
Automating the detection of Turning Points: Inventory control at 

ComputerShop 

 

Dr. Roger Jenkins 

University of Technology, Sydney 

Email: roger.jenkins@uts.edu.au

 

Geoff Breach 

School of Management, University of Technology, Sydney 

Email: geoff.breach@uts.edu.au

 

Abstract 

Inventory control for a product catalogue of 3000 products is carried out by two 
managers at ComputerShop.  While there is a substantial level of automation of 
product flow in this company, there is no analysis of inventory levels, nor of trends in 
demand for each product.  Inventory management thus is an area that imposes a high 
workload on the managers and is characterized by the usual problem of inventory and 
demand being poorly balanced.  In this paper we have studied two techniques that can 
be applied to detect turning points in a sequence of sales data.  We have demonstrated 
that both of these techniques can be used to support the partial automation of 
decisions on inventory control. 
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Introduction 

The ComputerShop web site describes itself as a supplier of Personal Computer (PC) 

hardware components to PC hardware enthusiasts. A typical ComputerShop customer is an 

individual who is employed as a computer technician or a person who is otherwise 

sufficiently skilled to be able to assemble their own PC from individual components. Our 

informants noted that annual turnover for ComputerShop was about $12 Million, and had 

been flat for some time after a period of substantial growth.  Profit margin on most sales is in 

the order of 5% to 8%. The PC component market is very competitive, and margins are slim 

throughout the industry. 

There are twelve people employed in the business, they operate out of a light industrial estate, 

have a combined warehouse and office facility, and have an overflow warehouse located 

elsewhere.  The facility is small and fully occupied by either open plan office space or storage 

and goods processing areas.  There is no visible public reception area with any sense of 

making a presentation of the company to outside agents.  The general appearance of the 

facility is that of a business that does not expect to impress external agents with it physical 

appearance.  This company operates via a web interface and it does not encourage a direct 

contact with its customers 

In order to prosper in such a market place we believe that this company must have solved 

some problems in interesting ways.  We accordingly have chosen to study the company in 

some detail.  This paper explores one aspect of our study; the problem of managing stock 

levels when demand is highly variable and the cost of holding stock is very high.  It should be 

noted that the IT system and product control activities are completely integrated.  The IT 

system and product flow processes are seamless at ComputerShop. 

In our first two meetings the problems of managing stock, and the range of products held 

were frequently mentioned as important issues.  Company managers pointed out that 

ComputerShop lists a product range of between 3000 and 4000 items for sale on its web site 

at any given time.  Stock is typically turned at least twice per month, and many items are 
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rotated more often than that. Very few, if any, stock items stay in the ComputerShop 

inventory for more than twelve months.  Stock control is the responsibility of one person. 

Stock on hand can be a very expensive luxury in this business.  Across many industries the 

penalty for holding stock is seen as an asset problem.  Supermarkets for example will see 

assets bound up with stock as simply related to the degree to which they can make their 

capital productive.  ComputerShop have a very different problem.  Individual lines typically 

have very short lives. A specific model of central processing unit (CPU) will typically have a 

product life of four to five months before it is superseded by a new model that is usually 

faster and cheaper than its predecessor. CD and DVD burners (known collectively as 'optical 

drives') are products that have an even shorter life cycle - a new model will supersede any 

given example as often as once per month. 

A hard disk drive is a typical example of how technological development affected the supply 

chain.  For some product lines ComputerShop would start to provide price reductions if the 

stock was held for longer than one week.  One response in the industry was for a ‘drop ship’ 

strategy to be adopted by some retailers. In this strategy the retailer held no stock at all, a 

customer order triggered an order to the wholesaler for a single unit, with the customers 

address as destination.  This obviously is not providing a sustainable advantage for retailers 

operating in that mode.  Low inventory is of course the simplest response, and with this 

response is the potential for stock-outs and consequent loss of sales.  One conclusion drawn 

from our second visit to ComputerShop was that the area of inventory management required 

some analysis.  This area is the main basis of this report. 

