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Abstract 

The research presented in this thesis examines the construction of a fuzzy logic controller for 

complex nonlinear system by control system decomposition into hierarchical fuzzy logic sub-

systems.  This decomposition reduces greatly the number of fuzzy rules to be defined and 

addresses the problem of exponential increase of fuzzy rules with an increase in the number 

of input variables or membership functions, so called ‗The curse of dimensionality‘.  The 

decomposition is not unique and often gives rise to variables with no physical significance.  

This fact causes difficulties in obtaining a complete class of rules from experts.  Hence, a 

learning algorithm needs to be employed to learn fuzzy rules, for example an evolutionary 

algorithm.     

In this thesis evolutionary algorithm (EA) based methods are proposed to determine the 

control system for the hierarchical fuzzy system (HFS). Evolutionary algorithm modifications 

include EA operators, such as crossover, mutation schedules, elitism, and other methods of 

passing the learned knowledge to the next generation. Variations on objective function 

formulation are also considered.  

Different HFS topologies for a given dynamical system (such as the inverted pendulum 

system) are investigated and the controller (designed by the EA) performance is examined. 

Investigation into hierarchical structures is performed on the inverted pendulum system as the 

case study. For this particular dynamical system, a single layer, two layered, three layered, 

and four layered HFS, with different variable input configuration is investigated. Effects of 

different input configurations on controller performance are examined and discussed. 

A new evolutionary algorithm based compositional method is proposed to control system 

over the whole set of user-defined initial conditions. The method addresses directly the 

problem of controlling the dynamical system from specific, user-defined initial conditions. In 

many practical applications there is no necessity to secure controllability over the large 

region in the state space, which is often difficult to achieve. Instead, a selected region of the 

state space, or even specific initial conditions can be considered. Further investigation is 

conducted into improvement of the compositional method by the use of the multiobjective 

optimisation formalism. The multiobjective evolutionary algorithm (MOEA) based 

compositional method is developed and tested on the example of the inverted pendulum 

system. The MOEA based compositional method provides good controller performance over 

large set of initial conditions and can be extended to other fuzzy logic control applications, 

especially in robotics applications. 
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Chapter 1 INTRODUCTION 
 

1.1 Overview 

Conventional modelling of physical systems is to develop a mathematical model and examine 

its behaviour by running computer simulations of the model. However, for many highly non-

linear dynamical systems this method fails to adequately reflect physical reality. This is 

especially true in the dynamical systems that can develop chaotic characteristics. In other 

words, their dynamics matches chaotic motion.  Examples of such systems can be found in 

robotic systems and large input-output data systems due to high non-linearity and large 

uncertainty in system parameters. A number of methods have been developed to address 

control problems in such systems. Some of them have become widely accepted, especially 

the artificial intelligence paradigms such as Neural Networks and Fuzzy Logic often coupled 

with Evolutionary Algorithms, see for example (Anderson 1989),  (Thrift 1991),  (Cheng et 

al. 1996), (Magdalena 1998),   (Wang 1999), (Belarbi and Titel 2000), (Cordon et al. 2001a), 

(Hsu et al. 2001), (Lee et al. 2003), (Lei and Langari 2003), (Leung et al. 2003), (Kumar and 

Garg 2004), (Stonier and Mohammadian 2004), (Lin  and Mon 2005), (Castillo et al. 2006). 

Fuzzy control provides a practical alternative to conventional control techniques as it has 

capability to incorporate heuristic information, coming from human experts either in directly 

augmenting fuzzy rule base or by influencing automatic acquisition of fuzzy knowledge base. 

However, apart from the obvious advantages of fuzzy control techniques there might be also 

disadvantages and some of them were stated by K.M. Passino and S. Yurkowich as early as 

1998, see (Passino and Yurkovich 1998).  

Hierarchical fuzzy control is now a growing area of research in control systems.  Increasing 

the number of input variables or input fuzzy sets results in an exponential increase in 

complexity of the rule base.  The decomposition of the system into a layered or hierarchical 

fuzzy logic system is intended to reduce the size of the rule base while maintaining an 

adequate accuracy. The decomposition reduces greatly the number of fuzzy rules to be 

defined, as it is known that in the single-layered control system, the number of fuzzy rules 

exponentially increases with an increase in the number of input variables. It is so called ‗The 

curse of dimensionality‘ that was first identified by Bellman (Bellman 1961).   
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The curse of dimensionality can be handled in variety of ways (Bellman 1961), (Wang 1997), 

(Stonier and Mohammadian 2004): 

 Clustering input variables in the inference engine to reduce the number of rules in 

the knowledge base. 

 Grouping the rules into prioritised levels to design hierarchical or multi-layered 

structures. 

 Reducing the size of the inference engine directly using notions of passive 

decomposition of fuzzy relations. 

 Decomposing the system into a finite number of reduced-order subsystems and 

thus eliminating the need for a large-sized inference engine.  

The research presented in this thesis examines the construction of a fuzzy logic control 

system to control complex nonlinear system by its decomposition into hierarchical/multi-

layered fuzzy logic sub-systems.   

Layered fuzzy logic systems utilize the modularity characterizing many physical systems and 

their mathematical models. Specifically, in the context of fuzzy logic rule bases, the output 

influenced by one closely related group of input variables may be largely independent of the 

values of other variables. Therefore, a layered fuzzy logic system can decompose the rule 

base along the weak interdependence between state variables and still maintain a high level of 

accuracy. The decomposition is not unique and may give rise to variables with no physical 

significance.  This can cause difficulties in obtaining a complete class of rules from human 

experts.  Therefore, the rules need to be learnt by some learning algorithm, for example an 

evolutionary algorithm (EA).  These fuzzy rules are typically evolved with no previous 

knowledge other than input-output data, or the physical system model.   

Evolutionary algorithm, with various modifications, is used to determine the control system 

for the hierarchical fuzzy system (HFS). Evolutionary algorithm modifications include EA 

operators, such as crossover, mutation schedules, elitism, and other methods of passing the 

learned knowledge to the next generation. Variations on objective function formulation are 

also considered. Furthermore, the EA behaviour on the pre-define set of initial conditions is 

examined.  

In this thesis different HFS topologies for a given dynamical system (such as the inverted 

pendulum system) are investigated and the performance of controllers designed by the EA for 
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these topologies are examined. Examination of the topologies gives insight into the workings 

of the physical system and its control system. Investigation into hierarchical structures is 

performed on the inverted pendulum system as the case study. For this particular dynamical 

system, a single layer, two layered, three layered, and four layered HFS with different input 

configurations are examined and controllers‘ performances compared. 

The curse of dimensionality affects both fuzzy logic and evolutionary algorithms. Its effect in 

fuzzy logic systems can be mitigated by using a hierarchical or multi-layered structure. The 

same problem needs to be addressed for evolutionary algorithms. One approach being so 

called co-evolutionary algorithms (De Jong and Potter 1995), (Pena-Reyes and Sipper 2001), 

(Young and Stonier 2003). This approach is investigated further in this thesis for fine-tuning 

of the fuzzy system membership functions. 

The evolutionary algorithm based compositional method addresses a problem of designing 

the control system over the user-defined set of initial conditions. The method is successfully 

applied to the inverted pendulum system, see (Zajaczkowski and Verma 2008). Significant 

improvement in the controller performance was observed after implementing multiobjective 

optimisation formalism in the compositional method (Zajaczkowski and Verma 2009a). 

Application of the hierarchical fuzzy control and evolutionary algorithm based compositional 

method can be made to articulated robot arms and multi-robot systems in particular, although 

it has much wider application. 

1.2 Significance of research  

Fuzzy logic control methods have been successfully applied in industrial, scientific, and 

business-related problems. However, fuzzy systems suffer from dimensionality predicament, 

which limits their practical applications due to computational limitations of 

hardware/software. To enhance the usefulness of fuzzy logic control the research presented in 

this thesis investigates hierarchical fuzzy systems approach. The investigation focuses on two 

aspects:  

 Overcoming high dimensionality problems by selecting fuzzy system representation 

scheme and by using hierarchical fuzzy structures.  

 Application of evolutionary algorithms to learn hierarchical fuzzy system knowledge 

base by an automated process.   

The presented research contributes to development of practical applications in robotics. The 

use of hierarchical fuzzy systems makes possible developing a fuzzy control system for real-
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time industrial applications, for example – a robotic manipulator. Standard single-layer fuzzy 

control systems require a large number of rules and thus an immense computing power that 

renders them impractical in real life applications. Approach to the control problem of the 

inverted pendulum presented in this thesis makes practical applications of fuzzy systems 

control more feasible. 

The advantage of using hierarchical fuzzy systems is obvious in extreme case of 

decomposition of a given fuzzy logic system into its subsystems (standard input 

configuration, see Chapter 3), with two input variables in the first layer and one input per 

layer in all subsequent layers. In such a case, the size of the rule base is a linear function of 

the number of input variables. 

The topologies of the hierarchical fuzzy systems are examined and analysed to address the 

problem of how input configuration in multi-layered structure affects the output, i.e., 

controller performance. There are various approaches to building a topology of the HFS and 

no consistent guidelines how to do it. In most cases it is human intuition or expert knowledge. 

The problem of selecting the best topology and input configuration is examined on the 

example of the inverted pendulum system. Extensive examination of the inverted pendulum 

as a case study aims at developing methods for designing hierarchical fuzzy control system. 

Such a case study can be very instructive for extending some of the relevant results to other 

dynamical systems, in particular to a robotic manipulator. Research into inverted pendulum 

problem includes designing architectures of the HFS and testing the best configuration of the 

fuzzy system. Furthermore, it includes fine-tuning the evolutionary algorithm for the 

hierarchical fuzzy control. 

The problem of designing fuzzy control system over a user-defined set of initial condition is 

investigated. Two methods can be used for this purpose: amalgamation and compositional 

method. Amalgamation method develops fuzzy rule knowledge base for every initial 

condition taken from a grid covering the region of state space that is under consideration and 

then amalgamates them into a single knowledge base. Compositional method develops 

knowledge base for the whole grid of initial conditions at once – by modifications done to a 

fitness function and tuning the evolutionary algorithm. In this thesis, a novel compositional 

method for hierarchical fuzzy system control has been developed and successfully applied to 

the inverted pendulum system. 
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Further improvements to the compositional method are investigated by applying 

multiobjective optimisation formalism to find the control system. The method is developed 

on the example of the inverted pendulum system but with wide range of possible 

applications. The multiobjective evolutionary algorithm based compositional method shows 

good controller performance with possible further improvements by implementation of a 

more sophisticated MOEA. The method shows potential for wide applications in robotics. 

1.3 Aims of research 

The main aim of the research presented in this thesis is to investigate the different topologies 

of the hierarchical fuzzy control system using evolutionary algorithms and to examine their 

impact on the controller performance. Specifically, the research presented in this thesis aims 

to: 

 Investigate the different topologies of a hierarchical fuzzy control structure with 

single layer, two layers, three layers, and four layers with different variable input in 

the two layered, three layered, and four layered structures. Determine how 

hierarchical fuzzy structure affects controller performance.  

 Investigate the role of membership functions in the co-evolutionary algorithm for the 

hierarchical fuzzy control. 

 Propose and investigate an evolutionary algorithm based compositional method for 

hierarchical fuzzy control over the whole set of user-defined initial conditions. 

 Propose and investigate a multiobjective evolutionary algorithm based compositional 

method for hierarchical fuzzy control over the whole set of initial conditions. 

 

1.4 Original contributions  

The original contributions of this research are as follows: 

 Extensive investigation of hierarchical fuzzy structures for the inverted pendulum. 

Examination of the performance of the control system in different input 

configurations and hierarchical fuzzy structures. The result of such analysis is a 

controller with the ‗best‘ performance that is established arbitrary for the task. 

 Co-evolutionary approach to the hierarchical fuzzy control of the inverted pendulum 

system involving the membership functions adjustment for improved controller 

performance. Investigation into different methods of co-evolutionary mechanisms and 

their application to the fuzzy control. 
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 Evolutionary algorithm based compositional method for the hierarchical fuzzy control 

over the user-defined set of initial conditions and its testing on the example of the 

inverted pendulum system. 

 The multi-objective approach to the problem of hierarchical fuzzy control over the set 

of initial conditions.  Implementation of the multi-objective evolutionary algorithm 

for the compositional method.  

1.5 Organisation of the thesis 

This thesis is divided into nine chapters followed by the Appendix and References section.  

Chapter  1: An introduction to the thesis is presented in this chapter. It provides an overview 

of the research field, thesis objectives, its original contribution to scientific knowledge, and 

thesis organisation.  

Chapter  2: This chapter presents background knowledge and literature review.  

Chapter  3: The inverted pendulum system is described as a test system. System dynamics is 

given as a set of first order differential equations. System parameters are defined. Finally, the 

hierarchical fuzzy systems and its application in fuzzy logic control are introduced.  

Chapter  4: This chapter describes evolutionary algorithm that is used to find fuzzy rules for 

the hierarchical fuzzy control system. Single and multiobjective evolutionary algorithms are 

briefly introduced. 

Chapter 5: The chapter provides detailed investigation of different topologies for the 

inverted pendulum system and their impact on the controller performance. 

Chapter 6: The chapter describes co-evolutionary approach to the inverted pendulum 

problem that includes membership functions adjustments within the EA.  

Chapter  7: This chapter presents an evolutionary algorithm based compositional method. 

Chapter 8: The multiobjective optimization evolutionary algorithm based compositional 

method is introduced as an improvement on the single objective compositional method. 

Chapter 9: The final chapter provides final conclusions and discussion of results. Future 

directions are briefly discussed. 
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Summary 

In this chapter an overview of the thesis‘ topic is provided. Hierarchical fuzzy control is a 

growing area of research in control systems as it addresses an important issue in fuzzy control 

theory:  increasing the number of input variables results in an exponential increase in the size 

of the rule base (the curse of dimensionality).  The decomposition of the system into a 

hierarchical fuzzy logic system reduces the size of the rule base while maintaining an 

adequate accuracy.  

Significance of research is discussed. Research in this thesis being focused on two major 

subjects: overcoming high dimensionality problems by using hierarchical fuzzy structures, 

application of evolutionary algorithms to learn hierarchical fuzzy system knowledge base.   

 Objectives and original contributions of the research presented in this thesis are stated. 

Finally, the organization of the thesis is given. 
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Chapter 2 BACKGROUND KNOWLEDGE AND 

LITERATURE REVIEW 
 

2.1 Review of the existing techniques 

2.1.1 Fuzzy logic control 

The design of control systems for complex and high dimensional dynamical systems relies on 

the availability of a system model under consideration. It is often difficult to create an 

adequate model of the system or process due to a limited availability of mathematical theory 

in case of very complex systems. Approximate models are often employed in such cases but 

with the growing discrepancy between physical system and its mathematical (or 

experimental) model. However, very complex systems can be controlled by human operators 

with only a rudimentary knowledge of the dynamic model.  This kind of control problems has 

given rise to new intelligent control methods, fuzzy logic and neural networks being most 

widely used.  

 

Fuzzy logic origins lie in multi-valued logic concepts that were basis for the fuzzy theory 

developed by Lofti A. Zadeh. The theory gained wider approval in the scientific community 

in the 1980‘s with growing number of practical applications that proved its effectiveness. In 

1990‘s the fuzzy logic control has become a viable and attractive alternative to classical 

control techniques. It is a fast growing area of research, diversified in many sub-disciplines 

and hybrid techniques. 

 

There are two main problems with the design of the intelligent control methods.  The first is 

to obtain an adequate knowledge base for the controller, usually obtained from expert 

knowledge, and the second problem is selection of key parameters defined in the method. 

Evolutionary algorithms are often used for automated knowledge acquisition for fuzzy logic 

controllers (Cordon et al. 2001a), (Cordon et al. 2002), (Konar 2005), (Mohammadian and 

Stonier 1996a). However, there are a number of methods employed to knowledge base 

acquisition (Cordon et al. 2001c): 

 Fuzzy rule base derived from human experts. The expert specifies the linguistic labels 

associated with linguistic variables, structure of the rule base, and the meaning of 

each label. 
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 Fuzzy rule base derived from automated learning methods. There are many different 

design techniques for automated learning methods apart from evolutionary 

algorithms, for example: ad hoc data driven generation methods, variants of the least 

squares method, descent method, neural networks, and clustering techniques. 

Considering the fuzzy logic control methods record in engineering applications, its  

popularity is not surprising.  Success of fuzzy logic control can be attributed to a few factors: 

 Fuzzy logic control is capable of using both sensor data and human expertise. It can 

use both sources of information, or just one if the other is not available. This makes 

the FLC a flexible control system with wide range of applications when other, more 

rigorous methods, struggle to meet their control objectives.   

 Fuzzy logic control is model-free approach; fuzzy logic techniques are not dependant 

on the model of the physical system under consideration. This is important feature as 

in some cases mathematical model of the system is not available. 

