IL-2 gene in this study, it was found that IL-2 was located on multiple scaffolds. The characteristic transcription factor binding sites contained within the promoter region were identified for the M. eugenii IL-2 promoter sequence. IL-2 was also characterized in T. vulpecula in conjunction with New Zealand collaborators thus allowing a comparison of the molecule in those two species. The IL-2 molecule in both species was investigated for SNPs, and a non-synonymous substitution was identified in the $M$. eugenii sequence but

# Chapter 7 - Research summary, concluding discussion and future work 

not in the $T$. vulpecula sequence. A custom designed marsupial IL-2 antibody positively identified the IL-2 protein in a cell lysate of $M$. eugenii thymus tissue thus showing that the mRNA translated into a protein. In O. fraenata, attempts were made to identify IL-2 in various unstimulated tissues with qPCR but without success.

The expression of IL-2 is dependent on the calcium ion influx which is regulated by the expression of the ZAP-70 molecule. Conserved structural motifs were found within the ZAP-70 molecule in O. fraenata, M. eugenii, L. hirsutus and M. domestica. However, when the $M$. eugenii sequence was compared to the annotated sequence in ensembl it was found that $19 \%$ of the annotated sequence differed from the sequence characterized in this study over the same number of base pairs. A human anti-ZAP-70 antibody did not recognize the $60 \%$ conserved epitope present in $M$. eugenii and $O$. fraenata spleen cell lysate.

The cytokine IL-17 is the link between the adaptive and innate immune systems. This molecule was characterized in M. eugenii for the first time in this study. This characterization confirmed that the $T_{h} 17$ sub-population is present in marsupials. $A$ comparison of the IL-17 expressed sequence confirmed the annotated M. eugenii sequence in ensembl.

The $\mathrm{T}_{\text {reg }}$ cell population was also identified for the first time in $M$. eugenii and $O$. fraenata by characterizing a partial sequence of the $\mathrm{T}_{\text {reg }}$ cell surface marker Foxp3. The winged helix formation and the forkhead domain were identified thus confirming that this transcription factor is expressed in marsupials.

Phylogenetic analyses conducted for all molecules where the open reading frame was available, and in some cases for important functional motifs alone, showed consistent results. The branch lengths of $O$. fraenata and $M$. eugenii were short indicating their close relationship, while the branches of $M$. domestica were always longer indicating its evolutionary distance from the other two species. When L. hirsutus was included in the

## Chapter 7 - Research summary, concluding discussion and future work

analyses it clustered with the two macropods $O$. fraenata and $M$. eugenii indicating that it also belonged to the macropod family.

This study has advanced the understanding of the marsupial adaptive immune system and specifically the molecular aspects of the marsupial T cell biology. A graphical illustration of the overall advances made by this study is shown in Fig. 7.1.


# Chapter 7 - Research summary, concluding discussion and future work 

### 7.2 Future work

IL-2 was characterized in M. eugenii and T. vulpecula in this study but it could not be determined in $O$. fraenata due to its low expression in unstimulated tissues. Since detailed functional studies were outside the scope of this project, stimulation assays, together with qPCR, should be undertaken to determine whether or not this molecule is expressed in $O$. fraenata. Once the $O$. fraenata IL-2 sequence is determined, a comparison with the sequences in $M$. eugenii and $T$. vulpecula may reveal any differences in the $O$. fraenata IL-2 molecule which could explain the reported disease resistance of this species.

Further work should also be undertaken to determine the biological activity of IL-2 in M. eugenii. In order to do so, a purified IL-2 recombinant protein should be used as a T cell growth factor to ascertain if marsupial lymphocytes have similar responses to those of eutherian mammals. Real Time PCR experiments could be undertaken to determine whether or not the marsupial IL-2 also contains isoforms. If isoforms were detected, sequence comparisons could then be made between marsupial species with different immune responses to infections, and the prevalence of isoforms could be ascertained. This would help to determine whether or not isoforms of IL-2 are responsible for the observed resistance to infection in O. fraenata.

Very few immunological tools are available for the investigation of the marsupial immune system. The only antibodies that have been proven to be cross reactive in marsupial tissues are the human anti-CD3, anti-CD5 and anti-human CD79 antibodies. As a precursor to further protein work in marsupial immunology, additional work on trialling commercially available antibodies, from either human or other species, to identify any which may be cross reactive in marsupial tissue would be beneficial. Such cross reactive antibodies would permit more detailed analyses of protein expression and signalling pathways in marsupials using flowcytometry, T cell depletion, and other techniques.

The two phenylalanine residues with different ring configurations in the $O$. fraenata TCR $\alpha$ chain should be investigated to determine whether or not they are competing for space

# Chapter 7 - Research summary, concluding discussion and future work 

and, if so, what implication this has for the immune competency of $O$. fraenata. Site directed mutagenesis could be used to identify any structural hindrance which will indicate whether or not the molecule functions differently to that of other mammals.

Because of its potential impact on the immune status of $O$. fraenata, the expression kinetics of the predicted monomeric CTLA-4 structure in that species should be determined and compared with that of the dimeric structure of M. eugenii. In particular, it should be determined if the $O$. fraenata CTLA- 4 sequence characterized in this study is the only form of this molecule in that species. Real Time experiments will determine if there are other isoforms present which may affect its immune response.

The published CD4 sequence of $M$. eugenii did not show any anomalies when compared with other mammalian CD4 sequences. However, in the $O$. fraenata CD4 sequence the D4 domain was missing altogether suggesting that the $O$. fraenata CD4 may be an isoform. Further determination of what type of transcript is inherent in the $O$. fraenata CD4 molecule together with characterization of the full $5^{\prime}$ and $3^{\prime}$ regions of this particular form of the CD4 molecule is needed. A search for other isoforms in marsupials may determine if other transcripts, similar to those in other mammals, exist in marsupials. Additional research on the transcript presented in this thesis may confirm the significance of this variation and whether or not it translates into a functional protein.

Some M. eugenii molecules characterized in this study, such as CD28 and ZAP-70, showed marked differences to the annotation found in ensembl. Additional work is needed to determine if these differences are due to non-recognition of exon/intron boundaries or if there are variations in the expressed genes.

Since the marsupial species investigated in this study are endangered, the availability of fresh tissue samples was limited. Consequently, future work would ideally be conducted in association with an endangered marsupial breeding facility where fresh tissue samples may be more readily and quickly available.

## References

ABE, Y., URAKAMI, H., OSTANIN, D., ZIBARI, G., HAYASHIDA, T., KITAGAWA, Y. \& GRISHAM, M. B. 2009. Induction of Foxp3-expressing regulatory T-cells by donor blood transfusion is required for tolerance to rat liver allografts. PLoS One, 4, e7840.
ABRAM, C. L. \& LOWELL, C. A. 2007. The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE, 2007, re2.
ACUTO, O., HUSSEY, R. E., FITZGERALD, K. A., PROTENTIS, J. P., MEUER, S. C., SCHLOSSMAN, S. F. \& REINHERZ, E. L. 1983. The human T cell receptor: appearance in ontogeny and biochemical relationship of alpha and beta subunits on IL-2 dependent clones and $T$ cell tumors. Cell, 34, 717-26.
ADAMS, J. E., PENA, M. T., GILLIS, T. P., WILLIAMS, D. L., ADAMS, L. B. \& TRUMAN, R. W. 2005. Expression of nine-banded armadillo (Dasypus novemcinctus) interleukin-2 in E. coli. Cytokine, 32, 219-25.
ADLER, E. M. 2007. IL-2 Antagonizes Th17 Differentiation. 2007, 103.
AHMED, Z., BEETON, C. A., WILLIAMS, M. A., CLEMENTS, D., BALDARI, C. T. \& LADBURY, J. E. 2005. Distinct spatial and temporal distribution of ZAP70 and Lck following stimulation of interferon and T-cell receptors. J Mol Biol, 353, 1001-10.
AITIO, O., HELLMAN, M., KESTI, T., KLEINO, I., SAMUILOVA, O., PAAKKONEN, K., TOSSAVAINEN, H., SAKSELA, K. \& PERMI, P. 2008. Structural basis of PxxDY motif recognition in SH3 binding. J Mol Biol, 382, 167-78.
AKASHI, M., SHAW, G., HACHIYA, M., ELSTNER, E., SUZUKI, G. \& KOEFFLER, P. 1994. Number and location of AUUUA motifs: role in regulating transiently expressed RNAs. Blood, 83, 31827.

ALCOVER, A., MARIUZZA, R. A., ERMONVAL, M. \& ACUTO, O. 1990. Lysine 271 in the transmembrane domain of the T-cell antigen receptor beta chain is necessary for its assembly with the CD3 complex but not for alpha/beta dimerization. J Biol Chem, 265, 4131-5.
ALEGRE, M. L., FRAUWIRTH, K. A. \& THOMPSON, C. B. 2001. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol, 1, 220-8.
ALI, M., SALAM, N. K., AMON, M., BENDER, V., HIBBS, D. E. \& MANOLIOS, N. 2006. T-Cell Antigen Receptor-alpha Chain Transmembrane Peptides: Correlation between Structure and Function. Intl. J. of Pep. Res. and Therap., 12, 261-267.
ALONSO, A., RAHMOUNI, S., WILLIAMS, S., VAN STIPDONK, M., JAROSZEWSKI, L., GODZIK, A., ABRAHAM, R. T., SCHOENBERGER, S. P. \& MUSTELIN, T. 2003. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat Immunol, 4, 44-8.
ALTSCHUL, S. F. \& GISH, W. 1996. Local alignment statistics. Methods in Enzymology,, 266, 460 480.

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. \& LIPMAN, D. J. 1990. Basic local alignment search tool. J of Mol Biol, 215, 403-410.
ANDERTON, S. M. 2006. Avoiding autoimmune disease--T cells know their limits. Trends Immunol, 27, 208-14.
APPAY, V., VAN LIER, R. A., SALLUSTO, F. \& ROEDERER, M. 2008. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry $A, 73,975-83$.

ARAKI, K., HIRANO, K., TAKIZAWA, F., MORITIOMO, T., OTOTAKE, M. \& NAKANISHI, T. 2007. Identification and characterization of multiple Ick genes in ginbuna crucian carp Carassius auratus langsdorfii. Fisheries Science, 73, 1017-1024.
ARAKI, K., SUETAKE, H., KIKUCHI, K. \& SUZUKI, Y. 2005. Characterization and expression analysis of CD3var epsilon and CD3gamma/delta in fugu, Takifugu rubripes. Immunogenetics, 57, 158-63.
ARCARO, A., GREGOIRE, C. \& BAKKER, T. 2001. CD8 $\beta$ endows CD8 with efficient coreceptor function by coupling TCR/CD3 to raft-associated CD8/p56lck complexes J Exp Med, 194, 1485-1495.
ARNAUD, J., CHENU, C., HUCHENQ, A., GOUAILLARD, C., KUHLMANN, J. \& RUBIN, B. 1996. Defective Interactions Between TCR Chjains and CD3 Heterodimers Prevent Membrane Exprssion of TCR- $\alpha \beta$ in Human T Cells. J. Immunol., 156, 2155-2162.
ARNAUD, J., HUCHENQ, A., VERNHES, M. C., CASPAR-BAUGUIL, S., LENFANT, F., SANCHO, J., TERHORST, C. \& RUBIN, B. 1997. The interchain disulfide bond between TCR alpha beta heterodimers on human $T$ cells is not required for TCR-CD3 membrane expression and signal transduction. Int Immunol, 9, 615-26.
ARPAIA, E., SHAHAR, M., DADI, H., COHEN, A. \& ROIFMAN, C. M. 1994. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell, 76, 947-958.
ARUFFO, A. \& SEED, B. 1987. Molecular cloning of a CD28 CDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA Immunology, 84, 8573-8577.
ASHE, J. M., WIEST, D. L., ABE, R. \& SINGER, A. 1999. ZAP-70 protein promotes tyrosine phosphorylation of $T$ cell receptor signaling motifs (ITAMs) in immature CD4(+)8(+) thymocytes with limiting p56(Ick). J Exp Med, 189, 1163-8.
ASHMAN, R., WARING, H. \& STANLEY, N. F. 1975. Adult mortality after neonatal thymectomy in a marsupial, Setonix brachyurus (quokka). Proc Soc Exp Biol Med Sci, 144, 819-822.
ASHMAN, R. B., HOLMES, R. M. \& KEAST, D. 1976. The In Vitro Response to Phytomitogens of Marsupial Leukocytes. Lab. Anim. Sci., 26, 777-780.
ASHMAN, R. B., HOLMES, R. M. \& KEAST, D. 1977. The effect of neonatal thymectomy on the ontogeny of mitogen responses in the quokka (Setonix brachyurus). Dev Comp Immunol, 1, 47-57.
AYYOUB, M., DEKNUYDT, F., RAIMBAUD, I., DOUSSET, C., LEVEQUE, L., BIOLEY, G. \& VALMORI, D. 2009. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the $\mathrm{T}(\mathrm{H}) 17$ lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A, 106, 8635-40.
AZUMA, M., ITO, D., YAGITA, H., OKUMURA, K., PHILLIPS, J. H., LANIER, L. L. \& SOMOZA, C. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature, 366, 76-9.
AZUMA, T., TAKAHASHI, T., KUNISATO, A., KITAMURA, T. \& HIRAI, H. 2003. Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res, 63, 4516-20.
BABIK, W., DURKA, W. \& RADWAN, J. 2005. Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol, 14, 4249-57.
BACKSTROM, B. T., HAUSMANN, B. T. \& PALMER, E. 1997. Signaling efficiency of the T cell receptor controlled by a single amino acid in the beta chain constant region. J Exp Med, 186, 1933-8.
BACKSTROM, B. T., MILIA, E., PETER, A., JAUREGUIBERRY, B., BALDARI, C. T. \& PALMER, E. 1996. A motif within the $T$ cell receptor alpha chain constant region connecting peptide domain controls antigen responsiveness. Immunity, 5, 437-47.

## References

BAKER, M. L., GEMMELL, E. \& GEMMELL, R. T. 1999. Ontogeny of the Immune System of the Brushtail Possum, Trichosurus vulpecula. The Anatomical Record, 256, 354-356.
BAKER, M. L. \& MILLER, R. D. 2007. Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica. Immunology, 121, 113-21.
BAKER, M. L., OSTERMAN, A. K. \& BRUMBURGH, S. 2005. Divergent T-cell receptor delta chains from marsupials. Immunogenetics, 57, 665-673.
BAKER, M. L., ROSENBERG, G. H., ZUCCOLOTTO, P., HARRISON, G. A., DEANE, E. M. \& MILLER, R. D. 2001. Further characterization of T cell receptor chains of marsupials. Developmental and Comparative Immunology, 25, 495-507.
BAKKER, T. R. \& VAN DER MERWE, P. A. 2002. Self-help in T cell recognition. Nature Immunology 3, 11-12.
BALZANO, C., BUONAVISTA, N., ROUVIER, E. \& GOLSTEIN, P. 1992. CTLA-4 and CD28: similar proteins, neighbouring genes. Int J Cancer Suppl, 7, 28-32.
BARNES, T. S., HINDS, L. A., JENKINS, D. J. \& COLEMAN, G. T. 2007. Precocious development of hydatid cysts in a macropodid host. Int J Parasitol, 37, 1379-89.
BAROJA, M. L., LUXENBERG, D., CHAU, T., LING, V., STRATHDEE, C. A., CARRENO, B. M. \& MADRENAS, J. 2000. The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J Immunol, 164, 49-55.
BATES, P. A., KELLEY, L. A., MACCALLUM, R. M. \& STERNBERG, M. J. 2001. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3DPSSM. Proteins, Suppl 5, 39-46.
BAXTER, A. G. \& HODGKIN, P. D. 2002. Activation rules: the two-signal theories of immune activation. Nat Rev Immunol, 2, 439-46.
BAZAN, J. F. 1992. Unraveling the structure of IL-2. Science, 257, 410-413.
BECKER, J. C., BRABLETZ, T., KIRCHNER, T., CONRAD, C. T., BROCKER, E. B. \& REISFELD, R. A. 1995. Negative transcriptional regulation in anergic T cells. Proc Natl Acad Sci U S A, 92, 2375-8.
BELLO, R., FEITO, M. J., OJEDA, G., PORTOLES, P. \& ROJO, J. M. 2009. N-terminal negatively charged residues in CD3varepsilon chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: analysis of human CD3varepsilon chains. Immunol Lett, 126, 8-15.
BELOV, K., DEAKIN, J. E., PAPENFUSS, A. T., BAKER, M. L., MELMAN, S. D., SIDDLE, H. V., GOUIN, N., GOODE, D. L., SARGEANT, T. J., ROBINSON, M. D., WAKEFIELD, M. J., MAHONEY, S., CROSS, J. G. R., BENOS, P. V., SAMOLLOW, P. B., SPEED, T. P., MARSHALL GRAVES, J. A. \& MILLER, R. D. 2006. Reconstructing an Ancestral Mammalian Immune Supercomplex from a Marsupial Major Histocompatibility Complex. PLOS Biology, 4, 0317-0328.
BELOV, K., MILLER, R. D., ILIJESKI, A., HELLMAN, L. \& HARRISON, G. A. 2004. Isolation of monotreme T-cell receptor $\alpha$ and $\beta$ chains. Immunogenetics, 56, 164-169.
BELOV, K., NGUYEN, M. A., ZENGER, K. R. \& COOPER, D. W. 2002. Ontogeny of immunoglobulin expression in the brushtail possum (Trichosurus vulpecula). Dev Comp Immunol, 26, 599602.

BELOV, K., SANDERSON, C. E., DEAKIN, J. E., WONG, E. S., ASSANGE, D., MCCOLL, K. A., GOUT, A., DE BONO, B., BARROW, A. D., SPEED, T. P., TROWSDALE, J. \& PAPENFUSS, A. T. 2007. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res, 17, 982-91.
BENDIKSEN, S. \& REKVIG, O. P. 2004. Interleukin-2, but not Interleukin-15, is required to terminate experimentally induced clonal T-Cell Anergy. Scandinavian Journal of Immunology, 60, 6473.

## References

BENDTSEN, J. D., NIELSEN, H., VON HEIJNE, G. \& BRUNAK, S. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 340, 783-95.
BERIOU, G., COSTANTINO, C. M., ASHLEY, C. W., YANG, L., KUCHROO, V. K., BAECHER-ALLAN, C. \& HAFLER, D. A. 2009. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood, 113, 4240-9.
berman, h. M., WESTBROOK, J., FENG, Z., GILLILAND, G., BHAT, T. N., WEISSIG, H., SHINDYALOV, I. N. \& BOURNE, P. E. 2000. The Protein Data Bank. Nucleic Acids Res, 28, 235-42.

BERNARD, D., HANSEN, J. D., DU PASQUIER, L., LEFRANC, M.-P., BENMANSOUR, A. \& BOUDINOT, P. 2006. Costimulatory receptors in jawed vertebrates: Conserved CD28, odd CTLA4 and multiple BTLAs.
BERRY, A., TECTOR, M. \& OAKS, M. K. 2008. Lack of association between sCTLA-4 levels in human plasma and common CTLA-4 polymorphisms. J Negat Results Biomed, 7, 8.
BETTS, M. J. \& RUSSELL, R. B. 2003. Amino Acid properties and consequences of substitutions. Bioinformatics for Geneticists, ISBN 0-470-84393-4.
BEVERLY, B., KANG, S. M., LENARDO, M. J. \& SCHWARTZ, R. H. 1992. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int Immunol, 4, 661-71.
BEYERSMANN, D. \& HAASE, H. 2001. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals, 14, 331-41.
BHATNAGAR, A., GULL;AND, S., BASCAND, M., PALMER, E., GARDNER, T. G., KEARSE, K. P. \& BACKSTROM, B. T. 2003. Mutational analysis of conserved amino acids in the T cell receptor $\alpha$-chain transmembrane region:a critical role of leucine 112 and phenylalanine 127 for assembly and surface expression. Molecular Immunology, 39, 953-963.
BINGULAC-POPOVIC, J., FIGUEROA, F., SATO, A., TALBOT, W. S., JOHNSON, S. L., GATES, M., POSTLETHWAIT, J. H. \& KLEIN, J. 1997. Mapping of mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics, 46, 129-34.
BIRD, S., ZOU, J., KONO, T., SAKAI, M., DIJKSTRA, J. M. \& SECOMBES, C. 2005a. Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics, 56, 909923.

BIRD, S., ZOU, J., KONO, T., SAKAI, M., DIJKSTRA, J. M. \& SECOMBES, C. 2005b. Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics, 56, 90923.

BJELLQVIST, B., HUGHES, G. J., PASQUALI, C., PAQUET, N., RAVIER, F., SANCHEZ, J. C., FRUTIGER, S. \& HOCHSTRASSER, D. 1993. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 14, 1023-31.
BLANCHARD, N., DI BARTOLO, V. \& HIVROZ, C. 2002. In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern. Immunity, 17, 389-99.
BLEDI, Y., INBERG, A. \& LINIAL, M. 2003. PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells. Brief Funct Genomic Proteomic, 2, 254-65.
BLOM, N., GAMMELTOFT, S. \& BRUNAK, S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 294, 1351-62.
BLUESTONE, J. A. 1997. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol, 158, 1989-93.
BOISE, L. H., MINN, A. J., NOEL, P. J., JUNE, C. H., ACCAVITTI, M. A., LINDSTEN, T. \& THOMPSON, C. B. 1995. CD28 costimulation can promote $T$ cell survival by enhancing the expression of Bcl-XL. Immunity, 3, 87-98.

BOLLIGER, L. \& JOHANSSON, B. 1999. Identification and functional characterization of the zetachain dimerization motif for TCR surface expression. J Immunol, 163, 3867-76.
BORDERS, C. L., JR., BROADWATER, J. A., BEKENY, P. A., SALMON, J. E., LEE, A. S., ELDRIDGE, A. M. \& PETT, V. B. 1994. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci, 3, 541-8.
BORN, W. K., REARDON, C. L. \& O'BRIEN, R. L. 2006. The function of $\gamma \delta T$ cells in innate immunity. Curr Opin Immunol. Curr Opin Immunol, 18, 21-38.
BORNBERG-BAUER, E., RIVALS, E. \& VINGRON, M. 1998. Computational approaches to identify leucine zippers. Nucleic Acids Res, 26, 2740-6.
BORRIELLO, F., OLIVEROS, J., FREEMAN, G. J., NADLER, L. M. \& SHARPE, A. H. 1995. Differential expression of alternate mB7-2 transcripts. J Immunol, 155, 5490-7.
BORROTO, A., LAMA, J., NIEDERGANG, F., DAUTRY-VARSAT, A., ALARCON, B. \& ALCOVER, A. 1999. The CD3 epsilon subunit of the TCR contains endocytosis signals. J Immunol, 163, 25-31.
BOSCARIOL, R., PLEASANCE, J., PIEDRAFITA, D. M., RAADSMA, H. W. \& SPITHILL, T. W. 2006. Identification of two allelic forms of ovine CD4 exhibiting a Ser183/Pro183 polymorphism in the coding sequence of domain 3. Vet Immunol Immunopathol, 113, 305-12.
BOSSELUT, R. 2004. CD4/CD8 - Lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nature Reviews Immunology, 4, 529-540.
BOSSELUT, R., KUBO, S., GUINTER, T., KOPACZ, J. L., ALTMAN, J. D., FEIGENBAUM, L. \& SINGER, A. 2000. Role of CD8beta domains in CD8 coreceptor function: importance for MHC I binding, signaling, and positive selection of CD8 ${ }^{+}$T cells in the thymus. Immunity, 12, 409-418.
BOSSELUT, R., ZHANG, W., ASHE, J. M., KOPACZ, J. L., SAMELSON, L. E. \& SINGER, A. 1999. Association of the adaptor molecule LAT with CD4 and CD8 coreceptors identifies a new coreceptor function in T cell receptor signal transduction. J Exp Med, 190, 1517-26.
BOYD, A. M., HALL, R. A., GEMMELL, R. T. \& KAY, B. H. 2001. Experimental infection of Australian brushtail possums, Trichosurus vulpecula (Phalangeridae: Marsupialia), with Ross River and Barmah Forest viruses by use of a natural mosquito vector system. Am J Trop Med Hyg, 65, 777-82.
BRADSHAW, J. D., LU, P., LEYTZE, G., RODGERS, J., SCHIEVEN, G. L., BENNETT, K. L., LINSLEY, P. S. \& KURTZ, S. E. 1997. Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrinassociated protein is negatively regulated by tyrosine phosphorylation. Biochemistry, 36, 15975-82.
BRAND, S. 2009. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut, 58, 1152-67.
BRDICKA, T., KADLECEK, T. A., ROOSE, J. P., PASTUSZAK, A. W. \& WEISS, A. 2005. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol Cell Biol, 25, 4924-33.
BRIESE, L. \& WILLBOLD, D. 2003. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy. BMC, 3.
BRODEUR, J. F., LI, S., MARTINS MDA, S., LAROSE, L. \& DAVE, V. P. 2009. Critical and multiple roles for the CD3epsilon intracytoplasmic tail in double negative to double positive thymocyte differentiation. J Immunol, 182, 4844-53.
BROZEK, C. M., KALETA, E. W., KUSEWITT, D. F. \& LEY, R. D. 1992. Proliferative responses of lymphocytes to mitogens in the gray, short-tailed opossum, Monodelphis domestica. Vet Immunol Immunopathol, 31, 11-9.
BROZEK, C. M. \& LEY, R. D. 1991. Production of interleukin-1 in a South American opossum (Monodelphis domestica). Dev Comp Immunol, 15, 401-12.

BRYSON, K., MCGUFFIN, L. J., MARSDEN, R. L., WARD, J. J., SODHI, J. S. \& JONES, D. T. 2005. Protein structure prediction servers at University College London. Nucleic Acids Res, 33, W36-8.
BUDDLE, B. M. \& YOUNG, L. J. 2000. Immunobiology of mycobacterial infections in marsupials. Dev Comp Immunol, 24, 517-529.
BUGEON, L. \& DALLMAN, M. J. 2000. Costimulation of T cells. Am J Respir Crit Care Med, 162, S164-8.
BUONOCORE, F., RANDELLI, E., BIRD, S., SECOMBES, C. J., COSTANTINI, S., FACCHIANO, A., MAZZINI, M. \& SCAPIGLIATI, G. 2006. The CD8alpha from sea bass (Dicentrarchus labrax L.): Cloning, expression and 3D modelling. Fish Shellfish Immunol, 20, 637-46.

BURBACH, B. J., MEDEIROS, R. B., MUELLER, K. L. \& SHIMIZU, Y. 2007. T-cell receptor signaling to integrins. Immunol Rev, 218, 65-81.
CALL, M. E., PYRDOL, J., WIEDMANN, M. \& WUCHERPFENNIG, K. W. 2002. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell, 111, 967-79.
CALL, M. E., PYRDOL, J. \& WUCHERPFENNIG, K. W. 2004. Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO, 23, 2348 - 2357.

CALL, M. E., SCHNELL, J. R., XU, C., LUTZ, R. A., CHOU, J. J. \& WUCHERPFENNIG, K. W. 2006. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell, 127, 355-68.
CAMPBELL, D. J. \& ZIEGLER, S. F. 2007. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol, 7, 305-10.
CANADAY, D. H., ZIEBOLD, C., NOSS, E. H., CHERVENAK, K. A., HARDING, C. V. \& BOOM, W. H. 1999. Activation of human CD8+ alpha beta TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J Immunol, 162, 372-9.
CANFIELD, P., HEMSLEY, S. \& CONNOLLY, J. 1996. Histological and immunohistological study of the developing and involuting superficial cervical thymus in the koala (Phascolarctos cinereus). J Anat, 189 ( Pt 1), 159-69.
CARRERA, A. C., PARADIS, H., BORLADO, L. R., ROBERTS, T. M. \& MARTINEZ, C. 1995. Lck unique domain influences Lck specificity and biological function. J Biol Chem, 270, 3385-3391.
CASTRO-PRIETO, A., WACHTER, B. \& SOMMER, S. 2011. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population. Mol Biol Evol, 28, 1455-68.
CHAMBERS, C. A. 2001. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol, 22, 217-23.
CHAMIZO, C., RUBIO, J. M., MORENO, J. \& ALVAR, J. 2001. Semi-quantitative analysis of multiple cytokines in canine peripheral blood mononuclear cells by [correction of zby] a single tube RT-PCR. Vet. Immunol. Immunopathol., 83, 191-202.
CHAN, A. C., DALTON, M., JOHNSON, R., KONG, G. H., WANG, T., THOMA, R. \& KUROSAKI, T. 1995. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J, 14, 2499-508.
CHAN, A. C., IWASHIMA, M., TURCK, C. W. \& WEISS, A. 1992. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell, 71, 649-662.
CHAN, C. P., MAK, T. Y., CHIN, K. T., NG, I. O. \& JIN, D. Y. 2010. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci, 123, 1438-48.
CHAN, J., ROBINSON, E. S., YEH, I. T. \& MCCARREY, J. R. 2002. Absence of ras gene mutations in UV-induced malignant melanomas correlates with a dermal origin of melanocytes in Monodelphis domestica. Cancer Lett, 184, 73-80.

## References

CHAPLIN, P. J., PIETRALA, L. N. \& SCHEERLINCK, J.-P. Y. 1999. Cloning and sequence comparison of sheep CD28 and CTLA-4. Immunogenetics, 49, 583-584.
CHARLES, N., HARDWICK, D., DAUGAS, E., ILLEI, G. G. \& RIVERA, J. 2010. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med, 16, 7017.

CHATILA, T. A., BLAESER, F., HO, N., LEDERMAN, H. M., VOULGAROPOULOS, C., HELMS, C. \& BOWCOCK, A. M. 2000. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest, 106, R75-81.
CHEN, C., GAULT, A., SHEN, L. \& NABAVI, N. 1994. Molecular cloning and expression of early T cell costimulatory molecule-1 and its characterization as B7-2 molecule. J Immunol, 152, 492936.

CHEN, C., ROWELL, E. A., THOMAS, R. M., HANCOCK, W. W. \& WELLS, A. D. 2006. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem, 281, 36828-34.
CHEN, C. Y. \& SHYU, A. B. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 20, 465-70.
CHEN, F., LEE, Y., JIANG, Y., WANG, S., PEATMAN, E., ABERNATHY, J., LIU, H., LIU, S., KUCUKTAS, H., KE, C. \& LIU, Z. 2010. Identification and characterization of full-length cDNAs in channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus). PLoS One, 5, e11546.
CHERNICKY, C. L., TAN, H., BURFEIND, P. \& ILAN, J. 1996. Sequence of interleukin-2 isolated from human placental poly A+ RNA: possible role in maintenance of fetal allograft. Mol Reprod Dev, 43, 180-6
CHIDA, A. S., GOYOS, A. \& ROBERT, J. 2011. Phylogenetic and developmental study of CD4, CD8 alpha and beta T cell co-receptor homologs in two amphibian species, Xenopus tropicalis and Xenopus laevis. Dev Comp Immunol, 35, 366-77.
CHOI, I., CHO, B., KIM, S. D., PARK, D., KIM, J. Y., PARK, C. G., CHUNG, D. H., HWANG, W. S., LEE, J. S. \& AHN, C. 2006. Molecular cloning, expression and functional characterization of miniature swine CD86. Mol Immunol, 43, 480-6.
CHOI, I. S., HASH, S. M. \& COLLISSON, E. W. 2000a. Molecular cloning and expression of feline CD28 and CTLA-4 cDNA. Vet Immunol Immunopathol, 76, 45-59.
CHOI, I. S., HASH, S. M., WINSLOW, B. J. \& COLLISSON, E. W. 2000b. Sequence analyses of feline B7 costimulatory molecules. Vet Immunol Immunopathol, 73, 219-31.
CHOTHIA, C., NOVOTNY, J., BRUCCOLERI, R. \& KARPLUS, M. 1985. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol, 186, 651-63.
CHOWDHURY, B., TSOKOS, C. G., KRISHNAN, S., ROBERTSON, J., FISHER, C. U., WARKE, R. G., WARKE, V. G., NAMBIAR, M. P. \& TSOKOS, G. C. 2005. Decreased stability and translation of T cell receptor zeta mRNA with an alternatively spliced 3'-untranslated region contribute to zeta chain down-regulation in patients with systemic lupus erythematosus. J Biol Chem, 280, 18959-66.
CHRETIEN, I., MARCUZ, A., FELLAH, J., CHARLEMAGNE, J. \& DU PASQUIER, L. 1997. The T cell receptor beta genes of Xenopus. Eur JImmunol, 27, 763-71.
CHUANG, E., ALEGRE, M. L., DUCKETT, C. S., NOEL, P. J., VANDER HEIDEN, M. G. \& THOMPSON, C. B. 1997. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligandindependent endocytosis that limits cell surface expression. J Immunol, 159, 144-51.
CISTERNAS, P. A. \& ARMATI, P. J. 2000. Immune system cell markers in the northern brown bandicoot, Isoodon macrourus. Dev Comp Immunol, 24, 771-82.
CLARK, G. J. \& DALLMAN, M. J. 1992. Identification of a cDNA encoding the rat CD28 homologue. Immunogenetics, 35, 54-7.

## References

CLARK, S. J., JEFFREIES, W. A., BARCLAY, A. N., GAGNON, J. \& WILLIAMS, A. F. 1987. Peptide and nucleotide sequences of rat CD4 (W3/25) antigen: evidence for derivation from a structure with four immunoglobulin-related domains. Proc Natl Acad Sci USA, 84.
CLASSON, B. J., TSAGARATOS, J., MCKENZIE, I. F. C. \& WALKER, I. D. 1986. Partial primary structure of the T4 antigens of mouse and sheep: Assignment of intrachain disulfide bonds. Proc Natl Acad Sci USA, 83, 4499-4503.
CLAYTON, L. K., D'ADAMIO, L., HOWARD, F. D., SIEH, M., HUSSEY, R. E., KOYASU, S. \& REINHERZ, E. L. 1991. CD3 eta and CD3 zeta are alternatively spliced products of a common genetic locus and are transcriptionally and/or post-transcriptionally regulated during T-cell development. Proc Natl Acad Sci U S A, 88, 5202-6.
CLEMENTS, C. S., DUNSTONE, M. A., MACDONALD, W. A., MCCLUSKEY, J. \& ROSSJOHN, J. 2006. Specificity on a knife-edge: the alphabeta T cell receptor. Curr Opin Struct Biol, 16, 787-95.
CLEVERS, H., ALARCON, B., WILEMAN, T. \& TERHORST, C. 1988a. The T cell receptor/CD3 complex: a dynamic protein ensemble. Ann. Rev. Immunol., 6, 629.
CLEVERS, H. C., DUNLAP, S., WILEMAN, T. \& TERHORST, C. 1988b. Human CD3-\& gene contains three miniexons and is transcribed from a non-TATA promoter. Proc Natl. Acad Sci USA, 85, 8156-8160.
COHEN, G. B., REN, R. \& BALTIMORE, D. 1995. Modular binding domains in signal transduction proteins. Cell, 80, 237-48.
COLE, C., BARBER, J. D. \& BARTON, G. J. 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Res, 36, W197-201.
COLE, D. K., PUMPHREY, N. J., BOULTER, J. M., SAMI, M., BELL, J. I., GOSTICK, E., PRICE, D. A., GAO, G. F., SEWELL, A. K. \& JAKOBSEN, B. K. 2007. Human TCR-binding affinity is governed by MHC class restriction. J Immunol, 178, 5727-34.
CONNOLLY, J. H., CANFIELD, P. J., MCCLURE, S. J. \& WHITTINGTON, R. J. 1999. Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus). J Anat, 195 ( Pt 2), 161-71.
COUTINHO, H. B., SEWELL, H. F., TIGHE, P., KING, G., NOGUEIRA, J. C., ROBALINHO, T. I., COUTINHO, V. B. \& CAVALCANTI, V. M. 1995. Immunocytochemical study of the ontogeny of the marsupial Didelphis albiventris immune system. J Anat, 187 ( Pt 1), 37-46.
COZZI, P. J., PADRID, P. A., TAKEDA, J., ALEGRE, M. L., YUHKI, N. \& LEFF, A. R. 1993. Sequence and functional characterization of feline interleukin 2. Biochem. Biophys. Res. Commun. , 194, 1038-1043.
CRESPO,M., VILLAMOR, N., GINE, E., MUNTANOLA, A., COLOMER, D., MARAFIOTI, T.JONES, M., CAMOS, M., CAMPO, E., MONTSERRAT, E., BOSCH,F. 2006. ZAP-70 expression in normal pro/pre B lymphocytes, mature B lymphocytes, and in B-cell acute lymphoblastic leukemia. Clin Cancer Res, 12, 3, 726-734.
CRISCITIELLO, M. F., OHTA, Y., SALTIS, M., MCKINNEY, E. C. \& FLAJNIK, M. F. 2010. Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. J. Immunol., 184, 6950-6960.
CRISCITIELLO, M. F., SALTIS, M. \& FLAJNIK, M. F. 2006. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc Natl Acad Sci U S A, 103, 5036-5041.
CUI, S., HOPE, R. M., RATHJEN, J., VOYLE, R. B. \& RATHJEN, P. D. 2001. Structure, sequence and function of a marsupial LIF gene: conservation of IL-6 family cytokines. Cytogenet Cell Genet, 92, 271-8.

## References

CUI, S. \& SELWOOD, L. 2000. cDNA cloning characterization, expression and recombinant protein production of leukemia inhibitory factor (LIF) from the marsupial the brushtail possum (Trichosurus vulpecula). Gene, 243, 167-178.
CUROTTO DE LAFAILLE, M. A. \& LAFAILLE, J. J. 2009. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 30, 626-35.
CURRIER, J. R., DESOUZA, M., CHANBANCHERD, P., BERNSTEIN, W., BIRX, D. L. \& COX, J. H. 2002. Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -C(W)0304 alleles. J Virol, 76, 4971-86.
CUTHBERTSON, J. M., DOYLE, D. A. \& SANSOM, M. S. 2005. Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng Des Sel, 18, 295-308.
DAVE, V. P. 2009. Hierarchical role of CD3 chains in thymocyte development. Immunol Rev, 232, 1 22-33.
DAVIS, M. M. 2002. A new trigger for T cells. Cell, 110, 285-7.
DAYHOFF, M. O., SCHWARTZ, R. M. \& ORCUTT, B. C. 1978. A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure 5, 345-352.
DE LA CRUZ, J., KRUGER, T., PARKS, C. A., SILGE, R. L., VAN OERS, N. S., LUESCHER, I. F., SCHRUM, A. G. \& GIL, D. 2011. Basal and antigen-induced exposure of the proline-rich sequence in CD3epsilon. J Immunol, 186, 2282-90.
DEAN, E. M. \& COOPER, D. W. 1998. Immunolgical development of pouch young marsupials. In: Tyndale-Briscoe CH., Jansens, PA., editors. The developing marsupial. Models for biomedical research. Berlin: Springer, 190-199.
DEEN, K. C., MCDOUGAL, J. S., INACKER, R., FOLENA-WASSERMAN, G., ARTHOS, J., ROSENBERG, J., MADDON, P. J., AXEL, R. \& SWEET, R. W. 1988. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature, 331, 82-4.
DEGERMANN, S., SOLLAMI, G. \& KARJALAINEN, K. 1999a. Impaired NK1.1 T cell development in mice transgenic for a T cell receptor beta chain lacking the large, solvent-exposed cbeta FG loop. J Exp Med, 190, 1357-62.
DEGERMANN, S., SOLLAMI, G. \& KARJALAINEN, K. 1999b. T cell receptor beta chain lacking the large solvent-exposed Cbeta FG loop supports normal alpha/beta T cell development and function in transgenic mice. J Exp Med, 189, 1679-84.
DEINDL, S., KADLECEK, T., BRDLICKA, T., CAO, X. \& WEIS, A. 2007. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell, 129, 735-746.
DEL RIO, G., KANE, D. J., BALL, K. D. \& BREDESEN, D. E. 2007. A Novel Motif Identified in Dependence Receptors. PLoS ONE, 2.
DEVINE, L., KIEFFER, L. J., AITKEN, V. \& KAVATHAS, P. B. 2000. Human CD8 beta, but not mouse CD8 beta, can be expressed in the absence of CD8 alpha as a beta beta homodimer. J Immunol, 164, 833-8.
DEVINE, L., SUN, J., BARR, M. \& KAVATHAS, P. 1999. Orientation of the Ig domains of CD8 alpha beta relative to MHC class I. J. Immunol., 162, 846-851.
DI BARTOLO, V., MEGE, D., GERMIAN, V., PELOSI, M., DUFOUR, E., MICHEL, F., MAGISTRELLI, G., ISAACCHI, A. \& ACUTO, O. 1999. Tyrosine 319, a newly identified phosphorylationsite of ZAP-70, plays a critical role in T cell antigen receptor signaling. J Biol Chem, 274, 62856294.

DI TOMMASO, S., ANTONACCI, R., CICCARESE, S. \& MASSARI, S. 2010. Extensive analysis of D-J-C arrangements allows the identification of different mechanisms enhancing the diversity in sheep T cell receptor beta-chain repertoire. BMC Genomics, 11, 3.

DIDELOT, X. 2010. Sequence-Based Analysis of Bacterial Population Structures. In D. Ashley Robinson, Daniel Falush, Edward J. Feil. Bacterial Population Genetics in Infectious Disease. . John Wiley and Sons, ISBN 978-0-470-42474-2, p. 46-47.
DONG, S., CORRE, B., NIKA, K., PELLEGRINI, S. \& MICHEL, F. 2010. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One, 5, e15114.
DRANOFF, G. 2004. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4, 1122.

DRESZER, T. R., KAROLCHIK, D., ZWEIG, A. S., HINRICHS, A. S., RANEY, B. J., KUHN, R. M., MEYER, L. R., WONG, M., SLOAN, C. A., ROSENBLOOM, K. R., ROE, G., RHEAD, B., POHL, A., MALLADI, V. S., LI, C. H., LEARNED, K., KIRKUP, V., HSU, F., HARTE, R. A., GURUVADOO, L., GOLDMAN, M., GIARDINE, B. M., FUJITA, P. A., DIEKHANS, M., CLINE, M. S., CLAWSON, H., BARBER, G. P., HAUSSLER, D. \& JAMES KENT, W. 2012. The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res, 40, D918-23.
DUCHARDT, E., SIGALOV, A. B., AIVAZIAN, D., STERN, L. J. \& SCHWALBE, H. 2007. Structure induction of the T-cell receptor zeta-chain upon lipid binding investigated by NMR spectroscopy. Chembiochem, 8, 820-7.
DUNCAN, L. G., NAIR, S. V. \& DEANE, E. M. 2007. Molecular characterisation and expression of CD4 in two distantly related marsupials: The gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii). Mol Immunol, 44, 3641-3652.
DUNCAN, L. G., NAIR, S. V. \& DEANE, E. M. 2008. The marsupial CD8 gene locus: Molecular cloning and expression analysis of the alpha and beta sequences in the gray short-tailed opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol.
ECK, M. J., ATWELL, J. K., SHOELSON, S. E. \& HARRISON, S. H. 1994. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature, 368, 764-769.
EDHOLM, E. S., STAFFORD, J. L., QUINIOU, S. M., WALDBIESER, G., MILLER, N. W., BENGTEN, E. \& WILSON, M. 2006. Channel catfish, Ictalurus punctatus, CD4-like molecules. Developmental and Comparative Immunology.
EL-RIDI, R., WAHBY, A. F. \& SAAD, A.-H. 1986. Characterization of snake Interleukin-2. Dev Comp Immunol, 10, 128.
EMAMAULLEE, J. A., DAVIS, J., MERANI, S., TOSO, C., ELLIOTT, J. F., THIESEN, A. \& SHAPIRO, A. M. 2009. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes, 58, 1302-11.
ESWAR, N., JOHN, B., MIRKOVIC, N., FISER, A., ILYIN, V. A., PIEPER, U., STUART, A. C., MARTIRENOM, M. A., MADHUSUDHAN, M. S., YERKOVICH, B. \& SALI, A. 2003. Tools for comparative protein structure modeling and analysis. Nucleic Acids Res, 31, 3375-80.
ESWAR, N., WEBB, B., MARTI-RENOM, M. A., MADHUSUDHAN, M. S., ERAMIAN, D., SHEN, M. Y., PIEPER, U. \& SALI, A. 2006. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics, Chapter 5, Unit 56.
EVANS, E. J., ESNOUF, R. M., MANSO-SANCHO, R., GILBERT, R. J., JAMES, J. R., YU, C., FENNELLY, J. A., VOWLES, C., HANKE, T., WALSE, B., HUNIG, T., SORENSEN, P., STUART, D. I. \& DAVIS, S. J. 2005. Crystal structure of a soluble CD28-Fab complex. Nat Immunol, 6, 271-9.

FALLAH-ARANI, F., SCHWEIGHOFFER, E., VANES, L. \& TYBULEWICZ, V. L. 2008. Redundant role for Zap70 in B cell development and activation. Eur J Immunol, 38, 1721-33.
FALLARINO, F., GROHMANN, U., HWANG, K. W., ORABONA, C., VACCA, C., BIANCHI, R., BELLADONNA, M. L., FIORETTI, M. C., ALEGRE, M. L. \& PUCCETTI, P. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol, 4, 1206-12.

## References

FALLARINO, F., GROHMANN, U., YOU, S., MCGRATH, B. C., CAVENER, D. R., VACCA, C., ORABONA, C., BIANCHI, R., BELLADONNA, M. L., VOLPI, C., SANTAMARIA, P., FIORETTI, M. C. \& PUCCETTI, P. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate $T$ cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol, 176, 6752-61.
FARES, F. 2006. The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones: development of agonists and antagonists. Biochim Biophys Acta, 1760, 560-7.
FEHÉRVARI, Z. \& SAKAGUCHI, S. 2004. CD4+ Tregs and immune control. The Journal of Clinical Investigation, 114
FELLAH, J. S., KERFOURN, F., GUILLET, F. \& CHARLEMAGNE, J. 1993. Conserved structure of amphibian T cell antigen receptor $\beta$ chain. Proc Natl Acad Sci USA, 90, 6811-6814.
FELLAH, J. S., TUFFERY, P., ETCHEBEST, C., GUILLET, F., BLEUX, C. \& CHARLEMAGNE, J. 2002. Cloning and modeling of CD8 beta in the amphibian ambystoma Mexicanum. Evolutionary conserved structures for interactions with major histocompatibility complex (MHC) class I molecules. Gene, 288, 95-102.
FELSENSTEIN, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. . Evolution, 39.
FERRE, F. \& CLOTE, P. 2005. DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res, 33, W230-2.
FISHER, R. A., BERTONIS, J. M., MEIER, W., JOHNSON, V. A., COSTOPOULOS, D. S., LIU, T., TIZARD, R., WALKER, B. D., HIRSCH, M. S., SCHOOLEY, R. T. \& ET AL. 1988. HIV infection is blocked in vitro by recombinant soluble CD4. Nature, 331, 76-8.
FLOESS, S., FREYER, J., SIEWERT, C., BARON, U., OLEK, S., POLANSKY, J., SCHLAWE, K., CHANG, H.D., BOPP, T., SCHMITT, W., KLEIN-HESSLING, S., SERFLING, E. \& HARMANN, A. 2007. Epigenetic Control of the foxp3 Locus in Regulatory T Cells. PLoS Biol, 5.
FLOREA, L., DI FRANCESCO, V., MILLER, J., TURNER, R., YAO, A., HARRIS, M., WALENZ, B., MOBARRY, C., MERKULOV, G. V., CHARLAB, R., DEW, I., DENG, Z., ISTRAIL, S., LI, P. \& SUTTON, G. 2005. Gene and alternative splicing annotation with AIR. Genome Res, 15, 5466.

FOMSGAARD, A., HIRSCH, V. M. \& R., J. P. 1992. Cloning and sequences of primate CD4 molecules: Diversity of the cellular receptor for simian immunodeficiency virus/human immunodeficiency virus. European Journal of Immunology, 22, 2973-2981.
FONTENOT, J. D., GAVIN, M. A. \& RUDENSKY, A. Y. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4, 330-6.
FONTENOT, J. D., RASMUSSEN, J. P., GAVIN, M. A. \& RUDENSKY, A. Y. 2005a. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol, 6, 1142-51.
FONTENOT, J. D., RASMUSSEN, J. P., WILLIAMS, L. M., DOOLEY, J. L., FARR, A. G. \& RUDENSKY, A. Y. 2005b. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 22, 329-41.
FOSSIEZ, F., BANCHEREAU, J., MURRAY, R., VAN KOOTEN, C., GARRONE, P. \& LEBECQUE, S. 1998. Interleukin-17. Int. Rev. Immunol., 16, 541-551.
FOSSIEZ, F., DJOSSOU, O., CHOMARAT, P., FLORES-ROMO, L., AIT-YAHIA, S., MAAT, C., PIN, J. J., GARRONE, P., GARCIA, E., SAELAND, S., BLANCHARD, D., GAILLARD, C., DAS MAHAPATRA, B., ROUVIER, E., GOLSTEIN, P., BANCHEREAU, J. \& LEBECQUE, S. 1996. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med, 183, 2593-603.

FRANK, S. J., NIKLINSKA, B. B., ORLOFF, D. G., MERCEP, M., ASHWELL, J. D. \& KLAUSNER, R. D. 1990. Structural mutations of the T cell receptor zeta chain and its role in T cell activation. Science, 249, 174-7.
FREEMAN, A. R., LYNN, D. J., MURRAY, C. \& BRADLEY, D. G. 2008. Detecting the effects of selection at the population level in six bovine immune genes. . BMC Genet, 9 .
FREEMAN, G. J., LOMBARD, D. B., GIMMI, C. D., BROD, S. A., LEE, K., LANING, J. C., HAFLER, D. A., DORF, M. E., GRAY, G. S., REISER, H. \& ET AL. 1992. CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol, 149, 3795-801.
FREEMAN, J. D., WARREN, R. L., WEBB, J. R., NELSON, B. H. \& HOLT, R. A. 2009. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res, 19, 1817-24.
FUJII, Y., MATSUTANI, T., KITAURA, K., SUZUKI, S., ITOH, T., TAKASAKI, T., SUZUKI, R. \& KURANE, I. 2010. Comprehensive analysis and characterization of the TCR alpha chain sequences in the common marmoset. Immunogenetics, 62, 383-95.
FUJITA, P. A., RHEAD, B., ZWEIG, A. S., HINRICHS, A. S., KAROLCHIK, D., CLINE, M. S., GOLDMAN, M., BARBER, G. P., CLAWSON, H., COELHO, A., DIEKHANS, M., DRESZER, T. R., GIARDINE, B. M., HARTE, R. A., HILLMAN-JACKSON, J., HSU, F., KIRKUP, V., KUHN, R. M., LEARNED, K., LI, C. H., MEYER, L. R., POHL, A., RANEY, B. J., ROSENBLOOM, K. R., SMITH, K. E., HAUSSLER, D. \& KENT, W. J. 2011. The UCSC Genome Browser database: update 2011. Nucleic Acids Res, 39, D876-82.
GAFFEN, S. L. 2009. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol, 9, 55667.

GAFFEN, S. L., GOLDSMITH, M. A. \& GREENE, W. C. 1998. Interleukin-2 and the interleukin-2 receptor. In: Thomson A (ed) The cytokine handbook 3rd edn. . Academic, London, 73-103.
GAO, G. F. \& JAKOBSEN, B. K. 2000. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today, 21, 630-6.
GAYNOR, W. T., COUSINS, D. V. \& FRIEND, J. A. 1990. Mycobacterial infections in numbats (Myrmecobius fasciatus). J Zoo Wildl Med, 21, 476-479.
GEER, L. Y., DOMRACHEV, M., LIPMAN, D. J. \& BRYANT, S. H. 2002. CDART: protein homology by domain architecture. Genome Res, 12, 1619-23.
GEISLER, C., KUHLMANN, J. \& RUBIN, B. 1989. Assembly, intracellular processing, and expression at the cell surface of the human alpha beta $T$ cell receptor/CD3 complex. Function of the CD3-zeta chain. J Immunol, 143, 4069-77.
GERLONI, M., RIZZI, M., CASTIGLIONI, P. \& ZANETTI, M. 2004. T cell immunity using transgenic B lymphocytes. Proc Natl Acad Sci U S A, 101, 3892-7.
GHENDLER, Y., SMOLYAR, A., CHANG, H. C. \& REINHERZ, E. L. 1998. One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop. J Exp Med, 187, 1529-36.
GLAICHENHAUS, N., SHASTRI, N., LITTMAN, D. R. \& TURNER, J. M. 1991. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell, 64, 511-20.
GOBEL, T. W. \& BOLLIGER, L. 1998. The chicken TCR zeta-chain restores the function of a mouse T cell hybridoma. J Immunol, 160, 1552-4.
GOBEL, T. W., CHEN, C. L., LAHTI, J., KUBOTA, T., KUO, C. L., AEBERSOLD, R., HOOD, L. \& COOPER, M. D. 1994. Identification of T-cell receptor alpha-chain genes in the chicken. Proc Natl Acad Sci U S A, 91, 1094-8.

## References

GOBEL, T. W. \& FLURI, M. 1997. Identification and analysis of the chicken CD3epsilon gene. Eur J Immunol, 27, 194-8.
GOEBEL, T. W. F. \& DANGY, J. P. 2000. Evidence for a stepwise evolution of the CD3 family. Immunology, 164, 879-883.
GOLD, D. P., CLEVERS, J., ALARCON, B., DUNLAP, S., NOVOTNY, J., WILLIAMS, A. F. \& TERHORST, C. 1987. Evolutionary relationship between the T3 chains of the T cell receptor complex and the immunoglobulin supergene family. Proc Natl. Acad Sci USA, 84, 7649-7633.
GOLD, D. P., PUCK, J. M., PETTEY, C. L., CHO, M., COLIGAN, J., WOODY, J. N. \& TERHORST, C. 1986. Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex. Nature, 321, 431-4.
GOLD, M. R. \& DEFRANCO, A. I. 1994. Biochemistry of B lymphocyte activation. Adv Immunol, 55, 221-295.
GOLDSTEIN, D. R. 2011. T Cell Costimulation Blockade and Organ TrnsplantationL A Change of Philosophy for Transplant Immunologists? J Immunol, 2691-2692.
GONG, Q., CHENG, A. M., AKK, A. M., ALBEROLA-ILA, J., GONG, G., PAWSON, T. \& CHAN, A. C. 2001. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol, 2, 29-36.
GOODING, L. R. 1992. Virus proteins that counteract host immune defenses. Cell, 71, 5-7.
GORMAN, S. D., FREWIN, M. R., COBBOLD, S. P. \& WALDMANN, H. 1994. Isolation and expression of cDNA encoding the canine CD4 and CD8 alpha antigens. Tissue Antigens, 43, 184-188.
GOUGH, S. C., WALKER, L. S. \& SANSOM, D. M. 2005. CTLA4 gene polymorphism and autoimmunity. Immunol Rev, 204, 102-15.
GRAHAM, J. R., HENDERSHOTT, M. C., TERRAGNI, J. \& COOPER, G. M. 2010. mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol Cell Biol, 30, 5295-305.
GRANUCCI, F., ZANONI, I., FEAU, S. \& RICCIARDI-CASTAGNOLI, P. 2003. Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. EMBO J, 22, 2546-51.
GRIFFITHS, A. L., RENFREE, M. B., SHAW, G., WATTS, L. M. \& HUTSON, J. M. 1993. The tammar wallaby (Macropus eugenii) and the Sprague-Dawley rat: comparative anatomy and physiology of inguinoscrotal testicular descent. J Anat, 183 ( Pt 3), 441-50.
GROSS, J. A., CALLAS, E. \& ALLISON, J. P. 1992. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol, 149, 380-8.
GROSSBERGER, D., MARCUZ, A., FICHTEL, A., DUDLER, L. \& HEIN, W. R. 1993. Sequence analysis of sheep T-cell receptor beta chains. Immunogenetics, 37, 222-6.
GUJAR, S. A. \& MICHALAK, T. I. 2006. Characterization of bioactive recombinant woodchuck interleukin-2 amplified by RLM-RACE and produced in eukaryotic expression system. Vet. Immunol. Immunopathol., 112, 183-198.
GULLBERG, J. 1997. Mathematics from the birth of numbers. . New York: W. W. Norton, pp. 963965.

GUNIMALADEVI, I., SAVAN, R. \& SAKAI, M. 2006. Identification, cloning and characterization of interleukin-17 and its family from zebrafish. Fish Shellfish Immunol, 21, 393-403.
GUPTA, R., JUNG, E. \& BRUNAK, S. 2004. Prediction of N-glycosylation sites in human proteins. In preparation.
GUSTAFSSON, K., GERMANA, S., SUNDT, T. M., 3RD, SACHS, D. H. \& LEGUERN, C. 1993. Extensive allelic polymorphism in the CDR2-like region of the miniature swine CD4 molecule. J Immunol, 151, 1365-70.

GUY, C. S., MULROONEY-COUSINS, P. M., CHURCHILL, N. D. \& MICHALAK, T. I. 2008. Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J Virol, 82, 857991.

HABICHT, A., NAJAFIAN, N., YAGITA, H., SAYEGH, M. H. \& CLARKSON, M. R. 2007. New insights in CD28-independent allograft rejection. Am J Transplant, 7, 1917-26.
hagens, G., GALLEY, Y., GLASER, I., DAVIS, W. C., BALDWIN, C. L., CLEVERS, H. \& DObBELAERE, D. A. 1996. Cloning, sequencing and expression of the bovine CD3 epsilon and TCR-zeta chains, two invariant components of the T-cell receptor complex. Gene, 169, 165-71.
HAGUE, B. F., SAWASDIKOSOL, S., BROWN, T. J., LEE, K., RECKER, D. P. \& KINDT, T. J. 1992. CD4 and its role in infection of rabbit cell lines by human immunodeficiency virus type 1. Proc Natl Acad Sci USA, 89, 7963-7967.
HANGER, J. J., BROMHAM, L. D., MCKEE, J. J., O'BRIEN, T. M. \& ROBINSON, W. F. 2000. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol, 74, 4264-72.
HANKS, S. K. \& QUINN, A. M. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol, 200, 38-62.
HANNA, Z., SIMARD, C., LAPERRIERE, A. \& JOLICOEUR, P. 1994. Specific expression of the human CD4 gene in mature CD4+ CD8- and immature CD4 $+\mathrm{CD} 8+\mathrm{T}$ cells and in macrophages of transgenic mice. Mol Cell Biol, 14, 1084-94.
HANSEN, J. A., MARTIN, P. J. \& NOWINSKI, R. C. 1980. Monoclonal antibodies identifying a novel Tcell antigen and la antigens of human T lymphocytes. Immunogenetics, 10, 247-260.
HANSEN, J. D. \& STRASSBURGER, P. 2000. Description of an Ectothermic TCR Coreceptor, CD8 $\alpha$, in Rainbow Trout. Journal of Immunology, 164, 3132-3139.
HANSON, K., ROSKOP, L., DJUROVICH, P. I., ZAHARIEV, F., GORDON, M. S. \& THOMPSON, M. E. 2010. A Paradigm for Blue- or Red-Shifted Absorption of Small Molecules Depending on the Site of pi-Extension. J Am Chem Soc, 132, 16247-55.
HARADA, Y., OHGAI, D., WATANABE, R., OKANO, K., KOIWAI, O., TANABE, K., TOMA, H., ALTMAN, A. \& ABE, R. 2003. A Single Amino Acid Alteration in Cytoplasmic Domain Determines IL-2 Promoter Activation by Ligation of CD28 but Not Inducible costimulator (ICOS). J. Exp. Med., 197, 257-262.
HARGROVE, J. L. \& SCHMIDT, F. H. 1989. The role of mRNA and protein stability in gene expression. FASEB J, 3, 2360-70.
HARHAY, G. P., SONSTEGARD, T. S., KEELE, J. W., HEATON, M. P., CLAWSON, M. L., SNELLING, W. M., WIEDMANN, R. T., VAN TASSELL, C. P. \& SMITH, T. P. 2005. Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics, 6, 166.
HARRISON, G. A., BROUGHTON, M. J., YOUNG, L. J., COOPER, D. W. \& DEANE, E. M. 1999. Conservation of $3^{\prime}$ untranslated region elements in tammar wallaby (Macropus eugenii) TNF- $\alpha$ mRNA. Immunogenetics, 49, 464-467.
HARRISON, G. A. \& DEANE, E. M. 1999. cDNA sequence of the lymphotoxin beta chain from a marsupial, Macropus eugenii (Tammar wallaby). J Interferon Cytokine Res, 19, 1099-102.
HARRISON, G. A. \& DEANE, E. M. 2000. cDNA cloning of lymphotoxin alpha (LT-alpha) from a marsupial, Macropus eugenii. DNA Seq, 10, 399-403.
HARRISON, G. A., TAYLOR, C. L., MILLER, R. D. \& DEANE, E. M. 2003a. Primary structure and variation of the T -cell receptor delta-chain from a marsupial, Macropus eugenii. Immunol Lett, 88, 117-25.

## References

HARRISON, G. A., TAYLOR, C. L., MILLER, R. D. \& DEANE, E. M. 2003b. Primary structure and variation of the T cell recptor $\delta$-chain from a marsupial, Macropus eugenii. . Immunol Lett, 88, 117-125.
HARRISON, G. A. \& WEDLOCK, D. N. 2000. Marsupial cytokines strucutre, function and evolution. Developmental and Comparative Immunology, 24, 473-484.
HARRISON, G. A., YOUNG, L. J., WATSON, C. M., MISKA, K. B., MILLER, R. D. \& DEANE, E. M. 2003c. A survey of type I interferons from a marsupial and monotreme: implications for the evolution of the type I interferon gene family in mammals. Cytokine, 21, 105-19.
HAWKEN, R. J., MACCARONE, P., TODER, R., MARSHALL GRAVES, J. A. \& MADDOX, J. F. 1999. Isolation and characterization of marsupial IL5 genes. Immunogenetics, 49, 942-948.
HAYDAY, A. C. 2000. $\gamma \delta$ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immuno, 18, 975-1026.
HAYNES, M. R. \& WU, G. E. 2007. Gene discovery at the human T-cell receptor alpha/delta locus. Immunogenetics, 59, 109-121.
HEERY, D. M., KALKHOVEN, E., HOARE, S. \& PARKER, M. G. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387, 733-6.
HEHNER, S. P., HOFMANN, T. G., DIENZ, O., DROGE, W. \& SCHMITZ, M. L. 2000. Tyrosinephosphorylated Vav1 as a point of integration for T-cell receptor- and CD28-mediated activation of JNK, p38, and interleukin-2 transcription. J Biol Chem, 275, 18160-71.
HEIN, W. R., MARCUZ, A., FICHTEL, A., DUDLER, L. \& GROSSBERGER, D. 1991. Primary structure of the sheep T-cell receptor alpha chain. Immunogenetics, 34, 39-41.
HEIN, W. R. \& TUNNACLIFFE, A. 1993. Invariant components of the sheep T-cell antigen receptor: cloning of the CD3 epsilon and Tcr zeta chains. Immunogenetics, 37, 279-84.
HEMSLEY, S. W., CANFIELD, P. J. \& HUSBAND, A. J. 1995. Immunohistological staining of lymphoid tissue in four Australian marsupial species using species cross-reactive antibodies. Immunology and Cell Biology 73, 321-325.
HENIKOFF, S. \& HENIKOFF, G. 1992. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A, 89, 10915-10919.
HENNECKE, J., CARFI, A. \& WILEY, D. C. 2000. Structure of a covalently stabilized complex of a human $\alpha \beta$ T cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J., 19, 5611-5624.
HERAUD, J. M., LAVERGNE, A. \& KAZANJI, M. 2002. Molecular cloning, characterization, and quantification of squirrel monkey (Saimiri sciureus) Th1 and Th2 cytokines. Immunogenetics, 54, 20-29
HICKFORD, D., FRANKENBERG, S. \& RENFREE, M. B. 2009. The tammar wallaby, Macropus eugenii: a model kangaroo for the study of developmental and reproductive biology. Cold Spring Harb Protoc, 2009, pdb emo137.
HIGGINS, D., HEMSLEY, S. \& CANFIELD, P. J. 2004. Assessment of anti-bovine IL4 and IFN gamma antibodies to label IL4 and IFN gamma in lymphocytes of the koala and brushtail possum. Veterinary Immunology and Immunopathology 101.
HOEK, A., RUTTEN, V. P., KOOL, J., ARKESTEIJN, G. J., BOUWSTRA, R. J., VAN RHIJN, I. \& KOETS, A. P. 2009. Subpopulations of bovine WC1(+) gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo. Vet Res, 40, 6.
HOFSTETTER, H. H., SMOLIANOV, V. \& HARTUNG, H. P. 2009. Untired regulatory T cells: untying fatigue from T cell regulation in multiple sclerosis. Eur Neurol, 62, 327-9.
HOLST, J., WANG, H., EDER, K. D., WORKMAN, C. J., BOYD, K. L., BAQUET, Z., SINGH, H., FORBES, K., CHRUSCINSKI, A., SMEYNE, R., VAN OERS, N. S., UTZ, P. J. \& VIGNALI, D. A. 2008. Scalable

## References

signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol, 9, 658-66.
HOLTMEIER, W. \& KABELITZ, D. 2005. $\gamma \delta$ T cells link innate and adaptive immune responses. Chem Immunol Allergy. Chem Immunol Allergy, 86, 151-183.
HOPP, T. P. \& WOODS, K. R. 1983. A computer program for predicting protein antigenic determinants. Mol Immunol, 20, 483-9.
HORI, S., NEMURA, T. \& SAKAGUCHI, S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science, 299, 1057-1061.
HOROHOV, D. W., BEADLE, R. E., MOUCH, S. \& POURCIAU, S. S. 2005. Temporal regulation of cytokine mRNA expression in equine recurrent airway obstruction. Vet Immunol Immunopathol, 108, 237-45.
HORTON, R., WILMING, L., RAND, V., LOVERING, R. C., BRUFORD, E. A., KHODIYAR, V. K., LUSH, M. J., POVEY, S., TALBOT, C. C., JR., WRIGHT, M. W., WAIN, H. M., TROWSDALE, J., ZIEGLER, A. \& BECK, S. 2004. Gene map of the extended human MHC. Nat Rev Genet, 5, 889-99.
HURLEY, J. H., MASON, D. A. \& MATTHEWS, B. W. 1992. Flexible-geometry conformational energy maps for the amino acid residue preceding a proline. Biopolymers, 32, 1443-6.
HUSE, M., ECK, M. J. \& HARRISON, S. C. 1998. A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J Biol Chem, 273, 18729-33.
HYMOWITZ, S. G., FILVAROFF, E. H., YIN, J. P., LEE, J., CUI, I. \& RISSER, P. 2001. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL17F and implications for receptor binding. $E M B O J, 20,5332-5341$.
IHA, K., OMATSU, T., WATANABE, S., UEDA, N., TANIGUCHI, S., FUJII, H., ISHII, Y., KYUWA, S., AKASHI, H. \& YOSHIKAWA, Y. 2009. Molecular cloning and sequencing of the cDNAs encoding the bat interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12p40, and tumor necrosis factoralpha. . J. Vet. Med. Sci., 71, 1691-1695.
IRVING, B. A., CHAN, A. C. \& WEISS, A. 1993. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J Exp Med, 177, 1093-103.
ISAACS, N. W. 1995. Cystine knots. Curr Opin Struct Biol, 5, 391-5.
ISAKOV, N. \& BIESINGER, B. 2000. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. Eur J Biochem, 267, 3413-21.
ISHIGURO, N., TANAKA, A. \& SHINAGAWA, M. 1990. Sequence analysis of bovine T-cell receptor alpha chain. Immunogenetics, 31, 57-60.
ISONO, T., KIM, C. J. \& SETO, A. 1995. Sequence and diversity of rabbit T-cell receptor gamma chain genes. Immunogenetics, 41, 295-300.
ISONO, T. \& SETO, A. 1995. Cloning and sequencing of the rabbit gene encoding T-cell costimulatory molecules. Immunogenetics, 42, 217-20.
ITOH, Y., MATSUURA, A., KINEBUCHI, M., HONDA, R., TAKAYAMA, S., ICHIMIYA, S., KON, S. \& KIKUCHI, K. 1993. Structural analysis of the CD3 zeta/eta locus of the rat. Expression of zeta but not eta transcripts by rat T cells. J Immunol, 151, 4705-17.
IWASHIMA, M., IRVING, B. A., VAN OERS, N. S., CHAN, A. C. \& WEISS, A. 1994. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science, 263, 11369.

JANEWAY, C. A. J. 2001. How the immune system works to protect the host from infection: A personal view. Proc. Natl. Acad. Sci. USA - Immunology, 98, 7461-7468.
JENKINS, M. K. 1992. The role of cell division in the induction of clonal anergy. Immunol Today, 13, 69-73.

## References

JENSEN, J. P., HOU, D., RAMSBURG, M., TAYLOR, A., DEAN, M. \& WEISSMAN, A. M. 1992. Organization of the human T cell receptor zeta/eta gene and its genetic linkage to the Fc gamma RII-Fc gamma RIII gene cluster. J Immunol, 148, 2563-71.
JIANG, H. \& CHESS, L. 2009. How the immune system achieves self-nonself discrimination during adaptive immunity. Adv Immunol, 102, 95-133.
JIN, L., PLUSKEY, S., PETRELLA, E. C., CANTIN, S. M., GORGA, J. C., RYNKIEWICZ, M. J., PANDEY, P., STRICKLER, J. E., BABINE, R. E., WEAVER, D. T. \& SEIDL, K. J. 2004a. The Three-dimensional Structure of the ZAP-70 Kinase Domain in Complex with Staurosporine. THE JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 279, 42818-42825.
JIN, L., PLUSKEY, S., PETRELLA, E. C., CANTIN, S. M., GORGA, J. C., RYNKIEWICZ, M. J., PANDEY, P., STRICKLER, J. E., BABINE, R. E., WEAVER, D. T. \& SEIDL, K. J. 2004b. The three-dimensional structure of the ZAP-70 kinase domain in complex with staurosporine: implications for the design of selective inhibitors. J Biol Chem, 279, 42818-25.
JOHANSEN, M. B., KIEMER, L. \& BRUNAK, S. 2006. Analysis and prediction of mammalian protein glycation. Glycobiology, 16, 844-53.
JOHANSSON, B., PALMER, E. \& BOLLIGER, L. 1999. The extracellular domain of the zeta chain is essential for TCR function. J. Immunol., 162, 878-885.
JOLY, E., LE ROLLE, A. F., GONZALEZ, A. L., MEHLING, B., STEVENS, J., COADWELL, W. J., HUNIG, T., HOWARD, J. C. \& BUTCHER, G. W. 1998. Co-evolution of rat TAP transporters and MHC class I RT1-A molecules. Curr Biol, 8, 169-72.
JONES, M., CORDELL, J. L., BEYERS, A. D., TSE, A. G. \& MASON, D. Y. 1993. Detection of T and B lymphocytes in many animal species using cross-reactive anti-peptide antibodies. J Immunol, 150, 5429-35.
JOSE, E. S., SAHUQUILLO, A. G., BRAGADO, R. \& ALARCON, B. 1998. Assembly of the TCR/CD3 complex: CD3 $\varepsilon / \delta$ and CD3 $\varepsilon / \gamma$ dimers associate indistinctly with both TCR $\alpha$ and TCR $\beta$ chains. Evidence for a double TCR heterodimer model. European Journal of Immunology, 28, 12 21.

JOSEFOWICZ, S. Z., NIEC, R. E., KIM, H. Y., TREUTING, P., CHINEN, T., ZHENG, Y., UMETSU, D. T. \& RUDENSKY, A. Y. 2012. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 482, 395-9.
JULENIUS, K. 2007. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology, 17, 868-76.
JUNE, C. H., LEDBETTER, J. A., LINSLEY, P. S. \& THOMPSON, C. B. 1990. Role of the CD28 receptor in T cell activation. Immunol Today, 11, 211-216.
JURD, R. D. 1994. "Not proper mammasl": immunity in monotremes and marsupials. Comp Immunol Microbiol Infect Dis. 17, 1, 41-52.
KAISER, P., MARIANI, P. 1999. Promoter sequence, exon:intron structure, and synteny of genetic location show that a chicken cytokine with T-cell proliferative activity is IL2 and not IL15. Immunogenetics, 49, 1, 26-35.
KAMPER, S. M. \& MCKINNEY, C. E. 2002. Polymorphism and evolution in the constant region of the T-cell receptor beta chain in an advanced teleost fish. Immunogenetics, 53, 1047-54.
KAPPEL, L. W., GOLDBERG, G. L., KING, C. G., SUH, D. Y., SMITH, O. M., LIGH, C., HOLLAND, A. M., GRUBIN, J., MARK, N. M., LIU, C., IWAKURA, Y., HELLER, G. \& VAN DEN BRINK, M. R. 2009. IL-17 contributes to CD4-mediated graft-versus-host disease. Blood, 113, 945-52.
KASHIWADA, M., PHAM, N. L., PEWE, L. L., HARTY, J. T. \& ROTHMAN, P. B. 2011. NFIL3/E4BP4 is a key transcription factor for CD8alpha dendritic cell development. Blood, 117, 6193-7.