The core problems for ComputerShop are simple, when to reorder and how much to reorder.  

There are many strategies that can enable efficient operations when there is ample data on 

demand.  The problem that we are reviewing is different to this.  We are motivated by the 

need to simplify the problem of detecting a turning point in demand.  We wish to examine 

some strategies that can automate the task of informing the manager that there has been a 

significant change in demand for a product.  In order to do this we have reviewed three 

methods that can be used to detect turning points.  Two of these methods are evaluated using 
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one method, the Shewhart test as, a benchmark.  We have then examined how these methods 

would perform on three different types of ComputerShop products. 

Methodology 

We have framed this problem similarly to the one of detecting a significant change in a 

process mean.  We consider the rate of sales per week to be a random variable with a normal 

distribution drawn from a population with a mean µ, and standard deviation σ.  We will 

explore the capability of three tests to determine a 1σ step change in the mean.  The 

sensitivity of the test will be measured by the Average Run Length (ARL).  The ARL of the 

test is the average number of samples following a change that is required to trigger the alarm.  

This is a generally used approach to measuring the performance of the CUSUM test 

(Montgomery 1996; Arnold and Reynolds  2001) A good test will have a low value of the 

ARL for a process that is out of control, but a high value for a process that is in control.  

Desirable values of the ARL for processes in control are often implicitly set at levels achieved 

using a 3σ Shewhart control chart and these values for a two sided test are 370, or 740 for the 

equivalent, one sided limit (Montgomery 1996).  Montgomery (1996) also noted that a 

properly parameterized CUSUM chart will detect a 1σ shift in the mean with an ARL of 8.38 

while the Shewhart test would have an ARL of 43.96. 

It is possible to determine ARLs for the Shewhart and CUSUM tests analytically 

(Montgomery 1996), and Markov chain analysis based on the work of Brook and Evans 

(1972) is widely used to model the behaviour of the CUSUM test for a number of 

distributions.  Authors will however often use Monte-Carlo simulation, particularly if the 

distribution of the variable is likely to be poorly described by either the Poisson or Normal 

distribution (Atienza Tang and Ang 2000; Chang and Fricker 1999: Khoo 2005: Koning and 

Does 2000, Sparks 2004).  Grigg and Farewell (2004) recommend the use of simulation if 

there is some doubt about the validity of distributions used to model the behaviour of the 

process variable.  In this project we expect that we will need to apply the technique in time to 

data that will not be adequately described by the Normal or Poisson distributing and so we 
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will rely exclusively on Monte-Carlo simulation for ARL estimates.  Our simulations have 

been performed using a VBA driven Microsoft Excel spreadsheet, using wherever possible 

the standard Microsoft Excel functions for sampling from distributions and the generation of a 

random number series. 

Once we have characterized the performance of the three tests on synthetic timeseries we will 

then apply the tests to a set of timeseries data drawn from actual sales history in the company.  

The three techniques that will be discussed are; the standard Shewhart test, where an alarm is 

set when a sample value is equal to or greater than 3σ from the process mean, a CUSUM test 

and a Shiryayev-Roberts test.  We discuss the Shewhart test briefly but provide a little more 

detail on the other two tests. 

Shewhart test 

This test emulates the process of plotting the data on a Shewhart control chart (for example as 

described by Montgomery, 1996) and asserting an alarm when the sample mean reaches the 

nominated control limit.  In this work the Shewhart test is evaluated as a benchmark.  It is 

generally accepted that the Shewhart test is not sensitive to small changes in the process mean 

(Montgomery, 1996) and the CUSUM and Shiryayev-Roberts tests have been proposed as 

more sensitive alternatives in the quality literature (see for example Montgomery, 1996; 

Ergashev 2004, Kenett and Pollak 1996).  We evaluate the Shewhart test in its simplest form, 

which is the alarm is asserted only when the process mean reaches the control limit.  We do 

not attempt to utilize information related to the sequence of data.  This is consistent with our 

intent of using this test as a means of setting some expectations for sensitivity on the other 

two tests reported here. 