 Fuzzy systems are universal approximators, which makes them suitable for non-linear 

control system design. 

 Fuzzy logic control provides good compromise between performance and cost. The 

fuzzy logic control systems are easy to design and thus cutting development costs. 

Most importantly, the fuzzy logic control is easy to understand which is important for 

non-experts in the field. 

However, fuzzy logic applications are limited by the heuristic nature of their knowledge 

bases.  Fuzzy logic control is often based upon knowledge derived from imprecise heuristic 

knowledge of human operators.  Some methods for transforming human knowledge into the 

fuzzy logic knowledge base (rule base and database of a fuzzy inference system) are 

described in (Harris et al. 1993). 

The most popular application of fuzzy set theory are fuzzy rule-based systems as they 

provided the framework for engineering applications. There are three major types of rule-

based systems (Babuska 2009): 

 Linguistic fuzzy model in which both the antecedent and consequent part of IF-THEN 

rule are fuzzy propositions (Zadeh 1973). 

 Fuzzy relational model in which a particular antecedent proposition can be associated 

with several different consequent propositions via a fuzzy relation (Pedrycz 1984). 

 Takagi-Sugeno fuzzy model in which the consequent is a crisp function of antecedent 

variables (Takagi and Sugeno 1985). 
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A large number of research papers still assume the original Zadeh‘s model of fuzzy rule base 

due to its enduring flexibility in handling various practical applications. 

There are also various classifications of fuzzy logic systems based on differences in fuzzy 

rules and methods of their generation (Feng 2006): 

 Fuzzy proportional-integral-derivative (PID) control. 

 Hybrid techniques encompassing fuzzy logic, neural networks, evolutionary 

algorithms, etc. 

 Fuzzy-sliding mode control. 

 Adaptive fuzzy control.  

 Takagi–Sugeno model-based fuzzy control. 

 Conventional fuzzy control. 

2.1.1.1 Fuzzy PID control 

PID controllers are still used in industrial applications due to their simplicity and low cost of 

implementation. The reason for combining fuzzy logic control and PID control is that the 

latter does not handle well highly nonlinear and uncertain systems. There are different types 

of fuzzy PID controllers, one of the most efficient is so called ‗gain-scheduling‘ fuzzy 

controller (Chiu 1998). In general, fuzzy PID controllers perform better than conventional 

PID controllers but with the electronics becoming less and less expensive both are being 

replaced by ‗intelligent‘ control systems. A good review of PID controllers can be found in 

(Chen 1996). 

2.1.1.2 Hybrid techniques 

Hybrid techniques are often represented by neural networks control techniques combined 

with fuzzy logic control. Such techniques are among most popular intelligent control methods 

(Feng 2006). There are two major types of such hybrid systems: neuro-fuzzy systems (see 

above) and fuzzy-neural systems, depending on which component is dominant in the hybrid 

system. In neuro-fuzzy systems (combination of fuzzy logic control and neural networks) the 

dominant component is the fuzzy control with NN fulfilling the role of the adaptation 

mechanism. Neuro-fuzzy control method usually uses NN to find fuzzy rules and find/adjust 

membership functions associated with fuzzy rules. Typically, fuzzy logic parameters are 

represented by weights in NN nodes. Early applications of neuro-fuzzy systems were as 

learning techniques to find/adjust the membership functions in the fuzzy control system 

(Ichihashi and Tokunaga 1993).  
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Popularity of neuro-fuzzy control methods is due to their relatively robust, model-free control 

techniques capable of storing and using knowledge for control decisions.  NN control 

acquires such knowledge by data training while fuzzy control acquires knowledge from 

human experts. Both approaches have their advantages and disadvantages. NN control 

derives knowledge from objective data sample but if the training data is not sufficiently 

representative for the analysed problem it may fail in its objective or incur large errors. Fuzzy 

logic knowledge is based on qualitative and imprecise human knowledge and therefore 

subject to its limitations but at the same time it gives this approach relatively high robustness 

and possibility of applications where other techniques are not applicable. Many researchers 

decided to combine advantages of both approaches to achieve better control outcomes. 

Further information about neuro-fuzzy control methods can be found in (Mitra and Hayashi 

2000).    

Fuzzy-neural systems are basically NN in which the imprecision represented by fuzzy sets is 

applied to pattern recognition. Other fuzzy-neural systems NN augmented by fuzzy operators, 

are based on the use of logical operators in the neural nodes (Gupta 1992). Another popular 

approach to control problem is by using fuzzy logic and/or neural networks, evolutionary 

algorithms, and even more hybridised techniques. Evolutionary algorithms were used to 

optimise synaptic weights in NN but this approach has become obsolete with emergence of 

better techniques, such as improved gradient methods. For elaboration on hybrid system with 

NN and fuzzy system components see (Cordon et al.  2001a). 

2.1.1.3 Fuzzy sliding mode control 

Sliding mode control techniques proved themselves in many applications as robust control 

systems for uncertain nonlinear systems, (Utkin 1992).  Sliding mode techniques are often 

used in robotic applications, and generally in MIMO (multiple-input multiple-output) 

systems, as they display robustness in dealing with parameter uncertainty and external 

disturbances. Inherent problems with sliding mode applications, namely chattering control 

characteristics are dealt by a number of techniques, most popular being supervisory controller 

(Wang 1993). Fuzzy sliding mode control eliminates chattering by defining fuzzy boundary 

layers that replace crisp switching surfaces (Ha et al. 2001), (Feng 2006). The stability 

analysis for sliding mode techniques is well developed which is another advantage of such 

techniques. Sliding mode techniques are often combined with EAs to find/adjust membership 

functions (Chen and Chang 1998), (Lin and Chen 1997) or with decomposition of the system 
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into several subsystems (Lo and Kuo 1998). See also (Kaynak et al. 2001) for further 

information on sliding mode techniques. 

2.1.1.4 Adaptive fuzzy control 

Adaptive fuzzy system is defined as a fuzzy logic system with training algorithm. The fuzzy 

logic system is designed from the fuzzy IF-THEN rules using fuzzy logic principles while 

training algorithm adjusts the parameters and/or structure of the fuzzy logic system based on 

numerical information (Wang 1994). In control theory many adaptive methods assume linear 

or linearised systems and only for certain cases of non-linear dynamical systems adaptive 

methods were developed (Ioannou and Sun 1995), (Krstic et al. 1995). Fuzzy systems are 

capable of approximating any smooth function on the compact interval and this fact is used 

by L.X. Wang to design an adaptive fuzzy controller for affine nonlinear systems with 

unknown functions (Wang 1993). The parameters of the fuzzy system (including membership 

functions) are updated according to the adaptive law derived from the Laypunov stability 

theory. See also (Zeng and Singh 1994), (Zeng and Cai 2002) for other fuzzy systems 

approximation examples.  

A number of works in adaptive fuzzy control uses an idea of approximating unknown 

nonlinear function by a fuzzy system and representing the fuzzy system in the form of linear 

regression with respect to unknown parameters to use adaptive control techniques, which are 

well developed for linear or near-linear systems as mentioned before, for example see 

(Anderson et al. 1997), (Campos and Lewis 1999), (Han et al. 2001), (Koo 2001), Tong and 

Li 2003), (Lee and Zak 2004), (Velez-Diaz and Tang 2004).  

2.1.1.5 Takagi–Sugeno model-based fuzzy control 

In many engineering applications both input and output values are numerical and therefore 

fuzzy logic systems usually use fuzzifier and defuzziefier combination to translate the 

problem into fuzzy logic formalism and back into crisp numerical values. T. Takagi and M. 

Sugeno (Takagi and Sugeno 1985) proposed fuzzy system in which IF part in IF-THEN rules 

is fuzzy but the THEN part is a linear combination of input variables:  

If  (x1 is A1
l 
) and (x2 is A2

l
)  and (x3 is A3

l
) and (xn is An

l
)) Then u = a0+a1x1+ a2x2+ … +anxn.                 

Takagi-Sugeno fuzzy systems are fuzzy dynamic models, for more details see (Cao et al. 

1995), (Cao et al. 1997). The fuzzy dynamic model idea is based on using a set of local linear 

models which are connected to a global nonlinear system by membership functions, 

(Johansen et al. 2000), (Tanaka and Wang 2001), (Sugeno 1999). This approach does not 
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suffer from the ‗curse of dimensionality‘ as much as conventional fuzzy logic systems as it 

reduces significantly the number of fuzzy rules. Another of its advantages is its stability 

analysis that can be performed using classical stability theory including Lyapunov stability 

analysis.  

2.1.1.6 Conventional (Mamdani type) fuzzy logic control 

The conventional fuzzy control, also called: Mamdani type fuzzy control, was widely used in 

many practical applications, see for example (Tong et al. 1980), (Holmblad and Ostergaard 

1982), (Larkin 1985), (Lee et al. 1994), (Kandel et al. 1999), (Baturone 2004), (Xiao 2004). 

Advantage of conventional approach is that is heuristic and basically model-free. However, 

this approach lacks developed stability analysis and consistency in controller design. Those 

issues still need to be comprehensively resolved. 

In spite of advantages of Takagi-Sugeno fuzzy systems they also suffer from serious 

drawbacks, it is more difficult to incorporate expert knowledge in such systems and the 

structure of the rule consequents is difficult to interpret for human experts. One of the major 

advantages of using fuzzy logic approach in the first place is therefore diminished. The 

conventional approach provides also more flexibility with using different fuzzy operators to 

perform fuzzy inference (Cordon et al. 2001a). This is one of the reason the conventional 

fuzzy logic control is still more popular in many practical applications. 

The fuzzy logic application as a control system seems most successful in highly nonlinear 

dynamical systems with large parameter uncertainty. Modeling of such systems is difficult (if 

not impossible) and classical control methods are often inadequate.  Fuzzy logic control can 

be considered as a real-time expert system that employs fuzzy logic to analyse system input 

to output.  Fuzzy logic approach provides means to convert a linguistic control system 

derived from the expert knowledge into automatic control system. Furthermore, fuzzy logic 

control system provides means of controlling the control system evolution and its 

performance, see (Konar 2005), (Wang 1997), (Stonier and Mohammadian 1996).  A typical 

fuzzy logic control system components are (see Figure 2.1): 

 Fuzzification interface which converts crisp input values into fuzzy linguistic values 

used in fuzzy reasoning mechanism. 

 Knowledge base which is the collection of expert control knowledge required to 

achieve the control objective. 

 Fuzzy reasoning mechanism which employs various fuzzy logic operations to infer 
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the control action from the given fuzzy inputs. 

 Defuzzification interface which converts the inferred fuzzy control action into the 

crisp control values to be entered into the system process.  

In general, fuzzy reasoning in the decision making unit is usually expressed as rules with 

conjunctives and , or and else: 

If  (x1 is A1
l 
) and (x2 is A2

l
)  and (x3 is A3

l
) and (xn is An

l
)) Then (u1 is B1

l 
) else (u2 is B2

l 
) else 

… else (um is Bm
l 
)                                                                                                             ( 2.1) 

where Ak
l
 , k = 1, … , n  are fuzzy sets for n input variables xk , k =1, … , n, and where Bk

l
 , k 

= 1, … , m  are fuzzy sets for m output variables uk, k =1, … , m.  In this thesis, the 

consequent part is assumed to be a single value: 

If  (x1 is A1
l 
) and (x2 is A2

l
)  and (x3 is A3

l
) and (xn is An

l
)) Then (u is B1

l 
)                       ( 2.2)                                                                                                             

Basic elements in fuzzy logic design are described below (Cordon et al. 2002a), (Cordon et 

al. 2001b), (Cordon et al. 2001c), (Cordon et al. 2002). 

Fuzzifiers and defuzzifiers are used to convert ‗crisp‘ values (such as state variables values) 

into fuzzy membership functions and vice versa: 

 Fuzzifier is a mapping from a real valued point x* in U to a fuzzy set A’ in U 

(which is called a universe of discourse containing all elements in each particular 

context). Typical fuzzifiers: singleton, Gaussian, triangular. 

 Defuzzifier is a mapping from a fuzzy set B’ in V to a crisp value y* in V. Typical 

defuzzifiers: centre of gravity defuzzifier, centre average defuzzifier, maximum 

defuzzifier. 

Inference engine lies at the heart of the fuzzy logic control system. In a fuzzy inference 

engine, fuzzy logic principles are used to combine the fuzzy rules in the rule base into a 

mapping from a fuzzy set A’ in U to a fuzzy set B’ in V.  Two methods are used to infer with 

a set of rules: composition based inference and individual-rule based inference. In 

composition based inference, all rules in the fuzzy rule base are combined into a single fuzzy 

relation in U×V, and used as a single fuzzy IF-THEN rule. In individual-rule based inference, 

each rule in the fuzzy rule base determines an output fuzzy set and the output of the whole 

fuzzy inference engine is the combination of the M (size of the rule base) individual fuzzy 

sets. Combination may be taken either by union or intersection of fuzzy sets. If fuzzy rules 

are viewed as independent conditional statements then the operator union is used. If fuzzy 
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rules are viewed as strongly coupled conditional statements then the operator intersection is 

used. 

Fuzzification
Interface

FUZZY LOGIC CONTROL SYSTEM

Knowledge Base

Data Base

Defuzzification
InterfaceInference System

Input OutputRule Base

 

Figure 2.1 Basic diagram of the Fuzzy Logic Control System. 

 

Typical fuzzy system design process can be described as follows: 

 Determine the input and output variables. 

 Decide on the number of input variables and fuzzification. 

 Decide on the number of the output variables and their defuzzification. 

 Create the fuzzy knowledge base and inference engine. 

Evolutionary algorithm is used to learn the fuzzy rules in the knowledge bases. The important 

issue in determining the right type of evolutionary algorithm for a control problem is the 

fuzzy rule base encoding method.  Often, fuzzy rule base can be represented as a 

multidimensional decision table. For a problem with n input variables taking mi values, i = 1, 

… , n,  the table has dimensions: m1 × m2 × … × mn.  This decision table can be converted 

into a linear string. The entire knowledge base is encoded uniquely as a string of integer 

numbers representing the fuzzy rules. In this way, each fuzzy rule is uniquely defined by the 

consequent part of the fuzzy rule. In some control problems it is more convenient to encode 

strings using real valued string elements. However, in this thesis only integer encoding is 

used. 



 

16 
 

2.1.2 Hierarchical fuzzy control and evolutionary algorithm 

2.1.2.1 Hierarchical fuzzy control 

In a hierarchical fuzzy logic structure, typically  the most influential parameters are chosen as 

the system variables in the first level, the next most important parameters are chosen as the 

system variables in the second level, and so on (Raju et al. 1991). In this hierarchy, the first 

level gives an approximate output which is then modified by the second level rule set, this 

procedure can be repeated in succeeding levels of hierarchy.  

In general, with n input variables and m fuzzy sets defined for each input variable, there is m
n
 

fuzzy rules in the rule base.  In the hierarchical structure, the number of rules in a complete 

rule set is so reduced to a linear function of the number of variables, but this number may still 

be high.   But which variables in a given system are the most influential and in what order 

should variables be chosen? These questions in general are yet unanswered and an 

understanding of fundamentals is required to determine the level of interdependence of input 

variables. Also, given that different hierarchical structures can exist, how can the fuzzy 

knowledge base and associated parameters in each layer be effectively learnt? 

The decomposition into hierarchical fuzzy logic sub-systems reduces greatly the number of 

fuzzy rules to be defined and to be learnt but such decomposition is not unique and it may 

give rise to variables being output from one layer and input into the next layer, which do not 

have any physical significance (Magdalena 1998). This can raise difficulties in obtaining a 

complete class of rules from experts even when the number of variables is small (Stonier and 

Mohammadian 2004), (Mohammadian 2003), (Kingham et al. 1998). 

Hierarchical fuzzy systems combined with evolutionary algorithms (for learning fuzzy 

knowledge base) can be used not just to reduce the size of the knowledge base but also to 

improve model accuracy in regions where non-hierarchical models do not provide sufficient 

performance (Cordon et al. 2004).  

It is worth mentioning that reduction of the rule base can be achieved using other methods 

than hierarchical decomposition, for example clustering approach presented by S. Chopra 

(Chopra et al. 2005). K.S. Tang (Tang et al. 1998) proposed a scheme to reduce number of 

fuzzy rules and membership functions by using a hierarchical genetic algorithm. Note that the 

genetic algorithm structure is assumed hierarchical, not the fuzzy system topology. The 

method does not require a priori knowledge of the fuzzy system topology. 
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2.1.2.2 Evolutionary algorithm 

The evolutionary algorithm is a heuristic search technique that maintains a population of 

individuals. Each individual can be considered to represent a potential solution to a given 

problem.  Each individual is assigned a measure of fitness which determines how accurate it 

is as a potential solution to the problem. The new population is obtained from the old one by 

the use of genetic operators such as crossover, and mutation. An elitism strategy is used to 

pass the fittest individuals to the new population, so that the information encapsulated in the 

best individual is not lost and passed to the next generation. 