## References

KATOH, S., KITAZAWA, H., SHIMOSATO, T., TOHNO, M., KAWAI, Y. \& SAITO, T. 2004. Cloning and characterization of Swine interleukin-17, preferentially expressed in the intestines. J Interferon Cytokine Res, 24, 553-9.
KAUFMAN, J., MILNE, S., GOBEL, T. W., WALKER, B. A., JACOB, J. P., AUFFRAY, C., ZOOROB, R. \& BECK, S. 1999. The chicken $B$ locus is a minimal essential major histocompatibility complex. Nature, 401, 923-5.
KELLEY, J., WALTER, L. \& TROWSDALE, J. 2005. Comparative genomics of major histocompatibility complexes. Immunogenetics, 56, 683-95.
KELLEY, L. A. \& STERNBERG, M. J. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc, 4, 363-71.
KENT, W. J. 2002. BLAT - The BLAST-Like Alignment Tool. Genome Res., 12, 656-664.
KENT, W. J., SUGNET, C. W., FUREY, T. S., ROSKIN, K. M., PRINGLE, T. H., ZAHLER, A. M. \& HAUSSLER, D. 2002. The human genome browser at UCSC. Genome Res, 12, 996-1006.
KESTI, T., RUPPELT, A., WANG, J. H., LISS, M., WAGNER, R., TASKEN, K. \& SAKSELA, K. 2007. Reciprocal regulation of SH 3 and SH 2 domain binding via tyrosine phosphorylation of a common site in CD3epsilon. J Immunol, 179, 878-85.
KHATLANI, T. S., OHNO, K., MA, Z., INOKUMA, H. \& ONISHI, T. 2000. Cloning and sequencing of dog cDNA encoding the T-cell costimulatory molecule (CTLA-4). Immunogenetics, 51, 7981.

KIM, P. W., SUN, Z. Y., BLACKLOW, S. C., WAGNER, G. \& ECK, M. J. 2003. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science, 301, 1725-1728.
KIM, S. T., TOUMA, M., TAKEUCHI, K., SUN, Z. Y., DAVE, V. P., KAPPES, D. J., WAGNER, G. \& REINHERZ, E. L. 2010. Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of alpha beta T cell receptors. J Immunol, 185, 2951-9.
KIRKBRIDGE, K. C., RAY, B. N. \& BLOBE, G. C. 2005. Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem. Sci. , 30 611-621.
KIRKHAM, P. A., TAKAMATSU, H., YANG, H. \& PARKHOUSE, R. M. E. 1996. Porcine CD3ع its characterization, expression and involvement in activation of procine $T$ lymphocytes. Immunology, 87, 616-623.
KLAUSNER, R. D. \& SAMELSON, L. E. 1991. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell, 64, 875-8.
KLEIN, S. L., STRAUSBERG, R. L., WAGNER, L., PONTIUS, J., CLIFTON, S. W. \& RICHARDSON, P. 2002. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn., 225, 384-391.
KOLLS, J. K. \& LINDEN, A. 2004. Interleukin-17 family members and inflammation. Immunity, 21, 467-76.
KONIG, R., SHEN, X., MAROTO, R. \& DENNING, T. L. 2002. The role of CD4 in regulating homeostasis of T helper cells. Immunol Res, 25, 115-30.
KONO, T., KORENAGA, H. \& SAKAI, M. 2011. Genomics of fish IL-17 ligand and receptors: a review. Fish Shellfish Immunol, 31, 635-43.
KORN, T., BETTELLI, E., OUKKA, M. \& KUCHROO, V. K. 2009. IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517.
KOSKINEN, R., LAMMINMAEKI, U., TREGASKES, C. A., SALOMONSEN, J., YOUNG, J. R. \& VAINIO, O. 1999. Cloning and Modeling of the First Nonmammalian CD4. Immunology, 162, 41154121.

Kothlow, S., MANNES, N. K., SCHAERER, B., REBESKI, D. E., KASPERS, B. \& SCHULTZ, U. 2005. Characterization of duck leucocytes by monoclonal antibodies. Dev Comp Immunol, 29, 733-48.

## References

KRANGEL, M. S., HERNANDEZ-MUNAIN, C., LAUZURICA, P., MCMURRY, M., ROBERTS, J. L. \& ZHONG, X. P. 1998. Developmental regulation of $V(D) J$ recombination at the TCR alpha/delta locus. Immunol Rev, 165, 131-47.
KREIJVELD, E., KOENEN, H. J., VAN CRANENBROEK, B., VAN RIJSSEN, E., JOOSTEN, I. \& HILBRANDS, L. B. 2008. Immunological monitoring of renal transplant recipients to predict acute allograft rejection following the discontinuation of tacrolimus. PLoS One, 3, e2711.
KRUYS, V. \& HUEZ, G. 1994. Translational control of cytokine expression by 3' UA-rich sequences. Biochimie, 76, 862-6.
KU, G., MALISSEN, B. \& MATTEI, M. G. 1994. Chromosomal location of the Syk and ZAP-70 tyrosine kinase genes in mice and humans. Immunogenetics, 40, 300-2.
KUNJIBETTU, S., FULLER-ESPIE, S., CAREY, G. B. \& SPAIN, L. M. 2001. Conserved transmembrane tyrosine residues of the TCR beta chain are required for TCR expression and function in primary T cells and hybridomas. Int Immunol, 13, 211-22.
KYTE, J. \& DOOLITTLE, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 157, 105-32.
LA GRUTA, N. L., LIU, H., DILIOGLOU, S., RHODES, M., WIEST, D. L. \& VIGNALI, D. A. A. 2004. Architecutral Changes in the TCR:CD3 Complex induced by MHC:Peptide ligation. Immunology, 172, 3662-3669.
LAFAGE-POCHITALOFF, M., COSTELLO, R., COUEZ, D., SIMONETTI, J., MANNONI, P., MAWAS, C. \& OLIVE, D. 1990. Human CD28 and CTLA-4 Ig superfamily genes are located on chromosome 2 at bands q33-q34. Immunogenetics, 31, 198-201.
LAFFERTY, K. J., WARREN, H. S., WOOLNOUGH, J. A. \& TALMAGE, D. W. 1978. Immunological induction of $T$ lymphocytes: role of antigen and the lymphocyte costimulator. Blood Cells, 4, 395-406.
LAING, K. J., DUTTON, S. \& HANSEN, J. D. 2007. Molecular and biochemical analysis of rainbow trout LCK suggests a conserved mechanism for T-cell signaling in gnathostomes. Mol. Immunol. , 44, 2737-2748.
LALOR, P., BUCCI, C., FORNARO, M., RATTAZZI, M. C., NAKAUCHI, H., HERZENBERG, L. A. \& ALBERTI, S. 1992. Molecular cloning, reconstruction and expression of the gene encoding the alphachain of the bovine CD8--definition of three peptide regions conserved across species. Immunology, 76, 95-102.
LANGER, P. 1984. Comparative anatomy of the stomach in mammalian herbivores. Q J Exp Physiol, 69, 615-25.
LANIER, L. L., YU, G. \& PHILLIPS, J. H. 1989. Co-association of CD3 with a receptor (CD16) for IgG Fc on human natural killer cells. . Nature 342, 803-805.
LANKFORD, S., PETTY, C., LAVOY, A., RECKLING, S., TOMPKINS, W. \& DEAN, G. A. 2008. Cloning of feline FOXP3 and detection of expression in CD4+CD25+ regulatory T cells. Vet Immunol Immunopathol, 122, 159-66.
LAWLOR, D. A. \& PARHAM, P. 1992. Structure of CD8 alpha and beta chains of the orangutan: novel patterns of mRNA splicing encoding hingeless polypeptides. Immunogenetics, 36, 121-5.
LAWSON, S., ROTHWELL, L. \& KAISER, P. 2000. Turkey and chicken interleukin-2 cross-react in in vitro proliferation assays despite limited amino acid sequence identity. . J. Interferon Cytokine Res. , 20, 161-170.
LAZAR-MOLNAR, E., ALMO, S. C. \& NATHENSON, S. G. 2006. The interchain disulfide linkage is not a prerequisite but enhances CD28 costimulatory function. Cell Immunol, 244, 125-9.
LENSCHOW, D. J., WALUNAS, T. L. \& BLUESTONE, J. A. 1996. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 14, 233-58.

LEONG, J. S., JANTZEN, S. G., VON SCHALBURG, K. R., COOPER, G. A., MESSMER, A. M., LIAO, N. Y., MUNRO, S., MOORE, R., HOLT, R. A., JONES, S. J., DAVIDSON, W. S. \& KOOP, B. F. 2010. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics, 11, 279.
LETUNIC, I., DOERKS, T. \& BORK, P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 40, D302-5.
LEWINSOHN, D. A., HEINZEL, A. S., GARDNER, J. M., ZHU, L., ALDERSON, M. R. \& LEWINSOHN, D. M. 2003. Mycobacterium tuberculosis-specific CD8+ T cells preferentially recognize heavily infected cells. Am J Respir Crit Care Med, 168, 1346-52.
LEWKOWICZ, P., LEWKOWICZ, N., SASIAK, A. \& TCHORZEWSKI, H. 2006. Lipopolysaccharideactivated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol, 177, 7155-63.
LI, B., SAMANTA, A., SONG, X., IACONO, K. T., BRENNAN, P., CHATILA, T. A., RONCADOR, G., BANHAM, A. H., RILEY, J. L., WANG, Q., SHEN, Y., SAOUAF, S. J. \& GREENE, M. I. 2007. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol, 19, 825-35.
LI, Q. R., MA, J., WANG, H. \& LI, J. S. 2005. Interleukin-2 $\alpha$ Receptor in Membrane Lipid Rafts. Transplantation Proceedings, 37, 2395-2397.
LI, R., FAN, W., TIAN, G., ZHU, H., HE, L., CAI, J., HUANG, Q., CAI, Q., LI, B., BAI, Y., ZHANG, Z., ZHANG, Y., WANG, W., LI, J., WEI, F., LI, H., JIAN, M., NIELSEN, R., LI, D., GU, W., YANG, Z., XUAN, Z., RYDER, O. A., LEUNG, F. C., ZHOU, Y., CAO, J., SUN, X., FU, Y., FANG, X., GUO, X., WANG, B., HOU, R., SHEN, F., MU, B., NI, P., LIN, R., QIAN, W., WANG, G., YU, C., NIE, W., WANG, J., WU, Z., LIANG, H., MIN, J., WU, Q., CHENG, S., RUAN, J., WANG, M., SHI, Z., WEN, M., LIU, B., REN, X., ZHENG, H., DONG, D., COOK, K., SHAN, G., ZHANG, H., KOSIOL, C., XIE, X., LU, Z., LI, Y., STEINER, C. C., LAM, T. T., LIN, S., ZHANG, Q., LI, G., TIAN, J., GONG, T., LIU, H., ZHANG, D., FANG, L., YE, C., ZHANG, J., HU, W., XU, A., REN, Y., ZHANG, G., BRUFORD, M. W., LI, Q., MA, L., GUO, Y., AN, N., HU, Y., ZHENG, Y., SHI, Y., LI, Z., LIU, Q., CHEN, Y., ZHAO, J., QU, N., ZHAO, S., TIAN, F., WANG, X., WANG, H., XU, L., LIU, X., VINAR, T., WANG, Y., LAM, T. W., YIU, S. M., et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature, 463, 311-7.
LI, S., CHOKSI, S., SHAN, S., HU, X., GAO, J., KORNGOLD, R. \& HUANG, Z. 1998. Identification of the CD8 DE loop as a surface functional epitope. Implications for major histocompatibility complex class I binding and CD8 inhibitor design. J Biol Chem, 273, 16442-5.
LIANG, X., LU, Y., WILKES, M., NEUBERT, T. A. \& RESH, M. D. 2004. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading. J Biol Chem, 279, 8133-9.
LIN, A. F., XIANG, L. X., WANG, Q. L., DONG, W. R., GONG, Y. F. \& SHAO, J. Z. 2009. The DC-SIGN of zebrafish: insights into the existence of a CD209 homologue in a lower vertebrate and its involvement in adaptive immunity. J. Immunol., 183, 7398-7410.
LIN, H., RATHMELL, J. C., GRAY, G. S., THOMPSON, C. B., LEIDEN, J. M. \& ALEGRE, M. L. 1998. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J Exp Med, 188, 199-204.
LINSLEY, P. S., NADLER, S. G., BAJORATH, J., PEACH, R., LEUNG, H. T., ROGERS, J., BRADSHAW, J., STEBBINS, M., LEYTZE, G., BRADY, W. \& ET AL. 1995. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules. J Biol Chem, 270, 15417-24.

## References

LIS, H. \& SHARON, N. 1993. Protein glycosylation. Structural and functional aspects. Eur J Biochem, 218, 1-27.
LITTMAN, D. R., THOMAS, Y., MADDON, P. J., CHESS, L. \& AXEL, R. 1985. The isolation and sequence of the gene encoding T8: a molecule defining functional classes of $T$ lymphocytes. Cell, 40, 237-46.
LIU, Y., MOORE, L., KOPPANG, E. O. \& HORDVIK, I. 2008. Characterization of the CD3zeta, CD3gammadelta and CD3epsilon subunits of the $T$ cell receptor complex in Atlantic salmon. Dev Comp Immunol, 32, 26-35.
LIVOLSI, A., BUSUTTIL, V., IMBERT, V., ABRAHAM, R. T. \& PEYRON, J. F. 2001. Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP70 protein tyrosine kinases. Eur J Biochem, 268, 1508-15.
LOCKHART, E., GREEN, A. M. \& FLYNN, J. L. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol, 177, 4662-9.
LONBERG, N., GETTNER, S. N., LACY, E. \& LITTMAN, D. R. 1988. Mouse brain CD4 transcripts encode only the COOH-terminal half of the protein. Mol Cell Biol, 8, 2224-8.
LOPES, J. E., TORGERSON, T. R., SCHUBERT, L. A., ANOVER, S. D., OCHELTREE, E. L., OCHS, H. D. \& ZIEGLER, S. F. 2006. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol, 177, 3133-42.
MACIAS, M. J., WIESNER, S. \& SUDOL, M. 2002. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett, 513, 30-7.
MADDON, P. J., LITTMAN, D. R., GODFREY, M., MADDON, D. E., CHESS, L. \& AXEL, R. 1985. The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: A new member of the immunoglobulin gene family. Cell, 42, 93-104.
MAHER, S. E., KARMANN, K., MIN, W., HUGHES, C. C., POBER, J. S. \& BOTHWELL, A. L. 1996. Porcine endothelial CD86 is a major costimulator of xenogeneic human $T$ cells: cloning, sequencing, and functional expression in human endothelial cells. J Immunol, 157, 383844.

MAI, Z., KOUSOULAS, K. G., HOROHOV, D. W. \& KLEI, T. R. 1994. Cross-species PCR cloning of gerbil (Meriones unguiculatus) interleukin-2 cDNA and its expression in COS-7 cells. Vet. Immunol. Immunopathol. , 40, 63-71.
MALLAUN, M., NAEHER, D., DANIELS, M. A., YACHI, P. P., HAUSMANN, B., LUESCHER, I. F., GASCOIGNE, N. R. \& PALMER, E. 2008. The T cell receptor's alpha-chain connecting peptide motif promotes close approximation of the CD8 coreceptor allowing efficient signal initiation. J Immunol, 180, 8211-21.
MANEL, N., UNUTMAZ, D. \& LITTMAN, D. R. 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol, 9, 641-9.
MANNERING, S. I. \& CHEERS, C. 2002. Interleukin-2 and loss of immunity in experimental Mycobacterium avium infection. Infect Immun, 70, 27-35.
MANOLIOS, N. 1995. Hierarchy of T cell antigen receptor assembly. Immunol Cell Biol, 73, 544-8.
MANOLIOS, N., COLLIER, S., TAYLOR, J., POLLARD, J., HARRISON, L. C. \& BENDER, V. 1997. T-cell antigen receptor transmembrane peptides modulate T -cell function and T cell-mediated disease. Nat Med, 3, 84-8.
MANOLIOS, N., LETOURNEUR, F., BONIFACINO, J. S. \& KLAUSNER, R. D. 1991. Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. $E M B O \mathrm{~J}, 10,1643-51$.

MANTEL, P. Y., OUAKED, N., RUCKERT, B., KARAGIANNIDIS, C., WELZ, R., BLASER, K. \& SCHMIDTWEBER, C. B. 2006. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol, 176, 3593-602.
MARCHALONIS, J. J., BERNSTEIN, R. M., SHEN, S. X. \& SCHLUTER, S. F. 1996. Emergence of the immunoglobulin family: conservation in protein sequence and plasticity in gene organization. Glycobiology, 6, 657-63.
MARCHE, P. N. \& KINDT, T. J. 1986. Two distinct T-cell receptor alpha-chain transcripts in a rabbit T-cell line: implications for allelic exclusion in T cells. Proc Natl Acad Sci U S A, 83, 2190-4.
MARENGERE, L. E., OKKENHAUG, K., CLAVREUL, A., COUEZ, D., GIBSON, S., MILLS, G. B., MAK, T. W. \& ROTTAPEL, R. 1997. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol, 159, 3220-9.
MARGETA-MITROVIC, M. 2002. Assembly-dependent trafficking assays in the detection of receptor-receptor interactions. Methods 27, 311-317.
MARGULIES, D. H. 2003. CD28, costimulator or agonist receptor? J Exp Med, 197, 949-53.
MARRACK, P., ENDRES, R., SHIMONKEVITZ, R., ZLOTNIK, A., DIALYNAS, D., FITCH, F. \& KAPPLER, J. 1983. The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med, 158, 1077-91.
MARSHALL GRAVES, J. A. \& WESTERMAN, M. 2002. Marsupial genetics and genomics. Trends in Genetics, 18, 517-522.
MARTIN-OROZCO, N., CHUNG, Y., CHANG, S. H., WANG, Y. H. \& DONG, C. 2009. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol, 39, 216-24.
MATESANZ, F., ALCINA, A. \& PELLICER, A. 1992. A new cDNA sequence for the murine interleukin2 gene. Biochim. Biophys. Acta, 1132, 335-336.
MATESANZ, F., ALCINA, A. \& PELLICER, A. 1993. Existence of at least five interleukin-2 molecules in different mouse strains. Immunogenetics, 38, 300-303
MATSUZAKI, G. \& UMEMURA, M. 2007. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol, 51, 1139-47.
MATZINGER, P. 2002. The danger model: a renewed sense of self. Science, 296, 301-5.
MCCOY, K. D. \& LE GROS, G. 1999. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol, 77, 1-10.
MCDONALD, N. Q. \& HENDRICKSON, W. A. 1993. A structural superfamily of growth factors containing a cystine knot motif. Cell, 73, 421-4.
MCGUFFIN, L. J., BRYSON, K. \& JONES, D. T. 2000. The PSIPRED protein structure prediction server. Bioinformatics, 16, 404-5.
MCKENNA, K., BEIGNON, A. S. \& BHARDWAJ, N. 2005. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol, 79, 17-27.
MCKNIGHT, A. J., MASON, D. W. \& BARCLAY, A. N. 1989. Sequence of rat interleukin 2 and anomalous binding of a mouse interleukin 2 cDNA probe to rat MHC class II-associated invariant chain mRNA. Immunogenetics 30, 145-147.
MEDZHITOV, R. \& JANEWAY, C. A., JR. 1997. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 9, 4-9.
MELTRETTER, J. \& PISCHETSRIEDER, M. 2008. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins. Ann $N$ Y Acad Sci, 1126, 134-40.
METHI, T., NGAI, J., VANG, T., TORGERSEN, K. M. \& TASKEN, K. 2007. Hypophosphorylated TCR/CD3弓 signals through a Grb2-SOS1-Ras pathway in Lck knockdown cells. Eur. J. Immunol, 37, 2539-2548.

## References

MEUER, S. C., HUSSEY, R. E., CANTRELL, D. A., HODGDON, J. C., SCHLOSSMAN, S. F., SMITH, K. A. \& REINHERZ, E. L. 1984. Triggering of the T3-Ti antigen-receptor complex results in clonal Tcell proliferation through an interleukin 2-dependent autocrine pathway. Proc. Natl. Acad. Sci. USA Immunology, 81, 1509-1513.
MEYER-LUCHT, Y., OTTEN, C., PUTTKER, T. \& SOMMER, S. 2008. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials. BMC Genet, 9, 39.
MICHEL, F., ATTAL-BONNEFOY, G., MANGINO, G., MISE-OMATA, S. \& ACUTO, O. 2001. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity, 15, 93545.

MIKKELSEN, T. S., WAKEFIELD, M. J., AKEN, B., AMEMIYA, C. T., CHANG, J. L., DUKE, S., GARBER, M., GENTLES, A. J., GOODSTADT, L., HEGER, A., JURKA, J., KAMAL, M., MAUCELI, E., SEARLE, S. M., SHARPE, T., BAKER, M. L., BATZER, M. A., BENOS, P. V., BELOV, K., CLAMP, M., COOK, A., CUFF, J., DAS, R., DAVIDOW, L., DEAKIN, J. E., FAZZARI, M. J., GLASS, J. L., GRABHERR, M., GREALLY, J. M., GU, W., HORE, T. A., HUTTLEY, G. A., KLEBER, M., JIRTLE, R. L., KOINA, E., LEE, J. T., MAHONY, S., MARRA, M. A., MILLER, R. D., NICHOLLS, R. D., ODA, M., PAPENFUSS, A. T., PARRA, Z. E., POLLOCK, D. D., RAY, D. A., SCHEIN, J. E., SPEED, T. P., THOMPSON, K., VANDEBERG, J. L., WADE, C. M., WALKER, J. A., WATERS, P. D., WEBBER, C., WEIDMAN, J. R., XIE, X., ZODY, M. C., GRAVES, J. A., PONTING, C. P., BREEN, M., SAMOLLOW, P. B., LANDER, E. S. \& LINDBLAD-TOH, K. 2007. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature, 447, 167-77.
MILDE, K. F., CONNER, G. W., MINTZ, D. H. \& ALEJANDRO, R. 1993. Primary structue of the canine CD4 antigen. Biochimica et Biophysica Acta, 1172, 315-318.
MILLER, R. D. \& ROSENBERG, G. H. 1997. Recombination activating gene-1 of the opossum Monodelphis domestica. Immunogenetics, 45, 341-342.
MINGALA, C. N., KONNAI, S., IKEBUCHI, R. \& OHASHI, K. 2011. Characterization of CTLA-4, PD-1 and PDL-1 of swamp and riverine type water buffaloes. Comp Immunol Microbiol Infect Dis, 34, 55-63.
MINGALA, C. N., ODBILEG, R., KONNAI, S., OHASHI, K. \& ONUMA, M. 2006. Comparative assessment of Th1 and Th2 cytokines of swamp type buffalo and other bubaline breeds by molecular cloning, sequencing and phylogenetics. Vet. Immunol. Immunopathol., 113, 348-356.
MINGUENEAU, M., SANSONI, A., GREGOIRE, C., RONCAGALLI, R., AGUADO, E., WEISS, A., MALISSEN, M. \& MALISSEN, B. 2008. The proline-rich sequence of CD3 $\varepsilon$ controls $T$ cell antigen receptor expression on and singaling potency in preselection CD4 ${ }^{+} \mathrm{CD}^{+}$ thymocytes. Nat Immunol, 9, 522-532.
MINGUET, S., SWAMY, M., DOPFER, E. P., DENGLER, E., ALARCON, B. \& SCHAMEL, W. W. 2008. The extracellular part of zeta is buried in the T cell antigen receptor complex. Immunol Lett, 116, 203-10.
MITTRUCKER, H. W. \& KAUFMANN, S. H. 2004. Mini-review: regulatory T cells and infection: suppression revisited. Eur J Immunol, 34, 306-12.
MIZUNO, T., SUZUKI, R., UMEKI, S. \& OKUDA, M. 2009. Crossreactivity of antibodies to canine CD25 and Foxp3 and identification of canine CD4+CD25 +Foxp3+ cells in canine peripheral blood. J Vet Med Sci, 71, 1561-8.
MLADINIC, M., LEFEVRE, C., DEL BEL, E., NICHOLLS, J. \& DIGBY, M. 2010. Developmental changes of gene expression after spinal cord injury in neonatal opossums. Brain Res, 1363, 20-39.

MOLINA, I. J., KENNEY, D. M., ROSEN, F. S. \& REMOLD-O'DONNELL, E. 1992. T cell lines characterize events in the pathogenesis of the Wiskott-Aldrich syndrome. J Exp Med, 176, 867-74.
MOLLER, S., LESER, U., FLEISCHMANN, W. \& APWEILER, R. 1999. EDIT to TrEMBL: a distributed approach to high-quality automated protein sequence annotation. Bioinformatics, 15, 219-27.
MONTALI, R. J., BUSH, M., CROMIE, R., HOLLAND, S. M., MASLOW, J. N., WORLEY, M., WITEBSKY, F. G. \& PHILLIPS, T. M. 1998. Primary Mycobacterium avium Complex infections correlate with lowered cellular immune reactivity in Matschie's Tree Kangaroos (Dendrolagus matschiei). Infectious Diseases, 178.
MOON, C., KIM, S. H., PARK, K. S., CHOI, B. K., LEE, H. S., PARK, J. B., CHOI, G. S., KWAN, J. H., JOH, J. W. \& KIM, S. J. 2009. Use of epigenetic modification to induce FOXP3 expression in naive T cells. Transplant Proc, 41, 1848-54.
MOORE, L. J., SOMAMOTO, T., LIE, K. K., DIJKSTRA, J. M. \& HORDVIK, I. 2005. Characterisation of salmon and trout CD8 $\alpha$ and CD8 $\beta$. Molecular Immunology, 42, 1225-1234.
MOORE, S. C., ANDERSON, S. J. \& WALKER, W. S. 1992. Mouse macrophages contain a truncated CD4 transcript. Leukocyte Biology, 52, 128-129.
MORGAN, D. A., RUSCETTI, F. W. \& GALLO, R. 1976. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science, 193, 1007-8.
MORITA, C. T., MARIUZZA, R. A. \& BRENNER, M. B. 2000. Antigen recognition by human $\gamma \delta \mathrm{T}$ cells: pattern recognition by the adaptive immune system. springer Semin Immunopathol, 22, 191-217.
MORRISSEY, D. V. \& COLLINS, M. L. 1989. Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Mol Cell Probes, 3, 189-207.
MURANSKI, P., BONI, A., ANTONY, P. A., CASSARD, L., IRVINE, K. R., KAISER, A., PAULOS, C. M., PALMER, D. C., TOULOUKIAN, C. E., PTAK, K., GATTINONI, L., WRZESINSKI, C., HINRICHS, C. S., KERSTANN, K. W., FEIGENBAUM, L., CHAN, C. C. \& RESTIFO, N. P. 2008. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 112, 362-73.
MURCHISON, E. P., SCHULZ-TRIEGLAFF, O. B., NING, Z., ALEXANDROV, L. B., BAUER, M. J., FU, B., HIMS, M., DING, Z., IVAKHNO, S., STEWART, C., NG, B. L., WONG, W., AKEN, B., WHITE, S., ALSOP, A., BECQ, J., BIGNELL, G. R., CHEETHAM, R. K., CHENG, W., CONNOR, T. R., COX, A. J., FENG, Z. P., GU, Y., GROCOCK, R. J., HARRIS, S. R., KHREBTUKOVA, I., KINGSBURY, Z., KOWARSKY, M., KREISS, A., LUO, S., MARSHALL, J., MCBRIDE, D. J., MURRAY, L., PEARSE, A. M., RAINE, K., RASOLONJATOVO, I., SHAW, R., TEDDER, P., TREGIDGO, C., VILELLA, A. J., WEDGE, D. C., WOODS, G. M., GORMLEY, N., HUMPHRAY, S., SCHROTH, G., SMITH, G., HALL, K., SEARLE, S. M., CARTER, N. P., PAPENFUSS, A. T., FUTREAL, P. A., CAMPBELL, P. J., YANG, F., BENTLEY, D. R., EVERS, D. J. \& STRATTON, M. R. 2012. Genome sequencing and analysis of the tasmanian devil and its transmissible cancer. Cell, 148, 780-91.
MURZIN, A. G., BRENNER, S. E., HUBBARD, T. \& CHOTHIA, C. 1995. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247, 536-40.
NAGARAJAN, U. M., O'CONNELL, C. \& RANK, R. G. 2004. Molecular characterization of guinea - pig (Cavia porcellus) CD8alpha and CD8beta cDNA. Tissue Antigens, 63, 184-9.
NAKAJIMA, A., WATANABE, N., YOSHINO, S., YAGITA, H., OKUMURA, K. \& AZUMA, M. 1997. Requirement of CD28-CD86 co-stimulation in the interaction between antigen-primed T helper type 2 and B lymphocytes. Int Immunol, 9, 637-44.
NAKAUCHI, H., SHINKAI, Y. \& OKUMURA, K. 1987. Molecular cloning of Lyt-3, a membrane glycoprotein marking a subset of mouse T lymphocytes: molecular homology to

## References

immunoglobulin and T-cell receptor variable and joining regions. Proc Nat/ Acad Sci U S A, 84, 4210-4.
NASH, R. A., SCHERF, U. \& STORB, R. 1991. Molecular cloning of the CD3 epsilon subunit of the Tcell receptor/CD3 complex in dog. Immunogenetics, 33, 396-8.
NEL, A. E. \& SLAUGHTER, N. 2002. T-cell activation through the antigen receptor. Part 2: role of signaling cascades in T -cell differentiation, anergy, immune senescence, and development of immunotherapy. J Allergy Clin Immunol, 109, 901-15.
NELSON, B. H., LORD, J. D. \& GREENBERG, P. D. 1996. A membrane-proximal region of the interleukin-2 receptor gamma c chain sufficient for Jak kinase activation and induction of proliferation in T cells. Mol Cell Biol, 16, 309-17.
NESS, T. L., BRADLEY, W. G., ROESS, W. B. \& REYNOLDS, J. E. I. 1997. Isolation and Expression of the Interleukin-2 Gene from the Killer Whale, Orcinus orca. . Mar. Mamm. Sci.
NEUMEISTER, E. N., ZHU, Y., RICHARD, S., TERHORST, C., CHAN, A. C. \& SHAW, A. S. 1995. Binding of ZAP-70 to phosphorylated T-cell receptor zeta and eta enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Mol Cell Biol, 15, 3171-8.
NGUYEN, J. T., TURCK, C. W., COHEN, F. E., ZUCKERMANN, R. N. \& LIM, W. A. 1998. Exploiting the basis of proline recognition by SH3 and WW domains: design of N -substituted inhibitors. Science, 282, 2088-92.
NISHIMURA, Y., MIYAZAWA, T., IKEDA, Y., IZUMIYA, Y., NAKAMURA, K., CAI, J. S., SATO, E., KHOMOTO, M. \& MIKAMI, T. 1998. Molecular cloning and expression of feline CD38.
NOLAN, A., KOBAYASHI, H., NAVEED, B., KELLY, A., HOSHINO, Y., HOSHINO, S., KARULF, M. R., ROM, W. N., WEIDEN, M. D. \& GOLD, J. A. 2009. Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One, 4, e6600.
NONANAKA, S., SOMAMAOTO, T., KATO-UNOKI, Y., OTOTTAKE, M., NAKANISHI, T. \& NAKAO, M. 2008. Molecular cloning of CD4 from ginbuna crucian carp Carassius auratus langsdorfii. Fisheries Science, 72, 341-346.
NORIMINE, J., MIYAZAWA, T., KAWAGUCHI, Y., TOHYA, Y., KAI, C. \& MIKAMI, T. 1992. A cDNA encoding feline CD4 has a unique repeat sequence downstream of the V -like region. Immunology, 75, 74-9.
NORMENT, A. M. \& LITTMAN, D. R. 1988. A second subunit of CD8 is expressed in human T cells. EMBO J, 7, 3433-9.
OAKS, M. K. \& HALLETT, K. M. 2000. Cutting Edge: A Soluble Form of CTLA-4 in Patients with Autoimmune Thyroid disease. J. Immunol., 164, 50115-5018.
ODBILEG, R., LEE, S. I., YOSHIDA, R., CHANG, K. S., OHASHI, K., SUGIMOTO, C. \& ONUMA, M. 2004. Cloning and sequence analysis of llama cytokines related to cell-mediated immunity. . Vet. Immunol. Immunopathol. , 99, 1-10.
ODBILEG, R., PUREVTSEREN, B., BATSUKH, Z., KONNAI, S., OHASHI, K. \& ONUMA, M. 2006. Complete cDNA sequences and phylogenetic analyses of the Th1 and Th2 cytokines of the Bactrian Camel (Camelus bactrianus). . J. Vet. Med. Sci. , 68, 941-946.
OFFMAN, M. N., FITZJOHN, P. W. \& BATES, P. A. 2006. Developing a move-set for protein model refinement. Bioinformatics, 22, 1838-45.
OHME-TAKAGI, M., TAYLOR, C. B., NEWMAN, T. C. \& GREEN, P. J. 1993. The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci U S A, 90, 11811-5.
OHTA, Y., GOETZ, W., HOSSAIN, M. Z., NONAKA, M. \& FLAJNIK, M. F. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol, 176, 3674-85.

OKAMOTO, R., SOUMA, S. \& KAJIHARA, Y. 2009. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens. J Org Chem, 74, 2494-501.
OKKENHAUG, K., BILANCIO, A., EMERY, J. L. \& VANHAESEBROECK, B. 2004. Phosphoinositide 3kinase in T cell activation and survival. Biochem Soc Trans, 32, 332-5.
OKOYE, F. I., KRISHNAN, S., CHANDOK, M. R., TSOKOS, G. C. \& FARBER, D. L. 2007. Proximal signaling control of human effector CD4 T cell function. Clin Immunol, 125, 5-15.
OLD, J. M., CARMAN, R. L., FRY, G. \& DEANE, E. M. 2006. The immune tissues of the endangered red-tailed phascogale (Phascogale calura). Anatomy, 208, 381-387.
OLD, J. M. \& DEANE, E. M. 2000. Development of the immune system and immunological protection in marsupial pouch young. Dev Comp Immunol, 24, 445-54.
OLD, J. M. \& DEANE, E. M. 2001. Histology and immunohistochemistry of the gut-associated lymphoid tissue of the eastern grey kangaroo, Macropus giganteus. J Anat, 199, 657-62.
OLD, J. M. \& DEANE, E. M. 2002a. The gut-associated lymphoid tissues of the northern brown bandicoot (Isoodon macrourus). Dev Comp Immunol, 26, 841-8.
OLD, J. M. \& DEANE, E. M. 2002b. Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii. Anatomy, 201, 257-266.
OLD, J. M. \& DEANE, E. M. 2003. The detection of mature T-and B-cells during development of the lymphoid tissues of the tammar wallaby (Macropus eugenii). Anatomy, 203, 123-131.
OLD, J. M. \& DEANE, E. M. 2005. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales, Australia. J Wildl Dis, 41, 611-4.
OLD, J. M., DEANE, E. M. \& HARRISON, G. A. 2001. Molecular characterisation of the tammar wallaby CD3 epsilon chain cDNA. Molecular Immunology, 38, 359-364.
OLD, J. M., SELWOOD, L. \& DEANE, E. M. 2003. Development of lymphoid tissues of the stripefaced dunnart (Sminthopsis macroura). Cells Tissues Organs, 175, 192-201.
OMATSU, T., NISHIMURA, Y., BAK, E. J., ISHII, Y., TOHYA, Y., KYUWA, S., AKASHI, H. \& YOSHIKAWA, Y. 2006. Molecular cloning and sequencing of the CDNA encoding the bat CD4. Veterinary Immunology and Immunopathology, 8.
OSONO, E., SATO, N., YOKOMURO, K. \& SAIZAWA, K. 1997. Changes in arrangement and in conformation of molecular components of peripheral T cell antigen receptor complex after ligand binding: analyses by co-precipitation profiles. Scand J Immunol, 45, 487-493.
OSTROV, D. A., SHI, W., SCHWARTZ, J. C., ALMO, S. C. \& NATHENSON, S. G. 2000. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science, 290, 816-9.
OUYANG, W., KOLLS, J. K. \& ZHENG, Y. 2008. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 28, 454-67.
OVERGARD, A. C., HORDVIK, I., NERLAND, A. H., EIKELAND, G. \& PATEL, S. 2009. Cloning and expression analysis of Atlantic halibut (Hippoglossus hippoglossus) CD3 genes. Fish Shellfish Immunol, 27, 707-13.
OVERGARD, A. C., NERLAND, A. H. \& PATEL, S. 2010a. Cloning, characterization, and expression pattern of Atlantic halibut (Hippoglossus hippoglossus L.) CD4-2, Lck, and ZAP-70. Fish Shellfish Immunol. , 29, 987-997.
OVERGARD, A. C., NERLAND, A. H. \& PATEL, S. 2010b. Cloning, characterization, and expression pattern of Atlantic halibut (Hippoglossus hippoglossus L.) CD4-2, Lck, and ZAP-70. . Fish Shellfish Immunol., 29, 987-997.
OWEN, D. J. \& EVANS, P. R. 1998. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science, 282, 1327-32.

## References

PAGES, F., RAGUENEAU, M., ROTTAPEL, R., TRUNEH, A., NUNES, J., IMBERT, J. \& OLIVE, D. 1994. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature, 369, 327-9.
PAN, Z., BARRY, R., LIPKIN, A. \& SOLOVIEV, M. 2007. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis. BMC Mol Biol, 8, 32.
PANACCIO, M., GILLESPIE, M. T., WALKER, I. D., KIRSZBAUM, L., SHARPE, J. A., TOBIAS, G. H., MCKENZIE, I. F. \& DEACON, N. J. 1987. Molecular characterization of the murine cytotoxic T-cell membrane glycoprotein Ly-3 (CD8). Proc Natl Acad Sci U S A, 84, 6874-8.
PARNES, J. R., SIZER, K. C., SUKHATME, V. P. \& HUNKAPILLER, T. 1985. Structure of Leu-2/T8 as deduced from the sequence of a cDNA clone. Behring Inst. Mitt., 77, 48-55.
PARRA, Z. E., BAKER, M. L., LOPEZ, A. M., TRUJILLO, J., VOLPE, J. M. \& MILLER, R. D. 2009. TCRmu recombination and transcription relative to the conventional TCR during postnatal development in opossums. J Immunol, 182, 154-63.
PARRA, Z. E., BAKER, M. L., SCHWARZ, R. S., DEAKIN, J. E., LINDBALD-TOH, K. \& D, M. R. 2007. A unique T cell receptor discovered in marsupials. Proc Natl Acad Sci USA, 104, 9776-9781.
PARSONS, K. R., YOUNG, J. R., COLLINS, B. A. \& HOWARD, C. J. 1996. Cattle CTLA-4, CD28 and chicken CD28 bind CD86: MYPPPY is not conserved in cattle CD28. Immunogenetics, 43, 388-91.
PARTULA, S., DE GUERRA, A., FELLAH, J. S. \& CHARLEMAGNE, J. 1996. Structure and diversity of the TCR alpha-chain in a teleost fish. J Immunol, 157, 207-12.
PASTORI, R. L., MILDE, K. F. \& ALEJANDRO, R. 1994. Molecular cloning of the dog homologue of the lymphocyte antigen CD28. Immunogenetics, 39, 373.
PATEL, S., OVERGARD, A. C. \& NERLAND, A. H. 2009. A CD4 homologue in Atlantic halibut (Hippoglossus hippoglossus): molecular cloning and characterisation. Fish Shellfish Immunol, 26, 377-84.
PAWSON, T. 1995. Protein modules and signalling networks. Nature, 373, 573-80.
PAWSON, T., GISH, G. \& NASH, P. 2001. SH2 domains, interaction modules and cellular wiring. Trends in Cell Biology, 11.
PECORARO, M. R., KAWAGUCHI, Y., MIYAZAWA, T., NORIMINE, J., MAEDA, K., TOYOSAKI, T., TOHYA, Y., KAI, C. \& MIKAMI, T. 1994. Isolation, sequence and expression of a cDNA encoding the alpha-chain of the feline CD8. Immunology, 81, 127-31.
PECORARO, M. R., SHIMOJIMA, M., MAEDA, K., INOSHIMA, Y., KAWAGUCHI, Y., KAI, C. \& MIKAMI, T. 1996. Molecular cloning of the feline CD8 beta-chain. Immunology, 89, 84-8.

PELCHEN-MATTHEWS, A., BOULET, I., LITTMAN, D. R., FAGARD, R. \& MARSH, M. 1992. The protein tyrosine kinase p56lck inhibits CD4 endocytosis by preventing entry of CD4 into coated pits. J Cell Biol, 117, 279-90.
PENG, J. \& XU, J. 2011. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins, 79 Suppl 10, 161-71.
PERKINS, H. D., VAN LEEUWEN, B. H., HARDY, C. M. \& KERR, P. J. 2000. The complete cDNA sequences of IL-2, IL-4, IL-6 AND IL-10 from the European rabbit (Oryctolagus cuniculus). Cytokine, 12, 555-565.
PERLMUTTER, R. M., MARTH, J. D., LEWIS, D. B., PEET, R., ZIEGLER, S. F. \& WILSON, C. B. 1988. Structure and expression of Ick transcripts in human lymphoid cells J. Cell. Biochem., 38, 111-126.
PETER, M. E., HALL, C., RUHLMAN, A., SANCHO, J. \& TERHORST, C. 1992. The T-cell receptor $\zeta$ chain contains a GTP/GDP binding site. EMBO J, 11, 933.

PETERSEN, B., PETERSEN, T. N., ANDERSEN, P., NIELSEN, M. \& LUNDEGAARD, C. 2009. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol, 9, 51.
PETERSEN, T. N., BRUNAK, S., VON HEIJNE, G. \& NIELSEN, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785-786.
POLLASTRI, G., PRZYBYLSKI, D., ROST, B. \& BALDI, P. 2002. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins, 47, 228-35.
POLLOCK, J. M., WELSH, M. D. \& MCNAIR, J. 2005. Immune responses in bovine tuberculosis: towards new strategies for the diagnosis and control of disease. Vet Immunol Immunopathol, 108, 37-43.
POWELL, F., LAWSON, M., ROTHWELL, L. \& KAISER, P. 2009. Development of reagents to study the turkey's immune response: Identification and molecular cloning of turkey CD4, CD8alpha and CD28. Dev Comp Immunol, 33, 540-6.
PRAKASH, V., BHATTACHARYA, T. K., JYOTSANA, B. \& PANDEY, O. P. 2011. Molecular Cloning, Characterization, Polymorphism, and Association Study of the Interleukin-2 Gene in Indian Crossbred Cattle. Biochem Genet, In press.
PRASAD, K. V., CAI, Y. C., RAAB, M., DUCKWORTH, B., CANTLEY, L., SHOELSON, S. E. \& RUDD, C. E. 1994. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc Natl Acad Sci U S A, 91, 2834-8.
PRESTRIDGE, D. S. 1995. Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol, 249, 923-32.
PYZ, E., NAIDENKO, O., MIYAKE, S., YAMAMURA, T., BERBERICH, I., CARDELL, S., KRONENBERG, M. \& HERRMANN, T. 2006. The complementarity determining region 2 of BV8S2 (V beta 8.2) contributes to antigen recognition by rat invariant NKT cell TCR. J Immunol, 176, 7447-55.
QI, Q. \& AUGUST, A. 2007. Keeping the (kinase) party going: SLP-76 and ITK dance to the beat. Sci STKE, 2007, pe39.
QIAN, D. \& WEISS, A. 1997. T cell antigen receptor signal transduction. Curr Opin Cell Biol, 9, 20512.

QUINIOU, S. M., SAHOO, M., EDHOLM, E. S., BENGTEN, E. \& WILSON, M. 2011. Channel catfish CD8alpha and CD8beta co-receptors: characterization, expression and polymorphism. Fish Shellfish Immunol, 30, 894-901.
QURESHI, O. S., KAUR, S., HOU, T. Z., JEFFERY, L. E., POULTER, N.S., BRIGGS, Z., KENEFECK, R., WILLOX, A.K., ROYLE, S. J., RAPPOPORT, J.Z. SANSOM, D. M. 2012. Constitutive clathrinmediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem, 287, 12, 9429-9440.
RABBITTS, T. H., LEFRANC, M. P., STINSON, M. A., SIMS, J. E., SCHRODER, J., STEINMETZ, M., SPURR, N. L., SOLOMON, E. \& GOODFELLOW, P. N. 1985. The chromosomal location of Tcell receptor genes and a $T$ cell rearranging gene: possible correlation with specific translocations in human $T$ cell leukaemia. EMBO J, 4, 1461-5.
RANDELLI, E., FOGLIETTAA, A., MAZZINIA, M., SCAPIGLIATIA, G. \& BUONOCORE, F. 2006. Cloning and expression analysis of the co-receptor CD8 $\alpha$ in sea bream (Sparus aurata L.). Aquaculture, 256, 631-637.
RAST, J. P. \& LITMAN, G. W. 1994. T-cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc Natl Acad Sci U S A, 91, 9248-52.
RAVICHANDRAN, K. S. \& BURAKOFF, S. J. 1994. The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation. J Biol Chem, 269, 1599-602.

REEVES, R., SPIES, A. G., NISSEN, M. S., BUCK, C. D., WEINBERG, A. D., BARR, P. J., MAGNUSON, N. S. \& MAGNUSON, J. A. 2008. Molecular cloning of a functional bovine interleukin 2 cDNA. Proc. Natl. Acad. Sci. U.S.A., 83, 3228-3232.
REINHERZ, E. L., ROYER, H. D., CAMPEN, T. J., RAMARLI, D., FABBI, M. \& ACUTO, O. 1986. The ontogeny, structure and function of the human T lymphocyte receptor for antigen and major histocompatibility complex. Biochem Soc Symp, 51, 211-32.
REINHERZ, E. L. \& SCHLOSSMAN, S. F. 1980. The differentiation and function of human T lymphocytes: a review. Cell, 19, 821-827.
REN, R., MAYER, B. J., CICCHETTI, P. \& BALTIMORE, D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science, 259, 1157-61.
RENFREE, M. B., PAPENFUSS, A. T., DEAKIN, J. E., LINDSAY, J., HEIDER, T., BELOV, K., RENS, W., WATERS, P. D., PHARO, E. A., SHAW, G., WONG, E. S., LEFEVRE, C. M., NICHOLAS, K. R., KUROKI, Y., WAKEFIELD, M. J., ZENGER, K. R., WANG, C., FERGUSON-SMITH, M., NICHOLAS, F. W., HICKFORD, D., YU, H., SHORT, K. R., SIDDLE, H. V., FRANKENBERG, S. R., CHEW, K. Y., MENZIES, B. R., STRINGER, J. M., SUZUKI, S., HORE, T. A., DELBRIDGE, M. L., PATEL, H., MOHAMMADI, A., SCHNEIDER, N. Y., HU, Y., O'HARA, W., AL NADAF, S., WU, C., FENG, Z. P., COCKS, B. G., WANG, J., FLICEK, P., SEARLE, S. M., FAIRLEY, S., BEAL, K., HERRERO, J., CARONE, D. M., SUZUKI, Y., SUGANO, S., TOYODA, A., SAKAKI, Y., KONDO, S., NISHIDA, Y., TATSUMOTO, S., MANDIOU, I., HSU, A., MCCOLL, K. A., LANSDELL, B., WEINSTOCK, G., KUCZEK, E., MCGRATH, A., WILSON, P., MEN, A., HAZAR-RETHINAM, M., HALL, A., DAVIS, J., WOOD, D., WILLIAMS, S., SUNDARAVADANAM, Y., MUZNY, D. M., JHANGIANI, S. N., LEWIS, L. R., MORGAN, M. B., OKWUONU, G. O., RUIZ, S. J., SANTIBANEZ, J., NAZARETH, L., CREE, A., FOWLER, G., KOVAR, C. L., DINH, H. H., JOSHI, V., JING, C., LARA, F., THORNTON, R., CHEN, L., DENG, J., LIU, Y., SHEN, J. Y., SONG, X. Z., EDSON, J., TROON, C., THOMAS, D., STEPHENS, A., YAPA, L., LEVCHENKO, T., GIBBS, R. A., COOPER, D. W., SPEED, T. P., FUJIYAMA, A., JA, M. G., et al. 2011. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol, 12, 414.
RETTIG, L., MCNEILL, L., SARNER, N., GUILLAUME, P., LUESCHER, I., TOLAINI, M., KIOUSSIS, D. \& ZAMOYSKA, R. 2009. An essential role for the stalk region of CD8 beta in the coreceptor function of CD8. J Immunol, 182, 121-9.
RICH, S. S. \& RICH, R. R. 1974. Regulatory mechanisms in cell-mediated immune responses. I. Regulation of mixed lymphocyte reactions by alloantigen-activated thymus-derived lymphocytes. J Exp Med, 140, 1588-603.
ROBBIN, M. G., WAGNER, B., NORONHA, L. E., ANTCZAK, D. F. \& DE MESTRE, A. M. 2011. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Vet Immunol Immunopathol, 140, 90-101.
ROGERS, K. A., SCINICARIELLO, F. \& ATTANASIO, R. 2006. IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions. J. Immunol., 177, 3848-3856.
ROLLAND-TURNER, M., FARRE, G. \& BOUE , F. 2006. Cloning of fox (Vulpes vulpes) II2, II6, II10 and IFNgamma and analysis of their expression by quantitative RT-PCR in fox PBMC after in vitro stimulation by Concanavalin A. Vet. Immunol. Immunopathol., 110, 369-375.
ROLLAND, J. \& O'HEHIR, R. 1999. "Turning off the T-cells: Peptides for treatment of allergic Diseases" . Today's life science publishing, 32.
ROMANO, T. A., RIDGWAY, S. H., FELTEN, D. L. \& QUARANTA, V. 1999. Molecular cloning and characterization of CD4 in an aquatic mammal, the white whale Delphinapterus leucas. Immunogenetics, 49, 376-383.

ROMIR, J., LILIE, H., EGERER-SIEBER, C., BAUER, F., STICHT, H. \& MULLER, Y. A. 2007. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs. J Mol Biol, 365, 1417-28.
ROY, A., KUCUKURAL, A. \& ZHANG, Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 5, 725-38.
RUDD, C. F., TREVILLYAN, J. M., DASGUPTA, J. D., WONG, L. L. \& SCHLOSSMAN, S. F. 1988. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA, 85, 5190-5194.
RULIFSON, I. C., SPERLING, A. I., FIELDS, P. E., FITCH, F. W. \& BLUESTONE, J. A. 1997. CD28 costimulation promotes the production of Th2 cytokines. J Immunol, 158, 658-65.
RUTLEDGE, T., COSSON, P., MANOLIOS, N., BONIFACINO, J. S. \& KLAUSNER, R. D. 1992. Transmembrane helical interactions: zeta chain dimerization and functional association with the T cell antigen receptor. $E M B O \mathrm{~J}, 11,3245-54$.
RYU, S. E., KWONG, P. D., TRUNEH, A., PORTER, T. G., ARTHOS, J., ROSENBERG, M., DAI, X. P., XUONG, N. H., AXEL, R., SWEET, R. W. \& ET AL. 1990. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature, 348, 419-26.
SAITOU, N. \& NEI, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406-25.
SAKAGUCHI, S., SAKAGUCHI, N., ASANO, M., ITOH, M. \& TODA, M. 1995. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. $J$ Immunol, 155, 1151-64.
SAKAGUCHI, S., YAMAGUCHI, T., NOMURA, T. \& ONO, M. 2008. Regulatory T cells and immune tolerance. Cell, 133, 775-87.
SALI, A. \& BLUNDELL, T. L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol, 234, 779-815.
SAMOLLOW, P. B. 2006. Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. Aust J of Zool, 54, 173-196.
SAMOLLOW, P. B. 2008. The opossum genome: insights and opportunities from an alternative mammal. Genome Res, 18, 1199-215.
SAN JOSÉ, E., SAHUQUILLO, A. G., BRAGADO, R. \& ALARCÓN, B. 1998. Assembly of the TCR/CD3 complex: CD3 epsilon/delta and CD3 epsilon/gamma dimers associate indistinctly with both TCR alpha and TCR beta chains. Evidence for a double TCR heterodimer model. Eur J Immunol, 28, 12-21.
SASADA, T., TOUMA, M., CHANG, H. C., CLAYTON, L. K., WANG, J. H. \& REINHERZ, E. L. 2002. Involvement of the TCR Cbeta FG loop in thymic selection and T cell function. J Exp Med, 195, 1419-31.
SCHNEIDER, H., PRASAD, K. V., SHOELSON, S. E. \& RUDD, C. E. 1995. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med, 181, 351-5.
SCHOUNTZ, T., GREEN, R., DAVENPORT, B., BUNIGER, A., RICHENS, T., ROOT, J. J., DAVIDSON, F., CALISHER, C. H. \& BEATY, B. J. 2004. Cloning and characterization of deer mouse (Peromyscus maniculatus) cytokine and chemokine cDNAs. BMC Immunol., 5.
SCHOUNTZ, T., PRESCOTT, J., COGSWELL, A. C., OKO, L., MIROWSKY-GARCIA, K., GALVEZ, A. P. \& HJELLE, B. 2007. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc Natl Acad Sci U S A, 104, 15496-501.

SCHUBERT, L. A., JEFFERY, E. W., ZHANG, C., RAMSDELL, F. \& ZIEGLER, S. F. 2001. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem, 276, 37672-37679.
SCHWARTZ, J. C., ZHANG, X., FEDOROV, A. A., NATHENSON, S. G. \& ALMO, S. C. 2001. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature, 410, 604-8.
SCHWARTZ, R. H. 2001. Immunology. It takes more than two to tango. Nature, 409, 31-2.
SCHWARTZ, R. H. 2003. T cell Anergy. Annu Rev Immunol, 21, 305-334.
SEHGAL, A. \& BERGER, M. S. 2000. Basic concepts of immunology and neuroimmunology. Neurosurg Focus, 9, e1.
SHARMA, R., FU, S. M. \& JU, S. T. 2011. IL-2: a two-faced master regulator of autoimmunity. J Autoimmun, 36, 91-7.
SHEVACH, E. M. 2000. Regulatory T cells in autoimmmunity. Annu Rev Immunol, 18, 423-49.
SHIN, J., LEE, S. \& STROMINGER, J. L. 1993. Translocation of TCR alpha chains into the lumen of the endoplasmic reticulum and their degradation. Science, 259, 1901-4.
SHIN, S. \& STEFFEN, D. L. 1993. Frequent activation of the Ick gene by promoter insertion and aberrant splicing in murine leukemia virus-induced rat lymphomas. Oncogene, 8, 141-149.
SHIRATORI, T., MIYATAKE, S., OHNO, H., NAKASEKO, C., ISONO, K., BONIFACINO, J. S. \& SAITO, T. 1997. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity, 6, 583-9.
SHODA, L. K., BROWN, W. C. \& RICE-FICHT, A. C. 1998. Sequence and characterization of phocine interleukin 2. J. Wildl. Dis. , 34, 81-90.
SIDDLE, H. V., DEAKIN, J. E., COGGILL, P., WHILMING, L., HARROW, J., KAUFMAN, J., BECK, S. \& BELOV, K. 2011. The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics, 12, 421.
SIDDLE, H. V., KREISS, A., ELDRIDGE, M. D., NOONAN, E., CLARKE, C. J., PYECROFT, S., WOODS, G. M. \& BELOV, K. 2007. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci U S A, 104, 16221-6.
SMITH, K. A. 1988a. Interleukin-2: inception, impact and implications. Science, 240, 1169-1176.
SMITH, K. A. 1988b. The interleukin 2 receptor. Adv Immunol, 42, 165-79.
SMITH, K. A., BAKER, P. E., GILLIS, S. \& RUSCETTI, F. W. 1980a. Functional and molecular characteristics of T-cell growth factor. Mol Immunol, 17, 579-89.
SMITH, K. A., LACHMAN, L. B., OPPENHEIM, J. J. \& FAVATA, M. F. 1980b. The functional relationship of the interleukins. J Exp Med, 151, 1551-6.
SMITH, S. M. \& DOCKRELL, H. M. 2000. Role of CD8 ${ }^{+}$in mycobacterial infections. Immunol. and Cell Biol. , 78, 325-333.
SODING, J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21, 95160.

SOMAMOTO, T., YOSHIURA, Y., NAKANISHI, T. \& OTOTAKE, M. 2005. Molecular cloning and characterization of two types of CD8alpha from ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol, 29, 693-702.
SPELLBERG, B. \& EDWARDS, J. E., JR. 2001. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis, 32, 76-102.
SREEKUMAR, E., PREMRAJ, A. \& RASOOL, T. J. 2005. Duck (Anas platyrhynchos), Japanese quail (Coturnix coturnix japonica) and other avian interleukin-2 reveals significant conservation of gene organization, promoter elements and functional residues. Int J Immunogenet, 32, 355-65.

## References

SRINIVASAN, M., WARDROP, R. M., GIENAPP, I. E., STUCKMAN, S. S., WHITACRE, C. C. \& KAUMAYA, P. T. 2001. A retro-inverso peptide mimic of CD28 encompassing the MYPPPY motif adopts a polyproline type II helix and inhibits encephalitogenic T cells in vitro. J Immunol, 167, 578-85.
ST-LAURENT, G., BELIVEAU, C. \& ARCHAMBAULT, D. 1999. Molecular cloning and phylogenetic analysis of beluga whale (Delphinapterus leucas) and grey seal (Halichoerus grypus) interleukin 2. Vet. Immunol. Immunopathol., 67, 385-394.
STARR, T. K., JAMESON, S. C. \& HOGQUIST, K. A. 2003. Positive and negative selection of T cells. Annu Rev Immunol, 21, 139-76.
STEFANOWICZ, P., KIJEWSKA, M., KLUCZYK, A. \& SZEWCZUK, Z. 2010. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling. Anal Biochem, 400, 237-43.
STOCKINGER, B. \& VELDHOEN, M. 2007. Differentiation and function of Th17 T cells. Curr Opin in Immunol, 19 281-286.
STONE, W. H., BRUUN, D. A., FOSTER, E. B., MANIS, G. H., HOFFMAN, E. S., SAPHIRE, D. G., VANDEBERG, J. L. \& INFANTE, A. J. 1998. Absence of a significant mixed lymphocyte reaction in a marsupial (Monodelphis domestica). Lab Anim Sci, 48, 184-189.
STONE, W. H., BRUUN, D. A., MANIS, G. S., HOLSTE, S. B., HOFFMAN, E. S., SPONG, K. D. \& WALUNAS, T. 1996. The Immunobiology of the Marsupial Monodelphis domestica. In: Stolen J S, Fletcher, T C, Bayne C J, et al. (eds) Modulators of immune responses: the evolutionary trail. SOS Publications, Fair Haven, NJ, pp 149-165.
STONE, W. H., MANIS, G. H., HOFFMAN, E. S., SAPHIRE, D. G., HUBBARD, G. B., VANDEBERG, J. L. \& INFANTE, A. J. 1997a. Fate of allogeneic skin tranplantations in a marsupial Monodelphis domestica. Lab Anim Sci, 47, 283-287.
STONE, W. H., MANIS, G. S. \& HOFFMAN 1997b. Allogeneic skin transplantation in a marsupial. Lab. Anim. Sci., 47, 283-287.
STRAUS, D. B. \& WEISS, A. 1993. The CD3 chains of the T cell antigen receptorassociates with the ZAP-70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation. J. Exp. Med., 178, 1523-1530.
STREBHARDT, K., MULLINS, J. I., BRUCK, C. \& RUBSAMEN-WAIGMANN, H. 1987. Additional member of the protein-tyrosine kinase family: the src- and Ick-related protooncogene ctkl. Proc. Natl. Acad. Sci. U.S.A., 84, 8778-8782
SUETAKE, H., ARAKI, K. \& SUZUKI, Y. 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics, 56, 368-374.
SUKHATME, V. P., SIZER, K. C., VOLLMER, A. C., HUNKAPILLER, T. \& PARNES, J. R. 1985. The T cell differentiation antigen Leu-2/T8 is homologous to immunoglobulin and T cell receptor variable regions. Cell, 40, 591-7.
SUNDICK, R. S. \& GILL-DIXON, C. 1997. A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15. J Immunol, 159, 720-5.
SUVAS, S. \& ROUSE, B. T. 2006. Treg control of antimicrobial T cell responses. Curr Opin Immunol, 18, 344-8.
TAKAHASHI, T., KUNIYASU, Y., TODA, M., SAKAGUCHI, N., ITOH, M., IWATA, M., SHIMIZU, J. \& SAKAGUCHI, S. 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive $T$ cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol, 10, 1969-80.
TAKANO, M., HAYASHI, N., GOITSUKA, R., OKUDA, M., MOMOI, Y., YOUN, H. Y., WATARI, T., TSUJIMOTO, H. \& HASEGAWA, A. 1994. Identification of dog T-cell receptor beta chain genes. Immunogenetics, 40, 246.

## References

TAMURA, K., PETERSON, D., PETERSON, N., STECHER, G., NEI, M. \& KUMAR, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol.
TAVERNOR, A. S., ALLEN, W. R. \& BUTCHER, G. W. 1993. cDNA cloning of equine interleukin-2 by polymerase chain reaction. Equine Vet. J., 25, 242-243.
TAYLOR, S. S., RADZIO-ANDZELM, E. \& HUNTER, T. 1995. How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J, 9, 1255-66.
TERZO, E. A., DE VILLARREAL, M. P., MICK, V., MUNOZ, F., AMORENA, B., DE ANDRES, D. \& PEREZ DE LA LASTRA, J. M. 2006. Molecular cloning of multiple forms of the ovine B7-2 (CD86) costimulatory molecule. Vet Immunol Immunopathol, 114, 149-58.
THE MHC SEQUENCING CONSORTIUM 1999. Complete sequence and gene map of a human major histocompatibility complex. . Nature, 401, 921-3.
THOME, A., SAALMULLER, A. \& PFAFF, E. 1993. Molecular cloning of porcine T cell receptor alpha, beta, gamma and delta chains using polymerase chain reaction fragments of the constant regions. Eur J Immunol, 23, 1005-10.
THOMPSON, J. D., HIGGINS, D. G. \& GIBSON, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22, 4673-80.
tJoelker, L. W., CARLSON, L. M., LEE, K., LAHTI, J., MCCORMACK, W. T., LEIDEN, J. M., CHEN, C. L., COOPER, M. D. \& THOMPSON, C. B. 1990. Evolutionary conservation of antigen recognition: the chicken T-cell receptor beta chain. Proc Natl Acad Sci U S A, 87, 7856-60.
TOMPKINS, D., HUDGENS, E., HOROHOV, D. \& BALDWIN, C. L. 2010. Expressed gene sequences of the equine cytokines interleukin-17 and interleukin-23. Vet Immunol Immunopathol, 133, 309-13.
TORDAI, H., BANYAI, L. \& PATTHY, L. 1999. The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett, 461, 63-7.
TOUMA, M., CHANG, H. C., SASADA, T., HANDLEY, M., CLAYTON, L. K. \& REINHERZ, E. L. 2006. The TCR C beta FG loop regulates alpha beta T cell development. J Immunol, 176, 6812-23.
TOUSSIROT, E., SAAS, P., DESCHAMPS, M., POUTHIER, F., PERROT, L., PERRUCHE, S., CHABOD, J., TIBERGHIEN, P. \& WENDLING, D. 2009. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res Ther, 11, R101.
TREGASKES, C. A., KONG, F. K., PARAMITHIOTIS, E., CHEN, C. L., RATCLIFFE, M. J., DAVISON, T. F. \& YOUNG, J. R. 1995. Identification and analysis of the expression of CD8 alpha beta and CD8 alpha alpha isoforms in chickens reveals a major TCR-gamma delta CD8 alpha beta subset of intestinal intraepithelial lymphocytes. J Immunol, 154, 4485-94.
TSYTSIKOV, V. N., YUROVSKY, V. V., ATAMAS, S. P., ALMS, W. J. \& WHITE, B. 1996. Identification and characterization of two alternative splice variants of human interleukin-2. J Biol Chem, 271, 23055-60.
TURNER, J. M., BRODSKY, M. H., IRVING, B. A., LEVIN, S. D., PERLMUTTER, R. M. \& LITTMAN, D. R. 1990. Interaction of the unique N -terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell, 60, 755-765.
TURNI, C. \& SMALES, L. R. 2001. Parasites of the bridled nailtail wallaby (Onychogalea fraenata) (Marsupialia:Macropodidae). Wildlife Research, 28, 403-411.
TYNDALE-BISCOE, C. H. 1973. Life of Marsupials. Edward Arnold Ltd, London, 147-169.

## References

UDA, A., TANABAYASHI, K., MUKAI, R., YACHI, M., NAM, K. H. \& YAMADA, A. 2001. CD3 polymorphism in cynomolgus monkeys (Macaca fascicularis). J Med Primatol, 30, 141-7.
UENISHI, H., EGUCHI, T., SUZUKI, K., SAWAZAKI, T., TOKI, D., SHINKAI, H., OKUMURA, N., HAMASIMA, N. \& AWATA, T. 2004. PEDE (Pig EST Data Explorer): construction of a database for ESTs derived from porcine full-length cDNA libraries. Nucleic Acids Res, 32, D484-8
URETA-VIDAL, A., GARCIA, Z., LEMONNIER, F. A. \& KAZANJI, M. 1999. Molecular characterization of cDNAs encoding squirrel monkey (Saimiri sciureus) CD8 alpha and beta chains. Immunogenetics, 49, 718-21.
VAN BEELEN, A. J., ZELINKOVA, Z., TAANMAN-KUETER, E. W., MULLER, F. J., HOMMES, D. W., ZAAT, S. A., KAPSENBERG, M. L. \& DE JONG, E. C. 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity, 27, 660-9.
VAN DEN STEEN, P., RUDD, P. M., DWEK, R. A. \& OPDENAKKER, G. 1998. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol, 33, 151-208.
VAN RIJT, L. S., VOS, N., WILLART, M., KLEINJAN, A., COYLE, A. J., HOOGSTEDEN, H. C. \& LAMBRECHT, B. N. 2004. Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. J Allergy Clin Immunol, 114, 166-73.
VILLINGER, F., BOSTIK, P., MAYNE, A., KING, C. L., GENAIN, C. P., WEISS, W. R. \& ANSARI, A. A. 2001. Cloning, sequencing, and homology analysis of nonhuman primate Fas/Fas-ligand and co-stimulatory molecules. Immunogenetics, 53, 315-28
VILLINGER, F., BRAR, S. S., MAYNE, A., CHIKKALA, N. \& ANSARI, A. A. 1995. Comparative sequence analysis of cytokine genes from human and nonhuman primates. J. Immunol., 155, 39463954.

VOLPE, E., SERVANT, N., ZOLLINGER, R., BOGIATZI, S. I., HUPE, P., BARILLOT, E. \& SOUMELIS, V. 2008. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human $\mathrm{T}(\mathrm{H})-17$ responses. Nat Immunol, 9, 650-7.
VORONOVA, A. F. \& SEFTON, B. M. 1986. Expression of a new tyrosine protein kinase is stimulated by retrovirus promoter insertion. Nature, 319, 682-685.
WAKSMAN, G., KOMINOS, D., ROBERTSON, S. C., PANT, N., BALTIMORE, D., BIRGE, R. B., COWBURN, D., HANAFUSA, H., MAYER, B. J., OVERDUIN, M., RESH, M. D., RIOS, C. B., SILVERMAN, L. \& KURIYAN, J. 1992. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature, 358, 64653.

WALDMANN, T. A. 2006. Effective cancer therapy through immunomodulation. Annu Rev Med, 57, 65-81.
WALDMANN, T. A., DUBOIS, S. \& TAGAYA, Y. 2001. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity, 14, 105-10.
WALKER, L. S. \& SANSOM, D. M. 2011. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol, 11, 852-63.
WALSH, P. T., TAYLOR, D. K. \& TURKA, L. A. 2004. Tregs and transplantation tolerance. J Clin Invest, 114, 1398-403.
WANDLESS, T. J. 1996. SH2 domains: a question of independence. Curr Biol, 6, 125-7.
WANG, J., LIM, K., SMOLYAR, A., TENG, M., LIU, J., TSE, A. G., HUSSEY, R. E., CHISHTI, Y., THOMSON, C. T., SWEET, R. M., NATHENSON, S. G., CHANG, H. C., SACCHETTINI, J. C. \& REINHERZ, E. L.

## References

1998a. Atomic structure of an alphabeta $T$ cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J, 17, 10-26.
WANG, J. H., LIM, K., SMOLYAR, A., TENG, M. K., LIU, J. H., TSE, A. G. D., LIU, J., HUSSEY, R. E., CHISHTI, Y., THOMSON, C. T., SWEET, R. M., NATHESNSON, S. G., C., C. H., SACCHETTINI, J. C. \& REINHERZ, E. L. 1998b. Atomic structure of an $\alpha \beta$ T cell receptor (TCR) heterodimer in comples with an anti-TCR Fab fragment derived from a mitogenic antibody. EMBO, 17, 10 - 26.

WANG, L. \& BOSSELUT, R. 2009. CD4-CD8 lineage differentiation: Thpok-ing into the nucleus. J Immunol, 183, 2903-10.
WANG, L., FAN, J., YU, M., ZHENG, S. \& ZHAO, Y. 2011a. Association of goat (Capra hircus) CD4 gene exon 6 polymorphisms with ability of sperm internalizing exogenous DNA. Mol Biol Rep, 38, 1621-8.
WANG, Q., SMITH, J. B., HARRISON, M. L. \& GEAHLEN, R. L. 1991. Identification of tyrosine 67 in bovine brain myelin basic protein as a specific phosphorylation site for thymus p56lck. Biochem. Biophys. Res. Commun., 178, 1393.
WANG, Q. J., HANADA, K. \& YANG, J. C. 2008. Characterization of a novel nonclassical T cell clone with broad reactivity against human renal cell carcinomas. J Immunol, 181, 3769-76.
WANG, X., PARRA, Z. E. \& MILLER, R. D. 2011b. Platypus TCRmu provides insight into the origins and evolution of a uniquely mammalian TCR locus. J Immunol, 187, 5246-54.
WANG, Z., HUBBARD, G. B., PATHAK, S. \& VANDEBERG, J. L. 2003. In Vivo Opossum Xenograft Model for Cancer Research. Cancer Research, 63, 6121-6124.
WANGE, R. L., KONG, A. N. \& SAMELSON, L. E. 1992. A tyrosine-phosphorylated 70kDa protein binds a photoaffinity analogue of ATP and associates with both the zeta chain and CD3 components of the activated T cell antigen receptor. J Biol Chem, 267, 11685-11688.
WANGE, R. L., MALEK, S. N., DESIDERIO, S. \& SAMELSON, L. E. 1993. Tandem SH2 domains of ZAP70 bind to $T$ cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells. J Biol Chem, 268, 19797-801.
WARING, H., HOLMES, R., COCKSON, A., ASHMAN, R. B. \& STANLEY, N. V. 1978. Induction of longterm tolerance in the quokka (Setonix brachyurus) by thymus and skin allografts into early pouch young. Aust. J. Exp. Bio. Med. Sci., 56, 597-604.
WASS, M. N., KELLEY, L. A. \& STERNBERG, M. J. 2010. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res, 38, W469-73.
WATANABE, M., IWASAKI, Y., MITA, Y., OTA, S., YAMADA, S., SHIMIZU, M. \& TAKAGAKI, Y. 2007. Porcine T-cell receptor beta-chain: a genomic sequence covering Dbeta1.1 to Cbeta2 gene segments and the diversity of cDNA expressed in piglets including novel alternative splicing products. Mol Immunol, 44, 2332-43.
WATERHOUSE, P., PENNINGER, J. M., TIMMS, E., WAKEHAM, A., SHAHINIAN, A., LEE, K. P., THOMPSON, C. B., GRIESSER, H. \& MAK, T. W. 1995. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 270, 985-8.
WEAVER, J. R., GOOD, K., WALTERS, R. D., KUGEL, J. F. \& GOODRICH, J. A. 2007. Characterization of the sequence and architectural constraints of the regulatory and core regions of the human interleukin-2 promoter. Mol Immunol, 44, 2813-2819.
WEDLOCK, D. N., ALDWELL, F. E. \& BUDDLE, B. M. 1996. Molecular cloning and characterization of tumour necrosis factor alpha (TNF-a) from the Australian common brushtail possum, Trichosurus vulpecula.
WEDLOCK, D. N., ALDWELL, F. E. \& BUDDLE, B. M. 1998. Nucleotide sequence of a marsupial interleukin-10 cDNA from the Australian brushtail possum (Trichosurus vulpecula). DNA Seq, 9, 239-44.

## References

WEDLOCK, D. N., GOH, L. P., PARLANE, N. A. \& BUDDLE, B. M. 1999. Molecular cloning and physiological effects of brushtail possum interleukin-1beta. Vet Immunol Immunopathol, 67, 359-72.
WEISS, A. \& LITTMAN, D. R. 1994. Signal transduction by lymphocyte antigen receptors. Cell, 76, 263-74.
WEISSMAN, A. M., HOU, D., ORLOFF, D. G., MODI, S. W., SEUANEZ, H., O'BRIEN, S. J. \& KLAUSNER, R. D. 1988. Molecular cloning and chromosomal localizaiton of the human T-cell receptor广 chain: Distinction from the molecular CD3 complex. Proc Natl. Acad Sci USA, 85, 9709 9713.

WEISSMAN, A. M., HOU, D., ORLOFF, D. G., MODI, W. S., SEUANEZ, H., O’BRIEN, S. J. \& KLAUSNER, R. D. 1998. Molecular cloning of the $\zeta$ chain of the T cell antigen receptor. . Science 239, 1018-1021.
WELLS, A. D., WALSH, M. C., BLUESTONE, J. A. \& TURKA, L. A. 2001. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest, 108, 895-903.
WIEST, D. L., ASHE, J. M., HOWCROFT, T. K., LEE, H. M., KEMPER, D. M., NEGISHI, I., SINGER, D. S., SINGER, A. \& ABE, R. 1997. A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development. Immunity, 6 , 663-71.
WILKINSON, R., KOTLARSKI, I. \& BARTON, M. 1992. Koala lymphoid cell: analysis of antigenspecific responses. Vet. Immunol. Immunopathol, 33, 237-247.
WILKINSON, R., KOTLARSKI, I. \& BARTON, M. 1994. Further characterisation of the immune response of the koala. Vet Immunol Immunopathol, 40, 325-39.
WILLIAMSON, M. P. 1994. The structure and function of proline-rich regions in proteins. Biochem. J., 297, 249-260.