CUSUM test 

There are two forms of the CUSUM test; the tabular or the V-mask form.  The tabular is 

preferable in the view of Montgomery (1996) and it is the form used for this project.  The 

description outlined below follows the approach used in Montgomery (1996) 
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The CUSUM chart plots the evolution of two variables (C+ and C-) formed from results taken 

from a sequence of samples.   
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These equations define the form that uses raw data from the process results, and where the 

values of K and µ0 are expressed in process units.  K is usually called the reference value (or 

allowance or slack value) and is often chosen to be about halfway between the target value 

(µ0) and the out-of-control mean that we wish to detect quickly.  It sets a window of 

indifference in the test such that process values that differ from the target value by less than K 

do not contribute to an expansion of the CUSUM value.  Large values of K lead to very 

unresponsive CUSUM tests.   

If either C+ or C- exceeds a decision interval H then the process is deemed to be out-of-

control.  In the context of forecasting then we will deem the level of demand to have shifted 

by an interesting amount.  High values of H will also lead to unresponsive tests; low values 

will lead to false alarms 

In our work we only operate on standardized data, and so the following equivalent forms of 

the equations are applicable: 
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Montgomery considers that setting h at a value of 4 to 5, and k at a value of 0.5 will generally 

give a CUSUM with good properties when testing for a 1σ shift in the process mean. 
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Shiryayev-Roberts test 

The formulation of this test is based on the formulation and notation used by Ergashev 

(2004).  That author can be referred to for a more complete history of the test. 

In this test we compute the value of a statistic R, where R responds to the value of a process 

variable Xi and recursively to the last calculated value of R.  This is analogous to the 

technique of an exponentially smoothed forecasting strategy.  The calculation of R is 

modulated via a parameter m, and this value controls the sensitivity of the test.  A decision 

interval variable B is set such that when Ri exceeds B an alarm is asserted.    

Values of R are calculated using the relationship set out in equation (3): 
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This relationship will give values of R that increase as the value of X increases.  As Xi takes 

on negative values, when we have values less than the target or average value then the value 

of R becomes very small, and becomes an ineffective indicator of out of control values.  In 

response we also compute the Shiryayev-Roberts value for the negative value of Xi.  This 

allows us to track values less than the mean with the same sensitivity as those above the 

mean.  This is shown in equation (4) 
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When this test is used for a continuous stream of date the value of the decision interval (B) 

can be chosen to be equal to the desired ARL.  For data in discrete time, this equality does not 

hold and approximations were used by Ergashev (2004) to set the value of B.  For the work 

reported in our paper we have selected a value of B based on the results of our Monte-Carlo 

simulations presented in Table 3. 
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Results 

Shewhart test 

Results of a Monte Carlo simulation of 30,000 cycles.   

In Table 1 the results of a simulation of a process using the Shewhart test to detect a 1σ shift 

in the process mean.  The table outlines the ARL found for tests at the conventional level of 

3σ, but also smaller values of the test.  These values correspond to the upper control limit on 

a normal Shewhart control chart for the process mean.  The table contains results for a one 

sided testing regime, so results for alarms on the low side are not reported. 

Table 1 ARL for Shewhart test 

 
In control.   

Normal distribution µ=0, σ=1 
Shift the mean by 1σ 

Normal distribution µ=1, σ=1 
Limit ARL ARL 
1.0σ 6 2 
1.5σ 14 3 
2.0σ 45 6 
2.5σ 156 15 
3.0σ 679 43 

 

On the basis of this tabulation we can observe that a typical test where we generate an alarm 

with an upper control limit at 3σ then this will give us an ARL on the high side of 679 when 

the process is in control.  For this process we observe a high side alarm with an ARL of 43 for 

a nominated 1 σ shift in the process mean.  These are the results in the shaded cells.  These 

results are able to be developed from a simple use of the normal probability distribution 

tables, they are however include to provide a basis for comparison with later results that are 

based on the same type of Monte-Carlo simulation methodology. 