A selection process is used to obtain parents for mating in the current generation. The most 

popular is proportional selection to select randomly two parents based on their fitness in 

proportion to the overall total fitness of the population. Another is tournament selection in 

which a specified number of possible parents are selected at random from the population.  A 

tournament is then held to select the two fittest strings and they are used as parents in the next 

process of crossover to generate children to be passed into the next generation. 

In the crossover operation a number of ‗parent‘ strings, typically two, are recombined to 

create ‗child‘ strings.  The most popular crossover operator is the one-point, arithmetic, and 

uniform crossover. The crossover operator plays a role of sexual reproduction in which two 

individuals exchange parts of their strings to produce offspring. 

With a given probability the mutation operator mutates elements of the individual in the 

population. This ensures satisfactory diversity within the population which is required for the 

EA to find better approximate solutions to the problem. 

With an appropriate selection of EA parameters and operators, the algorithm is allowed to 

evolve. It is terminated when pre-defined termination condition is satisfied; usually at a fixed 

number of generations or until there is minimal change or no change to the string which has 

the best fitness. The fittest individual is taken as the best possible solution learnt by the 

algorithm. 

2.2 Literature review 

Foundations of fuzzy theory were laid by Lofti A. Zadeh in 1965 in his famous paper ―Fuzzy 

sets‖ (Zadeh 1965). Initially, the new theory did not attract much attention and remained 

outside the mainstream of control theory techniques. After a series of publications (Zadeh 

1968), (Bellman and Zadeh 1970), (Zadeh 1973), the fuzzy control theory started to emerge 
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as a serious competitor to the conventional control techniques. Zadeh‘s 1973 paper (Zadeh 

1973) introduced the concept of linguistic variable and IF-THEN rules to encompass human 

expert knowledge. Research work by E. Mamdani and S. Assilian (Mamdani and Assilian 

1975) provided a groundwork for future fuzzy logic applications. With the first successful 

application in the 1978 experiment in the cement kiln in Denmark, the fuzzy control theory 

started to be seen as a practical alternative to classical control methods (Holmblad and 

Ostergaard 1982). However, not much progress was made, mostly due to lack of funding and 

interest from the industry, until successes of Japanese researchers and engineers (Fuji Electric 

water purification plant,  Sandai subway) in 1980‘s paved way to rapid increase in funding 

and research in fuzzy control area. Fuzzy logic systems proved to be an excellent framework 

for representing both human expert derived knowledge or/and automatically acquired via 

some learning mechanism. 

The successful real-life applications made fuzzy logic control recognised as one of the major 

control theory techniques. Initially few papers were published on fuzzy logic control with 

momentum gaining in 1980‘s. For examples of early publications on fuzzy logic control 

methods see (Mamdani and Assilian 1975), (Mamdani 1976), (Kickert and Lemke 1976), 

(Mamdani 1976), (Kickert and Mamdani 1978), (Procyk and Mamdani 1979), (Czolgala and 

Pedrycz 1981), (Czolgala and Pedrycz 1982), (Ray and Majumder 1984), (Kiszka et al. 

1985), (Takagi and Sugeno 1985), (Daley and Gill 1986), (Graham and Newell 1988), (Chen 

and Tsao 1989).  With increasing number of practical applications, such as washing 

machines, image stabilisers, self-parking cars, etc, the researches encountered growing 

problems related to complexity of the systems to be controlled. One of the most challenging 

was exponential growth of fuzzy rules with the increase of input variables or number of fuzzy 

sets associated with them (‗The curse of dimensionality‘). 

There is a vast literature on fuzzy control systems, especially with applications to the inverted 

pendulum (cart-pole system) as it is often used as a test system for proposed methods. 

However, there is much less publications on hierarchical fuzzy control systems. A large 

number of control systems (especially from 1980‘s and 1990‘s) rely on local linearization of 

the dynamical system under consideration. Design of the stabilizing fuzzy logic controllers is 

achieved via piece-wise linearization of the non-linear system, especially when authors are 

implementing Lyapunov direct method. Lyapunov method can be used not just for stability 

analysis but also to design fuzzy controllers, for example (Chen and Chen 1998), (Chen et al. 

1999), (Zhong and Rock 2001).  
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It is difficult to study the problem of hierarchical decomposition for a large class of fuzzy 

systems but it is possible to analyse such architectures on the example of a particular fuzzy 

system. Obviously, topology of the HFS must be selected according to the physical properties 

of the dynamical system under consideration. The selection process is subject to human 

decision. It might be possible to design the EA for finding the most suitable (optimal or near-

optimal) topology for any particular problem (hierarchical EA), so the process can be 

automated. There is a number of research projects dealing with variable control structures, 

see for example (Hsu et al. 2001).   

Fuzzy logic control applied to the inverted pendulum system can be found in many research 

papers (as the inverted pendulum is often used as a test-system).  In spite of providing 

obvious advantages in reduction of the knowledge base size, hierarchical fuzzy control does 

not often appear in research literature involving the inverted pendulum problem. 

Furthermore, in most research papers implementing conventional Mamdani approach to 

fuzzy rules a single or relatively few test initial conditions are examined (Takagi-Sugeno 

approach allows use of Lyapunow stability analysis). Therefore, it was decided to investigate 

a method that could control the inverted pendulum from a wide range of initial conditions, 

including nonzero initial cart velocity and pole angular velocity (usually assumed to be zero).  

Research papers on fuzzy control fall generally into five categories: sliding mode, adaptive, 

EA & NN fuzzy control, and hybrid techniques encompassing two or more categories, see 

also Section 2.1.1 for a general classification of fuzzy logic control techniques. 

The research presented in this thesis has originated in research work by R.J. Stonier (Stonier 

et al. 1998) and by R.J Stonier (Stonier 1999). In (Stonier et al. 1998) a two layered HFS is 

investigated and the development of GA for knowledge base design is discussed in detail. 

Research presented in this thesis is based on a modified algorithm from this paper, with 

different parameters, crossover procedure and mutation schedule. Strong elitism is introduced 

to bring the average of the population in the GA close to the desired minimum of objective 

function. 

Amalgamation and compositional method was investigated in (Stonier 1999). However, 

attempts at replicating the results for amalgamation method achieved in the abovementioned 

paper failed. The original simulations were run on Borland Turbo Pascal, with different 

parameters and included variable scaling. Exact re-creation of simulations was not attempted 

as Borland Turbo Pascal is not supported on newer platforms. The method of fuzzy 
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amalgamation relies on developing knowledge bases for every initial condition from a 

configuration set separately and then amalgamating them into one final (global) knowledge 

base by averaging the outputs for each rule in the knowledge bases. The compositional 

method determines a single fuzzy knowledge base directly from a modified EA that learns 

fuzzy rules over the grid of initial conditions.  

2.2.1 Literature review: fuzzy logic control 

Development of fuzzy logic control techniques began in earnest in 1980‘s with a large 

number of papers published. The growth of fuzzy logic techniques was partly due to fuzzy 

controllers solving previously intractable or very difficult control problems.  

In this thesis, the inverted pendulum system is used as a case study therefore special 

consideration is given to publications that solve the pole-cart problem, either as a research 

paper dedicated to this particular problem or just using it for testing the proposed control 

method. 

In M.J. Desylvia‘s MSc thesis (Desylva 1994) a fuzzy logic controller was developed for the 

task of balancing the inverted pendulum from an arbitrary set of initial conditions. The rule 

base developed was based on intuition and logic rather than any mathematical model. This 

approach made the control process much simpler as there was no need to solve nonlinear 

differential equations. However, results achieved are specific to the inverted pendulum 

system and have no much value as a method that can be extended to other dynamical 

systems.  

In the paper by K.J. Astrom and K. Furuta (Astrom and Furuta 2000) the authors discuss 

simple strategies, based on Lyapunov analysis, for swinging up an inverted pendulum and 

show that the cart-pendulum system critically depends on the ratio of the maximum 

acceleration of the pivot to the gravity acceleration. Comparison of energy based strategies 

with minimum time strategies are provided. In the paper, a designed controller is capable of 

bringing the pendulum to the upright position in one swing, providing that the control force 

satisfies u > 2g. Instead of controlling position and velocity of the cart-pendulum system, the 

method relies on the control task being achieved by controlling the energy of the system, 

namely acceleration of the pivot. 

M. Margaliot and G. Langholz (Margaliot and Langholz 1999) used classical Lyapunov 

approach to design fuzzy controllers. They used as one of their case studies the inverted 
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pendulum system. The system variables were restricted to the pole angle and its angular 

velocity. The fuzzy rules were derived from the Lyapunov function derivative condition 

(negative definite derivative). Five static initial conditions were selected to test the control 

system and one with the initial angular velocity of 1rad/s. The method main advantage is that 

it required very little knowledge about the system under consideration. The dynamic 

equations do not need to be known, only the state of the system must be known (state 

variables) and proportional dependence of input variable (angular speed) to the system 

control output.  Furthermore, the authors demonstrated that for linear time-invariant plants of 

arbitrary order, four Mamdani-type fuzzy rules suffice to guarantee local asymptotic stability. 

W.S. Yu and C.J. Sun (Yu and Sun 2001) developed a fuzzy adaptive control for a class of 

nonlinear systems and verified it on the example of the inverted pendulum. The control 

algorithm guarantees global stability of the system with the output of the system approaching 

the origin if there are no disturbances and uncertainties, converging to the neighbourhood of 

the origin for all realisations of uncertainties and disturbances.  

Similar approach was presented by T. J. Koo (Koo 2001) using reference model adaptive 

fuzzy control. N. Muskinja and N. Tovornik (Muskinja and Tovornik 2006) designed an 

adaptive fuzzy controller for a real inverted pendulum and compared various control 

strategies.  Their investigation showed advantages of using fuzzy control theory in real-time 

applications, specifically for the inverted pendulum system with the aim of fast stabilization 

of the pendulum and the pendulum cart.  

The most relevant to the compositional method described in this thesis are results by J. Yi 

and N. Yubazaki (Yi and Yubazaki 2000), (Yi et al. 2002). They developed fuzzy controller 

based on the single input rule modules (SIRM) and dynamic importance degree (DID). The 

method was tested for a wide range of system parameters (cart and pole mass, pole‘s length, 

etc.).  They reported that for specific system parameters the inverted pendulum can be 

stabilised for initial pole angle within [−30.0º, 30.0º].  In (Yi et al. 2002) the authors 

investigate parallel inverted pendulum system and design the fuzzy control system that 

stabilizes the system for angles within [−20.0º, 20.0º] defined as lower and upper limit of 

controllability region. The control system is effective for initial angles up to 10.0º (depending 

on the angle of the other parallel pendulum).  Dynamic initial conditions are set to zero. 

Sliding mode technique is one of the most popular techniques used to control the inverted 

pendulum problem. W. Chang (Chang et al. 2002) used the inverted pendulum system as a 
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case study for the robust fuzzy-model-based sliding mode controller and tested it on several 

initial conditions but with limited scope. The cart‘s position was fixed and located at the 

origin, only pole angle varied: 0.08π, π/60, 89π/180, π/4. The focus of their research was on 

system uncertainties not on the region of controllability. Sliding mode control provides a 

robust controller but with inherent chattering problem that various techniques seek to 

overcome, supervisory controller being one of the relatively simple solutions. F. Qiao (Qiao 

et al. 2003) found efficient fuzzy sliding mode control for discrete nonlinear systems in the 

presence of noise and tested it on the example of the inverted pendulum.  Other control 

methods utilizing sliding mode can be found in (Brunetti and Dotoli 2004), (Wai et al. 2003), 

and (Allamehzadeh and Cheung 2002).    

W.J. Wang (Wang et al.  2003) proposed a new GA based method to construct a fuzzy rules 

base which does not require initialisation of the fuzzy rules‘ number, the positions of the 

antecedent and the consequent fuzzy sets. Only the length and the structure of the 

chromosome are set. With the specific structure of the chromosome (two strings encoding the 

antecedent part of the IF-THEN rule), the special mutation operation (hierarchical mutation) 

and the adequate fitness function (based on measured output error), GA generates the fuzzy 

rule base spontaneously. The generated rule base has the small number of rules and arranges 

the suitable placement of the premise‘s fuzzy sets and chooses the proper location of the 

consequent singletons. The method is developed for multi-input multi-output systems with 

arbitrary number of input and output variables.  

Research by O. Castillo (Castillo et al. 2006) examined stability issues in fuzzy control 

theory on the example of the inverted pendulum problem. In many real-life applications the 

reliability of the controller is considered more important than stability issues but development 

of the stability analysis allows the use of model based approach in fuzzy logic control. The 

authors used Lyapunov theory to develop stable Mamdani type 2 fuzzy logic controllers. 

P.A. Phan and T. Gale (Phan and Gale 2007) presented two-mode adaptive fuzzy control with 

approximation error estimator. In the learning mode adaptive law is used to tune the fuzzy 

system parameters and in the operating mode the fuzzy parameters are fixed and only the 

estimator is updated.  

A. Di Nola (Di Nola et al. 2007) used the inverted pendulum to demonstrate the control 

system based on algebraic analysis of fuzzy systems. As the authors used it only as a 
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demonstration of the method no significant result was produced for the inverted pendulum 

problem apart from providing another original approach to the fuzzy control problem. 

A new fuzzy control method, scalar fuzzy control (SFC) was discussed in (Mlynski and 

Zimmermann 2008). In general, the method is concerned with the problem of representing 

imprecise statements and knowledge, and processing it to draw conclusions from them. The 

method goes back to the principles of the multi-valued logic and introduces axiomatic 

framework to develop SFC. The method is based on so called: Calculus of imprecise 

knowledge and deals with linguistic variables. SFC is used to solve the inverted pendulum 

problem. Surprisingly, the results achieved by SFC are quite similar to presented in this 

thesis, especially state variables convergence. The initial conditions investigated being: pole 

angle = 0 and 1 rad (≈ 57º), and cart‘s position x = 0.0m and x = 10.0m. The rate of 

stabilisation is slightly slower then achieved in this project. The restrictions imposed on the 

system in this thesis do not allow for cart‘s position to be larger than 1 m from the origin 

therefore it is difficult to compare SFC results. The results achieved in (Mlynski and 

Zimmermann 2008) make this method very robust and provide another proof of fuzzy logic 

solving real-life problems.  

2.2.2 Literature review: fuzzy logic control and evolutionary algorithms 

A major problem for fuzzy systems is that they lack a learning mechanism. Coupling fuzzy 

system with evolutionary algorithm provides a solution to the automated acquisition of the 

fuzzy rule base. The fuzzy knowledge base can be derived by other learning mechanism but 

evolutionary algorithms proved to be very successful search mechanism as they are efficient 

global search techniques and capable of incorporating a priori knowledge, such as knowledge 

derived from human experts. 

An example of early work on combination of fuzzy control system and genetic algorithms is 

the paper by M.G. Cooper and J.J. Vidal (Cooper and Vidal 1994). The focus of the paper is 

on the problem of representation of the fuzzy rule base (encoding the individuals in the 

genetic population). The compact encoding scheme is discussed and its implementation.  This 

scheme allows for a smaller fuzzy rule base size and is aimed at overcoming the ‗curse of 

dimensionality‘ as the search space increases exponentially with string size. In the compact 

encoding scheme, each of the input variables requires only two one byte integers: one giving 

the centre and the other the half-length of the base of the isosceles triangle representing the 

membership function. In general, each rule requires 2·m bytes where m is the total number of 
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control variables in the system. The authors use random initial population and the size of the 

rule base emerges as a result of the genetic algorithm evolution. For an early example of a 

method of simultaneous design of membership functions and fuzzy rule base see (Homaifar 

and McCormick 1995). For other examples of fuzzy control and evolutionary learning see 

(Lee and Takagi 1993), (Lee and Takagi 1993a), (Shimojima et al. 1995), (Mohammadian 

and Stonier 1996a), (Stonier et al. 1998). (Matellan et al. 1998), (Mao et al. 2001), 

(Damousis et al. 2002), (Kumar and Garg 2004). A good review of fuzzy logic control and 

evolutionary algorithms can be found in (Cordon et al. 2001a) where the authors describe in 

detail different approaches and methods in automated knowledge acquisition with particular 

emphasis on rule-based systems and different variants of genetic/evolutionary algorithms. 

They include both Michigan and Pittsburgh approach among other methods. 

2.2.3 Literature review: hierarchical fuzzy control 

The curse of dimensionality remains an unsolved problem in fuzzy logic control theory 

(Abraham 2005). The problem is subject of many research papers with some authors focusing 

on systematic design of fuzzy logic systems (Chen et al. 2007). There are also research 

projects with focus on finding automatically fuzzy structure and parameters of the fuzzy 

system, for example see (Huang and Wang 2000), (Wu and Chen 1999). 