WILSON, M. R., ZHOU, H., BENGTEN, E., CLEM, L. W., STUGE, T. B., WARR, G. W. \& MILLER, N. W. 1998. T-cell receptors in channel catfish: structure and expression of TCR alpha and beta genes. Mol Immunol, 35, 545-57.
WINEMAN, J. P., GILMORE, G. L., GRITZMACHER, C., TORBETT, B. E. \& MULLER-SIEBURG, C. E. 1992. CD4 is expressed on murine pluripotent hematopoietic stem cells. Blood, 80, 1717-24.
WONG, E. S. W., YOUNG, L. J., PAPENFUSS, A. T. \& BELOV, K. 2006. In silico identification of oposum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Research, 24.
WOODBURNE, M. O., RICH, T. H. \& SPRINGER, M. S. 2003. The evolution of tribospheny and the antiquity of mammalian clades. Molecular Phylogenetics and Evolution, 28, 360-385.
WU, H., KWONG, P. D. \& HENDRICKSON, W. A. 1997. Dimeric association and segmental variability in the structure of human CD4. Nature, 387, 527-30.
WU, S. \& ZHANG, Y. 2010. Recognizing protein substructure similarity using segmental threading. Structure, 18, 858-67.
WU, Y., BORDE, M., HEISSMEYER, V., FEUERER, M., LAPAN, A. D., STROUD, J. C., BATES, D. L., GUO, L., HAN, A., ZIEGLER, S. F., MATHIS, D., BENOIST, C., CHEN, L. \& RAO, A. 2006. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 126, 375-87.
WU, Y., WU, W., WONG, W. M., WARD, E., THRASHER, A. J., GOLDBLATT, D., OSMAN, M., DIGARD, P., CANADAY, D. H. \& GUSTAFSSON, K. 2009. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol, 183, 5622-9.
XU, C., GAGNON, E., CALL, M. E., SCHNELL, J. R., SCHWIETERS, C. D., CARMAN, C. V., CHOU, J. J. \& WUCHERPFENNIG, K. W. 2008. Regulation of T cell receptor activation by dynamic membrane binding of the CD3 $\varepsilon$ cytoplasmic tyrosine-based motif. Cell, 135, 702-713.

## References

XU, S. \& CAO, X. 2010. Interleukin-17 and its expanding biological functions. Cell Mol Immunol, 7, 164-74.
YABE, M., MATSUURA, Y. \& TATSUMI, M. 1997. Molecular cloning and expression of cynomolgus monkey interleukin-2 cDNA by the recombinant baculovirus system. Int. Arch. Allergy Immunol. , 113.
YANDELL, M., MUNGALL, C. J., SMITH, C., PROCHNIK, S., KAMINKER, J., HARTZELL, G., LEWIS, S. \& RUBIN, G. M. 2006. Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput Biol, 2, e15.
YANG, D., ROGGENDORF, M. \& LU, M. 2003a. Molecular characterization of CD28 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) of woodchuck (Marmota monax). Tissue Antigens, 62, 225-32.
YANG, S. \& SIM, G. K. 1999. New forms of dog CD80 and CD86 transcripts that encode secreted B7 molecules. Immunogenetics, 50, 349-53.
YANG, Y., VILLAIN, P., MUSTELIN, T. \& COUTURE, C. 2003b. Critical role of Ser-520 phosphorylation for membrane recruitment and activation of the ZAP-70 tyrosine kinase in T cells. Mol Cell Biol, 23, 7667-77.
YAO, Q., FISCHER, K. P., MOTYKA, B., FERLAND, S., LI, L., TYRRELL, D. L. \& GUTFREUND, K. S. 2010. Identification of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) isoforms in the Pekin duck. Dev Comp Immunol, 34, 749-58.
YAO, Z., FANSLOW, W. C., SELDIN, M. F., ROUSSEAU, A. M., PAINTER, S. L., CONNEAU, M. R., COHEN, J. I. \& SPRIGGS, M. K. 1995a. Herpesvirus samiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811-821.
YAO, Z., PAINTER, S. L., FANSLOW, W. C., ULRICH, D., MACDUFF, B. M., SPRIGGS, M. K. \& ARMITAGE, R. J. 1995b. Human IL-17: a novel cytokine derived from T cells. J. Immunol., 155, 5483-5486.
YAO, Z., TIMOUR, M., PAINTER, S., FANSLOW, W. \& SPRIGGS, M. 1996. Complete nucleotide sequence of the mouse CTLA8 gene. Gene, 168, 223-5.
YASUDA, K., KOSUGI, A., HAYASHI, F., SAITOH, S., NAGAFUKU, M., MORI, Y., OGATA, M. \& HAMAOKA, T. 2000. Serine 6 of Lck tyrosine kinase: a critical site for Lck myristoylation, membrane localization, and function in T lymphocytes. J Immunol, 165, 3226-31.
YONGGANG, L. \& XUESHAN, X. 2011. Molecular characterization, tissue expression, polymorphism and association of porcine LCK gene. Mol. Biol. Rep., In press.
YOSHIKAI, Y., CLARK, S. P., TAYLOR, S., SOHN, U., WILSON, B. I., MINDEN, M. D. \& MAK, T. W. 1985. Organization and sequences of the variable, joining and constant region genes of the human T-cell receptor alpha-chain. Nature, 316, 837-40.
YOUNG, J. R., DAVISON, T. F., TREGASKES, C. A., RENNIE, M. C. \& VAINIO, O. 1994. Monomeric homologue of mammalian CD28 is expressed on chicken T cells. J Immunol, 152, 3848-51.
YOUNG, L. J. 2010. Expressed sequence identification and characterisation of the cDNA for Interleukin-4 from the mitogen-stimulated lymphoid tissue of a marsupial, Macropus eugenii. Vet. Immunol. Immunopathol.
YOUNG, L. J., CROSS, M. L., DUCKWORTH, J. A., FLENADY, S. \& BELOV, K. 2011. Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula. Dev \& Comp Immunol, Manuscript accepted.
YOUNG, L. J. \& DEANE, E. M. 2003. Immunocytochemical identifiaction of CD5 positive peripheral blood lymphocytes in four marsupial species. Comparative Clinical Pathology, 12, 16-32.
YOUNG, L. J. \& DEANE, E. M. 2005. Morphology and ultrastructure of blood cellls of the tammar wallaby Macropus eugenii. Comparative Clinical Pathology, 14, 36-47.

## References

YOUNG, L. J., MCFARLANE, R., SLENDER, A. L. \& DEANE, E. M. 2003. Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteriaaffected specimens of the Rufous Hare-wallaby (Lagorchestes hirsutus). Anatomy, 202, 315-325.
YU, H., CHEN, S., XI, D., HE, Y., LIU, Q., MAO, H. \& DENG, W. 2010. Molecular cloning, sequence characterization and tissue transcription profile analyses of two novel genes: LCK and CDK2 from the Black-boned sheep (Ovis aries). Mol. Biol. Rep., 37, 39-45.
YU, H. \& SCHREIBER, S. L. 1994. Signalling an interest. Nature Structural Biology, 1, 417-420.
YU, T. K., CAUDELL, E. G., SMID, C. \& GRIMM, E. A. 2000. IL-2 activation of NK cells: involvement of MKK1/2/ERK but not p38 kinase pathway. J Immunol, 164, 6244-6251.
ZAMOYSKA, R. 1994. The CD8 coreceptor revisted: one chain good, two chains better. Immunity, 1, 243-246.
ZHANG, Y. A., HIKIMA, J., LI, J., LAPATRA, S. E., LUO, Y. P. \& SUNYER, J. O. 2009. Conservation of structural and functional features in a primordial CD80/86 molecule from rainbow trout (Oncorhynchus mykiss), a primitive teleost fish. J Immunol, 183, 83-96.
ZHANG, Z. D., WEINSTOCK, G. \& GERSTEIN, M. 2008. Rapid evolution by positive Darwinian selection in T-cell antigen CD4 in primates. J Mol Evol, 66, 446-56.
ZHOU, J. Y., WANG, J. Y., CHEN, J. G., WU, J. X., GONG, H., TENG, Q. Y., GUO, J. Q. \& SHEN, H. G. 2005. Cloning, in vitro expression and bioactivity of duck interleukin-2. Mol Immunol, 42, 589-98.
ZHU, L., RUAN, X. D., GE, Y. F., WAN, Q. H. \& FANG, S. G. 2007. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca). BMC Genet, 8, 29.

ZHU, X., KIM, J. L., NEWCOMB, J. R., ROSE, P. E., STOVER, D. R., TOLEDO, L. M., ZHAO, H. \& MORGENSTERN, K. A. 1999. Structural analysis of the lymhocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure, 7, 651661.

ZIMIN, A. V., DELCHER, A. L., FLOREA, L., KELLEY, D. R., SCHATZ, M. C., PUIU, D., HANRAHAN, F., PERTEA, G., VAN TASSELL, C. P., SONSTEGARD, T. S., MARCAIS, G., ROBERTS, M., SUBRAMANIAN, P., YORKE, J. A. \& SALZBERG, S. L. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol, 10, R42.
ZOLLER, K. E., MACNEIL, I. A. \& BRUGGE, J. S. 1997. Protein tyrosine kinases Syk and ZAP-70 display distinct requirements for Src family kinases in immune response receptor signal transduction. J Immunol, 158, 1650-9.
ZUCCOLOTTO, P., E., HARRISON, G. A. \& DEANE, E. M. 2000. Cloning of marsupial T cell receptor $\alpha$ and $\beta$ constant region cDNAs. Immunology and Cell Biology, 78, 103-109.

## Appendix 3A

Monodelphis domestica (South American grey short tailed opossum) CD3ع nucleotide sequence open reading frame
atgcagttgggatctctctggaccgtgcttggattctttcttctctcagcttgtgtttggggggaa gacttagaagaagatcctcagaaatacaaatttggagtctccatctcaggaacccaagtgacactt acctgccctgagaaatcagaagatcttataatatggaagaaaaataatgtactaataaatggtgtg gaaagttatcaactcactctagatgactcagagactgaatacagcggccacttccattgtaaaaaa aaatccagtccatcagatgaaggctattttctttacctgaaagcaagagtgtgtcatggttgcttg gagatgggtgtgctgactgtggctgggattattattgctgatgtcttcatcactctgggagtactg attttggtatatcactggagcaagaagcaaaaggccaagagcaagccggttcgagggggaggtgct ggtggcaagactagaggagtaaacaaagagaggcctccacctgttcccaaccctgactatgagccc atccgtaaaggtcaacgggaactgtatgctggcctgaatcagagagccatatga
$M$. domestica putative protein sequence
MQLGSLWTVLGFFLLSACVWGEDLEEDPQKYKFGVSISGTQVTLTCPEKSEDLIIWKKNNLINGVE SYQLTLDDSETEYSGHFHCKKKSSPSDEGYFLYLKARVCHGCLEMGVLTVAGIIIADVFITLGVLI LVYHWSKKQKAKSKPVRGGGAGGKTRGVNKERPPPVPNPDYEPIRKGQRELYAGLNQRAI

## Appendix 3A

Secondary structure prediction for M. domestica CD3 $\varepsilon$ using PSIpred


Figure 3A.1. Secondary structure prediction for M. domestica CD3ع.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 3A

Aligment between predicted $M$. domestica putative protein sequence and expressed sequence.

```
M. domestica MQLGSLWTVLGFFLLSACVWGEDLEEDPQKYKFGVSISGTQVTLTCPEKSEDLIIWKKN- }5
pred. M. domestica MQLGSLWTVLGFFLLSACVWGEDLEEEFG-----VSISGTQVTLTCPEKSEDLIIWKKNN 55
**************************. **************************
M. domestica 
***********************************************************
M. domestica IIADVFITLGVLILVYHWSKKQKAKSKPVRGGGAGGKTRGVNKERPPPVPNPDYEPIRKG 179
pred. M. domestica IIADVFITLGVLIILVYHWSKKQKAKSKPVVRGGGAGGKTRGVNKESPPPVVPNPDYEPIRKG 17****************************************************
M. domestica QRELYAGLNQRAI 192
pred. M. domestica QRELYAGLNQRAM 188
```

Figure 3A.2. Alignment of the predicted $M$. domestica sequence with the expressed sequence.
Blue highlight = the insert in the expressed sequence. Magenta highlight = differences between the expressed and predicted sequences.

Onychogalea fraenata (Bridled nailtail wallaby) - CD3ع nucleotide sequence - open reading frame


#### Abstract

5'end agcattcaacaaagatgttccttggaggcctcaccttctagcaggagctttgaactaagctcaagattacttt ttcagaagaaataaacccaccaaaccctgcctgctggatcaaggatccaagcagagaatg atgcatttggaagctctctggactgtggtaggattctgtctgctctcagcctgtgtctgggggcaaagcccgg aaggcgaatttgacgtctacatctcaggaactgaagtaatactcacctgccccgataaaactagtgaggacat agaatggaagaaaaatgatgaaaccgtaaacggtgtggacggcagtacactcaccctaacaaactccgagatt cagtatggctacttcctttgtaaaaagaaaggatcaaaagatcacgaaggccattatctctacctgaaagcaa gagtatgtgaaggttgtgtggaaatggacgtgctgacggtggctgggattgtcattgctgacgtcttcatcac tctgggagtgctgctcttggtgtattactggagcaaggcgcgaaaggccaaggccaagcctgttggtcgaggg ggaggtggcggtggcaggacaagaggagcaaacaaggagaggcctccacctgttcccaaccctgactatgagc ccatccgcaaaggccaacgggacctgtatgctggcctgaatcagagagccatctga 3'end gaatccctgaagagctcctccttccactgtggctcctattctgggacttctacttttaccctccacttccagc ctggggcatcccagaactataggatacaaaaagaaaaaatggttttctcttctaaatgttgattctacttcta gaaaaactaacttctctgcccccacagtcttgttctcagcaaccttcttgctctccactctaattccccaacc atagggcataactattttcctactgttgaaattatatttacaaggtatcatggacaccaaccttaaaggataa acccaaagctctggaacctttgaacccttgctcgttccctttgtgatttggtgttttatggtttgctctttc ttgtttccttttcttgctttcttttttttatttcagattgtcccagtaccccttttccaccccttttcc gtgcctagcttgtcacttttttttcattttttggaacctggcatgtataatgtttcaagtgttgtgtccccc acatggagtttggtgccagagtctttccctctagcttaattttgcctgccttctttgtgaaatatttggtttt catgtagactatggtaactcattaaagtacatttgagctgaaaaaaaaaaaaaaaaaaaaaaaa


## O. fraenata putative protein sequence

MHLEALWTVVGFCLLSACVWGQSPEGEFDVYISGTEVILTCPDKTSEEIEWKKNDETVKGVDGSTLTLTNSEI QYGYFLGKKKGSKDHEGHYLYLKAKVCEGCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKAKPVGRG GGGGGRTRGANKERPPPVPNPDYEPIRKGQRDLYAGLNQRAI

## Appendix 3A

Secondary structure prediction for $O$. fraenata CD3 $\varepsilon$ using PSIpred


Figure 3A.3. Secondary structure prediction for O. fraenata CD3ع.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 3A

Lagorchestes hirsutus (Rufous hare wallaby or mala) CD3 - nucleotide sequence - open reading frame
atgcatttggaagctctctggactgtggtaggattctgtcagctctcagcctgtgtctgggggcaaagcctgg aaaccgataagaactatgaatttgaagtctccatctcaggaactgaagtaacactcacctgccccgaaaaagc taatgaggacatagaatggaagaaaaatgatgtaaccgtaaacggtgtggacagcagtttattcaccctatca gaccccgagactgagtataatggtcacttcttttgtaaaaagaaaggatcagatggcgaaggctattatctct acctgaaagcaagagtatgtgaaggttgtgtggaaatggacgtgctgacggtggctggcattgtcattgctga cgtcttcatcactctgggagtactgctgttggtgtattactggagcaaggcgcgaaaggccaaggccaagcct gttggtcgagggggaggtggcggtggcaggacaagaggagcaaacaaggagaggcctccacctgttcccaacc ctgactatgaccccatccgcaaaggccaacaggacctgtatgctggcctgaatcacagagccatctga
L. hirsutus putative protein sequence

MHLEALWTVVGFCQLSACVWGQSLETDKNYEFEVSISGTEVTLTCPEKANEDIEWKKNDVTVNGVDSSLFTLS DPETEYNGHFFCKKKGSDGEGYYLYLKARVCEGCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKAKP VGRGGGGGGRTRGANKERPPPVPNPDYDPIRKGQQDLYAGLNHRAI

Secondary structure prediction for L. hirsutus CD3\& using PSIpred


Figure 3A.4. Secondary structure prediction for L. hirsutus CD3ع.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 3A

Alignment between marsupial species and human

| M. eugenii | MHLEALWTVVGFCLLSACVWGQSLES------EFGVSISGTKVTLTCPEKSGEEIEWK | 52 |
| :---: | :---: | :---: |
| L. hirsutus | MHLEALWTVVGFCQLSACVWGQSLETD---KNYEFEVSISGTEVTLTCPEKANEDIEWK | 56 |
| O. fraenata | MHLEALWTVVGFCLLSACVWGQSPEG-------EFDVYISGTEVILTCPDKTSEEIEWK | 52 |
| M. domestica | MQLGSLWTVLGFFLLSACVWGEDLEEDP---QKYKFGVSISGTQVTLTCPEKSEDLIIWK | 57 |
| H. sapiens | MQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQ | 60 |
| M. eugenii | KNDVTINGVNTNSLTLSD-------LETEYNGHFFCKKKGPEDGEG-YYLYLKAKVCE | 103 |
| L. hirsutus | KNDVTVNGVDSSLFTLSD--------PETEYNGHFFCKKKG-SDGEG-YYLYLKARVCE | 107 |
| O. fraenata | KNDETVKGVDGSTLTLTN------SEIQYG-YFLGKKKGSKDHEG-HYLYLKAKVCE | 103 |
| M. domestica | KNN-LINGVESYQLTLDD--------SETEYSGHFHCKKKSSPSDEG-YFLYLKARVCH | 107 |
| H. sapiens | HNDKNIGGDEDDKNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVCE | 120 |
| M. eugenii | GCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKAKPVGRGGGGGGRTRGANKERP | 163 |
| L. hirsutus | GCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKAKPVGRGGGGGGRTRGANKERP | 167 |
| O. fraenata | GCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKAKPVGRGGGGGGRTRGANKERP | 163 |
| M. domestica | GCLEMGVLTVAGIIIADVFITLGVLILVYHWSKKQKAKSKPVR-GGGAGGKTRGVNKERP | 167 |
| H. sapiens | NCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNRKAKAKPVTRGAGAGGRQRGQNKERP | 180 |
| M. eugenii | PPVPNPDYEPIRKGQRDLYAGLNQRAI 190 |  |
| L. hirsutus | PPVPNPDYDPIRKGQQDLYAGLNHRAI 194 |  |
| O. fraenata | PPVPNPDYEPIRKGQRDLYAGLNQRAI 190 |  |
| M. domestica | PPVPNPDYEPIRKGQRELYAGLNQRAI 194 |  |
| H. sapiens | PPVPNPDYEPIRKGQRDLYSGLNQRRI 207 |  |

Figure 3A.5. Alignment of marsupial and CD3 $\varepsilon$ and human.
Grey area = exon boundary does not confirm prediction in ensembl. Bold Underlined = the exon boundaries as predicted in ensembl. Green highlight shows the gap in the marsupial sequence compared to the human sequence.
M. domestica CD3 $\varepsilon$ in Spleen and Thymus cDNA library


Figure 3A.6. Gel image of CD3 $\varepsilon$ in M. domestica.
Spleen and thymus cDNA library using UTR primers.
L. hirsutus CD3ع


Figure 3A.7. Gel Image of $L$. hirsutus CD3 $\varepsilon$ in spleen using UTR primers. Product in $1.5 \%$ agarose Gel matrix.

## Appendix 3A

Alignment for CD3 all species using CLUSTALW2 (blosum 62 matrix) (putative protein)

| H.hippoglossus | SMG | MR 42 |
| :---: | :---: | :---: |
| P.olivaceus | -MKINTMDVRAVIAMTLLLYVAADDSE | PVTFEGEYFTMR 38 |
| T.rubripes | MIVRALLCFAVLFLVAGQEEEADK | GGVIFWRTSVTMT 38 |
| S.salar | -MNRDGVYGGLVFLLLIMTSVEGGG | DVSFWRTTVTLT 36 |
| O.mykiss | MDRDGVYGGLVFLLLIMTTVEG | VSFWRTKVTMT 36 |
| A.ruthenus | MKPTMKKAASLLALFIAVCSDLVSSEGGDEDST | QGSVDVSGTSVTLT 48 |
| A.mexicanum | -MARDAQVVATLLSVVLYGVSTLANTPGN | EIAVRISGTSVFLT 42 |
| A.platyrhynchos | -MRFELSLPFLGLLLCVGGTAAQDVADEEL | ASPEELQVEISGTTVKVR 48 |
| G.gallus | MRCEVPLPLLGLLLCVVGAAAQ- | GGQEEFAVEISGTTVTIT 40 |
| P.troglodytes | -MQSGTHWRVLGLCLLSVGVWGQDGEIN | FSP-AYKVSISGTTVILT 47 |
| M.mulatta | -MQSGTHWRVLGLCLLSVGVWGQDGEINFPS | FSP-AYKVSISGTTVILT 47 |
| H.sapiens | -MQSGTHWRVLGLCLLSVGVWGQDGNEEMGG | ITQTPYKVSISGTTVILT 48 |
| M.fascicularis | -MQSGTRWRVLGLCLLSIGVWGQDGNEEMGS- | ITQTPYQVSISGTTVILT 48 |
| C.jacchus | -MQSGTRWRVLGLCLLSVGIWGQDGNEEMGD- | TTQNPYKVSISGTTVTLT 48 |
| B. taurus | -MQSGNLWRALGLCLLLVGAWAQDADE | -QKPYEVSISGNTVELT 42 |
| O.aries | -MQTGNLWQVLGLCLLLVGAWAQDDTE- | -QNPYEVSISGNSVELT 42 |
| S.scrofa | -MPSGNLWKVLGLCLLSVGAWGQEDIERPDE | DTQKTFKVSISGDKVELT 48 |
| C.familiaris | -MQSRNLWRILGLCLLSVGAWGQDEDFKASD | ISPEKRFKVSISGTEVVVT 53 |
| M.furo | -MQPGNLWRILGLCLLLVGAWGQEE- | GYKVSISGTMVVLT 38 |
| F.catus | -MPSGSLWRVLGLCLLSVGAWGQEDNEDPL | TSASARYKVSISGTTVVLT 53 |
| M.musculus | MRWNTFWGILCLSLLAVGTCQDDAEN | -IEYKVSISGTSVELT 41 |
| R.norvegicus | -MQWNAFWSILGLSLLAVGTCQE | EYEVSISGTSVELT 36 |
| O.cuniculus | SMRAGTLWRVLALWLLSVAAWGQEDDDHAD | YTQKLFTVSISGTRVVLT 51 |
| M.eugenii | -MHLEALWTVVGFCLLSACVWGQSLES | --EFGVSISGTKVTLT 40 |
| L.hirsutus | -MHLEALWTVVGFCQLSACVWGQSLETD | -YEFEVSISGTEVTLT 44 |
| O.fraenata | -MHLEALWTVVGFCLLSACVWGQSPEG - | -EFDVYISGTEVILT 40 |
| M.domestica | MQLGSLWTVLGFFLLSACVWGEDLEEDPQ | YKFGVSISGTQVTLT 45 |
| T.gutta | LLSAMASL |  |

H.hippoglossus
P.olivaceus
T.rubripes
S.salar
O.mykiss
A.ruthenus
A.mexicanum
A.platyrhynchos
G.gallus
P.troglodytes
M.mulatta
H.sapiens
M.fascicularis
C. jacchus
B. taurus
o.aries
S.scrofa
C. familiaris
M.furo
F.catus
M.musculus
R.norvegicus
O.cuniculus
M.eugenii
L.hirsutus
O.fraenata
M.domestica
T.guttata

CPVYGKWYR----------RSAQVGDGE---------DSLELNYNSDTKGLYKCVYKDN 82
CPGEQKLLK---------DNSDANN-------------TVQYHDQTKGLYRC----- 68

CPDKGDWYD---------NTIKMNEEE-------SKEIKMDYDESKKNVYQCKYLYD 77
CPGKGEWYE---------GTNNLDKNSR------SEQIEENYDESKKRVYHCEYQYD 78
CPLTGTVSDPGSTTWQYKEEEKKIPDTDGK-------TQITLQTYNSTNNGLYKCSN--- 98
CPSRDSPSRDTN-----STLSGPNVLSTNT-------MDHHLKNYDEGMNGEYHCQVLHG 90
CSLS-ET----------VQWKPYSPDTED-----------TTFIKTN----HDSSPLNLT 82
CPSSGDD---------IKWKPDPALGDN----------NKYIIQN----HDSSPLTVS 75
CPQYPGS-E-------ILWQHNDKNIGSDEDDKNIGSDEDHLSLKEFSELEQSGYYVCY 98
CPQYPGS-E-------ILWQHNDKNIGSDEDDKNIGSDEDHLSLKEFSELEQSGYYVCY 98
CPQYPGS-E-------ILWQHNDKNIGGDEDDKNIGSDEDHLSLKEFSELEQSGYYVCY 99
CSQHLGS-E-------AQWQHNGKNKG-------DSGDQLFLPEFSEMEQSGYYVCY 90
CPRYDGH-E-------IKWLVNSQNKE--------GHEDHLLLEDFSEMEQSGYYACL 90
CPREFEG-E--------IHWKQNDEQMKG--------YTGKQLLLENFSEMDNSGYYQCY 85
CPKDFEN-G------IQWKRNNEQMKG-------HNEKYLLLDQFSEMESSGYYQCL 85
CPEDPESEK-------MTWKRNDMQIYE-------SYDNYMLLESFSEVENSGYYTCT 92
CPDVFGYDN-------IKWEKNDNLVEG-------ASNRELSQKEFSEVDDSGYYACY 97
CPEEVDTNS--------ITWEKNGEAIKG--------ANERQYTMHTFSEVEDSGSYTCF 82
CPEDLGSES-------IKWERNGDLLPN-------EYGEQLFLDDFSEMENSGYYACY 97
CPLDSDE-N-------LKWEKNGQELPQ--------KHDKHLVLQDFSEVEDSGYYVCY 84
CPLENED-N-------LKWEKNDKVLPD-------KNEKHLVLEDFSEVKDSGYYVCY 79
CPVEAEGGD-------IHWERDEKSLPN--------TKKELDLTDFSEMEHSGYYSCY 94
CPEKSGE-E--------IEWKKNDVTING-------VNTNSLTLSD-LETEYNGHFFCK 82
CPEKANE-D-------IEWKKNDVTVNG-------VDSSLFTLSD-PETEYNGHFFCK 86
CPDKTSE-D-------IEWKKNDETVNG-------VDGSTLTLTN-SEIQY-GYFLCK 81
CPEKSED-L-------IIWKKNN-LING--------VESYQLTLDD-SETEYSGHFHCK 86
CVRDQGSKN-------ITWWRDGSTVGH--------EAQLDLNRVYD-DPRGLFVCE 80
*
H.hippoglossus
P.olivaceus
-----EEDKEYYFYVKGKACANCIELEAAPLALAITVDMAGTIILMMIIYKCTKKKSSA- 136
------EKGKYFFYVKANLCLNCFNLDGALFAQVIAVDMTGTIILMIVIYRCTKKRS-A- 120
T.rubripes
S.salar
O.mykiss
A.ruthenus
A.mexicanum
------ENTRYDFYVQGKVCENCFELDGGFWGMIIAADMFLTVVVMVMVYKCAKKRS--- 124
--QYDTEKTTYQFYFKGKVCKDCYELNPTVVAGAIIGDLLVTGGVILIVYLRARKKS-- - 132
PQDYPEKTAIYQFYFKGKVCKDCYELNPTLVAGAIIGDLLVTGGVILIVYLRARKKS--- 135
------GNDYYHFYVKVKVCESCVEVEVVPMIGIIFADLLVTAGVAILVYYWAQNRK-G- 150
-----TKPNVSRLFLKVKVCHHCVDLGFWTVAGILVTDILVTVGVSILVYYWSKGRKRIP 145
A.platyrhynchos CTADNK---NIHMYLKARVCTNCMELDTLTVTGIIIADLLITFGLLILVYYFSKDKKG-- 137

Appendix 3A

| G.gallus | CTAGDQ---EHTMYLNAKVCANCEELDTFTVVGIIAADLLITLGVLILVYYFSKNKKG-- 130 |
| :---: | :---: |
| P.troglodytes | PRGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNRKAKA 158 |
| M.mulatta | PRGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNRKAKA 158 |
| H.sapiens | PRGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNRKAKA 159 |
| M.fascicula | PRGSNPEDASHHLYLKARVCENCMEMDVMAVATIVIVDICITLGLLLLVYYWSKNRKAKA 150 |
| C.jacchus | SKETPAEEASHYLYLKARVCENCVEVDVMAVATIVIVDICITLGLLLLVYYWSKNRKAKA 150 |
| B. taurus | MTEGNKE-AAHTLYLKARVCQNCMEVNLMEVATIIVVDICVTLGLLLLVYYWSKSRKAKA 144 |
| o.ari | ATEGNTE-AAHTLYLKARVCKNCMEVNLLEVATIIVVDICVTLGLLLLVYYWSKSRKAKA 144 |
| S.scrofa | VGEKTS----HRLYLKARVCENCVEVDLMAVVTIIVVDICITLGLLMVVYYYSKSRKAKA 148 |
| C.familia | ADSIKE---KSYLYLRARVCANCIEVNLMAVVTIIVADICLTLGLLLMVYYWSKTRKANA 154 |
| M.furo | SDKLK---KNSLYLKARVCKNCIEVSPMAVAAILVTDICITLGLLLLVYYWSKNRKANA 138 |
| F.catus | TSNSLE---KNYLYLKARVCQNCVEVDTMTAVAIVVADVCITLGLLLLVYYWSKNKKASS 154 |
| M.musculus | TPASNK---NTYLYLKARVCEYCVEVDLTAVAIIIIVDICITLGLLMVIYYWSKNRKAKA 141 |
| $R . n o r v e g i c u s$ | TESSRK---NTYLYLKARVCENCMEVDLTAVSIIIIVDICITLGLLMVVYYWSKKRKAKA 136 |
| O.cuniculus | VGTKNKE-NEHILYLKARVCEACMEVDLTTVASIVVADVCVTLGLLLLVYYWSKNRKAKC 153 |
| M.eugenii | -KKGPEDGEGYYLYLKAKVCEGCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKA 141 |
| L.hirsutus | -KKGS-DGEGYYLYLKARVCEGCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKA 144 |
| O.fraenata | -KKGSKDHEGHYLYLKARVCEGCVEMDVLTVAGIVIADVFITLGVLLLVYYWSKARKAKA 140 |
| M.domestica | -KKSSPSDEGYFLYLKARVCHGCLEMGVLTVAGIIIADVFITLGVLILVYHWSKKQKAKS 145 |
| T.guttata | TGSK----RSSLQVHYRMCQNCIEVDAPTVSGIVIADVVATLFLAVAVYCITGHNR--- 132 |
| H.hippogloss | GSTQASKAPARA----GGRAPP-VPSPDYEALNPHTRSQDPYAIVS----RTG 180 |
| P.olivaceus | GSTNTSKAPARA----VGRAPP-VPSPDYEPLNPHTRAQDPYSIVN----RTG 164 |
| T.rubripes | SAALPRVP-KA----GGRAPP-LPSPDYEPLNPHTRSQGTYSEVHP--KRMG 168 |
| S.salar | -GPAAPQKPTSRS-----AGRGPPVVPSPDYEPLSVATRSSDIYATTQTSTQRTG 181 |
| O.mykiss | ---GPAAPQKPTSRS----AGRGPPVVPSPDYEPLSLATRSRDIYAT-----HRTG 179 |
| A.ruthenus | --ASAMAPAARPGR-----QNRAPP-VPNPDYEPIRTGNR--EVYSGLN---KRT- 192 |
| A.mexicanum | APGGASAGGRRPRDY-----NKERPPPVPNPDYEPIRKGQR--EVYDGLKP---QY-191 |
| A.platyrhynchos | -RPSAGAGSRPRG----QKTQRPPPVPNPDYEPIRKGQR--EVYAGLES---RGY 182 |
| G.gallus | -QSRAAAGSRPRA---QKMQRPPPVPNPDYEPIRKGQR--DVYAGLEH---RGF 175 |
| P.troglodytes | KPVTRGAGAGGRQRG----QNKEKPPPVPNPDYEPIRKGQR--DLYSGLNQ---RRI 206 |
| M.mulatta | KPVTRGAGAGGRQRG----QNKEKPPPVPNPDYEPIRKGQR--DLYSGLNQ---RRI 206 |
| H.sapiens | KPVTRGAGAGGRQRG----QNKERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RRI 207 |
| M.fascicularis | KPVTRGAGAGGRQRG----QNKERPPPVPNPDYEPIRKGQQ--DLYSGLNQ---RRI 198 |
| C. jacchus | KPVTRGVGAGGRQRG----QNKERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RGI 198 |
| B.taurus | SPMTRGAGAGGRPRG----QNKGRPPPVPNPDYEPIRKGQR--DLYAGLNQ---RGV 192 |
| O.aries | TPMTRGAGAGGRPRG----QNRERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RGV 192 |
| S.scrofa | MPVTRGAGAGGRPRG----QNRERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RGR 196 |
| C.familiaris | KPVMRGTGAGSRPRG----QNKEKPPPVPNPDYEPIRKGQQ--DLYSGLNQ---RGI 202 |
| M.furo | TTVMRAKGAGGRTRG----QNKEKPPPVPNPDYEPIRKGQQ--DLYSGLNQ---RGI 186 |
| F.catus | VTMMRGPGAGGRPRG----QNKEKPPPVPNPDYEPIRKGQQ--DLYSGLNQ---RGI 202 |
| M.musculus | KPVTRGTGAGSRPRG----QNKERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RAV 189 |
| R.norvegicus | KPVTRGTGTGGRPRGKAQGQNKERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RAV 188 |
| O.cuniculus | KPVTRGAGAGGRPRG----QNKERPPPVPNPDYEPIRKGQR--DLYSGLNQ---RGI 201 |
| M.eugenii | KPVGRGGGGGGRTRG----ANKERPPPVPNPDYEPIRKGQR--DLYAGLNQ---RAI 189 |
| L.hirsutus | KPVGRGGGGGGRTRG----ANKERPPPVPNPD ${ }^{\text {d }}$ (PIRKGQQ--DLYAGLNH---RAI 192 |
| O.fraenata | KPVGRGGGGGRTRG----ANKERPPPVPNPD EPIRKGQR--DLYAGLNQ---RAI 188 |
| M.domestica | KPV-RGGGAGGKTRG----VNKERPPPVPNPD EPIRKGQR--ELYAGLNQ---RAI 192 |
| T.guttata | GHTSRASD-------RQNLIANELYQPLGERDD--EQYSRLAPARARK-171 |

Figure 3A.8. Alignment of all CD3 $\varepsilon$ sequences found in Genbank. Underlined is the ARAM site (antigen recognition activation motif) and the endoplasmic retention signal is marked in red.

## Appendix 3A

Genbank Accession Numbers for CD3 epsilon
Table 3A.1. Accession numbers for CD3ع sequences found in Genbank and the relevant references

| Species | Common Name | Accession <br> Number | References |
| :--- | :--- | :--- | :--- |
| Acipenser ruthenus | Sterlet | AJ242941 | unpublished |
| Ambystoma mexicanum | Axolotl | AY212509 | unpublished |
| Anas platyrhynchos | Duck | AF378704 | Direct submission |
| Aotus nancymaae | Ma's night monkey | EF547186 | unpublished |
| Bos taurus | Cattle | U25687 | (Hagens et al., 1996) |
| Cairina moschata | Muscovy duck | AY738734 | (Kothlow et al., 2005) |
| Callithrix jacchus | Common marmoset | DQ189218 | unpublished |
| Canis lupus familiaris | Dog | M55410 | (Nash et al., 1991) |
| Felis catus | Cat | AB195839 | (Nishimura et al., 1998) |
| Gallus Gallus | Chicken | NM_206904 | (Gobel and Fluri, 1997) |
| Hippoglossus hippoglossus | Atlantic halibut | FJ769816 | (Overgard et al., 2009) |
| Homo sapiens | Human | NM_000733 | (Gold et al., 1986) |
| Macaca fascicularis | Crab eating macaque | AB073994 | (Uda et al., 2001) |
| Macaca mulatta | Rhesus monkey | XM_001097204 | Annotated |
| Macropus eugenii | Tammar wallaby | AY028923 | (Old et al., 2001) |
| Marmota monax | Woodchuck | AF232727 | Direct submission |
| Monodelphis domestica | Grey short tailed opossum | XM_001380690 | Annotated |
| Mus musculus | Mouse | NM_007648 | (de la Cruz et al., 2011) |
| Mustela putorius furo | Domestic ferret | EF492054.1 | unpublished |
| Oncorhynchus mykiss | Rainbow trout | GU074379 | Direct submission |
| Oryctolagus cuniculus | Rabbit | NM_001082001 | Direct submission |
| Ovis aries | Sheep | NM_001009418 | (Hein and Tunnacliffe, 1993) |
| Pan trogldytes | Chimpanzee | XM_001160645 | Annotated |
| Paralichthys olivaceus | Japanese flounder | AB081751 | Direct submission |
| Rattus norvegicus | Rat | NM_001108140 | Direct submission |
| Salmo salar | Atlantic salmon | AY323829 | Direct submision |
| Sus scrofa | Pig | Zebra finch | AB6799 |
| Taeniopygia guttata | Pufferfish | (Araki et al., 2005) |  |
| Takifugu rubripes |  |  |  |

## Appendix 3B

Macropus eugenii T cell receptor $\alpha$-chain (TCR $\alpha$ ) partial nucleotide sequence
tgcctcttcaccgactttgactcttccattacaaatacaagtggtaccaacccaacggtactggaaatgatgt cgatggactctaagagctatggatcactgcactggggtcacaaagaaaacttcgattgctcaaaggcattcaa accagacatcaataattttgaagaccagtataaaggtgccacatgcaaagtccaagatgtacagcaaagcttt gaaacagacaaagatttgaacttgatgaacatatctctgatttttcttcgtgttatcttcttgaagactgtgg gat

Partial putative amino acid sequence of $M$. eugenii TCR $\alpha$ chain
CLFTDFDSSITNTSGTNPTVLEMMSMDSKSYGSLHWGHKENFDCSKAFKPDINNFEDQYKGATCKVQDVQQSF ETDKDLNLMNISLIFLRVIFLKTVG

Secondary structure prediction using PSIpred for M. eugenii TCR $\alpha$

HHHHCCCCCCCCEE
AA: CLETDFDSSITNTSGTNPTVLEMMSMDSKSYGS LHWGHKE

| 10 | 20 | 30 | 40 |
| :--- | :--- | :--- | :--- |


Pred:
red: ccccccccccccccccccccccccccceecccccccccc
AA: NFDCSKAFKPDINNFEDQYKGATCKVQDVQQSEETDKDLN

Pred: $\rightarrow$
Pred: CCHHHHHHHHHHEEECCC
AA: LMNISLIELRVIFLKTVG
90
Legend:
0 - helin

$\square$ - atrand Pred: predicted aecondary structure

-     - coil AM: target sequence

Figure 3B.a. Secondary structure prediction for M. eugenii TCR $\alpha$.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 3B

Onychogalea fraenata partial TCR $\alpha$ chain partial nucleotide sequence
agcaacaccctggtgtgcctcttcacagattttgactcttccattacaaatacaaatggtaccaacceaacag tactggaaatgatatcgatggaatctaagagctatggatcagtgtactggggtcacaaagaaaactccagttg cacagatgcattcagtccaaacatcatcggtcctttggctgacccctcagatgccacatgcaaagtccaagat gtacagcaaagctttgaaacagacaaagatttgaacttgatgaacatatctctgatttttcttcgtgtcatct tcttgaagactgtgga

Partial putative amino acid sequence of $O$. fraenata TCR $\alpha$ chain

SNTLVCLFTDFDSSITNTNGTNPTVLEMISMESKSYGSVYWGHKENSSCTDAFSPNIIGPLADPSDATCKVQD VQQSFETDKDLNLMNISLIFLRVIFLKTV

Secondary structure prediction using PSIpred for O. fraenata TCR $\alpha$


Figure 3B.b. Secondary structure prediction for O. fraenata TCR $\alpha$.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Amino acid alignment for TCR $\alpha$ using CLUSTALW2 (blosum62 matrix)

| M.eugenii |  |
| :---: | :---: |
| O.fraenata |  |
| T.vulpecula | CTYT-SSVN-SLQWYRH 15 |
| M.domestica | --MNSALTLMIWILLLFGDTYGDSVTQTEGRIILTEGASLTLNCSYQ-TSGSPFLSWYIQ 57 |
| H.sapiens | -MSLSSLLKVVTASLWLGPGIAQKITQTQPGMFVQEKEAVTLDCTYDTSDQSYGLFWYKQ 59 |
| B.taurus | ----MRLVTVVTVFLTLGTVVDAKTTQPNS-MDCAEGENVNLPCNHSIIRGEDYIHWYRQ 55 |
| O.anatinus | -----------------MP-----YSRVGTS-GGGS----------------YNL 16 |
| T.aculeatus | ----MARGVTATLLLLLSPVLPNQVTQLTSVEATA-GHAVNLQCKHTSLTSS-PIFWYQQ 54 |
| M.musculus | MKKRLSACWVVLWLHYQWVAGKTQVEQSPQSLVVRQGENCVLQCNYSVTPDN-HLRWFKQ 59 |
| R.norvegicus | MKAPIHTVFLFSWLWLDWESHGEKVEQVLSTLSVQEGDTAVTNCTYTDSASS-YFPWYKQ 59 |
| M.eugenii |  |
| O.fraenata |  |
| T.vulpecula | HPGTGPTFLF-AMFSDGDEKQQGRFKATLNTKSRHSSLSISATQLSDSATYFCAV--NTG 72 |
| M.domestica | HPNEGLKLLVNEAKRKDQEKDNNGFWTKKIKEKSFFSLEKTSVQVKDSAVYYCVL--SKG 115 |
| H.sapiens | PSSGEMIFLIYQGSYDEQNATEGRYSLNFQKARKSANLVISASQLGDSAMYFCAMR-EYP 118 |
| $B$. taurus | NPSQSPQYVIHGLRGTVNNSMA--SLHIASDRKSSTLVLPQVTLRDAAVYYCTP--SSS 110 |
| O.anatinus | LFGKG----------------TKVTVVP--------------------------- 28 |
| T.aculeatus | MFNQAPELVLSGYSST----RSAKAKLTIQEDRKSNILTLHNVQDRDSAVYYCALD-GYD 109 |
| M.musculus | DTGKGLVSLTVLVDQK-DKTSNGRYSATLDKDAKHSTLHITATLLDDTATYICVVADRGS 118 |
| R.norvegicus | GAGKGLHFVID-IRSNVDRKETQKFTVLMDKKAKKFSLHITATQAEDSAIYFCAKT--- 114 |
| M.eugenii --------------NIKNPE-PAVYQLKSPKSSNTSVCLFTDFNSTI--------- 32 |  |
| O.fraenata | --SNTLVCLFTDFDSSI---------- 15 |
| T.vulpecula | AGNKLIFGIGSSLKIKPNIKNPE-PALYQLTSPKSSDTSVCLFTDFDS-----------119 |
| M.domestica | ETSQHIFGKGTQVAVLPNIQNPQ-PALYQLRSPKSSNTSVCLLTDFGFYNGSIKN---- 169 |
| H.sapiens | SYDKVIFGPGTSLSVIPNIQNPD-PAVYQLRDSKSSDKSVCLFTDFDS-QTNVSQ---SK 173 |
| $B$. taurus | SGWQLTFGSGTQLTVVPEVKDPN-PTVYQLRSPQSSDTSVCLFTDFDSNQVNMEKIMGSE 169 |
| O.anatinus | SLNKQIFGTGTKLTVQPNVTNPQ-PRMYHLKKPRVNDLSVCLFTDFGNEEVNMMG---- 82 |
| T.aculeatus | SGNKVIFGKGTSLTVTPNVTNPQ-PRMYRLKKPQVNDLSICLFTDFGNDEVNMTG---- 163 |
| M.musculus | ALGRLHFGAGTQLIVIPDIQNPE-PAVYQLKDPRSQDSTLCLFTDFDSQINVPKT----M 173 |
| R.norvegicus | - -LKMDSSPGFVAVILLLLGRTHGDSVTQTEGQVTISENGFLRINCTY------------160 |
| M.eugenii | -TNTSGTNPTVLEMMSMDSKSYGSLHWGHKENFDCSKAFKPDINNF--EDQYKGATCKVQ 89 |
| O.fraenata | -TNTNGTNPTVLEMISMESKSYGSVYWGHKENSSCTDAFSPNIIGP--LADPSDATCKVQ 72 |
| T.vulpecula | -SDPSGSNATVLEMMTMESKSYGAVTWGSKSSFNCTNSFQQSDVT---LTLPSGSTCKVK 175 |
| M.domestica | -ETVTGSEATVLEMMTMESKSYGAVTWGSKSNFTCTDAFRKDMFD---FNQFSGSKCNSS 225 |
| H.sapiens | DSDVYITDKTVLDMRSMDFKSNSAVAWSNKSDFACANAFNNSIIPEDTFFPSPESSCDVK 233 |
| $B . t a u r u s$ | GSTVHKTNSTVLNMEILGSKSNGIVTWGNTSDAGCEYTFNETIP----FASSLEISCNAK 225 |
| O.anatinus | -INNIKRTPSMVAEKRLASKSLGIVAWNNNLDWKCQAKISNITYS---LSNSSGKVCNTT 138 |
| T.aculeatus | -IRNIMRAPSVVDVKRLESKSLGIVAWDNSLDWDCQAQASEAVYS---LSNSSGKVCNAK 219 |
| M.musculus | ESGTFITDKTVLDMKAMDSKSNGAIAWSNQTSFTCQDIFKETNAT----YPSSDVPCDAT 229 |
| R.norvegicus | -SATSIAYPTLFWYVQYPGEGLQLLLKVFTAGQKGSSRGFEATYN------KETTSFHL 212 |
|  | $\cdots$.. . . . |
| M.eugenii | DVQQSFETDKDLNLMNISLI FLRVIFLKTVEFNVLMTLRLWSN-132 |
| O.fraenata | DVQQSFETDKDLNLMNISLIFLRVIFLKTV------------ 102 |
| T.vulpecula | DVQQSFETDKDLNLMNM |
| M.domestica | HAEQGFETDRDLNLMNLSLIVLRIIFLKTVGFNLLMTLRLWSN-268 |
| H.sapiens | LVEKSFETDTNLNFQNLSVIGFRILLLKVAGFNLLMTLRLWSS-276 |
| B.taurus | LVEKSFETDINLNSQNLSVIVFRILLLKVVGFNLLMTLRLWSS-268 |
| O.anatinus | AVTENFSSDPYLNSINLAMIFLRVIFVKTVGFNLLMTLKLWSS-181 |
| T.aculeatus | VVNENFSSDPYLNSRNLAMIFLRVVFVKTMGFNLLMTLKLWSS-262 |
| M.musculus | LTEKSFETDMNLNFQNLSVMGLRILLLKVAGFNLLMTLRLWSS- 272 |
| $R . n o r v e g i c u s$ | QKASVQESDSAVYYCALG---DTVVETTGGAEHKPRGNRWSGC 252 |

Fig.3Bc. Alignment of TCR $\alpha$ sequences.
Underlined are putative glycosylation sites. Boxed the core-pepitde. Green the connecting peptide.

## Appendix 3B

## Genbank Accession Numbers

Table 3B.1. Genbank Accession Numbers for TCR $\alpha$ found in Genbank and the relevnat references.

| Species Name | Common Name | Accession Number | References |
| :--- | :--- | :--- | :--- |
| Bos taurus | Cattle | BC102771,( D10394 <br> D90030 | (Ishiguro et al., 1990) |
| Callithrix jacchus | White-tuffed-ear <br> marmoset | AB504389 (partial <br> sequence) | (Fujii et al., 2010) |
| Homo sapiens | Human | EF101779, M12959, <br> X02883 | (Wang et al., 2008, <br> Rabbitts et al., 1985, <br> Yoshikai et al., 1985) |
| Macaca mulatta | Rhesus monkey | HQ622180 | Unpublished |
| Monodelphis <br> domestica | South American gray- <br> short tailed opossum | AY014504 | (Baker et al., 2001) |
| Mus msuculus | Mouse | DQ340292, U46581 | (Pyz et al., 2006) |
| Ornithorhynchus <br> anatinus | Platypus | XM_001507749 | Annotation |
| Oryctolagus cuniculus | Rabbit | M12885 | (Marche and Kindt, 1986) |
| Rattus norvegicus | Rat | M18853 | Annotated |
| Tachyglossus <br> aculeatus | Australian Echidna | AY423736 | (Belov et al., 2004) |
| Trichosurus vulpecula | Australian silver-grey <br> brushtail possum | AF133097 | (Zuccolotto et al., 2000) |
| Ictalurus punctatus | Catfish | U39194 | (Wilson et al., 1998) |
| Gallus gallus | Chicken | M555622 | (Goebel and Dangy, 2000) |
| Ovis aries | Sheep |  |  |

## Appendix 3C

M. eugenii TCR beta (TCR $\beta$ ) partial nucleotide sequence
cggaccgggcaccaggctcactgtaacagatgacctgaccagggtgactcccccaaaggtgactgtgtttcag ccatctgaggaagagatggcgaataagggaaaggccacattggtctgtctggccacaggcttctaccctgacc ttgtggagctgaagtggtgggtgaatgggcaggagacccaaattggggtcagcacagaccctcagccctccaa agagcagccccataacaacttctccacatactccctgagcagtcgtcttcgggtgtctgctcccttctggcgc aatcccaagaacagcttccggtgccaagtattgttccatgggattggagagaatgagacctggacaagtaacc tgaagaaacccatcacccagaatgtcagtgaccagatctggggaaaagcagattgtggggtttcctctgaatc ctatcaacatagtatccagtctgccaccttcttgtatgagatcctgctggggaaagccgtgctctatggcctg ctggtcagtgctctggtgtggagaaccatggccaagaaaaaacattcctga 3'end
aggcatctgtggaggtgagagcagggaagacagagcaagagaaccctatcccctgttttgcctactgtgttct ctattcctgccetttgttccetaaaactataatatttgctcttcctttcttttggttcctcatacctcctaa atttcaactctgaaaatcatgtaggaccaggaggatggcttaatcctattaatcttaaaacatcttgcccgtc ctggtgtggtctcactcttaaaaaaaaaaaaaaaaa

Partial putative protein sequence $\operatorname{TCR} \beta M$. eugenii
GPGTRLTVTDDLTRVTPPKVTVFQPSEEEMANKGKATLVCLATGFYPDLVELKWWVNGQETQIGVSTDPQPSK EQPHNNFSTYSLSSRLRVSAPFWRNPKNSFRCQVLFHGIGENETWTSNLKKPITQNVSDQIWGKADCGVSSES YQHSIQSATFLYEILLGKAVLYGLLVSALVWRTMAKKKHS

Secondary structure prediction for $M$. eugenii TCR $\beta$ chain


Figure 3C.a. M. eugenii TCR $\beta$ secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 3C

## O. fraenata TCR $\beta$ partial nucleotide sequence

atgtataagactgtaactaactatagtgagcttcattttggacctggcacaaggctaagtgtcgtagatgacc tgaccagggcgactcccccaaaggtgactgtgtttcagccatctgaggaagagatggcgaataagggaaaggc cacactggtctgtctggccacaggcttctaccctgacctcgtggagctgaagtggtgggtgaatgggcaggaa acccaagttggggtcagcacagaccctcagccctccaaggagcagccccataaaaatttctccagatactccc tgagcagtcgtcttcgggtgtctgctcccttctggcgcaatcccaagaacagcttccggtgccaagtattgtt ccatgggattggagagaatgagacctggacaagtaacctgaccaaacccatcacccggaatgtcagtgaccag atctgggaaaaggcagattgtggaagtatccagtttgccaccttgttttatgagattttcctggggaaagcca tgctgtatggcctgctggtcagtgctttggtgtggagaaccatggccaagagaaaacattcctga 3'end ggccacctatggaggtaacaacagagagtacagagcaggagaatccagcaccctgttttggctactgctttct ctattcctatcctatgttccagaagaactattattttttcagttcccatcttcatgtttcatagatctcctta aaaagaactttgaagctcacagaggacaaggatggtggcttaatcctgaaaaaaaaaaaaaaaaaaaaaa

Partial putative protein sequence for $O$. fraenata TCR $\beta$

MYKTVTNYSELHFGPGTRLSVVDDLTRATPPKVTVFQPSEEEMANKGKATLVCLATGFYPDLVELKWWVNGQE TQVGVSTDPQPSKEQPHKNFSRYSLSSRLRVSAPFWRNPKNSFRCQVLFHGIGENETWTSNLTKPITRNVSDQ IWEKADCGSIQFATLFYEILLGKAMLYGLLVSALVWRTMAKRKHS

Secondary structure prediction using PSIpred for O. fraenata TCR $\beta$


Figure 3C.b. O. fraenata $\operatorname{TCR} \beta$ secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

Elucidation of TCR $\beta$ chain


Figure 3C.c. Gel image (1.5\%) of TCR $\beta$ in M.eugenii in ConA stimulated lymphocytes.


Figure 3C.d. Gel image (1.5\%) of TCR $\beta$ in $O$. fraenata spleen.

## Appendix 3C

## Alignment of TCR $\beta$ chain sequences using CLUSTALW2 (blosum62 matrix)

| A.platyrhynchos | $-----------M G M W T A W C V A T F F F G A R A K I T Q T S S L V L K E D G E A T L K C S Q N D N H N-Y ~$ |
| :--- | :--- | :--- | 46

A.platyrhynchos MSWYLQQPGKGLQLLYYSIGADQ-EAVGDTHPGYKATRLNLSDFHLVIKPVKMNHSADYF 105
G.gallus
M.musculus
R.norvegicus
O.aries
S.scrofa
C.familiaris
H.sapiens
T. vulpecula
O.fraenata
M.eugenii
M.domestica
A.mexicanum
O.mykiss
S.partitus
P.olivaceus
X.laevis MYWYLQQPGKGLQLIYYSYGTNL-DYKGDIHTGYEAKRLSQEVFRLNIVSVKKNHSAIYF 103 YWYRQDTGHGLRLIH-YSYGAGS-TEKGDIPDGYKASRPSQENFSLILELATPSQTSVYF 108 YWYRQDMGHGLRLIH-YSYDVNS-TEKGDVPNGYKVSRPSQGDFFLTLESASPSQTSVYF 108 ---------------YLCAS----SKD------------------LAGGVSS------ 15 YWYQQDQGHGLRLIF-YTCDVGI-LNKEEVPNGYNVSRPSMEDFSLILESVVPSRTSVYL 117 YWYQQALM--VRLPVSHSVIIVK-KETSGQDSQCSSSVTTA--SQLEMNSLEPGDSALYL 105 FWYRQTMMRGLELLIYFNNNVPI-DDSGMPEDRFSAKMPNASFSTLKIQPSEPRDSAVYF 110
$\qquad$
------------------------------------------------------------
----------------------------------------------------------
ILWYKQSNYRELVFLGYMQLKTG-FPEVGFD--IEGDANAGGTSTLTIKQLTPNSSAVYY 110 ILWYKQLN-RNLQFLGYLNINKG-YPEDGVDVTIDGDANKGRNCTLTINSLSVSSSAVYF 114 MYWYRQQRGKEPQLVVYLVGSSA-NLEEGFKSGFEAEIVQKKKWSLKIPSIQEKDEAVYL 111 MFWYQQKPDQGLKLMLHSLNVGSEDVESDYKDNWGGTDRKFVLNSTLILKKGNVEDSATYF 111 FWYQQPLGQGPQFLFYYYNGKEN74
A.platyrhynchos CASSP---NRGSNTQYFGEGTKITVLEKNDVIKPPA-VAIFSPSKQEIQEK----SKATL 157
G.gallus
M.musculus
R.norvegicus
O.aries
S.scrofa
C.familiaris
H.sapiens
T.vulpecula
O.fraenata
M.eugenii
M.domestica
A.mexicanum
o.mykiss
S.partitus
P.olivaceus
X.laevis
E.caballus CASTR---DRVSGNMIFGDGTKLTVIGKNSEIIEPD-VVIFSPSKQEIQGK----KKATL 155 CASGE--GGLGGPTQYFGPGTRLLVLEDLRNVTPPK-VSLFEPSKAEIANK----QKATL 161 CASSD--S---GNVLYFGEGSRLLVVEDLKTVTPPK-VSLFEPSEAEIADK----QKATL 158 -----------ETQYFGPGTRLLVLDDLRQVHPPK-VAVFEPSEAEISRT----QKATL 58 CASSR--Q---GNTQHFGPGTWLTVLEDLQQVRPPK-VAVFEPSEAEISRT----QKATL 167 CASSG---YSESYERYFGAGTRLTVLEDLQKVTPPT-VTVFEPSEAEISRT----QKATL 157 -CASS----FNGAGEAFFGQGTRLTVVEDLNKVFPPE-VAVFEPSEAEISHT----QKATL 161 TVTN-------YSELHFGPGTRLSVVDDLTKVTPPK-VTVFQPSEEEMEEK----GKATL 60 TVTN------YSELHFGPGTRLSVVDDLTRATPPK-VTVFQPSEEEMANK----GKATL 51 ----------------GPGTRLTVTDDLTRVTPPK-VTVFQPSEEEMANK----GKATL 38 -------------------------DDLERVTPPK-VTVFQPSEEEIGEK----GKATL 29 --------------RFGQGTKLTVLEEGLSVTQPS-VVLFDPSPQEIKKK----GKATL 40 CAA---TGTKNYNPAFFGAGTKLTVLDPNIKVTEPT-VKVLAPSAKECEDR-NKKKKKTL 165 CAASYGTGGPQTEPAYFGKGTKLTVLETDRTVTPPTKVKIFPPSAKECRNKKDDIRKKTL 174 CAA---SGTRILYEAYFGQGTKPTVLEPGQAVKSPK-VKVFRPSSKECRNPIDNEREKTL 167 CAARS---GQGADRLYFGDGTILTVLEKGQEEKNVANVAIFRPNPKEQTDH----GYLSI 164 -EKGDVPARFSGQQFSDYR-SELNVSVLELKDS---.-ALY 108
A.platyrhynchos VCLASGFYPDTLNLVWKVNGAERTEGVGTDETSTS------------YENTYSLTSRLRI 205
G.gallus
M.musculus
R.norvegicus
O.aries
S.scrofa
C.familiaris VCLASGFFPDHLNLVWKVNGVKRTEGVGTDEISTS------------NGSTYSLTSRLRI 203 VCLARGFFPDHVELSWWVNGKEVHSGVSTDPQAYK-------E---SN-YSYCLSSRLRV 210 VCLARGFFPDHVELSWWVNGKEIRNGVSTDPQAYK------E---SNNITYCLSSRLRV 208 VCLATGFYPDHVELTWWVNRKQVTTGVSTDPEPYK------EDLTQNDSRYCLSSRLRV 111 VCLATGFYPDHVELSWWVNGKQVQSGVSTDLQPYR-------EDPSRNDSCYCLSSRLRV 220 VCLARGFYPDHVELSWWN-----------------------------DSSYCLSSRLRV 187

## Appendix 3C



Fig. 3Cc. Sequence alignment for TCR $\beta$.
IG domain = grey. $\underline{\mathbf{Y}}=$ evolutionary conserved tyrosine residues. Blue = the transmembrane domain. G-loop $=$ red. $C \beta$ elbow loop = black bold. F-loop = green. $\bullet=$ base of FG loop. = intradomain disulphide bridge. $\mathrm{C} \beta \mathrm{CP}=$ magenta. Boxed residue important in signal transduction. $\times=$ Interchain disulphide bond to TCR $\alpha . \bullet$ $=$ intradomain disufide with C 147 of $\mathrm{C} \beta . \mathbf{O}=$ conserved leucine motif involved in signal transduction. N -linked glycosylation sites.

## Appendix 3C

## Genbank Accession Numbers

Table3C.1. Accession Numbers for TCR beta chain found in Genbank and the relevant references.

| Species name | Common name | Accession Numbers | Reference |
| :--- | :--- | :--- | :--- |
| Ambystoma <br> mexicanum | Axolotl | L08498 | (Fellah et al., 1993) (partial <br> sequence) |
| Anas platyrhynchos | Duck | AY039002 | Unpublished |
| Canis lupus familiaris | Dog | D16410 | (Takano et al., 1994) |
| Equus caballus | Horse | XM_003364894 | Annotated |
| Gallus gallus | Chicken | EF554759, M37803 | Unpublished <br> (Tjoelker et al., 1990) |
| Heterodontus francisci | Horn shark | U07624 | (Rast and Litman, 1994) |
| Homo sapiens | Human | AY232284 | Direct Submission |
| Monodelphis <br> domestica | American short tailed <br> opossum | AY014506 | (Baker et al., 2001) (partial <br> sequence) |
| Mus musculus | Mouse | DQ340294 | Direct Submission |
| Oncorhynchus mykiss | Rainbow trout | AF329700 | Direct Submission |
| Ovis aries | Sheep | M94182 | (Di Tommaso et al., 2010) <br> (partial sequence) <br> (Grossberger et al., 1993) |
| Paralichthys olivaceus | Japanese flounder | AB053228 | Direct Submission |
| R.norvegicustus <br> norvegicus | Norway rat | AY228549 | Direct Submission |
| Stegastes partitus | Bicolor Damselfish | AF324823 | (Kamper and McKinney, 2002) |
| Sus scrofa | Pig | AB079530 | (Watanabe et al., 2007) |
| Trichosurus vulpecula | Australian silver <br> brushtail possum | AF133098 | (Zuccolotto et al., 2000) |
| Xenopus laevis | Frog | U60424 | (Chretien et al., 1997) |

## Appendix 4A

## O. fraenata partial CD4 nucleotide sequence

ttcaaggggacagccaccccaagtgactatgtgacctctggaaccaatgtgactttaactttgcacagctctt ccaaccttcttgcattcaaggtggaatggaggggtccaggagataaaagtaaacagatcatgaatcaagacaa gaagactttgaacttggtgaaaatggggccaaatgaaacaggtctctgggactgtactgtctctgtgagtgag aaaaccctgaaactgggcatcaaagtcacagcatttggtttcacaaaatcttctcagaccttctatacgatgg tgggcaaagctgtcaaattctccttccctctgaatttaaatgaccaagagctgaacagggaacagccaaatgg agaactgaggtggaaggtggaagaccctgcttcttctctacaggtggccaagttttcatggaagagtgactcc ttgactctaaaaacaacgactccacgtttcagtcgtgatcccaagttcccactcacgatcactctttcctccg tcttgccttctgatgctggctcaggagtcttcttactaaagttttcttcggggactgtggaacagaaggtcaa ccttgtggtaatgaaagctatgtccagggaatcaccacatcacgaactgtgctgtgaagtgctgggtcccata atcctgggttggttctgacatggattcgagaaaaccagcacagaaaaagaacaactgctattgcggaaaaaga aacaactaaaatcagattccttcaaactgacagcaaaacaggagtggaacctaccctttcatctgggcatcgg tctgggggccggagcaagtctgttgcttctctctggactctgtatattcttttgtgccagacgaaggcacagg
O. fraenata partial putative protein sequence

FKGTATPSDYVTSGTNVTLTLHSSSNLLAFKVEWRGPGDKSKQIMNQDKKTLNLVKMGPNETGLWDCTVSVSE KTLKLGIKVTAFGFTKSSQTFYTMVGKAVKFSFPLNLNDQELNREQPNGELRWKVEDPASSLQVAKFSWKSDS LTLKTTTPRFSRDPKFPLTITLSSVLPSDAGSGVFLLKFSSGTVEQKVNLVVMKAMSRESPHHELCCEVLGPI ILGWF-HGFEKTSTEKEQLLLRKKKQLKSDSFKLTAKQEWNLPFHLGIGLGAGASLLLLSGLCIFFCARRRHR

Secondary structure prediction for $O$. fraenata CD4 using PSIpred


Figure 4A.1. O. fraenata secondary structure prediction for partial CD4
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

Secondary structure prediction for M. eugenii CD4 using PSIpred


Figure 4A.2. M. eugenii CD4 secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4A

## Amino Acid Alignment for CD4

M.eugenii
O.fraenata
M.domestica
H. sapiens
P.troglodytes
M.mulatta
F.catus
C.familiaris
E.caballus
R.aegyptiatus
D. leucas
T.trusiops
S.scrofa
C.hircus
O.aries
B. taurus
O.cuniculus
M.musculus
R.norvegicus
P.maniculatus
G.gallus
X.laevis
I.punctatus
M.eugenii
O.fraenata
M.domestica
H.sapiens
P. troglodytes
M.mulatta
F.catus
C. familiaris
E.caballus
R.aegyptiatus
D.leucas
T.trusiops
S.scrofa
C. hircus
O. aries
B. taurus
O.cuniculus
M.musculus
R.norvegicus
P.maniculatus
G.gallus
X.laevis
I.punctatus
M.eugenii
O.fraenata
M.domestica
H. sapiens
P.troglodytes
M.mulatta
F.catus
C.familiaris
E.caballus
R.aegyptiatus
D.leucas
T.tursiops
S.scrofa
C. hircus
O.aries
B. taurus
O.cuniculus
-MDSGATFAALLLALQLVLLPATT--RGKELILGVTGENAALPCKATK-KESMDFSWKQP 56 -MSRGAALAMLLLALQLVLLPAMT--RGKESVLGQVGGTVELPCKASR-KERMDFAWKQQ 56 -MNRGVPFRHLLLVLQLALLPAAT--QGKKVVLGKKGDTVELTCTASQ-KKSIQFHWKNS 56 -MNRGVPFRHLLLVLQLALLPAAT--QGKKVVLGKKGDTVELTCTASQ-KKSIQFHWKNS 56 -MNRGIPFRHLLLVLQLALLPAVT--QGKKVVLGKKGDTVELTCTASQ-KKNTQFHWKNS 56 -MNQGAVFRHLLLVLQLVMLKAAVPQ-GKEVVLGKAGGTAELPCQASQ-KKYMTFTWRLS 57
-MNQEAAFRHLLLMLQLVMLPAVTP--VREVVLGKAGDAVELPCQTSQ-KKNIHFNWRDS 56
-MDRGTSFGHLLLLLQLALLPAVTQ--GREVVLGKAGETVELPCQGSQ-KKNVFFNWKYP 56
-MNLGSSFRHLLLLLQLALLPATTQ--GKEVVLGKAGDKAELPCQASQ-KKNMKFSWKY-55 -MDPRTSLRHLFLVLQLVMLPAG--TQGKKVVLGKAGELAELPCKASQ-NKSLFFSWKNS 56 -MDPRTSLRHLFLVLQLVMLPAG--TQGKKVVLGKAGELAELPCKASQ-NKSLFFSWKNS 56 -MDPGTSLRHLFLVLQLAMLPAASGTQEKYLVLGKAGDLAELPCHSSQ-KKNLPFNWKNS 58 -MGPGTSLRHLFLVLQLVMLPAG--TQGKAVVLGKAGGQAELPCQASQ-KKNIVFSWKDS 56 -MGPGTSLRHLFLVLQLVMLPAG--TQGKAVVLGKAGGQAELPCQASQ-KKNIVFSWKDS 56 -MGPGTSLRHLFLVLQLAMLPAG--TQGKTVVLGEAGDKAELPCQASQ-KKNMVFSWKDS 56 -MNRRIYFQCLLLVLPLALLPAAT--WGKTVVRGKAGAIVELPCQSSQ-KRNSVFNWKHA 56 -MCRAISLRRLL-LLLLQLSQLLAVTQGKTLVLGKEGESAELPCESSQ-KKITVFTWKFS 57 -MCRGFSFRHLLPLLLLQLSKLLVVTQGKTVVLGKEGGSAELPCESTS-RRSASFAWKSS 58

MERCGAVVSCVFAVILVLQLGLTPIMAQQEQQIGIAGKEVILSCKAINNQKDGTCTWKYK 60 --MEIQVITFISWLLFLQMGPSLTSPQIQMQMWTTVGASVIMPCNINT---NGDFTWKKN 55 -------MSFLLGLLLLLAPCHSAADEPKGIFAQFGNSVTLPRRIWGIEGKIHVNWYFQ 52

DQTILLRGFRKGSPSKVLGTT-KKKDRVDSLTNQWEGGSFPLIIKKLEISDSGTYFCEVE 115
NQDLILKSFQKGLSRMMWGTSNILRNRADSSSNQWDMGSFPLTIQYLETSDSGMYFCEVE 116 NQIKILGNQGSF---LTKG-PSKLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVE 112 NQTKILGNQGSF---LTKG-PSKLNDRVDSRRSLWDQGNFTLIIKNLKIEDSDTYICEVG 112 NQIKILGIQGLF---LTKG-PSKLSDRADSRKSLWDQGCFSMIIKNLKIEDSDTYICEVE 112 SQVKILESQHSS---LCLTGSSKLKTRFESKKILWDQGSFPLVIKSLQVADSGIYTCEVE 114 SMVQILGNQGS----FWTVGSSRLKHRVESKKNLWDQGSFPLVIKDLEVADSGIYFCDTD 112 SEVKILGGQR-T---WWVKGNTKLKDRIESKTTLWDQGSFPLIIKYLEITDSGTYICEVE 112 SGIKVLENFPGS---YKMLGTAVQSTRSDSSRNLWEQGSFPLIIRNLDIKDSGIYTCDVE 112 YQTKILGRHGYF---WHKG-ASNLHSRVESKINLWDQGSFPLVIKDLEVPDSGTYICEVE 112 YQTKILGRHGYF---WHKG-ASNLNSRVESKINLWDQGSFPLVIKDLEVPDSGTYICEVE 112 NQTKILGGHGSF---WHTASVTELTSRLDSKKNMWDHGSFPLIIKNLEVTDSGIYICEVE 115 SQSKILGSHNSF---LHKG-NTELSRRVESKRNLWDQGSFPLIIKNLQVTDSGTYTCEVD 112 SQSKILGSHNSF---LHKG-NTELSHRVESKKNLWDQGSFPLIIKNLQVTDSGTYTCEVD 112 SQSNILGKRGLF---FYKG-TTELSHRVESKKNLWDQGSFPLIIKNLQVTDSGTYTCEVD 112 NQVKILGNQGSSSSSFWLKGNSPLSNRVESKKNMWDQGSFPLVIKDLRMDDSGTYICEVG 116 DQRKILGQHGKG--VLIRGGSPSQFDRFDSKKGAWEKGSFPLIINKLKMEDSQTYICELE 115 DQKTILGYKNK---LLIKG-SLELYSRFDSRKNAWERGSFPLIINKLRMEDSQTYVCELE 114

YKEVSSTIISFS-----KAQVFKGKAPMTHRSELNSNSKKLKVSDLSLDDAGIYTCACY 114 GVTYARRLNSQIN------YGSLAESSRISFPHETKLKNYSMQLVNIKLNDFGKYYCDEK 109 DNLLISRNPTLS----------ASKTVHNRFSLSSDSS--LIISNVEKSDFGIFKCEQH 99

JR $1 \longrightarrow$ Domain 2
NRKQEVQLLVFKVTATP-----------------SDYVISGTNVTLTLHGS--SNLPAF 155 ---------FKGTATP----------------SDYVTSGTNVTLTLHSS--SNLLAF 30
DKKQQVQLLVFKVTANP---------------SESVLSGNNVTLTLHSP--PNLPEL 156 DQKEEVQLLVFGLTANS-------------DTHLLQGQSLTLTLES---PPGSSP 151 DQKEEVQLLVFGLTANS----------------DTHLLQGQSLTLTLES---PPGSSP 151 NKKEEVELLVFGLTANS----------------DTHLLEGQSLTLTLES---PPGSSP 151 NKKREVELLVFGLTAKVDPSGSGGS-SSSSTSTSTSIYLLQGQSLTLTLES---PSSSNP 170 -KRQEVELLVFNLTAKWD--------SGSSSGSSNIRLLQGQQLTLTLEN---PSGSSP 159 DKKTEVELLVFRLTAN------------SHTHSSIRLLLGQNLTLTLES---PSGSNP 155 DKKREVELLVFSLNADLDTGSSSSSGSSSGSSSGSSIRLRPGERLTLSLES---PPGVNP 169 DKKIEVELQVFRLTASS----------------DTRLLLGQSLTLTLEG---PSGSNP 151 DKKIEVELQVFRLTASS-----------------DTRLLLGQSLTLTLEG---PSGSNP 151 DKRIEVQLLVFRLTAS-------------VTRVLLGQSLTLTLEG---PSGSHP 153 SKKLEVELKVFGLTASS---------------DTRVLLGQSLTLTLES---PSGSNP 151 SKKLEVELKVFGLTASS--------------DTRVLLGQSLTLTLES---PSGSNP 151
KKTLEVELQVFRLTASS----------------DTHVLLGQSLTLTLES---PSGSNP 151 DKKMEVELLVFRLTANP-------------NTRLLHGQSLTLTLEG---PSVGSP 155