CUSUM test 

Table 2 presents the results for a Monte-Carlo test for 30,000 cycles.   

In this test we need to make a choice of both h and k.  Montgomery (1996) suggests that a 

value of k = 0.5 (where K = kσ) when the process mean is expected to experience a shift of 
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about 1σ.  We have used this value for k in our simulation.  Values of h of between 4 and 5 

will give similar levels of performance under the base case as that noted for the Shewhart test.   

Table 2 ARL for CUSUM test 

 

 

H ARL  µ= 0 ARL  µ= 1 
1 22 3 
2 67 5 
3 190 7 
4 498 9 
5 1139 11 
6 4269 13 
7 6782 15 

It is evident from the table that this will be achieved with substantially higher sensitivity to 

the shift in the process mean.  Whereas the Shewhart test will signal an alarm after, on 

average, 43 samples, the CUSUM test will signal an alarm after about 10 samples. 

Shiryayev-Roberts test 

This table presents the results for a Monte-Carlo test for 30,000 cycles.   

Table 3 ARL for Shiryayev-Roberts test 

B ARL  µ = 0 ARL  µ= 1 
50 95 6

100 160 7
150 275 8
200 378 9
250 535 9
300 571 9
350 704 10
400 649 10
450 723 10
500 826 11
550 1033 11
600 797 11

In this test we have chosen a value of m=1, this is equal to the hypothesised process shift, a 

strategy noted by Ergashev (2004) as providing optimal performance for both the Shiryayev-

Roberts and CUSUM tests.  The results are indistinguishable from that of the CUSUM, and 

similarly, quite superior to that found for the Shewhart test.  Results for the three tests are 

summarized in graphical form below. 
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Summary of results for three tests 

Values were tabulated for each of the three tests for specific values of the key parameters of k 

and m.  Values chosen for these parameters (k = 0.5 and m = σ = 1) were based on those used 

by Montgomery (1996) for k and Ergashev (2004) for m.  It is evident from this chart that the 

CUSUM and Shiryayev-Roberts tests give quite similar levels of sensitivity for a similar shift 

in the process mean.  For example if we choose settings for the parameters of each test as 

specified above, then for those settings that give say an ARL of 400 when the process is in 

control, we can expect an ARL of about 9 for the CUSUM and Shiryayev-Roberts  tests when 

the process mean has undergone a 1σ shift.  The Shewhart test would give an ARL of about 

32 under these conditions. 
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Figure 1  Impact of 1 σ shift of mean on ARL 

Analysis of three ComputerShop products  

In this section we exhibit the results of applying the previous three tests to three products that 

were selected in order to illustrate products with a different life cycle.  We review firstly a 

product with a long life but at the end of its cycle, secondly a product with a very short life 

cycle, and thirdly a product at the mature phase of a relatively long life cycle. These three 

products illustrate a representative range of products for this company.  A glossary of the 

notation used in the plots and tables in outlined in Table 4. 
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Table 4 Glossary of terms in test results tabulations 

Sales Number of units sold in this week 
z Standardized sales data 
Shi CUSUM on positive side –sales growth 
Slo CUSUM on negative side – sales decline 
SR + Shiryayev-Roberts test on positive side – sales growth 
SR - Shiryayev-Roberts test on negative side – sales decline 
 Shaded cell when alarmed 

Mature product: end phase 

This product had a long run of significant sales up to week 64 at which time it had no further 

sales.  The period between weeks 15 – 45 was selected as one that could be used to set 

management expectations for this product.  Statistics for this period were 

Target value 9.5
StDev 4.9
Skew 0.8

These statistics indicate that the values could reasonably be expected to have been drawn 

from a population with a Normal distribution, the coefficient of variation is however high. 