One of early methods to reduce the size of the rule base by introducing hierarchical fuzzy 

control was developed G.V.S. Raju (Raju et al. 1991) and G.V.S. Raju  and J. Zhou (Raju 

and Zhou 1993).  G.V.S. Raju proposed a hierachical structure in which the most influential 

system variables were input in the first layer, the next most important variables as input in the 

next layer, and so on. The first layer control output is an approximation of the controller and 

is modified by the fuzzy rule base of the next layer, until the final layer produces the final 

control output. 

Another early attempt to overcome the dimensionality problem was made by M. Brown 

(Brown et al. 1995) who proposed a low-dimensional rule base in a hierarchical structure. 

Automatic determination of the fuzzy rule base in a hierarchical structure was proposed in 

(Shimojima et al. 1995). 

L.X. Wang (Wang 1997) provided proof that the HFS are universal approximators to any 

continuous function on a compact set and analyses the sensitivity of the fuzzy system output 

with respect to small perturbations in its input. This was further elaborated in (Wang 1999). 
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M.G. Joo and J.S. Lee (Joo and Lee 2002) extended Wang‘s results to a case where the 

intermediary control outputs (between layers) are not part of the antecedent part of the IF-

THEN rules but only in the consequent part. This approach removed the problem of 

intermediary control outputs that had little physical meaning and were difficult to interpret. 

L.C. Lin and G.Y. Lee (Lin and Lee 1999) investigated optimization of the hierarchical 

structure and its parameters for a five input variables fuzzy system in a low-speed control 

problem. Input configuration analysis was performed by J.C. Duan and F.L. Chung (Duan 

and Chung 2002), see also (Chen et al. 2007).  

K.Y. Tu (Tu et al. 2000) presented a method for designing of a multilayer fuzzy logic 

controller for multi-input multi-output systems. In this paper, we propose a multi-layer fuzzy 

logic controller (MLFLC) for multi-input–multi-output (MIMO) systems. For the 

convenience of analysis, the structure of the multi-layer fuzzy logic controller is divided into 

multi-input–single-output (MISO) controllers. Each multi-input–single-output controller 

consists of many fuzzy logic controllers (FLC). In the fuzzy logic controller the linguistic 

rules are designed as a suction controller. A theorem shows that such fuzzy logic controller 

has a switching line. The results of analysis show that the multi-layer fuzzy logic controller 

has a switching manifold and its parameters are the scaling factors which normalize the input 

variables. Moreover, a theorem which shows the stability of the proposed multi-layer fuzzy 

logic controller can easily be formulated by properly selecting the denormalising scaling 

factors. A cart-pole system with two links is used as an illustrated example for demonstration. 

The demonstrations also include the links controlled to track a set of desired trajectories. 

Simulation results show that the fuzzy control system is asymptotically stable, and the desired 

trajectories can be followed very closely. 

Y.J. Mon and C.M Lin (Mon and Lin 2002) proposed a hierarchical fuzzy sliding-mode 

control to achieve asymptotic stability of the system. The nonlinear system is decomposed 

into several subsystems and the state response of each subsystem can be designed to be 

governed by a corresponding sliding surface. The whole system is controlled by a 

hierarchical sliding-mode controller. The inverted pendulum system is used to test the 

proposed method. Later they improved their hierarchical fuzzy sliding-mode controller with 

decoupling of the nonlinear inverted pendulum system into several subsystems, see (Lin and 

Mon 2005). 
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M.L. Lee (Lee et al. 2003) addressed the intermediate output from hierarchical fuzzy layers 

that usually do not have a physical meaning. They proposed a new mapping of the rule base 

that allows treating the intermediary control values as intermediary mapping variables. The 

method aims at reducing the rule base size. 

Z.M. Yeh and K.H. Li (Yeh and Li 2004) proposed a multistage control system for the 

inverted pendulum system that reduced the number of rules. However, the fuzzy rules 

formulation/generation was not clearly elaborated. 

R.J. Stonier and M. Mohammadian (Stonier and Mohammadian 2004) presented introduction 

to hierarchical fuzzy control with the use of evolutionary algorithms on several examples: 

interest rate prediction, inverted pendulum, collision-avoidance in a robot system, micro-

robot control, and co-evolutionary algorithm.  

L.X. Wang (Wang et al. 2005) designed a sliding mode controller for one-input multiple-

output system where sliding surfaces are organized in a cascade thus creating a hierarchical 

system.  

F. Cheong and R. Lai (Cheong and Lai 2007) addressed problems with the use of hierarchical 

fuzzy logic controllers, especially in the automatic design of controllers. This includes the 

coordination of intermediary outputs (approximate controllers) of sub-controllers at lower 

levels of the hierarchy. The authors describe a method for the automatic design of a 

hierarchical fuzzy logic controller using an evolutionary algorithm called differential 

evolution. The method is developed for a wide class of control systems and the feasibility of 

the method is demonstrated by developing a two-layered HFS for controlling the inverted 

pendulum system.  

Other examples of hierarchical fuzzy control applied to the inverted pendulum system can be 

found in (Magdalena 1998) and (Lei and Langari 2003). 

2.2.4 Literature review: hybrid control systems 

Hybrid techniques are part of the wider quest for an intelligent control methodology. Many 

researchers found that merging different control paradigms results in more efficient, often 

adaptable, control techniques. Different approaches were tried to merge control technique. An 

early example can be found in (Chiaberge et al. 1995) in which several control paradigms are 

merged: fuzzy control, neural networks, linear control, optimisation algorithms (simulated 
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annealing and genetic optimisation), and finite state automata.  The presented method, for 

designing hybrid intelligent controllers, is based on an implementation of the fuzzy logic 

control with real and binary weights. The learning is performed by the genetic algorithm and 

is defined as a mixed integer constrained dynamic optimization. Training of the controller is 

performed in a closed-loop simulation with the controller in the loop. 

E.S. Sazonov (Sazonov et al. 2003) developed a hybrid control system, including neural 

controller and linear quadratic Gaussian (LQG) controller. The neural controller was 

optimised by genetic algorithms on the inverted pendulum system. The optimisation process 

stipulated a region of asymptotic stability of the neural controller around the regulation point. 

This paper has little relevance to the research presented in this thesis but it shows a variety of 

approaches taken to solve control problems.  

In (Saifizul et al. 2006) the authors presented a neuro-fuzzy controller for the inverted 

pendulum. The mathematical model of the inverted pendulum gives a good representation of 

the physical system taking into account a large number of system parameters, including 

electrical characteristics of the actuators, damping forces, viscous damping, etc. The control 

system, SESIP (self-erecting single inverted pendulum), consists of two control loops: swing-

up controller and stabilisation controller. Position-velocity controller is used to design swing-

up control and Takagi-Sugeno fuzzy controller with adaptive neuro-fuzzy inference system is 

used to stabilise the pendulum at the unstable equilibrium position. The authors pay special 

attention to control the cart‘s position which is returned to its original position. The control 

system stabilises the pendulum in about 3.5s. The initial condition tested was pendulum angle 

at 10 degrees and other initial values set to zero.  

S. Khwan-on (Khwan-on et al. 2004) developed neuro-tabu-fuzzy controller to stabilize a 

wide range of inverted pendulum systems using the same SIRM technique. They investigated 

relation between the pendulum length and the initial angle of the pendulum in terms of 

stabilization times.  

M. Kumar and D.P. Garg (Kumar and Garg 2004) compared fuzzy logic control using GA-

fuzzy and neuro-fuzzy models.  Neuro-fuzzy approach was faster but with higher PI value 

while GA-fuzzy was slower but with lower PI value, where PI was defined as sum of squared 

angle errors over a simulation period of 10s.  Y. Gao and M.J. Err (Gao and Err 2003) 

proposed an approach by combining neural networks with adaptive techniques and designed a 

fuzzy controller for the inverted pendulum.  J.A.K. Suykens (Suykens et al. 2001) 
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successfully implemented neural network techniques to achieve fast and smooth convergence 

of state variables. Other examples of successful application of GAs and NNs in controlling 

the inverted pendulum system can be found in (Sazonov et al. 2003), (Wu and Tam 2000). 

A hybrid controller for stabilisation of the rotary inverted pendulum proposed by P. M. Melba 

and N.S. Marimuthu (Melba and Marimuthu 2008) is another example of effectiveness of 

hybrid methods. In this case the control system is designed in two parts: PD position control 

to swing up the pendulum to approximately upright position and then FLC used to stabilise 

the pendulum in the upright position. LQR (linear quadratic regulator) feedback control is 

used for pendulum stabilisation.  

Hybrid control methods is a very active research field with many researches trying to design 

practical intelligent control systems when a single control paradigm fails to provide 

satisfactory results. 

2.2.5 Literature review: MOEA related work 

There is a fast growing literature on multiobjective optimisation in the last decade. One of the 

most influential are publications by Kalyanmoy Deb (Deb 2001) and by Carlos A. Coello 

Coello  (Coello Coello et al. 2002).  More recent methodology can be found in (Abraham et 

al. 2005).  

The first application of the EA in finding multiple trade-off solutions was made by D. Shaffer 

(Shaffer 1985) in which non-Pareto approach was used. After an idea about domination in 

multi-objective optimization in D.E. Goldberg book (Goldberg 1989) a number of 

multiobjective evolutionary algorithms were developed by different authors, for example see 

(Fonseca  and Fleming 1993), (Srinivas and Deb 1994), (Horn et al. 1994). E. Zitzler and L. 

Thiele (Zitzler and Thiele 1999) proposed a Pareto based method, so called the strength 

Pareto evolutionary algorithm (SPEA).  The main characteristics of SPEA can be 

summarized as:  

 Sorting non-dominated solutions externally. 

 Evaluating an individual‘s fitness on the basis of external non-dominated individuals 

that dominate it. 

 Preserving population diversity by using the Pareto dominance. 

 Using clustering technique to reduce the non-dominated set. 

H.A. Abbas (Abbass et al. 2001) developed differential evolution (DE) that is an EA 
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designed to handle optimization problems over continuous domains. The paper introduces a 

novel Pareto-frontier differential evolution (PDE) algorithm to solve multiobjective 

optimization problem (MOP). The solutions provided by the proposed algorithm for two 

standard test problems, outperform the SPEA. The Pareto differential evolution (PDE) 

algorithm performance varies according to the crossover and mutation rates. In (Abbas 2002) 

a new version of PDE was presented with self-adaptive crossover and mutation. This new 

version is called self-adaptive Pareto differential evolution (SPDE).  

M. Laumanns (Laumanns et al. 2002) addressed the important problem of convergence to the 

true Pareto set in MOEAs, which is related to the problem of maintaining diversity in solution 

space.  I.F. Sbalzarini (Sbalzarini et al. 2001) investigated similar problem, namely: How to 

accomplish fitness assignment and selection in order to guide MOEA towards the Pareto set 

and how to maintain a diverse population to prevent premature convergence. Further research 

material on MOEA convergence can be found in (Deb et al. 2000), (Deb and Goel 2001), 

(Zitzler et al. 2001) just as an example of the vast literature on the MOEA subject. 

Multi-objective evolutionary algorithms usually perform well for problems with two or three 

objectives. However, for many-objective optimisation with more than three objectives, the 

algorithms applying Pareto optimality as a ranking metric may loose their effectiveness. This 

problem is addressed by E.J. Hughes (Hughes 2005) who compares three different 

approaches to generating Pareto surfaces on both multi and many objective problems. In the 

first approach a Pareto ranking method (NSGA II) is used. The second approach combines 

multiple single objective optimisations in a single run (MSOPS). The third uses multiple runs 

of a single objective optimiser. The results show advantages of generating the entire Pareto 

set in a single run compared to repeated single objective optimisations. NSGA II loses its 

effectiveness as the problem dimensionality increases.  

The growing number of MOEA methods required new methodology for method comparison. 

Initial investigation into comparison of various MOEA methods was done by E. Zitzler and 

L. Thiele (Zitzler and Thiele 1999). This issue was also addressed by D.A. Van Veldhuizen 

and G.B. Lamont, (Van Veldhuizen and Lamont 2000). E. Zitzler and L. Thiele expanded 

their work into more comprehensive study (Zitzler et al. 2000). E. Zitzler in (Zitzler et al. 

2000) provided systematic comparison of various evolutionary approaches to multiobjective 

optimisation based on selected six test functions. Selected test functions are known for 

causing difficulties in implementation of multiobjective optimisation, mostly in convergence 
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to the Pareto front, see Chapter 8 for terminology. The authors introduce metrics to measure 

the methods performance, addressing specifically three major objectives:  

 Minimisation of the distance of the solutions set to the Pareto-optimal front. 

 A good (that means in most cases uniform) distribution of the solutions. 

 The extent to which the nondominated solutions should be maximised.  

Eight algorithms are compared:  

 RAND: a random search algorithm. 

 FFGA: Fonseca and Fleming‘s multiobjective EA.  

 NPGA: the niched Pareto genetic algorithm. 

 HLGA: Hajela and Lin‘s weighted-sum based approach. 

 VEGA: the vector evaluated genetic algorithm. 

 NSGA: the nondominated sorting genetic algorithm. 

 SOEA: a single objective evolutionary algorithm  using weighted-sum aggregation. 

 SPEA: the strength Pareto evolutionary algorithm.  

Generally, it was found that multiobjective EAs performed better than random search 

algorithm. It was also observed that NSGA outperforms the other nonelitist multiobjective 

algorithms. The best overall performance is demonstrated by SPEA. The results also show 

the importance of elitist strategies. Elitism plays important part in performance. Furthermore, 

other methods when supplemented by SPEA elitism show improved performance. 

Another comparison can be found in the paper of D.A. Van Veldhuizen and G.B.  Lamont 

(Veldhuizen and  Lamont 2000). Four methods are compared: MOGA (same as FFGA, see 

above), MOMGA (Van Veldhuizen and Lamont method incorporating fitness sharing and 

Horn‘s tournament selection), and finally NPGA and NSGA as mentioned in (Zitzler et al. 

2000). The authors performed in depth analysis of the investigated methods using three MOP 

comparison metrics (generational distance, overall nondominated vector generation, and 

spacing) and nonparametric statistical analyses. They showed that NSGA performance is 

statistically worse than the other tested methods. 
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Summary 

In this chapter the background knowledge and literature review is presented. The existing 

techniques in fuzzy logic control, hierarchical fuzzy control, hybrid methods, and MOEA 

methods are reviewed. Different approaches to fuzzy logic control are briefly described: 

fuzzy proportional-integral-derivative (PID) control, hybrid techniques, fuzzy-sliding mode 

control, adaptive fuzzy control, Takagi–Sugeno model-based fuzzy control, and conventional 

fuzzy control. Many of the FLC methods encompass two or more different techniques. The 

review was focused on fuzzy logic control coupled with evolutionary algorithm as a learning 

method. Selected papers of interest are briefly described.  

 

Compositional method, presented in Chapter 8, is formulated using multiobjective 

optimisation formalism and for this reason MOEA methods are reviewed in a separate 

section. 
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Chapter 3 HIERARCHICAL FUZZY SYSTEMS 

 

3.1 Introduction 

Hierarchical fuzzy systems are used not only to overcome the curse of dimensionality but 

also to improve the control system performance. The decomposition into hierarchical 

structure that reflects the physical properties of the system under investigation simplify the 

control system and it might greatly improve its performance. 

The fuzzy control methods are often tested on the example of the inverted pendulum system. 

In some cases, especially when the control method is dependent on the physical properties of 

the system, the method is developed on the example of the inverted pendulum and then 

extended to other dynamical systems.  

In the following sections, the case study setup for all experiments with the inverted pendulum 

is described.  

3.1.1 Case study: inverted pendulum system 

The control of the inverted pendulum system has been undertaken using linear and nonlinear 

dynamics and include both classical and fuzzy logic control techniques, see for example 

(Slotine 1991), (Anderson 1989), (Lee and Takagi1993), (Stonier et al. 1998), (Magdalena 

1998).  

The inverted pendulum system consists of the cart and a rigid pole hinged to the top of the 

cart, see Figure 3.1. The cart moves left or right on a straight bounded track and the pole 

swings in the vertical plane determined by the track. The dynamics of the system is modelled 

by the following equations: 

   =     

   =  u + mp L (sin ( )  – cos ( ) )/(Mc+mp)  

  =                                                                                                                (3.1)                                                                        

   =                                              

where x1 is the position of the cart, x2 is the velocity of the cart, x3 is the angle of the pole, x4 

is the angular velocity of the pole, u is the control force on the cart, mp is the mass of the pole, 

Mc is the mass of the cart, L is the length of the pole, and g is gravitational acceleration.  The 
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control force is applied to the cart to prevent the pole from falling while keeping the cart 

within the specified bounds on the track. The system has the following parameters:  mp = 

0.1kg, Mc = 1.0kg, L = 0.5m, g = 9.81m , with state limits:  −1.0 ≤ x1 ≤  1.0 and −π /6  ≤ x3 

≤  π/6.  Even though the above system equations do not represent fully the physical dynamics 

of the inverted pendulum system they are a good and relatively accurate approximation of the 

real system. 