## Appendix 4A

| usculus | $\overline{N R I}$ |
| :---: | :---: |
| R.norvegicus | NKKEEVELWVFRVTFNP-----------------GTRLLQGQSLTLILDSN--PKVSDP 154 |
| P.maniculatus | ELWVVRVTASP----------------DTRLLQGQSLTLTLDS---SKVTHP 33 |
| G.gallus | SPVVSISLHV |
| X.laevi | NL |
| I.punctatus | HLVETITDTYKLYEVMMS---------------TPPPLLVGASLDLSCEIE |
| M | KVEWRGPGDKSKQIL------NQDKKTLNLVKMGPNETGLWDCIVS--VSEKTLKLGIK 206 |
| O.fraenata | KVEWRGPGDKSKQIM------NQDKKTLNLVKMGPNETGLWDCTVS--VSEKTLKLGIK 81 |
| M.domestic | KIEWHGPGNTSKRIL |
| H.sapiens | SVQCRSPRGKN----------IQGGKTLSVSQLELQDSGTWTCTVL--QNQK |
| P.troglody | SVQCRSPRGKN----------IQGGKTLSVSQLELQDSGTWTCTVL--QNQKKVEFKID 198 |
| M.mulatta | SVKCRSPGGKN----------IQGGRTISVPQLERQDSGTWTCTVS--QDQKTVEFKID 198 |
| F.catus | SVQWKGPGNKS----------KSGVHSLSLSQLELQESGTCTCTVS--QSQKTLVFNTN 217 |
| C.familiar | SVQWKGPGNKS----------KHGGQNLSLSWPELQDGGTWTCIIS--QSQKTVEFNIN 206 |
| E.caballus | SVQWKGPRHQ-----------NTTQGSRFLLKLGLQDSGTWTCTVS--KDQKTLVFNIN 201 |
| R.aegyptiatu | SIVWESPGSK-----------KYEDKSLSLTQLGRQESGTWECIVS--YNKKTLVVKIN 215 |
| D.leucas | SVQWKGPGNKR----------KNEAKSLSLPQVGLQDSGTWTCTVS--QAQQTLVFNKH 198 |
| T.tursiops | SVQWKGPGNKR----------KNEAKSLSLPQVGLQDSGTWTCTVS--QAQQTLVFNKH 198 |
| S.scrofa | TVQWKGPGNKS----------KNDVKSLLLPQVGLEDSGLWTCTVS--QDQKTLVFRSN 200 |
| c | SVQWKGPGNNR----------KEELKSLSLAQVGLQDSGTWTCTIS--QSQQTLEIKIP 198 |
| 0 | SVQWKGPGNNR----------KEELKSLSLAQVGLQDSGTWTCTIS--QSQQTLEIK |
| $B$ | SVQWKGPGDNN----------KRDVKSLSLAQVGLQDSGTWTCTIS--QSQQTLEI |
| O.cuniculus | SVQWKSPENKI----------IETGPTCSMPKLRLQDSGTWSCHLSF-QDQNKLELD |
| M.muscu | LTECKHKKGKV----------VSGSKVLSMSNLRVQDSDFWNCTVT--LDQKKN |
| norvegicus | PIECKHKSSNI----------VKDSKAFSTHSLRIQDSGIWNCTVT--LNQKKHSF |
| P.maniculatus | SIECKGPGNSI----------VKGSKTLSMPNLRIQDSGIWTCTVT--QSQHKNNF |
| G.gallus | HLSIKLFNINNDIVTTEILQEEAPQKYILKLKQLKAIDSGTWMCHVYSNSPSINQNISFD 214 |
| x.laevis | RITWETPRRGK----------IEDKRGITVANVQINDGGTYNCHLW-IDGENKATFSRH 195 |
| I.punctatus | EIKWFGPDNTLYVGSS-----SSNKRTLRVTKVSSIHSGKWTCAVR-YGASITLKARTD |
|  |  |
| M.eugenii | VTAFGFTKS-SQTFYTMVGKA----VRFSFPLNLNDQELNREQPNGELRWN-MEGTAS-258 |
| O.fraenata | VTAFGFTKS-SQTFYTMVGKA----VKFSFPLNLNDQELNREQPNGELRWK-VEDPASS 134 |
| M.domestica | VTVHGFRHP-YQRYYKIAGKD----AEFNFPLNLGEQDLNRMVPNGELTWH-GEGAAS-259 |
| H.sapiens | IVVLAFQKA-SSIVYKKEGEQ----VEFSFPLAFTVEKLTGS---GELWWQ-AERASSS 248 |
| P.troglodytes | IVVLAFQKA-SSIVYKKEGEQ----VEFSFPLAFTVEKLTGS---GELWWQ-AERASSS 248 |
| M.mulatta | IVVLAFQKA-SSTVYKKEGEQ----VEFSFPLAFTLEKLTGS---GELWWQ-AERASSS 248 |
| F.catus | ILVLAFRKV-SNTVYAKEGEQ----VEFSFPLNFEDENLMG----NLRWK-AEGAPSS 265 |
| C.familiaris | VLVLAFQKV-SNTFYAREGDQ----VEFSFPLSFEDENLVG-----ELRWQ-AQGASSS |
| E.caballus | ILVLAFQKV-SRTVYAKEGTQ----AEFSFPLTFADENLSG----ELQWQ-AEGASSQ 249 |
| R.aegyptiatus | IFVLAFQKV-SNTVYVKEGEK----VELSSLLNFEDENLEG-----ELRWQ-AVGTDSL 263 |
| D.leucas | ILVLAFQEV-SSTVYAKEGEQ----MNFSFPLTFGDENLSG----ELSWLQAKGNSSP 247 |
| T.tursiops | ILVLAFQEV-SSTVYAKEGEQ----MNFSFPLTFGDENLSG-----ELSWLQAKGNSSP 247 |
| S.scrofa | IFVLAFQKV-PSTVYVKEGDQ----VALSFPLTFEAESLSG----ELMWRQTKGASSP 249 |
| C.hircus | IVVLAFQKA-PETVYVKEGEQ----AEFSFPLTFEDENLSG----ELTWQQANKDSSS 247 |
| O.aries | IVVLAFQKA-PETVYVKEGEQ----AEFSFPLTFEDENLSG----ELTWQQANKDSSS 247 |
| B.taurus | IVVLAFQKA-PETVYVKEGEQ----AEFSFPLTFEYENLSG----ELTWQLANGDSSS 247 |
| O.cuniculus | IIVLGFPKA-SATVYKKEGEQ----VEFSFPLNFEDESLSG-----ELMWQ-VDGASSA 251 |
| M.musculus | LSVLGFQST-AITAYKSEGES----AEFSFPLNFAEENGWG----ELMWK-AEKDSFF 250 |
| R.norvegicus | LSVLGFAST-SITAYKSEGES----AEFSFPLNLGEESLQG-----ELRWK-AEKAPSS 249 |
| P.maniculatus | ISVLGFQKT-SITVYKNEGEL----AEFSFPLNFGEENLRG-----ELRWR-AEKAPSP 128 |
| G.gallus | VKVLGFEKERLEIIYTTVGNT----AILSWRLNFRKIKWKEG-FTGKLNWE-PQGNTAI 267 |
| x.laevis | ISVSGFYPS-SEIIYISEDSP----ALIPWVFNFNVRETAVR-----NKISAVSGSISY 244 |
| I.punctatus | VIIVDLASSSPDPIYTSDSSINFLIPCSLSSKIPWSTVNATG---VTGGSWHFTPFKSSE 253 |
| M.eugenii | PQVVKFSWK-SDSLTRGTDAPP--FNRDPKF---PLTITLSSVSPSHAGSGVFLLQFSS-311 |
| O.fraenata | LQVAKFSWK-SDSLTLKTTTPR--FSRDPKF---PLTITLSSVLPSDAGSGVFLLKFSS- 187 |
| M.domestica | QRLAKFSWK-DDSLTLEDKFK---FKLSKGR---PITLSLSPVLLHHAGSGVFSLMLPS-311 |
| H.sapiens | KSWITFDLK-NKEVSVKRVTQDPKLQMGKKL---PLHLTLPQALPQYAGSGNLTLALEAK 304 |
| P. troglodytes | KSWITFDLK-NKEVSVKRVTQDPKLQMGKKL---PLHLTLPQALPQYAGSGNLTLALEAK 304 |
| M.mulatta | KSWITFDLK-NKEVSVKRVTQDPKLQMGKKL---PLHLTLPQALPQYAGSGNLTLALEAK 304 |
| F.catus | LLWISFTLK-NKQLSVKEVDPYSKLQMMDSL---PLRFTLPNVLSRYAGSGNLTLVLDK- 320 |
| C.familiaris | LLWISFTLE-NRKLSMKEAHAPLKLQMKESL---PLRFTLPQVLSRYAGSGILTLNLAK-309 |
| E.caballus | QKWISFSSD-NRKVSVTGVSSHLKLQVEEML---PLRFKLLQALPKHAGSGKLRLFLAK-304 |
| R.aegyptiatus | QSWITFSLN-NKKVSVKKVHPHCKLKMKESL---PLLFSLLQASHQDAGSGNLTLFLGK-318 |
| D. leucas | ESWITFKLN-NGKVTVGKARKDLKLRMSKAL---PLHLTLPQALPQYAGSGNLTLNLTK-302 |
| T.tursiops | ESWITFTLN-NGKVTVGKARKDLKLRMSKEL---PLHLTLPQALPQYAGSGNLTLNLTK-302 |
| S.scrofa |  |

## Appendix 4A

C.hircus
O.aries
B.taurus
O.cuniculus
M.musculus
R.norvegicus
P.maniculatus
G.gallus
X.laevis
I.punctatus
M.eugenii
O.fraenata
M.domestica
H.sapiens
P.troglodytes
M.mulatta
F.catus
C.familiaris
E.caballus
R.aegyptiatus
D. leucas
T.tursiops
S.scrofa
C.hircus
O.aries
B. taurus
O.cuniculus
M.musculus
R.norvegicus
P.maniculatus
G.gallus
x.laevis
I.punctatus
M.eugenii
O.fraenata
M.domestica
H.sapiens
P.troglodytes
M.mulatta
F.catus
C.familiaris
E.caballus
R.aegyptiatus
D. leucas
T.trusiops
s.scrofa
C.hircus
o.aries
B. taurus
O.cuniculus
M.musculus
R.norvegicus
P.maniculatus
G.gallus
x.laevis
I.punctatus
M.eugenii
O.fraenata
M.domestica
H.sapiens
P.troglodytes
M.mulatta
F.catus
C.familiaris
E.caballus

QSWVTFTLR-NREVKVNKTHKDLKLRVEERL---PLRLTLLRTLPQYAGSGTLTLDLTK- 302
QSWVTFTLR-NREVKVNKTHKDVKLHMGERL---PLRLTLQRTLPQYAGSGTLTLDLTK- 302
QSWVTFTVK-NREVKVNKIHNDPKLLVGEKL---PLRLTLPRTLPQHAGSGTLTLDLTK- 302
QSWVSFSLE-DRKVSVQKILPDLKIQMSKGL---PLSLTLPQALHRYAGSGNLSLTLDK- 306
QPWISFSIK-NKEVSVQKSTKDLKLQLKETL---PLTLKIPQVSLQFAGSGNLTLTLDK- 305
QSWITFSLK-NQKVSVQKSTSNPKFQLSETL---PLTLQIPQVSLQFAGSGNLTLTLDR- 304
QPWITFSLE-NKKVSMQKTKDNLKPQMEESL---PLRLKIPQVSLESAGSGNLTLTLAK- 183
HELLNFSVTTHQELHKTKKSNHIWFEISEGKTDGTMDVKIPKVQLNHSGQYKCQLEING- 326
SNDKSSSPSLVSSLTVDSGGACWPERCAESKKEQPDNLSFHHLKP-KAGWYHLEIQLEQE 303
SSLPLLKLQLNPSPAWKFPSGTHTLLMETDLKNHELGVKISKVSINERGNYTCSLEFGS- 312
JR 3 - Domain 4
-GTVEQKVNLVVMTAMSRES------PHHELCCEVLGPI-IPGLLLTWIRENQTEKEGP 362
-GTVEQKVNLVVMKAMSRES------PHHELCCEEVLGPI-ILGWFHGFEKTS-TEKE-- 235
-GTVKQKVDLVVMRAMSHD---------QQLYC̄ELSGPI-IPGLTLRWQLENQTKETLE 359
TGKLHQEVNLVVMRATQLQ---------KNLTCEVWGPT-SPKLMLSLKLENK--EAK 350
TGKLHQEVNLVVMRATQLQ---------KNLTC
TGKLHQEVNLVVMRATQFQ---------ENLTCEVWGPT-SPKLTLSLKLENK---GAT 350
-GQLQQEVKLVVMRVTQSG---------NNLTCEVLGPT-SPELTLSLKLKGQ---AAK 365
-GTLYQEVNLVVMRANSSQ---------NNLTCEVLGPT-SPELTLSLNLKEQ---AAK 354
-GELQQEVNLVVMRLTRSQ---------NDVTCQVLGPS-SPKLMLSLKLENQTDQTAK 352
-GQLHQEVNLVVMRMTKSQ---------NHLTCELLGPS-SPKLILSLKPENQ---TVK 363
-GKLYQEVNLVVMRVTKSP---------NSLTCEVLGPT-SPRLILSLKKENQ---SMR 347
-GKLYQEVKLVVMRVTKSP---------NSLTCEVLGPT-SPRLTLSLKKENQ---SMR 347
-GRLHREVNLVVMRATQSK---------NEVTCEVLGPT-PPKVVLSLKLGNQ---SMK 349
-GKLHQKVNLVVMRVTKSP---------NSLTCEVLGPS-PPRLTLNLKLGNQ---SMK 347
-GKLHQKVNLVVMTVTKSP----------NSLTCEVLGPS-PPRLTLNLKLGNQ---SMK 347
-GKLQQKVKLVVMKVTKSP---------NSLTCEVLGPS-PPKLTLNLKMGNQ---SMK 347
-GKLHQQVSLVMLKVTQVK---------NKLTCEVLGPI-DPKMKLSLKLEDQ---EAK 351
-GTLHQEVNLVVMKVAQLN---------NTLTCEVMGPT-SPKMRLTLKQENQE---AR 350
-GILYQEVNLVVMKVTQPDS--------NTLTCEVMGPT-SPKMRLILKQENQE---AR 350
-GTLHQDVNLVVMKLAQKD---------NAVTCEVRGPT-SPKMKLTLKLENQ----DK 227
-RRTESVRALVVMQVTAIPAG-PLSRGGKMTLLCQVSGPL-PSNAHLLWERVNGTQMEMK 383
KRKTKLAMDVCLVKLTVSDVPRQLLMEAVVTLTCQASCANDNSTLYWHHENSNTVKHGQR 363
-RTLSRSVQVEVLQVISSEGKVIYEG-NTVNLTCTLGHHM-TPDLEVNWIPPYGSSLSKL 369
$\qquad$ 4 TM domain
VSE---KQRELKVKEPKKSGTWECQLLFQNKKQLKSDSFKLTAKQEWNLPFHLGIGLGAGA 419 ----------------------QLLLRKKKQLKSDSFKLTAKQEWNLPFHLGIGLGAGA 272
VSE---KQRKLELKQPKAGMWECQLLLKDQKLLKSNSFQLAARSEWYQPQYLAIGLGTGA 416
VSK---REKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVLPTWSTPVQP-MALIVLGGVA 406
VSK---REKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVLPTWSTPVQP-MALIVLGGVA 406
VSK---QAKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVVPTWPTPVQP-MALIVLGGVA 406
VSK---QQKMVRVEDAEAGTWQCLLSHKDKVLLASKAEVLPPVLTRTWTNLLTIVLGGVL 422
VSK---QQKLVWVVDPEGGTWQCLLSDKDKVLLASSLNVSSPVVIKSWPKFLAITLGGIL 411
VSN--SQKLVKVPDPETGTWQCLLSDNGKVLLESKIEVLATSFPQASPKLLAAVLGGVA 409
VSS---QQKLVKMLDPEAGTWQCLLSDKDKILLESKLEVPSAGFTQPSPKLLAILLGGIL 420
VSD---QQKLVTVLGPEAGMWQCLLSDKGKVLLESKVKILPPVLAHAWPKLLAVVLGGIT 404
VSD---QQKLVTVLGPEAGMWQCLLSDKGKVLLESKVVKILPPVLARAWPKLLAVVLGGVA 404
VSD---QQKLVTVLDPEAGMWRCLLRDKDKVLLESQVEVLPTAFTRAWPELLASVIGGII 406
SPN---QPKLVSEPEPKAGMWQCLLSDQGKVLLESKIEVLPSEFIQAWPMLLPMVLGGIA 404
SSN---QPKVVTELEPKAGMWQCLLSDQGKVLLESKIEVLPSEFIQAWPKLLPMVLGGIA 404
GSN---QPKLVTQPEPQAGMWQCLLSDNGKVLLEAKIEAPG------------------ 385
VS---TQKMVQVLDPKAGTWQCLLSSGDQVLLESKADVLATGLSHQQPTLLAGALGGTA 407
VSE---EQKVVQVVAPETGLWQCLLSEGDKVKMDSRIQVLSRGVN--QTVFLACVLGGSF 405
VSR---QEKVIQVQAPEAGVWQCLLSEGEEVKMDSKIQVLSKGLN--QTMFLAVVLGSAF 405
VSG---QEKVVEMKDPEAGQWLCELNEGDELKIXSKIQVSSRGLKQDQPTFLALVLGGIF 284
KSKQ--HEAKVEVNVSAPGLWNCHLVEDNNKKISLN-YTVEEAHVWNSYAVIGIIIGASV 440
GKPV--VSWAITAVPEFMGVWICSVRIGGKIMLSTNVTLELEATFLKSQSLVWMLVGGGH 421
SPPYTTMLSIPGVSVKDSGRWTCQLKKN-ATLLTSATISLKIEKAPVNIWLVVAIIGGLL 428
Cytoplasmic tail ■ ■
SLLLLSGLCIFFCARRRHRLR-RAERMSQIRRLLSEKKTCOCPPHRF-------- 464
SLLLLSGLCIFFCARRRHR----------------------------------- 291
SLLLLFGFIMFCYARRRHRLR-RAERMSQIRRLLSEKKTCQCPHRF-------- 461 GLLLFIGLGIFFCVRCRHRRR-QAERMSQIKRLLSEKKTCQCPHRFQKTCSPI- 458 GLLLFIGLGIFFCVRCRHRRR-QAQRMSQIKRLLSEKKTCQCPHRFQKTCSPI- 458 GLLLFTGLGIFFCVRCRHRRR-QAERMSQIKRLLSEKKTCQCPHRFQKTCSPI- 458 GLVLYIGLWVYCCVKCWHRRR-QAARMSHIKRLLSEKKTCQCSHRLQKTCNPI- 474 GLLLLIGLCVFCCVKCWRRRR-QAERMSQIKRLLSEKKTCQCSHRIQKTCSLI- 463 GLLLFTGFFIFCCVKCWHRRR-QAERMSQIKRLLSEKKTCQCHQ---------- 452

## Appendix 4A

| R.aegyptiatus | GFLTFTVICIFCCVKCWHRRRRQAERMSQIKRLLSEKKTCQCPHRYQKTGLI-- 472 |
| :---: | :---: |
| D.leucas | SLLLLAGFCIFS-AKCWHRRR-RAERTSQIKRLLSEKKTCHCSHRLQKTCSLT- 455 |
| T.tursiops | SLLLLTGFCIFS-AKYWHRRR-RAQRTSQIKRLLSEKKTCHCSHRLQKTCSLT- 455 |
| S.scrofa | GLLFLAGFCIAC-VKCWHRRR-RAERMSQIKRLLSEKKTCQCAHRQQKNYSLT-457 |
| C.hircus | GLALLTGSCIFC-VKCWHRRR-QAERMSQIKRLLSEKKTCQCPHRLQKTHSLT- 455 |
| O.aries | GLALLTGSCIFC-VKCWHRRR-QAERMSQIKRLLSEKKTCQCPHRLQK------ 450 |
| B. taurus | RTDVSNQEAP---------- 395 |
| O.cuniculus | GLVLFAGLCIYCCVKCRHRRH-QAQRMSQIKKLLSEKKTCQCPHRLQKTYNLL- 459 |
| M.musculus | GFLGFLGLCILCCVRCRHQQR-QAARMSQIKRLLSEKKTCQCPHRMQKSHNLI-457 |
| $R . n o r v e g i c u s$ | SFLVFTGLCILFCVRCRHQQR-QAARMSQIKRLLSEKKTCQCSHRMQKSHNLI- 457 |
| $P$.maniculatus | SFLTFIGLCILCCVRCRHQQR-QAER------------------------ 309 |
| G.gallus | LVIGLACMCIITGMRWQRRRK-RARRMAQAKQYLLEKKTCQCQRRMYK----- 487 |
| X.laevis | PALVGMVTIVILAARCRRKRR--ARRGAWILMNLDQQRRCQCKGFAPMRLREKD 473 |
| I.punctatus | VFILIAVITVFIIRRHRQMMR--------YRCRKGRVCCCKNPKPKGFYKT- 471 |

Fig. 4A.3. Sequence alignment of all CD4 sequences including partial CD4 sequence of $O$. fraenata Glycosylation sites are underlined. Conserved cysteines are bold and underlined. Yellow highlight shows the p56 ${ }^{\text {lck }}$ binding site. $\square=$ serine phosphorylation site.

## Appendix 4A

Table 4A.1. Accession Numbers for CD4 found in Genbank and the relevant references.

| Species | Common name | Accession Numbers | References |
| :--- | :--- | :--- | :--- |
| Bos taurus | Cattle | NM_001103225 | (Hoek et al., 2009) |
| Canis lupus familiaris | Dog | NM_001003252 | (Milde et al., 1993) |
| Capra hircus | Goat | EU913093 | (Wang et al., 2011a) |
| Delphinapterus leucas | Beluga whale | AF071799 | (Romano et al., 1999) |
| Equus caballus | Horse | XM_001497051 | Annotated |
| Felis catus | Cat | NM_001009250 | (Norimine et al., 1992) |
| Gallus gallus | Chicken | NM_204649 | (Koskinen et al., 1999) |
| Homo sapiens | Human | NM_000616 | (Maddon et al., 1985) |
| Ictalurus punctatus | Channel Catfish | DQ435305 | (Edholm et al., 2006) |
| Macaca mulatta | Rhesus monkey | NM_001042662 | (Fomsgaard et al., 1992) |
| Macropus eugenii | Tammar wallaby | EF490599 | (Duncan et al., 2007) |
| Monodelphis <br> domestica | South American grey <br> short tailed opossum | NM_001099290, <br> DQ665840 | (Duncan et al., 2007) |
| Mus musculus | Mouse | NM_013488 | (Wineman et al., 1992) |
| Nomascus leucogenys | Northern white- <br> cheeked gibbon | XM_003273751 | Annotated |
| Oryctolagus cuniculus | Rabbit | NM_001082313 | (Hague et al., 1992) |
| Ovis aries | Sheep | NM_001129902 | (Boscariol et al., 2006, |
| Classon et al., 1986) |  |  |  |
| Pan troglodytes | Chimpanzee | NM_001009043 | Annotated |
| Peromyscus <br> maniculatus | Deer mouse | DQ836358 | Direct submission |
| Rattus norvegicus | Rat | NM_012705 | (Clark et al., 1987) |
| Rousettus <br> aegyptiacus | Egyptian rousette | AB210837 | (Omatsu et al., 2006) |
| Sus scrofa | Pig | NM_001001908 | (Gustafsson et al., 1993) |
| Takifugu rubripes | Fugu rubripes | (Suetake et al., 2004) |  |
| Tursiops truncatus | Bottlenosed dolphin | AF408402 | Romano unpublished |
| Xenopus laevis | Frog | (Chida et al., 2011) |  |

## Appendix 4B

O. fraenata CD8 $\alpha$ nucleotide sequence
atgggctccctcttggctgtacgatccctgctcctgccgctggccetgctgctccagtccgtcgggtcc caggcacaggtgaaattccggatgaatcccctggagaagcgggacgtccggccatccgacaaggtgcag ctgcagtgcgagactctgagcagttcgcccacgggatgttcgtggctgcgcttggtccctggaaaagtg gtccctacctttctcctcttcatctcgagcactagcttaaacgcgaagctggccgaaggcctggacccc aagcgattccggggcgaaaggatctcgtcttccacataccgcctgaccctgcagaacttcagagaggag gaccagggctactactactgcgtggtcacccggaactcggcgctgttcttcagccccttcgtgccggtc ttcctgccagtaaagactaccactacccctgcacccaaacccaagaccaccattcttccagccaccacc agctcttcaacccagatttctgaaaactgcaagctcaccgtcaagaagcaaggaaagaagggattggat ttctcctgtgacctgtacatctgggtgcccctcgctggcgtctgtgttatcttgtttctggccotgatc actaccattaccatctgccagaggtcacgaaaacgagtctgccgatgtccgaggcccctgatcagacca ggaggaaaggctggcccatcagagagatatgcttaa
O. fraenata CD8 $\alpha$ putative amino acid sequence

MGSLLAVRSLLLPLALLLQSVGSQAQVKFRMNPLEKRDVRPSDKVQLQCETLSSSPTGCSWLRLVPGKV VPTFLLFISSTSLNAKLAEGLDPKRFRGERISSSTYRLTLQNFREEDQGYYYCVVTRNSALFFSPFVPV FLPVKTTTTPAPKPKTTILPATTSSSTQISENCKLTVKKQGKKGLDFSCDLYIWVPLAGVCVILFLALI TTITICQRSRKRVCRCPRPLIRPGGKAGPSERYA

Secondary structure prediction CD8 (M. eugenii)


Figure 4B.1. M. eugenii CD8 $\alpha$ secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4B

L. hirsutus CD8 $\alpha$ chain nucleotide sequence
atgggctccctcttggctgtacgatccctgctcctgccgctggccotgctgctccagtccgtcgggtcc caggcacagctgaaattccggatgaatcccctggagaagcgggacgtccggccatccgacaaggtgcag ctgcagtgcgatacgctgaacagttcgcccacgggatgttcgtggctgcgcttggcccctggaaaagtg gtccctacctttctgctcttcatctcgagcagtagctcaaacgcgaagctggccgaagacctggacccc aagcgattccggggcgaaaggatctcgtcttccacataccgcctgaccctgcagaacttcagagaggag gacgagggctactactactgcgtggtcacccggaactcggcgctgttcttcagccccttcgtgccggtt ttcctgccagtaaaggctaccaccacccctgcgcccaaacccaagaccaccattcttccagccaccacc agctcttccacccagatttctgaaaactgcaagctcaccgtcaagaaacaaggaaagaagggattggat ttctcctgtgacctgtacatctgggtgcccctcgctggcgtctgtgttatcttgtttctggccctgatc actaccattaccatctgccagaggtcacgaaaacgagtctgccgatgtccgaggcccctgatcagacca ggaggaaaggctggcccatcagagagatatgcttaa
L. hirsutus putative CD8 $\alpha$ amino acid sequence

MGSLLAVRSLLLPLALLLQSVGSQAQLKFRMNPLEKRDVRPSDKVQLQCDTLSSSPTGCSWLRLAPGKV VPTFLLFISSSSSNAKLAEDLDPKRFRGERISSSTYRLTLQNFREEDEGYYYCVVTRNSALFFSPFVPV FLPVKATTTPAPKPKTTILPATTSSSTQISENCKLTVKKQGKKGLDFSCDLYIWVPLAGVCVILFLALI TTITICQRSRKRVCRCPRPLIRPGGKAGPSERYA

Secondary structure prediction for CD8 $\alpha$ (L. hirsutus)


Figure 4B.2. L. hirsutus CD8 $\alpha$ secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4B

Alignment of marsupial CD8 $\alpha$ chain putative amino acid sequences

| M. eugenii | MGSLLAVRSLLLPLALLLQSVGSQAQLKFRMNPLEKRDVRPSDKVQLQCETLSSSSTGCS |
| :---: | :---: |
| L. hirsutus | MGSLLAVRSLLLPLALLLQSVGSQAQLKFRMNPLEKRDVRPSDKVQLQCDTLSSSPTGCS |
| O. fraenata | MGSLLAVRSLLLPLALLLQSVGSQAQVKFRMNPLEKRDVRPSDKVQLQCETLSSSPTGCS |
| M. domestica | MGWPSAVRSLLLPLALLLEPLGAQEHVTFRMNPVEKRDAGQGRELKLQCETVNSSPTGCS |
| M. eugenii | WLRLAPGKVVPTFLLFISSTSSNAKLAEDLDPKRFRGERISSSTYRLTLQNFREEDEGYY |
| L. hirsutus | WLRLAPGKVVPTFLLFISSSSSNAKLAEDLDPKRFRGERISSSTYRLTLQNFREEDEGYY |
| O. fraenata | WLRLVPGKVVPTFLLFISSTSLNAKLAEGLDPKRFRGERISSSTYRLTLQNFREEDQGYY |
| M. domestica | WLRLTPGAVVPTFLLYLSGSSQSVKVAPELDSRRFGGSRSSS-SYFLTLKDFQKDDQGYY <br> **** ** ******* * * * * ** ** * * ** * *** *........** |
| M. eugenii | YCVVTRNSALFFSPFVPVFLPVKATTTPAPKPKTTILPATISTSTQIS--ENCKLTAKKQ |
| L. hirsutus | YCVVTRNSALFFSPFVPVFLPVKATTTPAPKPKTTILPATTSSSTQIS--ENCKLTVKKQ |
| 0. fraenata | YCVVTRNSALFFSPFVPVFLPVKTTTTPAPKPKTTILPATTSSSTQIS--ENCKLTVKKQ |
| M. domestica | YCVVARNSRLFFSPFVPVFMPVKATTAPAPRPKPTTPAATNSSIQNAAGSEKCKSFSNTS <br> **** *** ********** *** ** *** ** * ** * * ** |
| M. eugenii | GKKGLDFSCDLYIWVPLAGVCVVLFLALITTITICQRSRKRVCRCPRPLIRPGGKAGPSE |
| L. hirsutus | GKKGLDFSCDLYIWVPLAGVCVILFLALITTITICQRSRKRVCRCPRPLIRPGGKAGPSE |
| O. fraenata | GKKGLDFSCDLYIWVPLAGVCVILFLALITTITICQRSRKRVCRCPRPLIRPGGKAGPSE |
| M. domestica | EKNGLDFSCDLYIWMPLTGGCVVLLLALIITITIIFRRSRRRVCQCPRPLIRPGGKTGR- |
| M. eugenii | RYA |
| L. hirsutus | RYA |
| O. fraenata | RYA |
| M. domestica |  |

Fig. 4B.3. Alignment of all to date known marsupial CD8 $\alpha$ putative amino acid sequences. Line $5\left(^{*}\right.$ ) indicates the consensus between the macropods (M. eugenii, L. hirsutus, O. fraenata) and the didelphid $M$. domestica. In red CXC motif for binding Lck.

## Appendix 4B

4B.1. Genbank Accession numbers for CD8 $\alpha$ chain and relevant references.

| Species | Common Name | Accession Number | References |
| :---: | :---: | :---: | :---: |
| Anas platyrhynchos | Duck | AY738733 | (Kothlow et al., 2005) |
| Bos taurus | Cattle | NM_174015 | (Lalor et al., 1992) |
| Cairina moschata | Muscovy duck | AY738735 | (Kothlow et al., 2005) |
| Callithrix jacchus | White-tuffed ear marmoset | DQ189217 | Direct submission |
| Canis lupus familiaris | Dog | NM_001002935 | (Gorman et al., 1994) |
| Carassius auratus langsdorfii | Japanese silver crucian carp | AB186397 | (Somamoto et al., 2005) |
| Cyprinus carpio | Common carp | EU251078 | Direct submission |
| Danio rerio | Zebrafish | NM_001040049 | (Somamoto et al., 2005) |
| Cavia porcellus | Domestic Guinea Pig | NM_001172876 | (Nagarajan et al., 2004) |
| Ctenopharyngodon idella | Grass carp | GQ355586 | Direct submission |
| Dicentrarchus labrax | European Seabass | AJ846849 | (Buonocore et al., 2006) |
| Equus caballus | Horse | XM_001496953 | Annotated |
| Felis catus | Cat | D16536 | (Pecoraro et al., 1994) |
| Gallus gallus | Chicken | NM_001048080 | Provisional entry |
| Homo sapiens | Human | M12828 | (Littman et al., 1985) |
| Ictalurus punctatus | Channel catfish | NM_001200331 | (Quiniou et al., 2011) |
| Loxodonta africana | African savanna elephant | XM_003420420 | Annotated |
| Macaca mulatta | Rhesus monkey | XM_001092778 | Annotated |
| Macropus eugenii | Tammar wallaby | EU152103 | (Duncan et al., 2008) |
| Marmota monax | Woodchuck (partial cds) | EF621766 | (Guy et al., 2008) |
| Monodelphis domestica | South American grey short tailed opossum | EU152102 | (Duncan et al., 2008) |
| Mus musculus | Mouse | NM_001081110 | (Kashiwada et al., 2011) |
| Mustela putorius furo | Domestic ferret | EF492056 | Direct submission |
| Nomascus leucogenys | Northern white-cheeked gibbon | XM_003268782 | Annotated |
| Oncorhynchus mykiss | Rainbow trout | AF178053 | (Hansen and Strassburger, 2000) |
| Oryctolagus cuniculus | Rabbit | XM_002709594 | Annotated |
| Pan troglodytes | Chimpanzee | XM_001138871 | Annotated |
| Paralichthys olivaceus | Japanese flounder | AB082958 | Direct submission |
| Peromyscus maniculatus | North American deer mouse (partial cds) | EF648004 | (Schountz et al., 2007) |
| Pongo abelii | Sumatran orangutan | XR_092850 | Annotated |
| Pongo pygmaeus | Bornean orangutan | X60223 | (Lawlor and Parham, 1992) |
| Rattus norvegicus | Norway rat | NM_031538 | (Parnes et al., 1985) |
| Saimiri sciureus | Common squirrel monkey | AJ130818 | (Ureta-Vidal et al., 1999) |
| Salmo salar | Atlantic salmon | AY693393 | (Moore et al., 2005) |
| Salmo trutta | Brown trout | AY701523 | (Moore et al., 2005) |
| Sigmodon hispidus | Hispid cotton rat | AY065643 | Direct submission |
| Siniperca chuatsi | Chinese perch | GQ863494 | Direct submission |
| Sparus aurata | Gilthead Seabream | AJ878605 | (Randelli et al., 2006) |
| Sus scrofa | Pig | NM_001001907 | (Uenishi et al., 2004) |
| Tursiops truncatus | Bottlenosed dolphin | EU081776 | Direct submission |
| Xenopus laevis | African clawed frog | HQ116783 | (Chida et al., 2011) |

## Appendix 4B

Alignment for CD8 $\alpha$ chain including marsupial species $O$. fraenata and $L$. hirsutus and the previously by Duncan et al. (2008), identified M. eugenii and M. domestica sequences.


IGSf V domain CDR1
A.platyrhynchos GAQGQKS----MVTAKFYNSKTTHPQSGKPLELECES---SVDSGVSWIRQEKS--GTLH
C.moschata GAQGQRI----TVTAKFYNSKSTHPQSGKSLELECTN---SQDSGVSWIRQDKA--GTLH
G.gallus SAQGQRD---AEVVWFVPRNMKNPQEGQRLEMECSPK--NSDSGASWIRQDKD--GKLH
F.catus AAAAGP------SPFRLSPVR-VEGRLGQRVELQCEVLLSSAAPGCTWLFQKNEPAARPI
M.furo VAAAGP-----SQFRLSPAK-VVGQLGEKVELQCEVLLPSAAPGCSWLLQKNEPAARPV
C.familiaris AAASGP------SRFRMTPPK-VVGQLHAQVELQCQVLLSTAAPGCSWLYQRNEPAARPV
E.caballus VLALGS-----NAFRMTQPE-GPPQPGKTLNLRCQVLLSNQAPGCSWLYQPPGPAARPV
M.monax
S.sciureus
H.sapiens
P.troglodytes
P.abelii
N.leucogenys
M.mulatta
S.scrofa
T.tursiops ARP---------SRFRVSPLD-RTWNLGDTVELKCEVLLSNPASGCSWLFQPRGAAASPN ARP--------SRFRVSPLD-RTWNLGDKVELKCEVLLSNPSSGCSWLFQKRGAAASPT ARP--------SQFRVSPLD-RTWNLGETVELKCQVLLSNPTSGCSWLFQPRGAAASPT ARP---------SQFRVSPLD-RTWNLGETVELKCQVLLSNPTSGCSWLFQPRGAAASPT ARP--------SQFRVSPLD-RTWNLGETVELKCQVLLSNPTSGCSWLFQPRGAAASPT ARP---------SQFRVSPLD-RTWNLGETVELKCQVLLSNPTSGCSWLFQPRGAAASPT ARP--------NQFRVSPLG-RTWNLGETVELKCQVLLSNPTSGCSWLFQPRGTAARPT AKVLGS------SLFRTSPEM-VQASLGETVKLRCEVMHSNTLTSCSWLYQKPGAASKPI ATVLES------FSFRMSPVR-VQARLGEKVKLHCEVLQSSMTSSCSWLYQKPGDASRPI AKVLGS------LSFRMSPTQ-KETRLGEKVELQCELDQSGMATGCSWLRHIPGDDPRPT AEAQGS------NQFRMSPKE-VKATLGKPVTLQCEVLLSNAGSGCSWLFQRLDAAASPI AAAFGQ------SQIRMKPKE-VTAILDKPVTLICEVLLSDLGDSCSWVFQRS-AAASPT ATAQGA------SQFRMSPRE-LVAQVGTKVTLRCEVLVPNAPAGCSWLFQPRHDAKGPT IILGSGEAKPQAPELRIFPKK-MDAELGQKVDLVCEVLGSVSQGCSWLFQNSSSKLPQPT TRLQVS------GQLQLSPKK-VDAEIGQEVKLTCEVLRDTSQGCSWLFRNSSSELLQPT ELGGSK-------DFEMSPKK-VVAHLGKEVRLTCEVWVSTSQGCSWLFLEHGS-GVKPT GSQAQLK-------FRMNPLEKRDVRPSDKVQLQCETLSSSS-TGCSWLRLAPG-KVVPT GSQAQLK-------FRMNPLEKRDVRPSDKVQLQCַDTLSSSP-TGCSWLRLAPG-KVVPT

## Appendix 4B

O.fraenata
M.domestica
C.idella
I.punctatus
S.chuatsi
S.aurata
D.labrax
P.olivaceus
P.maniculatus
O.mykiss
S.trutta
S.salar
X.laevis
O.fraenata
M.domestica
I.punctatus
S.chuatsi
S. aurata
D.labrax
P.olivaceus
P.maniculatus
sus
S.
X.laevis

GSQAQVK-------FRMNPLEKRDVRPSDKVQLQCETLSSSP-TGCSWLRLVPG-KVVPT GAQEHVT-------FRMNPVEKRDAGQGRELKLQCETVNSSP-TGCSWLRLTPG-AVVPT
--------------------ARIYKEGEKVQVDCDLKQ--SGTLTFWFRINSK-GADYL GNVK----------------ELVIKEKQPATITCDKNY--P-STVFWLRLKEN-GQGFE PGAGV----------------NVTAKEGAQVEISCQPRE--TGSMVVWFRVLDQSGMEFI
SGTDE---------------VKAVTEGDNAEIKCHPSD--PGSMIIWFRVRDKSGMEFI
SGAGE---------------DKATTEGQLVEIHCQSG---TGTMIIWFRVLDKTGMEFI
SGAG----------------ELVVKEGAKVDIECKPAE--MFNTVIWFRVLDNSGMEFI
SGAG-----------------ELVVKEGAKVDIECKPAE--MFNTVIWFRVLDNSGMEFI
QLSS----------------LTEKTDGERVEITCAPVSKTKSNMVIWFRVQDNAGMEFI
QLSS----------------LTEKTDGERVEITCAPVSKTKSNMVIWFRVQDNAGMEFI
QLSS-----------------LTEKTDGKRVEITCAPVS-IKSNMVMWFRVQDNAGMEFI
GTQQLG---------LTQTSGSLTKEKSETVKLECKPGPKESMDNAVFWFRQRKDTKTPE
$4 D E-$ loop
V CDR2-CD8 binding site to MHC I
CDR3
A.platyrhynchos FIVYISTLSKPTFKENQMMPSHFG----TFKSGKSYRLTVKSFKAEDEGTYFCTVNYNQQ
C.moschata FIVYISALSKPTFEGNQMTSSRYG----VSKSGRSYRLTVTSFKAQDEGIYFCTVNYNQV
G.gallus
F.catus
M. furo
C.familiaris
E.caballus
M.monax
S.sciureus
H.sapiens
P.troglodytes
P.abelii
N.leucogenys
M.mulatta
S.scrofa
T.tursiops
B. taurus
L.africana
o.cuniculus
C. porcellus
M.musculus
R.norvegicus
S.hispidus
M.eugenii
L.hirsutus
o.fraenata
M.domestica
C.idella
I.punctatus
S.chuatsi
S.aurata
D. labrax
P.olivaceus
P.maniculatus
O.mykiss
s.trutta
S.salar
x.laevis

FIVYISVLSRTTYSGNENTSPNFE----ASQKGNSYRLVVKNFRAQDQGTYFCIANINQV FLAYLSRSR--TKLAEELDPKQIS---GQRIQDTLYSLTLHRFRKEEEGYYFCSVVSNSV FLMYLSQTR--TKLADGLDSEQIS---GKKIRDTLYSLTLRRFRKEDEGYYFCSVLSNSV FLMYISQSR--AKPAEGLDTKHIS---GQKKTDSTYSLTLSRFRKEDEGYYFCSVLSNSI FLMYITKGR--IKTAEDLDTKKFS---GERIQDAVFGLTLHHFSEKDQGYYFCSVLSNSI FLLYISQTK--SKVADGLDTQRYS---GKK-MGDSFILTLSDFREENQGYYFCSALRNSI FLLYISQTK--PKVADGLDAQRFS---GKK-MGDSFILTLRDFREEDQGFYFCSALSNSI FLLYLSQNK--PKAAEGLDTQRFS---GKR-LGDTFVLTLSDFRRENEGYYFCSALSNSI FLLYLSQNK--PKAAEGLDTQRFS---GKR-LGDTFVLTLSDFRRENEGYYFCSALSNSI FLLYLSQNK--PKAAEGLDTQRFS---GKR-LGDTFVLTLSDFRRENEGYYFCSALSNSI FLLYLSQNK--PKAAEGLDTQRFS---GKR-LGDTFVLTLSDFRRENEGYYFCSALSNSI FLLYLSQNK--PKAAEGLDTQRFS---GKR-LGDTFVLTLRDFRQENEGYYFCSALSNSI FLMYLSKTR--NKTAEGLDTRYIS---GYKAN-DNFYLILHRFREEDQGYYFCSFLSNSV FLMYLSSTR--SKPAEGLDTSYIS---GTKAEGANFHLTLHRFHEEHQGYYFCSFMSNSV FLMY LSAQR--VKLAEGLDPRHIS---GAKVSGTKFQLTLSSFLQEDQGYYFCSVVSNSI FLLYISGTG--IKRVQGQDSTRF----SGAKTSSGFQLTLNHFQEKDQGYYFCSVLSNSA FLLYLSKT-----RNQVDSPLNS----GKRVQEKVFSLTLHHFREEDQGYYFCVVVGSLS FLLYHSASG--TKLAPGLEQKRFS---PSK-SSNTYTLTVNSFQKRDEGYYFCSVSGNMM FVVYMASSH--NKITWDEKLNSSKLFSAMRDTNNKYVLTLNKFSKENEGYYFCSVISNSV FIIYVSSSR--SKLNDILDPN----LFSARKENNKYILTLSKFSTKNQGYYFCSITSNSV FLIYLSGSR--NERNNKIPST----KLSGKKEDKKYTLTLNNFAKEDEGYYFCSVTSNSV FLLFISSTSSNAKLAEDLDPKRFR---GERISSSTYRLTLQNFREEDEGYYYCVVTRNSA FLLFISSSSSNAKLAEDLDPKRFR---GERISSSTYRLTLQNFREEDGYYCVVVTRNSA FLLFISSTSLNAKLAEGLDPKRFR---GERISSSTYRLTLQNFREEDYYY $\overline{\text { EEVVTRNSA }}$ FLLYLSGSSQSVKKVAPELDSRRFG---GSRSSS-SYFLTLKDFQKDDQGYYY FSVKSADIKENDLNSEHYTV-NTN------SGKVQLDIKSFKKKTDSGVYVCAAMN-SN YIASYSKTKKSGKKVAEGG---NYK-------VAEKTFDINSFETQKDSGTYSCVFIN-NN ASFSNNGIRKSPTTSLSLIFSEAK-------IGQHILTLQSFDKARDSGVYGCASLYKGI ASFSSNGMPKPNTKSPSSTFIDSK-------IGQNILILQSFKEAVDSGVYSCATLYKGT GSFSNNGVLKS--TSLSNIYRQTK-------INQNILILQSFNKSRDSGIYSC $\overline{A S L Y K G N ~}$ ASFGRDGKMKSNPSPLSPYIDSSK-------VDKHILTLKSFSKARDSGTYSCTIIQ-SN ASFGRDGKMKSNPSPLSPYIDSSK-------VDKHILTLKSFSKARDSGTYSCTIIQ-SN ASFSTKDGMKK-TDFNNEVFSEEQ-------INKNILILKAFKKARDSGVYSCASIN-GN ASFSTKDGTKK-TDFNNEVFSEEQ-------INKNILILKAFKKARDSGVYSCAASIN-GN ASFSTKDGMKK-TDFNNEVFSEEQ-------INKNILILKAFKKARDSGVYSCASIN-GN SILY $\overline{\text { LSSVSKQKKLSDDNVFKHFTAN-----KGAFTFTLNIFPFQEKDEGTYYCMININSV }}$

## Hinge region

A.platyrhynchos
C. moschata
G.gallus
F.catus
M. furo
C.familiaris
E.caballus
M.monax
S.sciureus
H.sapiens
P.troglodytes
P.abelii
N.leucogenys
M.mulatta
s.scrofa

LYFSSGLPAFFPVTTTAAPIKTVPPTTQ--------GSQVTKRDVCLQSHEAE-TSKEKE LYFSSGLPAFFPVTTTAAPVTSVSPTTQ--------GSRVTKRDVCLQSHEAE-TSKEKK LHFSSGQSAFFPVTTEAP--TTPAATTQ-------SHQVTKKDTSHQSLHPG-TSSENT LYFSAFVPVFLPVKPTTTPAPRPPTQAP-----ITTSQRVSLRPGTCQPSAGS-TVEASG LYFSSFVPVFLPVKPTPTPAPRLPTRAP-----TNTSQPVSQRPGICRPPAGK-PVEKGV LYFSPFVPVVFLPVKPPTTPAPRPPTRAP-----TNASKPVSPRGETCRPAAGS-AVKTSG IYFSPFVPVFLPAKPTTTTPAPRPPTPRPPMRAATNASQPVTRRPETCRPAKGS-PVGKKW MYFSSFVPVFLPAKPTTTPAPRPPTPEP-----TTASQPLSLRPQACRPAAGV-AGDTRG MYFSPFVPVFLPAKPTTTPAPRPPTPEP-----TTASQPLSLRPQACRPPAGG-AVDTRG MYFSHFVPVFLPAKPTTTPAPRPPTPAP----TIASQPLSLRPEACRPAAGG-AVHTRG MYFSHFVPVFLPAKPTTTPAPRPPTPAP-----TIASQPLSLRPEACRPAAGG-AVHTRG MYFSHFVPVFLP--------------------------------------------VHTRG MYFSHFVPVFLPEKPTTTPAPRPPTPAA-----TTASQPLSLRPEACRPAAGG-AVHTRG MYFSHFVPVFLPAKPTTTPAPRSPTPAP-----TTASQPLSLRPEACRPAAGG-SVNTRG LYFSNFMSVFLPAKPTKTPTTPPPKRTP---TKASHAVSVAP--EVCRPSG---NADPRK

Appendix 4B

| $s$ | MYFSNFVPVFLPAKPTTTPATPPATRAP---TKALQTVSPRP--EVCRPSAGS-AVDTRG |
| :---: | :---: |
| B.taurus | LYFSNFVPVFLPAKPATTPAMRPSSAAP---TSAPQTRSVSPRSEVCRTSAGS-AVDTSR |
| L.africana | LFFSPFVPVLLPAKPTTTPAPRPPTPAP----TNAPLPVSRRPETCRPPAGG-AVDTRG |
| O.cuniculus | LHFSPSVPVFLPAKPTTMPAPRRPSAAP----TTAPQPRSLRPEVCRPSGGA |
| C.porcellus | SPFVPVFLPAPRTTTPPPPPTTPTP------SVQPTSVRPETCVVSKG |
| M.musculus | MYFSSVVPVLQKVNSTTTKPVLRTPSPVHP-----TGTSQPQRPEDCRP--RG-SVK |
| R.norvegicus | MYFSPLVPVFQKVNSIITKPVTRAPTPVPPP----TGTPRPLRPEACRPGASG-S |
| S.hispidus | VYFSPLVSVFLPEKPTTPVPK---PPTSVPT----TAISRSLRPEACRPGAGT-SV |
| M.eugenii | LFFSPFVPVFLPVKATTTPAPKPKTTILP---ATISTSTQIS--ENCKLTAK--KQ |
| L.hirsutus | LFFSPFVPVFLPVKATTTPAPKPKTTILP---ATTSSSTQIS--ENCKLTVK--KQGKKG |
| O.fraenata | LFFSPFVPVFLPVKTTTTPAPKPKTTILP--ATTSSSTQIS--ENCKLTVK--KQGKKG |
| M.domestic | $\overline{\text { LFFSSPFVPVFMPVKATTAPAPRPKPTTPA---ATNSSI }}$ |
| C.idella | $\overline{\text { KLFFGGLTRIEGEPDPTTIPPKIATTKPL-----PVTA }}$ |
| I.punctatus | QLEFSSITKLRGETVPTTIKPKVQT |
| S.chuatsi | EL |
| S.aurat | EL |
| D. labrax | EL |
| P.olivaceu | EMKFGKVTRLIGEKKVEVTTRAPR |
| P.maniculatus | EMKFGKVTRLIGEKKVEVTTRAPR |
| o.mykiss | ALVFGEVTRLAGPAPMTTTTTT |
| s.trutta | ALVFGEVTRLAGPAPTTTTTTTTTPMTTA-----IELTSSTTAKSCKVG------KVD |
| S.salar | $\overline{\text { ALVFGEATRLAGPAPTTTTTTTTTPMTTA-----IELTSSTTAKSCKV }}$ |
| x.laevis | L- |

## TM

Cytoplasmic domain
A.platyrhynchos
C.moschata
G.gallus
F.catus
M. furo
C.familiaris
E.caballus
M. monax
S.sciureus
H.sapiens
P.troglodytes
P.abelii
N.leucogenys
M.mulatta
S.scrofa
T.tursiops
B.taurus
L.africana
O.cuniculus
C. porcellus
M.musculus
R.norvegicus
S.hispidus
M.eugenii
L.hirsutus
O.fraenata
M.domestica
C.idella
I.punctatus
S.chuatsi
S.aurata
D. labrax
P.olivaceus
P.maniculatus
O.mykiss
S.trutta
S.salar
X.laevis

MYFSNFVPVFLPAKPTTTPATPPATRAP-- TKALQTVSPRP--EVCRPSAGS-AVDTRG俍 LFFSPFVPVLLPAKPTTTPAPRPPTPAP-----TNAPLPVSRRPETCRPPAGG-AVDTRG SPSFLPAKPTMPAPRRPSAAP---TTAPQPRSLRPEVCRPSGGA-AVDSRG LYFSPFVPVFLPAPRTTTPPPPPTTPTP-------SVQPTSVRPETCVVSKG--AAGARW MYFSPLVPVFQKVNSIITKPVTRAPTPVPPP SVEGMG IFFSPFVPVFLPVKATTTPAPKPKTTILP LFFSPFVPVFLPVKATTTPAPKPKTTILP---ATTSSSTQIS--ENCKLTVK--KQGKKG LFFSPFVPVFLPVKTTTTPAPKPKTTILP---ATTSSSTQIS--ENCKLTVK--KQGKKG LFFSPFVPVFMPVKATTAPAPRPKPTTPA---ATNSSIQNAAGSEKCKSFSN--TSEKNG FGGLTRIEGEPDPTTIPPKIATTKPL------PVTATTKSPCLCKK-QLEFSSITKLRGETVPTTIKPKVQTT-PM------PTVPTTKAVVTCGQNSRGKKAEKID ELRFGEVTRLVGVK-EKAAQTTSTPTDKE------QSRCTEAPLCKCSNGN---TNAEAK EMKFGKVTRLIGEKKVEVTTRAPRVIAST------RSPSLTTSACVCKGNT---NTGETS EMKFGKVTRLIGEKKVEVTTRAPRVIAST------RSPSLTTSACVCKGNT---NTGETS ALVFGEVTRLAGPAPMTTTTTTTTPMTTT------IELTSSTTAKSCKVG-------KVD ALVFGEATRLAGPAPTTTTTTTTTPMTTA------IELTSSTTAKSCKVG-------KVD LSISPGLQLFYPAVTTPAPTTTKPPTTTT-------KMADPDKKDPCGCNGSKSDPVTND RPANGKPKMNPKVPSOQ LNFFCEIFIWVPLAAACLLLFIALVIT-IVLCQKTRRRRCRCKRPANGKPKMKPKVPSQQ
 LDLSCDIYIWAPLAGTCAFLLLSLVIT-VICNHRNRRRVCKCPRPVVRAGG---KPSPSE LGFACEIYIWAPLAGTCAVLLLSLVIT-VICNHRNRRRVCKCPRPMPRQGGPGGKPSPSE LDFACEIYIWAPLAGTCAVLLLSLVIT-IICNHRNRRRVCKCPRPVVRPGG---KPSPSE LDFDCDIYIWAPLAGTCAVLLLSLIIT-IICNHRNRRRVCKCPRPLVRPAG---KPTTSE LDFACDIYIWVPLAGTCGILLLSLVLT-VYCNHRNRRRVCKCPRPAVKSGG---KPSLSE LDFACDIYIWVPLAGTCGVLLLSLVIT-VYCNHRNRRRVCKCPRPAVKSGG---KPSPSE LDFACDIYIWAPLAGTCGVLLLSLVIT-LYCNHRNRRRVCKCPRPVVKSGD---KPSLSA LNFACDIYIWAPLAGTCGVLLLSLVIT-LYCNHRNRRRVCKCPRPVVKSGD---KPSLSE LDFACDIYIWAPLAGTCGVLLLSLVIT-LYCNHRNRRRVCKCPRPVVKSGG---KPSLSE LDFACGIYIWAPLAGTCGVLLLSLVIT-LYCNHRNRRRVCKCPRPVVKSGG---KPSLSE LDFACDIYIWAPLAGACGVLLLSLVIT-LYCNHRNRRRVCKCPRPVVKSGG-- -KPSLSD LDLACDLYNWAPLVGTSGILLLSLVIT-IICHRRNRRRVCKCPRPVVRQGG---KASPSE LDFSCDIYIWAPLAGTCAILFLLLVIT-VICHRRNRRRVCKCPRPVVRQGG---KPSPSE LDFACNIYIWAPLVGTCGVLLLSLVIT-GICYRRNRRRVCKCPRPVVRQGG---KPNLSE LGLTCDLYIWAPLAGTSAVLLLSLIVA-IVCSHRNRRRVCKCPRPVVRPGG---KINSSE LDLTCDIYIWAPLAGACTVLLLSLVIT-VICNHRTRRRVCKCARPVARPGG---KPSASE LDLSCDVYIWAPLASTCAALLLALVIT-IICHRRNRQRVCKCPRPQARSGG---KPSPSG LDFACDIYIWAPLAGICVALLLSLIIT-LICYHRSRKRVCKCPRPLVRQEG---KPRPSE LGFACDIYIWAPLAGICAVLLLSLVIT-LICCHRNRRRVCKCPRPLVK-------PRPSE WDFDCDIIILAPLAGLCGVLLLSLVTT-LICCHRNRKRVCKCPRPVVRQGG---KPSPSG LDFSCDLYIWVPLAGVCVVLFLALITT-ITICQRSRKRVCRCPRPLIRPGG---KAGPSE LDFSCDLYIWVPLAGVCVILFLALITT-ITICِQRSRKRVCRCPRPLIRPGG---KAGPSE LDFSCDLYIWVPLAGVCVILFLALITT-ITICQRSRKRVCRCPRPLIRPGG---KAGPSE LDFSCDLYIWMPLTGGCVVLLLALIIT-ITIFRRSRRRVCQCPRPLIRPGG---KTGR--PRFNCETWILSSLAAGCALLLILLIFT-ILYCNRLRTRRCPHHYKRQPQPRHAGHAKLPS VLLGCELHIFIPLAAGCGFLLLLLLIT-ILYCNRIRTRRCPHHYKRQPRGRAPGHKTLPP FSMFCTPIILVPLAGGCGLLLLLLIIT-SLYCNHIRTRRCPHHYKRKPRTTASGTQMKTN TSMFCTPLILGPLAGACGLLLLLLIIT-SVYCNKIRTTRCPHHYKRKPRAAADGKHMPTR PDMYCPPLILGPLAGGCGLLLLLLIIT-TLYCNKIRTRRCPHHYKRKPRTMAPGKQMMTH SIIPCSTIILGPLAGGCGLLLLLLLIT-LLYCNHIRTRRCPHHHRRKPRTMAPGKQMKNN SIIPCSTIILGPLAGGCGLLLLLLLIT-LLYCNHIRTRRCPHHHRRKPRTMAPGKQMKNN PTASCELIVWAPLTAGCGFLFLLLIIT-VCHCNRIRTKRCPHHYKRQPRMAAPGQQHPIA PTASCDLIVWAPLAAGCGFLLLLLLIT-VCHCNRIRTKRCPHHYKRQPRMAAPGQQHPIA PTASCDLIVWAPLAAGCGLLFLLIIIT-VCHCNRIRTKRCPHHYKRQPRMAAPGQQHPIA WGIQCEMYILASLGGLCSLLLLALLTTSILLCKRGRPRRCRCKHVPETEKN--GKPKPAP
A.platyrhynchos I------
C.moschata
G.gallus
F.catus
M. furo
C.familiaris

I------
-------
RYV-----
KYV-----
KYV-----

## Appendix 4B

| E.caballus | RYV- |
| :---: | :---: |
| M.monax | RCV- |
| S.sciureus | RYV- |
| H. sapiens | RYV- |
| P.troglodytes | RYV- |
| P.abelii | RYV- |
| N.leucogenys | RYV- |
| M.mulatta | RYV- |
| S.scrofa | RFI- |
| T.tursiops | RCT- |
| B. taurus | KYV-- |
| L.africana | GYI - |
| O.cuniculus | RTI |
| C.porcellus | KLV- |
| M.musculus | KIV- |
| $R$.norvegicus | KFV-- |
| S.hispidus | KLV- |
| M.eugenii | RYA |
| L.hirsutus | RYA |
| O.fraenata | RYA |
| M.domestica |  |
| C.idella | NHF- |
| I.punctatus | PDY- |
| S.chuatsi | RHI |
| S.aurata | Q- |
| D.labrax | RHV-- |
| P.olivaceus | THV-- |
| P.maniculatus | THV - |
| O.mykiss | NNRLF-- |
| S.trutta | NNRLF - |
| S.salar | NNRLF--- |
| X.laevis | RYV----- |

Fig. 4B.4. Sequence alignment of all to date known CD8 $\alpha$ sequences. Alignment used for phylogenetic analysis of the CD8 $\alpha$ and CD8 $\beta$ chains. $T=O$-linked glycosylation sites. Yellow highlight $=\mathrm{N}$-linked glycosylation site in $M$. domestica . Double underlined is a site that indicates a short helix. Underlined are the areas that contact the MHC class I molecule. Bold underlined is the signal peptide from position 1 to 21 .
O. fraenata nucleotide sequence for mature protein of CD8 $\beta$
aggtattctatagggcgattgatttagcggccgcgaattcgcccttatggctcagcctcttgcccattc agatctcaggcatctctggagtcccttctgtcattcagagcccagaaaccctcctggttcagactgaca aagaggcaaagttcctctgtgacatgaggtcatcctcaagtacttacagaatctactggtttcgtcagg tagcgcctcccagccctgacagtcactatcagtttctggtccatttggactccaagaccacttatgggg aaggcattgatccaaaacatgtgcttacgtccagagagtcatacagatccacactcaggatgctgaatg tgaaaccttcagacagtggcatctatatctgcggcatttttgaaagctatcaactggtctttggaagcg gaacccggctgaatgtggttgatgttttgcctacctcccctatacccaccaaaaagaccacccccagga agagaccatgcaatacgaaacgctcagaagtcactcaacagaatggtttcttctgcagtgccctccccc taagcctgctggtgggatgtgctgtggtgctgctcattcccctaattgtgatcatccgaatgaattact tgtggaatgtagctcggcaccacgtcgtgaaatag
O. fraenata putative mature protein sequence

LWLSLLPIQISGISGVPSVIQSPETLLVQTDKEAKFLCDMRSSSSTYRIYWFRQVAPPSPDSHYQFLVH LDSKTTYGEGIDPKHVLTSRESYRSTLRMLNVKPSDSGIYICGIFESYQLVFGSGTRLNVVDVLPTSPI PTKKTTPRKRPCNTKRSEVTQQNGFFCSALPLSLLVGCAVVLLIPLIVIIRMNYLWNVARHHVVK

Secondary structure prediction CD8 (O. fraenata)


Figure 4B.5. Secondary structure prediction for $O$. fraenata CD8 $\beta$ chain.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4B

L. hirsutus nucleotide sequence for mature protein of CD8
ttatggctcagcctcttgcccattcagatctcagagatctctggagtcccctctgtcatgcagagccea gaaaccctcctggttcagactgaccaagaggcaaagttcctctgtgacctgaggtcatcctcaagtact tacagaatctactggtttcgtcaggtagcgcctcctagccctgacagtcactatcagtttctggtccat ttggactccaaggccactctcacttatggggaaggcattgatcaaaaacgtgtccttatgtccagagag tcatacagatccacactcaggatgctgaatgtgaagccttcagacagtggcatctatatctgtggcatt tttgaaagctatcaactggtctttggaagcggaacccggctgaatgtggttgatgttttgcctacctcc cctatacccaccaaaaagaccacccccaggaagagaccatgcagtacgaaacgctcagaagtcactcaa cagaatggtttcttctgcagtgccctccccctaagcctgctggtgggatgtgctgtggttctgctcatt cccctaattgtgatcatccgaatgaattacttgtggaatgtagctcggcaccacgtcgtgaaatag
L. hirsutus putative protein sequence

LWLSLLPIQISGISGVPSVIQSPETLLVQTDKEAKFLCDMRSSSSTYRIYWFRQVAPPSPDSHYQFLVH LDSKATLTYGEGIDQKRVLMSRESYRSTLRMLNVKPSDSGIYICGIFESYQLVFGSGTRLNVVGVLPTS PIPTKKTTPRKRPCNTKRSEVTQQNGFFCSALPLSLLVGCAVVLLIPLIVIIRMNYLWNVARHHVVK

Secondary structure prediction for $L$. hirsutus CD8 $\beta$


Figure 4B.6. Secondary structure prediction CD8 $\beta$ for $L$. hirsutus.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

Appendix 4B

Alignment of known CD8 $\beta$ amino acid sequences


Appendix 4B

|  | CDR3 $\quad$Hinge region <br> Connecting peptide |
| :---: | :---: |
|  | v-J • •• |
| O.fraenata | STLRMLNVKPSDSGIYICGIFES-YQLVFGSGTRLNVVDVLPTSPIPTKKTTPR----K 147 |
| L.hirsutus | STLRMLNVKPSDSGIYICGIFES-YQLVFGSGTRLNVVGVLPTSPIPTKKTTPR----K 149 |
| M.eugenii | STLRMLNVKPSDSGIYICGIFES-YQLVFGSGTRLNVVDVLPTSPIPTKKTTPR----K 151 |
| M.domestica | STLLLQRAKPSDSGIYICTIITS-PSLQSGSGTRVKVVDALPTTPTPTKKTTTK----R 154 |
| T.truncatus | YTLSLQSVKPSDSGVYFCMTVGN-PDLTFGKGTQLSVVDVLPTTPQPTKKTTPK----K 152 |
| S.scrofa | YLLQLRHVKPADSGNYFCMAVGN-PELTFGKGTRLSVVDVFPTTAQPTKKTRPK----K 151 |
| B. taurus | SVLTLQNVKPADSGVYFCMIIGI-PNLIFGTGTQLSVVDVLPTSPQPTKKTSPK----K 151 |
| C.familiaris | SILNLTRLNPTDSGVYFCMTIGN-PQLTFGKGTRLTVVDVLPTTAQPTRKTTPK----K 152 |
| F.catus | SILNLTSVKPADSGIYFCMTVGS-PELTFGKGTRLSVVDVLPTNSQPTKKPTPR----K 152 |
| A.melanoleuca | SILNLTNVKPADSGIYFCMTIGN-PELTFGKGTQLSVVDVLPTTAQPTRKPSTK----K 155 |
| P.troglodytes | FILNLTSVKPEDSGIYFCMIVGS-PELTFGKGTQLSVVDFLPTTAQPTKKSTPK----K 152 |
| H.sapiens | FILNLTSVKPEDSGIYFCMIVGS-PELTFGKGTQLSVVDFLPTTAQPTKKSTLK----K 152 |
| P.pygmaeus | FILNLTSVKPEDSGIYFCMIVGS-PELTFGKGTQLSVVDFLPTTAQPTKKSTPK----R 152 |
| N.leucogenys | FILNLTSVKPEDSGIYFCMTIGS-PELTFGKGTQLSVVDFLPTTAQPTKKSTPK----K 157 |
| S.sciureus | FFLNLTRVKLEDSGTYFCMVIGS-PTLIFGTGTQLSVVDILPTTAQTTKKSTPK----K 151 |
| E.caballus | STLHLAHVKPEDSGVYFCMIIGT-PELTFGTGTRLSVVDVFPTTARPTTKPTPK----K 152 |
| C.porcellus | FTLSLKHVKPEDSGVYFCMTIGH-PELTFGMGTNLSVVDVLPTTAQPTTKTTPK----K 152 |
| $R . n o r v e g i c u s$ | PFLKIMDVKPEDSGFYFCAMVGS-PMVVFGTGTKLTVVDVLPTTA-PTKKTTLK----K 150 |
| M.musculus | PFLSIMNVKPEDSDFYFCATVGS-PKMVFGTGTKLTVVDVLPTTA-PTKKTTLKMK--KK 155 |
| G.gallus | YRLHINRLHGSDNGTYYCCTIQS-SQLILGTGTQLDVVDVLPLPSMSTLVPLTK----K 150 |
| A.mexicanum | GVLKLNALQPADSGNYYCAVVVHTLDIVFGTGTELVVVDSFPTTAILTTSTPVCGCKEHE 165 |
| S.chuatsi | FMLRIINVSEADAGIYSCILKDRKNTEMWKPGIFLRPGVIPPTLPPKTKPKPPV----K 153 |
| S.salar | FTLRINNITAEDAGLYSCMLQNQKENELWRPGVLLRPGETRPTLTPVTKPKPPR-----I 154 |
| X.laevis | FTLKIKNLEFSDSGVYYCMVENA-GKVAFGNGTSLQVVETLPTTAAPTTTTKRK-----161 |
| I.punctatus | ELADLFRMFDRNRDGYIDTEELR--EMLRATGEMITEDDVEELMKDGDRNNDGK----- 147 |
|  | $\cdots$ |
|  | Transmembrane $\leqslant$ Cytoplasmic tail |
| O.fraenata | RPCNTKRSEVTQQNGFFCSALPLSLLVGCAVVLLIPLIVII-RMNYLWNVARHHVVK--- 203 |
| L.hirsutus | RPCNTKRSEVTQQNGFFCSALPLSLLVGCAVVLLIPLIVII-RMNYLWNVARHHVVK--- 205 |
| M.eugenii | RPCNTKHSEVTQQNGFFCSALPLSLLVGCAVVLLIPLIVII-RMNYLWNVARHHVVK--- 207 |
| M.domestica | KMCPKKFPGATQQDGPFCSVLLLSLLVGCILILLISLIVIL-RMNYLWHLARHHFVKQLQ 213 |
| T.truncatus | KVLR--FPNLVTRKGPSCAPLIVGPLVAVVLVLLVFLGVAI-HLHCLQRRARLRLLKQFY 209 |
| S.scrofa | KICR--LPNLVPPKGPACAPLIIGLLVAGLLVLLVSLGAAV-HVYCLQRRARRRLMKQ-- 206 |
| B. taurus | KVCHR-VPTQVTQKRLSCAPLILGLLAAGVLILLVSLGVAI-HLRCLQRRARLRLLKQFY 209 |
| C.familiaris | RMCR--FPIQVTQKAPSCGPLTLSLLVAGVLVLLVSLGVAI-HLHRLRRRARLRLLQQFY 209 |
| $F . c a t u s$ | KMCR--PPSPVTQKGPSCGLLTLGLLVAGVLVLLVSLGVAI-HLYRLKRRARLRLLKQFY 209 |
| A.melanoleuca | KVSR--SPSPVIQKGLSCDPLILGLLVAGVLLLLVSLGVAI-HLHCLQRRARLRLLKQ-- 210 |
| $P$.troglodytes | RVCR--LPRPETQKGPLCSPITLGLLVAGVLVLLVSLGVAI-HLCCRRRRARLRFMKQ-- 207 |
| H.sapiens | RVCR--LPRPETQKGPLCSPITLGLLVAGVLVLLVSLGVAI-HLCCRRRRARLRFMKQFY 209 |
| P.pygmaeus | RVCR--LPRPETQKGPLCSPITLGLLVAGVLVLLVSLGVAI-HLCCRRRRARLRFMKQFY 209 |
| N.leucogenys | RVCR--LPRPETQKGPLCSPITLGLMVAGVLVLLVSLGVAI-HLYCRRRRARLRFMKQFY 214 |
| S.sciureus | TVCR--LPRPETRKGPLCSPITLSLLVAGILVLLVSLGVAI-HLYCRQRRARLRFMKQFY 208 |
| E.caballus | KVCR--PPNPVTQEG-------------------------LQRRARLRLLKQ-- 177 |
| C.porcellus | KKCQ--PPSPGPQKGLHCSLVTLGLLVASALLLLLSLVVAV-HLYCLRRRARLRFIKQFY 209 |
| $R . n o r v e g i c u s$ | KQCP--TPHPKTQKGLTCGLITLSLLVACILVLLVSLSVAI-HFHCMRRRARIHFMKQFH 207 |
| M.musculus | KQCP--FPHPETQKGLTCSLTTLSLLVVCILLLLAFLGVAV-YFYCVRRRARIHFMKQFH 212 |
| G.gallus | PMRCKPKNKAINKKGACTPMVWVPLAAGALLLLLSLIPTIR-RFYRLRRRLWVRAHRR-- 207 |
| A.mexicanum | ETSKGSTKKKGARAGVACSSVIYAPLATGLVMLVISLVVMINHLQHFHRRYRRHFRKQLV 225 |
| S.chuatsi | SVCR--CSKKNS-SQDGCGSLILWPLVGLIAALALALICTLYYFSRLPKKCRHHFVKKRQ 210 |
| S.salar | PTGR--CTKRNDQTPKGCGSKVLWPLVGVLLTLAAALIYTLYYFSQLPKKCRHQFAKKRP 212 |
| X.laevis | -PCK--CKKPQTPSPVICSAVVWNHTCWICSYSCDSLGRHCLLYKTNLQKNPAVLQEAPT 218 |
| I.punctatus | ---------------------------------------IDYDEFLEFMKGVE 161 |

## Appendix 4B

| O.fraenata | -- |
| :---: | :---: |
| L.hirsutus | -- |
| M.eugenii | -- |
| M.domestica | R- 214 |
| T.truncatus | K- 210 |
| S.scrofa | - - |
| B. taurus | K- 210 |
| C.familiaris | K- 210 |
| $F . c a t u s$ | K- 210 |
| A.melanoleuca | - - |
| P.troglodytes | -- |
| H.sapiens | K- 210 |
| P.pygmaeus | K- 210 |
| N.leucogenys | K- 215 |
| S.sciureus | K-209 |
| E.caballus | - - |
| C.porcellus | K- 210 |
| $R . n o r v e g i c u s$ | K- 208 |
| M.musculus | K- 213 |
| G.gallus | -- |
| A.mexicanum | K- 226 |
| S.chuatsi | MT 212 |
| S.salar | LK 214 |
| X.laevis | EL 220 |
| I.punctatus | -- |

Figure 4B.7. Sequence alignment of all to date known CD8 $\beta$ sequences
CP = connecting peptide. $\mathrm{FGXG}=\beta-\mathrm{g}$ strand. Yellow highlight = N-linked glycosylation sites.
$T=O$-linked glycosylation. Boxed cysteines conserved across mammals. $\boldsymbol{\nabla}=$ Domains.