These values are used to set the target value for the standardization of the observed variable in 

both the CUSUM and the Shiryayev-Roberts test.  Once set they are not changed over the life 

of the test. 
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Figure 2 Test plots for Mature product: end of life 

The period of interest for this product is between weeks 55 – 65.  This was a period of 

declining sales that preceded a final sale in week 63.  The Shewhart plot gave no alarms for 

this timeseries.  The end of sales was not signalled because the target level of sales was not 

three times the standard deviation during the benchmark period. 
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The Shiryayev-Roberts plot gave an alarm in week 64, in the same week as the last sale. The 

CUSUM gave an alarm in week 65, one week later. 

There were no false alarms during this period.  The solid line plot is for the negative CUSUM 

and Shiryayev-Roberts values, the positive values are plotted with the dotted line. 

Table 5 Test results for a mature product: End phase 

Week 55 56 57 58 59 60 61 62 63 64 65 
Sales 7 6 8 6 9 7 2 8 4 0 0 
z -0.5 -0.7 -0.3 -0.7 -0.1 -0.5 -1.5 -0.3 -1.1 -1.9 -1.9 
Shi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Slo -1.1 -1.3 -1.1 -1.3 -0.9 -1.0 -2.0 -1.8 -2.4 -3.8 0.0 
SR + 1 0 1 0 1 1 0 1 0 0 0 
SR - 18 24 21 27 19 20 58 49 92 390 0 

Burst: full life cycle 

This product experienced a period of intense sales between weeks 17 – 37 and then no further 

activity.  This is a very typical product for this company.   

The period between weeks 19 – 35 was selected as one that could be used to set management 

expectations for this product.  Statistics for this period were: 

Target value 10
StDev 3.9
Skew 0.6

These statistics indicate that the values could reasonably be expected to have been drawn 

from a population with a Normal distribution, the coefficient of variation is however high. 

The period of interest for this series is the peak in sales in week 34 followed by a rapid 

decline to zero sales by week 38. 
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Figure 3 Test plots for Burst product: Full cycle 
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Again, the target value was less than three time standard deviation of demand during the 

benchmark period and so the Shewhart test did not detect the end period.  There were no false 

alarms from this test.  The Shiryayev-Roberts test showed no false alarms during the period 

and gave an alarm at 38 having accumulated a negative signal during the final decline.  The 

CUSUM gave an alarm one week later. 

Table 6 Test results for a Burst product: Full cycle 

Week 29 30 31 32 33 34 35 36 37 38 39 
Sales 5 9 9 4 10 19 8 4 2 0 0 
z -1.3 -0.3 -0.3 -1.6 -0.1 2.2 -0.6 -1.6 -2.1 -2.6 -2.6 
Shi 0.0 0.0 0.0 0.0 0.0 1.7 0.7 0.0 0.0 0.0 0.0 
Slo -0.8 -0.7 -0.5 -1.6 -1.1 0.0 -0.1 -1.2 -2.8 -4.9 0.0 
SR + 1 1 1 0 1 10 4 1 0 0 0 
SR - 4 4 4 15 10 1 2 9 48 412 0 

Mature product: mature phase 

This product was introduced in week 20 and had experienced relatively steady sales over the 

period of the study.  There is some suggestion of a slight decline in sales in the most recent 

periods, but sales could be still quite healthy.  The period between weeks 24 – 33 was selected 

as one that could be used to set management expectations for this product.  Statistics for this 

period were 

Target value 35
StDev 4.7
Skew 0.8

These statistics indicate that the values could reasonably be expected to have been drawn 

from a population with a Normal distribution; the coefficient of variation is much lower than 

for the previous two samples.  The product sold fairly steadily between weeks 20 – 95.  The 

product was still active at the time this data was collected.  