 

Figure 3.1 Inverted pendulum system. 

Fuzzy controller is to stabilise the system about the unstable reference position =  as 

quickly as possible, whilst maintaining the system within the target region (TR) defined by 

the following bounds:  | x1 | ≤ 0.1, | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0. The fuzzy controller is 

required to control the system such that the state variables converge to the TR and are 

maintained within TR for a prescribed time limit Tf, with Tf  = 20.0s.  

3.1.2 Case study: fuzzy system for the inverted pendulum problem 

The control of the inverted pendulum (sometimes referred to as pole-cart system) has been 

undertaken using linear and nonlinear dynamics and include both classical and fuzzy logic 

control techniques, see for example (Slotine 1991), (Anderson 1989), (Lee 1993), (Stonier et 

al. 1998), (Magdalena 1998). 

In initial experiments all fuzzy membership functions are assumed to be triangular. After 

experiments with co-evolutionary algorithm all fuzzy membership functions are assumed to 

be Gaussian functions with their centres evenly spaced over the range of input and output 
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variables. The only exception being some experiments with co-evolutionary EA in which 

centres of the membership functions are randomly generated. 

It is worth noting that with the increase of the number of membership functions covering the 

domains of input and output variables a better accuracy of the control system can be 

achieved. However, it comes at a price, namely with a larger number of rules and 

computational times increased dramatically. For this reason a compromise must be struck 

between accuracy and computational requirements. 

Each domain region for xi is divided into five overlapping intervals and assigned linguistic 

values: 

 NB – Negative Big 

 NS – Negative Small 

 NE – Neutral 

 PS – Positive Small 

 PB – Positive Big. 

The defined linguistic values are associated with membership sets , k =1, ... , 5, which are 

encoded numerically as integers from 1 to 5 respectively.  Membership sets for x1 and x2 are 

assumed the same. The set of five membership functions provides relatively small knowledge 

base while maintaining a good controller performance.  

As the output variable u range was found larger (by experiments), it is divided into seven 

overlapping regions: 

 NB – Negative Big 

 NM – Negative Medium 

 NS – Negative Small 

 NE – Neutral 

 PS – Positive Small 

 PM – Positive Medium 

 PB – Positive Big. 

The seven linguistic values are associated with seven membership sets B
k
, k =1, ... , 7, with 

output being an integer number from the interval [1,7]. It is more convenient to refer to the 

linguistic variables values by their encoded integer values than by their linguistic values and 

therefore this approach is assumed for the reminder of the thesis.  
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3.1.3 Triangular membership functions 

The seven centres associated with the output sets B
l  

are: −10.0, −4.5, −2.5, 0.0, 2.5, 4.5, 10.0. 

These values are obtained by examining the values of u1, u2 and u obtained as output from the 

integration of the state equations, see Equation 3.1. Triangular membership functions are 

shown in Figure 3.2 − Figure 3.5.  

 

Figure 3.2 Triangular membership functions for x1 and x2. 

 

Figure 3.3 Triangular membership functions for x3.    
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Figure 3.4 Triangular membership functions for x4. 

 

 

Figure 3.5 Triangular membership functions for u. 

3.1.4 Gaussian membership functions 

Each domain region for xi is divided into five overlapping intervals and each assigned 

membership sets: Ai
k
, k =1, ... , 5, which are encoded numerically as integers from 1 to 5 

respectively.  As with the triangular functions, the set of five membership functions provides 

small knowledge base while maintaining a good controller performance.  The output variable 
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u range is divided into seven overlapping regions covered by seven membership sets B
k
, k  = 

1, ... , 7. All fuzzy membership functions are assumed to be Gaussian functions with their 

centres evenly spaced over the range of input and output variables. Thus, for x1 and x2 there 

are five Gaussian membership functions covering [−2.0, 2.0], see Figure 3.6. For x3 there are 

five Gaussian membership functions covering [−π/2.0, π /2.0], see Figure 3.7. For x4 there are 

five Gaussian membership functions covering [−4.0, 4.0], see Figure 3.8. For u there are 

seven Gaussian membership functions covering [−15.0, 15.0], see Figure 3.9. 

Each Gaussian membership function is defined by three numbers: its centre and the two 

centres of the neighbouring membership functions (which define standard deviation σ): xmL – 

the centre of the neighbouring MF to the left, xm – the centre, and xmR – the centre of the 

neighbouring MF to the right. Because  five  membership functions are used to cover each 

input variable –  it suffices to have three  centres to define five  Gaussian functions covering 

the range of input variable with left and right boundary of the range acting as extreme left and 

right centres. If the value of the variable x falls within interval defined by xmL and xmR the 

membership function value is calculated as: 

                        (3.2) 

where d  = 10.0 is a stretching parameter in the Gaussian Function. 
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Figure 3.6 Gaussian membership function for x1 and x2 input variables. 
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Figure 3.7 Gaussian membership function for x3 input variable. 

0

0.2

0.4

0.6

0.8

1

1.2

-4.0 0 4.0

 

Figure 3.8 Gaussian membership function for x4 input variable. 
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Figure 3.9 Gaussian membership function for output variable. 

3.2 Control output 

At the heart of the fuzzy logic control system lies the inference engine that applies principles 

of intelligent reasoning to interpret the rules to output an action from inputs.  There are many 

known types of inference engines in the literature, including the most popular Mamdani and 

minimum inference engine (Wang 1997). 

In all experiments presented in this thesis the control output u is calculated using either the 

Mamdani product or minimum inference engine. In general, other inference engines can be 

applied, see (Wang 1994). In experiments with the inverted pendulum problem, the product 

Mamdami and minimum inference engines are used for their specific characteristics.   

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given 

in Equation 3.2 (with Mamdani inference engine) or Equation 3.3 (with minimum inference 

engine) uses a singleton fuzzifier and centre average defuzzifier to determine output 

variables. 

u =                                                                                       (3.3) 

u =                                                                                  (3.4) 
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where  are centres of the output sets B
l
 and are membership functions associated with 

fuzzy sets Ai
l
.  

3.3 Single layer fuzzy system 

An initial analysis of the learning of fuzzy rules in a single layered system is given in (Stonier 

and Stacey 1998). In that paper a max-min inference engine is used and all variables are 

normalised to have their values lie in the interval [−1, 1]. Nevertheless, the formalisation of 

the knowledge base is similar to the approach used in this thesis.  

The l
th 

fuzzy rule for a single layer has the form: 

If and (x1 is A1
l 
) and (x2 is A2

l
)  and (x3 is A3

l
) and (x4 is A4

l
)) Then (u is B

l
)       ( 3.5) 

Assuming there are n input variables and there are m fuzzy sets defined for each input 

variable, the number of fuzzy rules is given by N = m
n
.  The number of rules increases 

exponentially with the increase of input variables. This is a common problem in all complex 

systems; the complexity of the system growing exponentially with the number of variables 

describing the system, and is not unique to fuzzy systems (Wang 1997).  

With n = 4 input variables and m = 5 fuzzy sets defined for every input variable there are 625 

rules in the rule base: m
n
 = 5

4
 = 625. Obviously there is only one possible topology for the 

single layer fuzzy system with all variables as input into a single layer fuzzy system. 

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given 

in Equation 3.3 or 3.4 uses a singleton fuzzifier, Mamdani product or minimum inference 

engine and centre average defuzzifier to determine output variables. 

x3

x1

x2

x4

u

 

Figure 3.10 Single-layer topology. 
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3.4 Hierarchical fuzzy systems 

The number of rules in the hierarchical fuzzy system is a linear function of the number of 

input variables. Let assume that there are n input variables in L-layered structure. For every 

input variable there are m fuzzy sets associated with that variable. Assume further that in the 

first layer there is n1 input variables, 2 ≤ n1  < n, and ni + 1 in the i-th layer, ni ≥ 1. If  n1 =  ni 

+ 1 = c is constant for i = 2, … , L, then the total number of rules in the hierarchical fuzzy 

system is given by:  

              

Furthermore, if m ≥ 2 the number of rules M is minimized when c = 2, which means that 

there are two input variables in every layer (Wang 1997).  

Let input configuration that has two input variables in every layer be called ‗standard 

configuration‘ for convenience. Such a standard input configuration has in the first layer two 

state variables as input and for successive layers: one state variable and one intermediary 

variable that can be considered as control approximation in each layer. Such a configuration 

is shown in Figure 3.11.  This standard input configuration provides the minimal number of 

fuzzy rules in the knowledge base but it does not necessarily provide the best configuration 

from the control system perspective. Often, such systems do not provide sufficient control 

performance, especially in complex high-dimensional systems.  

Obviously, the 2-layered HFS does not constitute a standard configuration in the above sense 

as there are 3 input variables in the second layer: two state variables and one intermediary 

variable as output from the first layer. Therefore, the number of fuzzy rules in the 2-layered 

HFS for the inverted pendulum system does not provide minimal size of the rule base. 

However, for the sake of simplicity, this 2-layered HFS will be considered among standard 

configurations even though it is not optimising the number of rules in the knowledge base.  

As mentioned in Section 1.2, the size of the rule base changes exponentially with the 

increase/decrease of the input variables. In the hierarchical fuzzy structure the size of the rule 

base becomes a linear function of the number of input variables (Wang 1997). However, 

standard input configuration can cause deterioration of the control performance. The 

decomposition needs to be performed along the weak interdependencies between input 

variables. Obviously, it requires certain knowledge of the physical system in the absence of 

any automated method of the HFS decomposition. 
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Figure 3.11Standard hierarchical fuzzy system input configuration. 

 

There exist other topologies, both in 2 and 3-layered structures, with a different number of 

input variables in any particular layer than in the standard configuration. There are more or 

less than two input variables in the first layer, and different input configurations in 

subsequent layers for the 3-layered HFS. 

Another possible topology for the inverted pendulum problem is the 4-layered HFS with a 

single input variable in the first layer. However, the size of the knowledge base is larger than 

in standard 3-layered HFS configuration.  

The output for each layer is obtained using the Mamdani or minimum inference engine as 

given in Equation 3.3 and 3.4, with the appropriate change of variable and associated 

membership functions for that variable. 

Please note that the size of the knowledge base does not automatically translate into better 

controller performance. The size of the rule base is of paramount importance in high-

dimensional systems when the number of rules can make the control system completely 

impractical due to a long computation time. This consideration is however case dependant.  

3.4.1 Two layers 

There are six different topologies of the two layered hierarchical fuzzy system in the ‗near-

standard‘ configuration: two input variables in the first layer and two input variables plus 

intermediary control variable from layer 1 in layer 2. This decomposition does not exhaust all 
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possibilities as different input configurations  can be considered (some of them discussed 

later), for example: three input variables in layer 1 and one input variable plus intermediary 

control from layer 1 in layer 2. Another possibility is to have one input in layer 1 and three 

input variables plus intermediary control in layer 2 which would result in knowledge base 

consisting of 880 rules (with current number of membership functions covering domains of 

input and output variables) and this is more rules than in a single layer architecture thus 

deeming it impractical. The number of rules may increase (the latter example) or decrease 

(the first example) in different topologies. However, the two input configuration in each layer 

seems the most reasonable. The architecture of the 2-layered HFS is shown in Figure 3.12. 

For the inverted pendulum system the first knowledge base KB1 has the two inputs to 

produce as output a first approximation of the control u1.  This u1 together with another state 

input xi and xj, i, j ∊ [1,4] are used as input in the second knowledge base KB2 to produce the 

final control output u. 

In the first layer there are 25 = 5
2
 rules in the knowledge base. The l

th
 fuzzy rule for the first 

layer has the form: 

If (xi is Ai
l
) and (xj is Aj

l
) Then (u1 is B

l
)                                                                 (3.6) 

where , k = 1,2,3,4, are fuzzy sets for input variables xk, k = 1,2,3,4, respectively, and 

where  are fuzzy sets for output variable u1. 

xk

xi

xj

xl

u1

u

 

Figure 3.12 HFS: 2-layered input configuration. 

 

For the second layer there are 175 = 7 · 5
2
 rules in the knowledge base. The l

th 
fuzzy rule for 

the second layer has the form: 
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If (u1 is C
l
) and (xi is Ai

l 
) and (xj is Aj

l
)  ) Then (u is B

l
)                                      ( 3.7) 

where C
l 
are fuzzy sets for the input control variable u. There are a total of 200 fuzzy rules in 

this hierarchical structure with the output variable of each layer calculated using the 

appropriate Equation 3.3 or 3.4. 

This hierarchical system is different to that described in (Stonier et al. 1998) where the output 

variable of the first layer is an offset angle added to x3 before input into the second layer. 

Furthermore, this new fuzzy system uses a product inference engine rather than a min-max 

inference engine and results in a different range of values for u1 and control u, requiring 

adjustments to membership functions and centres. 

The approximate control from the first layer u1 may have not any physical representation.  It 

is an artificial variable connecting the two layers, (Magdalena 1998).  Only the final value of 

control from layer two has actual physical meaning. 

3.4.2 Three layers 

In standard configuration there are twelve different topologies for the three layered 

hierarchical fuzzy system with the following input configuration: two input variables in the 

first layer, and one input variable plus intermediary control value in layer 2 and 3. Again, this 

decomposition does not exhaust all possibilities, as different input configurations can be 

considered but with an increased number of rules in the knowledge base. The architecture of 

the 3-layered HFS is shown in Figure 3.13. 

Standard hierarchical fuzzy logic structure has two input variables in the first layer. Then 

there is one input variable in second and third layer of the 3-layered HFS. This standard input 

configuration provides the minimal number of fuzzy rules in the knowledge base.  

For this system the first knowledge base KB1 has the two inputs, xi and xj, i, j ∊ [1,4] to 

produce as output a first approximation of the control u1. This u1 together with xk are used as 

input in the second knowledge base KB2. Then the second layer produces another 

approximation of control u2 which with xl is used as input to the third (and final) layer to 

produce the final control output u. 
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Figure 3.13 HFS: 3-layered standard input configuration. 

 

In the first layer there are 25 = 5
2
 rules in the knowledge base. The l

th 
fuzzy rule for the first 

layer has the form:  

If (xi is Ai
l
) and (xj is Aj

l
) Then (u1 is B

l
)                                                                (3.8) 

where k = 1,2,3,4,  are fuzzy sets for input variables xk, k = 1,2,3,4, respectively, and 

where B
l
 are fuzzy sets for output variable u1. For the second layer there are 35 = 7 · 5 rules in 

the knowledge base and the l
th 

fuzzy rule for the second layer has the form:  

If (u1 is C
l
) and (xk is Ak

l 
) ) Then (u2 is B

l
)                                                           (3.9) 

where C
l
 are fuzzy sets for the input control variable u. Similarly, there are 35 rules in the 

third layer and the l
th 

fuzzy rule has the form:  

If (u2 is C
l
) and (xl is Al

l
) Then (u is B

l
)                                                                 (3.10) 

There are a total of 95 fuzzy rules in this hierarchical structure. Each domain region for xi is 

divided into five overlapping intervals and each assigned membership sets: Ai
k
, k = 1, ... , 5; 

which are encoded numerically as integers from 1 to 5 respectively.  The set of five 

membership functions provides relatively small knowledge base while maintaining a good 

controller performance. The output for each layer is obtained using the Mamdani inference 

engine as given in Equation 3.3 with the appropriate change of variable and associated 

membership functions for that variable. 

3.4.3 Four layers 

There are twenty four different topologies for the four layered hierarchical fuzzy system for 

the inverted pendulum with one input in every layer plus intermediary control value in layer 

2, 3, and 4. The architecture of 4-layered HFS is shown in Figure 3.14. The first knowledge 
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base KB1 has one input xi to produce as output a first approximation to the control u1. This u1 

together with xj are used as input in the second knowledge base KB2. Then the second layer 

produces another approximation of control u2 which with xk is used as input to the third layer 

to produce the approximate control output u3. Finally, the input xl and u3 in the fourth layer 

produce the final control value u. 

In the first layer there are only five rules in the knowledge base. The l
th 

fuzzy rule for the first 

layer has the form: 

If (xi is  ) Then (u1 is B
l
 )                                                                                  ( 3.11) 

where , k = 1,2,3,4  are fuzzy sets for input variables xk, k  = 1,2,3,4, respectively, and 

where B
l
 are fuzzy sets for output variable u1. 
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Figure 3.14 HFS: 4-layered non-standard input configuration. 

 

For all the other layers there are 35 = 7 · 5 rules in their respective knowledge bases. For the 

second layer the l
th 

fuzzy rule has the form:  

If ( (u1 is C
l
 ) and (xk is Ak

l 
 ) ) Then (u2 is B

l
  )                                                   ( 3.12) 

where C
l
 are fuzzy sets for the input control variable u1.  

Fuzzy rules for the third layer has a similar form. 