## Appendix 4B

Table 4B.2. Genbank Accession numbers for CD8 $\beta$ chain and the relevant references.

| Species | Common Name | Accession <br> Numbers | References |
| :--- | :--- | :--- | :--- |
| Ailuropoda melanoleuca | Giant Panda | XM_002922344 | Annotated |
| Ambystoma mexicanum | Axolotl | AF242416 | (Fellah et al., 2002) |
| Bos taurus | Cattle | NM_001105344 | (Zimin et al., 2009) |
| Canis lupus familiaris | Dog | XM_859954 | Annotated |
| Cavia porcellus | Domestic guinea pig | NM_001172877 <br> AY303774 | (Nagarajan et al., 2004) |
| Equus caballus | Horse | NM_003362954 | Annotated |
| Felis catus | Cat | NM_001009867 <br> AB000484 | (Pecoraro et al., 1996) |
| Gallus gallus | Chicken | NM_205247 <br> Z26484 | (Tregaskes et al., 1995) |
| Homo sapiens | Human | Y00805 <br> M36712 | (Parnes et al., 1985) |
| (Norment and Littman, 1988) |  |  |  |
| Ictalurus punctatus | Channel catfish | NM_001201049 | (Chen et al., 2010) |
| Macaca mulatta | Rhesus monkey | XR_010580 | Annotated |
| Macropus eugenii | Tammar wallaby | EU152105 | (Duncan et al., 2008) |
| Monodelphis domestica | South American grey <br> short tailed opossum | NM_001146331 | (Duncan et al., 2008) |
| Mus musculus | Mouse | NM_009858, <br> M17534, M16799 | (Rettig et al., 2009) |
| (Panaccio et al., 1987) |  |  |  |
| (Nakauchi et al., 1987) |  |  |  |

## Appendix 4C

M. eugenii nucleotide sequence CD28

5'end
gcaaactggcctgtctcacagctctttgtgaaaagaggaggccacagctttcagctcaac
gctacc
atgatccgcaaggtgcttctggtcctcagtttcttcccttcagttcaagtaacagataagattttggtcaaac agccaccttggctgttggtggataatcacgaagtggcaaccctttcctgtaactacatctgtgataaaactcc aacggaatttcgagcttcactccaaaagggaacgaacagtgcccttgaagtctgttttgtgtatgtaaatgga acccataagcccttgctttcctcaatggaggacttcaactgctccgtgaattttgataataaaacagtgaagt ttctactccagaatatgagtatcaaccaaacggatatttacttctgtaaaattgaattcatgtatcctcctcc atatctctccaatgaaaaaagtaatggaaccatcattttgtgaaagagaaggaggtctttccgactcctgga acttctgagtcccccaaacccttttgggcggttgttgcggctctgtgtgtccttgctttctatgttttgttaa tgacagtgactttttttaactgctggttgaaaatcaaaaaaagcacaattcttcagtgggactacatgaacat gactcctcgaaaaccgagaccaactaataagctttgtctgccttatgccccactttgggactatgccgcctat cgatcctga
3'end
ctcctcgaaaaccgagaccaactaataagctttgtctgccttatgccccactttgggactatgccgcctatcg atcctgaaactaactcctatccttaatccagccggttaaaacccctctacctcctcaaccotgtttgtctgga taggaaatgaccatctcccatctctagccggttatattctgccttttacaggtcactcctgtcttttttcatg aagagaaaaaaaaa
M. eugenii putative protein sequence for CD28

MIRKVLLVLSFFPSVQVTDKILVKQPPWLLVDNHEVATLSCNYICDKTPTEFRASLQKGTNSALEVCFVYYVN THKPLLSSMEDFNCSVNFDNKTVKFLLQNMSINQTDIYFCKIEFMYPPPYLSNEKSNGTIIFVKEKEVFPTPG TSESPKPFWAVVAALCVLAFYVLLMTVTFFNCWLKIKKSTILQWDYMNMTPRKPRPTNKLCLPYAPLWDYAAY RS

Secondary structure prediction for M. eugenii CD28


Conf: $\mathfrak{H}$
Pred: $\longrightarrow \longrightarrow-\square$
Pred: EEECCCCCCCEEEEEEECCCCCEEEEEEEEEECCCCCEEC





Conf: :
Pred:
Pred: CCCCCCCCCCCCCCCCCCCCC
AA: RPTNKLCLPYAPLWDYAA YRS
1
210


Figure 4C.1. PSIpred secondary structure prediction M. eugenii CD28.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Alignment of annotated $M$. eugenii CD28 sequence (ensembl) and actual $M$. eugenii sequence.

| Annotated | GGATAAG | 9 |
| :---: | :---: | :---: |
| M.eugenii | ATGATCCGCAAGGTGCTTCTGGTCCTCAGTTTCTTCCCTTCAGTTCAAGTAACAGATAAG | 60 |
| Annotated | ATTTTGGTCAAACAGCCACCTTGGCTGTTGGTGGATAATCACGAAGTGGCAACCCTTTCC | 69 |
| M.eugenii | ATTTTGGTCAAACAGCCACCTTGGCTGTTGGTGGATAATCACGAAGTGGCAACCCTTTCC <br> ******************************************************************* | 120 |
| Annotated | TGTAACTACATCTGTGATAAAACTCCAACGGAATTTCGAGCTTCACTCCAAAAGGGAACG | 129 |
| M.eugenii | TGTAACTACATCTGTGATAAAACTCCAACGGAATTTCGAGCTTCACTCCAAAAGGGAACG <br> $\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$ | 180 |
| Annotated | AACAGTGCCCTTGAAGTCTGTTTTGTGTATGTAAATGGAACCCATAAGCCCTTGCTTTCC | 189 |
| M.eugenii | AACAGTGCCCTTGAAGTCTGTTTTGTGTATGTAAATGGAACCCATAAGCCCTTGCTTTCC <br>  | 240 |
| Annotated | TCAATGGAGGACTTCAACTGCTCCGTGAATTTTGATAATAAAACAGTGAAGTTTCTACTC | 249 |
| M.eugenii | TCAATGGAGGACTTCAACTGCTCCGTGAATTTTGATAATAAAACAGTGAAGTTTCTACTC <br> $\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$ | 300 |
| Annotated | CAGAATATGAGTATCAACCAAACGGATATTTACTTCTGTAAAATTGAATTCATGTATCCT | 309 |
| M.eugenii | CAGAATATGAGTATCAACCAAACGGATATTTACTTCTGTAAAATTGAATTCATGTATCCT <br> $\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$ | 360 |
| Annotated | CCTCCATATCTCTCCAATGAAAAAAGTAATGGAACCATCATTTTTGTGAAAGAGAAGGAG | 369 |
| M.eugenii | ССТССАТАТСТСТССAATGAAAAAAGTAATGGAACCATCATTTTTGTGAAAGAGAAGGAG <br> $\star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$ | 420 |
| Annotated | GTCTTTCCGACTCCTGGAACTTCTGAGTCCCCCAAACCCTTTTGGGGCGGTTGTTGCGGC | 429 |
| M.eugenii | GTCTTTCCGACTCCTGGAACTTCTGAGTCCCCCAAACCCTTTTGGGGCGGTTGTTGCGGC <br>  | 479 |
| Annotated | TCTGTGTGTCCTTGCTTTCTATAG--------------------------------------1- | 453 |
| M.eugenii | TCTGTGTGTCCTTGCTTTCTATGTTTTGTTAATGACAGTGACTTTTTTTAACTGCTGGTT <br> ********************** | 539 |
| Annotated |  |  |
| M.eugenii | GAAAATCAAAAAAAGCACAATTCTTCAGTGGGACTACATGAACATGACTCCTCGAAAACC | 599 |
| Annotated |  |  |
| M.eugenii | GAGACCAACTAATAAGCTTTGTCTGCCTTATGCCCCACTTTGGGACTATGCCGCCTATCG | 659 |
| Annotated | ------- |  |
| M.eugenii | ATCCTGA 666 |  |

Fig. 4C.2. M. eugenii annotated CD28 sequence and expressed sequence showing that the annotated sequence is incomplete.

## Appendix 4C

M. domestica partial CD28 nucleotide sequence
attggtaaatgtttcctgtgactacatctatgataaaactccaactgaatttcgagcttcactccag aagggaaaaaatggtgcccatgaagtctgttctgtgtatgtaaatggaacccataagcccttgatta ccacaactgaggacttcagatgccatgtgaattttgataacaaaacggtgatgttttgtcttttgaa tatgagtatcttccaaacagatatttacttctgtaaaattgaattcatgtatcctcctccatatttc tccagtgaagtgaacaacggaaccttcatctatgtgaaagaaaaggacgtctgtacaactctgggat cttctgagcctcccaaacccttctggccagttgtggctgctctgtgtgtttttgctttctatagcat gctaataacagtggctttttgtaactgctggttgaagagcaaaaagaatagaattctccatagt
M. domestica putative CD28 protein sequence

LVNVSCDYIYDKTPTEFRASLQKGKNGAHEVCSVYVNGTHKPLITTTEDFRCHVNFDNKTVMFCLLN MSIFQTDIYFCKIEFMYPPPYFSSEVNNGTFIYVKEKDVCTTLGSSEPPKPFWPVVAALCVFAFYSM LITVAFCNCWLKSKKNRILHS

## Appendix 4C

Alignment of all species including the M.eugenii for CD28
M.musculus
R.norvegicus
C.griseus
M.mulatta
M.fascicularis
M.nemestrina
C. torquatus
$P$.anubis
H.sapiens
P.troglodytes
N.leucogenys
C. jacchus
E.grevyi
E.zebra
E.caballus
E.asinus
R.unicornis
E.maximus
L.africana
F.catus
A.melanoleuca
C.familiaris
B.taurus
S.caffer
B.bonasus
G.camelopardalis
O.aries
S.scrofa
O.cuniculus
M. monax
M.domestica
M.eugenii
G.gallus
M.gallopavo
T.guttata
M.musculus
R.norvegicus
C.griseus
M.mulatta
M.fascicularis
M.nemestrina
C. torquatus
P.anubis
H.sapiens
P.troglodytes
N.leucogenys
C. jacchus
E.grevyi
E.zebra
E.caballus
E.asinus
R.unicornis
E.maximus
L.africana
F.catus
A.melanoleuca
C.familiaris
B.taurus
S.caffer
B.bonasus
G.camelopardalis
O.aries
S.scrofa
O.cuniculus
M. monax


NLLAKEFRASLYKGVNSDVEVCVGNGNFTYQPQFRSNAEFNCDGDFDNETVTFRLWNLHV 105 NLLAKEFRASLYKGVNSDVEVCVGNGNFTYQPQFRPNVGFNCDGNFDNETVTFRLWNLDV 105 NLLSKEFRASLYKGVNSDVEVCVVNVNFSYQLQFHSNVGFNCDGNLDNETVTFYLRNLHV 106 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYPKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCGGKLGDESVTFYLQNMYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSREFRASLHKGLDSAVEVCVVYGNYSQHPQVYSKTGFNCDGKLGNESVTFYLQNLYV 104 NLFSRQFQASLHKGVDSAVEVCAVHGNYSQLLQVHSATGFNCDGKLGNESVTFYLQNLYV 104 NLFSKEFRASLYKGADSAVEVCVVNGNHSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 104 NLFSKEFRASLYKGADSAVEVCVVNGNHSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 104 NLFSKEFRASLYKGADSAVEVCVVNGNHSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 104 NLFSKEFRASLYKGADSAVEVCVVNGNHSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 104 NLFSKEFRASLYKGADSAVEVCVVNGNYSHQLQFHSNTGFNCDGKLGNETVTFYLRNLYV 104 NLFSKEFQAALYKGVDSDVEVCVVNGNYSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 105 NLFSKEFQAALYKGVDSDVEVCVVNGNYSHQLQFHSNTGFNCDGKLGNETVTFYLWNLYV 106 NFFSKEFRASLYKGVDSAVEVCVVNGNYSHQPQFYSSTGFDCDGKLGNETVTFYLRNLFV 105 NLFSKEFRASLYKGVDSAVEVCVVNGNYSHQPQFYSSTGFDCDGKMGNETVTFYLRKLFV 105 NLFSKEFRASLYKGVDSAVEVCVVNGNYSHQPQFYSSTGFDCDGKLGNETVTFYLRNLFV 105 NLFSKEFRASLYKGADSAVEVCAVNGNHSHPLQST-NKEFNCTVKVGNETVTFYLQDLYV 103 NLFSKEFRASLYKGADSAVEVCAVNGNHSHPLQST-NKEFNCTVKVGNETVTFYLQDLYV 103 NLFSKEFRASLYKGADSAVEVCAVNGNHSHPLQST-NKEFNCTVKVGNETVTFYLQDLYV 103 NLFSKEFRASLYKGADSAVEVCAVNGNHSHPLQST-NKEFNCTVKVGNETVTFYLQDLYV 103 NLFSKEFRASLYKGADSAVEVCAVNGNHSHPLQST-NKEFNCTVKVGNETVTFYLQDLYV 103 NLFSKEFRASLYKGADSAVEVCVVNVNYSRLLQFKPNTGFNCDVKYGNETVTFYLRNLHV 119 NLFSKEFRASLYKGADSAVEVCVVNGNFSHPHQFHSTTGFNCDGKLGNETVTFYLKNLYV 105 NLFSKEFRASLYKGVDSAVEVCVVNGNFSHQLQFYSHTGFNCDGKLGNETVTFYLRNLYV 105

## Appendix 4C

M.domestica
M.eugenii
G.gallus
M.gallopavo
T.guttata

M.musculus
R.norvegicus
C.griseus
M.mulatta
M.fascicularis
M.nemestrina
C.torquatus
P.anubis
H.sapiens
P.troglodytes
N.leucogenys
C.jacchus
E.grevyi
E.zebra
E.cabillus
E.asinus
R.unicornis
E.maximus
L.africana
F.catus
A.melanoleuca
C.familiaris
B.taurus
S.caffer
B.bonasus
G.camelopardalis
O.aries
S.scrofa
O.cuniculus
M.monax
M.domestica
M.eugenii
G.gallus
M.gallopavo
T.guttata
M.musculus
R.norvegicus
C.griseus
M.mulatta
M.fascicularis
M.nemestrina
C.torquatus
P.anubis
H.sapiens
P. troglodytes
N.leucogenys
C. jacchus
E.grevyi
E.zebra
E.caballus
E.asinus
R.unicornis
E.maximus
L.africana
F.catus
A.melanoleuca
C.familiaris
B.taurus
S.caffer
B.bonasus
G.camelopardalis
O.aries

DKTPTEFRASLQKGKNGAHEVCSVYVNGTHKPLITTTEDFRCHVNFDNKTVMFCLLNMSI 95 DKTPTEFRASLQKGTNSALEVCFVYVNGTHKPLLSSMEDFNCSVNFDNKTVKFLLQNMSI 105 NGTGKEFRASLHKGTDSAVEVCFISWN-MTKINSNSNKEFNCRGIHDKDKVIFNLWNMSA 103 NGTGKEFRASLHKGTDSSVEVCFISWN-MTKSNSNSNKEFNCWGNHDKDKVIFNLRNMTA 103 NGTGKEFRASLQKGTDSSVEVCVISWN-TTKISSNSNKGFNCQGSYDKDKVIFNLWNMNT 104

NHTDIYFCKIEFMYPPPYLDNERSNGTIIHIKEKHLCHTQSSP---KLFWALVVVAGVLF 162 NHTDIYFCKIEVMYPPPYLDNEKSNGTIIHIKEKHLCHAQTSP---KLFWPLVVVAGVLL 162 NQTDIYFCRIEVMYPPPYLDNEKSNGTIIHVKEKHLCPDQETP---KLLWVLIGGAGVLF 163 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGVLA 164 NQTDIYFCKIEVMYPPPYYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGVLA 164 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGVLA 164 NQTDIYFCKIEVMYPPPYYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGVLA 164 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGVLA 164 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGGVA 164 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGGVLA 164 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWALVVVGGGVLA 164 NQTDIYFCKIEIMYPPPYLDSEKSNGTIIHVKGKHLCPGPSFSGPSQPFWALAVVGGVLA 164 NQTDIYFCKIEVMYPPPYYIDNEKSNGTIIHVKEKHLCPVHAFTESSTPFWALAVTGGVLA 164 NQTDIYFCKIEVMYPPPYYIDNEKSNGTIIHVKEKHLCPVHAFTESSTPFWALVVTGGVLA 164 NQTDIYFCKIEVMYPPPYIDNEKSNGTIIHVKEKHLCPVHPFTESSTPFWALAVTGGVLA 164 NQTDIYFCKIEVMYPPPYYIDNEKSNGTIIHVKEKHLCPVHLFTESSTPFWALAVTGGVLA 164 NQTDIYFCKIEVMYPPPYIDNEKSNGTIIHVKEKHLCPDRPSPVSSKPFWALVVVGG-VLA 163 NQTDIYFCKIEVMYPPPYYIHNEKNNGTIIHVKEKHICPAPPSTESSKPFWALVVVNGVLA 165 NQTDIYFCKIEVMYPPPYYIHNEKNNGTIIHVKEKHICPAPPSTESSKPFWALVVVNGVLA 166 NQTDIYFCKIEVMYPPPYIDNEKSNGTIIHVKEKHLCPAQLSPESSKPFWALVVVGGILG 165 NQTDIYFCKIEVMYPPPYIDNEKSNGTIIHVKEKHHCPAQPSPESSKPFWALVVVGGVLV 165 NQTDIYFCKIEVMYPPPYIGNEKSNGTIIHVKEKHLCPDELFPDSSKPFWALVVVGGAVLV 165 NQTDIYFCKLEVLYPPPYIDNEKSNGTIIHVKEKHLCPSPRSPESSKPFWALVVVNGVLV 163 NQTDIYFCKLEVLYPPPYYIDNEKSNGTIIHVKEKHLCPSPRSPESSKPFWALVVVVNGVLV 163 NQTDIYFCKLEVLYPPPYYIDNEKSNGTIIHVKEKHLCPSPRSPESSKPFWALVVVNGVLV 163 NQTDIYFCKLEVLYPPPYYIDNEKSNGTIIHVKEKHLCPSPRSPESSKPFWALVVVNGVLV 163 NQTDIYFCKLEVLYPPPPYIDNEKSNGTIIHVKEKHLCPSPQSPESSKPFWALVVVNGVLV 163 NQTDIYFCKIEVLYPPPYYIDNEKSNGTIIHVKEKH-CPAPRPPESSKIFWVLVVVNGVVA 178 NQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKEQHFCPAHPSPKSSTLFWVLVVVGGAVLA 165 NQTDIYFCKIEVMYPPPYYLDNEKSNGTVIHVKENNICPGVPSPEPPKPFWTLVVFSGVLG 165 FQTDIYFCKIEFMYPPPYFFSSEVNNGTFIYVKEKDVCTTLGSSEPPKPFWPVVAALCVFA 155 NQTDIYFCKIEFMYPPPYYLSNEKSNGTIIFVKEKEVFPTPGTSESPKPFWAVVAALCVLA 165 SQTDIYFCKIEAMYPPPYVYNEKSNGTVIHVRETP--IQTQEPESATSYWVMVAVTGLLG 161 SQTDIYFCKIEAMYPPPYVYNEKSNGTVIHVRETP--IQTQEPESATSYWVMVALTGLLG 161 NQTDIYFCKIEVMYPPPYYVYNEKSNGTVIHVKETP--TQIQEPQSAIPLWILATVTGILA 162

CYGLLVTVALCVIWTNSRRNRLLQVTTMNMTPRRPGLTR-KPYQPYAPARDFAAYRP--- 218 CYGLLVTVTLCIIWTNSRRNRLLQSDYMNMTPRRLGPTR-KHYQPYAPARDFAAYRP--- 218 LYGLVVTVALCIIWKNSKRNRLLQSDYMNMTPRRLGPTR-KHYQPYAPARDFAAYSP--- 219 CYSLLVTVAFCIFWMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFCIFWMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFCIFWMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDSAAYRS--- 220 CYSLLVTVAFRIFWMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFSIFCMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 CYSLLVTVAFSIFWMRSKRSRLLHSDYMNMTPRRPGPTR-KHYQPYAPPRDFAAYRS--- 220 SYSLLVTVALSVFWMRSRRSRLLHSDYMNMTPRCPGPTR-RHYQPYAPPRDFAAYRS--- 220 FYSLLVTVALCTCWMRNRRSRTLQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS--- 220 FYSLLVTVALCTCWMRNRRSRTLQSDYMNMTPRRPGPTR-KHYQPYAPARS--------- 214 FYSLLVTVALCTCWMRNRRSRTLQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS--- 220 FYSLLVTVALCTCWMRNRRSRTLQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS--- 220 FYSLLVTVALCTCWMRSKRSRTLQSDYMNMTPRRPGPTR-KHYQPYAPTRDFAAYRS--- 219 FYSLVITVALCICWMKNKRSRILQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS--- 221 FYSLVITVALCICWMKNKRSRILQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS--- 222 FYSLLATVALGACWMKTKRSRILQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 221 FYSLLVTVALCACWMKNKRSRILQSDYMNMTPRRPGPTR-RHYQPYAPTRDFAAYRS--- 221 FYSLLVTVALCAYWIKSKSSRILQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 221 FYSLLVTVALSNCWMKNKRNRMLQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 219 FYSLLVTVALSNCWMKNKRNRMLQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 219 FYSLLVTVALSNCWMKNKRNRMLQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 219 FYSLLVTVALSNCWMKSKRNRMLQSDYMNMTPRRPGPTR-RHYQPYAPARDFAAYRS--- 219 FYSLLVTVALCNCWMKSKRNRMHQSDYMNMTPRRPGPTR-RHYQPYAPTRDFAAYRS--- 219

## Appendix 4C

| S.scrofa | FYSLVVTLALFFYWMKSKRTRMLQSDYMNMTPRRLGPTR-KHYQPYAPARDFAAYRS-- 234 |
| :---: | :---: |
| O.cuniculus | FYSMLVTVALFSCWMKSKKNRLLQSDYMNMTPRRPGPTR-KHYQPYAPARDFAAYRS-- 221 |
| M.monax | IYSLLSTMLLCYLWTKRQRTRLLQSDYMNMTPRRPGPSR-KHYQPYAP-----YRP---215 |
| M.domestica | FYSMLITVAFCNCWLKSKKNRILHSDYMNMTPQRPGPTK-KHYQPYAPSRDYAAYRS-- 211 |
| M.eugenii | FYVLLMTVTFFNCWLKIKKSTILQWDYMNMTPRKPRPTN-KLCLPYAPLWDYAAYRS-- 221 |
| G.gallus | FYSMLITAVFIIYRQKSKRNRYRQSDYMNMTPRHPPHQKNKGYPSYAPTRDYTAYRSWQP 221 |
| M.gallopavo | FYSMLVTAVFIIYRQKSKRNRYRQSDYMNMTPRHPPHQKNKGYPPYAPTRDYTAYRSWQP 221 |
| T.guttata | $\underset{*}{\text { LYSTLITAVSINYWQKSKKYMYRQSDYMNMTPRHPPYQKNKGYPSYAPTRDYTAYRSWQP } 222} \underset{* * * *}{\text { **** }} 2$ |

Figure 4C.3. Alignment of putative protein sequences including the predicted protein sequence of the M. domestic. Cysteine = red. NMT = glycosylation site below threshold. Grey = potential glycosylation sites. Magenta = MYPPPY motif.

Table 4C.1. Genbank accession numbers for CD28 and the relevant references.

| Species Name | Common name | Accession Number | References |
| :--- | :--- | :--- | :--- |
| Bison bonasus | European bison | EU000418 | Direct submission |
| Bos taurus | Cattle | NM_181004 | (Parsons et al., 1996) |
| Canis lupus familiaris | Dog | NM_001003087 | (Pastori et al., 1994) |
| Cercocebus torquatus <br> atys | Sooty mangabey | AF344842 | (Villinger et al., 2001) |
| Elephas maximus | Asian elephant | EU000417 | Direct submission |
| Equus asinus somalicus | Somali Wild Ass | EU000413 | Direct submission |
| Equus caballus | Horse | NM_001100179 | Direct submission |
| Equus grevyi | Grevy's Zebra | EU000415 | Direct submission |
| Equus zebra hartmannae | Zebra | EU000414 | Direct submission |
| Felis catus | Cat | AB025316 | Direct submission |
| Fugu rubripes | Pufferfish | NK005769 | (Bernard et al., 2006) |
| Gallus Gallus | Chicken | EU000420 | (Young et al., 1994) |
| Giraffa camelopardalis | Giraffe | NM_006319 | Direct submission |
| Homo sapiens | Human | NM_001042641 | Annotated |
| Macaca fascicularis | Crab-eating macaque | DQ872187 | (Villinger et al., 2001) |
| Macaca mulatta | Rhesus monkey | EF534209 | Direct submission |
| Marmota monax | Woodchuck | AM884252 | (Powell et al., 2009) |
| Meleagris gallopavo | Turkey | XM_001371298 | Annotated |
| Monodelphis domestica | Opossum | NM_007642 | (Gross et al., 1992) |
| Mus musculus | Mouse | NM_001082207 | (Isono et al., 1995) |
| Oryctolagus cuniculus | Rabbit | AF092739 | (Chaplin et al., 1999) |
| Ovis aries | Sheep | NM_013121 | (Clark and Dallman, 1992) |
| Rattus norvegicus | Norway Rat | Direct submission |  |
| Rhinocerus unicornus | Greater Indian rhinoceros | EU000416 | Direct submission |
| Syncerus caffer | African buffalo | EU000419 | Annotated |
| Taeniopygia guttata | Zebrafinch |  |  |
|  |  | XM_002187839 |  |

## Appendix 4D

M. eugenii CTLA-4 nucleotide sequence
atggttctcctgggatccaggagacaaatggaaaaggttcaccctcccaagaactggccctgcacggcaatgc tctctctgctctttatcccaagtatctccaaaggggtacatgtgactcaaccagcagtggtcgtggccagcgg caaagggattgcaagctttgtgtgtaactttgagttgacaaacaaaaccacagagatccgagtgggccttctt cgacagatggacaaccaaatggttgaagtctgtgcctcaacatacctggtacagaatcaaccagtgttcatgg atgacatgcttgagtgcacgggaaatgccagtgggaataaattgatgctcactctcacaggactgaaggcctc agacagtggactgtacatctgcaaagtggagctcatgtatcctcccccctactacatgggtttgggcaatgga acacagatatatgccattgatcctgaaccttgcccagactttgaagttatgctctggatcctagctatagtga gctccgcattattttttacagctccctcattacagctgtctccttgaataaaatgctaaagaaagggagtct tctcactacaggagtctatgtgaaaatgcctccaacagaacctgaacatgagaagcaatttcagccctacttt attcccatcaactga
M. eugenii CTLA-4 putative amino acid sequence

MVLLGSRRQMEKVHPPKNWPCTAMLSLLFIPSISKGVHVTQPAVVVASGKGIASFVCNFELTNKTTEIRVGLL RQMDNQMVEVCASTYLVQNQPVFMDDMLECTGNASGNKLMLTLTGLKASDSGLYICKVELMYPPPYYMGLGNG TQIYAIDPEPCPDFEVMLWILAIVSSALFFYSSLITAVSLNKMLKKGSLLTTGVYVKMPPTEPEHEKQFQPYF IPIN

Alignment of annotated $M$. eugenii CTLA-4 and the expressed gene obtained from mRNA

| ensembl | MVLLGSRRQMEKVHPPKNWPCTAMLSLLFIPSISKGVHVTQPAVVVASGRGIASFVCNFE 60 |
| :---: | :---: |
| M.eugenii | MVLLGSRRQMEKVHPPKNWPCTAMLSLLFIPSISKGVHVTQPAVVVASGKGIASFVCNFE 60 |
| ensembl | LTNKTTEIRVGLLRQMDNQMVEVCASTYLVQNQPVFMDDMLECTGNASGNKLMLTLTGLK 120 |
| M.eugenii | LTNKTTEIRVGLLRQMDNQMVEVCASTYLVQNQPVFMDDMLECTGNASGNKLMLTLTGLK 120 |
| ensembl | ASDSGLYICKVELMYPPPYYMGLGNGTQIYAIDPEPCPDFEVMLWILAIVSSALFFYSFL 180 |
| M.eugenii | ASDSGLYICKVELMYPPPYYMGLGNGTQIYAIDPEPCPDFEVMLWILAIVSSALFFYSSL 180 |
| ensembl | ITAVSLNKMLKKRSLLTTGVYVKMPPTEPEHEKQFQPYFIPIN 223 |
| M.eugenii | ITAVSLNKMLKKGSLLTTTGVYVKMPPTEPEHEKQFQPYFIPIN 223 |

Figure 4D.1. M. eugenii CTLA-4. Comparison between ensembl deposited sequence and expressed gene.

Secondary structure prediction M. eugenii CTLA-4 using PSIpred


Figure 4D.2. M. eugenii CTLA-4 secondary structure prediction.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4D

O. fraenata CTLA-4 nucleotide sequence
atggttctcgtgggatacaggagacaaatggaaaaggttcaccctcccaagaactggccgtgcacggcaatgc tctgtctgctctttatcccaagtatctccaaaggggtacatgtgactcaaccagcagtggtagtggccagcgg cagagggattgcaagctttgtgtgtaactttgagttgtcaaacaaaaccacggagatccgagtgggccttttt ggacagatggacaaccaaatggttgaagtgtgtgcctcaacatacttggtacagaatcaaccagtgttcatgg atgacatgcttgagtgcacgggaaatgccagtgggaataaattgatgctcactctcacaggatcgaaggcctc agacagtggactgtacatatgcaaagtggagctcatgtatcctcccccctactacatgggtttgggcaatgga acacagatatacgccattgatcctgaaccttgcccagactttgaagttatgctctggatcctagctatagtga gctccgcattatttttttacagcttcctcattacagctgtctccttgaataaaatgctaaagaaaaggagtct tctcactacaggagtgtatgtgaaaatgcctccaacagaacctgaacatgagaagcaatttcagccatacttt attcccataaactga
O. fraenata CTLA-4 putative protein sequence

MVLVGYRRQMEKVHPPKNWPCTAMLCLLFIPSISKGVHVTQPAVVVASGRGIASFVCNFELSNKTTEIRVGLF GQMDNQMVEVCASTYLVQNQPVFMDDMLECTGNASGNKLMLTLTGSKASDSGLYICKVELMYPPPYYMGLGNG TQIYAIDPEPCPDFEVMLWILAIVSSALFFYSFLITAVSLNKMLKKRSLLTTGVYVKMPPTEPEHEKQFQPYF IPIN

Secondary structure prediction O. fraenata CTLA-4 using PSIpred


Figure 4D.3. Secondary structure prediction of $O$. fraenata CTLA-4.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4D

M. domestica CTLA-4 partial nucleotide sequence
gcatggacacagatatatgtcattgattctgaaccttgtccagactctgatgtctcactctggatattggcta tagtcagctctggactattttttacagcctcctcatcacagctgtttccttgaataaaatgctaaagaaaag gagtcttctgactacaggggtctacgtgaaaatgcccacaccattgcacttaattacttga
M. domestica putative partial amino acid

## AWTQIYVIDSEPCPDSDVSLWILAIVSSGLFFYSLLITAVSLNKMLKKRSLLTTGVYVKMPTPLHLIT

M. domestica secondary structure prediction of partial CTLA-4 sequence using PSIpred.


Figure 4D.4. Secondary structure prediction of partial $M$. domestica CTLA-4 sequence.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4D


Figure D4.5. Alignment of expressed partial M. domestica CTLA-4 and the predicted M. domestica sequence (Accession No. XM 001371277.1).

## Appendix 4D

Sequence alignment of known CTLA-4 sequences (for accession number see Table 4D.1).
T.guttata
M.gallopavo
M.musculus
$R$.norvegicus
C.griseus
H. sapiens
P.troglodytes
C. torquatus
M.nemestrina
M.mulatta
P.cynocephalus
$P$.anubis
A.trivirgatus
C. jacchus
L.africana
N.leucogenys
M. monax
C.familiaris
F.catus
E.caballus
B.bubalis
B.carabenensis
B. taurus
O. aries
S.scrofa
O.cuniculus
P.abelii
C. porcellus
M.eugenii
O.fraenata
M.domestica
O.anatinus
X.silurana
T.guttata
M.gallopavo
M.musculus
R.norvegicus
C. griseus
H.sapiens
P.troglodytes
C. torquatus
M.nemestrina
M.mulatta
P.cynocephalus
$P$.anubis
A.trivirgatus
C. jacchus
L.africana
N. leucogenys
M. monax
C.familiaris
F.catus
E.caballus
B.bubalis
B.carabenensis
B. taurus
O. aries
S.scrofa
O.cuniculus
P.abelii
C. porcellus
M.eugenii
O.fraenata
M.domestica
O.anatinus
X.silurana


EVMEVTQPAIVLANRQGVASLVCKYKNIGNAKEIRVTLLKQTGDQVTEICASSYTTEFKT 78 KVMEVTQPAIVLANRQGVASLVCNYKHIGNAKEIRVTLLKQTGDKFTEICASTYTMEFEM 78 EAIQVTQPSVVLASSHGVASFPCEYSPSHNTDEVRVTVLRQTNDQMTEVCATTFTEKNTV 95 EAIQVTQPSVVLASSHGVASFPCEYASSHNTDEVRVTVLRQTNDQVTEVCATTFTVKNTL 95 KAIHVAQPSVVLASSHGVASFSCEYTSSHNTDEVRVTVLRQTNSQMTEVCATTFTMKNKL 95 KAMHVAQPAVVLASSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMTGNEL 95 KAMHVAQPAVVLASSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 KAMHVAQPAVVLANSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 KAMHVAQPAVVLANSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 KAMHVAQPAVVLANSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 KAMHVAQPAVVLANSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 KAMHVAQPAVVLANSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNEL 95 NAMHVAQPAVVLASSRGIASFVCEYASPGNTTEIRVTVLRQTDSQVTEVCAGTYIMGNEL 95 NAMHVAQPAVVLASSRGIASFACEYASPGKATEIRVTVLRQTDSQVTEVCAGTYIMGNEL 95 KALDVSQPAVVLASNRGVASFVCEYESLHKVKEVRVTVLRQANSQMTEVCASTFEVENEL 94 KAMHVAQPAVVLASSRGIASFVCEYASPGKATEVRVTVLRQADSQETEVCAATYMMGNEL 95 KAMHVAQPAVVLASSRGVASFVCEYAAFHKATEVRVTVLRQIASQVTEVCATTYTVENEL 95 KGMHVAQPAVVLASSRGVASFVCEYGSSGNAAEVRVTVLRQAGSQMTEVCAATYTVEDEL 95 KGMHVAQPAVVLASSRGVASFVCEYGSSGNAAEVRVTVLRQTGSQMTEVCAATYTVENEL 95
 KGMNVTQPPVVLASSRGVASFSCEYESSGKADEVRVTVLREAGSQVTEVCAGTYMVEDEL 93 KGMNVTQPPVVLASSRGVASFSCEYESSGKADEVRVTVLREAGSQVTEVCAGTYMVEDEL 93 KGMNVTQPPVVLASSRGVASFSCEYESSGKADEVRVTVLREAGSQVTEVCAGTYMVEDEL 93 KGMNVTQPPVVLASSRGVASFTCEYESSGKADEVRVTVLRKAGIQVTEVCAGTYMVEDEL 93 KGMHVAQPAVVLANSRGVASFVCEYGSAGKAAEVRVTVLRRAGSQMTEVCAATYTVEDEL 95 KALHVSQPAVVLASSRGVASFVCEYASSHKATEVRVTVLRQANSQMTEVCAMTYTVENEL 95 KAMHVAQPAVVLASSRGVASFECEYASSHNANEVRVTVLQQVASRTTEICAATYTVEREL 95 KAMHVAQPAVVLASSRGVASFECEYASSHNANEVRVTVLQQVASRTTEICAATYTVEREL 95 KGVHVTQPAVVVASGKGIASFVCNFELTNKTTEIRVGLLRQMDNQMVEVCASTYLVQNQP 94 KGVHVTQPAVVVASGRGIASFVCNFELSNKTTEIRVGLFGQMDNQMVEVCASTYLVQNQP 94 KGIHVTQPAVILANSRGVASFVCEYELTAKTKEIRVSLLRQMDDELVEVCASTYLVQNQP 112 EALQVTQPRVVLASMKGVASLACEYEFTGKAKEIRVTLIRQTGNEFHEVCASSFTTEYEP 101 SGLKVTQPDIIVANRHGKAMLVCDYRIHAKVEEMRFRLLRKMGNQVKEICAFSYSTNYES 77

## Appendix 4D

T.guttata
M.gallopavo
M.musculus
R.norvegicus
C.griseus
H.sapiens
P.troglodytes
C. torquatus
M.nemestrina
M.mulatta
P.cynocephalus
P.anubis
A.trivirgatus
C.jacchus
L.africana
N.leucogenys
M.monax
C.familiaris
F.catus
E.caballus
B.bubalis
B.carabenensis
B.taurus
o.aries
S.scrofa
o.cuniculus
P.abelii
C. porcellus
M.eugenii
O.fraenata
M. domestica
O.anatinus
X.silurana
T.guttata
M.gallopavo
M.musculus
R.norvegicus
C.griseus
H.sapiens
P.troglodytes
C. torquatus
M.nemestrina
M.mulatta
P.cynocephalus
P.anubis
A.trivirgatus
C.jacchus
L.africana
N.leucogenys
M. monax
C.familiaris
F.catus
E.caballus
B.bubalis
B.carabenensis
B.taurus
o.aries
S.scrofa
o.cuniculus
P.abelii
C. porcellus
M.eugenii
O.fraenata
M.domestica
O.anatinus
X.silurana

FFVKKVVQCHVTPGQNNVTLTLAGLQANDTGLYICKMERMYPPPYFMNKGNGTHLYVIDP 138 FSVEEVIQCHVSPGRNNVTLTLTGLQANDTGLYVCKMERMYPPPYFMNKGNGTQLYVIDP 138 GFLDYPF-CSGTFNESRVNLTIQGLRAVDTGLYLCKVELMYPPPYFVGMGNGTQIYVIDP 154 GFLDDPF-CSGTFNESRVNLTIQGLRAADTGLYFCKVELMYPPPYFVGMGNGTQIYVIDP 154 GFLDDPF-CSGTFNESKVNLTIQGLRAADTGLYFCKVELMYPPPYFVGMGNGTQIYVIEP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYLGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYLGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIDP 154 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIDP 154 TFLDDSI-CMGTFSGNKVNLTIQGLRAMDMGLYICKVELMYPPPYYMSIGNGTQIYVIDP 154 TFLDDSI-CTGTFSGNKVNLTIQGLRAMDMGLYICKVELMYPPPYYMSIGNGTQIYVIDP 154 TFLDHPT-CTGTSSGNKVNLTIQGLTAIDMGLYICKVELMYPPPYYVGMGNGTQIFVIAK 153 TFLDDSI-CTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYMGIGNGTQIYVIAK 154 TFLDDSS-CTGTSSGNQVNLTIQGLRTADTGLYICKVELMYPPPYYMGLGNGTQIYVIEP 154 AFLDDST-CTGTSSGNKVNLTIQGLRAMDTGLYICKVELMYPPPYYVGMGNGTQIYVIDP 154 AFLDDST-CTGISSGNKVNLTIQGLRAMDTGLYICKVELMYPPPYYAGMGNGTQIYVIDP 154 NFLDEST-CPGTFLGNKXNLTIRGLRAMDTGLYICKVELMYPPPYYVGMGNGTQIYVIDP 128 TFLDDST-CIGTSRGNKVNLTIQGLRAMDTGLYVCKVELMYPPPYYVGIGNGTQIYVIDP 152 TFLDDST-CIGTSRGNKVNLTIQGLRAMDTGLYVCKVELMYPPPYYVGIGNGTQIYVIDP 152 TFLDDST-CIGTSRGNKVNLTIQGLRAMDTGLYVCKVELMYPPPYYVGIGNGTQIYVIDP 152 TFLDDSS-CIGTSRGNKVNLTIQGLRAMDTGLYVCKVELMYPPPYYMGEGNGTQIYVIDP 152 TFLDDST-CTGTSTENKVNLTIQGLRAVDTGLYICKVELLYPPPYYVGMGNGTQIYVIDP 154 TFIDDST-CTGISHGNKVNLTIQGLSAMDTGLYICKVELMYPPPYYVGMGNGTQIYVIEP 154 AFPEDSA-CAGTSSGTRVNLTIQGLRAADTGLYICKVELMYPPPYFVGTGNGTQIYVIDP 154 AFPEDSA-CAGTSSGTRVNLTIQGLRAADTGLYICKVELMYPPPYFVGTGNGTQIYVIDP 154 VFMDDMLECTGNASGNKLMLTLTGLKASDSGLYICKVELMYPPPYYMGLGNGTQIYAIDP 154 VFMDDMLECTGNASGNKLMLTLTGSKASDSGLYICKVELMYPPPYYMGLGNGTQIYAIDP 154 VFMDDMLECTGNVSGDKVMLTLTGLKALDTGLYFCKVELMYPPPYYVGGLGNGTQIYVIDP 172 FVSTEDIECHVQPSENNVTLTLMGLKATDTGLYVCRVELMYPPPYYMGLGNGTQIYVVEP 161 VTTGDAIQCEGEPGPNNVTLHLSGMQMSDTGMYICKLDIMYPPPYRTTEGNGTLIYVSDL 137

E-------PCPDPAIYLWVLGATASGFFLYSIIISTVLVGKVIKRRQCLTTGVYVKMPSE 191 E-------PCPDTAIYLWVLGATASGFFLYSIIISAIVVSKAIQRRRRLTTGVYVKMPSE 191 E-------PCPDSDFLLWILVAVSLGLFFYSFLVTAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWILAAVSSGLFFYSFLVTAVSLNRTLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDVLLWILASVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWILAAVSSGLFFYSFLLTAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------KKPS---------------YYRGLCENAPNRARM------------------- 173 E------KKPS---------------YNRGLCENAPNRTRM-------------------- 174 E-------PCPDSDFLLWILAAVSSGLFFYSFLVTAVSLSKMLKKRSPLTTTGVYVKMPPT 207 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPESDFLLWILAAVSSGLFFYSFLITAVSLSRMLKKRSPLTTGVYVKMPPT 181 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 205 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 205 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 205 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 205 E-------PCPDSDFLLWILAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWILAAISSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWVLAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDSDFLLWVLAAVSSGLFFYSFLITAVSLSKMLKKRSPLTTGVYVKMPPT 207 E-------PCPDFEVMLWILAIVSSALFFYSSLITAVSLNKMLKKSSLLTTGVYVKMPPT 207 E-------PCPDFEVMLWILAIVSSALFFYSFLITAVSLNKMLIKASLLTTGVYVKMPPT 207 E-------PCPDSDVSLWILAIVSSGLFFYSLLITAVSLNKMLK, SLLTTGVYVKMPPT 225 E-------PCPDSDFLLWILAAVSSGLFIYSFLITMVALSKMIKKRSLLTTGVYVKMPPP 214 MSECAQSIEPPEFILDQRILLVVCLVMFLYSMFITAVLLCGKQRKK--FTVGNYEKMLES 195

## Appendix 4D



Figure 4D.5. Sequence alignment of known CTLA-4 .
TGVYVMPPT = the intracellular localization motif, which restricts CTLA-4 expresssion to intracellular membranes such as the perinuclear Golgi or post- Golgi compartments (does not exist in CD28)

## Appendix 4D

Table 4D.1. Genbank Accession numbers for CTLA-4 and the relevant references.

| Species | Common name | Accession Numbers | References |
| :---: | :---: | :---: | :---: |
| Ailuropoda melanoleuca (PREDICTED) | Giant Panda | XM_002919948 | Annotated |
| Anas platyrhyncos | Duck | GQ995931 | (Yao et al., 2010) |
| Aotus trivirgatus | Three-striped monkey | AF344834 | (Villinger et al., 2001) |
| Bos Taurus | Cattle | NM 174297.1 | (Parsons et al., 1996) |
| Bubalus bubalis | Water buffalo | FJ827143.1 | (Mingala et al., 2011) |
| Bubalus carabanensis | Carabao | FJ827142.1 | (Mingala et al., 2011) |
| Callithrix jacchus | White-tuffed ear marmoset | GQ284838.1 | Direct submission |
| Canis lupus familiaris | Dog | NM 001003106.1 <br> AF154842 <br> AF215893 | (Khatlani et al., 2000) Unpublished Unpublished |
| Cavia porcellus (PREDICTED) | Guinea Pig | XM_003474180 | Annotated |
| Cercocebus torquatus atys | Sootey mangabey | AF344848 | (Villinger et al., 2001) |
| Cricetulus griseus | Chinese hamster | AF307318 | Direct submission |
| Equus caballus (PREDICTED) | Horse | XM 001497853.2 | Annotated |
| Felis catus | Cat | AF170725.1 | (Choi et al., 2000a) |
| Gallus gallus | Chicken | NM 001040091.1 | Annotated |
| Homo sapiens | Human | $\frac{\text { AF414120.1 }}{\text { AY209009 }}$ | Direct submission |
| Loxodonta africana (PREDICTED) | African elephant | XM_003406118 | Annotated |
| Macaca mulatta | Rhesus monkey | NM 001044739.1 | (Villinger et al., 2001) |
| Macaca nemestrina | Pig tailed macaque | AF344854 | (Villinger et al., 2001) |
| Marmota monax | Woodchuck | AF130428.1 | Unpublished |
| Meleagris gallopavo (PREDICTED) | Turkey | XM_003207503 | Annotated |
| Monodelphis domestica (PREDICTED) | Opossum | XM 001371277.1 | Annotated |
| Mus musculus | Mouse | NM 009843.3 | (Freeman et al., 1992) |
| Nomascus leucogenys (PREDICTED) | White cheeked Gibbon | XM_003253971 | Annotated |
| Ornithorhynchus anatinus (PREDICTED) | Platypus | XM 001514865.1 | Annotated |
| Oryctolagus cuniculus | Rabbit | NM 001082685.1 | (Isono et al., 1995) |
| Ovis aries | Sheep | NM 001009214.1 | (Chaplin et al., 1999) |
| Papio Anubis | Olive baboon | NM 001112634.1 | (Villinger et al., 2001) |
| Pongo abelii (PREDICTED) | Orangutan | XM_002812770 | Annotated |
| Rattus norvegicus | Norway Rat | $\frac{\text { NM } 031674.1}{\text { U90271 }}$ | (Waterhouse et al., 1995) |
| Sus scrofa | Pig | AF281633.1 | Direct Submission |
| Taeniopygia guttata (PREDICTED) | Zebra finch | XM_002197453 | Annotated |

## Appendix 4E

M. domestica CD86 partial nucleotide sequence
cgggactgtagacctgtcttgtaattttaagaatcctgaaggaatcagcctggaagaactactgatattttgg caagatgctaatgatcttgttctgtatgagctatatcaaggaagagagaagcaagatcacatccatgagaagt accttaaccgaaccgagtacaaccaaaccacgtggactttacaactccggaatatccagattgaggatcagag ggaatataaatgtttagtccaacaccgtagccccagaggcttagttcttgtccatcggttttcttttcagctg tttgtctttgctcctttcagtcaacctgaaataacacgacttgataacatgacagtaaaaattggggacgtgt tgaatttttcgaaataacacgacttgataacatgacagtaaaaattggggacgtgttgaatttttc
M. domestica CD86 putative amino acid sequence

GTVDLSCNFKNPEGISLEELLIFWQDANDLVLYELYQGREKQDHIHEKYLNRTEYNQTTWTLQLRNIQIEDQR EYKCLVQHRSPRGLVLVHRFSFQLFVFAPFSQPEITRLDNMTVKIGDVLNFSK

Secondary structure prediction for M. domestica CD86 using PSIpred



Figure 4E.1. Secondary structure prediction of M. domestica CD86.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 4E

Amino acid alignment of CD86 (eCD86= ensembl sequence), $M$. domestica is the obtained sequence from amplification of the molecule in $M$. domestica thymus cDNA library

```
eCD86 ATKPKVEALFNGTVDLSCNFKNPEGISLEELLIFWQDANDLVLYELYQGREKQDHIHEKY 60
M.domestica ---------GTVDLSCNFKNPEGISLEELLIFWQDANDLVLYELYQGREKQDHIHEKY }4
    **************************************************
    LNRTEYNQTTWTLQLRNIQIEDQREYKCLVQHRSPRGLVLVHRFSFQLFVFAPFSQPEIT }12
    LNRTEYNQTTWTLQLRNIQIEDQREYKCLVQHRSPRGLVLVHRFSFQLFVFAPFSQPEIT 109
        **************************************************************
        RLDNMTVKIGDVLNFSCSSEQGYPEPEEMYWMITTENSTKIPGIMDLSQDKTTQLYNVRS 180
        RLDNMTVKIGDVLNFSK------------------------------------------------}12
        *****************
eCD86 TLTLTFNETTRTNISCYLQTVRQKEP 206
M.domestica --------------------------
```

Figure 4E.2. Alignment of the predicted $M$. domestica CD86 (eCD86) from ensembl and the expressed sequence.

## Appendix 4E

Alignment of known CD86 sequences
R.norvegicus
M.musculus
M. unguiculatus
M.monax
C.griseus
P.troglodytes
P.anubis
C. troquatus
M.mulatta
M.nemestrina
C. aethiops
c.jacchus
O.cuniculus
S.scrofa
B. taurus
C.familiaris
A.melanoleuca
L.africana
pred.M.domestica
M.domestica
G.gallus
T.guttata
F.catus
O.aries
O.mykiss
R.norvegicus
M.musculus
M.unguiculatus
M.monax
C. griseus
P.troglodytes
P. anubis
C. troquatus
M.mulatta
M.nemestrina
C. aethiops
C.jacchus
O.cuniculus
S.scrofa
B. taurus
C.familiaris
A.melanoleuca
L.africana
pred.M.domestica
M.domestica
G.gallus
T.guttata
F.catus
O.aries
O.mykiss
R.norvegicus
M.musculus
M.unguiculatus
M.monax
C.griseus
P.troglodytes
P.anubis
C. troquatus
M.mulatta
M.nemestrina
C. aethiops
c. jacchus

IGV-domain
MYVVKTCVTCTMYLGILFSVLAYLL-------------SDAVPVKRQAYFNSTAYLPCP 46 -----MDPRCTMGLAILIFVTVLLI--------------SDAVSVETQAYFNGTAYLPCP 41
-----MDPRRIMELGILLLVTAFTL-------------SGAASMKIQAYFNSTACLPCP 41
-----------MGLRITLFVTAFLL--------------SDVASLKSQASFNETADLPCQ 35
-----MDPQCTMGLSNILFVMAFLL-------------SGAAPLKIQAYFNETADLPCQ 41
-----------MGLSNTLFVMAFLL--------------SGAAPLKIQAYFNETADLPCQ 35
-----------MGLSNILFVMAFLL-------------SGAAPLKIQAYFNETADLPCQ 35
----------MGLSNILFVMAFLL-------------SGAAPLKIQAYFNETADLPCQ 35
----------MGLSNILFVMAFLL-------------SGAAPLKIQAYFNETADLPCQ 35
-----------MGLSNILFVMAFLL--------------SGAAPLKIQAYFNETADLPCQ 35
----------MGLINILFVMAFLL-------------SGAPLKIQAYFNETADLPCQ 35
-----MDLQCAMGRITILFMVGFLI--------------SGVDSLKIHAYFNETADLPCQ 41
-----MDAGCTMGLSVTVFVMALLL-------------SGAASLRIQAYFNKTADLPCQ 41
-----------MGLSNILFVMVLLL-------------SGAASLKSQAYFNETGELPCH 35 ----MRFK-CTMGLRNILMGMALRLSVSK------VPFSGAASLKSHAFFNETGELPCH 48 ----MYLR-CTMELNNILFVMTLLL--------------YGAASMKSQAYFNKTGELPCH 41 ----MGICDSTMGLSNTLLGMALLI--------------SGAASMMSQGYFNKTGELPCH 42 ---MYAQFQSKMAMSSGPLLIRQLQ---------------GAAAAIKTYFNETAYLPCQ 41 ---MEAHLPRELGETEALGIIEDTGDGRGSSRLRRWCAVAAATKPKVEALFNGTVDLSCN 57 -----------------------------------------------GTVDSCN 8 -----------MEVCIFFLYAIILLPG----------IAAN-VHHVKSFLNHTAYLSCY 37 -----------MEVCIFFLCAMIFLPG----------IAAASVHPVQAFLHHTVYLSCY 38 -MGHAAKWKTPLLKHPYPKLFPLLMLAS------LFYFCSGII--QVNKTVEEVAVLSCD 51 -MGHTMKWGTLLPKRPCLWLSQLLVLAG------LFHFCSGITPKSVTKRVKETVVLSCD 53 -----MTVDYGMCARRLLRRCVILFLVS-----------VQFIQSKDVTMVIGEVGGSVT 44

FTKAQNISPSELVVFWQDRKKSVLYEHYLGAEKLDNVNAKYLGR-TSFDRDNQALRLHNV 105 FTKAQNISLSELVVFWQDQQKLVLYEHYLGTEKLDSVNAKYLGR-TSFDRNNWTLRLHNV 100 HSKVQNMSLSELVVFWQDQKKLVLYEHYLGREKSNSVNAKYLGR-TSFDEHNWALRLPNV 100 FINSQNISLGELIIFWQDQQKLVLYELYLGNEKPDNVAAKYLGR-TSFDQDNWTMQLHNV 94 FANSQNQSLSELVVFWQDQENLVLNEVYLGKEKFDSVHSKYMGR-TSFDSDSWTLRLHNL 100 FANSQNQRLSELVVFWQDQENLVLNEVYLGKEKFDSVHSKYMGR-TSFDSDSWTLRLHNL 94 FANSQNRSLSELVVFWQNQENLVLNEVYLGREKFDSVHSKYMGR-TSFDPESWTLRLHNL 94 FANSQNRSLSELVVFWQNQENLVLNEVYLGREKFDSVHSKYMGR-TSFDPDSWTLRLHNL 94 FANSQNRSLSELVVFWQNQENLVLNEVYLGKEKFDSVHSKYMGR-TSFDPESWTLRLHNL 94 FANSQNRSLSELVVFWQNQENLVLNEVYLGKEKFDSVHSKYMGR-TRFDPESWTLRLRNL 94 FANSQNRSLSELVVFWQNQENLVLNEVYLGQEKFDSVHSKYMGR-TSFDPESWTLRLHNL 94 FANSQNLSLSELVAFWQNQENLVLNEVYLGKEKFDSVHSRYMGR-TSFDPDSWTLRLHNL 100 FTNSQSRSLSELVVFWQDQERLVLYELFLGREKPDNVDPKYIGR-TSFDQESWNLQLHNV 100 FTNSQNLSLDELVIFWQDQDNLVLYELYRGQEKPHNVNSKYMGR-TSFDQATWTLRLHNV 94 FPNTQNLSLDELVIFWQDQNKLVLYELFKGQEKPNNVNPKYIGR-TSFDQDSWTLRLHNV 107 FTNSQNISLDELVVFWQDQDKLVLYELYRGKENPQNVHRKYKGR-TSFDKDNWTLRLHNI 100 FTNSQNISLDELVVFWQDQDKLVLYELYRGKENPQNVHPKYKGR-TSFDKDNWTLKLHNI 101 FINSQNISLDELVVFWQNQEKLVVYELYQGKEKFDNVDPKYKNRNISFDEENWTLRLHNV 101 FKNPEGISLEELLIFWQDANDLVLYELYQGREKQDHIHEKYLNR-TEYNQTTWTLQLRNI 116 FKNPEGISLEELLIFWQDANDLVLYELYQGREKQDHIHEKYLNR-TEYNQTTWTLQLRNI 67 FPNSQKTDINNVIVFWQKGTGEVVHEVYLGQEKHDHLNSKYINR-TKMDMDKWTLQLLNV 96 FPNSQKFDVKDLIIFWQKESKKVLLHEVYHGQEKHDNLSPEYINR-TKVDMGKWTLQLLNA 97 Y-NISTKELTEIRIYWQKDDEMVLAVMSG----KVQVWPKYKNRTFTDVTDNHSIVIMAL 106 Y-NTTTEELASLRIYWQKDSKMVLAILLG----KVQVWSEYENRTITDINNNPRIVILAL 108 LPCTSDIQRLPNHLYVQRPDPNKFINGYHKTRDLPSPHPEYSNR-TQVDHTQGTMRLWSI 103

## vPKA binding site

QIKDTGLYDCFIQQKTPTGSIILQQWETELSVIAN-FSEPEIEEAQNETRNT--GINLTC 162 QIKDMGSYDCFIQKKPPTGSIILQQTLTELSVIAN-FSEPEIKLAQNVTGNS--GINLTC 157 QITDMGSYDCYIQQKRPTGSVILQQTNMELSVVAN-FSEPEIELAQNVTRNS--GINLTC 157 QIKDKGSYQCIVHHKGPQGIVHLYQMTSELSVFAN-FSEPEIRPLSNITGDS--GINLTC 151 QIKDKGLYQCIIHHKKPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENV--YINLTC 157 QIKDKGLYQCIIHHKKPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENV--YINLTC 151 QIKDKGLYQCIIHHKRPTGMIRIHQMNSELSVLAS-FSQPEIVPISNITENM--YINLTC 151 QIKDKGLYQCIIHHKRPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENM--YINLTC 151 QIKDKGLYQCIIHHKRPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENM--YINLTC 151 QIKDKGLYQCIIHHKRPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENM--YINLTC 151 QIKDKGLYQCIIHHKRPTGMIRIHQMNSELSVLAN-FSQPEIVPISNITENM--YINLTC 151 QITDKGLYRCIIHHKKPTGMIRIHQMNSDLLVLAN-FSQPEIVPISNITENL--YINLTC 157

## Appendix 4E

O.cuniculus
S.scrofa
B.taurus
C.familiaris
A.melanoleuca
L.africana
pred.M.domestica
M.domestica
G.gallus
T.guttata
F.catus
o.aries
O.mykiss

R.norvegicus
M.musculus
M.unguiculatus
M.monax
C.griseus
P.troglodytes
P.anubis
C.troquatus
M.mulatta
M.nemestrina
C.aethiops
C.jacchus
o.cuniculus
S.scrofa
B.taurus
C.familiaris
A.melanoleuca
L.africana
pred.M.domestica
M.domestica
G.gallus
T.guttata
F.catus
o.aries
o.mykiss

QIKDKGVYQCFVHHRGAKGLVPIYQMNSELSVLAN-FTQPEITLISNITRNS--AINLTC 157 QIKDKGSYQCFIHHKGPHGLVPIHQMSSDLSLLAN-FSQPEINLLTNHTENS--VINLTC 151 QIKDTGSYQCFIHHRRSQGLVSIHQMSSDLIVLAN-FSQPEIRLIANQTEKSN-IINLTC 165 QIKDKGLYQCFVHHKGPKGLVPMHQMNSDLSVLAN-FSQPEIMVTSNRTENSG-IINLTC 158 QIKDKGSYQCFIHHKGPKGLVPMYHMGSELSVLAN-FTQPEIMVTSNRTENSG-IINLTC 159 EIKDQGDYQCFIHHKGPKGLVPSHKMTRELKVLSN-FSQPEIMEGSNSSSKS--YRNLTC 158 QIEDQREYKCLVQHRSPRGLVLVHRFSFQLFVFAP-FSQPEITRLDNMTVKIGDVLNFSC 175 QIEDQREYKCLVQHRSPRGLVLVHRFSFQLFVFAP-FSQPEITRLDNMTVKIGDVLNFSK 126 GIVDEGQYKCIIMHVDKGPKKLIHESECLLNITAN-YSQPVIAQLHTGEPKPNENLNLSC 155 EIEDEGLYQCIIQKIVEQSKEVVHQSECSLRIVAN-YSQPEIAELHSGELKPNGYLNLSC 156 RLSDNGKYTCIIQKIE-KGSYKVKHLTSVMLLVRG-------------------------- 140 RLSDSGTYTCVIQKPDLKGTYKVEHLTSVKLMIRADFPVPTINDLGNPSPNIR---RVIC 165 RLSDEGLYECHIGYPT-----KNNQKNIQLSVTAN-YSIPNVTVACDNGSCL-----VTC 152

SSKQGYPKPTKMYFLIT--NSTNEYGDNMQISQDNVTKLFSVSISLSLPFPDGVYYNMTIV 220 TSKQGHPKPKKMYFLIT--NSTNEYGDNMQISQDNVTELFSISNSLSLSFPDGVWHMTVV 215 TSEHGFPKPMKMYFLII--NSTNKQGDDMEISQDNVTELFSVSTSLSLPFPEDAYNVTFW 215 S---------------------------------------------------------152 152 SSIHGYPEPKKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 217 SSIHGYPEPKKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSVLLRTKNPTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSVLLRTKNSTIEYDGVMQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 211 SSIHGYPEPEKMSFLLITKNSTTEYDGVIQKSQDNVTELYDVSISLSVSFPDVTSNMTIF 217 SSVQGYPEPKKMFFVLKTENATTEYDGVIEKSQDNVTGLYNISISGSITFSDDIRNATIY 217 SSTQGYPEPQRMYMLLNTKNSTTEHDADMKKSQNNITELYNVSIRVSLPIPPET-NVSIV 210 SSIQGYPEPQRMYVSLNTTNSSSTYDAVMKKSQSNITELYNVSISVSFPIPPET-NVTIF 224 SSIQGYPEPKEMYFLVKTENSSTKYDTVMKKSQNNVTELYNVSISLSFSVPEAS-NVSIF 217 SSVQGYPEPKEMYFKLKTENSTTKYDTAMKKSQNNVTELYNVSISLSFSVPEAS-NVSIT 218 SSIQGYPQPEEMYFLLTTENSTIKYSTTMQKSQDNITELYNVSISWSYSGFHDTTNRSII 218 SSEQGYPEPEEMYWMITTENSTKIPG-IMDLSQDKTTQLYNVRSTLTLTFNETT-RTNIS 233

SSSGGYPEPKQMIWLISSENITDRLIRHMDVLQDAVTKLYNVTSKLNIPVPTNT-LTNIS 214 SSSGGYPEPKEMTWLISHENITHSSTAHMDVSQDAVTKLYNVTSKLNIPVPTKS-RTNIS 215
$------------------------------------------147$
STSGGFPRP----YLSWLENGEELNATNTTLSQDPETKLYTISSELDFNMTSDHNFLCLV 221
SSDNGYPRRDVEWSLNPPLNQSHWGVVNSSGWTDPVSMLFSVFSSISINCSSGP-RLNLS 211
R.norvegicus
M.musculus
M.unguiculatus
M.monax
C.griseus
P. troglodytes
P.anubis
C. troquatus
M.mulatta
M.nemestrina
C. aethiops
C. jacchus
O.cuniculus
S.scrofa
B. taurus
C.familiaris
A.melanoleuca
L.africana
pred.M.domestica
M.domestica
G.gallus
T.guttata
F.catus
O.aries
O.mykiss

CILETESMN--ISSKPHNMVFSQPQF---DRKTWIQIAGPSSLLCCLFLLVVYKA----- 270
CVLETESMK--ISSKPLNFTQEFP-S---PQTYWKEITAS----VTVALLLVMLL----- 260
CVLETKSMN--ISSRPFSVVLPEPRP---VQENWRVTVVVA---VVVAVLGAVLP----- 262
CILETDKTR--LLSSPFFSIELEDPQP---PPDHIPWITAVLPTVIICVM-VFCLI-LWKW 270 CILETDKTR--LLSSPFSIELEDPQP---PPDHIPWITAVLPTVIICVM-VFCLI-LWKW 264
CVLETDKTQ--LLSSPFSI----------------------------------------- 228
CVLETDKTQ--LLSSPFSSIELEDPQP---PPDHIPWITAVLPTVIICVM-AFCLI-LWKW 264 CVLETDKTQ--LLSSPFFSIELEDPQP---PPDHIPWITAVLPTVIICVM-AFCLI-LWKW 264 CVLETDKTQ--LLSSPFFSIELEDPQP---PPDHIPWITAVLPSVVICVM-AFCLI-LWKW 264 CVLETDKTQ--LLSSPFSIELEDPQP---PPDHIPWITAVLPTVIICVM-AFCLI-LWKC 264 CVLQTKKTQ--LLSSPFFSIEIEDLQP---PPDRIPWIAAVLLAIIICVMMVFCLLNLWKW 272 CVLQTESTE--TYSQHFPIVPADPVP---VEKPRLWIAAVALTLIVVCGIVLFLT--LWK 270 CVLQLEPSKTLLFSLPCNIDAKPPVQ-PPVPDHILWIAALLVTVVVVCG--MVSFVTLRK 267 CALQLEPTK-IILSQPYNIDAKSPVPSPPVPDHILWIAALLVTVVVS-G--MV-FLTLKK 279 CVLQLESMK--LPSLPYNIDAHTKPT--PDGDHILWIAALLVMLVILCG--MVFFLTLRK 271 CVLQLESME--LHSLPYNIDAHTKPP--PARDPILWIAALLVMLVILCGMVLVFFLTLRK 274 CVLCVSEMC--LFSKPYDIVPPKTHP--PPKDDILWITALSLVIVGVTVFFLVRW----- 269
CYLQTNYWR--PPAQPAVHRQDKQQK----TLKMKAEAGAKLDLLRVPRKAATLG----- 282
CLLHLGEQQGSLVSVPLVIEIPAEEM----EPVKVVNFFGPLVAVILLVT--LLLG----- 263
CLLHLREQLGSLVSVPLGIEIQEKEM----EQAKINFFGPLIAVVVLITSALLLG----- 266
KYGDLTVSQ--------TFYWQESKPTPSANQHLPWTIIIPVSACGISVIIAVIL-------------- 268
CAVGGALSQEHTVCRPPDISVVSVIC------AVSVIAAVLLCFLVLVS----------- 254
R.norvegicus ----------VK-KCLKMQNQPGRPSRKTCESKQDSGVD-ESINLEEVEPQLHQQ----- 313
M.musculus ----------II-VCHKKPNQPSRPSNTASKLERDSNADRETINLKELEPQIASAKPNAE 309

## Appendix 4E

| M. unguiculatus | LI - IYFLCSCWSRRKDARRSRSRVASVS-------------------- 289 |
| :---: | :---: |
| M.monax |  |
| C.griseus | KKKKRPRNSYKC-GTNTMEREESEQTKKREKIHIPERSDEAQRVFKSSKTSSCDKSDTCF 329 |
| P.troglodytes | KKKKRPRNSYKC-GTNTMEREESEQTKKREKIHIPERSDEAQRVFKSSKTSSCDKSDTCF 323 |
| $P$.anubis | -----------GTNTMEREESEQTKKREKINVPERSDEAQCVFKSLKTPSCDKSDTHF 275 |
| C.troquatus | KKKKQPRNSYNC-GTNTMEREESEQTKKREKINVPERSDEAQCVFKSLKTPSCDKSDTHF 323 |
| M.mulatta | KKKKQPRNSYKC-GTNTMEREESEQTKKREKINVPERSDEAQCVFKSLKTPSCDKSDTRF 323 |
| M.nemestrina | KKKKQPRNSYKC-GTNTMEREESEQTKKREKINVPERSDEAQCVFKSLKTPSCDKSDTRF 323 |
| C.aethiops | KKKKQPRNSYKR-GTNTMEREESEQTKKREKINVPERSDETQCVFKSLKTPSCDKSDTRF 323 |
| C. jacchus | KKKQQPCISCEC-EHINMERGESEQTQERDSSRWRGRSSLG--LQQLRIAALSEGSEV-327 |
| O.cuniculus | RKKEQQPGVCEC-ETIKMDKAENEHVEERVKIHEPEKIPAKAAKCEHRLKTPSSDKSAAH 329 |
| S.scrofa | RKKKQPGPSNECGETIKMNRKASEQTKNRAEVHE--RSDDAQCDVNILKTASDDNSTTDF 325 |
| B. taurus | RKKKQPGPSNEC-EIIKVEEKESEQTAKRVELQEPERSDEVQCDVNISKTASDNKSATNL 338 |
| C.familiaris | RKKKQPGPSHEC-ETNKVERKESEQTKERVRYHETERSDEAQC-VNISKTASGDNSTTQF 329 |
| A.melanoleuca | RKKKQPGPSHEC-ETNKMERKESEQTMERVQPHVPERADEAQC-VNISKTTSGNKSTTH-331 |
| L.africana | ------------KRKKKQPDLSRECQESETIKVEEALTL------------------- 296 |
| pred.M.domestica | -----FSHEDPAPNPKPQKKGEGNPNRETLALQRVQYRC----------- 316 |
| M.domestica |  |
| G.gallus | -FLILK-NRNISSTSQSVSLAV------------------------- 283 |
| T.guttata | ---FVILKKNSKILSTSQSVSLAV------------------------- 287 |
| F.catus | ----LRSRPELRSRVGRLID--------------------------- 173 |
| O.aries | --ACLTCRNAARCRRRRRNENMEMERWSVSIKSVEG------------ 302 |
| O.mykiss | ----SRKKKKAQTARSNQGGKGAASSEENVQLT----------------- 283 |


| R.norvegicus | - |
| :--- | :--- |
| M.musculus | - |
| M.unguiculatus | - |
| M.monax | - |
| C.griseus | - |
| P.troglodytes | - |
| P.anubis | - |
| C.troquatus | - |
| M.mulatta | - |
| M.nemestrina | - |
| C.aethiops | - |
| C.jacchus | F 330 |
| O.cuniculus | - |
| S.scrofa | - |
| B.taurus | - |
| C.familiaris | - |
| A.melanoleuca | - |
| L.africana | - |
| pred.M.domestica | - |
| M.domestica | - |
| G.gallus | - |
| T.guttata | - |
| F.catus | - |
| O.aries |  |

Fig. 4E. 3 Multiple sequence alignment for CD86 including the predicted and actual sequence of $M$.
domestica CD86. Underlined $=\lg -\mathrm{V}$ domain. $\mathrm{C}=$ structurally important cysteines. $\mathrm{N}=$ putative N linked glycosylation sites. $\underline{S}=$ predicted serine phosphorylation sites. $Y=$ tyrosine phosphorylation sites. $\mathbf{V}=$ putative PKA binding site.

## Appendix 4E

Table 4E. 1 Genbank accession numbers for CD86 and the relevant references.

| Species | Common name | Accession number | References |
| :---: | :---: | :---: | :---: |
| Ailuropoda melanoleuca | Giant Panda | XM_002927223 | Annotated |
| Bos taurus | Cattle | NM_001038017 | (Harhay et al., 2005) |
| Callithrix jacchus | White tuffed ear marmoset | XM_002758743 | Annotated |
| Canis lupus familiaris | Dog | NM_001003146 | (Yang and Sim, 1999) |
| Cercocebus torquatus atys | Sooty mangabey | AF344840 | (Villinger et al., 2001) |
| Cercopithecus aethiops | Green monkey | AF344861 | (Villinger et al., 2001) |
| Felis catus | Cat | NM_001009229 | (Choi et al., 2000b) |
| Gallus gallus | Chicken | NM_001037839 | Direct submission |
| Homo sapiens | Human | $\begin{aligned} & \hline \text { NM_001206925, } \\ & \text { U04343 } \\ & \text { NM_175862 } \\ & \hline \end{aligned}$ | (Chen et al., 1994) <br> (Azuma et al., 1993) <br> (Chen et al., 1994) |
| Loxodonta africana | African Elephant | XM_003412829 | Annotated |
| Macaca mulatta | Rhesus monkey | NM_001042644 | (Villinger et al., 2001) |
| Macaca nemestrina | Pig-tailed macaque | AF344851 | (Villinger et al., 2001) |
| Marmota monax | Woodchuck | EU586564 | Direct submission |
| Meriones unguiculatus | Mongolian gerbril | AY095931 | Direct submission |
| Monodelphis domestica | South American grey short tailed opossum | XM_001371482 | Annotated |
| Mus musculus | Mouse | NM_019388 | (Borriello et al., 1995) |
| Oncorhynchus mykiss | Rainbow trout | NM_001160477 | (Zhang et al., 2009) |
| Oryctolagus cuniculus | Rabbit | NM_001082208 | (Isono and Seto, 1995) |
| Ovis aries | Sheep | DQ304077 | (Terzo et al., 2006) |
| Pan troglodytes | Chimpanzee | XM_001166230 | Annotated |
| Papio anubis | Olive babboon | $\begin{aligned} & \text { NM_001112636, } \\ & \text { AF344836 } \end{aligned}$ | (Villinger et al., 2001) |
| Pongo abelii | Orangutan | XM_002813228 | Annotated |
| Rattus norvegicus | Norwegian Rat | NM_020081 |  |
| Sus scrofa | Pig | $\begin{aligned} & \text { NM_214222 } \\ & \text { AY834754 } \end{aligned}$ | (Maher et al., 1996) (Choi et al., 2006) |
| Taeniopygia guttata | Zebra Finch | XM_002197578 | Annotated |

## Appendix 5A

Macropus eugenii TCR弓 chain nucleotide sequence
atgcaattcctttccacagaggcccagagttttggactggcagacccaagactgtgctaccttctagatggca tcctcttcatttatggagtcatcatcacggccctgttcctgagagcaaagttcagtaagactgccaaaatctc cagctaccaacaggaccagaatcaactctacaatgagctctccccaggacgaagagaagaatatgacatttta gataagagaagaggccgtgacccagagatgggaggaaaacagagaaggaagaatcctacagaaagcgtctaca atgcactgcagaaagacaagatggcggatgcatacagtgagattggaatgaaaggagagaaccagcggagacg aggcaaaggaaatgatgtcctgtaccagggcctcagtccagccaccaaggacacctatgatgctctccacatg cagcccctgcctcccogttaa 3'end
aaagaacaaccatcactgctccactgaccaggtttgccaggacgcagcatttaaaaccgacccccaccaaaaa aaaaaaaaaaaaaagggggggggggttttgtggggttttttaaaaaaaaaaaaaaaaaaatgggtttatc cggacgtaaatcaccttgtctgaacggaacatttcttcagtactttgtccccgtaaatacacatgacgagtat ccggatcttggaaaatgccctcgccttctcgtaaatgcacaatattaaatgaataatccaaaccttccctgca tgctgttttgacggtgccatccccatcgccgccgtcgtataacgaacccactattctggattgctcagctcat attgattcgcgccatatttcgctttattttcttctataatcggcaataaccattgagataactgttcttgatc tgcttgcataatgtcggcattaaaagcaagcctatcttgttgtgcgagctaccttgccagtccttgtaaagaa cgagtggatttaaagttgcaagaatatcctgattccttttatacccccgtgaaaacccacaatcgcactctgc agcttcatttctggcttgtgattattgtctttataagtacgatggcctttaggaagcagagaaactttctcat agctcacgccgtcagtatctctatttcagtgtaattcga

## M. eugenii putative protein of TCR弓 chain

MQFLSTEAQSFGLADPRLCYLLDGILFIYGVIITALFLRAKFSKTAKISSYQQDQNQLYNELSPGRREEYDIL DKRRGRDPEMGGKQRRKNPTESVYNALQKDKMADAYSEIGMKGENQRRRGKGNDVLYQGLSPATKDTYDALHM QPLPPR

## Appendix 5A

Onychogalea fraenata TCR弓 chain nucleotide sequence
atgaagtggaaggggattgttatcacagccgtcctgcaggcacgggtcccaattacagaggcccagagttttg gactggcagacccaagactgtgctaccttctagatggcatcctcttcatttatggagtcatcatcacggccct gttcctgagagcaaagttcagtaagattgccaaaatctccagctaccaacaggaccaaaatcaactctacaat gagctttccccaggacgcagagaagaatatgacattttagataagagaagaggccgtgacccagagatgggag gaaaacagagaaggaagaatcctacagaaaccgtctacaatgcactgcagaaagacaagatggcggacgcata cagtgagattggaatgaaaggagagaaccagcggagacgaggcaaaggaaatgatgtcctgtaccagggcctc agtccagccaccaaggacacctatgatgctctccacatgcagcccctgcctcccogttaa

## O. fraenata TCR弓 putative Protein

MKWKGIVITAVLQARVPITEAQSFGLADPRLCYLLDGILFIYGVIITALFLRAKFSKIAKISSYQQDQNQLYN ELSPGRREEYDILDKRRGRDPEMGGKQRRKNPTETVYNALQKDKMADAYSEIGMKGENQRRRGKGNDVLYQGL SPATKDTYDALHMQPLPPR

## Appendix 5A

M. domestica TCR弓 partial nucleotide sequence
tggctgaccccagactgtgttattttctagatggcatcctcttcatatatggagtcatcatcacggccotatt cctaagagcaaagttctccaagactgccagagtttctgcctaccaacgagatcagaaccaagtctacaatgag ctctctatgggacgaagagaagaatatgacattttagataagagaagaggaggccatgacccagagattggag gaaaacagagaaggaagaatcctcaagaaaccgtgtacaattcactgcaaaaagacaagatggcagaagcata cagtgagattggaatgaaaggcgagaaacagcggagacgtggcaaaggaaatgatgtcctgtaccagggcctc agcccagccaccaaggacacctatgacgccctccacatgcagc
M. domestica putative amino acid sequence

ADPRLCYFLDGILFIYGVIITALFLRAKFSKTARVSAYQRDQNQVYNELSMGRREEYDILDKRRGGHDPEIGG KQRRKNPQETVYNSLQKDKMAEAYSEIGMKGEKQRRRGKGNDVLYQGLSPATKDTYDALHMQ

BLAT result in USCS for TCR弓 O. fraenata
Input sequence. (O. fraenata)
ATGAAGTGGAAGGGGATTGTTATCACAGCCGTCCTGCAGGCCCGGGTCCCAATTACAGAGGCCCAGAGTTTTG GACTGGCAGACCCAAGACTGTGCTACCTTCTAGATGGCA/TCCTCTTCATTTATGGAGTCATCATCACGGCCC TGTTCCTGAGAGCAAAGTTCAGTAAGATTGCCAAAAT/CTCCAGCTACCAACAGGACCAGAATCAACTCTACA ATGAGCTTTCCCCAGGA/CGCAGAGAAGAATATGACATTTTAGATAAGAGAAGAGGCCGT/GACCCAGAGATG GGAGGAAAACAGAGAAGGAAGAATCCTACAGAAACCGTCTACAATGCACTGCAGAAAGACAAGATGGCGGACG CATACAGTGAGATTGGAATGAAAGGAGAGAACCAGCGGAGACGAGGCAAAGGAAATGATGTCCTGTACCAGGG CCTCAGTCCAGCCACCAAGGACACCTATGATGCTCTCCACATGCAGCCCCTGCCTCCCCGTTAA

Figure 5A.1. / Exon boundaries according to UCSC.