The Shewhart test has produced a number of signals during this period.  Given that sales still 

continue, at about the benchmark level, we can deduce that all of these signals were false.  

There were three positive signals (at weeks 50, 66, and 68) and five negative alarms (at weeks 

49, 55, 69, 72, and 93). 
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The Shiryayev-Roberts test has given positive alarms at week 68, and negative alarms as 

weeks 50 and 69.  The CUSUM test has given a positive alarm at week 68 and negative 

alarms at week 50 and 69. 
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Figure 4 Test plots for Mature product: Mature phase 

Inspection of the data suggests that the signals at week 68 and 69 are an artefact.  Sales in 

week 68 clearly contain sales for 69 as well.  The low sale alarm in week 50 is a response to a 

sequence of weeks with lower than average sales, but is a false alarm.  Sales in week 51 are 

above average and this is followed a period of about 20 weeks of increasing sales. 

Table 7 Test results for a Mature product: Mature phase 

Week 48 49 50 51  64 65 66 67 68 69 70  92 93 94 
Sales 31 20 26 39  30 35 52 29 56 0 41  37 12 38 
z -0.9 -3.2 -1.9 0.8  -1.1 0.0 3.6 -1.3 4.4 -7.4 1.2  0.4 -4.9 0.6 
Shi 0.0 0.0 0.0 0.3  2.2 1.7 4.8 3.0 6.9 0.0 0.7  0.4 0.0 0.1 
Slo -1.4 -4.1 -5.5 0.0  -0.6 -0.1 0.0 -0.8 0.0 -6.9 0.0  0.0 -4.4 -3.3 
SR + 1 0 0 2  14 9 213 36 1857 0 2  3 0 1 
SR - 11 183 768 0  2 2 0 2 0 1049 0  2 264 87 

Discussion and conclusions 

Shiryayev-Roberts and CUSUM performed better than Shewhart.  In all cases for this data set 

the Shewhart test failed to provide an alarm at the end of life of sales.  This is not surprising 

given that the Shewhart test (as applied in this project) does not retain any memory of 

previous results.  Normally the Shewhart test has a range of rules that reflect pattering in the 

data.  The test was used in its simple form here as a benchmark.  The more interesting 

comparison is between the performance of the CUSUM and Shiryayev-Roberts tests.  Monte-

Carlo simulation suggests that there should be very little difference between these two tests.  
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For the data used here however the Shiryayev-Roberts test has given marginally superior 

performance to the CUSUM test.  The Shiryayev-Roberts test gave a clear alarm for the end 

of life of the first and second products reviewed in this paper.  This alarm was asserted in the 

same week as sales hit zero in both cases for the Shiryayev-Roberts test.  The CUSUM test 

produced an alarm one week later in both cases.   

These results support the claim by Ergashev (2004) and Kenett and Pollak (1996) that the 

Shiryayev-Roberts test should be considered as a useful additional approach for the detection 

of small shifts in a process mean.  These results also support the view that we can consider the 

test useful in conditions where we wish to track the performance of product sales.  The 

particular attraction of both of these techniques is that they can be implemented as a simple 

quantitative analysis of demand data.  It is relatively easy for a manager to look at a plot of 

demand and draw conclusions on the state of sales for a product.  This however is a difficult 

task when there are over 4000 SKUs that need to be reviewed!  Either of these tests can 

provide the manager with a short list of candidates that appear to have experienced a shift in 

the process mean.  It should be relatively easy for the manager to draw conclusions once 

attention has been directed at a particular SKU. 

 While the results support the claim that these tests are useful, it would be difficult to make a 

claim that one test was superior to the other based on these results.  Both tests are easy to 

program, parameters for both tests can be readily optimized if the proposed process shift can 

be established.  This paper has not examined the interaction of the test and its performance for 

unspecified shifts in the process mean and this may change the sensitivity of the tests 

differently.  This will be the subject of further work during the course of this project as it is 

not possible to specify the shift in the process mean in this project.   
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