If ( (u2 is C
l
 ) and (xk is Ak

l 
 ) ) Then (u3 is B

l
  )                                                  ( 3.13) 

In the final fourth layer the l
th

 fuzzy rule has the form:  

If (u3 is C
l
) and (xl is Al

l
) Then (u is B

l
)                                                              ( 3.14) 

There are a total of 110 fuzzy rules in this 4-layered hierarchical structure. 
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3.5 Non-standard hierarchical topologies 

There are other, non-standard, possible input configurations within two and three layered 

hierarchical structures. They can be called ‗alternative topologies‘ as they do not satisfy the 

condition for the smallest rule base, namely they do not have two inputs in the first layer.  

3.5.1 Non-standard two layers HFS 

Two examples of alternative input configurations are shown in Figure 3.15 and Figure 3.16. 

In the first configuration there are three input variables in layer 1 and one input variable plus 

intermediary control from layer 1 in layer 2 which results in 160 rules in the knowledge base, 

less than in the previous 2-layered topologies. In the second configuration there is one input 

in layer 1 and three input variables plus intermediary control in layer 2 which results in a 

knowledge base of 880 rules - more than in a single layer knowledge base! 

xk

xi

xj

xl

u1

u

 

Figure 3.15 HFS: 2-layered non-standard input configuration. 

 

3.5.2 Non-standard three layers HFS 

Two non-standard 3-layered input configurations considered for performance examination 

are shown in Figure 3.17 and Figure 3.18. In the first configuration there is one input variable 

in layer 1, two input variables plus intermediary control from layer 1 in layer 2, and one input 

variable plus intermediary control from layer 2 in layer 3, which results in 215 rules in the 

knowledge base.  In the second configuration there is one input variable in layer 1, one input 

variable plus intermediary control from layer 1 in layer 2, and two input variables plus 
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intermediary control from layer 2 in layer 3, which results again in 215 rules in the 

knowledge base. 
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Figure 3.16 HFS: 2-layered non-standard input configuration. 
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Figure 3.17 HFS: 3-layered non-standard input configuration. 
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Figure 3.18 HFS: 3-layered non-standard input configuration. 

 

Summary 

The mathematical model of the inverted pendulum is introduced. The dynamics and 

parameters of the system are described. The control problem is defined. The bounds imposed 

on the state variables are stated. The inverted pendulum is the case study to test the new 

control methods throughout the rest of this thesis.  

Basic concepts of the hierarchical fuzzy control systems are introduced. The minimum and 

Mamdani inference engine is introduced. Membership functions used in this thesis are 

defined: triangular and Gaussian membership functions. Different topologies are briefly 

described. The terminology and notation used in the thesis is introduced. The hierarchical 

fuzzy systems described in this chapter are used to define control problems in the following 

chapters. 
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Chapter 4 EVOLUTIONARY ALGORITHM 
 

4.1 Introduction 

Evolutionary algorithms were introduced by J.H. Holland (Holland 1975), mimicking 

Darwinian evolution and genetics in a mathematical model. Basically, every EA consist of a 

population of competing individuals and employs the principle of the survival of the fittest. 

Population evolves in a consecutive generations by applying evolutionary operators such as 

selection method, crossover, and mutation. Evolutionary algorithms have been successfully 

applied to a variety of engineering and scientific problems. In many cases they are used as 

search methods in the solution space. An early practical application of genetic algorithms can 

be found in D.L. Caroll paper (Caroll 1996). 

4.2 Basic evolutionary algorithm 

In this section a basic evolutionary algorithm (Michalewicz 1994) is described that is 

subsequently used to learn (with various modifications) the fuzzy rules in the knowledge 

bases. There are three different approaches to evolutionary learning: 

 Michigan approach: Each individual encodes a single fuzzy rule. The knowledge base 

is represented by the entire population. Crossover serves to provide a new 

combination of rules and mutation yields new rules. 

 Pittsburgh approach: Each individual encodes the entire rule base. The population is 

then evolved maintaining a population of candidate rule sets and using genetic 

operators such as selection, crossover and mutation to produce new rule sets. The 

solution is found as best individual in the population. 

 Iterative approach: Individuals code separate rules, and a new rule is adapted and 

added to the rule set, in an iterative fashion, at every generation of the evolutionary 

algorithm. 

Both Michigan and Pittsburgh approaches have their advantages. Michigan approach is less 

computationally demanding and therefore is often used for on-line learning. Pittsburgh 

approach is more suitable for off-line learning because of its relatively large search space.  

In this thesis Pittsburgh approach is used. The entire knowledge base is encoded uniquely as a 

string of integer numbers representing the fuzzy rule base (Stonier and Mohammadian 2004) 

and used to find the best rule base by using evolutionary algorithm. Each of the fuzzy rule 
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bases in the HFS can be represented as a linear string of M consequents (the size of all 

knowledge bases of the HFS). This is possible because each fuzzy rule is uniquely defined by 

the consequent part represented by an integer defining the output linguistic set. Each rule is 

identified by the element‘s position in the linear string. 

Evolutionary algorithm is a heuristic search technique that maintains a population of 

individuals P(t) = { } at iteration t to the next t + 1. Each individual can be 

considered to represent a potential solution to a given problem.  Each individual is assigned a 

measure of fitness (fitness function) which defines how accurate it is as a potential solution to 

the problem.  Depending on how it is defined, either as a maximisation or minimisation 

problem, the best solution may be that string with the highest or lowest fitness value.  

An initial population is created (often random-generated) from a pre-defined number of 

strings and the fitness of each string is evaluated.  Fitness of a given string (called individual 

or chromosome) is evaluated by a fitness function (sometimes called also an objective 

function). Typically the population is then ordered or ranked in terms of the fitness value of 

each string. The new population P(t + 1) is obtained from the old one by the use of genetic 

operators such as selection, crossover, and mutation. Full replacement policy, if implemented, 

requires that the population size remains constant from one generation to the next. 

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest 

individual to the new population, so that the information encapsulated in the best individual is 

not lost and the fittest individuals are passed into the next generation. In many applications 

this is not necessary but influences the EA convergence. 

A selection process is used to obtain parents for mating in the current generation.  The most 

popular is proportional selection to select randomly two parents based on their fitness in 

proportion to the overall total fitness of the population. Another is tournament selection in 

which a number of possible parents, say four are selected at random from the population.   A 

tournament is then held to select the two fittest strings and they are used as parents in the next 

process of crossover to generate children to be passed into the next generation. In the 

crossover operation a number of ‗parent‘ strings, typically two, are recombined to create 

‗child‘ strings.  The procedure can be explained on the example of the one-point crossover.   

Assume that parent strings are: 

       =  ( p11, p12, … , p1M ) 

       = ( p21, p22, … , p2M ) 
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A random point, an integer, is then selected in the range [1,M] with a certain probability. 

Assume that the integer is k. The two child strings are then formed by swapping over the tail 

ends of the two parent strings after the k-th position, that is: 

     =   ( p11, p12, ... ,p2k, p2(k+1), ... , p2M ) 

     =   ( p21, p22, ... ,p1k, p1(k+1), ... , p1M ) 

Other forms of crossover exist in the literature and are popular in many applications, these 

include multi-point crossover and variants of the arithmetic crossover, for a full discussion 

see (Michalewicz 1994). The crossover operator plays a role of sexual reproduction in which 

two individuals exchange parts of their strings to produce offspring. The children are then 

added to complete the new population. They also undergo mutation by a mutation operator 

which perturbs or mutates the strings‘ structure. 

With a given probability, usually small, the mutation operator mutates elements of the strings 

in the population. This ensures satisfactory diversity within the population which is required 

for the EA to find better approximate solutions to the problem. 

Depending on whether the problem is defined as a maximisation or minimisation problem, 

the best solution may be the string with the highest or lowest fitness value respectively.  The 

inverted pendulum problem is defined as minimisation problem in this thesis.  

The general structure of the evolutionary algorithm may be written as:  

begin  

  t = 0    

  Create random P(0)  

  Evaluate Fitness of P(0)  

  while (not Terminated) do    

  begin  

    Evaluate Fitness of P(t)   

    Create P(t+1) from P(t) 

    t = t + 1  

  end  

end 

With the right EA parameters and operators, the algorithm converges to a desired solution, 

i.e., the fittest individual from the last generation satisfying predefined conditions. However 

there are other possible techniques to produce the final solution, for example averaging the 

top best individuals. 
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4.3 String encoding  

Fuzzy rule base can be defined as a multidimensional fuzzy decision matrix (or decision 

table) with values representing consequent part of fuzzy rules. Consider n input variables, 

each taking mi values, i = 1, … , n,  the matrix would have dimensions: m1 × m2 × … × mn.  

Such a multidimensional fuzzy decision table representing the set of fuzzy IF THEN rules can 

be decomposed into a linear string of rows (or columns depending on the assumed 

convention). The string elements represent consequent part of fuzzy rules.  Each rule is 

identified by the element‘s position in the string (corresponding to the matrix structure). 

Hence, the linear string represents the whole fuzzy rule base in the form that allows 

convenient use of the classical EA‘s operators.    

In the hierarchical knowledge base of any layer each fuzzy rule is also uniquely defined by 

the position of the consequent part in the string. This consequent part is identified by a 

particular output fuzzy set, for example, B
k
. Such a fuzzy set can be identified by the integer 

k, which has a value in the set {1, … , NMF }, where NMF is the number of linguistic output 

variable values (or the number of membership functions covering the system output domain). 

Therefore, each individual string in the evolutionary controller population uniquely 

represents the hierarchical structure of the fuzzy system. 

The above explanation can be formalized as follows: the fuzzy rule bases can be represented 

as a linear individual string of M consequents, = (a1, ... ,aM), where aj is an integer ∊ [1,NMF] 

for  j = 1, ... , M.  The population can be defined as set of Mp strings:  (a1, ... ,aM), where aj 

is an integer ∊ [1,NMF ] for  j = 1, ... , M, and NMF is the number of linguistic output variable 

values (or the number of membership functions covering the system output domain).       

For example, the two fuzzy rule bases for the inverted pendulum system can therefore be 

represented as a linear individual string of M = 25 + 175 = 200 consequents, = (a1,…, a200), 

where aj is an integer ∊ [1,7] for  j = 1, ... , 200. The three fuzzy rule base structure can be 

represented as a linear individual string of M = 25 + 35 + 35 = 95 so the population can be 

defined as follows: P = { :   (a1, ... , a95), k = 1, ... , Mp,  aj ∊ [1,7] }. Similarly, other 

hierarchical fuzzy structures can be encoded as linear strings of the length depending on their 

topology. 
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4.4 Evolutionary population and evolutionary operators 

For experiments with the inverted pendulum system the EA setup is described below. The 

initial population P(0) = { : k = 1, ... , Mp  }, where Mp is the number of strings (the size of 

the evolutionary population), is determined by choosing the aj as a random integer ∊ [1,7].  

Mp has been usually set at 300 or 500. In determining successive populations full replacement 

policy is used and tournament selection with size nT = 4 and a modified mutation operator.  

An elitism policy is also used with copies of the best string from a given generation passed to 

the next generation.  The number is dependent upon the size of the population. Typically, for 

a population of Mp = 100, two or four copies of the best individual are passed to the next 

generation.  For a population of size Mp = 500, four copies of the top five individuals are 

passed to the next generation. 

To maintain diversity of the population crossover operators of parent strings to form two 

children in the next generation are used. In initial experiments for a single initial condition 

the crossover is taken as the usual one-point crossover with pc = 0.6. In examination of 

different topologies and co-evolutionary algorithm so called random crossover is 

implemented.  In later experiments with the compositional method arithmetic and uniform 

crossover are used.  

The random crossover procedure creates child1 from parent2 by copying it, then randomly 

selecting m-genes in the parent1 string to copy them in the corresponding positions in the 

child1 string. The procedure is repeated for the child2 string with parent strings roles 

reversed. The children are then added to complete the new population. The random crossover 

operator gives more control over crossover process as the number of genes subject to 

exchange can be arbitrarily determined. They also undergo mutation by a mutation operator 

which perturbs or mutates the string structures. The pseudo-code below illustrates the 

procedure: 

 i = 1 

 mgenarray[i]=rnd(1,lchrom)      

 while ( i <= mgen-1 ) 

  {i = i +1 

  check = 0 

  while (check == 0) 

  {   // random number generation 

  temp = rnd(1,lchrom) 

  check = checkunique(temp,mgenarray,i-1)} 
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  mgenarray[i] = temp;} 

  for ( i =1; i <= lchrom; i++) 

  { child1[i] = parent2[i] 

    child2[i] = parent1[i] } 

// exchange of genes from parent1 to child1: 

for ( i =1; i <= mgen; i++) 

 child1[mgenarray[i]]=parent1[mgenarray[i]] 

// end of creation of child1 

where lchrom is a length of a string.  Please note, that crossover operator performance is 

case dependent and other operators may perform better. 

With a given probability pm the mutation operator mutates elements of the strings in the 

population. This ensures satisfactory diversity within the population which is required for the 

EA to find better approximate solutions to the problem. Mutation is undertaken with 

probability pm whose value is determined by a mutation schedule that decreases typically 

from 0.8 to 0.001 over 1000 generations. Below is the typical mutation schedule used in the 

computer simulations:  

  if ( gen ≥ 0   & gen < 100 ) pm= 0.8 

 if ( gen ≥ 100 & gen < 200 ) pm= 0.7 

 if ( gen ≥ 200 & gen < 300 ) pm= 0.6 

 if ( gen ≥ 300 & gen < 400 ) pm = 0.4 

 if ( gen ≥ 400 & gen < 500 ) pm = 0.2 

 if ( gen ≥ 500 & gen < 600 ) pm= 0.1 

 if ( gen ≥ 600 & gen < 800 ) pm = 0.01 

 if ( gen > 800) pm = 0.001 

 where gen denotes the generation number. The operator is defined by the following pseudo 

code: 

  if (mutate)  { 

   if (ak = 7)  ak = ak - rnd(1,3) 

   else if (ak = 1) ak = ak + rnd(1,3) 

   else if (flip(0.5)) ak= ak + rnd(1,3) 

        else  ak = ak - rnd(1,3) 

   if (ak > 7) ak = 7 

   if (ak < 1) ak = 1  } 

Full replacement policy is implemented and requires that the population size remains constant 

from one generation to the next. 
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A selection process is undertaken using tournament selection in which a number of possible 

parents are selected at random from the population.  A tournament is then held to select the 

two fittest strings and they are used as parents in the next process of crossover to generate 

children to be passed into the next generation. Tournament selection with size nT  =  4 is used 

in all experiments.  

4.5 Objective function 

4.5.1 Objective function for the single initial condition EA 

The fitness for a single initial condition is evaluated as follows: given an initial condition of 

the system each string  can be decoded into the two or more components defining the fuzzy 

knowledge base for each layer, then the Mamdani or minimum inference formula is used to 

evaluate u1, u2, and u (or only some of the control outputs depending on the selected 

hierarchical structure) to find the final control to be applied at each value of the state . Given 

an initial state the system state equations are integrated by the Runge-Kutta algorithm (RK4) 

with step size 0.02 over a sufficiently long time interval [0,T]. The fitness f to be minimised, 

is then calculated based on certain measures of the behaviour of the system over the time 

interval.  These include, the accumulated sum of normalised absolute deviations of x1 and x3 

from zero, the average deviation from vertical, the average deviation from the origin or T - TS 

where TS (the survival time) is taken to mean the total time before the pole and cart break 

defined bounds.  A penalty is added to the objective if the final state breaks the following 

bounds: | x1 | ≤ 0.1, | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0, i.e., leaves the designated target 

region. 

The objective function has the following form: 

f = ω 1 F1 + ω 2 F2 + ω 3 F3+ ω 4 F4+ ω 5  F5                                                       (4.1) 

with: 

F1 =     ,  F2=    ,  F3=    ,   F4=   

F5= T - TS)                                                                                                     (4.2) 

where xmax= 1.0, θmax=  π/6, max= 1.0, max = 3.0, N is the number of iteration steps.  

Survival time is defined as: TS = 0.02·N, with T = 0.02·Nmax, where the maximum number of 

iterations Nmax= 1000.  The weights ωk  in the fitness function are all positive real numbers. 

The first and second terms determine the accumulated sum of normalised absolute deviations 
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of and from zero, similarly for the third term and fourth terms in relation to x3 and x4, 

and the last term when minimised, maximises the survival time.  

4.5.2 Objective function for the compositional method EA  

The fitness fi of a given string  is evaluated first for every single initial condition, i = 1, ... , 

Nc, where Nc denotes the number of initial conditions . Then overall fitness f is determined 

from the values fi calculated for every single initial condition and assigned to the string.   