Appendix 5A


## Appendix 5A

| E.caballus | YG-LLDPKLCYVLDGILFIYGVIVTALFLRMKFGRRADAPAEPQGGGL------LYQEL |
| :---: | :---: |
| S.scrofa | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQ------LYNEL |
| H.sapiens | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSAEPPAYQQGQNQ------LYNEL |
| P.troglodytes | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQ------LYNEL |
| N.leucogenys | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQ------LYNEL |
| P.abelii | FG-LLDPKLCYLLDGILFIYGVILTALFLRLKFSRSADPPAYQQGQNQ------LYNEL |
| M.mulatta | FG-LLDPKLCYLLDGILFLYGVILTALFLRAKFSRSADAPAYQQGQNQ------LYNEL |
| M.fascicularis | FG-LLDPKLCYLLDGILFLYGVILTALFLRAKFSRSADAPAYQQGQNQ------LYNEL |
| $P$.anubis | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQ------LYNEL |
| C.torquatus | FG-LLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQ------LYNEL |
| A.nancymaae | FG-LLDPKLCYLLDGILFIYGVIVTALFLRVKFSRSADAPVYQQGQNQ------LYNEL |
| O.cuniculus | FG-LLDPKLCYLLDGILFLYGVIVTALYLRAKFSRGEDVPVSPQGHTQ------LYNEL |
| L.africana | FG-LLDPKLCYLLDGILFLYGVIVTALFLRAKFGRSADMPVYQSGPNQ------LYNEL |
| C.porcellus | FG-LLDPKLCYLLDGILFIYGVIITALFLKAKFGRSTELPIHQQGQNQ-------VYNEL |
| C.familiaris | EC-LCLMPLSWHPGKLPAIRGKPFGAVRRRLRSTRPAAPPGAPRGPGQSPRRSSRLLQEL |
| G.gallus | VLGLTNPRLCYLLDGFLFIYAVIITALFVKAKLSQASEPQLLLGQDDV--------YNKL |
| M.gallopavo | VLGLTDPRLCYLLDGFLFIYAVIITALFVKAKLSQSSEPQLLLDQDDV-------YNKL |
| A.carolinensis | $\underset{*}{\operatorname{LG}-\operatorname{LADPRLCYILDGILLIYAIVITACFVKTKLSKGHSERTSQNTDTI--------YNKL~}}$ |
|  | ↔ ITAM $2 \rightarrow 240$ |
| M.eugenii | SPGRREEYDILDKRRG-RDPEMGGKQ--RRKNPTESVYN-------ALQKDKMADAYSE |
| O.fraenata | SPGRREEYDILDKRRG-RDPEMGGKQ--RRKNPTETVYN-------ALQKDKMADAYSE |
| M.domestica | SMGRREEYDILDKRRGGHDPEIGGKQ--RRKNPQETVYN-------SLQKDKMAEAYSE |
| $R . n o r v e g i c u s$ | NLGRREEYD-VLDKKRPRDPEMGGKQQ-RRRNPQEGVYN-------ALQKDKMAEAYSE |
| M.musculus | NLGRREEYD-VLEKKRARDPEMGGKQQ-RRRNPQEGVYN-------ALQKDKMAEAYSE |
| C.griseus | SLGRREEYD-VLDKKWARDPEVGGKQQ-RRRNPQEGVYN-------ALQKDKMAEAYSE |
| B.taurus | NVGRREEYA-VLDRRGGFDPEKGGKPQ-RKKNPNEVVYN-------ELRKDKMAEAYSE |
| B.bubalis | NVGRREEYA-VLDRRGGFDPEKGGKP--RKKNPNEVVYN------ELRKDKMAEAYSE |
| O.aries | NVGRREEYA-VLDRRGGFDPEMGGKPQ-RKKNPHEVVYN-------ELRKDKMAEAYSE |
| E.caballus | NLGRREEYDGIADKRRARDPEMGGKQQ-RRKNPQEVVYN-------SLQKDKMAEAYSE |
| S.scrofa | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ELQKDKMAEAYSE |
| H.sapiens | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ELQKDKMAEAYSE |
| P.troglodytes | NLGRREEYD-VLDKRRGRDPEMGGKPQ-RRKNPQEGLYN-------ELQKDKMAEAYSE |
| N.leucogenys | NLGRREEYD-VLDKRRGRDPEMGGKPQ-RRKNPQEGLYN-------ALQKDKMAEAYSE |
| P.abelii | NLGRREEYD-VLDKRRGRDPEMGGKPQ-RRKNPQEGLYN-------ALQKDKMAEAYSE |
| M.mulatta | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ALQKDKMAEAYSE |
| M.fascicularis | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ALQKDKMAEAYSE |
| $P$.anubis | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ALQKDKMAEAYSE |
| C. torquatus | NLGRREEYD-VLDKRRGRDPEMGGKP--RRKNPQEGLYN-------ALQKDKMAEAYSE |
| A. nancymaae | NLGRREEYD-VLDKRRGRDPEMGGKQQ-RRKNPQEGLYN-------ALQKDKMAEAYSE |
| O.cuniculus | NIGRREEYD-VLDKRRGRDPEMGGKQ--RRKNPQEGLYN-------ALQKDKMAEAYSE |
| L.africana | NLGRREEYD-VLDKRRGRDPEVGGKQQ-RRKNPQEGVYN-------ALQKNKMAEAYSE |
| C.porcellus | NLGRREEYD-FLDKRRGRDPEMGGKQP-RRKNPQDGVYN-------ALQKDKMAEAYSE |
| C.familiaris | NLRGREEYE-VLDKRRGLDPEMGGKQ--RKRNPQEVVYNCPCPLLCLVLQKDKMAEAYSE |
| G.gallus | SRGHRDEYDVLGTRRG-ADLEKGGRHEQRRKNPHDTVYS-------SLQKDKMGEAYSE |
| M.gallopavo | SRGHRDEYDVLGTRRG-ADLEKGGRHEQRRKNPHDTVYS-------SLQKDKMGEAYSE |
| A.carolinensis | SSGRRDEYDSLGGKKTNNDIEMGGKNQHRRNKPQDRVYS--------SLQRDKMGEAYSE *.** . .. * * **. *...*..... *...**...*** |
|  | Vputative GTP/GDP |
|  | $\diamond \quad$ - Interaction site ITAM 3 -282 |
| M.eugenii | IGMKGENQRRRGKGNDVLYQGLSPATKDTYDALHMQPLPPR- |
|  | Glycine rich region |
| O.fraenata | IGMKGENQRRRGKGNDVLYQGLSPATKDTYDALHMQPLPPR- |
| M.domestica | IGMKGEKQRRRGKGNDVLYQGLSPATKDTYDALHMQPLPPR- |
| $R . n o r v e g i c u s$ | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR- |
| M.musculus | IGTKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQTLAPR- |
| C.griseus | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALNMQTLPPR- |
| B.taurus | IGMKSDNQRRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| B.bubalis | IGMKSDNQRRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| O.aries | IGMKSDNQRRRGKGHDGVYQGLSTATKDTYDALHMQALPPR- |
| E.caballus | IRVKGENQRRRGKGHDDLYQGLSSATKDTYDALHMQPLPPR- |
| S.scrofa | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| H.sapiens | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| P.troglodytes | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| N.leucogenys | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| P.abelii | IGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR- |
| M.mulatta | IGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR- |
| M.fascicularis | IGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR- |

## Appendix 5A

$P$.anubis
C. torquatus
A. nancymaae
O.cuniculus
L.africana
c. porcellus
C.familiaris
G.gallus
M.gallopavo
A.carolinensis
IGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR-
IGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR-
IGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQALPPR-
IGMKGENQRRRGKGHDGLYQGLSAATKDTYDALHMQTLPPR-
IGMKGENQRRRGKGQDGLYQGLSTPTKDTYDALHMQALPPR-
IGMKGE--RRRAKGQDGLYQGLSTATKDTYDALHMQTLPPR-
IGIKSE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR-
IGKKGEQ-RRRGKGNDAVYQGLSAATRDTYDALHMQPLPPR-
IGKKGEQQRRRGKGNEAVYQVGNTSTAAPFIYLCS-------

* *.. **.**.. .** ...* .. *

Figure 5A.2. Multiple sequence alignment for identification of structural and functional elements. Highlighted and boxed in yellow is the dimerization motif. Boxed is the glycine rich region that represents the GTP binding site. Domains are signified with $\Rightarrow$ ↔.

## Appendix 5A

Table 5A.1. Genbank Accession numbers for TCR 弓 and the relevant references.

| Species name | Common name | Accession Number | References |
| :---: | :---: | :---: | :---: |
| Anolis carolinensis | Green anole | XM_003219127.1 | Annotated |
| Aotus nancymaae | Ma's night monkey | EF656481.1 | Direct submission |
| Bos taurus | Cattle | NM_174012.2 | (Hagens et al., 1996) |
| Bubalus bubalis | Water buffolo | DQ057984.1 | Direct submission |
| Canis lupus familiaris | Dog | XM_849255.2 | Annotated |
| Cavia porcellus | Domestic Guinea Pig | XM_003468676.1 | Annotated |
| Cercocebus torquatus | Red crowend managaby (variant 2) | DQ437666.1 | (Rogers et al., 2006) |
| Cercocebus torquatus | Red crowned mangaby (variant 1) | DQ437665.1 | (Rogers et al., 2006) |
| Cricetulus griseus | Chinese hamster | XM_003502297.1 | Annotated |
| Equus caballus | Horse | $\begin{aligned} & \hline \text { XM_003364910.1 } \\ & \text { DQ885232.1 } \end{aligned}$ | Annotated <br> (Horohov et al., 2005) |
| Gallus gallus | Chicken | NM_206879.1 | (Gobel and Bolliger, 1998) |
| Homo sapiens | Human (variant 2) | NM_000734.3 | (Jensen et al., 1992) |
| Homo sapiens | Human (variant 1) | J04132.1 | (Weissman et al., 1998) |
| Loxodonta africana | African elephant | XM_003415037.1 | Annotated |
| Macaca fascicularis | Crab eating macaque (variant 2) | DQ437668.1 | (Rogers et al., 2006) |
| Macaca fascicularis | Crab eating macaque (variant 1) | DQ437667.1 | (Rogers et al., 2006 |
| Macaca mulatta | Rhesus monkey (variant 2) | NM_001077423.1 | (Rogers et al., 2006) |
| Macaca mulatta | Rhesus monkey (variant 1) | DQ437669.1 | (Rogers et al., 2006) |
| Meleagris gallopavo | Turkey | XM_003202846.1 | Annotated |
| Monodelphis domestica | Opossum | XM_001371336.1 | Annotated |
| Mus musculus | Mouse | $\begin{aligned} & \text { NM_001113391.1 } \\ & \text { M19729 } \end{aligned}$ | (Clayton et al., 1991) |
| Nomascus leucogenys | Northern white-cheeked gibbon | XM_003258814 | Annotated |
| Oryctolagus cuniculus | Rabbit | $\begin{aligned} & \text { NM_001082002.1 } \\ & \text { AB035152.1 } \end{aligned}$ | Direct submission |
| Ovis aries | Sheep | NM_001009417.1 | (Hein and Tunnacliffe, 1993) |
| Pan troglodytes | Chimpanzee (variant 2) | XM_001174745.1 | Annotated |
| Pan troglodytes | Chimpanzee (variant 1) | XM_001174731.1 | Annotated |
| Pan troglodytes | Chimpanzee | XM_001174731.2 | Annotated |
| Papio Anubis | Olive Baboon (variant 2) | DQ437664.1 | (Rogers et al., 2006) |
| Papio Anubis | Olive Baboon (variant 1) | NM_001112652.1 | (Rogers et al., 2006) |
| Pongo abelii | Sumatran Orangautan | XM_002809835.1 | Annotated |
| Rattus norvegicus | Rat | $\begin{aligned} & \text { NM_170789.1 } \\ & \text { L08447 } \end{aligned}$ | (Itoh et al., 1993) |
| Sus scrofa | Pig | AF153830.1 | Unpublished |

## Appendix 5B

Macropus eugenii ZAP-70 nucleotide sequence
5 ' end
aatttgtctctcgtgggggggccgggacgttatttcctcttttttggccccctagctacactcctttttagat cgacagtaaacagattcgttgacagagggtggtagctagagccagtggtggctgggcctagaccctgtccgct aactgccttccccaccctgagaccctggaacccagggtagcctttccctccatggaacttggccctccaagag actgaagaagactgagggagccaagaaagcctggttccttgggcctagcgcctccggaacctccacaggacca tttctccttgtgggaaggaactggaaagcctctcaccctttgtcagttttgctccagcctagacaccatcaag tggtgccctcagggagtccacg atgccagatgcagctgcccatttgccetttttttacgggagcatctcgagggcggaggccgaggagcacctga agctggcaggcatggcggatgggcttttcctgctccgccagtgcctccgtagtttgggggggtatgtgctctc attggtatacgacctgcacatccatcattaccccatcgagcgtcagctgaacggcacctatgccattgctggg ggcaagcctcattgcggcccggctgagctctgtgagttttactccaaggatgctgatggcctcccctgtgctt tacgcaagccttgtaacaggcccagtgggatggagccccagccaggtgtctttgacagttttcgggacagcat ggttcgagactatgtgcgccagacctggaaactagagggtgatgcccttgagcaggccatcatcagccaggcc ccccaggtagagaagctcattgccaccacagcccatgagcggatgccttggtaccacagctccatctccagag aggaagcaaaacgcaaactctactcaggctcccagcatgatggcaagttcttgcttaaacccaggaaggaaca aggcagctacgctttgtccctcatcaatggcaaaactgtctaccactacctcatcaaccaggacaagtctggc aagtactgtattcctgagggcacaaagtttgacaccttgtggcagctggtaaagtatctgaagctgaaggcaa atgggcttatctactgtctgaaggagatttgtcctaatgccagtgcttctactgctactgtgactgctgctcc cacactccctgtccatccctccatgcctagaaggaatgacaccctcaactctgatggatacacccctgagcca gcatgtttaaacaagagtcaaggtgagaagtctcgggtcctgcccatggacaccagtgtgtatgagagcccct acagtgatcccgaagagctcaaggacaagaaactcttcctcaagagagagaatctgatgatcgatgaggtgga gctgggctcaggcaactttggctgtgtccgcaagggggtctacaagatgaggaagaagcagattgatgtggcc atcaaggtgcttaagagtaccaatgagaaggctgagaaggacgagatgatgaaggaggcccagatcatgcacc tgctggacaacccctacatcgtgcggatcatcggcgtgtgcaaggctgaggccctcatgctcgtcatggagat ggccatcgcggggcctctgcacaagtttctggccgccaagaaggaggaggtccctgtcagcaatgtcgtggag ctgctgcaccaggtggccatgggaatgaaatacctagaagaaaaaaattttgtgcaccgtgacctggctgccc gaaatgttcttctggtcaaccagcactatgccaagattagtgactttggtttatccaaggcactgggggctga tgacagctactacaccgcccgctctgcagggaaatggccactcaaatggtatgctccagagtgcatcaactac cggaaattctcctgccaaagcgacgtgtggacctatggattcaccatgtggaaacctttcacctatggccaga acccttataagaaaatgaaaggccctgaggtcctcaaattcattgaaaagggtaagcggatggatccccctcc tgagtgcccaccaaacatgtacacactcatgaaaaaatgctggatatacaaatgggaacatcgtccaaacttc ccatatgtggaacagcccattaaaacctactattaccgcctggccagtaaggcggaaaaggtcttatatgccc ctcaatcagagggggctactcctgcctga
$3^{\prime}$ end
cgaccatctccctttctctggatcttcacaattcttcccagaacctggctttgctctttgtttttcccagaa aagtgttgtccccccagcctctcccatgccagcaccaccaaaccctcctccottgcctacatgcctctacttt cctccccagttgaacatgctccctccacgcaaaggacccctgactcccaactttgaggtggatgatgcacata aagataggcctattccagcctccattgtcttaaatacccccggtttcaaaaacctgttactcctatctgaaaa ttaccgtcggccgtcattaat
M. eugenii ZAP-70 putative protein

MPDAAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVYDLHIHHYPIERQLNGTYAIAG GKPHCGPAELCEFYSKDADGLPCALRKPCNRPSGMEPQPGVFDSFRDSMVRDYVRQTWKLEGDALEQAIISQA PQVEKLIATTAHERMPWYHSSISREEAKRKLYSGSQHDGKFLLKPRKEQGSYALSLINGKTVYHYLINQDKSG KYCIPEGTKFDTLWQLVKYLKLKANGLIYCLKEICPNASASTATVTAAPTLPVHPSMPRRNDTLNSDGYTPEP ACLNKSQGEKSRVLPMDTSVYESPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVA IKVLKSTNEKAEKDEMMKEAQIMHLLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKEEVPVSNVVE LLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYTARSAGKWPLKWYAPECINY RKFSCQSDVWTYGFTMWKPFTYGQNPYKKMKGPEVLKFIEKGKRMDPPPECPPNMYTLMKKCWIYKWEHRPNF PYVEQPIKTYYYRLASKAEKVLYAPQSEGATPA

## Appendix 5B

Onychogalea fraenata partial ZAP-70 nucleotide sequence
tctactcaggctcccagcatgatggcaagttcttgcttaaacccaggaaggaacaaggcacctacgctttgtc cctcatctatggcaaaactgtctaccactacctcatcaaccaggacaagtctggcaagtactgtattcctgag ggcacaaagtttgacaccttgtggcagctggtaaagtatctgaagctgaaggcaaatgggcttatctactgtc tgaaggagatttgtcctaatgccagtgcttctactgctactgtgactgctgctcccacactccctgtccatcc ctccatgcctagaaggaatgacaccctcaactctgatggatacacccctgacccagcatgtttaaacaaaagt caaggtgaaaagtctcgggtcctgcccatggacaccagtgtgtatgaaagcccttacagtgaccccaaaaagc tcaaggacaaaaaactcttcctcaaaagagagaatctgatgattgatgaggtggagctgggctcaggcaactt tggctgtgtccgcaagggggtctacaagatgaggaaaaagcaaattgatgtacccatcaaggtgcttaaaagt accaatgaaaaggctgaaaaggacaagatgatgaaggaggcccaaatcatgcaccagctggacaacccctaca tcgtgcgtatcatcggcgtgtgcaaggctgaggccctcatgctcgtcatgaagatggccatcgcggggcctct gcacaagttcctggccgccaagaaggaggaggtccctgtaagcaatgttgtggagctactgcaccaggtggcc atgggaatgaaatacctggaagaaaaaaattttgtgcaccgtgacctggctgcccgaaatgttcttctggtca accagcactatgccaagattagtgactttggtttatccaaggcactgggggctgatgacagctactacaccgc ccgctctgcagggaagtggccactcaaatggtatgccccagagtgcatcaactatcggaaattctccagccga agcgatgtgtggagctatggagtcaccatgtgggaagctttcacctatggccagaagccttataagaaaatga aaggccctgaggtcatcaaattcattgaagagggtaagcggatggatcgccctcctgagtgcccaccagacat gtacacgctcatgaaagactgctggatatacaagtgggaagatcgtccaaacttctcagatgtggaacagcgc attagaacctactattacagcctggccagtaaggcggaagcggttttagatgcccctcaagcagagggggcta ctagtgcctga
3'end
ggatcatctccctttctctggatcttcccaattcttcccaaaacctggccttgctctttgctttttcccagag aggcttgtccccctgcctctcccatgccagcaagaccactccttcccccttccctagatgcctgaaactcctt cccatttgcatctgcttcctcccagcagaggactgaaaactccagactttgaggtgaatgttctgcaggaaag ttaggcccctttctgcatctttttccttgatactcagggcttggagatcttggaaggcacaactggctgtatc cttctgccttcttctttgatggatttggtcctcacccctgggctcctccctactgtggttggatgggatctgg tgggg

## O. fraenata putative protein sequence

YSGSQHDGKFLLKPRKEQGTYALSLIYGKTVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLKLKANGLIYCL KEICPNASASTATVTAAPTLPVHPSMPRRNDTLNSDGYTPDPACLNKSQGEKSRVLPMDTSVYESPYSDPKKL KDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVPIKVLKSTNEKAEKDKMMKEAQIMHQLDNPYI VRIIGVCKAEALMLVMKMAIAGPLHKFLAAKKEEVPVSNVVELLHQVAMGMKYLEEKNFVHRDLAARNVLLVN QHYAKISDFGLSKALGADDSYYTARSAGKWPLKWYAPECINYRKFSSRSDVWSYGVTMWEAFTYGQKPYKKMK GPEVIKFIEEGKRMDRPPECPPDMYTLMKDCWIYKWEDRPNFSDVEQRIRTYYYSLASKAEAVLDAPQAEGAT SA

## Appendix 5B

M. domestica ZAP-70 (partial nucleotide sequence)
cgcaaactctactcaggctcccagcatgatggcaagttcttgcttaaacccaggaaggaacaaggcagctacg ctttgtccctcatctatggcaaaactgtctatcactacctcatcaaccaggacaagtctggcaagtactgtat tcctgagggcacaaagtttgacaccttgtggcagctggtaaagtatctgaagctgaaggcaaatgggcttatc tactgtctgaaggagatttgtcctaatgccagtgcttctactgctactgtgactgctgctcccacactccctg tccatccctccatgcctagaaggaatgacaccctcaactctgatggatacacccctgagccagcatgtttaaa caagagtcaaggtgagaagtctcgggtcctgcccatggacaccagtgtgtatgaaagcccctacagtgatccc gaaaagctcaaggacaagaaactcttcctcaagagagagaatctgatgatcgatgaggtggagctgggctcag gcaactttggctgtgtccgcaagggggtctacaagatgaggaagaagcagattgatgtggccatcaaggtgct taagagtaccaatgagaaggctgagaaggacgagatgatgaaggaggcccagatcatgcacctgctggacaac ccctacatcgtgcggatcatcggcgtgtgcaaggctgaggccctcatgctcgtcatggagatggccatcgcgg ggcctctgcacaagtttctggccgccaagaaggaggaggtccctgtcagcaatgtcgtgagctgctgcaccaa gtggccatgggaatgaaatacctagaagaaaaaaattttgtgcaccgtgacctggctgcccgaaatgttcttc tggtcaaccagcactatgccaagattagtgactttggtttatccaaggcactgggggctgatgacagctacta caccgcccgctctgcagggaagtggccactcaaatggtatgccccagagtgcatcaactacaggaaatctcca gcc

Putative protein M. domestica ZAP-70 (partial sequence)
RKLYSGSQHDGKFLLKPRKEQGSYALSLIYGKTVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLKLKANGLI YCLKEICPNASASTATVTAAPTLPVHPSMPRRNDTLNSDGYTPEPACLNKSQGEKSRVLPMDTSVYESPYSDP EKLKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVAIKVLKSTNEKAEKDEMMKEAQIMHLLDN PYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKEEVPVSNVVSCCTKWPWE

## Appendix 5B

L. hirsutus ZAP-70 (partial nucleotide sequence)
gacaagtctggcaagtactgtattcctgagggcacaaagtttgacaccttgtggcagctggtggagtatctga agctgaaggcagatgggcttatctactgtctgaaggagatttgtcctaatgccagtgcttctactgctactgt gactgctgctcccacactccctgtccatccctctatgcctagaaggaatgacaccctcaactctgatggatat acccctgagccagcatgtttaaacaagagtcaaggtgagaagtctcgggtcctgcccatggacaccagtgtgt atgagagcccctacagtgaccccgaagagctcaaggacaagaaactcttcctcaagagagagaatctgatgat cgatgaggtggagctgggctcaggcaactttggctgtgtccgcaagggggtctacaggatgaggaagaagcag attgatgtagccatcaaggtgcttaagagtaccaatgagaaggctgagaaggacgagatgatgaaggaggccc agatcatgcaccagctggacaacccctacatagtgcgtatcatcggcgtgtgcaaggctgaggccctcatgct cgtcatggagatggccatcgcggggcctctgcacaagttcctggctgccaagaaaggaggaggtccctgtaag caatgtcgtggagctgctgcaccaagtggccatgggaatgaaatacctagaagaaaaaaattttgtgcaccgt gacctggctgcccgaaatgttcttctggtcaaccagcactatgccaagattagtgactttgggtttatccaag gcactgggggctgatgacagctactacaccgcccgctctgcagggaagtggccactcaaatggtatgccccag agtgcatc

## L. hirsutus putative partial amino acid sequence

DKSGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEICPNASASTATVTAAPTLPVHPSMPRRNDTLNSDGY TPEPACLNKSQGEKSRVLPMDTSVYESPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYRMRKKQ IDVAIKVLKSTNEKAEKDEMMKEAQIMHQLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKGGGPCK QCRGAAAPSGHGNEIPRRKKFCAP

## Appendix 5B

## Sequence alignment of known ZAP-70 sequences



## Appendix 5B

| X.laevis |
| :---: |
| X.silurana |
| G.gallus |
| M.gallopavo |
| T.guttata |
| L.hirsutus |
| act.M.domestica |
| M.eugenii |
| O.fraenata |
| M.domestica |
| $R$.norvegicus |
| M.musculus |
| C.griseus |
| O.cuniculus |
| H.sapiens |
| P.troglodytes |
| C.jacchus |
| $N . l e u c o g e n y s$ |
| P.abelii |
| L.africana |
| S.scrofa |
| B.taurus |
| A.melanoleuca |
| C.familiaris |
| E.caballus |
| C.porcellus |
| H.hippoglossus |
| O.niloticus |
| X.laevis |
| X.silurana |
| G.gallus |
| M.gallopavo |
| T.guttata |
| L.hirsutus |
| act.M.domestica |
| M.eugenii |
| O.fraenata |
| M.domestica |
| R.norvegicus |
| M.musculus |
| C.griseus |
| O.cuniculus |
| H.sapiens |
| P.troglodytes |
| C.jacchus |
| N.leucogenys |
| P.abelii |
| L.africana |
| S.scrofa |
| B. taurus |
| A.melanoleuca |
| C.familiaris |
| E.caballus |
| C. porcellus |
| H.hippoglossus |
| O.niloticus |
| X.laevis |
| X.silurana |
| G.gallus |
| M.gallopavo |
| T.guttata |
| L.hirsutus |
| act.M.domestica |

GLFLLRQCLR-----TLGGYVLSMVYNVHFHHYPVERQLNGTYAIAGGKAHCGPAELCEY GLFLLRQCLR----TLGGYVLSMVYNLHFHHYPVERQLNGTYAIAGGKAHCGPAELCEY GLFLLRQCLR-----SLGGYVLSMVCNLQFYHYAIERQMNGTYAIAGGKAHCGPEELCEF GLFLLRQCLR-----SLGGYVLSMVCNLQFYHYAIERQMNGTYAIAGGKAHCGPEELCEF GLFLLRQCLR----SLGGYVLSMVCDLQFYHYPIERQLNGTYAILGGKAHCGPEELCEF
------------------------------------------------------------LFLLRQCLRSLGG------YVLSLVYDLHIHHYPIERQLNGTYAIAGGKPHCGPAELCEF

LFLLRQCLRSLGG------YVLSLVYNLTFHHYPIERQLNGTYAIAGGKPHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCQF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCQF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCQF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF

GLFLLRQC----LRSLG-GYVLSLVHDVSFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLGGLRALAGARRGPFHHFPVERQG-
GLFLLRQC----LRSLG-GYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHEVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYVLSLVHEVRFHHFPIERQLNGTYAIAGGKAHCGPAELCEF GLFLLRQC----LRSLG-GYMLSLVHNVRFHHFX---------------------------GLFLLRQW----LRSLG-GYVLSLVHNVRFQHFPIERQLNGTYAIAGGKAHCGPAELCEF TYGIVGGP----RGIAG------------------------------------AADLCEF GLFLLRQCLR-----SLGGYVLSIACNVEFNHYTIEKLLNGTYCIVGGKPHCGPAELCEF GLFLLRQCLR-----SLGGYVLSIVWNLDFHHYSVEKQLNGTYCITGGKPHCGPAELCEF

YSKDADGLSCTLRRPCNRPVGVECQAGVFDNMRDNMMREYVRQTWKLEGDALEQAIISQA YSKDADGLCCTLRRPCNRPAGVECQAGVFDNMRDNMMREYVRQTWKLEGDALEQAIISQA YSKDADGLCCTLRKPCNRPSGVEPQPGVFDSMRDNMVREYVRQTWRLEGDALEQAIISQA YSKDADGLCCTLRKPCNRPSGVEPQPGVFDSMRDNMVREYVRQTWRLEGDALEQAIISQA YSKDADGLCCPLRKPCNRPSGVEPQPGVFDSMRDNMVREYVRQTWKLEGDALEQAIISQA
--------
YSKDADGLPCALRKPCNRPSGMEPQPGVFDSFRDSMVRDYVRQTWKLEGDALEQAIISQA YSKDADGLPCPLRKPCNRPSGLEPQPGVFDSLRDSMVRDYVRQTWKLEGEALEQAIISQA YSQDPDGLPCNLRKPCNRPPGLEPQPGVFDCLRDAMVRDYVRQTWKLEGDALEQAIIISQA YSQDPDGLPCNLRKPCNRPPGLEPQPGVFDCLRDAMVRDYVRQTWKLEGDALEQAIISQA YSQDPDGLPCNLRKPCNRPPGLEPQPGVFDCLRDAMVRDYVRQTWKLEGDALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQA

YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDGLRDAMVRDYVRQTWKLEGEALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQA
 YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDSLRDGMVRDYVRQTWKLEGEALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDNLRDAMVRDYVRQTWKLEGEALEQAIISQA YSRDPDGLPCNLRKPCNRPSGLXX--GVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQA ------------------------------------------------YSRDPDGLPCNLRKPCNRPSGLEPQPGVFDSLRDAMVRDYVRQTWKLEGEALEQAIISQA CSPRSDGLPCALRRPCNRPTGLEPQPGVFDSMRDAMVRDYVRQSWKLEGEALEQAILSQA YSKDADGLVSNLRKPCLRAPDTPIQPGVFDSLRENMLREYVKQTWALEGEAMEQAIISQA YSKDSDGLVCLLKKPCLRSPDTPIRQGVFDSLRENMLREYVKQTWNLEGEAMEQAIISQA

PQVEKLIATTAHERMAWYHGSISRDEAERKLYSGAQPDGKFLMRERKENGTYALSVMYGK PQVEKLIATTAHERMAWYHGTISRDEAERKLYSGAQPDGKFLMRERKENGTYALSVMYGK PQVEKLIATTAHERMPWYHGNIARDEAERRLYSGAQPDGKFLLRDKKENGAYALSLVYGK PQVEKLIATTAHERMPWYHGNIARDEAERRLYSGAQPDGKFLLRDKKESGTYALSLVYGK PQVEKLVATTAHERMPWYHGNISREEAERRLYAGAQPDGKFLLREKKENRAYALSLVYGK --------------------------RKLYSGSQHDGKFLLKPRKEQGSYALSLIYGK

## - SH2 domain-C

PQVEKLIATTAHERMPWYHSSISREEAKRKLYSGSQHDGKFLLKPRKEQGSYALSLINGK -----------------------------YSGSQHDGKFLLKPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSISREEAERKLYSGTQHDGKFLLRPRKEHGSYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGQQTDGKFLLRPRKEQGTYALSLVYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGQQTDGKFLLRPRKEQGTYALSLVYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGQQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLVYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLIYGK -------------MPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLIYGK

## Appendix 5B

C. jacchus
N. leucoge
N.leucogenys
P.abelii
L.africana
s.scrofa
B. taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
o.niloticus
X.laevis
X. silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
o.cuniculus
H. sapiens
P.troglodytes
C. jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B.taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
o.niloticus
X.laevis
X.silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
o.cuniculus
H.sapiens
P.troglodytes
C.jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B.taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
D.niloticus
X.laevis

PQVEKLIATTAHERMPWYHSNLTREEAERKLYSGTQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGTQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHTNLTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSNLTREEAERKLYSGSQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGSQTDGKFLLRPRKEPGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGSQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHSSLTREEAERKLYSGSQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATTAHERMPWYHNSLSREEAERKLYAGSQTDGKFLLRPRKEQGTYALSLIYGK PQVEKLIATAAHERMPWYHNGLTREEAERKLYSGSQTDGKFLLRPRKEPSTYALSVIYGK PQLEKLIATTAHERMPWYHGKITRQEGERRLYSGAQPDGKFLVRDRDKSGTFALSMIYGK PQLEKLIATTAHEKMHWYHGKISRHEGERRLYSGAQPDGKFLIRDREESGTYALSMMYGK

TVYHYKIDQDKSGKYSIPEGTKFDTLWQLVEYLKLKSDGILAVLKESCANASTFSIAPAA TVYHYKIDQDKSGKYSIPEGTKFDTLWQLVEYLKLKSDGIMAVLKESCPNSCTFSIAPAA TVYHYRIDQDKSGKYSIPEGTKFDTLWQLVEYLKLKPDGLIFYLRESCPNPSMAGELVPV TVYHYRIDQDKSGKYSIPEGTKFDTLWQLVEYLKLKPDGLIFYLRESCPNPSMP-----TVYHYRVDHDKSGKYSIPEGTKFDTLWQLVEYLKLKPDGLIFYLREACPNPNMPASAAPV ---------DKSGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEICPNAS-ASTATVT TVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLKLKANGLIYCLKEICPNAS-ASTATVT 4
TVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLKLKANGLIYCLKEICPNAS-ASTATVT TVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLKLKANGLIYCLKEICPNAS-ASTATVT TVYHYLINQDKSGKYCIPEGTKFDTLWQLVEYLKLKSDGLIYCLKEICPNAS-ASTASVT TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYRLKEVCPNS---SASAEA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYRLKEVCPNS---SASAAV TVYHYLISQDKAGKFYIPEGTKFDTLWQLVEYLKLKADGLIYRLKEACPNS---SASTEA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASAAAGT TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASNASGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASNASGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASNTSGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASNASGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASNASGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPNSS-ASAASGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPN---TSASSGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPN---SSASSGA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKDACPNSSASSGEGEA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKDACPNTNASSGK-WA TVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEACPN-NNASAGAGA TVYHYLIKQDKAGKFCIPEGTKFDTLWQLVEYLKLKADGLIYCLKEPCPNTS----AEGA TVYHYQILQEKSGKYCMPEGTKFDTIWQLVEYLKMKPDGLVTVLVESCMNGKAAAKMPNL TVYHYQILQDKSGKFSMPEGTKFDTIWQLVEYLKMKPDGLVTVLGETCVNGKAAVGKTPS

```
.*.**. . ********.****.***.*..*.. * . * *
```

Negative regulatory site
V
APP------------SLPKVRPVASNSDGYTPEP----------FLGKSRILPMDTSVYE APP------------SLPKIRQAASNSDGYTPEP----------FIGKSRILPMDTSVYE PTLASVTCPRSPAPPTHPSKNLGPLNADGYTPEP------VVVMSAGKSRVLPMDTSVYE ----------APAPPTHPSKNLGPLNADGYTPEP------VGKS-----RMLPMDTSVYE PP----THPSAWGLTHHPRRNLGPLNADGYTPDP------VGAG---KSRLLPMDTSVYE AAP---TLPVHP----SMPRRNDTLNSDGYTPEP----ACLNKSQGEKSRVLPMDTSVYE AAP---TLPVHP---SMPRRNDTLNSDGYTPEP----ACLNKSQGEKSRVLPMDTSVYE

Linker region
AAP---TLPVHP----SMPRRNDTLNSDGYTPEP----ACLNKSQGEKSRVLPMDTSVYE AAP---TLPVHP----SMPRRNDTLNSDGYTPDP----ACLNKSQGEKSRVLPMDTSVYE AAP---TLPVHP----SMPRRNDTFNSDGYTPEP----ARLVNNQGEKSRVLPMDTSVYE AAP---TLPAHPSTFTQPHRRIDTLNSDGYTPEP-----ARLD----KPRPMPMDTSVYE AAP---TLPAHPSTFTQPQRRVDTLNSDGYTPEP-----ARLASSTDKPRPMPMDTSVYE AAP---TLPAHPSTLPQ--RRVDTLNSDGYTPEP-----ARPASSG-KPRPMPMDTSVYE AAP---TLPAHPSTFTRPQRRMDTLNSDGYTPEPGYTPEPARLASPEKPRPMPMDTSVYE AAP---TLPAHPSTLTHPQRRIDTLNSDGYTPEP-----ARITSPD-KPRPMPMDTSVYE AAP---TLPAHPSTLTHPQRRIDTLNSDGYTPEP-----ARVTSPD-KPRPMPMDTSVYE VAP---TLPAHPSTFTHPQRRMDTLNSDGYTPEP-----ARVTSPD-KPRPMPMDTSVYE AAP---TLPAHPSTLTHPQRRIDTLNSDGYTPEP-----ARVTSSD-KPRPMPMDTSVYE AAP---TLPAHPSTLTHPQRRIDTLNSDGYSPEP-----ARVTSPD-KPRPMPMDTSVYE AAP---TLPAHPSTLTQPQRRMDTLNSDGYTPEP-----GELAEKTEKKRPLPMDTSVYE AAP---TLPAHPSTFTHPQRRIDTLNSDGYTPEP------ARLGSSEKARTMPMDTSVYE AAP---TLPAHPSTFTQPQRRIDTLNSDGYTPEP------ARLVSSEKPRTMPMDTSVYE AAP---TLPAHPSTFTHAPRRIDTN-SDGYTPEP------ARLVSPEKAPSMPMDTSVYE AAP---TLPAHPSTFTQAHRRIDTLNSDGYTPEP------ARLASSEKAQSMPMDTSVYE AAP---TLPAHPSTFTHPQKRIDTLNSDGYTPEP------ARLASPEKVRPMPMDTSVYE AAP---TLPAHPSTFSQPQRRVDTN-SDGYTPEP------ARPAPAGEPRPMPMDTSVYE PAS-------------------RRVNVNGYTPPPR--VVTEASEPAAERDVLPMDCTGFN LPS------------------RPRGANGYTPPPQ--APTPAPK-TEDRDLLPMDCNGFN
.**.* *
P-loop
ATP-binding
$\beta 1$
ing
Phosphotransfer
$\beta 3$

SPYSDPEELKERKLFVKRELLLIDEVELGSGNFGCVKKGVYKLKKRQIDVAIKVLKVQE

## Appendix 5B

X.silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
O.cuniculus
H.sapiens
P.troglodytes
C.jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B.taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
O.niloticus
G.gallus
M.gallopavo
T.guttata
L.hirsutus
.domestica
M.eugenii
.fraenata
R.norvegicus
M.musculus
C.griseus
sapiens
P.troglodytes
C. jacchus
.leucogenys
.abric
.africana
B. taurus
A.melanoleuca
C.familiaris
c. porcellus
H.hippoglossus
O.niloticus
X.laevis
X.silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
O.cuniculus
H.sapiens
P.troglodytes
C. jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B. taurus
A.melanoleuca
C.familiaris
E.caballus
C. porcellus
H.hippoglossus
O.niloticus
X.laevis
X.silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
O.cuniculus

SPYSDPEELKERKLFVKRELLLIDEVELGSGNFGCVKKGVYKLKKRQIDVAIKVLKVQDE SPYSDPEELKDKKLFLKRDHLMIDEVELGAGNFGCVKKGVYKMRKKQIDVAIKVLKSNNE SPYSDPEELKDKKLFLKRDHLMIDEVELGAGNFGCVKKGVYKMRKKQIDVAIKVLKSNNE SPYSDPEELKDKKLFLKRDHLMIDEVELGAGNFGCVKKGVYKMRKKQIDVAIKVLKSNNE SPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYRMRKKQIDVAIKVLKSTNE SPYSDPEKLKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVAIKVLKSTNE SPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVAIKVLKSTNE SPYSDPKKLKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVPIKVLKSTNE SPYSDPEELKDKKLFLKRENLIIDEVELGSGNFGCVRKGVYKMRKKQIDVAIKVLKSTNE SPYSDPEELKDKKLFLKRENLLVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQSTE SPYSDPEELKDKKLFLKRENLLVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTE SPYSDPEELKDKKLFLKRENLIVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKHSTE SPYSDPEELKDKKLFLKRENLLVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKHSTE SPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTE SPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTE SPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTE SPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTE SPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKKEEL---SPYSDPEELKDKKLFLKRENLLVADLELGCGNFGSVRQGVYRMRKYGGPARVG-----SPYSDPEELKNKKLFLKRENLLMADIELGGGNFGSVRQGVYRMRKKQIDVAIKVLKQSTE SPYSDPEELKNKKLFLKRENLLMADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQSTE SPYSDPEELKDKKLFLKRENLLMADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKHSTE SPYSDPEELKDKKLFLKRENLLMADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKHSTE SPYSDPEELKDKKLFLKRENLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKHSTE SPYSDPEELKDKKLFLKRENLLVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQSTE PYHNPNE---VKRFNIKRTQLLIDEVELGCGNFGSVKKGVLKTDAGQIDVAIKVLKNENE PYHNPND---IKRFNIQRSDLLMDEVELGSGNFGCVKKGVLKTESGQIDVAVKVLKNENE . .. . .....**....***.****.*..**. $\begin{array}{r}\text { Gatekeeper pocket }\end{array}$


KNVRDEMMKEAEFMHQLDNPYIVRMIGVCEAENLMLVMEMASGGPLNKFLGAKKDTITVS KNVRDEMMKEAEIMHQLDNPYIVRMIGVCEAENLMLVMEMASGGPLNKFLGAKKDVIPMS KTVRDEMMTEAQIMHQLDNPYIVRMIGVCEAESLMLVMEMASGGPLNKFLSSKKDEITVS KTVRDEMMTEAQIMHQLDNPYIVRMIGVCEAESLMLVMEMASGGPLNKFLSSKKDEITVS KTVKDEMMKEAQIMHQLDNPYIVRMIGVCEAESLMLVMEMASGGPLNRFLASKKDEITTS KAEKDEMMKEAQIMHQLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKGGGPCK KAEKDEMMKEAQIMHLLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKEEVPVS KAEKDEMMKEAQIMHLLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKEEVPVS KAEKDKMMKEAQIMHQLDNPYIVRIIGVCKAEALMLVMKMAIAGPLHKFLAAKKEEVPVS KAEKEEMMKEAHIMHQLDNPYIVRIIGVCKAEALMLVMEMATGGPLNKFLSSKRGEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLIGKKEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLLGKKEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLLGKKEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLLGKKEEIPVS KADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVGKREEIPVS KADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVGKREEIPVS KADTEEMMREAQIMHQLDNPYIVRLIGVCRAEALMLVMEMAGGGPLHKFLIGKKEEIPVS KADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVGKKEEIPVS -------------------------LERTVEEPYVCAHGDGDNATLSLRCLEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGAGPLHKFLVGKKEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVGKKEEIPVS KTDKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLLSKKEEIPIS KTDKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLLGKKEEIPIS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLIMEMAGGGPLHKFLLGKKEEIPVS KADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVGRKEEIPVS KLVKEEMMREAEIMHQLNNPFIVRMLGLCNAESLMLVMEMAAAGPLNKFLSSNKDTVTAE KLVKEEMMREAEIMHQLSNPFIVRMLGLCNADCLMLVMEMASAGPLNKFLSSKKDTVSVE


NVVELMHQVSMGMKYLEGKNFVHRDLAARNVLMVNQHYAKISDFGLSKALAADDSYYKAK NIVELMHQVSIGMKYLEGKNFVHRDLAARNVLMVNQHYAKISDFGLSKALAADDSYYKAK NIVELMHQVSMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYKAR NIVELMHQVSMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYKAR NIVELMHQVSMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYKAR QCRGAAAPSGHGNEIPRRKKF-
 NVVELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYTAR NVVELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYTAR NVVELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYTAR NVAELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVAMGMKYLEEKNFVHRDLAACNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR

## Appendix 5B

H.sapiens
P.troglodytes
C.jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B. taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
O.niloticus
X.laevis
X.silurana
G.gallus
M. gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
D.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
O.cuniculus
H.sapiens
P.troglodytes
C.jacchus
N.leucogenys
P.abelii
L.africana
S.scrofa
B.taurus
A.melanoleuca
C.familiaris
E.caballus
C.porcellus
H.hippoglossus
O.niloticus
X.laevis
X.silurana
G.gallus
M.gallopavo
T.guttata
L.hirsutus
act.M.domestica
M.eugenii
O.fraenata
M.domestica
R.norvegicus
M.musculus
C.griseus
o.cuniculus
H.sapiens
P.troglodytes
C. jacchus
N. leucogenys
P.abelii
L.africana
S.scrofa
B. taurus
A.melanoleuca
C.familiaris
E.caballus
c. porcellus
H.hippoglossus
O.niloticus

NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVTMGMRYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTAR NIVNLMHQVSMGMKYLEEKNFVHRDLAARNVLLVTQQFAKISDFGLSKALGADDNYYKAR NIVNLMHQVSMGMKYLEEKNFVHRDLAARNVLLVNQQFAKISDFGLSKALGADDNYYKAR


SFGKWPLKWYAPECINYRKFSSRSDVWSYGITMWEAFSYGQKPYKKLKGTEVMSFIERNE SFGKWPLKWYAPECINYRKFSSRSDVWSYGITMWEAFTYGQKPYKKLKGTEVMSFIERNE TAGKWPLKWYAPECILYHKFSSKSDVWSYGVTMWEAFSYGQKPYKKMKGPEVISFIEQGK TAGKWPLKWYAPECILYHKFSSKSDVWSYGVTMWEAFSYGQKPYKKMKGPEVISFIEQGK TAGKWPLKWYAPECILFHKFSSKSDVWSYGVTMWEAFSFGQKPYKKMKGPEVISFIEQGK

SAGKWPLKWYAPECINYRKFSCQSDVWTYGFTMWKPFTYGQNPYKKMKGPEVLKFIEKGK SAGKWPLKWYAPECINYRKFSSRSDVWSYGVTMWEAFTYGQKPYKKMKGPEVIKFIEEGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFTYGQKPYKKMKGPEVIKFIEEGN SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLDFIKQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLDFIKQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLDFIKQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLDFIKQGR SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSFGVTMWEAFSYGQKPYKKMKGPEVITFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECFNFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVIAFIEQGK SAGKWPLKWYAPECFNFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVIAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVMAFIEQGK SAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLEFIKQGR TAGKWPLKWYAPECINFHKFSSKGDVWSFGITMWEAFSYGGRPYKKMKGPDITRFIESGN TAGKWPLKWYAPECILFHKFSSKSDVWSFGVTMWEAFSYGGKPYKKMKGPDVIRFIENGN


## Appendix 5B

| X.laevis | AEAGAAAEAPGKE |
| :---: | :---: |
| X.silurana | ASGKV------- |
| G.gallus | AFP-------- |
| M.gallopavo | AFP-------- |
| T.guttata | ALP-------- |
| L.hirsutus | ----- |
| act.M.domestica | -- |
| M.eugenii | TPA-------- |
| O.fraenata | TSA-------- |
| M.domestica | ASA-------- |
| $R$.norvegicus | ACG-------- |
| M.musculus | ACG-------- |
| C.griseus | ACG-------- |
| O.cuniculus | ACA-------- |
| H.sapiens | ACA-------- |
| P.troglodytes | ACA-------- |
| C. jacchus | ACA-------- |
| N.leucogenys | LC--------- |
| P.abelii | ACA-------- |
| L.africana | ACG-------- |
| S.scrofa | A--------- |
| B. taurus | ACP-------- |
| A.melanoleuca | AVV-------- |
| C.familiaris | SSV--------- |
| E.caballus | TCP-------- |
| c.porcellus | VCA--------- |
| H.hippoglossus | AAAAAEPVK--- |
| O.niloticus | APEPTK------ |

Figure 5B.1. Amino acid alignment for known ZAP-70 sequences.
Domains are marked with solid arrows $\boldsymbol{\bullet}$. Important tyrosines in red, yellow marked M in Gatekeeper pocket is the gatekeeper. Black bold underlined is SCID motif. -reg/+reg, are the negative and positive regulator in the PTK domain. $K$ is responsible for phosphotransfer. Green lines repesent coils and turns, while boxes indicate $\alpha$-helices and arrows indicate $\beta$-strands.

## Appendix 5B

Sequence alignment of ensembl annotated $M$. eugenii ZAP-70 (eZAP) sequence and the expressed sequence from the cloned $M$. eugenii ZAP-70 gene (ZAP).


Figure 5B.2. Alignment between the ensembl ZAP-70 sequence for $M$. eugenii and the cloned sequence of $M$. eugenii ZAP-70 obtained from mRNA.


#### Abstract

Alignment of $M$. eugenii and $H$. sapiens ZAP-70 amino acid sequences for determination of possible antibody cross reactivity. The coloured sequences indicate antibodies available for H . sapiens.


| M.eugenii | MPDAAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVYDLHIHHYP | 60 |
| :---: | :---: | :---: |
| H.sapiens | MPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVHDVRFHHFP | 60 |
| M.eugenii | IERQLNGTYAIAGGKPHCGPAELCEFYSKDADGLPCALRKPCNRPSGMEPQPGVFDSFRD | 120 |
| H.sapiens | IERQLNGTYAIAGGKAHCGPAELCEFYSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRD | 120 |
|  | ***************.************.*.***** *****************..** |  |
| M.eugenii | SMVRDYVRQTWKLEGDALEQAIISQAPQVEKLIATTAHERMPWYHSSISREEAKRKLYSG | 180 |
| H.sapiens | AMVRDYVRQTWKLEGEALEQAIISQAPQVEKLIATTAHERMPWYHSSLTREEAERKLYSG | 180 |
|  |  |  |
| M.eugenii | SQHDGKFLLKPRKEQGSYALSLINGKTVYHYLINQDKSGKYCIPEGTKFDTLWQLVKYLK | 240 |
| H.sapiens | AQTDGKFLLRPRKEQGTYALSLIYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLK | 240 |
| M.eugenii | LKANGLIYCLKEICPNASASTATVTAAPTLPVHPSMP----RRNDTLNSDGYTPEPACLN This Antibody was used | 296 |
| H.sapiens | LKADGLIYCLKEACPNSSASNASGAAAPTLPAHPSTLTHPQRRIDTLNSDGYTPEPARIT | 300 |
| M.eugenii | KSQGEKSRVLPMDTSVYESPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYK | 356 |
| H.sapiens |  | 358 |
| M.eugenii | MRKKQIDVAIKVLKSTNEKAEKDEMMKEAQIMHLLDNPYIVRIIGVCKAEALMLVMEMAI | 416 |
| H.sapiens | MRKKQIDVAIKVLKQGTEKADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAG <br> ************** *** *** ****** ******** **** ************** | 418 |
| M.eugenii | AGPLHKFLAAKKEEVPVSNVVELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKIS | 476 |
| H.sapiens | GGPLHKFLVGKREEIPVSNVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKIS <br>  | 478 |
| M.eugenii | DFGLSKALGADDSYYTARSAGKWPLKWYAPECINYRKFSCQSDVWTYGFTMWKPFTYGQN | 536 |
| H.sapiens | DFGLSKALGADDSYYTARSAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQK <br> ********************************** **** **** ** *** . *** | 538 |
| M.eugenii | PYKKMKGPEVLKFIEKGKRMDPPPECPPNMYTLMKKCWIYKWEHRPNFPYVEQPIKTYYY | 596 |
| H.sapiens | PYKKMKGPEVMAFIEQGKRMECPPECPPELYALMSDCWIYKWEDRPDFLTVEQRMRACYY | 598 |
|  | **********. ***.****. ******..*.**..*******.**.****...** |  |
| M.eugenii | RLASKAEKVLYAPQSEGATPA 617 |  |
| H.sapiens | SLASKVEGPPGSTQKAEAACA 619 |  |

Figure 5B.3. Alignment of M. eugenii ZAP-70 and H. sapiens ZAP-70 showing the commercially available ZAP-70 Antibodies.

## Appendix 5B

Python shell for Tammar ZAP-70 model.

```
mod9v1 build_profile.py
>P1;TZAP
Sequence. TZAP......0.00. 0.00
MPDAAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVYDLHIHHYPIERQLNGTYAIAG
GKPHCGPAELCEFYSKDADGLPCALRKPCNRPSGMEPQPGVFDSFRDSMVRDYVRQTWKLEGDALEQAIISQA
PQVEKLIATTAHERMPWYHSSISREEAKRKLYSGSQHDGKFLLKPRKEQGSYALSLINGKTVYHYLINQDKSG
KYCIPEGTKFDTLWQLVKYLKLKANGLIYCLKEICPNASASTATVTAAPTLPVHPSMPRRNDTLNSDGYTPEP
ACLNKSQGEKSRVLPMDTSVYESPYSDPEELKDKKLFLKRENLMIDEVELGSGNFGCVRKGVYKMRKKQIDVA
IKVLKSTNEKAEKDEMMKEAQIMHLLDNPYIVRIIGVCKAEALMLVMEMAIAGPLHKFLAAKKEEVPVSNVVE
LLHQVAMGMKYLEEKNFVHRDLAARNVLLVNQHYAKISDFGLSKALGADDSYYTARSAGKWPLKWYAPECINY
RKFSCQSDVWTYGFTMWKPFTYGQNPYKKMKGPEVLKFIEKGKRMDPPPECPPNMYTLMKKCWIYKWEHRPNF
PYVEQPIKTYYYRLASKAEKVLYAPQSEGATPA*
from modeller import*
log.verbose ()
env = environ ()
#--Prepare the input files
#-- Read in the sequence database
sdb= sequence_db(env)
sdb.read (seq_database_file= 'pdb_95.pir',
seq_database_format='PIR'
    chains_list='ALL', minmax_db_seq_len= (30,4000),
clean_sequences=True)
#--Write the sequence database in binary form
sdb.write(seq_database_file='pdb_95.bin',,
seq_database_format='BINARY',
        chains_list='ALL')
#--Now, read in the binary dataset
sdb.read(seq_datase_file='pdb_95.bin',
seq_database_forma='BINARY',
    chains_list='ALL'
#--Read in the target sequence/alignment
aln= alignment (env)
aln.append (file='c2ozo.ali', alignment_format='PIR',
align_codes= 'ALL')
#--Convert the input sequence/alignment into
# profile format
prf= aln.to_profile ()
#-- Scan sequence database to pick up homologous sequences
prf.build (sdb, matrix_offset=-450,
rr_files='${LIB}/blosum62.sim.mat ' ,
    gap_penalties=False , max_aln_evalue=0.01)
#-- Write out the profile in text format
prf.write (file= 'build_profile.prf' , profile_format= 'TEXT' )
#-- Convert the profile back to alignment format
```


## Appendix 5B

```
aln = prf.to_alignment ()
#-- Write out the aligment file
aln.write (file= 'build_profile.ali', alignment_format= 'PIR' )
from modeller import *
env = environ ()
aln = alignment (env)
mdl + model (env, file= 'c2ozo' ,
model_segment= ('FIRST. A ', 'LAST. A' ) )
aln.append_model (mdl, align_codes=' c2ozo ',
atom_filex=' c2ozo.pdb ')
aln.append (file= 'TZAP.ali' , align_codes= 'TZAP' )
aln.align2d ()
aln.write (file=' TZAP-c2ozo.ali' , alignment_format=' PIR ')
aln.write (file=' TZAP-c2ozo.pap' , alignment_format='PAP' )
from modeller import *
from modeller.automodel import *
env = environ ()
a = automodel (env, alnfile= 'TZAP-c2ozo.ali',
    knowns=' TZAP', sequence='TZAP',
    assess_methods=(assess.DOPE, assess.GA341))
a.starting_model = 1
a.ending_model = 5
a.make ()
```


## Appendix 5B

Table 5B.1. Genbank Accession numbers for ZAP-70 and the relevant references.

| Species Name | Common Name | Accession Numbers | References |
| :---: | :---: | :---: | :---: |
| Ailuropoda melnaoleuca | Giant Panda | XM_002912427.1 | Annotated |
| Bos taurus | Cattle | XM_865562 | (Zimin et al., 2009) |
| Callithrix jacchus | Common marmoset | XM_002757393.1 | Annotated |
| Canis lupus familiaris | Dog | XM_003431497.1 | Annotated |
| Cricetulus griseus | Chinese hamster | XM_003498289.1 | Annotated |
| Danio rerio | Zebrafish | NM_001020589 | (Lin et al., 2009) |
| Equus caballus | Horse | XM_001488128 | Annotated |
| Gallus gallus | Chicken | XM_418206.2 | Annotated |
| Hippoglossus hippoglossus | Atlantic halibut | GU985452.1 | (Overgard et al., 2010b) |
| Homo sapiens | Human | NM_001079 | (Chan et al., 1992) |
| Loxodonta africana | African elephant | XM_003422028.1 | Annotated |
| Macaca mulatta | Rhesus monkey | XM_001101293 | Annotated |
| Meleagris gallopavo | Turkey | XM_003213184.1 | Annotated |
| Monodelphis domestica | Gray short tailed opossum | XM_001376170 | Annotated |
| Mus musculus | Mouse | $\begin{aligned} & \text { NM_009539 } \\ & \text { U77667.1 } \\ & \text { U4379 } \end{aligned}$ | (Ku et al., 1994) Direct submission Direct submission |
| Nomascus leucogenys | White-cheeked gibbon | XM_003279222.1 | Annotated |
| Oreochromis niloticus | Nile tilapia | XM_003445128.1 | Annotated |
| Ornithorhynchus anatinus | Platypus | XM_001515221 | Annotated |
| Oryctolagus cuniculus | Rabbit | XM_002710002.1 | Annotated |
| Pan troglodytes | Chimpanzee | XM_515637.3 | Annotated |
| Pongo abelii | Sumatran Orangutan | XM_002811671.1 | Annotated |
| Rattus norvegicus | Norway Rat | NM_001012002 | (Arpaia et al., 1994) |
| Sus scrofa | Pig | XM_003481152.1 | Annotated |
| Taeniopygia guttata | Zebra finch | XM_002191899 | Annotated |
| Xenopus laevis | African clawed frog | NM_001093536 | (Klein et al., 2002) |
| Xenopus tropicalis | Silurana tropiclais | NM_001006824 | (Klein et al., 2002) |

## Appendix 5C

Onychogalea fraenata Lymphocyte specific kinase (Lck) nucleotide sequence
atgggctgctcctgcagctccagcctcgacgaggactggatggaaaatattgacgtgtgtgaacgatgccatt accctattgtaccactggatgcaaagggcacgctcccaatgaggaatggctctgacgtgagggatcccttggt cacctatgagggtttaaatccacctgcatctccattacaagataacctggtcatcgccctgtataattataaa ccctcccatgatggggacctgggctttgagaaaggggagcaactgaggatcctggagcagaatggagaatggt ggaaggcacagtccctgaccactggccaggagggctacattcccttcaactttgtggccaaagccaacagcct ggagcctgagccttggtttttcaaggacttgagccggaaggatgctgagagacaacttttggcccctgggaac actcatggatccttcctgatcagagagagtgagaccactgcaggctccttctctctgtctgtgcgggactttg accagaaccagggggaggtggtgaaacattacaagatccgcaacctggataatgggggcttctacatttcccc ccgaatcacctttcctaatctgcatgaactggttcagcattactccaaagtctcagatgggctatgtactcga ctgagtcggccctgccagacccaaaagccacagaagccctggtgggaagatgagtgggaggttcctcgagaga cactgaagctggtggaaaagctgggagctggccagtttggggaggtctggatggggtattacaatgggcatac caaggtagcggtgaaaagcctgaaagcgggcagcatgtctcctgatgccttcctggctgaagccaacctgatg aaacagctgcagcaccagcgactggtacgcctttatgcggtggtcacacaggaacccatctacatcatcactg aatacatggagaatgggagcctggtagacttcctcaaaactacaacaggagtcaaactaaccatccacaaact gcctgatatggctgcacagattgctgagggcatggccttcattgaagagcggaattacatccaccgggacctc agagcagccaacatcctggtgtcagacacattgaactgtaagattgctgactttggattggcccggctgatcg aggacaacgagtacacagctagagagggagcaaaatttcccatcaagtggacagctcttgaggccatcaacta tgggacatttaccatcaagtcagatgtctggtcttttggtatcctgctcacagaaatcgtcacctatgggagg atcccctacccaggaatgaccaaccctgaggtgattcagaacctggagcaaggctatcggatggtgaggcctg acaattgcccagaagaactgtacaaaccgatgatgctgtgttggaaggagaggcctgaggatcggcccacctt tgattacctgaggagtgtcttagaggacttcttcattgccacagagggccagtaccagccccaagtga

## O. fraenata Lck putative protein sequence

MGCSCSSSLDEDWMENIDVCERCHYPIVPLDAKGTLPMRNGSDVRDPLVTYEGLNPPASPLQDNLVIALYNYK PSHDGDLGFEKGEQLRILEQNGEWWKAQSLTTGQEGYIPFNFVAKANSLEPEPWFFKDLSRKDAERQLLAPGN THGSFLIRESETTAGSFSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPNLHELVQHYSKVSDGLCTR LSRPCQTQKPQKPWWEDEWEVPRETLKLVEKLGAGQFGEVWMGYYNGHTKVAVKSLKAGSMSPDAFLAEANLM KQLQHQRLVRLYAVVTQEPIYIITEYMENGSLVDFLKTTTGVKLTIHKLPDMAAQIAEGMAFIEERNYIHRDL RAANILVSDTLNCKIADFGLARLIEDNEYTAREGAKFPIKWTALEAINYGTFTIKSDVWSFGILLTEIVTYGR IPYPGMTNPEVIQNLEQGYRMVRPDNCPEELYKPMMLCWKERPEDRPTFDYLRSVLEDFFIATEGQYQPQG

## Appendix 5C

Secondary structure prediction for $O$. fraenata Lck using PSIpred


Conf: $\mathfrak{F}$ |
Pred: $\longrightarrow \longrightarrow-\longrightarrow-$
Pred: CCEEEEEEECCCCCCCEEEEEEEEECCCCCEEECCCCCCC AA: GSESLSVRDEDQNQGEVVKHYKIRNLDNGGEYI SPRITEP,

| 170 | 180 | 190 | 200 |
| :--- | :--- | :--- | :--- |

conf: : $\mathfrak{H}$ !
Pred: $\square$
Pred: $\mathrm{CH} H H H H H H H H C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c ~$ AA: NLHELVQHYSKVS DGLCTRLSRPCQTQKPQKPWWEDEWEV

| 210 | 220 | 230 | 240 |
| :--- | :--- | :--- | :--- |

conf: : $\mathfrak{l}$ !
Pred: $\longrightarrow \square \longrightarrow-\square$
Pred: cccceeeeeeecc cceeeeeeccccccceeeeeecccccc
AA: PRETLKLVEKLGAGQEGEVWMGYYNGHTKVAVK SLKAG SM

## Appendix 5C



Figure 5C.1. Secondary structure prediction O. fraenata Lck.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

Macropus eugenii lymphocyte specific kinase (Lck) nucleotide sequence
cgatgccattaccctattgtaccactggatgccaagggcacgctcctaatgaggaatggctctgacgtgaggg atcccttggtcacctatgagggtttaaacccacctgcatctccattacaagataacctggtcatcgccctgca tagttataaaccctcccatgatggggacctgggctttgagaaaggggagcaactgaggatcctggagcaaaat ggagaatggtggaaggcacagtccctgaccactggccaggagggctacattcccttcaactttgtggccaaag ccaacagcctggagcctgagccttggtttttcaaggacttgagccggaaggatgctgaaagacaacttttggc ccctgggaacactcatggatccttcctgatcagagagagtgagaccactgccggctccttctctctgtctgtg cgggactttgaccagaaccagggggaggtggtgaaacattacaagatccgcaacctggataatgggggcttct acatttccccccgaatcacctttcctaatctgcatgaactggtccagcattactccaaagtctcagatgggct atgcactcgactgagtcggccctgccagacccaaaagccacagaagccctggtgggaagatgagtgggaggtt cctcgagagacactgaagctggtggaaaagctgggagctggccagtttggggaggtctggatggggtactaca atgggcataccaaggtagcggtgaaaagcctgaaagcgggcagcatgtct
cctgatgccttcctggctgaagccaacctgatgaaacagcttcagcaccagcgactggtacgcctttatgcgg tggtcacacaggaacccatctacatcatcactgaatacatggagaatgggagcctggtagacttcctcaaaac cacaacaggagtcaaactaaccatccacaaactgctcgatatggctgcacagattgctgagggcatggccttc attgaagagcggaattacatccaccgggacctcagagcagccaacatcctggtgtcagacacattgaactgta agattgctgactttggattggcccggctgatcgaggacaacgagtacacagctagagagggagcaaaatttcc catcaagtggacagctcctgaggccatcaactatgggacatttaccatcaagtcagatgtctggtcttttggc atcctgctcacagaaatcgtcacctatgggaggatcccctacccaggaatgaccaaccctgaggtgattcaga acctggagcaaggctatcggatggtgaggcctgacaactgcccagaagaactatacaaacttatgatgctgtg ctggaaggagaggcctgaggatcggcccacctttgattacctgaggagtgtcttggaggacttcttcactgcc acagagggccagtaccagccccagccatga
3'end
ccttcctatttggtctctcccatcccagtccctggcccacctccccagctttactcttgcctcctaaatgac cccactcagactgaggcagggaagaatctggcaaaagacagagggcctcaggatggaggtatggggcaccaac atctcagccatcacacttgtgactccattacctgccgaggaaggaagacagcaaaagacttggcattgggctt gtcctttgcgtgccccacccccaacatgtggtctcccagactgactccctacctctgtcctctccctgatttc tcagggccagaggagaagcctggactttgccccagccctttgactcttttgtctatgtgttcacccagagtgg attcactgtctcagtttccataaaattcatattcttagcaaaaaaaaaaaaaaaaaaaaaa

## Putative protein sequence $M$. eugenii

RCHYPIVPLDAKGTLLMRNGSDVRDPLVTYEGLNPPASPLQDNLVIALHSYKPSHDGDLGFEKGEQLRILEQN GEWWKAQSLTTGQEGYIPFNFVAKANSLEPEPWFFKDLSRKDAERQLLAPGNTHGSFLIRESETTAGSFSLSV RDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPNLHELVQHYSKVSDGLCTRLSRPCQTQKPQKPWWEDEWEV PRETLKLVEKLGAGQFGEVWMGYYNGHTKVAVKSLKAGSMSPDAFLAEANLMKQLQHQRLVRLYAVVTQEPIY IITEYMENGSLVDFLKTTTGVKLTIHKLLDMAAQIAEGMAFIEERNYIHRDLRAANILVSDTLNCKIADFGLA RLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTEIVTYGRIPYPGMTNPEVIQNLEQGYRM VRPDNCPEELYKLMMLCWKERPEDRPTFDYLRSVLEDFFTATEGQYQPQP

Secondary structure prediction for M. eugenii Lck using PSIpred





| Pred: | CCCCCHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHCC |
| ---: | :--- |
| Pred: |  |
| AA: | PDNCPEEL YKLMALCWKERPEDRPTEDYLRSVLEDFETAT |
|  | 150 |
| 450 | 460 |

## 

Pred:
Pred: cccccccc
AA: EGQYQPQP


Figure 5C.2. Secondary structure prediction M.eugenii Lck.
Yellow arrows indicate beta strands. Purple cylinders represent $\alpha$-helices. Confidence level of prediction is represented by the blue bars. Numbering indicates the number of amino acids within the sequence.

## Appendix 5C

Sequence Alignment for known Lck sequences

## O.fraenata

M.eugenii
M.domestica
P.abelii
N.leucogenys

Hylobates
H.sapiens
A. nancymaae
S.sciureus
R.norvegicus
M.musculus
C.griseus
P. troglodytes
o.cuniculus
A.melanoleuca
L.africana
C.familiaris
C.porcellus
E.caballus
S.scrofa
B.taurus
o.aries
O.anatinus
A.carolinensis
G.gallus
S.maximus
H.hippoglossus
o.niloticus
S.salar
C.auratus
D. rerio


## Unique domain

- SH4 domain

52
O.fraenata
M.eugenii
M.domestica
P.abelii
N. leucogenys

Hylobates
H.sapiens
A. nancymaae
S.sciureus
R.norvegicus
M.musculus
C.griseus
P.troglodytes
O.cuniculus
A.melanoleuca
L.africana
C.familiaris
C.porcellus
E.caballus
S.scrofa
B. taurus
o.aries
o. anatinus
A.carolinensis
G.gallus
S.maximus
H.hippoglossus
o.niloticus
S.salar
C. auratus
D. rerio

| ------MGCSCSSSLDEDWMEN-IDVCERCHYPIVPLDAKGTLPMRNGSDVRDPLVTYE --------------------------RCHYPIVPLDAKGTLLMRNGSDVRDPLVTYE |  |
| :---: | :---: |
| SLQNPGTMGCCCSSSLDEDWMEN-IDVCERCHYPIVPLDAKDMLPMRNGSEVRDPLVDYN |  |
|  | PPLDGKGKLPIRNGSEVRDPLVTYE |
|  | HYPIVPLDGKGTLLIRNGSEVRDPLVTYE |
|  | GCSSHPEDDWMEN-IDVCENCHYPIVPLDGKGTLLIRNGSEVRDPLVTYE |
|  | GGCSSHPEDDWMEN-IDVCENCHYPIVRLDGKGRLLIRNGSEVRDPLVTYE |
|  | CGCSSHPEDDWMEN-IDVCENCHYPIVPLDGKATLLFRNGSEVRDPLVRYE |
|  | CGCSSHLEDDWMEN-IDVCENCHYPIVPLDGKATLLFRNGSEVRDPLVRYE |
|  | MGCVCSSNPEDDWMEN-IDVCENCHYPIVPLDSKSTLPIRTGSEVRDPLVTYE |
|  | MGCVCSSNPEDDWMEN-IDVCENCHYPIVPLDSKISLPIRNGSEVRDPLVTYE |
|  | MGCGCSSNPEDDWMEN-IDVCENCHYPIVPLDSKTTLPMRNGSEVRDPLVTYE |
| MGCSCSSNPEDDWMEN - IDV CENCHYPIVPLEGKATLP |  |
|  | MGCSICSSNPEDDWMEN-IDVCENCHYPIVPLDGKATLPIRNGSDVRDPLVTYE |
|  | CSCSSNPEDDWMEN-IDVCENCHYPIVPLDSKAMLPMRNGSDVRDPLVTYE |
|  | MGCSICSSNPEDDWMEN-IDVCENCHYPIVPLDGKATLPMRNGSDVRDPLVIYE |
|  | MGCSCSSNPEDDWMEN-IDVCENCHCPIDPLDSKATFLMRNGSEVRDPLVKYE |
|  | MGCSCSSNPEDDWMEN-IDVCENCHYPIVPLDGKATLPMRNGSEVRDPLVTYE |
|  | SCSSNPEDDWMEN-IDVCENCRYPIVPLDGKATLPMRNGSEVRDPLVTYE |
|  | MGCSICSSNPEDDWMEN - IDVCENCHYPIVPLDGKTTLPMRNGSEVRDPLVTYE |
|  | MGCSICSSNPEDDWMEN-IDVCENCHYPIVPLDGKTTLPMRNGSEVRDPLVTYE |
|  | MGCNCSSDYDDDWMEN - IDLCDRCHYPIAPESKAQGLL |
|  | YGCCCSLDWDEGWEEGDLEICQTCHYPIEPGTKPQRPALNGSEFYNPLLSPD |
|  | MGCNCSSDYSDSDWIENLDEICEHCNCPMPPQ------SCNPYTDQLIPYHSQ |
|  | MGCNCSSDYSDTDWIENLDEICEQCNCPIPPQ------SCNPYTDQLIPCHSQ |
|  | MGCNCSSDYSDSDWIENLDEICEHCNCPIPPQ------SCNPYTDQLIPYPSQ |
|  | MGCNCSSDYDD-DWVENLDEVCDNCNCPIPTQ------SANPYTDQLIPYPSH |
|  | MGNCGSFDPEDEFSYHPDEWCDQCINCPKPPA-------SQN--YDPLIPYPSQ |
|  | MGNCGSFDPDDEFSYHPDEWCDQCNCPKPPV-------SQN--FDPLIPYPSQ |

## Appendix 5C

|  | H3 domain 111 |
| :---: | :---: |
| O.fraenata | GLNPPASPLQDNLVIALYNYKPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGQEGYI |
| M.eugenii | GLNPPASPLQDNLVIALHSYKPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGQEGYI |
| M.domestica | GLDPPVSPLQDNLVIALHSYKPSHDGDLGFEKGEQLKILE-QNGEWWKAQSLTTGQEGFI |
| P.abelii | GCNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-ESGEWWKAQSLTTGQEGFI |
| $N .1 e u c o g e n y s$ | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSG |
| Hylobates | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| H.sapiens | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEPLRILE-QSGEWWKAQSLTTGQEGFI |
| A. nancymaae | GSNPPASPLQDNLVIALHSYKPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGQEGFI |
| S.sciureus | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEHLRILE-QNGEWWKAQSLTTGQEGFV |
| R.norvegicus | GSLPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| M.musculus | GSLPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| C.griseus | GSIPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| P.troglodytes | -MPLVFTDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| O.cuniculus | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGQEGFI |
| A.melanoleuca | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| L.africana | GSIPPASPLQDNLVIALHNYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| C.familiaris | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-RNGEWWKAQSLTTGQEGFI |
| C.porcellus | DINPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-HNGEWWKAQSLTTGQEGFI |
| E.caballus | GSNPPASPLQDNLVIALHRYEPSHDGDLGFEKGEQLRILE-QSGEWWKAQSLTTGQEGFI |
| S.scrofa | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGLEGFI |
| B.taurus | GSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILE-QNGEWWKAQSLTTGQEGFI |
| o.aries | GSNPPASPLQDNLVIALHSYVPSHDGDLGFEKDEQLRILE-QNGEWWKAQSLTTGQEGFI |
| O.anatinus | ---PVPPFSPDNLVVALHNYEPVHDGDLGFQKSEQLRILE-QSGEWWKAQSLTTGQEGFI |
| A.carolinensis | MTPPPSSPLQDKLVVALYDYDSTHEGDLVLRTGEQLRVLE-ESGEWWKAQSLTTGRVGYI |
| G.gallus | -MSPPCSPLQDKLVVALYDYEPTHDGDLGLKQGEKLRVLE-ESGEWWRAQSLTTGQEGLI |
| S.maximus | HSPP-TSPLPDKLVVAIYSYEPNHDGDLGFEKGEKLKIINKDDPEWYLAESLTTGQQGYI |
| H.hippoglossus | HSPP-MSPLPDNLVEAIYSYEPNHDGDLGFEKGDKLKIINKDDPEWYLAESLTTGQQGFI |
| O.niloticus | MTPP-TSPLPVNVVVAIYSYEPTHDGDLGFDKGDKLKILNKDDPEWYLAESLTTGQQGYI |
| S.salar | LTPP-SSPLPDSLVIAIYSYEPNHNDDLGFEKGDKLKILNKDDPEWFMAESLITGQKGFI |
| C.auratus | YTPPPSSPLPENLVVALYKYEPCHSDDLGFEKGEKLKILNIDDPEWFMAESLFTGQKGYI |
| D.rerio | YTPPPSSPLPENLVVAIYKYDPAHSDDLGFEKGEKMKILDCDDPEWYMAESLFTGQRGYI |
|  | - SH2 domain 163 |
| O.fraenata | PFNFVAKANSLEPEP-------WFFKDLSRKDAERQLLAPGNTHGSFL-IRESETTAGS |
| M.eugenii | PFNFVAKANSLEPEP-------WFFKDLSRKDAERQLLAPGNTHGSFL-IRESETTAGS |
| M.domestica | PFNFVAKVNSLEPEP-------WFFKDLSRKDAERQLLAPGNTHGSFL-IRESETTAGS |
| P.abelii | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| N.leucogenys --------------------------------------------------------- |  |
| Hylobates | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| H.sapiens | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| A. nancymaae | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| S.sciureus | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| R.norvegicus | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| M.musculus | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| C.griseus | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| P. troglodytes | PFNFVAKANSLEPEP-------WFFKNLSRXXXXRRFVHP------------SIHSGS |
| o.cuniculus | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFLDSGKSESTAGS |
| A.melanoleuca | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| L.africana | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTVGS |
| C.familiaris | PFNFVAKANSLEPEP-------WFFKNLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| C.porcellus | PFNFVAKANSLEPEP-------WFFKSLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| E.caballus | PFNFVAKANSLEPEPXVGTRRGGWMGADLGDSGAERQLLAPGNTHGSFL-IRESESTAGS |
| S.scrofa | PFNFVAKANSLEPEP-------WFFKNLSRRDAERQLLAPGNTHGSFL-IRESESTAGS |
| B. taurus | PFNFVAKANSLEPEP-------WFFKTLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| O.aries | PFNFVAKANSLEPEP-------WFFKTLSRKDAERQLLAPGNTHGSFL-IRESESTAGS |
| O.anatinus | PFNFVARANSLEPEP-------WFFKDLSRKDAERQLLAPGNMHGSFL-VRESETTKGS |
| A.carolinensis | PSNFVAKLNSLEQEP-------WFFKALSRKDAERQLLTAGNTHGAFL-IRESESTKGS |
| G.gallus | PHNFVAMVNSLEPEP------WFFKNLSRKNAEARLLASGNTHGSFL-IRESETSKGS |
| S.maximus | PHNFVGMT-RVETEP-------WFIKNISRNEAMRLLLAPGNTQGSYL-IRESETTPGS |
| H.hippoglossus | PYNFIAMT-TVETEP-------WFFKSISRNEAMRLLLAPGNTQGSFL-IRESETIQGS |
| O.niloticus | PHNFVALS-TVETEP-------WFFRNISRNEAMRLLLAPGNTQGSFL-IRESETAKGS |
| S.salar | PYNFVAPLNSMEMET-------WFFKNLSRNDAMRLLLAPGNTQGSFM-VRESETTQGS |
| C. auratus | PQNFVAKLNSMETEP-------WFFKNLSRNDAMRQLLAPGNTQGSFL-IRESETTPGS |
| D.rerio | PKNFVAKLNSMETEP-------WFYKNLSRNDAMRQLLAPGNTQGSFL-IRESETQPGS |
|  |  |
| O.fraenata | FSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPNLHELVQHYSKVSDGLCTRLSR |
| M.eugenii | FSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPNLHELVQHYSKVSDGLCTRLSR |
| M.domestica | FSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPGLHELVQHYSKVSDGLCTRLSR |
| P.abelii | FSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFSGLHELVRHYTNASDGLCTRLSR |

## Appendix 5C



## Appendix 5C

| Hylobates | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYME |
| :---: | :---: |
| H.sapiens | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| A. nancymaae | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| S.sciureus | DAFLAEANLMKQLQHKRLVRLYAVVTEEPIYIITEYMEN - |
| $R . n o r v e g i c u s$ | DAFLAEANLMKQLQHPRLVRLYAVVTQEPIYIITEYMEN - |
| M.musculus | DAFLAEANLMKQLQHPRLVRLYAVVTQEPIYIITEYMEN |
| C.griseus | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| P.troglodytes | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN- |
| O.cuniculus | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| A.melanoleuca | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| L.africana | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| C.familiaris | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| C.porcellus | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| E.caballus | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| S.scrofa | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| B. taurus | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN - |
| O.aries | DAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEN |
| O.anatinus | SAFLAEANLMKNLQHSRLVRLYAVVTQEPIYIITEYMEN - |
| A.carolinensis | EAFLAEANLMKKLRHPRLVRLYAVVTQRPMYIITEFMEK- |
| G.gallus | SAFLAEANLMKNLQHPRLVRLYAVVTKEPIYIITEYMEK- |
| S.maximus | EAFLAEANMMKNLQHPRLVRLFAVVTQEPIYIVTEYMEN - |
| H.hippoglossus | EAFLAEANMMKNLQHPRLVRLFAVVTQEPILIVTEYMEN |
| O.niloticus | EAFLAEANMMKNLQHPRLVRLFAVVTQEPIYIVTEYMEN |
| S.salar | AAFLDEANLMKELQHPRLVRLFAVVTQEPIYIITEFMEN - |
| C.auratus | AAFLAEANLMKTLQHPRLVRLFAVVTQEPIYIITEYMEN |
| D.rerio | SAFLAEANLMKSLQHPRLVRLFAVVTQEPIYIITEYMEN *** ***.** *.* *****.****..*. *.**.** |
|  | -catalytic |
|  | 4 ¢ 373 |
| O.fraenata | --------GSLVDFLKTTTGVKLTIHKLPDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| M.eugenii | -------GSLVDFLKTTTGVKLTIHKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| M.domestica | --------GSLVDFLKTSTGVKLTIHKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| $P$.abelii | GQQLLLLPTGSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| N.leucogenys | GQQLLLLPTGSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| Hylobates | -------NGSLVDFLKAPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| H.sapiens | --------GSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| A. nancymaae | --------GSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| S.sciureus | --------GSLVDFLKTPSGIKLTINKLLDMAAQIVEGMAFLEERNYIHRDLRAANILV |
| $R . n o r v e g i c u s$ | --------GSLVDFLKTPSGIKLNVNKLLDMAAQIAEGMAFIEEQNYIHRDLRAANILV |
| M.musculus | --------GSLVDFLKTPSGIKLNVNKLLDMAAQIAEGMAFIEEQNYIHRDLRAANILV |
| C.griseus | --------GSLVDFLKTPSGIKLNINKLLDMAAQIAEGMAFIEEQNYIHRDLRAANILV |
| P.troglodytes | --------GSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| O.cuniculus | --------GSLVDFLKTPTGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| A.melanoleuca | --------GSLVDFLKTPPGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| L.africana | --------GSLVDFLKTPPGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| C.familiaris | --------GSLVDFLKTPPGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| C.porcellus | --------GSLVDFLKTPPGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| E.caballus | --------GSLVDFLKTSTGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| S.scrofa | --------GSLVDFLKTSTGIKLTINKLLDMAAQIAEGMAFIEDRNYIHRDLRAANILV |
| B. taurus | --------GSLVDFLKTSEGIKLTINKLLDMAAQIAEGMAFIEEQNYIHRDLRAANILV |
| O.aries | --------GSLVDFLKTSEGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILV |
| O.anatinus | --------GSLVDFLKTSEGVKLTINKLLDMAAQRVAEEADLLP-------------- |
| A.carolinensis | --------GNLVDFLKGSEGSRLTIYKLLDMSAQIAEGMAFLEKKNYIHRDLRAANILV |
| G.gallus | --------GSLVDFLKTSEGIKLSINKLLDMAAQIAEGMAFIEAKNYIHRDLRAANILV |
| S.maximus | --------GSLVDYLKTTEGSILPMNTLIDMASQVADGMAFIEGKNYIHRDLRAANILV |
| H.hippoglossus | --------GSLVDFLKTTEGSSLPMNTLIDMASQVADGMAFIEQENYIHRDLRAANILV |
| O.niloticus | --------GSLVDYLKTTEGSNLPMNVLIEMSSQVADGMAFIEQKNYIHRDLRAANILV |
| S.salar | --------GALVDFLKSSEGSNIPINTLIDMASQVAEGMAYIEEMNYIHRDLRAANILV |
| C.auratus | --------GSLVDFLKTPEGSALTINTLIDMAAQVADGMAYIEQKNYIHRDLRAANILV |
| D.rerio | --------GSLVDFLKTPEGSDIPINTLIDMAAQVAEGMAYVEQKNYIHRDLRAANILV |
|  | V activation loop 433 |
| O.fraenata | SDTLNCKIADFGLARLIEDNEYTAREGAKFPIKWTALEAINYGTFTIKSDVWSFGILLTE |
| M.eugenii | SDTLNCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| M.domestica | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| $P$.abelii | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| N.leucogenys | SDTLSCKIADFGLARLIEDDEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| Hylobates | SDTLSCKIADFGLARLIEDDEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| H.sapiens | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |

## Appendix 5C

| A. nancymaae | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| :---: | :---: |
| S.sciureus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILMTE |
| R.norvegicus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| M.musculus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| C.griseus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| P.troglodytes | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| O.cuniculus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| A.melanoleuca | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| L.africana | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| C.familiaris | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| c.porcellus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| E.caballus | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| S.scrofa | SDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| B. taurus | SHSLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| o.aries | SHSLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| o.anatinus |  |
| A.carolinensis | SEAICCKIADFGLARLIEDDE |
| G.gallus | SEALCCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTE |
| S.maximus | SQELICKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGILLTE |
| H.hippoglossus | SHEHICKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGILLTE |
| O.niloticus | SHELICKVADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGILLTE |
| S.salar | SDELICKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGILLTE |
| c.auratus | SQELICKIADFGLARLIENNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGVLLTE |
| D. rerio | SHELTCKIADFGLARLIKNNEYTAREGAKFPIKWTAPEAINYGTFSIKSDVWSFGVLLTE |
|  |  |
| O.fraenata | IVTYGRIPYPGMTNPEVIQNLEQGYRMVRPDNCPEELYKPMMLCWKERPEDRPTFDYLRS |
| M.eugenii | IVTYGRIPYPGMTNPEVIQNLEQGYRMVRPDNCPEELYKLMMLCWKERPEDRPTFDYLRS |
| M.domestica | IVTYGRIPYPGMTNPEVIQNLEQGYRMVRPDNCPEELYKLMMLCWKERPEERPTFDYLRS |
| P.abelii | IVTHGRIPYPGMTNPEVIQNLERGYRMVCPDNCPEELYQLMRLCWKERPEDRPTFDYLRS |
| N.leucogenys | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERPEDRPTFDYLRS |
| Hylobates | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERPEDRPTFDYLRS |
| H. sapiens | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMRLCWKERPEDRPTFDYLRS |
| A. nancymaae | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYHLMMLCWKERPEDRPTFDYLRS |
| S.sciureus | IVTHGRIPYPGMTNPEVIQNLERGYRMPRPDNCPEELYKLMMQCWRERPDDRPTFDYLRS |
| R.norvegicus | IVTHGRIPYPGMTNPEVIQNLEKGYRMVRPDNCPEELYHLMMLCWKERPEDRPTFDYLRS |
| M.musculus | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYHLMMLCWKERPEDRPTFDYLRS |
| C.griseus | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQIMMLCWKERPEERPTFDYLRS |
| P. troglodytes | IVTHGRIPYPGMTNPEVIONLERGYRMVRPDNCPEELYOLMRLCWKERPEDRPTFDYLRS |
| o.cuniculus | IVTHGRIPYPGMTNPEVIONLERGYRMVRPENCPEELYHLMKLCWKERPEDRPTFDYLRS |
| A.melanoleuca | IVTHGRIPYPGMTNPEVIONLERGYRMVRPDNCPEELYHLMMLCWKERPEERPTFDYLRS |
| L.africana | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYDLMLLCWKERPEDRPTFDYLRS |
| c.familiaris | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERPEDRPTFDYLRS |
| C.porcellus | IVTHGRIPYPGMTNPEVIQNLERGYRMVQPDNCPAELYQLMMQCWKERPEDRPTFDYLRS |
| E.caballus | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERPEDRPTFDYLRS |
| S.scrofa | IVTHGRIPYPGMTNTEVIQNLERGYRMVRPDNCPEELYHLMMLCWKERPEERPTFDYMRS |
| B. taurus | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERPEERPTFDYLRS |
| O.aries | IVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMMLCWKERREDRPTFDYLRS |
| O.anatinus | --FFIGPGGAGMTNPEVIQNLERGYRMPQPENCPEELYDLMQLCWKEKPENRPTFEYMKS |
| A.carolinensis |  |
| G.gallus | IVTYGRIPYPGMTNPEVIQNLERGYRMPQPDNCPQELYELMMQCWKEQPEERPTFEYMKS |
| S.maximus | IVTYGRIPYPGMSNPEVIQNLERGYRMPKPENCPEGLYQVMGMCWKENQDDRPTFEYLRG |
| H.hippoglossus | IVTYGRIPYPGMSNPEVIQNLERAYRMPKPDNCPEGLYNVMGMCWRETPDDRPTFEYLRS |
| O.niloticus | IVTYGRIPYPGMSNPEVIQNLERGYRMPQPDNCSDALYSIMCHCWKESPEERPTFEYLRN |
| S.salar | IVTYGRIPYPGMSNPEVIQNLEKGYRMPRPENCPEDLYNIMNLCWKESPENRPTFEYLRS |
| C.auratus | IVTHGRIPYPGMTNPEVIANLERGYRMPCPDNCPEDLYDVMKRCWTENPDSRPTFEYLRS |
| D. rerio | IVTYGRIPYPGMTNPEVIANLERGYRMPCPDNCPEALYNVMKHCWTENPDNRPTFEFLRS |

## Appendix 5C

|  | $\nabla 510$ |
| :---: | :---: |
| O.fraenata | VLEDFFIATEGQYQPQG----- |
| M.eugenii | VLEDFFTATEGQYQPQP----- |
| M.domestica | VLEDFFTATEGQYQPQP----- |
| $P$.abelii | VLEDFFTATEGQYQPQP----- |
| N.leucogenys | VLEDFFTATEGQYQPQP----- |
| Hylobates | VLEDFFTATEGQYQPQP----- |
| H.sapiens | VLEDFFTATEGQYQPQP----- |
| A. nancymaae | VLEDFFTATEGQYQPQP----- |
| S.sciureus | VLEDFFTATEGQYQPQP---- |
| R.norvegicus | VLDDFFTATEGQYQPQP----- |
| M.musculus | VLDDFFTATEGQYQPQP----- |
| C.griseus | VLDDFFTATEGQYQPQP----- |
| P.troglodytes | VLEDFFTATEGQYQPQP-- |
| O.cuniculus | VLEDFFTATEGQYQPQP----- |
| A.melanoleuca | VLEDFFTATEGQYQPQP----- |
| L.africana | VLEDFFTATEGQYQPQP----- |
| C.familiaris | VLEDFFTATEGQYQPQP----- |
| C.porcellus | VLEDFFTATEGQYQPQPC---- |
| E.caballus | VLEDFFTATEGQYQPQP----- |
| S.scrofa | VLEDFFTATEGQYQPQP----- |
| B. taurus | VLEDFFTATEGQYQPQP----- |
| O.aries | VLEDFFTATEGQYQPQP----- |
| O.anatinus | VLEDFFTATEGQYQQQP----- |
| A.carolinensis |  |
| G.gallus | VLEDFFTATEGQYQQQP----- |
| S.maximus | LLEDFFTATERQYQE------- |
| H.hippoglossus | VLEDFLTATERQYQEDPCMGRRT |
| O.niloticus | VLEDFFTSTERQYQE------- |
| S.salar | VLEDFFTATEGQYQEQP----- |
| C.auratus | VLEDFFTATEGQYQEQPC---- |
| D.rerio | VLEDFFTATEGQYQEQPC---- |

Figure 5C.1. Multiple sequence alignment for Lck.
Boxed sequences are the myristoylation $\left(\mathrm{G}^{2}\right)$ and palmitylation $\left(\mathrm{C}^{3}\right)$ in the SH 4 domain. CXXC = motif in the unique domain. $\boldsymbol{\nabla}=$ tyrosine residues related to activation and inhibition of the PKC activities. * = fully conserved residues. RDL = PP2 binding site. Residues marked in brown and bold mark the hydrophobic pocket. Lysines ( $K$ ) in green and bold signify the ATP binding site.

## Appendix 5C

Table 5C.1. Genbank accession numbers and the relevant references.

| Species Name | Common Name | Accession Numbers | References |
| :---: | :---: | :---: | :---: |
| A.carolinensis | Green anole | XM_003228719.1 | Annotated |
| A.melanoleuca | Giant Panda | XM_002921866 | Annotated |
| A.nancymaae | Ma's night monkey | AY821852 | Direct submission |
| B. taurus | Cattle | NM_001034334.1 | (Wang et al., 1991) |
| C. auratus langsdorfii | Japanese silver crucian carp | AB279595 | (Araki et al., 2007) |
| C. griseus | Chinese hamster | XM_003500655 | Annotated |
| C. jacchus | White tuffed ear marmoset | XR_088449.1 | Annotated |
| C. I. familiaris | Dog | XM_846879.2 | Annotated |
| C. porcellus | Domestic Guinea Pig | XM_003471081 | Annotated |
| D. rerio | Zebrafish | AY390224.1 | Direct submission |
| E. caballus | Horse | XM_001917285 | Annotated |
| G. gallus | Chicken | $\begin{aligned} & \text { XM_427615 } \\ & \text { J30579 } \end{aligned}$ | Annotated (Strebhardt et al., 1987) |
| H. hippoglossus | Halibut | FJ769822.1 | (Overgard et al., 2010a) |
| H. sapiens | Human | M36881.1 | (Perlmutter et al., 1988) |
| Hylobate | Gibbon | AJ320182.1 | Direct submission |
| L. africana | African elephant | XM_003415462 | Annotated |
| M. domestica | Opossum | XM_001366178.2 | Annotated |
| M. mulatta | Rhesus monkey | XM_001109718 | Annotated |
| M. musculus | Mouse | X03533 | (Voronova and Sefton, 1986) |
| $N$. leucogenys | Northern white-cheeked gibbon | XM_003276431.1 | Annotated |
| O. anatinus | Platypus | XM_001509225.2 | Annotated |
| O. aries | Sheep | NM_001142515.1 | (Yu et al., 2010) |
| O. cuniculus | Rabbit | XM_002720629 | Annotated |
| O. mykiss | Rainbow trout | NM_001124542.1 | (Laing et al., 2007) |
| O. niloticus | Nile tilapia | XM_003446183.1 | Annotated |
| P. abelii | Sumatran orangutan | XM_002811121 | Annotated |
| P. troglodytes | Chimpanzee | XM_003307949 | Annotated |
| R. norvegicus | Rat | NM_001100709.1 | (Shin and Steffen, 1993) |
| S. salar | Atlantic Salmon | NM_001139907.1 | (Leong et al., 2010) |
| S. sciureus | Common squirrel monkey | AJ277921 | Direct submission |
| S. scrofa | Pig | NM_001143713.1 | (Yonggang and Xueshan, 2011) |
| S.maximus | Turbot | DQ848967 | Direct submission |
| X. Silurana tropicalis | Western clawed frog | XM_002939295.1 | Annotated |

## Appendix 6A

Macropus eugenii interleukin-2 nucleotide sequence

```
5'
ccactctctaatcactacccagagtaacctgaagttactgagctcttgacacg
atgaacaaggtcccgctcttgtcctgtattgcactaactcttgttttggttgccaacggggcaccgacattgc
ctcctcccaccactgtgctgcagtacttactacgtgacttaatggaggtccaaaacaaactcaagattgtatc
agaaaggatgaagaagtatgaactctacatcccaagtaataccagcagcatcgaaaatctgcagtgtttcact
aaagaactgaaccctgtggctggtgcgttgaaatatgaatccaaagatgctcagaatattcaggaatacatca
acaacattaatgtgactgttaatagcttaatgggaccagaaataacacagtgtcactacgcctccaagatgag
gattgaaggattctttaaagaatttgtttccgtctgccaaagattcatgcactaa
3'
catgtctggatgaagttatttatttaaatatttaaattttataatttatttctgaatgtgtggtttattatca
tttactaccactgattttagtcgtcagataatgaatgtaatagatcttatgatcctaactgtaagccctaggg
gctcaaagactactttaagttatcatctcaaaaattatttattaaattatgacttgttaaatgtaatgtctgt
gaaggtcagtaaagttatttaataaatctgatgatggataataaaaaaaaaaaaaaaaaaaaaaaaa
```

Macropus eugenii putative protein sequence
MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIPSNTSSIENLQCFT KELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASKMRIEGFFKEFVSVCQRFMH

## Appendix 6A

Exon predictions for M. eugenii IL-2 (using ensembl, BLAT and Genscan)
Exon-1
ATGAACAAGGTCCCGCTCTTGTCCTGTATTGCACTAACTCTTGTTTTGGTTGCCAACGGGGCACCGACATTGC CTCCTCCCACCACTGTGCTGCAGTACTTACTACGTGACTTAATGGAGGTCCAAAACAAACTCAAG

## Exon-2

ATTGTATCAGAAAGGATGAAGAAGTATGAACTCTACATCCCAAGTAAT
Exon-3
ACCAGCAGCATCGAAAATCTGCAGTGTTTCACTAAAGAACTGAACCCTGTGGCTGGTGCGTTGAAATATGAAT CCAAAGATGCTCAGAATATTCAGGAATACATCAACAACATTAATGTGACTGTTAATAGCTTAATGG Exon-4
GACCAGAAATAACACAGTGTCACTACGCCTCCAAGATGAGGATTGAAGGATTCTTTAAAGAATTTGTTTCCGT CTGCCAAAGATTCATGCACTAA

## Amplification of exon-4 in genomic DNA

```
gctacaaccaggtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgaaggcattcatagaala
attcacacgtacagaatgagagaggtaaagtacaagtttgagaacagtacaaaatgaagc
aagatttgtctagtaccatgatttttaagttagtttatttcaaaaatgttagaagacttc
atacttaatgtaacaatctctagcatgtcaacttattgacatgttgcagacctaatgttg
gtctgtctgaacgtccattgtctactgtagttggaatagattcatcaccaggtcagatac
aaagggatgaattgggggtaggagcggtagttttaactttcaaagactgtatactccatt
gtaaggggttatgatacacttcagagaaagcatgtccacaccgcaaaagtcatagaggct
caaggtcctgaagtaagaatgcttaatgtttgaaaagaaacagttctgaactgggtaggg)
tctgatctccctaaaaaggagcccatttaaaagtcacttgagaggcatcacataacattt
ccttgttctgtttttgtgtttctttagggaccagaaataacacagtgtcactacgcctcc
```



```
taa
    -
```

Gel picture of M. eugenii IL-2 genomic DNA


Figure 6A.1. gDNA M. eugenii on $1.5 \%$ gel, runtime 1.5 h at 100 V

## Appendix 6A

## Polymorphisms in M. eugenii IL-2

| C1F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| :---: | :---: |
| C1F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C2F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C2R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C3F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C3R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C4F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C4R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C5F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C5R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C6F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C6R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C7F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C7R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C8F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C8R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C9F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C9R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIP 60 |
| C10F | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLNIVSERMKKYELYIP 60 |
| C10R | MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLNIVSERMKKYELYIP 60 <br>  |
| C1F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C1R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C2F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C2R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C3F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C3R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C4F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C4R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C5F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C5R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C6F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C6R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C7F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C7R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C8F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C8R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C9F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C9R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C10F | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 |
| C10R | SNTSSIENLQCFTKELNPVAGALKYESKDAQNIQEYINNINVTVNSLMGPEITQCHYASK 120 <br> ****************************************************************** |
| C1F | MRIEGFFKEFVSVCQRFMH 139 |
| C1R | MRIEGFFKEFVSVCQRFMH 139 |
| C2F | MRIEGFFKEFVSVCQRFMH 139 |
| C2R | MRIEGFFKEFVSVCQRFMH 139 |
| C3F | MRIEGFFKEFVSVCQRFMH 139 |
| C3R | MRIEGFFKEFVSVCQRFMH 139 |
| C4F | MRIEGFFKEFVSVCQRFMH 139 |
| C4R | MRIEGFFKEFVSVCQRFMH 139 |
| C5F | MRIEGFFKEFVSVCQRFMH 139 |
| C5R | MRIEGFFKEFVSVCQRFMH 139 |
| C6F | MRIEGFFKEFVSVCQRFMH 139 |
| C6R | MRIEGFFKEFVSVCQRFMH 139 |
| C7F | MRIEGFFKEFVSVCQRFMH 139 |
| C7R | MRIEGFFKEFVSVCQRFMH 139 |
| C8F | MRIEGFFKEFVSVCQRFMH 139 |
| C8R | MRIEGFFKEFVSVCQRFMH 139 |
| C9F | MRIEGFFKEFVSVCQRFMH 139 |
| C9R | MRIEGFFKEFVSVCQRFMH 139 |
| C10F | MRIEGFFKEFVSVCQRFMH 139 |
| C10R | MRIEGFFKEFVSVCQRFMH 139 |

Figure 6A.2. Non-synonymous substitution at position 46 lysine to asparagine

Identification of the promoter region of the $M$. eugenii Interleukin-2 gene.

## >Scaffold84654 dna.scaffold scaffold.Meug_1.0.Scaffold84654.1.9143.1

CACACACACACATATATATATGAGAACATCCCTGGCATCT
GTCCTAACTCATCTCTTGTGATCAACTTAACTTGCCTTTTAGATACCTCAAACTGGATGT CCCATAGGCATCTCAAATTCAATATGTATATAACACTTTTGCCCAAACCCACCCTTCTTT CCAGCTACCTTCTTACTGTCAAGGGTAATACCATCCTCCCAGTCACCCAGCCTTACAAAC CAGGTGTCATCTTCACCTCCTCССТСТСATGACCCCCCAAATCCAATCCATCACCAAACA TTTTCTCTCСССTTACATCСTTTCTCAGCACTCATCCAGCCATGGCTGTAGTTACCTCTC TTACCTGAACTACTGTCATAGCCTTCCAATAACTAGCCTTCCTGCTTCAAATCTCCCCCC ACTCCAATCCACCCTCCTCTCAGCAGCCAGAGTAACTTTTTATAAAGTAAGGCTTTCTAT TATA Transcription
AAATGTTACCTCCGTCCTTGCCCCCAACTCGATGAACTCCAGGGGCTCCCCATGACCTAC AGGAGCAAACCTCGGCTCCTATTTGGAACTGAAATGTCTTCACAGCCTCCAGTCTTTTCA 5'end Translation
CACTTAGTATAGCCATCTCCTGGCAGCTCCTCAAATGGGCCATTCTCCCCTTTCTGCAGC TATGCACTGGCTGACCCCCCTGCCTGGAACACTTTCTCCCCTCACTGCCACCTCACAGTT TCCCCGACTTCCTTCCTGACTCAGTTCAGACCCCACCTTTTGTAGGTGGTCTTTCCTGGC TCCCACCCAGCAACTGCAATATCTTCTCTGACACTGCCTTCTCTTCAGTCCACTTCATAG CTTCTAGTTATTCACATGGTACCTCCCTTTAGAAAGTAAGTTCCCTGAGAGCAAGGTCCA TTTTTGTCTTTATAACTCCGGTGTCCAACCCAATGTCCGGCACATAGAAAGTACTGAAGA AATGTTTGCTGAGCAGATTAATGACGGATGAATACAGAAGTGTGTAAGAACAAGGGGAAC TAAACACTCAAAAGGAGCGGTACTTGGCAAGGAATTCTAAGAATAGATTTGGCAACTTGT ACTGCAGAAAAAGAAGATTGTATGAGGGATGTGTCCGTGCTGTTCATTCACATTGTGCAT CTCCTACCTTTCACTCTCACTGGGAAACTAACCCATCTCCTCTTAAACCTTGTTTTTCGT TTGATACATATATACATACCTGGTG
T
CGGGAGGGGATGAGGGAGGGTTTCATGGAGGTGGTGCTTGACCTGTGTCCTGAAGGAAAA GACTCTACACGCCAATGTCCATGCCATCCTATAAGCTTTCCCCAAGGGTTTTGCCCAGTG TGCCAGGGGAGCCCTTGCTACTGCATACCTGCCAATCAAACTCATGAGCTCTCTGCTGGT TTTCCCTCATTCTCACTCTATGACTGATTCATTTCTTTCTGCAAATGTACAATTCTCTAA CCTTCTTGACATGTATGTATGTGATATATGCAGGGATGTGCTGGATCAGAAGAGCTAACT AGAGTTAAATTTTTAGGATGAGCATTTACACCTTAGAAATCAGCAAATCACTGGGCAAAT CAACCTTGGTTTCTCCGTCTGTAAAATGGGGTTAATAATCGCACCTGCCTTGCAGGGTTC TTGTGAGACTCAAGTGAGACAATATTTGTAAAGGGCTTAGCAGAGTGCCTGGCCCATAGA AGGTGAGATATAAATATTTATTATTATTGATACCCAAAGTATGAAAGCATATCCCTTGAA GATACAACAGTCCAGACTTCTATTATCTTGTCAGATCAGCAACATGGATTAGTGATAGAG AATTCTGGCCCTGGAGTCAGGAAGACCTGGGTTTAAATGCCGTTTCTGACAAATAATAGG TGATTTCACCTGTTTAAGTCTCTGGCCAGTCTCTAAGACTTATCTAATAAGTCCCAGACT GGTTGCACCCTCCCTCCTAGAAATCCCGGATAGCTAATGTGTACATGATATATCCTTCCT TCCCACTTACCACCCTGAAGTGACTTCAGGGCAATTACCTCATTCATTCTTGTCTCCCTA TCCCAAGGGACTGGCATAATAAGACAAACTTATGGCTCTTAAGAAATACTTGCTATATTG AGTTAAATGAAATACTTTTCCTTTCCTCACAAAACAATGGGATTGTTATAAATCAAAATA AGAACATATTAAAAGGTTGTTTTTAGGAAGTGACAATGTCAACCAAAGAGGGGGCTAGAG AGAACACCCCAACATATCTCCCCTCCCACCAAGCGCTTACTGAGCACTGTGCTAAATGGA AATTCACTGGTCACTAGAGGCTTTGGATGAATGATTAGTAAAGTCACCACATAGTTAGGA AAGGCTACTCAAAGTCCTACTCCAGGTCAACTTTCATTGGGTGATACTCATTCCATCTTC AAAGAGAAAGTCAGAGGCATGTCACTCAAGTCGTGGTTAATAGAGTGTACTGACAACATA ACCACTTCAGCCAGAAGTCAGCCTATGTGTCAGTCAAGGTAAAAAGCGAAAGTATGTCAG AAGGAAGAGCATCTCCTTCAGCGTTTCAAAAACTAAGCATTCAGCTGCCTCCTGCACAGG TAGGCAGTGCTGGCTGCCCAGCAGGGGAGACCAGTGGGCACCTGGGGTTCAGTTTTCACC AGGGTCCCAGAAACGGATCTGAACGCTTTGGGGCCTTCCCCTGTCTCGAATGGAAAGAGT TATGGAATCTTGAAGACTAAGATTCTGTGAGAACATCAAAGGTCTCATTGGAAAGGCTCC CACACAGAAAATTGTGTGGGCCTTCAATTTTCCACTCTGGAAGGATGATTGTCTGAGCTA AAAATGGCAGGATGAGCCCATAAGCTCCTCACCCAGCTATCAGATCGATGCTAGGAGGAT TAAGCAGCCCTTCCCCTCCACAAAAGACACACCTTGTGGTTTAGACTTGGAAGGTCCAAG ATGAGTTTGTATTTTCTGCTAGACAGAAGAGTAGTCATGGAATCTGTGCTTTGGGATTCC TTCATTCTCCATAAGTCTTTTTTCATCACCCCCTCCATCCATATCTCCATCTGAGGAACT

ATGATTTACAATGGTGATTTTATATTCGTTATAAAAATAATAGCTCACCTTGTATAGGAT TTTACAAAGTCCTTTCCTTACAATAACCTCTAAAGATACGTAGTGCATGGATTAGGAATC CCTTTCCCAAGGCCCTTGAGCCTCAGAGGTTACCTGGCAAAATAATAGTAGAACTAAGAC TTGGAAATAGTTTCTCTGACTCTAAGTTCTATACGCTTCCCACTAAACTGTATGAGAAAT AGAGAGAGAAGATAGAGACAGACAGGCAGAGAGATGGATAGAGTTCAGTAAAATGAAAGG GCTCAATAGTATTATCTATTAGACAACACGTAAGACGACCAGACTTGAAATCAGGACCTG AATTCTAATCCTACCTCAGACATTTTCTAGCTGTGTGATCCTGGGCTAGTCATTCAACCT ATGCCAGCCTCAGTTTCCTTATCTGTAAAATGGGGGGGTTAAAAATCACACCTATCTCAA AGGATTGTCTGGGAGGATCAAGTGAGATAACACATGTAAAGCGTTTTGCAAATCTCAAAG AGTTAGCTTTTATTGCCCCTCTCCCCAACCTAAATTACTCTCTGGTCATGTGGCTGAGGC TCCTAGAGGCATTTTCTTTTCTTTTGTGCCTACGTAAGCCATTGTTTTAGCTAAAAGACG CTTCCACGAGTATCTCCTGAGAATACTGTCCTTGGCCCTCGCTGAGTTTTAGTGAAAAAA GGCTTTGTATAATGGAAAGTAGTTATAAAGAATGTAAAAGTGAATGGTGAGCATAGTAAT GAATCCTATCAAGAAGAAAGAAAAAAAACTTGATAAGATCATACAGTATGGAAAGGACCC TAACTCCTGTGGAGGCACAGACATTAGGGAGGACTCCCCAGTGAAGAGCCCCTTTTATCA ACACTGCTTGGTCTGAGCCTTTTAACTTAATCATCTTAAAGAGTCTAGAACAAAGGGTTC AAACAGAACATTCCTGTGTAGCTCAAACAAATTTAAAATGTGATTGGGAAATATTTAACA AAATAAAAGAAATACAATAAAACCTGGATAACATATTTTAAAATTAACTCCATATGGGGC CTGCAGATCTCCTTACATGTGCAGTTGTTCAGTCATGTCCGACTTCATGCCCCCTTTTGA GGTTTTCTTGGCAGAGATCCTGGAGTGGTTTGCCATTTCCTCTTCTTTTACAGACGAGGA AACTGAGACCAACAAGGTGAAGTGACTTGCCCAAGGTCACACAGCTAGCAGGTATCTGAG GCTGTATTTCAACTCAGGTCTTCCTGACTCCAGGCCCAGCATTCTGTCCACTTCGCCACC TAACTGCCCAGGTGGATTAATGACTTCCATTTCTATTTGAGTTTGAGGCTTTGCGCCTAT AACCCAAGGATACACAGCGAACATGCATCCACTCATCTATGTCCAGGTGGGAGCTGGACT AGATGATCTCTGGGGCACTTTTTGGACATGAGTCTATTTTATCCCAGTGGAGTTTCTATA TGTTTACAGTGAGTAGAATTCAAGGAAGCATGCTCTTCTATTAACTGAATCACATTTACA CCATGCTTAGCTTATAGACTGAAATGTCACTAGTTCCCCGTTTGTGTAGAACAAGTAATT TCTGCTCACATCACTTTGTAGGCATTAGCTCAGTCTTTGTAAAAGAAAGGCAAAACCACC CTAAAACAGGAAACCAATATTCTTCCTGTTTAATCAACAAATCTAAAATTCTATTTTGTT TATCTGTTTATATTTCTCCCCCTGCACATGTCCACTGAAA TTGAT
TGTCCCAGTTCTGTGAGGTAGGTGTTATTGTCATTCTCATTTTACAAATGATATTAATGA GGCTGGGAGAGATAAAGGAACCTGCCCAGAGTCACACAGCTAGAAAGAATCAGAGATGAG GTTTGAACATGTTGGAGTCCTCCTGTCTCCAAAGCCTGCCCTGAAGCCTCTAGGAGACCT AGCTACCTCTGATGGGACTTGAGTCTCACCTGTAATGAAGCTAAATAGGCCAGACCCAGG TGAAGACGGGATGTGCTCTGGGCAGGAAGGCTGCCTCTGCTAACGCACAGAGATGGGAAA AGAGGGGAAAGCCATGTTCAGGGAACTAACTGCTGGGAGGCCAGTTTGACTTGAACGTAG GCTGCATAAAGGGGTGTAATGTGGCCTTGGTCTGAAAAGGTCAATTGCAATCAAACTACA GAGAGCTTAGAAAGCTCCTCTGAGCAAAAGGTTTTAGAAAGGCTTCAAAGTATTTCATTA AAAAGTGAAGTAATTTTAACAACCTAAAACAGAGACCACTGGCCTGTCAGCAAGATGCAG ATTCCAATTCTGCTTCTTACTCTAACAGCCCAGCGGGTCCCTGGGCAGGTCATTCAGCCT CTTTCAGTTTGTTTTCCCATCTTTAAAAAGGAAATAATCATTGCACCAACCTCACAGGTT GTGAGGCTCAAGTGCAACAATTTATAAATATTATCATGGTTACTCTCCCATAAAAGAAAG AACCCATCTTGTGGTCCAAAGACTGGGGCTCCAGTCTCATATTTAGGACCTTTATTTAAT CAGTCACTTAAGCTCTCTAAATTAATTTTCTCATTTGTAAAAAAAAAAAAAAAAAGAAAG AGATCAACCCTTGTCCAATTCACAGTTGCTGTCTGGAACTAGACAGAGATATAGATGCAT AGACATGTAGACAAATGAAGTGTTAGTGTAAATGTGTGTAGATGTGCGTAGGCTAGCATT TACATAATGTTTTAAGCTTTGCAAGACACTTTACAAAGATCATCACAGTTCTTCTCCTCC CAACAACCATGGAAGGCGGATGCTAGTATTATCCTCACTCTACAGATGAGTAAACTGAGG CAGACACAGCTTAAGAGATTTGCCCAAGGTGATACAATCAATAAGGGTCTGAGGTTGGAT TTTAATCCAGATCTTCCTGACTCTGACACTCTAATCGCTGTGCCACCTAAAGGCCCCCTA CATATGAAAGTGCTTGGTAAACGACAAGGCACTATGTAAATCTCAGATTAGTAGTATTAA CAGAAAACTGAAAGTAAAGTTTAAAGCAAGTTCTTTCAGAATCTTCCACATATAATGTGT TTTGAGGATGCAGCTGGAGAAAAATGTAGCAATAAAAACAAAGAAATGTTTAACACTTGG TTATATGTGACAGGACCACAGCTATATGTAAAATTGCATGAACAAAACCTGGCCTCATTC IgNF-A CTATACTACAATCCATCTTCAGTACCTGGAAGGGAGAAAACCCACCTAGCCTGCTCCTCT GGAGAGGGGATCAGGATAATTCTCCATACCCAGCTTTTCCCTCCCTGGGCTTACAGAATC TCTCACTCTTTTGACTCCAGACCAGCAGCATCGAAAATCTGCAGTGTTTCACTAAAGAAC TGAACCCTGTGGCTGGTGCGTTGAAATATGAATCCAAAGATGCTCAGAATATTCAGGAAT IL-2 (SSIEN..)

# ACATCAACAACATTAATGTGACTGTTAATAGCTTAATGGTAAGGAGGATATTATTTTTTT TTATTTCTTTCAAACTTAATACAAGAGAAAAGAATTATATCCTAAAGACTGCAAGATTAA ACAATAGTCTAGACTAGTGTTGTGACATAGGATTAAGAGGTATTCACCCTTTTGGTGTTT GGGGACACACCACCTGTATATTTGACTCTCACAATCATGATTA 


#### Abstract

>scaffold.Meug_1.0.Scaffold84654.8521.9259.1 TTAAAGCAAGTTCTTTCAGAATCTTCCACATATAATGTGTTTTGAGGATGCAGCTGGAGA AAAATGTAGCAATAAAAACAAAGAAATGTTTAACACTTGGTTATATGTGACAGGACCACA GCTATATGTAAAATTGCATGAACAAAACCTGGCCTCATTCCTATACTACAATCCATCTTC 0ct1 AGTACCTGGAAGGGAGAAAACCCACCTAGCCTGCTCCTCTGGAGAGGGGATCAGGATAAT TCTCCATACCCAGCTTTTCCCTCCCTGGGCTTACAGAATCTCTCACTCTTTTGACTCCAG ACCAGCAGCATCGAAAATCTGCAGTGTTTCACTAAAGAACTGAACCCTGTGGCTGGTGCG TTGAAATATGAATCCAAAGATGCTCAGAATATTCAGGAATACATCAACAACATTAATGTG ACTGTTAATAGCTTAATGGTAAGGAGGATATTATTTTTTTTTATTTCTTTCAAACTTAAT ACAAGAGAAAAGAATTATATCCTAAAGACTGCAAGATTAAACAATAGTCTAGACTAGTGT TGTGACATAGGATTAAGAGGTATTCACCCTTTTGGTGTTTGGGGACACACCACCTGTATA TTTGACTCTCACAATCATGATTANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNN


2000bp 5' and $3^{\prime}$ added to above
>scaffold.Meug_1.0.Scaffold84654.6821.10959.1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTGAT TGTCCCAGTTCTGTGAGGTAGGTGTTATTGTCATTCTCATTTTACAAATGATATTAATGA GGCTGGGAGAGATAAAGGAACCTGCCCAGAGTCACACAGCTAGAAAGAATCAGAGATGAG GTTTGAACATGTTGGAGTCCTCCTGTCTCCAAAGCCTGCCCTGAAGCCTCTAGGAGACCT AGCTACCTCTGATGGGACTTGAGTCTCACCTGTAATGAAGCTAAATAGGCCAGACCCAGG TGAAGACGGGATGTGCTCTGGGCAGGAAGGCTGCCTCTGCTAACGCACAGAGATGGGAAA AGAGGGGAAAGCCATGTTCAGGGAACTAACTGCTGGGAGGCCAGTTTGACTTGAACGTAG GCTGCATAAAGGGGTGTAATGTGGCCTTGGTCTGAAAAGGTCAATTGCAATCAAACTACA GAGAGCTTAGAAAGCTCCTCTGAGCAAAAGGTTTTAGAAAGGCTTCAAAGTATTTCATTA AAAAGTGAAGTAATTTTAACAACCTAAAACAGAGACCACTGGCCTGTCAGCAAGATGCAG ATTCCAATTCTGCTTCTTACTCTAACAGCCCAGCGGGTCCCTGGGCAGGTCATTCAGCCT CTTTCAGTTTGTTTTCCCATCTTTAAAAAGGAAATAATCATTGCACCAACCTCACAGGTT GTGAGGCTCAAGTGCAACAATTTATAAATATTATCATGGTTACTCTCCCATAAAAGAAAG AACCCATCTTGTGGTCCAAAGACTGGGGCTCCAGTCTCATATTTAGGACCTTTATTTAAT CAGTCACTTAAGCTCTCTAAATTAATTTTCTCATTTGTAAAAAAAAAAAAAAAAAGAAAG AGATCAACCCTTGTCCAATTCACAGTTGCTGTCTGGAACTAGACAGAGATATAGATGCAT AGACATGTAGACAAATGAAGTGTTAGTGTAAATGTGTGTAGATGTGCGTAGGCTAGCATT TACATAATGTTTTAAGCTTTGCAAGACACTTTACAAAGATCATCACAGTTCTTCTCCTCC CAACAACCATGGAAGGCGGATGCTAGTATTATCCTCACTCTACAGATGAGTAAACTGAGG CAGACACAGCTTAAGAGATTTGCCCAAGGTGATACAATCAATAAGGGTCTGAGGTTGGAT TTTAATCCAGATCTTCCTGACTCTGACACTCTAATCGCTGTGCCACCTAAAGGCCCCCTA CATATGAAAGTGCTTGGTAAACGACAAGGCACTATGTAAATCTCAGATTAGTAGTATTAA CAGAAAACTGAAAGTAAAGTTTAAAGCAAGTTCTTTCAGAATCTTCCACATATAATGTGT TTTGAGGATGCAGCTGGAGAAAAATGTAGCAATAAAAACAAAGAAATGTTTAACACTTGG TTATATGTGACAGGACCACAGCTATATGTAAAATTGCATGAACAAAACCTGGCCTCATTC Oct1 CTATACTACAATCCATCTTCAGTACCTGGAAGGGAGAAAACCCACCTAGCCTGCTCCTCT GGAGAGGGGATCAGGATAATTCTCCATACCCAGCTTTTCCCTCCCTGGGCTTACAGAATC

## Appendix 6A


#### Abstract

TCTCACTCTTTTGACTCCAGACCAGCAGCATCGAAAATCTGCAGTGTTTCACTAAAGAAC TGAACCCTGTGGCTGGTGCGTTGAAATATGAATCCAAAGATGCTCAGAATATTCAGGAAT ACATCAACAACATTAATGTGACTGTTAATAGCTTAATGGTAAGGAGGATATTATTTTTTT TTATTTCTTTCAAACTTAATACAAGAGAAAAGAATTATATCCTAAAGACTGCAAGATTAA ACAATAGTCTAGACTAGTGTTGTGACATAGGATTAAGAGGTATTCACCCTTTTGGTGTTT GGGGACACACCACCTGTATATTTGACTCTCACAATCATGATTANNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN


## +3 frame reverse transcription

tctcactcttttgactccagaccagcagcatcgaaaatctgcagtgtttcactaaagaactg
S L F - L Q T S S I E N L aaccotgtggctggtgcgttgaaatatgaatccaaagatgctcagaatattcaggaatac $\begin{array}{llllllllllllllllllll}\text { N } & \mathrm{P} & \mathrm{V} & \text { A } & \text { G } & \text { A } & \mathrm{L} & \mathrm{K} & \mathrm{Y} & \mathrm{E} & \mathrm{S} & \mathrm{K} & \mathrm{D} & \text { A } & \text { Q } & \mathrm{N} & \mathrm{I} & \mathrm{Q} & \mathrm{E} & \mathrm{Y}\end{array}$ atcaacaacattaatgtgactgttaatagcttaatgg
I N N I N V T V N S L M

Genomic
>scaffold.Meug_1.0.Scaffold332747.-144.593.1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNAAGGCCTTTGAAAATGTGTATATGTAAAATTCTTT TATA box $\quad \rightarrow$ Transcription
AACACCCCCAGGATACTTTTCCAGAATTAAGAATATAAATTGTCCCTCTGATTTAGAGAC TTCCATTCCACTCTCTAATCACTACCCAGAGTAACCTGAAGTTACTGAGCTCTTGACACG Translation ATGAACAAGGTCCCGCTCTTGTCCTGTATTGCACTAACTCTTGTTCTGGTTGCCAACGGG GCACCGACATTGCCTCCTCCCACCACTGTGCTGCAGTACTTACTACGTGACTTAATGGAG

BLASTx IL-2 GTCCAAAACAAACTCAAGGTAAGTATCTCATTGTTTTTTAAAGACTAAAAATATTGTACT GAATTCATTCTCATGGGGTGTTCATTTTATTAATGACATTATTAACTTAATTGACTAATT ACTTTTACTTCCTTAGATTGTATCAGAAAGGATGAAGAAGTATGAACTCTACATCCCAAG TAATGTAAGTAACATTTTGCATATTGAATTTTGGAGATTTTCAAATTTAAGATCATTAGG AAGTAGAATTTTTTTGCAGTCTGATGACTTTAGTATCTAAGATTTAAGTCAGGTCTAGGG GAATGTGTCAAAAAATTT

Genomic

> scaffold.Meug_1.0.Scaffold332747.112. 759.1
> AATCACTACCCAGAGTAACCTGAAGTTACTGAGCTCTTGACACGATGAACAAGGTCCCGC TCTTGTCCTGTATTGCACTAACTCTTGTTCTGGTTGCCAACGGGGCACCGACATTGCCTC CTCCCACCACTGTGCTGCAGTACTTACTACGTGACTTAATGGAGGTCCAAAACAAACTCA AGGTAAGTATCTCATTGTTTTTTAAAGACTAAAAATATTGTACTGAATTCATTCTCATGG GGTGTTCATTTTATTAATGACATTATTAACTTAATTGACTAATTACTTTTACTTCCTTAG ATTGTATCAGAAAGGATGAAGAAGTATGAACTCTACATCCCAAGTAATGTAAGTAACATT TTGCATATTGAATTTTGGAGATTTTCAAATTTAAGATCATTAGGAAGTAGAATTTTTTTG CAGTCTGATGACTTTAGTATCTAAGATTTAAGTCAGGTCTAGGGGAATGTGTCAAAAAAT TTTTCTGTACTTTTTAAACGCAAAACAATCAAATTAGGCTTATATATAGTTGGGTAGATA GATAACACTTCTCTATACCTTCTCCCCACCCCACATAAATTGAAAAAGAAAATGAGGTAG AACATCTGCTTTTCTTTTGCAGCAATGTTTTATTTTCTAATAGATAAC

1000 bases $5^{\prime}$ and $3^{\prime}$ added
>scaffold.Meug_1.0.Scaffold332747.-588.1459.1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAGGCCTTTGA AAATGTGTATATGTAAAATTCTTTAACACCCCCAGGATACTTTTCCAGAATTAAGAATAT AAATTGTCCCTCTGATTTAGAGACTTCCATTCCACTCTCTAATCACTACCCAGAGTAACC TGAAGTTACTGAGCTCTTGACACGATGAACAAGGTCCCGCTCTTGTCCTGTATTGCACTA ACTCTTGTTCTGGTTGCCAACGGGGCACCGACATTGCCTCCTCCCACCACTGTGCTGCAG TACTTACTACGTGACTTAATGGAGGTCCAAAACAAACTCAAGGTAAGTATCTCATTGTTT TTTAAAGACTAAAAATATTGTACTGAATTCATTCTCATGGGGTGTTCATTTTATTAATGA CATTATTAACTTAATTGACTAATTACTTTTACTTCCTTAGATTGTATCAGAAAGGATGAA GAAGTATGAACTCTACATCCCAAGTAATGTAAGTAACATTTTGCATATTGAATTTTGGAG ATTTTCAAATTTAAGATCATTAGGAAGTAGAATTTTTTTGCAGTCTGATGACTTTAGTAT CTAAGATTTAAGTCAGGTCTAGGGGAATGTGTCAAAAAATTTTTCTGTACTTTTTAAACG CAAAACAATCAAATTAGGCTTATATATAGTTGGGTAGATAGATAACACTTCTCTATACCT TCTCCCCACCCCACATAAATTGAAAAAGAAAATGAGGTAGAACATCTGCTTTTCTTTTGC AGCAATGTTTTATTTTCTAATAGATAACTCTGTGTTTTAGATTATATAAATGCTTAAAAA TGTGTTTTCAAAACTGGAAATCCATATTGATTATAGTACTGTATTGGACCCAAGGGTCAA AGGAGATCAGATGTATTAAGTGGGTGGCAAAGTTTAAAGTCCTGGATAAGCATCAGCTGT TATCATTATTACTCAAGGGTAGTGAGGTGTACTCCACACCCCCTACTGCTCCCATCCTCC CAACAAGAGTCAGAAACACTGAATTGAATCAGCCTCTGATACACACAACTTGAGTAACCC TGGGCCAGTCATAGGTTAGAGAAGTTTGCTGATCTGTATTAGAGGAAGGGGTTTCCTTCA GTGCAGTGTTACCCACACCAATGAAATGACAGACAGATCTCTACAGATCTATCTGTGGAC ATACATATTCATAGATAATCATATCAAATGATGGCAAAGCTTCACAGAGAACACAGAAAC CAGCCAGGTTCTCATTCTGTGTGGAGACAGCAAATAGGGTAGAGACTGGGCCTGTGATCT CATCCAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNN
>Scaffold332747 dna.scaffold
scaffold.Meug_1.0.Scaffold332747.1.1278.1
AAGGCCTTTGAAAATGTGTATATGTAAAATTCTTTAACACCCCCAGGATACTTTTCCAGA ATTAAGAATATAAATTGTCCCTCTGATTTAGAGACTTCCATTCCACTCTCTAATCACTAC CCAGAGTAACCTGAAGTTACTGAGCTCTTGACACGATGAACAAGGTCCCGCTCTTGTCCT GTATTGCACTAACTCTTGTTCTGGTTGCCAACGGGGCACCGACATTGCCTCCTCCCACCA CTGTGCTGCAGTACTTACTACGTGACTTAATGGAGGTCCAAAACAAACTCAAGGTAAGTA TCTCATTGTTTTTTAAAGACTAAAAATATTGTACTGAATTCATTCTCATGGGGTGTTCAT TTTATTAATGACATTATTAACTTAATTGACTAATTACTTTTACTTCCTTAGATTGTATCA GAAAGGATGAAGAAGTATGAACTCTACATCCCAAGTAATGTAAGTAACATTTTGCATATT GAATTTTGGAGATTTTCAAATTTAAGATCATTAGGAAGTAGAATTTTTTTGCAGTCTGAT GACTTTAGTATCTAAGATTTAAGTCAGGTCTAGGGGAATGTGTCAAAAAATTTTTCTGTA CTTTTTAAACGCAAAACAATCAAATTAGGCTTATATATAGTTGGGTAGATAGATAACACT TCTCTATACCTTCTCCCCACCCCACATAAATTGAAAAAGAAAATGAGGTAGAACATCTGC TTTTCTTTTGGCAGCAATGTTTTATTTTCTAATAGATAACTCTGTGTTTTAGATTATATAA ATGCTTAAAAATGTGTTTTCAAAACTGGAAATCCATATTGATTATAGTACTGTATTGGAC CCAAGGGTCAAAGGAGATCAGATGTATTAAGTGGGTGGCAAAGTTTAAAGTCCTGGATAA GCATCAGCTGTTATCATTATTACTCAAGGGTAGTGAGGTGTACTCCACACCCCCTACTGC TCCCATCCTCCCAACAAGAGTCAGAAACACTGAATTGAATCAGCCTCTGATACACACAAC TTGAGTAACCCTGGGCCAGTCATAGGTTAGAGAAGTTTGCTGATCTGTATTAGAGGAAGG GGTTTCCTTCAGTGCAGTGTTACCCACACCAATGAAATGACAGACAGATCTCTACAGATC TATCTGTGGACATACATATTCATAGATAATCATATCAAATGATGGCAAAGCTTCACAGAG AACACAGAAACCAGCCAGGTTCTCATTCTGTGTGGAGACAGCAAATAGGGTAGAGACTGG GCCTGTGATCTCATCCAG

This is IL-2 in red exon/intron boundaries

Proscan. Version 1.7
Processed Sequence. 6754 Base Pairs
Promoter region predicted on forward strand in 5978 to 6228
Promoter Score. 58.03 (Promoter Cutoff $=53.000000$ )
TATA found at 6201, Est.TSS = 6231
Significant Signals.

| Name | TFD \# | Strand | Location Weight |  |
| :--- | ---: | :--- | :--- | :--- |
| HNF1 | $\underline{\text { S01619 }}$ | - | 5978 | 1.012000 |
| ISGF1 | $\underline{S 01978}$ | - | 6125 | 17.211000 |

Promoter region predicted on reverse strand in 659 to 409
Promoter Score. 54.47 (Promoter Cutoff $=53.000000$ )
TATA found at 446, Est.TSS $=414$

| Significant Signals. |  |  |  |
| :--- | :---: | :---: | :---: |
| Name | Strand | Location | Weight |
| AP-1 | + | 657 | 1.091000 |
| AP-2 | + | 655 | 1.672000 |
| NF-kB | + | 502 | 1.008000 |
| NF-kB | + | 501 | 1.434000 |
| T-Ag | - | 484 | 1.086000 |
| TFIID | - | 444 | 2.618000 |
| TFIID | - | 444 | 1.971000 |
| TFIID | - | 444 | 2.920000 |
| CTF | - | 409 | 1.704000 |

## Genscan output

GENSCAN 1.0 Date run. 29-Mar-111 Time. 22.23.02
Sequence /tmp/03_29_11-22.23.02.fasta . 6754 bp . 42.23\% C+G . Isochore 1 ( 0 - $43 \mathrm{C}+\mathrm{G} \%$ )

Parameter matrix. HumanIso.smat
Predicted genes/exons.

Gn.Ex Type S . Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..


Predicted peptide sequence(s).
>/tmp/03_29_11-22.23.02.fasta|GENSCAN_predicted_peptide_1|80_aa
MSDFMPPFEVFLAEILEWFAISSSFTDEETETNKTSSIENLQCFTKELNPVAGALKYESKDAQNIQ EYINNINVTVNSLM = IL-2
>/tmp/03_29_11-22.39.16.fasta|GENSCAN_predicted_CDS_1|240_bp atgtccgacttcatgcccccttttgaggttttcttggcagagatcctggagtggtttgccatttcc tcttcttttacagacgaggaaactgagaccaacaagaccagcagcatcgaaaatctgcagtgtttc actaaagaactgaaccctgtggctggtgcgttgaaatatgaatccaaagatgctcagaatattcag gaatacatcaacaacattaatgtgactgttaatagcttaatg

EXPASY translation of $n t$ sequence


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAGGCCTTTGAAAATGTGTATATGTAAAATT CTTTAACACCCCCAGGATACTTTTCCAGAATTAAGAATATAAATTGTCCCTCTGATTTAG $5^{\prime}$ UTR
AGACTTCCATTCCACTCTCTAATCACTACCCAGAGTAACCTGAAGTTACTGAGCTCTTGA CACGATGAACAAGGTCCCGCTCTTGTCCTGTATTGCACTAACTCTTGTTCTGGTTGCCAA CGGGGCACCGACATTGCCTCCTCCCACCACTGTGCTGCAGTACTTACTACGTGACTTAAT GGAGGTCCAAAACAAACTCAAGGTAAGTATCTCATTGTTTTTTAAAGACTAAAAATATTG TACTGAATTCATTCTCATGGGGTGTTCATTTTATTAATGACATTATTAACTTAATTGACT AATTACTTTTACTTCCTTAGATTGTATCAGAAAGGATGAAGAAGTATGAACTCTACATCC CAAGTAATGTAAGTAACATTTTGCATATTGAATTTTGGAGATTTTCAAATTTAAGATCAT TAGGAAGTAGAATTTTTTTGCAGTCTGATGACTTTAGTATCTAAGATTTAAGTCAGGTCT AGGGGAATGTGTCAAAAAATTTTTCTGTACTTTTTAAACGCAAAACAATCAAATTAGGCT TATATATAGTTGGGTAGATAGATAACACTTCTCTATACCTTCTCCCCACCCCACATAAAT TGAAAAAGAAAATGAGGTAGAACATCTGCTTTTCTTTTGCAGCAATGTTTTATTTTCTAA TAGATAACTCTGTGTTTTAGATTATATAAATGCTTAAAAATGTGTTTTCAAAACTGGAAA TCCATATTGATTATAGTACTGTATTGGACCCAAGGGTCAAAGGAGATCAGATGTATTAAG TGGGTGGCAAAGTTTAAAGTCCTGGATAAGCATCAGCTGTTATCATTATTACTCAAGGGT AGTGAGGTGTACTCCACACCCCCTACTGCTCCCATCCTCCCAACAAGAGTCAGAAACACT GAATTGAATCAGCCTCTGATACACACAACTTGAGTAACCCTGGGCCAGTCATAGGTTAGA GAAGTTTGCTGATCTGTATTAGAGGAAGGGGTTTCCTTCAGTGCAGTGTTACCCACACCA ATGAAATGACAGACAGATCTCTACAGATCTATCTGTGGACATACATATTCATAGATAATC ATATCAAATGATGGCAAAGCTTCACAGAGAACACAGAAACCAGCCAGGTTCTCATTCTGT GTGGAGACAGCAAATAGGGTAGAGACTGGGCCTGTGATCTCATCCAGNNNNNNNNNNNN

GENSCAN 1.0 Date run. 29-Mar-111 Time. 22.45.02
Sequence /tmp/03_29_11-22.45.02.fasta . 1200 bp . $36.38 \%$ C+G . Isochore 1 ( 0 - $43 \mathrm{C}+\mathrm{G} \%$ )

Parameter matrix. HumanIso.smat
Predicted genes/exons.

>/tmp/03_29_11-22.45.02.fasta|GENSCAN_predicted_peptide_1|62_aa
MNKVPLLSCIALTLVLVANGAPTLPPPTTVLQYLLRDLMEVQNKLKIVSERMKKYELYIPSN = IL-2
>/tmp/03_29_11-22.45.02.fasta|GENSCAN_predicted_CDS_1|186_bp
atgaacaaggtcccgctcttgtcctgtattgcactaactcttgttctggttgccaacggggcaccgacattgc ctcctcccaccactgtgctgcagtacttactacgtgacttaatggaggtccaaaacaaactcaagattgtatc agaaaggatgaagaagtatgaactctacatcccaagtaat
Promoter region predicted on forward strand in 10183 to 10433
Promoter Score. 55.71 (Promoter Cutoff $=53.000000$ )

## Appendix 6A

| TATA found at 10416, | Est.TSS $=10446$ |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| Significant Signals. |  |  |  |  |
| $\quad$ Name | TFD \# | Strand | Location Weight |  |
| Oct-factors | $\underline{\text { S01029 }}$ | + | 10198 | 2.754000 |
| IgHC.2 | $\underline{S 00814}$ | - | 10205 | 2.754000 |
| INF.1 | $\underline{S 01152}$ | + | 10240 | 1.044000 |
| IgNF-A | $\underline{S 00830}$ | + | 10307 | 1.434000 |
| NF-IL2-D | $\underline{S 01626}$ | - | 10313 | 8.606000 |

Promoter region predicted on forward strand in 8729 to 8979 Promoter Score. 54.65 (Promoter Cutoff $=53.000000$ )
TATA found at 8930, Est.TSS = 8960
Significant Signals.

| TFD \# |  | Strand | Location Weight |  |
| :--- | :---: | :---: | :---: | :---: |
| N-Ag | $\underline{S 00974}$ | + | 8925 | 1.086000 |
| TFIID | $\underline{S 00087}$ | + | 8931 | 2.618000 |
| $Y$ | $\underline{S 01848}$ | + | 8974 | 9.680000 |
| CTF | $\underline{S 00780}$ | + | 8976 | 1.704000 |

Promoter region predicted on reverse strand in 6287 to 6037
Promoter Score. 55.70 (Promoter Cutoff $=53.000000$ )
TATA found at 6065, Est.TSS $=6033$
Significant Signals.

| Name | Strand | Location | Weight |
| :--- | :---: | :---: | :---: |
| TFIID | - | 6287 | 2.618000 |
| TFIID | - | 6287 | 1.971000 |
| TFIID | - | 6287 | 2.920000 |
| NF-kB | - | 6094 | 1.080000 |
| TFIID | - | 6063 | 1.971000 |
| TFIID | - | 6063 | 2.920000 |
| TFIID | - | 6063 | 2.618000 |

Promoter region predicted on forward strand in 313 to 563
Promoter Score. 90.42 (Promoter Cutoff $=53.000000$ )
Significant Signals.

| Name | TFD \# | Strand | Location Weight |  |
| :---: | :---: | :---: | :---: | :---: |
| UCE. 2 | S00437 | + | 350 | 1.278000 |
| AP-2 | S01936 | - | 375 | 1.091000 |
| UCE. 1 | $\overline{500436}$ | - | 399 | 1.700000 |
| PuF | S02016 | + | 430 | 1.082000 |
| JCV_repeated_sequenc | S01193 | + | 430 | 1.427000 |
| AP-2 | S00346 | - | 439 | 1.672000 |
| UCE. 2 | S00437 | + | 448 | 1.278000 |
| JCV_repeated_sequenc | S01193 | - | 491 | 1.658000 |
| UCE. 2 | S00437 | - | 506 | 1.216000 |
| GCF | S01964 | - | 519 | 2.284000 |
| TTR_inverted_repeat | S01112 | + | 548 | 2.151000 |
| EIIF | S00659 | + | 552 | 50.000000 |
| element_II_rs-4 | S01507 | - | 559 | 25.816999 |
| E2F | S00147 | - | 559 | 50.000000 |

T. vulpecula IL-2 nucleotide sequence

## Appendix 6A


#### Abstract

atgaacacggttccgctcctgtcctgtattgcactaactcttgttctggctgccaatggggcaccaacatcgc gtcctcccaccactgtgctgcagttcgtactagatgacttaacgttgctcacagagaaactcaagaatgtatc ggagaggatgaagggatatgaactccacatcccaagtaataccagcagcattgaagctctgcagtgtttcact aaagaactgaaacctgtggccggtgcgttgaaatatgaatcagaagatgctcagaaaattcaggaagacatca acaacattaatgtgaatgttaatagattaacgggaccagaaacaacacagtgtcactacgcctccaagaagaa gattgaagggtttttcacagaatttatttcattctgccaaaaactcatgggtttaactcgatga


Putative protein of $T$. vulpecula IL-2
MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIPSNTSSIEALQCFT KELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASKKKIEGFFTEFISFCQKLMGLTR


Figure 6A.3 . Sequence comparison of $T$. vulpecula and M. eugenii IL-2

Alignment of M. eugenii, T. vulpecula and H. sapiens using CLUSTALW (blosum 62 matrix)

| M.eugenii | MNKVPLLSCIALTLVLVANGAPTL---PPPTTVLQYLLRDLMEVQNKLKIVS----ERMK 53 |
| :---: | :---: |
| T.vulpecula | MNTVPLLSCIALTLVLAANGAPTS---RPPTTVLQFVLDDLTLLTEKLKNVS----ERMK 53 |
| H.sapiens |  |
| M.eugenii | KYELYIPSNTSSIENLQCFTKELNPVAGALKYESKD--AQNIQEYINNINVTVNSLMGPE 111 |
| T.vulpecula | GYELHIPSNTSSIEALQCFTKELKPVAGALKYESED--AQKIQEDINNINVNVNRLTGPE 111 |
| H.sapiens | TFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE 120 |
| M.eugenii | IT-QCHYASK-MRIEGFFKEFVSVCQRFMH--- 139 |
| T.vulpecula | TT-QCHYASK-KKIEGFFTEFISFCQKLMGLTR 142 |
| H.sapiens | $\underset{*}{\text { TTFMCEYADETATIVEFLNRWITFCQSIISTLT }} 153$ |

Figure 6A.4. Sequence comparison of marsupial and human IL-2 sequences

## Appendix 6A

## Polymorphism in T. vulpecula IL-2

| 1CP7F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| :---: | :---: |
| CP8R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP4F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP5R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP9F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP10R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| 2CP1F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| 2CP7F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP3F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP6R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP5F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP8F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP10F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP11R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| 2CP1R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP11F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP9R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP7R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP4R | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| 1CP1F | MNTVPLLSCIALTLVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| CP3R | MNTVPLLSCIALALVLAANGAPTSRPPTTVLQFVLDDLTLLTEKLKNVSERMKGYELHIP 60 |
| 1CP1R | MNTVPLLSCIGLALVLAANGAPASRPPTTVLQFVLDDLTLLAEKLKNVSERMKGYELRIP 60 <br>  |
| 1CP7F | SNTSSIEAVQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCQYASK 120 |
| CP8R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP4F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP5R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP9F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP10R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 2CP1F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 2CP7F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP3F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP6R | SNTSGIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP5F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP8F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP10F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP11R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 2CP1R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP11F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP9R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP7R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP4R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 1CP1F | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| CP3R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 1CP1R | SNTSSIEALQCFTKELKPVAGALKYESEDAQKIQEDINNINVNVNRLTGPETTQCHYASK 120 |
| 1CP7F | KKIEGFFTEFISLCQKLMGLTR 142 |
| CP8R | KKIEGFFTEFISLCQKLMGLTR 142 |
| CP4F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP5R | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP9F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP10R | KKIEGFFTEFISFCQKLMGLTR 142 |
| 2CP1F | KKIEGFFTEFISFCQKLMGLTR 142 |
| 2CP7F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP3F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP6R | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP5F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP8F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP10F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP11R | KKIEGFFTEFISFCQKLMGLTR 142 |
| 2CP1R | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP11F | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP9R | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP7R | KKIEGFFTEFISFCQKLMGLTR 142 |
| CP4R | KKIEGFFTEFISFCQKLMGLTR 142 |
| 1CP1F | KKIEGFFTEFISFCQKLMGLTR 142 |

## Appendix 6A

| CP3R | KKIEGFFTEFISFCQKLMGLTR 142 |
| :--- | :--- |
| 1CP1R | KKIEGFFTEISFCQKLMGLTR <br> $* * * * * * * * * * * ~$ <br> $* * * * * * * *$ |

Figure 6A.5. Sequence of 10 clones in forward and reverse direction using CLUSTALW. The differences in sequence are sequence variations and not substitutions.