A simple evaluation method is selected for the compositional method: the fitness function is 

evaluated as arithmetic average over all fitness values fi , i = 1, ... , Nc, calculated for every 

single initial condition: 

f  =                                                                                                         (4.3) 

A penalty is added to the objective if the final state breaks the following bounds (i.e., leaves 

the designated target region): 

 | x1 | ≤ 0.1,  | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0 

Fitness function can be modified in order to reward strings which successfully control the 

system from a large number of initial conditions. One of the simple methods is to establish 

threshold values for the objective function and penalize strings that exceed those threshold 

values (for each init. condition).  For example: 

Penalty schedule-A: 

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg  then ObjFun = ObjFun + 500.0 

if ObjFun ≥ 0.5·avg and ObjFun < 0.8·avg  then ObjFun = ObjFun + 1000.0 

if ObjFun ≥ 0.8·avg then  ObjFun = ObjFun + 2000.0 

Penalty schedule-B: 

if ObjFun ≥ 0.2·avg and ObjFun < 0.3·avg  then ObjFun = ObjFun + 500.0 

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg  then ObjFun = ObjFun + 1000.0 

if ObjFun ≥ 0.5·avg and ObjFun < 0.6·avg  then  ObjFun = ObjFun + 2000.0 

if ObjFun ≥ 0.6·avg and ObjFun < 0.8·avg  then  ObjFun = ObjFun + 3000.0 

if ObjFun ≥ 0.8·avg then ObjFun = ObjFun + 5000.0 

where avg is a variable representing average fitness value of the previous population.  

Please note, that increasing penalty values might ‗derail‘ the evolutionary algorithm. 

Therefore penalties need to be fine-tuned to focus the EA on selecting strings that perform 

well for the large number of initial conditions.  
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Summary 

Basic concept of evolutionary algorithm for hierarchical fuzzy control is introduced. 

Michigan, Pittsburgh and iterative approach are explained briefly. Pittsburgh approach is 

assumed in this thesis. The structure of the evolutionary algorithm and its functioning is 

described: population creation, population size, its evolution from generation to generation. 

Handling of the evolutionary population is described, including the use of the elitist strategy. 

Basic evolutionary operators are described: selection method, crossover, and mutation. The 

inverted pendulum problem encoding is explained. This string encoding is used in all further 

methods presented in this thesis. 
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Chapter 5 TOPOLOGIES FOR HIERARCHICAL FUZZY 

SYSTEMS: CASE STUDY 
 

5.1 Introduction 

In the context of the HFS, topology means both structure (layers architecture) and input 

configuration of the hierarchical fuzzy system. In the inverted pendulum problem there are 

four possible layer structures: 1-layer, 2-layers, 3-layers, and 4-layers, with different input 

configuration (except single layer topology that have obviously only one possible input 

configuration). 

In this chapter, a single layer fuzzy system and different HFS structures are examined; two 

layered, three layered, and four layered HFS, with different input configuration. For clarity, 

some basic facts about HFS are elaborated further.  

5.2 Single layer fuzzy system 

As described in Section 3.1, each domain region for input variables xi is divided into five 

overlapping intervals covered by membership sets , k = 1, ... , 5, encoded as integers from 1 

to 5.  The output variable u is divided into seven regions covered by membership sets B
k
, k = 

1, ... , 7. All fuzzy membership functions are assumed to be triangular, see Section 3.1.3 and 

Figure 3.2 – Figure 3.5. 

There are 625 rules in the single layer rule base: 5
4
 = 625. Given a fuzzy rule base with M 

rules and n antecedent variables, a fuzzy controller as given in Equation 3.3 uses a singleton 

fuzzifier, Mamdani product inference engine and centre average defuzzifier to determine 

output variables. 

Obviously, there is only one possible topology for the single layer fuzzy system with all 

variables as input into a single layer fuzzy system. 

5.3 Hierarchical fuzzy systems 

If hierarchical fuzzy structure has two input variables in every layer it optimises the size of 

the rule base (Wang 1997).  For reasons stated in Chapter 3, the 2-layered HFS for the 

inverted pendulum system does not provide the minimal number of fuzzy. However, the 2-
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layered HFS with two input variables in the first layer can be considered as ‗near standard 

configuration‘. 

There exist other topologies with a different number of input variables in any particular level 

than in the standard configuration. This means that different number of input variables in the 

first layer, less than 2 or more than 2, is considered. Similarly the configuration of input 

variables in subsequent layers may vary from the standard configuration, from ‗2—2 input 

variables‘ for the 2-layered HFS and from ‗2—1—1 input variables‘ for the 3-layered HFS 

(ignoring intermediary variables in this notation). 

Another possible topology for the inverted pendulum problem is the 4-layered HFS with 

single input variable in each layer. The size of the knowledge base increases in such 

topologies compared to the standard configuration. 

5.3.1 Two layered HFS 

There are six different architectures or topologies of the two layered hierarchical fuzzy 

system with input configuration as follows: two input variables in the first layer and two 

input variables plus intermediary variable from layer 1 in layer 2.  Other possible 

configurations include:  

 Three input variables in layer 1 and one input variable plus intermediary control from 

layer 1 in layer 2. 

 One input in layer 1 and three input variables plus intermediary control in layer 2 with 

knowledge base of 880 rules. 

For the standard configuration in the inverted pendulum system the first knowledge base KB1 

has the two inputs to produce as output a first approximation u1 to the control variable u.  

This approximate control variable u1 is used with input variables xi and xj, i, j ∊ {1,2,3,4} as 

input in the second knowledge base KB2. The final control output u is given by Equation 3.3. 

The l
th

 fuzzy rule in KB1 is given by Equation 3.6 and the l
th

 fuzzy rule in KB2 is given by 

Equation 3.7. In both knowledge bases KB1 and KB2 there are a total of 200 fuzzy rules. 

5.3.2 Three layered HFS 

There are twelve different topologies for the three layered hierarchical fuzzy system in 

standard input configuration: two input variables in the first layer, and one input variable plus 
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intermediary control value in layer 2 and 3. Other, non-standard, input configurations can be 

considered but with an increased number of rules in the knowledge base.  

For the inverted pendulum system, in standard configuration the first knowledge base KB1 

has two inputs, xi and xj, i, j ∊ {1,2,3,4}. The first layer produces a first approximation of the 

control u1. This u1 together with xk  are used as input in the second knowledge base KB2. 

Then the second layer produces another approximation of control u2 which with xl is used as 

input to the third, and final, layer to produce the final control output u. 

The l
th 

fuzzy rule in the first knowledge base KB1 has the form given by Equation 3.8. The l
th 

fuzzy rule in the second knowledge base KB2 is given by Equation 3.9. The l
th 

fuzzy rule in 

the third knowledge base KB3 is given by Equation 3.10. In all three knowledge bases there 

are a total of 95 fuzzy rules. The output for each layer is obtained using the Mamdani 

inference engine as given in Equation 3.3.  

5.3.3 Four layered HFS 

The four layered topology for the inverted pendulum system has by necessity a non-standard 

input configuration, see Figure 3.14. There are twenty four possible topologies in the four 

layered structure. Every layer has one state variable input and additional control 

approximation in layer 2, 3, and 4. The l
th 

fuzzy rule for every knowledge base KB1—KB4 is 

given by Equations 3.11—3.14. There are a total of 110 fuzzy rules in all knowledge bases 

KB1—KB4.  

5.4 Non-standard hierarchical topologies 

As mentioned before, non-standard input configurations within two and three layered 

hierarchical structures can be considered as viable hierarchical fuzzy structures. Some of 

them are examined in search for the best performing control system for the inverted 

pendulum. 

5.4.1 Non-standard two layered HFS 

Figure 3.15 shows non-standard topology with three input variables in layer 1 and one input 

variable plus intermediary control from layer 1 in layer 2. This input configuration produces a 

total of 160 rules in the knowledge base; a smaller knowledge base than in ‗near standard 

configuration‘. In the second configuration, see Figure 3.16, there is one input in layer 1 and 
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three input variables plus intermediary control in layer 2 which generates a knowledge base 

of 880 rules. 

5.4.2 Non-standard three layered HFS 

In the first configuration, shown in Figure 3.17, there is one input variable in layer 1, two 

input variables plus intermediary control from layer 1 in layer 2, and one input variable plus 

intermediary control from layer 2 in layer 3, which results in 215 rules in the knowledge base. 

In the second configuration, shown in Figure 3.18, there is one input variable in layer 1, one 

input variable plus intermediary control from layer 1 in layer 2, and two input variables plus 

intermediary control from layer 2 in layer 3, which results again in 215 rules in the 

knowledge base. 

5.5 Fuzzy systems 

The fuzzy system for the HFS topology investigation is described in Chapter 3. All fuzzy 

membership functions are assumed to be triangular, see Section 3.1.3.  

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given 

in Equation 3.3 uses a singleton fuzzifier, Mamdani product inference engine and centre 

average defuzzifier to determine output variables. 

5.6 Evolutionary algorithm 

As stated in Chapter 4, the two fuzzy rule base structure can be represented as a linear 

individual string of M = 25 + 175= 200 consequents,  (a1 , … , a200), where aj is an 

integer ∊ [1,7] for  j = 1, ... , 200.   The three fuzzy rule base structure can be represented as a 

linear individual string of M = 25 + 35 + 35 = 95 consequents,   (a1 , … , a95), where aj is 

an integer ∊ [1,7] for  j = 1, ... , 95. Other hierarchical fuzzy system structures can be 

represented in a similar fashion. 

The fitness fk of a given string  can be evaluated as described in Section 4.5.1. The 

Mamdani formula is used to evaluate u1, u2, u3 and u (depending on the fuzzy logic topology) 

to find the final control to be applied at each value of the state . Given an initial state the 

system state equations are integrated by the Runge-Kutta algorithm (RK4) with step size 0.02 

over a time interval [0,T], where T = 0.02 · Nmax with the maximum number of iterations Nmax 
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= 1000. The fitness fk to be minimised, is then calculated according to Equation 4.1 and 4.2.  

A penalty of 1000 is added to the objective if the final state leaves the designated TR.  

The initial population P(0) = { : k = 1, ... , Mp } is determined by choosing the aj as a 

random integer ∊ [1,7]. Mp denotes the number of strings – the size of the evolutionary 

population. The new population P(t + 1) is obtained from the old one by the use of genetic 

operators. Full replacement policy is implemented and requires that the population size 

remains constant from one generation to the next. A selection process is undertaken using 

tournament selection with size nT  =  4. 

An elitism policy is implemented with four copies of the ten top individuals (forty copies 

altogether) passed to the next generation. In investigation of the HFS topologies random 

crossover is used, see Section 4.4 for details. 

In experiments with various topologies for the inverted pendulum system the mutation is 

undertaken with probability pm.  Its value is determined by a mutation schedule that decreases 

from 0.8 to 0.001 over 300 generations.  

 if ( gen ≥ 0   & gen < 50  ) pm = 0.8 

 if ( gen ≥ 50 & gen < 100  ) pm = 0.7 

 if ( gen ≥ 100 & gen < 150 ) pm = 0.6 

 if ( gen ≥ 150 & gen < 200 ) pm = 0.3 

 if ( gen ≥ 200 & gen < 250 ) pm = 0.1 

 if ( gen ≥ 250 & gen < 300 ) pm = 0.01 

 if ( gen > 300) pm = 0.001 

 where gen denotes generation number. This mutation schedule is different from the schedule 

described in Chapter 4. 

The above described evolutionary algorithm is used to learn fuzzy rules in the HFS that 

constitutes a control system for the inverted pendulum system.  

5.7 Experimental setup  

The relatively low number of all possible topologies enables their examination one by one 

and finding the topology with the best controller performance. Which topology provides the 

best controller is decided by considering the various aspects of controller performance:  

 State variables convergence history (for example: undesired oscillations).  

 Time in which the system reaches the target region.  

 Control action magnitude and degree of controller smoothness. 
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For each topology ten simulations are run with randomly generated initial populations. 

5.7.1 Initial condition 

The initial state is that given in (Stonier et al 1998):  0 = (0.5, 0.0, 0.01, 0.0) in order to 

make results comparable.  

5.7.2 Initial population 

Initial population is randomly generated. Every string element (representing an individual in 

EA population) is assigned randomly generated integer value ∊ [1,7]. 

5.7.3 Population size 

The population size is set at Mp = 500 and maintained at this level for all generations.   

5.7.4 Termination condition  

The evolutionary algorithm is terminated after 300 generations; except for single layer FS 

that is terminated after 500 generations, as there is little or no change in the minimum value 

of the objective function in the following generations. The best controllers at this generation 

are seen not to break defined constraints and the system is stabilised within the determined 

target region, see Section 3.1.1.   

5.7.5 Fitness function 

The following fitness function parameters: ω1 = 3000, ω2 = 2000, ω3 = 0, ω4 = 0, ω5 = 5000, are 

selected for all simulations except single layer fuzzy system with:  ω1 = 1000, ω2 = 0, ω3 = 1000, 

ω4 = 0, ω5 = 5000.  The values were determined by experimentation. 

5.8 Computer simulations  

The minimum, average and maximum of objective function are examined for every topology 

over consecutive generations. The results are fairly similar, both for the 2 and 3-layered HFS.  

Examples for typical simulations are given in Figure 5.1 and Figure 5.2. To illustrate the 

controller performance (for each HFS topology) one of the best performing controllers from 

ten simulation results is selected, see Figure 5.3 – Figure 5.56. 
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Figure 5.1 Minimum, average and maximum objective function values over 300 generations 

for L2-34-12. 

 

 

Figure 5.2 Minimum, average and maximum objective function values over 300 generations 

for L3-34-1-2. 

0

2000

4000

6000

8000

10000

12000

14000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

MinPop AvgPop MaxPop

0

2000

4000

6000

8000

10000

12000

14000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

MinPop AvgPop MaxPop



 

66 
 

5.8.1 One layer FS results 

 

Figure 5.3 State variables convergence L1-1234. 

 

 

 

Figure 5.4 Controller L1-1234. 
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The EA is run ten times for the single layer FS with different initial random populations. 

Within around 200 generations the best fuzzy controller at each generation achieved 

convergence of state variables to the designated TR and maintained it within this region for 

the remainder of the prescribed time Tf. Typical convergence and controller output values are 

shown in Figure 5.3 and Figure 5.4. As it can be seen from Figure 5.3  the stabilisation is 

smooth and regular for all state variables. The controller is ‗frugal‘, with values lying in 

[−0.83, 0.202], the best simulation results in terms of control magnitude. In ten simulations 

for L1-1234 there are controllers with faster stabilisation times but with higher control 

magnitude. 

5.8.2 Two layered HFS results 

The EA is run for the 2-layered HFS with many different initial random populations and the 

controller, evolved within 110—170 generations, achieves convergence of the state variables 

to the target region and maintains them within specified TR bounds until final time Tf. The 

evolutionary algorithm converges thus faster than in (Stonier et al 1998), (Stonier and 

Zajaczkowski 2003). 

The best result is shown in Figure 5.5 and Figure 5.6, where pole angle x3 and its angular 

velocity x4 are input to layer 1, and cart position x1 and its speed x2 as input variables to layer 

2. It is also the easiest knowledge base to learn. Stabilisation is very quick for a wide range of 

parameters ωk, and it is typically to 5 decimal place accuracy for all variables. This result 

gives the first indication as to which input configuration provides the best controller 

performance. Furthermore in some simulations a small control effort is required, one of the 

best results being with control values in [−2.0, 1.6]. The controller shown in Figure 5.6 has 

control magnitude in [−6.4, 4.1].  

Because the HFS decomposition should match weak interdependency between input 

variables, this results shows that the inverted pendulum system can be split into two 

subsystems:  

 Pole, represented by input variables x3 and x4.  

 Cart, represented by input variables x1 and x2.   

Obviously, if topology L2-34-12 provides good control structure then L2-12-34 controller is 

expected to achieve similar performance as it is decomposed along the same weak 

interdependence between input variables only with pole variables replaced with cart variables 

as input in the first layer.  Indeed, the L2-12-34 controller performance is good and very 
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similar in both state variable convergence and controller magnitude to L2-34-12 controller. 

However, results for controllers with topology L2-12-34 were much less consistent in ten 

simulation runs than for L2-34-12. On average, controller with topology L2-34-12 provides 

slightly better performance and consistency of the EA solutions. Comparison between 

controllers with L2-14-23 topology and L2-23-14 shows that swapping input variables 

between layer 1 and layer 2 can have a significant effect on the controller performance. This 

indicates that the HFS topology is a decisive factor in the controller performance.  This 

assertion is confirmed by the 3-layered HFS results presented in the following section. 

The most ‗frugal‘ is controller with topology L2-23-14, with values in [−0.87, 0.97] but state 

variable convergence to the TR is not considered satisfactory, see Figure 5.11. An acceptable 

convergence of the state variables to the TR is achieved by some of the L2-13-24 controllers 

but it is affected by continuing small oscillations in all state variables, see Figure 5.15.  