## Appendix 6A

Multiple amino acid alignment using CLUSTALW (blosum 62 matrix)


## Appendix 6A

|  | Alpha Helix B |
| :---: | :---: |
|  | - $\nabla$ |
| A.volciferans | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| A.lemurinus | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| $P$.anubis | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK---PLEEVLNLAQSKNFHL |
| C. jacchus | NGINNYKNPKLTRMLTFKFYMPKK-AKELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| S.scinereus | NGINNYKNPKLTRMLTFKFYLPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| M.mulatta | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| M.nemestrina | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK---PLEEVLNLAQSKNFHL |
| C.torquatus | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| M.fascicularis | NGINNYKNPKLTRMLTFKFYMPKK-ATELRHLQCLEEELK---PLEEVLNLAQSKSFHL |
| H.sapiens | NGINNYKNPKLTRMLTFKFYMPKK-ATELKHLQCLEEELK----PLEEVLNLAQSKNFHL |
| C.hircus | EKVKNPENLKLSRMHTFNFYMPKVNATELKHLKCLLEELK---LLEEVLDLAPSKNLNT |
| O.aries | EKVKNPENLKLSRMHTFNFYMPKVNATELKHLKCLLEELK----LLEEVLDLAPSKNLNT |
| C.falconeri | EKVKNPENLKLSRMHTFNFYMPKVNATELKHLKCLLEELK---LLEEVLDLAPSKNLNT |
| B. taurus | EKVKNPENLKLSRMHTFDFYGPKVNATELKHLKCLLEELK----LLEEVLNLAPSKNLNP |
| B.bison | EKVKNPENLKLSRMHTFDFYVPKVNATELKHLKCLLEELK----LLEEVLNLAPSKNLNP |
| B.indicus | EKVKNPENLELSRMHTFDFYVPKVNATELKHLKCLLEELK----LLEEVLNLAPSKNLNP |
| B.carabanensis | EKVKNPENLKLSRMHTFNFYVPKVNATELKHLKCLLEELK----LLEEVLNLAPSKNLNP |
| B. bubalus | EKVKNPENLKLSRMHTFNFYVPKVNATELKHLKCLLEELK---LLEEVLNLAPSKNLNP |
| S.caffer | EKVKNPENLKLSRMHTFNFYVPKVNATELKHLKCLLEELK----LLEEVLNLAPSKNLNP |
| M.berezovskii | EKVKNPENLKLSRMHTFNFYVPKVNSTELKHLKCLLEELK---LLEEVLNLAPSKNLNL |
| C.elaphus | EKVKNPENLKLSKMHTFNFFMPKVNATELKHLNCLLEELK----LLEDVLSLSPSKNLNP |
| D.leucas | KEINNHENLKLFRMLAFKFYMPKK-ATELKHLQCLAEELK----PLEDVLNVAQSKTQNS |
| O.orca | KEINNYENLKLFRMLTFKFYMPKK-ATELKHLQCLAEELK----PLEDVLNVAQSKTQNS |
| C.bactrianus | KEVNNYENLKLSRMLTFKFYMPKK-ATELKHLQCLMEELK----PLEEVLNLAQSKNSHL |
| C.domedarius | KEVNNYENLKLSRMLTFKFYMPKK-ATELKHLQCLMEELK----PLEDVLNLAQSKNSHL |
| L. lama | KEVNNYENLKLSRMLTFKFYMPKK-ATELKHLQCLMEELK----PLEEVLNLAQSKNSHL |
| S.scrofa | KEVKNYENADLSRMLTFKFYMPKQ-ATELKHLQCLVEELK---ALEGVLNLGQSKNSDS |
| R.lescheraultii | NTVNNSKKHELSSMLTFKF-HMP-KATELKHLQCLVDELK----PLEEVLTIAQSKNSHS |
| L.africana | IRVKNYETRRLSMIFTFKF-NMPKEVTELKHLQCLVDELK----PLEDVLNVAPSKQ--- |
| C.familiaris | NGVNNYENPQLSRMLTFKFYTPKK-ATEFTHLQCLAEELK---NLEEVLGLPQSKNVHL |
| V.Vulpes | NGVNNYENPQLSRMLTFKFYTPKK-ATEFTHLQCLAEELK----NLEEVLGLPQSKNVHL |
| H.grypus | NGVNNYENPQLSRMLTFKFYTPKK-ATELTHLQCLPEELK----LLEEVLYLAPNKNFHL |
| M.putorius furo | NGVKNYESP---RMLTFKFYMPKK-ATELTHLQCLAEELK----LLEEVLYLAQSKNFHL |
| A.melanoleuca | NGVNNYENPKLSRMLTFKFYMPKK-ATELKHLQCLAEELK----LLEEVLYLDQSKNLHL |
| M.anustiorstris | NGVNNYEDPKLSRMLTFKFYTPKK-ATELTHLQCLAEELK----PLEEVLYLAQSKNFHL |
| $F . c a t u s$ | NGVNNPENPKLSRMLTFKFYVPKK-ATELTHLQCLVEELK----PLEEVLYLAQSKNFHL |
| E.caballus | EGVNNNKNPKLSKMLTFKINMPKK-ATELKHLQCLEEELK---PLEEMLKN----FLS |
| D. novemcinctus | KMVNN-KDLKLPRMLTFKFYMPKR-VTELKHLQCLVEELK----PLENVLNLAQSQMSQL |
| O.cuniculus | KGVNDYKNSKLSRMLTFKFYMPKK-VTELKHLQCLEEELK---PLEEVLNLAQGKNSHG |
| M.musculus | SRMENYRNLKLPRMLTFKFYLPKQ-ATELKDLQCLEDELG---PLRHVLDLTQSKSFQL |
| M.spretus | SRMENYRNLKLPRMLTFKFYLPKQ-ATELKDLQCLEDELG---PLQSVLDLTQSKSFQL |
| $R . n o r v e g i c u s$ | RGIDNYKNLKLPMMLTFKFYLPKQ-ATELKHLQCLENELG---ALQRVLDLTQSKSFHL |
| M.auratus | KGINNYKNPKLPMMLTFKFYMPKK-ATELKHLQCLEEELG---ALQSVLDLAQSKSFHL |
| C.griseus | KGINNNKNPKLPMMLTFKFYMPKK-ATELKHLQCLEEELG----ALQSVLDLAQSKSFQL |
| S.hispidus | RGIKNYKDPILPMMLKFKFYMPNK-ATELKHLQCLEEELG----PLQRVLDLAESKSFPL |
| $P$.maniculatus | KGINNYKNPKLPMILTFKFYMPKK-ATELKHLQCLEEELG----ALQHVLDLAQSKSFRL |
| M.unguiculatus | RGINNYKNPKLPMLLTFKFYMPRK-ATELKHLQCLEEELG---PLHDVLNLVQSKNLYL |
| M.monax | RGVSNQENSTLTRMLKFKFYMPMK-ASDLEHLQCLEEELK----PLQEVLNVPQSKNFHL |
| C.porcellus | EGVTS--NPRLPKMLKLKLYPPKM-VSELQHLQCLEEELR----AVEQVLNLAEHKNFPL |
| M.eugenii | MEVQNKLKIVSERMKKYELYIPSN-TSSIENLQCFTKELN---PVAGALKYESKDAQNI |
| T.vulpecula | TLLTEKLKNVSERMKGYELHIPSN-TSSIEALQCFTKELK----PVAGALKYESEDAQKI |
| M.domestica | QEAHEKLSGVSERMKRYELYVPSR-A RSIADLQCFTKELH----PVADALKYESREARYI |
| T.nigroviridis | ICEQDSK-----FYTPTNIKP--ECLTAALQCFKDELQ----TVKHECKDPQNYINRT |
| T.rubripes | KCEPDSK-----FYTPANVRDDH-HCIIVALECVAAELK---TVRRECEDPEDVIGVA |
| G.gallus | EILENIKNKIHLELYTPTETQE---CTQQTLQCYLGEVV----TLKKETEDDTEIKEEF |
| M.gallopavo | EILEESKNKIHVVLYTPNEIKE---CSQQTLQCYLEEMV---MLKKEIEDEPEIKNEF |
| C.japonica | ELLEKSKNKIHLELYTPSETQE---CIHQTLQCYQKEII----TLRKEIEDEPEIENKV |
| A.platyrhynchos | ENLGTSMNGIDLELYTPNDTKE---CSWQTLQCYLKEIV----TLEEEIEDEDEIEDEK |
| A.cygnoides | EKLGTSMKKINLELYTPNEKQE----CSWQTLQCYLKEIV----TLENEIEDEDEIEDEN |
| O.latipes | KCPPDLK-----LYTPTYEKDWA---KDILECIQKEING---TVKEECEDPNYRIEQV |
| X.laevis | KQANNTITNALELLKLLDASYSKTEPSQYLEKQCEQCKQH-------------------- |
| G.aculeatus | --FCFLQQHVKCVNVTFTYPINVQAKCSRDALQVFVQGLN---NATTDCQDDQEIIPDT |
| C.idella | KGATKLDVSKPLSIHSSSLSVKGPPQTTYSFETMNPEPQPMNLHAQSPPRSIKPNMDLSF |

## Appendix 6A

|  | Alpha Helix C Alpha Helix D |
| :---: | :---: |
|  | $\square$ |
| A.volciferans | RDT-------RDIISNINVLVLELKGSETTFTCEYDDDTATIIEFLNGWITFCQSIISTL |
| A.lemurinus | RDT-------RDIISNINVLVLELKGSETTFTCEYDDDTATIIEFLNGWITFCQSIISTL |
| P.anubis | RDT-------RDIISNINVLVLELKGSETTFTCEYDDDTATIIEFLNGWITFCQSIISTL |
| C.jacchus | RDT-------RDIISNINVLVLELKGSETTFTCEYDDDTATIIEFLNGWITFCQSIISTL |
| S.scinereus | RDT-------RDIISNINVLVLELKGSETTFTCEYDDDTATIIEFLNGWITFCQSIISTL |
| M.mulatta | RDT-------KDLISNINVIVLELKGSETTLMCEYADETATIVEFLNRWITFCQSIISTL |
| M.nemestrina | RDT-------KDLISNINVIVLELKGSETTLMCEYADETATIVEFLNRWITFCQSIISTL |
| C.torquatus | RDT-------KDLISNINVIVLELKGSETTLMCEYADETATIVEFLNRWITFCQSIISTL |
| M.fascicularis | RDT-------KDLISNINVIVLELKGSETTLMCEYADETATIVEFLNRWITFCQSIISTL |
| H.sapiens | RP-------RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL |
| c.hircus | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| O.aries | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| C.falconeri | -----RIKDSMDNIKRIVLELQGSETRFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| B. taurus | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVNAVEFLNKWITFCQSIYSTM |
| B.bison | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVNAVEFLNKWITFCQSIYSTM |
| B.indicus | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVNAVEFLNKWITFCQSIYSTM |
| B.carabanensis | R------EIKDSMDNIKRIVLELQGSETGFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| B. bubalus | R------EIKDSMDNIKRIVLELQGSETGFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| S.caffer | R------EIKDSMDNIKRIVLELQGSETRFTCEYDDATVKAVEFLNKWITFCQSIYSTM |
| M. berezovskii | R-------EIKDSMDNIKRIVLELQGSETTFTCEYDNATVKAAEFLNKWITFCQSIYSTM |
| C.elaphus | KEIKDSMDEIKDLMDNIKRIVLELQGSETSFKCEYDAATVKAVEFLNKWITFCQRIYSTM |
| D.leucas | ID------IKDLMDNINRIVLTLKGSETRFTCEYDDETVTAVEFLNKWITFCQSIYSTM |
| O.orca | ID------IKDLMDNINRIVLTLKGSETRFTCEYDEKTVTAVELLNKWITFCQSIIST- |
| C.bactrianus | TN-------IKDSMNNINLTVSELKGSETGFTCEYDDETVTVVEFLNKWITFCQSIYSTL |
| c.domedarius | TN-------IKDSMNNINLTVSELKGSETGFTCEYDDETVTVVEFLNKWITFCQSIYSTL |
| L.lama | TN-------IKDSMNNINLTVSELKGSETGFTCEYDDETVTVVEFLNKWITFCQSIYSTM |
| S.scrofa | AN-------IKESMNNINVTVLELKGSETSFKCEYDDETVTAVEFLNKWITFCQSIYSTL |
| R.lescheraultii | ----KIKELVSNINVTAQKLKGPETKSTCDYDDDRVTVREFLNNWITFCQSIFSTL |
| L.africana | --NTRELISNINVTALELQGSETTFMCEYDDHAATIEEFLNKWIVFCQSIISTL |
| C.familiaris | TD------TKELISNMNVTLLKLKGSETSYNCEYDDETATITEFLNKWITFCQSIFSTL |
| V.Vulpes | TD------TKELISNMNVTLLKLKGSETSYNCEYDDETATITEFLNKWITFCQSIFSTL |
| H.grypus | TD-------IKELMSNINVTLLKLKGSETRFKCEYDDETATITEFLNKWITFCQSIFSTL |
| M.putorius furo | TD-------IKELMSNINVTLLKLKGSETSFKCEYDDETVTITEFLNKWITFCQSIFSTL |
| A.melanoleuca | TD-------IKELMSNINVTLLKLKGSEASFKCEYDDETVTITEFLNKWITFCQSIFSTL |
| M.anustiorstris | TD-------IKELMSNINVTLLKLKGSETRFKCEYDDETATITEFLNKWITFCQSIFSTL |
| F.catus | NH-------IKELMSNINVTVLKLKGSETRFTCNYDDETATIVEFLNKWITFCQSIFSTL |
| E.caballus | KD------IKELMSNINVTVLGLKGSETRFTCEYDDETGTIVEFLNKWITFCQSIFSTM |
| D. novemcinctus | EHN-------GDLISNINITVLELKGSETTFMCDYDDEAATIVEFLNKWIIFCQSIISKR |
| o.cuniculus | GN-------TRESISNINVTVLKLKGSET-FMCEYD-ETVTIVEFLNRWITFCQSIISAS |
| M.musculus | EDA------ENFISNIRVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTS |
| M.spretus | EDA------ENFISNIRVTVVKLKGSDNTIECQFDDESATVVDFLRRWIAFCQSIISTS |
| $R . n o r v e g i c u s ~$ | EDA------GNFISNIRVTVVKLKGSENKFECQFDDEPATVVEFLRRWIAICQSIISTM |
| M.auratus | EDA------ENFISNIRVTVVKLKGSESTFRCEFDDETVTVVEFLNRWITFCQSSIATM |
| C.griseus | EDT------ENFISNIRVTVVKLKGSENTFTCEFDDETVTVVEFLSRWITFCQSIIATM |
| S.hispidus | EDA------ENSISNIRVIVVKLKGSENPSMCEFDDERVTVVEFLSRWITFCQSTIAAM |
| P.maniculatus | EDA------ENSISNIRVTVAKLKGSENTSTCEFHDETVTVVEFLNTWIAFCQSAIST- |
| M.unguiculatus | EDA------GNFISNIRVTVMKLKGSENTLNCEFDDETVTVVEFLSRWITFCQSAISTM |
| M.monax | KDT------RNFISNINVTVLKLKGSATTFTCEYAPETANIVEFLNTWITFCQSIISKL |
| c. porcellus | IHT-------KDFISNINVTVLSLKGSETAFVCDLEDESVNIVEFLKRWTAFCQKIMSRL |
| M.eugenii | QEY---------INNINVTVNSLMGPEITQCHYAS--KMRIEGFFKEFVSVCQRFMH-- |
| T.vulpecula | QED---------INNINVNVNRLTGPETTQCHYAS--KKKIEGFFTEFISFCQKLMGLT |
| M.domestica | QDH---------IRNINVTVNRLMGTATTHCQYAV--KIKIRGFFGEWITFCQRLIHLT |
| T.nigroviridis | KGF------LEHVISTMKN---EEVNSNACS-CESYSEEPFPEFLNAMETLVQRFNSKA |
| T.rubripes | EEF------LTHTIQKLKNGVKIEKSNSTECSTCESWPEKPLTNFLDATESLLQQVQSGA |
| G.gallus | VTA------IQNIEKNLKSLTGLNHTG-SECKICEANNKKKFPDFLHELTNFVRYLQK-- |
| M.gallopavo | KNA------LQNIKKNLHRLKDLSPTG-GECKICEANDKKNFPDFLQQLTNFVRYLQK-- |
| c. japonica | RTA------LQHIENNLDTLMEQTPIG-GECKICEATTKKNFPDFHQKLTDFLRSMHK- |
| A.platyrhynchos | VSS------VRNIKMNLQKLMDLIPPG-TGCNICEAN-ANNFPEFRQELTNFLRSMLK- |
| A.cygnoides | VFS------VRNIEKNLQKLTDLIPPG-TGCKICEANDKKEFPEFHRELTNFLRSMLK-- |
| O.latipes | ISMLKN--VSPDNGTGQNSTNSTCEGSPVKSFQEFVTSVKVILQKIRSGKCLTQNEEKQK |
| X.laevis | ---KAHTTTKNLEGFIEDFEALLKNLATNL |
| G.aculeatus | LES---------------LAWKFPTTDSTNCKLQTKESQFEDFVKDLERLVQLINASG |
| C.idella | PNLSNHTIAPKPRPGKAGAAAAASVVTGPQRFLESLKTPFKLQLSDEPGDPMLRQVIIST |
| A.volciferans | T------ |
| A.lemurinus | T----- |
| P.anubis | T- |
| C. jacchus | T- |

## Appendix 6A

| S.scinereus | T----- |
| :---: | :---: |
| M.mulatta | T------ |
| M.nemestrina | T----- |
| $C . t o r q u a t u s$ | T------ |
| M.fascicularis | T------ |
| H.sapiens | T------ |
| C.hircus | T------ |
| O.aries | T------ |
| C.falconeri | T----- |
| B.taurus | T------ |
| B.bison | T------ |
| B.indicus | T------ |
| B.carabanensis | T------ |
| B.bubalus | T------ |
| S.caffer | T------ |
| M.berezovskii | T------ |
| C.elaphus | T------ |
| D.leucas | T------ |
| O.orca | ------ |
| C.bactrianus | T------ |
| C.domedarius | T----- |
| L. lama | T------ |
| S.scrofa | T----- |
| R.lescheraultii | P------ |
| L.africana | I------ |
| C.familiaris | T------ |
| V.Vulpes | T--- |
| H.grypus | T------ |
| M.putorius furo | T------ |
| A.melanoleuca | T------ |
| M.anustiorstris | T----- |
| $F . c a t u s$ | T------ |
| E.caballus | T------ |
| D. novemcinctus | LDN--- |
| O.cuniculus | SS---- |
| M.musculus | PQ---- |
| M.spretus | PQ---- |
| $R . n o r v e g i c u s$ | TQ---- |
| M.auratus | TQ---- |
| C.griseus | TQ---- |
| S.hispidus | TQ---- |
| P.maniculatus | --- |
| M.unguiculatus | TQ---- |
| M.monax | T----- |
| C.porcellus | T------ |
| M.eugenii | ------ |
| T.vulpecula | R------ |
| M.domestica | R----- |
| T.nigroviridis | RQNQQR- |
| T.rubripes | IPSAEGS |
| G.gallus | ------ |
| M.gallopavo | ------- |
| C. japonica | ------ |
| A.platyrhynchos | ------- |
| A.cygnoides | --- |
| O.latipes | STIRNK- |
| X.laevis | ------- |
| G.aculeatus | DK---- |
| C.idella | ----- |

Figure 6A.6. Alignment of known IL-2 molecules. Boxed the family signature of IL-2. Yellw highlight = Putative N -linked glycosylation sites marked in yellow. - disulphide bridge. $\boldsymbol{\square}=$ biologically Important amino acids.

## Appendix 6A

Table 6A.1. Genbank Accession numbers for IL-2 and the relevant references.

| Species name | Common name | Accession number | Reference |
| :--- | :--- | :--- | :--- |
| Ailuropoda <br> melanoleuca | Giant Panda | (Li et al., 2010) |  |
| Anas platyrhynchos | Duck | AY707747 | (Sreekumar et al., 2005) |
| Anser cygnoides | Chinese goose | AY392557 | (Sreekumar et al., 2005) |
| Aotus lemurinus | Northern grey-necked <br> night monkey | U88364 | Direct submission |
| Aotus vociferans | Spix's owl monkey | U88362 | Direct submission |
| Bison bison | Bison | EF118563.1 | (Freeman et al., 2008) |
| Bos taurus | Cattle | NF056472.1, | (Reeves et al., 2008) |
| Bos indicus |  | AF348423 |  |
| Bubalus bubalis | Zebu | EF118562, | EF407852 |

## Appendix 6A

| Monodelphis domestica | South-American <br> opossum | XM_0033413731 | Annotated |
| :--- | :--- | :--- | :--- |
| Moschus berezovskii | Chinese forest musk <br> deer | AY840980 | Direct submission |
| Mus musculus | House mouse | NM_008366 | (Matesanz et al., 1992) |
| Mus spretus | Western wild mouse | U41495 | (Matesanz et al., 1993) |
| Mustela putorius furo | Domestic ferret | EF368206 | Direct submission |
| Orcinus orca | Ocra | AF009570 | (Ness et al., 1997) |
| Oryzias latipes | Japanese medaka | NM_001128514 | Direct submission |
| Oryctolagus cuniculus | Rabbit | AF169168, <br> AF068057.1 <br> DQ852342 | (Perkins et al., 2000) |
| Ovis aries | Sheep | EF118564.1, <br> AF287479 | (Freeman et al., 2008) |
| Papio anubis | Olive baboon | AY234220 | U88365 |
| Papio hamadryas | Hamadras baboon | AY247760 | Direct submission |
| Peromyscus <br> maniculatus | Deer mouse | (Schountz et al., 2004) |  |
| Rattus norvegicus | Norway Rat | NM_053836 | (McKnight et al., 1989) |
| Rousettus lescheraultii | Leschenault's rousette | AB472358 | (Iha et al., 2009) |
| Saimiri sciureus | Common squirrel <br> monkey | AF294755 | (Heraud et al., 2002) |
| Sigmodon hispidus | Cotton rat | AF398549 | Direct submission |
| Sus scrofa | Pig | AB571123.1 | Direct submission |
| Syncerus caffer | African buffalo | NM_001037994 | (Bird et al., 2005a) |
| Takifugu rubripes | Tiger pufferfish | Direct submission |  |
| Tetraodon nigroviridis | Spotted green pufferfish | EF513163 | (Young et al., 2011) |
| Trichosurus vulpecula | Silver brushtail posssum | HQ717721.1 | (Rolland-Turner et al., 2006) |
| Vulpes vulpes | Red fox | AJ621188 | Direct submission |
| Xenous tropicalis | Western clawed frog | EF513165 |  |

## Appendix 6B

M. eugenii Interluekin-17 (IL_17) nucleotide sequence
atgtcttctctgggcaacttgccagggtttaagtcactgctgctgttgctggttctggcggtcatgatgaaga caggagtctcaatgccaaagaggtcaggctgccccaaagctgaaaagaacgactcttctcagagagttagcat caacatgaatatcattaaccgaaaccaaggctcaaagatatcccctgattacaagaaccgctccacctctcct tgggatatgtttcctaacgaggatgccaacagactgccccgcaccatctgggaggctaagtgccgtcactcag gctgcatcaacgccgaggggaaagtggaccaccacctgaactctgtcgccatccagcaggagatcttggtcct ccgcagagagttcccaaactgttccacttccttcaggctggagaagatgctggtgactgtgggctgcacttgt gtgaccccacgcacagtgtcctaa

## M. eugenii putative protein sequence

MSSLGNLPGFKSLLLLLVLAVMMKTGVSMPKRSGCPKAEKNDSSQRVSINMNIINRNQGSKISPDYKNRSTSP WDMFPNEDANRLPRTIWEAKCRHSGCINAEGKVDHHLNSVAIQQEILVLRREFPNCSTSFRLEKMLVTVGCTC VTPRTVS

CLUSTALW alignment of putative IL-17 M. eugenii amino acid sequence and the ensembl sequence.

| M.eugenii | MSSLGNLPGFKSLLLLLVLAVMMKTGVSMPKRSGCPKAEKNDSSQRVSINMNIINRNQGS 60 |
| :---: | :---: |
| ensembl | $\underset{* * * * * * * * *}{\text { MSSLGNLPG--SLLE******************************************** }} 58$ |
| M.eugenii | KISPDYKNRSTSPWDMFPNEDANRLPRTIWEAKCRHSGCINAEGKVDHHLNSVAIQQEIL 120 |
| ensembl | KISPDYKNRSTSPWDMFPNEDANRLPRTIWEAKCRHSGCINAEGKVDHHLNSVAIQQEIL 118 |
| M.eugenii | VLRREFPNCSTSFRLEKMLVTVGCTCVTPRTVS 153 |
| ensembl | VLRREFPNCSTSFRLEKMLVTVGCTCVTPRTVS 151 |

Figure 6B.1. Alignment of expressed sequence with annotated sequence found in ensembl

## Appendix 6B

M.domestica
M.eugenii
E.caballus
C. familiaris
O.cuniculus
P.troglodytes
H.sapiens
P.abelii
M.mulatta
N. leucogenys
C. jacchus
L.africana
B. taurus
C.hircus
C.elaphus
S.scrofa
M.musculus
R.norvegicus
C.griseus
C. porcellus
O.anatinus
G.gallus
O.latipes
D.rerio
M.domestica
M.eugenii
E.caballus
C. familiaris
O.cuniculus
P. troglodytes
H.sapiens
P.abelii
M.mulatta
N.leucogenys
C. jacchus
L.africana
B. taurus
C. hircus
C.elaphus
S.scrofa
M.musculus
R.norvegicus
C.griseus
C. porcellus
O.anatinus
G.gallus
O.latipes
D.rerio
M.domestica
M.eugenii
E.caballus
C.familiaris
O.cuniculus
P. troglodytes
H.sapiens
P.abelii
M.mulatta
N.leucogenys
C. jacchus
L.africana
B.taurus
C. hircus
C.elaphus
S.scrofa


VMMKMGVSMPKRSGCP----------KIEGNDSLQSIRVNMNMINRN---QGSKISPD VMMKTGVSMPKRSGCP----------KAEKNDSSQRVSINMNIINRN---QGSKISPD AIVKAGIVIPQNPECP----------NTGDKNFPQNVKINLNVLNR---KTNSRRASD AIIKAGIAFPQNPGCR---------NTEDKNFPQHVKVNLNILNR---NTNSRRPSD ATVKNGIAMPRNPGCP-----------NAEDKNFPQNVKVSLNILNK---SVNSRRPSD AIVKAGIAIPRNPGCP----------NSEDKNFPRTVMVNLNIHNRN-TNTNPKRSSD AIVKAGITIPRNPGCP---------NSEDKNFPRTVMVNLNIHNRN-TNTNPKRSSD AIVKAGIAIPRNPGCP-----------NSEDKNFPRTVMVNLNIHNRN-TNTNPKRSSD AIVKAGIAIPRNPGCP-----------NSEDKTFPRTVMVNLNIHNRN-TNTNPKRSSD AIVKAGIAIPQNPGCP------------NSEDKNFPRTVMVNLNIHNRN-TNTNPKRSSD AIVKAGIASPQNPGCP---------NAEDKNFPRTVMVNLNIRNRN-TNS--KRASD AMVIAGPAAPRNPGCP------------NAEDKNFPHTVRLNLNITNRN-PNTNSRRSSD ALVKAGVIIPQSPGCP-----------PTEDKNFPQHVRVNLNIVNR---STNSRRPTD ALVKAGVIIPQSPGCP------------PTEDKNFPQHVRVNLNIVNR---NTNSRRPTN ALVKAGVIIPQSPGCP------------PTEDKNFPQHVRVNLNIVNR---NTNSRRPTD ALVKAGIMIPQSPGCP----------KTEDKNFPQHVRVNLNILNR---STPARRPSD ATVKAAAIIPQSSACP----------NTEAKDFLQNVKVNLKVFNSLGAKVSSRRPSD ATVKAAVLIPQSSVCP----------NAEANNFLQNVKVNLKVLNSLSSKASSRRPSD AVVKAGLPIPQSSECP----------NTEAKNFLQNVKVNLKVLNSLSPKVNSRRPSD ATVKAGIPIPRNPGCPT----------ATEGKNFLQNVKLNLSIFNPLTQNVNSRRSSD KQPQNSLHLKKEKGCP-----------SSESDDFPHSVTVNLSITNGN---GTSKKFPS ASISAHGKVIRPGLEPESLFKKADAGCLTQKDGKFPQTVRVNISISNMN---QDTKVTLD FSSCSDEGVLHPPDCN-------------------VTLQFSSEIFSLS-----RGNGN GLVLISFGAEGASVRS----------DQKNKNSHPEADHSYRLVLDAEFKASTNPIHP

YKNRSTSPWDLVQNVDENRQPRVIWEARCRYSGCINVEG--KVDYHRNSVPIQQEIMVLR YKNRSTSPWDMFPNEDANRLPRTIWEAKCRHSGCINAEG--KVDHHLNSVAIQQEILVLR YHNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCVNAEG--KVDFHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCVNNEG--NINYHMNSVPIQQEILVLR YYNRSTSPWTLHRNEDRERYPSVIWEAKCRHLGCVNAEG--NEDHHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCINADG--NVDYHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCINADG--NVDYHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCVNADG--NVDYHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCVNADG--NVDYHMNSVPIQQEILVLR YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCVNADG--KVDYHMNSVPIQQEILVLR YYNRSSSPWNLHRNEDPERYPSVIWEAKCRHLGCVDADG--NVDYHMNSVPIQQEILVLR YYKRSTSPWSLHRNEDPERYPSVIWEAKCLHLGCVNADG--QVNHHMNSVPVKQEILVLR YHKRSTSPWTLHRNEDPERYPSVIWEAKCSHSGCINAEG--KVDHHMNSVTIQQEILVLR YHKRSTSPWTLHRNEDPERYPSVIWEAKCSHSGCINAEG--KVDHHMNSVTIQQEILVLR YHKRSTSPWTLHRNEDPERYPSVIWEAKCSHSGCINAEG--KVDHHMNSVTIQQEILVLR YSKRFTSPWTLQRNEDPERYSSVIWEAKCSHSGCINAEG--KEDHHMNSVPIQQEILVLR

## Appendix 6B

| M.musculus | YLNRSTSPWTLHRNEDPDRYPSVIWEAQCRHQRCVNAEG--KLDHHMNSVLIQQEILVLK |
| :---: | :---: |
| $R$.norvegicus | YLNRSTSPWTLSRNEDPDRYPSVIWEAQCRHQRCVNAEG--KLDHHMNSVLIQQEILVLK |
| C.griseus | YLNRSTSPWTLRRNEDPDRYPSVIWEAECRHQRCVNAEG--KLDHHMNSVLIQQEILVLR |
| C.porcellus | YYKRSTSPWTLHRNENPNRYPPVIWEAECRYSGCVNAAG--KEDHHVSSVPIQQEILVLQ |
| O.anatinus | VNKRSTSPWEYYLNEDPNRFPSKILEAKCSTTGCLDAQK--KEDPHMNSLPIQQEILVLR |
| G.gallus | ISKRSLAPWDYRIDEDHNRFPRLVADAQCRHSRCVNSAG--QLDHSVNSVPIKQEILVLR |
| O.latipes | IHQRSMSPWRWRSTTVRHRIPSTLWEAECDSIFCSNPTSGQPKDYSLNSVPIYQNILVLN |
| D.rerio | INNDSISPWTYMFTHNESLYPTSIAEAKCSLTGCLIDGV---EVQDYESKPIYTQIMVLR |
| M.domestica | -RESPNCSTSFRLEKILVTVGCTCVVSILRGSEHYELPCPGTQGLTSSLDKGSGPHSELT |
| M.eugenii | -REFPNCSTSFRLEKMLVTVGCTCVTPRTVS |
| E.caballus | -RESQNCPHSFQLEKMLVAVGCTCVTPIVRHMG- |
| C.familiaris | -RESQHCPHSFRLEKMLVAVGCTCVTPIVRHVA- |
| O.cuniculus | -RESQHCPHSFRLEKMLVAVGCTCVTPIIHHMA- |
| P.troglodytes | -REPPHCPNSFRLEKILVSVGCTCVTPIVHHVA - |
| H.sapiens | -REPPHCPNSFRLEKILVSVGCTCVTPIVHHVA- |
| P.abelii | -REPPHCPNSFRLEKILVSVGCTCVTPIVHHVA- |
| M.mulatta | -REPRHCPNSFRLEKILVSVGCTCVTPIVHHVA |
| N.leucogenys | -REPPHCPNSFRLEKILVSVGCTCVTPIVHHVS |
| C. jacchus | -REPRHCTNSFRLEKMLVSVGCTCVTPIVRHVA- |
| L.africana | -RENGQCPRSFRLEKMLVTVGCTCVTPIIQHMS- |
| B.taurus | -RESQHCPHSFRLEKMLVAVGCTCVTPIVRHLA- |
| C.hircus | -RESQHCPHSFRLEKMLVAVGCTCVTPIVRHVA- |
| C.elaphus | -REPRHCPYSFRL |
| S.scrofa | - REPRHCPNSFRLEKVMVTVGCTCVTPIVRHIS- |
| M.musculus | -REPESCPFTFRVEKMLVGVGCTCVASIVRQAA- |
| $R$.norvegicus | -REPEKCPFTFRVEKMLVGVGCTCVSSIVRHAS- |
| C.griseus | -REPENCPVSFRMEKMLVGVGCTCVSSIVRHVA- |
| C.porcellus | -REPQNCPLSFRLEKMKVTVGCTCVTPIVRHVG- |
| O.anatinus | -RETQSCPTSFRMEKILVSVGCTCVTPNIHRLG |
| G.gallus | -REPKGCQHSYRLEKKMITVGCTCVTPLIQHQA- |
| O.latipes | -HVKG--SHCYTASYHLVAVGCTCVWARSNQT- |
| D.rerio | RIRGEKPNYSFKLEYKTIAVGCTCVRPYVEQL |

M.domestica
M.eugenii
E.caballus
C.familiaris
O.cuniculus
P.troglodytes
H.sapiens
P.abelii
M.mulatta
N.leucogenys
C.jacchus
L.africana
B.taurus
C.hircus
C.elaphus
S.scrofa
M.musculus
R.norvegicus
C.griseus
C.porcellus
O.anatinus
G.gallus
O.latipes
D.rerio
EARYTENICILELGTSVKALLGGLSLTGPTPIGWPADSLAVRLGTSVQMLAGLWASS


Figure 6B.2. Sequence alignment of IL-17.
C = red and bold. Signal peptide is underlined. Green highlight = polyleucine motif.
Yellow highlight = polyvaline motif of M.domestica.

## Appendix 6B

Table 6B.1. Genbank Accession numbers for IL-17 and the relevant references.

| Species | Common Name | Genbank Accession Number | Reference |
| :---: | :---: | :---: | :---: |
| Ailuropoda melanoleuca | Giant Panda | XM_002915419 | Annotated |
| Bos taurus | Cattle | NM_001008412 | (Zimin et al., 2009) |
| Callithrix jacchus | White-tuffed ear marmoset | EF534212 | Direct submission |
| Canis lupus familiaris | Dog | AB514445 <br> NM_001165878 <br> XM_538958 | Direct submission |
| Capra hircus | Goat | GU269912 | Direct submission |
| Cavia porcellus | Domestic guinea pig | XM_003474763 | Annotated |
| Cervus elaphus | Red Deer | EU860095 | Direct submission |
| Cricetulus griseus | Chinese hamster | XM_003509128 | Annotated |
| Danio rerio | Zebrafish | NM_001020787 | (Gunimaladevi et al., 2006) |
| Equus caballus | Horse | $\begin{aligned} & \text { NM_001143792 } \\ & \text { XM_001498896, } \\ & \text { EU744563 } \\ & \hline \end{aligned}$ | (Tompkins et al., 2010) |
| Gallus gallus | Chicken | AM773756 | Direct submission |
| Homo sapiens | Human | $\begin{aligned} & \text { NM_002190 } \\ & \text { Z58820 } \end{aligned}$ | (Yao et al., 1995b) <br> (Fossiez et al., 1998) |
| Loxodonta africana | African elephant | XM_003404140 | Annotated |
| Macaca mulatta | Rhesus monkey | XM_001106391 | Annotated |
| Monodelphis domestica | South American opossum | XM_001370118 | Annotated |
| Mus musculus | Mouse | NM_010552 | (Yao et al., 1996) |
| Nomascus leucogenys | White cheeked gibbon | XM_003254163 | Annotated |
| Ornithorhynchus anatinus | Platypus | XM_001509837 | Annotated |
| Oryza latipes | Japanese medaka | NM_001204786 | (Kono et al., 2011) |
| Pan troglodytes | Chimpanzee | XM_527408 | Annotated |
| Pongo abelii | Sumatran orangutan | XM_002816996 | Annotated |
| Rattus norvegicus | Rat | $\begin{aligned} & \hline \text { NM_001106897 } \\ & \text { XM_001070601 } \\ & \text { XM_236985 } \\ & \hline \end{aligned}$ | (Florea et al., 2005) |
| Sus scrofa | Pig | NM_001005729 | (Katoh et al., 2004) |

## Appendix 6C

## Appendix 6C

Partial nucleotide sequence for $M$. eugenii Foxp3
aaggtcttcctggactcaggggatctcttaaaacacctccaagaagaccaccgcctggatgagaaggggaagg cccagtgtctcatccagaaggaggtggtacagaatcttgagcacaagctgctcctggagaaggagaagctggg ggccatgcaagcccacctctctgggaagctggcactggtaaagcccctggctgtgagcccctccaccgagaaa gcaacctattgcccatcagggagcctgggccccacctggtcagcctggccaggcaccccagaagataagaaag aagcgcgtctcccagggcagggcctctttgccgtcaggaggcacctgtggggtagccagatgtccccagaatt tgtccataatctggaatactttcgatcccacaatctgcggccaccottcacctacgctactcttatccgctgg gccatattggaagcccctgagaaacagcggacccactggtgagatcaa

Putative protein sequence for M. eugenii Foxp3

KVFLDSGDLLKHLQEDHRLDEKGKAQCLIQKEVVQNLEHKLLLEKEKLGAMQAHLSGKLALVKPLAVSPSTEK ATYCPSGSLGPTWSAWPGTPEDKKEARLPGQGLFAVRRHLWGSQMSPEFVHNLEYFR SHNLRPPFTYATLIRWAILEAPEKQRTHW


#### Abstract

Partial nucleotide sequence for $O$. fraenata Foxp3 ccgcttggatgagaaggggaaggcccagtgtctcatccagaaggaggtggtacagaatcttgaacacaagctg ctcctggagaaggagaagctgggggccatgcaagcccacctctccgggaagctggcactggtgaagcccctgg ctatgagcccctccaccgagaaaggaacctattgcccatcagagagcctgggccccacctggtcagcctggcc aggcaccccagaagataagaaagaagcgcgactcccagggcagggcctctttgccgtcaggaggcacctgtgg ggtagccagatgtccccagaatttgtccataatctggaatactttcgatcccacaatctgcggccacccttca cctatgctactcttatccgctgggccatattggaagcccctgagaaacagcggacc


Putative protein sequence for $O$. fraenata Foxp3
RLDEKGKAQCLIQKEVVQNLEHKLLLEKEKLGAMQAHLSGKLALVKPLAMSPSTEKGTYCPSESLGPTWSAWP GTPEDKKEARLPGQGLFAVRRHLWGSQMSPEFVHNLEYFRSHNLRPPFTYATLIRWAILEAPEKQRT

Proposed isoform of Foxp3 yet to be confirmed
taggcctgcttggggacaacccagccgcatggaagagcgccattcgcgcaacgggagtctg $\begin{array}{llllllllllllllllllll}R & P & A & W & G & Q & P & S & R & M & E & E & R & H & S & R & N & G & S & L\end{array}$ cataaatgctttgtgggaggggagaatgagaaagggggaggggggagtgtggatgagttt
 gaattccgaaagaagagaagtcgggggcccagaagacgccaagacctgagacgcctacta $\begin{array}{llllllllllllllllllll}\text { E } & \mathrm{F} & \mathrm{R} & \mathrm{K} & \mathrm{K} & \mathrm{R} & \mathrm{S} & \mathrm{R} & \mathrm{G} & \mathrm{P} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{Q} & \mathrm{D} & \mathrm{L} & \mathrm{R} & \mathrm{R} & \mathrm{L} & \mathrm{L}\end{array}$ gcctgcgccgcacgggatgagacagaggccgggctccctctgccccccagctgaccatcc A C A A R D E T E A G L P L P P acacctgaacctagctgctgaaggaaccatttttattggttgtctttctcccgcaccccc ccccccctcccagggaaggagggccttggtccccttccaccaataaaggcccgggggctg aaccacaaaaaaaaaaaaaaaaaaaaaacgttcggggggggg

RPAWGQPSRMEERHSRNGSLHKCFVGGENEKGGGGSVDEFEFRKKRSRGPRRRQDLRRLLACAARDETEAGLP LPPS

## Appendix 6C

## Amino Acid alignment for Foxp3

| T.nigroviridis | MMTPPAEAPQQLQQTPQQQIPSPQQ 25 |
| :---: | :---: |
| X.laevis | --MARLSGDRWLCPKWMGSLNCRMPNPQNPKATSAPSKESETQPDGKGKEQINPWSR 55 |
| O.aries | --MPNPRPAKPLAPSLVLSPSPGASPSWR-AAPKAS 33 |
| B.taurus | -MPNPRPAKPLAPSLVLSPSPGASPSWR-AAPKAS 33 |
| S.scrofa | --MPNPRPAKPLAPSSVLSPSPGASPSWR-AVPKTS 33 |
| C.familiaris | -MPNPRPAKPSAPSLAPGPSPGALPSWR-AAPKAS 33 |
| A.melanoleuca | -MPNPRPAKPSAASLALGPSPGASPSWR-AAPKAS 33 |
| $F . c a t u s$ | -MPNPRPAKPSAPSLALGPSPGASPSWR-AGPKTS 33 |
| E.caballus | --MPNSRPAKPSAPSLALGPSPGTSPSWR-AAPKAS 33 |
| H.sapiens | -MPNPRPGKPSAPSLALGPSPGASPSWR-AAPKAS 33 |
| P.abelii | -MPNPRPGKPSAPSLALGPSPGASPSWR-AAPKAS 33 |
| M.fascicularis | --MPNPRPGKPSAPSLALGPSPGASPSWR-AAPKAS 33 |
| M.mulatta | -MPNPRPGKPSAPSLALGPSPGASPSWR-AAPKAS 33 |
| C. jacchus | MMVDIWNPKSLETRALTRGPLSEKDSMPNPRPVKPSAPSLALGPSPGASPSWR-AAPKAS 59 |
| R.norvegicus | -MPNPRPAKPMAPSLAPGPSPGGLPSWK-TAPKGS 33 |
| M.musculus | ---MPNPRPAKPMAPSLALGPSPGVLPSWK-TAPKGS 33 |
| O.anatinus | ---MGKRPASRKWRQKVAINQSEDLMPSPKLNKSSSSSLLPNAKSAAGPVSKGAEPVAR 56 |
| M.domestica | -MYFFINPLNLGLSSTQPDFLQTEIDRCEHPRGPNCISLQK 40 |
| O.fraenata |  |
| M.eugenii |  |
| O.mykiss | LQTESERLKSGRLNSGRHQQQREQR 26 |
| D.rerio | MLLNATGTHRGDDNRSSHQHLYQDED 26 |

T.nigroviridis
X.laevis
O.aries
B. taurus
S.scrofa
C. familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus
$R$.norvegicus
M.musculus
O.anatinus
M.domestica
O.fraenata
M.eugenii
O.mykiss
D.rerio
T.nigroviridis
X.laevis
O.aries
B. taurus
S.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus
R.norvegicus
M. musculus
O.anatinus
M. domestica
O.fraenata
M.eugenii
----LQALLQQQKALMLH-------QQIQEVFKNQQEQLSMQLLQ-QKNAGIVSQELT-71 RGAGVISQLQQNHGVMVTPSAGFSPPSQLQALLEDKKQTVVFHPNPSLMQVGVLNTELLS 115 DQLGTKSPGTIFQGRDLRSGAHTSSSS--LNPMPPSQLQMPTVPLVMVAPSGARLGPSPH 91 DQLGTKSPGTTFQGRDLRSGAHTSSSS--LNPMPPSQLQMPTVPLVMVAPSGARLGPSPH 91 DQQGAKGPGAAFQGRELRGGAHASSSS--LNPMPPSQLQLPTVPLVMVAPSGARLGPSPH 91 DLLGAKGPGVTFQGRDLRGGTHASSS---LNPMPPSQLQLPTVPLVMVAPSGARLGPSPH 90 DLLGAKGPGANFQSRDLRGGAHASSSSSSLNPMPPSQLQLPTVPLVMVAPSGARLGPSPH 93 DPLGAKGPGATFQGRDLRGGTHASSS---LNPMPPSQLQLPTVPLVMVAPSGTRLGPSPH 90 DLLGAKGPGAAFQGRDLRGGAHASSS-- LNPVPPSQLQLPTVPLVMVAPSGARLGPSPH 90 DLLGARGPGGTFQGRDLRGGAHASSSS--LNPMPPSQLQL-------------------- 71 DLLGARGPGGAFQGRDLRGGAHASSSS--LNPMPPSQLQLPTLPLVMVAPSGARLGPLPH 91 DLLGARGPGGIFQGRDLRGGAHASSSS--LNPMPPSQLQLPTLPLVMVAPSGARLGPLPH 91 DLLGARGPGGIFQGRDLRGGAHASSSS--LNPMPPSQLQLPTLPLVMVAPSGARLGPLPH 91 DLLGARGPGGALQGRDLRGGAHASSSSS-LNPMPPSQLQLPTLPLVMVAPSGARLGPLPH 118 ELLGTRGPGGPFQGRDLRSGAHTSSSS--LNPLPPSQLQLPTVPLVMVAPSGARLGPSPH 91 ELLGTRGSGGPFQGRDLRSGAHTSSS---LNPLPPSQLQLPTVPLVMVAPSGARLGPSPH 90 GVSGFHSQEALLNPR--YATATASS--------PQPQPSLPAFPIMMVTPPPGRLSTSPH 106 DYLKTSSMPNHSKAHQIPAASSSVASSS-LVAHMKDTELLPTGPMVMVAPPGGQLSTLPH 99

EEPDACTQPKDSASPQLCARTSVTQMGFPLMIRPGVSLMASSQLQSILLRQCSSEEEGRS 86
CATFSIIQMKSRISNSLLTSPKPMATKISVALESDLRGLGSSRNQNFTLQKQSASG---- 82
-----AQQIAIQQQLLQVQQHLLNLQRQGLLSVLPASPITAPGCENGSLLSAGGDARES 125 KLSRDTASQSPIIHLSPTSSTSILNLQPARLYPVMAKHKNQHPITQGFNLTSLGWAQQEA 175 LQALLQDRPHFVHQLSTVDAHARTPVLQVRPLDSPAMISLPPPTAATGLFSLKARPG--- 148 LQALLQDRPHFVHQLSTVDAHARTPVLQVRPLDSPAMISLPPPTAATGLFSLKARPG-- 148 LQALLQDRPHFVHQLSTVDAHARTPVLQVRPLDSPAMISLPPPTAATGVFSLKARPG-- 148 LQALLQDRPHFMHQLSTVGTHTRTPVLQVRPLDSPAMISLPPPTAATSVFSLKARPG-- 147 LQALLQDRPHFMHQLSMVDTHARTPVLQVRPLDSPAMISLPPPTAATSVFSLKARPG-- 150 LQALLQDRPHFMHQLSTVDTHARTPVLQVRPLDSPAMISLPPPTAATGVFSLKARPG-- 147 LQALLQDRPHFMHQLSTVDTHARTPVLQVRPLDSPAMISLPPPTAATGVFSLKARPG-- 147 --------------STVDAHARTPVLQVHPLESPAMISLTPPTTATGVFSLKARPG--- 113
LQALLQDRPHFMHQLSTVDAHARTPVLQVHPLESPAMISLPPPTTTTGVFSLKARPG-- 148
LQALLQDRPHFMHQLSTVDAHARTPVLQVHPLESPAMISLPPPTTATGVFSLKARPG--- 148
LQALLQDRPHFMHQLSTVDAHARTPVLQVHPLESPAMISLPPPTTATGVFSLKARPG-- 148
LQALLQDRPHFMHQLSTVDAHARTPVLQVHPLESPAMISLPPPTTTTGVFSLKARPG-- 175
LQALLQDRPHFMHQLSTVDAHGHTPVLQVRPLDNPAMIGLPPPTAATGVFSLKARPG-- 148
LQALLQDRPHFMHQLSTVDAHAQTPVLQVRPLDNPAMISLPPPSAATGVFSLKARPG-- 147
LQALLQDKQQFVQQLSIENR-GRTPFLHVTPLSSPSLLNVPPP---TGVFSLKARPAQLH 162
PQALLQDKQHFVHQLTSTEVLGRPSLVHMTPLSTPALINLPSPPDIIAYKTRTSQLHS-- 157

## Appendix 6C

| O.mykiss | LLQRVSLCPQLSQHRPSVLRQGVQAAHVRPQAPCTLTEASSAQPISLCKVEVDTGSR---143 |
| :---: | :---: |
| D. rerio | -----STTKYFKQHRPSVLRKGNQP---FPQA-CSAHDWVVDT---VCKTEPDSEPS--- 127 |
| T.nigroviridis | SSQQCT-----VNGHQPL---LRKKDS------------------- 144 |
| x.laevis | RLGKPEEVILGKNSSTFSS----LSHSQPLNTVKTQKKL-------------------- 210 |
| O.aries | -LPPGINVASLEWVSREPA----LLCTFPSP--GMPRKD------------------- 180 |
| B. taurus | -LPPGINVASLEWVSREPA----LLCTFPSP--GMPRKD------------------ 180 |
| S.scrofa | -LPPGINVASLEWVSREPA----LLCTFPSP--GVPRKD------------------- 180 |
| C.familiaris | -LPPGINVASLEWVSREPA----LLCTFPSP--STPRKD------------------- 179 |
| A.melanoleuca | -LPPGINVASLEWVSREPA----LLCTFPSP--STPRKD------------------- 182 |
| F.catus | -LPPGINVASLEWVSREPA----LLCTFPSP--STPRKD------------------- 179 |
| E.caballus | -LPPGINVASVEWVSREPA----LLCTFPSP--SAPRKD------------------- 179 |
| H.sapiens | -LPPGINVASLEWVSREPA----LLCTFPNP--SAPRKD------------------- 145 |
| P.abelii | -LPPGINVASLEWVSREPA----LLCTFPNP--GALRKDRSVDRAGKDLRPPIPSPDTL 200 |
| M.fascicularis | -LPPGINVASLEWVSREPA----LLCTFPNP--GAPRKD-------------------180 |
| M.mulatta | -LPPGINVASPEWVSRELA----LLCTFPNP--GAPRKD-------------------180 |
| C.jacchus | -LPPGINVASVEWLSREPT----LLCTFPNP--GAPRKD------------------- 207 |
| R.norvegicus | -LPPGINVASLEWVSREPA----LLCTFPRS--GTPRKD------------------- 180 |
| M.musculus | -LPPGINVASLEWVSREPA----LLCTFPRS--GTPRKD------------------- 179 |
| O.anatinus | SLSHGINLASLEWVPKEPTNTLTNYLCAVPSPGAGEGRKE------------------- 202 |
| M.domestica | -LPPGINLANFEWLPKEPANMLTTYLCTFPSGPSTGDATAFR----------------- 198 |
| O.fraenata |  |
| M.eugenii |  |
| O.mykiss | -----GQSSPPHSEHSPG----PTRHPSPPRTASPKQSSIITR--------------- 177 |
| D.rerio | DAIPLYTGQSESR-----IGAYASSPQPGSP---------------------- 153 |

## Transcirption DNA binding nuclear box regulation Forkhead coiled coil P2 zinc $\downarrow$

T.nigroviridis
X.laevis
O.aries
B. taurus
S.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C.jacchus
R.norvegicus
M.musculus
O.anatinus
M.domestica
O.fraenata
M.eugenii
O.mykiss
D. rerio

## C2H2 Zinc finger

--GCPD-ENTQNSHPLYGNGMCKWPGC---ETVFGDLQAFLKHLNSEHILDDKSTAQCRV 198 --GVQNKESPEPICPVYYRGACTFPGC---GKAFEDHRHFLRHLHSDHHLDDKSTVQCLI 265 ---STLLTVPQGSYSLLANGVCKWPGC---EKVFKEPEDFLKHCQADHLLDEKGRAQCLL 234 ---STLSTVPQGSYSLLANGVCKWPGC---EKVFKEPEDFLKHCQADHLLDEKGRAQCLL 234 ---STLSTVPQGSYSLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 234 ---STLPTVPQGSYSLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 233 ---STLSTVPQGSYSLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 236 ---STLSTXPQGSYSLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 233
---STLSTMPQGSYSLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 233
---STLSAVPQSSYPLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 199
CPPSTLSAVPQSSYPLLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 257 ---STLSAMPQSSYPLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 234
---STLSAMPQSSYPLLANGVCKWPGC---EKVFEEPEDFLKHCQADHLLDEKGRAQCLL 234
---STLSATPQSSYPLLANGICKWPGC---EKVFEEPEDFLKHCQEDHLLDEKGRAQCLL 261
---SNLLAAPQGSYPLLANGVCKWPGC---EKAFEEPGEFLKHCQADHLLDEKGKAQCLL 234
---SNLLAAPQGSYPLLANGVCKWPGC---EKVFEEPEEFLKHCQADHLLDEKGKAQCLL 233
---SAAPSSPDGSHPLLANGACRWPGC---EKVFEESKEFLKHFHTDHRMDEKGRAQCLV 256
--LGPKKESILQTCPLDSSQSCWWPGC---EKVFLEPGELLKHLQEDHRLDEKGKAQCLI 253
-------------------------------------------RLDEKGKAQCLI 12
----------------------------KVFLDSGDLLKHLQEDHRLDEKGKAQCLI 29
-QHEAGHPTLEGSSALFLNGLCCWPGC---DAVFEEFPSFLKHLHSDHGHGDRSIAQWKV 233
-EYTGKHPYSLSGDYLCVKGQCRWPGCSKSEDVFTEYGHFLRHLSTDHAPGDRSIGQLRM 212

Appendix 6C
T.nigroviridis
X.laevis
O.aries
B. taurus
S.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus
R.norvegicus
M.musculus

## O. anatinus

M.domestica
O.fraenata
M.eugenii
O.mykiss
D.rerio
T.nigroviridis
X.laevis
O.aries
B. taurus
S.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus
R.norvegicus
M.musculus
O. anatinus
M.domestica
O.fraenata
M.eugenii
O.mykiss
D.rerio
T.nigroviridis
X.laevis
o.aries
B.taurus
S.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus

## Transcription DNA-binding Box Regulation nuclear Metal-Binding Zinc-Finger

QMQVVQQLELQLKKDKERLQAMMAHLKSSEPKPAAQPINLASNVSLSQATLPKGPAPMSV 258 QTEVVHKLEEQLAVEKERLHHMQSQMSG---KLNTQALHLSKQRECGLILHPTHPS--IS 320 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMAQTKAPSA-ASSDKGSCCIVATGTPGTTVP 293 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMAQTKAPSA-ASSDKGSCCIVATGTPGTTVP 293 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMPSPKAPSA-ASSDKGSCCIVATGTPGTAVP 293 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMTLTKAPST-ASSDKGSCCIVAAGTPATTGP 292 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMALTKAPST-ASSDKGSCC-----TPVATGP 290 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMALTKAPST-ASSDKGSCCIVATGTPAATGP 292 QREVVQSLEQQLVLEKEKLGAMQAHLAGKMALTKAPSA-ASSDKGSCRLAATGTPGTAVP 292 QREMVQSLEQQLVLEKEKLSAMQAHLAGKMALTKASSV-ASSDKGSCCIVAAGSQGPVVP 258 QREMVQSLEQQLVLEKEKLSAMQAHLAGKMALTKASSV-ASSNKGSCCIVAAGSQGSVIP 316 QREMVQSLEQQLVLEKEKLSAMQAHLAGKMALTKASSV-ASSDKGSCCIVAAGSQGSAVP 293 QREMVQSLKQQLVLEKEKLSAMQAHLAGKMALTKASSV-ASSDKGSCCIVAAGSQGSAVP 293 QREMVQSLEQQLVLEKEKLSAMQAHLAGKMAVPKAPSV-ASSDKASCCIVAAGSQGSMVP 320 QREVVQSLEQQLELEKEKLGAMQAHLAGKMALTKAPPV-ASVDKSSCCLVATSTQGSVLP 293 QREVVQSLEQQLELEKEKLGAMQAHLAGKMALAKAPSV-ASMDKSSCCIVATSTQGSVLP 292 QKEVVQSLEQQLVLEKEKLSAMQAHLTGKLSLPKLPSS-ISTEKPNGCLPGTLSPSSLAT- 314 QKEVVQNLEQKLLLEKEKLGAMQAHLSGKLALVKPLAN-PSTEKVTYCP--SRSLGPTWS 310 QKEVVQNLEHKLLLEKEKLGAMQAHLSGKLALVKPLAMSPSTEKGTYCP--SESLGPTWS 70 QKEVVQNLEHKLLLEKEKLGAMQAHLSGKLALVKPLAVSPSTEKATYCP--SGSLGPTWS 87 QQDMVQYMETQLTVEKQKLFAMQLHLHLSGHKSTVLKAASDWPYRHSLSLGLPQNRGGVS 293 $\underset{\star}{\text { QKDRVQHMENQLTAERQKLQAMQLHLLD--VKSTSEGGNIVEKPAHLSGLLQPASSNDHY } 270}$

SQSATAPTTPLTPHSESPSVLTPSSMFTGTPVRRRYSRSVSQDISDNKEFYLSTEVRPPF 318 AWSGLDLSSPLQKEFSDTILALRRQLWEGS------SLNIFQNMANCIEYYKTNNVRPPF 374 AWPGPQE-----APDG-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKFHNMRPPF 340 AWPGPQE------APDG-LFAVRRHLWGSHGNS-----TFPEFFHNMDYFKFHNMRPPF 340 AWPGPQE------APDG-LFAVRRHLWGSHGNS------TFPDFFHNMEYFKFHNMRPPF 340 AWSSPQE------APDG-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKFHNMRPPF 339 AWPSPQE------APDG-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKFHNMRPPF 337 AWPSPQE------APDG-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKFHDMRPPF 339 AWPSPQE------APDG-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKFHNMRPPF 339 AWSGPRE-----APDS-LFAVRRHLWGSHGNS------TFPEFLHNMDYFKFHNMRPPF 305 AWSGPRE------APDS-LFAVRRHLWGSHGNS------TFPEFLHNMDYFKFHNMRPPF 363 AWSGPRE------APDS-LFAVRRHLWGSHGNS------TFPEFLHNMDYFKFHNMRPPF 340 AWSGPRE------APDS-LFAVRRHLWGSHGNS------TFPEFLHNMDYFKFHNMRPPF 340 AWSGPRE------APDS-LFAVRRHLWGSHGNS------TFPEFLHNMDYFKFHNMRPPF 367 AWSSPRE------ASDS-LFAVRRHLWGSHGNS------TFPEFFHNMDYFKYHNMRPPF 340 AWSAPRE------APDGGLFAVRRHLWGSHGNS------SFPEFFHNMDYFKYHNMRPPF 340 AWPSSKE------SPDS-LFAMRRHLWSSHGVS-----MCPDILHNMEYFKFNNMRPPF 361 SWPGSLEDKDKAQLPGQGLFAVRRHLWGSHMS---------PDFVHNLEYFRSHNLRPPF 361 AWPGTPEDKKEARLPGQGLFAVRRHLWGSQMS---------PEFVHNLEYFRSHNLRPPF 121 AWPGTPEDKKEARLPGQGLFAVRRHLWGSQMS---------PEFVHNLEYFRSHNLRPPF 138 RCTTKEP-----------EELEQHEYWPSAAP----HHLRPDLIPSVECYKYNNIRPLY 337 DCERAAT------------EALTQG-YWQIST-----SQVIPGIIPSFEYYKFTNMRPPF 312

## Forkhead domain

TYASLIRQAIFESPRSQLTLNEIYNWFTRNFAYFRSNAATWKNAVRHNLSLHKCFVRLEN 378 TYASLIRWAILESPQKQLALNEIYHWFTRMFAFFRYNTATWKNAVRHNLSLHKCFVRVEN 434 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 400 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 400 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 400 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 399 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 397 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 399 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 399 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 365 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 423 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 400 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 400 TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAFFRNHPATWKNAIRHNLSLHKCFVRVES 427

## Appendix 6C

| R.norvegicus | TYATLIRWAILEAPERQRTLNEIYHWFTRMFAYFRNHPATWKNAIRHNLSLHKCFVRVES 400 |
| :---: | :---: |
| M.musculus | TYATLIRWAILEAPERQRTLNEIYHWFTRMFAYFRNHPATWKNAIRHNLSLHKCFVRVES 400 |
| O.anatinus | TYATLIRWAILEAPEKQRTLNEIYHWFTRMFAYFRNQPATWKNAIRHNLSLHKCFVRVEN 421 |
| M.domestica | TYATLIRWAILEAPEKQRTLNEIYHWFTHTFAFFRTHPATWKNAIRHNLSLHKCFVRVEN 421 |
| O.fraenata | TYATLIRWAILEAPEKQRT-------------------------------------- 140 |
| M.eugenii | TYATLIRWAILEAPEKQRT----HW--------------------------------- 159 |
| O.mykiss | TYACMIRWSILESPDKQRSLNDIYNWFTTMFFYFRHNTATWKNAVRHNLSLHKCFVRVEG 397 |
| D.rerio | TYASMIRWAILKSPEKQLTLKEIYQWFTSMFFYFRHNTATWKNAVRHNLSLHKCFVRVEG 372 |
| T.nigroviridis | VKGAVWTVDEIEFHRRRPQKPAGAG---------------------------------- 403 |
| X.laevis | IKGAVWMVDELEFQRKRGVRNSR------------------------------------ 457 |
| O.aries | EKGAVWTVDEFEFRKKRSQRPSRCSNPT--------------PGP---------------- 431 |
| .taurus | EKGVVWTVDEFEFRKKRSQRPSRCSNPT-------------PGP---------------- 431 |
| S.scrofa | EKGAVWTVDEFEFRKKRSQRPSRCSNPT-------------PGP---------------- 431 |
| C.familiaris | EKGAVWTVDEFEFRKKRSQRPSRSSNPT-------------PGP--------------- 430 |
| A.melanoleuca | EKGAVWTVDEFEFRKKRSQRPSRSANT-------------PGP---------------- 428 |
| F.catus | EKGAVWTVDEFEFRKKRSQRPSRCSNPT-------------PGP---------------- 430 |
| E.caballus | EKGAVWTVDEFEFRKKRSQRPSRCSNPT-------------PGP---------------- 430 |
| H.sapiens | EKGAVWTVDELEFRKKRSQRPSRCSNPT-------------PGP--------------- 396 |
| P.abelii | EKGAVWTVDELEFRKKRSQRPSRCSNPT-------------PGP--------------- 454 |
| M.fascicularis | EKGAVWTVDELEFRKKRSQRPSRCSNPT-------------PGP---------------- 431 |
| M.mulatta | EKGAVWTVDELEFRKKRSQRPSRCSNPT-------------PGP---------------- 431 |
| C.jacchus | EKGAVWTVDELEFRKKRSQRPSRCSNPT-------------PGP--------------- 458 |
| R.norvegicus | EKGAVWTVDEFEFRKKRSQRPSKCNPC-------------P----------------- 429 |
| M.musculus | EKGAVWTVDEFEFRKKRSQRPKCSNPC-------------P----------------- 429 |
| O.anatinus | EKGAVWTVDEVEYRRKRSQRPSSPADSSGVVSRRGDGEEERHPSQRVGNRVGQTKLTAAA 481 |
| M.domestica | EKGAVWTVDEFEFRKKRRPRPSRDQDLKR----------LLACTPMAVTEAWLPLPHRN 470 |
| O.fraenata |  |
| M.eugenii |  |
| O.mykiss | GKGAVWTVDEMEYQRRKGQKYHRDHHVKWLAPYSLFRPEEP------------------ 438 |
| D.rerio | RKGSVWTVDEEEFLRRKGQKLHRDHDMDWMAPFQLFPLTPQGESYQM------------- 419 |

T.nigroviridis
x.laevis
o.aries
B. taurus
s.scrofa
C.familiaris
A.melanoleuca
F.catus
E.caballus
H.sapiens
P.abelii
M.fascicularis
M.mulatta
C. jacchus
R.norvegicus
M.musculus
O.anatinus
M.domestica
O.fraenata
M.eugenii
O.mykiss
D.rerio

```
----------------------
-------------------
---------------------
--------------------
--------------------
------------------
-------------------
--------------------
--------------------
--------------------
--------------------
-------------------
--------------------
-------------------
SSLASNLPLTSSRSELEKTTL 502
SHI----------------- }47
---------------------
--------------------
--------------------
-------------------
```

Figure 6C.1. Alignment of Foxp3 sequences from sequences deposited in Genbank.
Forkhead domain, Zinc Finger domain and Forkhead coiled coil Zinc ligand are marked in the sequence.

## Appendix 6C

Table 6C.1. Genbank Accession Numbers for Foxp3 and the relevant references.

| Species | Common Name | Genbank Accession <br> Number | Reference |
| :--- | :--- | :--- | :--- |
| Sus scrofa | Pig | AY669812 | Direct submission |
| Tetraodon nigroviridis | Spotted green pufferfish | FJ358692 | Direct submission |
| Homo sapiens | Human | NM_001114377 | (Chatila et al., 2000) |
| Callithrix jacchus | Common marmoset | GQ284839 | Direct submission |
| Equus caballus | Horse | NM_001163272 | (Robbin et al., 2011) |
| Xenopus laevis | African clawed frog | AB359948 | Direct submission |
| Ovis aries | Sheep | FJ491732 | Direct submission |
| Felis catus | Cat | EF419427 | (Lankford et al., 2008) |
| Ornithorhynchus <br> anatinus | Platypus | XM_001507231 | Annotated |
| Macaca fascicularis | Crab eating macaque | AY376065.1 | Direct submission |
| Rattus norvegicus | Rat | NM_001108250 | (Abe et al., 2009) |
| Bos taurus | Cattle | XM_548996, |  |
| Canis lupus familiaris | Dog | NM_001168461 | (Mizuno et al., 2009) |
| Pongo abelii | Sumatran orangutan | NM_00103291634 | Annotated |
| Macaca mulatta | Rhesus monkey | XM_002917744 | Annotated |
| Ailuropoda <br> melanoleuca | Giant Panda | NM_001199347 | (Josefowicz et al., 2012) |
| Mus musculus | Mouse | SM_001372363 | Annotated |
| Monodelphis <br> domestica | South American grey short <br> tailed opossum | ZM883710 | Direct submission |
| Oncorhynchus mykiss | Rainbow trout | ZN435333 | Direct submission |
| Danio rerio | Zebrafish |  |  |

## Appendix 7

Recipes of reagents used in this body of work

### 1.0 Kit reagents

### 1.1 Promega PCR Clean up kit.

1.1.1 Membrane bind solution.
4.5 M guanidine isothiocyanate
0.5 M potassium acetate at pH 5.0
$1 x$ Tris EDTA buffer (TE)(10 mM Tris- HCl at $\mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA at pH 8.0$)$
$1 \times$ TBE buffer containing 89 mM Tris base
89 mM boric acid and 2 mM EDTA at ph8.0
$1 x$ Tris acetate EDTA (TAE) buffer ( 40 mM Tris base, 5 mM sodium acetate 1 mM EDTA at pH 8.0 )
1.1.2 Wash solution.

10 mM potassium acetate at pH 5.0
80\% ethanol
$16.7 \mu \mathrm{M}$ EDTA at pH 8.0

### 1.2 Promega DNA clean up kit.

1.2.1 Cell Resuspension Solution

50 mM Tris- HCl ( pH 7.5 )
10mM EDTA,
$100 \mu \mathrm{~g} / \mathrm{mL}$ RNase A
1.2.2 Cell Lysis Solution
0.2 M NaOH

1\% SDS

### 1.2.3 Neutralization Solution

1.32M potassium acetate at pH 4.8
1.2.4 Wash solution

80 mM potassium acetate
8.3 mM Tris- HCl at pH 7.5
$40 \mu \mathrm{M}$ EDTA

### 1.3 RIPA Buffer (Pierce)

20 mM Tris- HCl at pH 7.5 , $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{Na}{ }_{2} E D T A$, 1 mM EDTA, $1 \%$ NP-40, 1\% sodium deoxycholate,

## Appendix 7 - Recipes

2.5 mM sodium pyrophosphate,
$1 \mathrm{mM} \beta$-glycerophosphate,
$1 \mu \mathrm{~g} / \mathrm{mL}$ leupeptin

### 1.4 Lambda DNA Marker.

10 mM Tris-HCl (pH 7.6), 1mM EDTA
6X DNA Loading Dye
10 mM Tris-HCl (Ph 7.6), 0.03\% bromophenol blue
$0.03 \%$ xylene-cyanol FF, $60 \%$ glycerol and 60nM EDTA

## Reagents prepared in laboratory

Tris Borate EDTA Buffer

| Component | Amount | $10 X$ Stock <br> Concentration | Final 1X <br> Concentration |
| :--- | :--- | :--- | :--- |
| Tris Base | 108 g | 890 mM | 89 mM |
| Boric Acid | 55 g | 890 mM | 89 mM |
| EDTA $(\mathrm{pH} 8.0)$ | 40 mL | 20 mM | 2 mM |

## 4X Resolving Gel Buffer ( 100 mL )

| Component | Amount |
| :--- | :--- |
| Tris HCl (pH 8.8,2.0M) | $75 \mathrm{~mL}(1.5 \mathrm{M})$ |
| $10 \%$ SDS | $4 \mathrm{~mL}(0.4 \%)$ |
| MilliQ water | 21 mL |

## 10\% APS working solution

0.1 g APS in 1 mL water

10 mL Resolving Gel

| Component | Amount |
| :--- | :--- |
| $30 \%$ Acrylamide/Bisacrylamide 29.1 | 4 mL |
| $4 X$ resolving buffer | 2.5 mL |
| Milli Q water | 3.5 mL |
| 10\% Ammonium Persulfide (APS) | $50 \mu \mathrm{~L}$ |
| TEMED | $5 \mu \mathrm{~L}$ |

## 4x Stacking Gel Buffer ( 100 mL )

| Component | Amount |
| :--- | :--- |
| Tris HCl $(\mathrm{pH} 6.8,1 \mathrm{M})$ | $50 \mathrm{~mL}(0.5 \mathrm{M})$ |
| $10 \%$ SDS | 4 mL |
| Milli Q water | 46 mL |

## 4\% Stacking Gel ( 10 mL )

| Component | Amount |
| :--- | :--- |
| $30 \%$ Acrylamide/Bisacrylamide 29.1 | 1.4 mL |
| $4 X$ stacking buffer | 2.5 mL |
| Milli Q water | 6.15 mL |
| 10\% Ammonium Persulfide (APS) | $50 \mu \mathrm{~L}$ |
| TEMED | $5 \mu \mathrm{~L}$ |

## Laemmli Buffer 2X

4\% SDS
10\% 2-mercaptoethanol
20\% glycerol
0.004\% bromophenol blue
0.125 M Tris HCl
pH to 6.8

## Coomassie brilliant blue solution

500 mL Methanol
100 mL Acetic Acid
1 g Coomassie brilliant blue-R250 (Bio-Rad)
Dissolve in 1 L of MilliQ water
De-staining solution
450 mL Methanol
450 mL water
100 mL Acetic acid

## Blocking Buffers

5\% non-fat milk powder in TBST
$3 \%$ non-fat milk powder in TBST
Tris Buffered Saline (TBS) 10X

| Component | Amount |
| :--- | :--- |
| Tris HCl | 24.23 g |
| Sodium Chloride $(\mathrm{NaCl})$ | 80.06 g |
| MilliQ water | 800 mL |
| pH to with pure HCl | 7.6 |

## Tris Buffered Saline Tween (TBS-T)

For 1 liter. 100 mL of TBS $10 \mathrm{X}+900 \mathrm{~mL}$ of MilliQ water +1 mL of Tween 20 or 10 ml of a $10 \%$ solution (easier to dispense then the very viscous undiluted Tween20).
$10 \%$ solution. 2 mL of Tween $20+18 \mathrm{~mL}$ of MilliQ water

## Transfer Buffer-Tris-glycine 1X

| Component | Amount |
| :--- | :--- |
| Tris Base | 6.06 g |
| Glycine | 28.83 g |
| Methanol | 50 mL |
| MilliQ to | 2.0 L |

Or

| Component | Amount |
| :--- | :--- |
| Tris Base | 2.9 g |
| Glycine | 5.8 g |
| Methanol | 200 mL |
| SDS | 0.37 g |
| MilliQ to | 1.0 L |

(Both buffer systems were used)

## SYPRO Ruby Fixing solution ( 200 mL )

| Component | Amount |
| :--- | :--- |
| $50 \%$ Methanol | 100 mL |
| $7 \%$ Acetic Acid | 14 mL |
| MilliQ water | 86 mL |

SYPRO Ruby Wash solution ( 100 mL )

| Component | Amount |
| :--- | :--- |
| $10 \%$ Methanol | 10 mL |
| $7 \%$ Acetic Acid | 7 mL |
| MilliQ water | 83 mL |

## Appendix 7 - Recipes

Marker used in this study.


DNA marker (benchtop pgem, promega, Australia)

$2 \%$ agarose

Hyperladder II (Bioline, Australia)

## Appendix 7 - Recipes



Protein markers (Bio-rad, Australia)


All Blue Bio-rad

Appendix 7


[^0]:    ------ = not recognized by the BLAST algorithms.