The relatively good controller performance is delivered by controller with topology L2-14-23 

characterised by regular and smooth convergence of all state variables. A typical for ten 

simulations result is shown in Figure 5.9 and Figure 5.10, where the cart position x1 and 

angular velocity of the pole x4 are input to layer 1. This topology is an example of 

configuration of ‗mixed‘ input variables where decomposition breaks strong interdependence 

of state variables. A poor controller performance can be expected in such cases but if most 

significant state variable is an input in the first layer then it has positive moderating effect on 

the control process, see (Raju and Zhou 1993), (Zajaczkowski and Stonier 2008). The 

controllers with topologies L2-23-14 and L2-24-13 do not exhibit the desired convergence to 

the TR and their performance is erratic, see for Figure 5.11 and Figure 5.13 respectively. 

Stabilisation times (the time at which all state variables reach the TR and remain within its 

bounds) for each HFS are grouped in the Table 5.1. The stabilisation times are given in 

seconds. 

Table 5.1 Stabilisation times for 1 and 2-layered HFS 

Run 

No 

L1-

1234 

L2-12-

34 

L2-13-

24 

L2-14-

23 

L2-23-

14 

L2-24-

13 

L2-34-

12 

10 3.92 9.12 4.16 3.1 9.02 9.36 2.74 
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Figure 5.5 State variables convergence L2-34-12. 

 

 

 

Figure 5.6 Controller L2-34-12. 
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Figure 5.7 State variables convergence L2-12-34. 

 

 

 

Figure 5.8 Controller L2-12-34. 
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Figure 5.9 State variables convergence L2-14-23. 

 

 

 

Figure 5.10 Controller L2-14-23. 

 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

u



 

72 
 

 

Figure 5.11 State variables convergence L2-23-14. 

 

 

 

Figure 5.12 Controller L2-23-14. 
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Figure 5.13 State variables convergence L2-24-13. 
 

 
Figure 5.14 Controller L2-24-13. 

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u



 

74 
 

 

Figure 5.15 State variables convergence L2-13-24. 

 

 

 

Figure 5.16 Controller L2-13-24. 
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5.8.3 Three layered HFS results 

For the 3-layered HFS, the evolutionary algorithm evolves within 150—200 generations and 

the controller achieves convergence of the state variables to the target region and maintains 

them within the specified bounds for the remainder of the prescribed time Tf. Different 

topologies vary significantly in the number of generations that the EA takes to find the 

controller capable to perform such a task. For L3-34-1-2, it takes the EA about 140—160 

generations, for L3-12-3-4 it is 150—160, but for L3-13-2-4 it usually takes about 200 

generations. On average, in case of the 3-layered HFS the evolutionary algorithm takes 

longer to evolve to a satisfactory controller than in case of the 2-layered HFS. 

Controller defined by topology L3-34-1-2 achieves all state variables smooth convergence to 

the origin without any large oscillations. The controller performance is smooth after initial 

peak of −2.396 at t = 1.06, see Figure 5.20. The magnitude of control is reasonably low, 

within range of [−2.4, 1.4]. It is one of the best controllers among the 3-layered HFS. 

However, in ten simulations the controllers L3-34-2-1 generally outperformed the controllers 

L3-34-1-2 and therefore should be considered as the best controller amongst the 3-layered 

HFS. 

Comparing convergence of the state variables and control values of L2-34-12 and L3-34-1-2 

it can be seen that 3-layered HFS provides smoother convergence and control. The best result 

is shown in Figure 5.19. Note, that the state variables convergence to the TR is faster for L2-

34-12 than for L3-34-1-2.  

As can be seen from comparison of L3-13-2-4 and L3-13-4-2 controllers, a seemingly 

insignificant change in input configuration in layer 2 and layer 3 results in a significant 

change in the controller performance, see Figure 5.21 and Figure 5.23 respectively.  A similar 

effect can be seen by comparing controller performance for topologies L3-14-2-3 and L3-14-

3-2. 

Controller with topology L3-23-4-1 exhibits satisfactory convergence but with a long period 

of settling time, see Figure 5.25. The magnitude of the controller is in the range of [−4.83, 

9.5], and thus relatively large compared to the other controllers. Controller with topology L3-

14-3-2 provides very smooth good convergence of the state variables but with some 

oscillations in x4, which is barely visible in the diagram, see Figure 5.31, but is manifested 

more visibly in numerical values of the state variables convergence.  



 

76 
 

Surprisingly, topology L2-14-23 that provided good stabilisation for the 2-layered HFS in 

most of the ten simulations does not have a match in L3-14-2-3 for the 3-layered HFS. A 

typical result from ten simulations is shown in Figure 5.29 and Figure 5.30. On the other 

hand, the controller with topology L3-14-3-2 performs much better, being one of the better 

performing controllers, see Figure 5.31 and Figure 5.32. This illustrates how important the 

selection of topology of the HFS is for controller performance. 

The worst results are shown in Figure 5.21 and Figure 5.22; and also Figure 5.27 and Figure 

5.28. The controllers with topologies L3-13-2-4, L3-23-1-4, L3-23-4-1 and L3-24-1-3 do not 

produce satisfactory state variables convergence and control characteristics. 

Convergence times to the target region are grouped in Table 5.2. Empty space for L3-23-1-4 

means no convergence in the prescribed time for the controller in the simulation no 10 (some 

of the L3-23-1-4 controllers achieve convergence to the TR).  The numeric values for 

convergence times can be deceptive as the character of convergence must be taken into 

account and in some cases short convergence time does not necessarily translate into ‗good 

convergence‘. Another candidate topology L3-23-4-1, see Figure 5.25 and Figure 5.26, 

requires much more power expenditure and its characteristic is not as smooth as the 

controllers with topologies L3-34-1-2 or L3-34-2-1. 

Three-layered topology breaks strong interdependence between state variables in layers 2 and 

3. This does not have adverse effect on the controller performance for the ‗best‘ topologies 

L3-34-1-2 and L3-34-2-1 because decomposition reflects physical properties of the system. 

However, for L3-12-3-4 or L3-12-4-3 it has slightly detrimental effect because the HFS 

decomposition breaks state variables interdependence. In some other cases, for example L3-

14-2-3 or L3-14-3-2, it has a profound effect. As mentioned earlier, physical properties of the 

system under consideration require grouping of the input variables along weak state variables 

interdependence. In case of the inverted pendulum this grouping corresponds to two 

subsystems: the cart represented by x1 and x2, and the pole represented by x3 and x4. 

Swapping the input variables between the layers but preserving to some extent 

abovementioned groupings has little effect on the controller performance. When this 

grouping principle is broken, the results are often detrimental (depending which variables are 

more influential in the dynamical system). In case of L3-14-2-3 and L3-14-3-2 it seems that 

controlling the angle of the pole is more crucial than controlling the cart‘s velocity as it is 

reflected in both topologies. 



 

77 
 

 

Figure 5.17 State variables convergence L3-34-2-1. 

 

 

 

Figure 5.18 Controller L3-34-2-1. 
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Figure 5.19 State variables convergence L3-34-1-2. 

 

 

 

Figure 5.20 Controller L3-34-1-2. 
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Figure 5.21 State variables convergence L3-13-2-4. 

 

 

 

Figure 5.22 Controller L3-13-2-4. 
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Figure 5.23 State variables convergence L3-13-4-2. 

 

 

 

Figure 5.24 Controller L3-13-4-2. 
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Figure 5.25 State variables convergence L3-23-4-1. 

 

 

 

Figure 5.26 Controller L3-23-4-1. 
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Figure 5.27 State variables convergence L3-23-1-4. 

 

 

 

Figure 5.28 Controller L3-23-1-4. 
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Figure 5.29 State variables convergence L3-14-2-3. 

 

 

 

Figure 5.30 Controller L3-14-2-3. 
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Figure 5.31 State variables convergence L3-14-3-2. 

 

 

 

Figure 5.32 Controller L3-14-3-2. 
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Figure 5.33 State variables convergence L3-12-3-4. 

 

 

 

Figure 5.34 Controller L3-12-3-4. 
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Figure 5.35 State variables convergence L3-12-4-3. 

 

 

 

Figure 5.36 Controller L3-12-4-3. 
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Figure 5.37 State variables convergence L3-24-3-1. 

 

 

 

Figure 5.38 Controller L3-24-3-1. 
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Figure 5.39 State variables convergence L3-24-1-3. 

 

 

 

Figure 5.40 Controller L3-24-1-3. 
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Table 5.2 Stabilisation times for 3-layered HFS 

Run 

No 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

10 9.18 13.72 2.52 2.54 3.68 3.5  2.14 12.2 6.96 2.9 2.06 

where C1 denotes:  L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2,  C5: L3-14-2-3, 

C6: L3-14-3-2, C7: L3-23-1-4, C8: L3-23-4-1,  C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-

1-2, C12: L3-34-2-1. 

5.8.4 Four layered HFS results 

Four variants of the 4-layered topology: L4-3-4-1-2, L4-3-4-2-1, L4-4-3-1-2, and L4-4-3-2-1 

are investigated, see Figure 5.41—Figure 5.48. The last two topologies produced good 

performance of the controllers. One of the controllers representing topology L4-3-4-1-2 

produced a very reasonable control with magnitude in the range [−2.0, 2.8], see Figure 5.48. 

By examining the 4-layered topologies it can be found which input variables are most 

influential in the inverted pendulum system. It was found that topologies L2-34-12, L3-34-2-

1, L3-34-1-2 provide the best performing controllers. The simulation results show that the 

topology L4-4-3-2-1 is the most consistent in producing well performing controllers for ten 

different initial populations with L4-4-3-1-2 close behind, see Figure 5.41 and Figure 5.43 

respectively. This clearly indicates that the most influential input variable is the angular speed 

of the pole x4, second - the angle of the pole x3, and then cart‘s speed x2 and its position x1. 

After comparing the 4-layered topologies controller performance with previously analysed 

controllers it was found that the 4-layered HFS are outperformed by the HFS controllers with 

lower number of layers using criteria stated in Section 5.7. This indicates that for the inverted 

pendulum problem this ladder-like structure of the 4-layered HFS does not produce the best 

performing controllers. 

Stabilisation times are relatively fast for the 4-layered HFS, see Table 5.3. 

Table 5.3 Stabilisation times for 4-layered HFS. 

L4-3-4-1-2 L4-3-4-2-1 L4-4-3-1-2 L4-4-3-2-1 

3.22 1.68 2.64 1.82 
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Figure 5.41 State variables convergence L4-4-3-2-1. 

 

 

 

Figure 5.42 Controller L4-4-3-2-1. 
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Figure 5.43 State variables convergence L4-4-3-1-2. 

 

 

 

Figure 5.44 Controller L4-4-3-1-2. 
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Figure 5.45 State variables convergence L4-3-4-2-1. 

 

 

 

Figure 5.46 Controller L4-3-4-2-1. 
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Figure 5.47 State variables convergence L4-3-4-1-2. 

 

 

 

Figure 5.48 Controller L4-3-4-1-2. 
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5.8.5 Different topologies results 

Simulations are conducted for selected 2 and 3-layered HFS with modifications to the 

number of inputs in the first layer, i.e., with more/less than two inputs in the first layer 1. The 

performance of controllers with such topologies is tested. The tested topologies are: L2-3-

412, L2-341-2, L3-3-41-2 and L3-3-4-12. 

Results are shown in Figure 5.49—Figure 5.56. As can be seen from the figures, the 

controller performance is better than expected, especially for topologies L3-3-41-2, see 

Figure 5.53, and for L3-3-4-12, see Figure 5.55, as it provides smooth control with reasonable 

control magnitude and fast stabilisation of the system. In L3-3-41-2 the variable x1 (cart‘s 

position) does not converge to a near-zero value but stays in the target region, which is 

satisfactory. 

Stabilisation times for the selected examples of different topologies are shown in Table 5.4. 

Surprisingly, they are faster than corresponding stabilisation times for L3-34-1-2. 

Considering the performance and speed of these controllers they cannot be ruled out just 

because of the high number of fuzzy rules in their knowledge bases. The large number of 

rules does not hamper performance. They also prove that the HFS topology is crucial in 

achieving good control performance. 

Table 5.4 Stabilisation times for 2 and 3-layered HFS: different topologies 

L2-341-2 L2-3-412 L3-3-4-12 L3-3-41-2 

4.58 2.4 1.4 1.74 
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Figure 5.49 State variables convergence L2-3-412. 

 

 

 

Figure 5.50 Controller L2-3-412. 
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Figure 5.51 State variables convergence L2-341-2. 

 

 

 

Figure 5.52 Controller L2-341-2. 
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Figure 5.53 State variables convergence L3-3-41-2. 

 

 

 

Figure 5.54 Controller L3-3-41-2. 
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Figure 5.55 State variables convergence L3-3-4-12. 

 

 

 

Figure 5.56 Controller L3-3-4-12. 
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5.9 Controller tests 

As mentioned earlier, intermediate variables u1 and u2 may have not any physical 

representation.  They can be considered as approximations to the controller action.  By testing 

their performance, with one or two layers removed from the HFS one can expect to determine 

the robustness of the controller. Examining the approximate control provides insight into 

‗working parts‘ of the HFS. 

When one layer is eliminated it is denoted by L2-mn or L3-mn-k. In a 3-layered HFS L3-mn 

denotes elimination of the two last layers. 

For controller tests the best controllers for the 2 and 3-layered HFS are selected. The best 2-

layered HFS are: L2-34-12, L2-14-23, L2-13-24 and L2-12-34. The best 3-layered HFS are: 

L3-34-1-2, L3-14-3-2, and L3-13-4-2. 

5.9.1 Two layers HFS controller test results 

The best performing among the 2-layered HFS is the controller with topology L2-34-12, see 

Figure 5.5 and Figure 5.6. The controller is tested with its last layer removed: topology L2-

34. The controller stabilises the system for 1.6 time units before ‗crashing‘, i.e., until 

breaking the state bounds: |x1| ≤ 1.0 and | x3 |  ≤ π/6, see Figure 5.57. Otherwise the controller 

exhibits very regular behaviour. 

Then the controller with topology L2-14-23 is tested, see Figure 5.9 and Figure 5.10, with its 

last layer removed. One layer version L2-24 ‗crashed‘ at t = 0.8, the angular velocity of the 

pole x4 rising steeply, Figure 5.59.   

The controller with topology L2-13-24 is tested with its last layer removed. As can be seen in 

Figure 5.61 and Figure 5.62, the approximate controller with only one layer rule base 

attempts to stabilise the system for the whole period of time Tf  = 20: the angle of the pole x3 

is stabilised in a narrow band around the origin, the angular velocity x4 oscillates but the 

values of x4 remain within [−1, 1] band. Therefore, the approximate controller, with second 

layer removed, performs well, while the controller with full rule base performs poorly, see 

Figure 5.15. 

The controller with topology L2-12-34 with its last layer removed is one of the worst 

performing controllers, see Figure 5.63 and Figure 5.64. This poor performance comes in 

spite of relatively good performance of the controller with the full rule base, see Figure 5.7. 
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The controller stabilises the system for 3.76 time units until the angle of the pole x3 breaks the 

state limits. 

 

Figure 5.57 State variables convergence L2-34. 

 

 

 

Figure 5.58 Controller L2-34. 
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Figure 5.59 State variables convergence L2-14. 

 

 

 

Figure 5.60 Controller L2-14. 
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Figure 5.61 State variables convergence L2-13. 

 

 

 

Figure 5.62 Controller L2-13. 
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Figure 5.63 State variables convergence L2-12. 

 

 

 

Figure 5.64 Controller L2-12. 
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5.9.2 Three layers HFS controller test results 

In the 3-layered HFS the controllers are tested by removing the last layer or the two last 

layers. The controller with topology L3-34-1-2 is analysed first. The simulation results are 

shown in Figure 5.67 and Figure 5.68 (the two last layers removed from the HFS) and in 

Figure 5.65 and Figure 5.66 (the last layer removed from the HFS). The approximate 

controller u2 maintains control of the system for the whole prescribed time Tf = 20 and 

exhibits very regular behaviour. 

The controller with topology L3-23-4-1 is analysed and simulation results are shown in   

Figure 5.71 and Figure 5.72 (with two last layers removed) and in Figure 5.69 and Figure 

5.70 (with the last layer removed). The control pattern is regular but the ‗crash-time‘ for this 

controller is relatively short (1.2 and 0.78 respectively). 

The well performing controller L3-14-3-2, see Figure 5.31 and Figure 5.32, is analysed and 

simulation results are shown in Figure 5.75 and Figure 5.76   (with two last layers removed) 

and in Figure 5.73 and Figure 5.74  (with the last layer removed). The additional rule base in 

the control system L3-14-3 produces a better result than smaller rule base in L3-14. 

In general, the approximate controller u2 (intermediary control between layer 2 and layer 3) 

maintained control of the system for longer periods of time than approximate controller u1 

(intermediate control between layer 1 and layer 2), which is not surprising as the controller u2 

has a larger knowledge base to rely on. 
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Figure 5.65 State variables convergence L3-34-1. 

 

 

 

Figure 5.66 Controller L3-34-1. 
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Figure 5.67 State variables convergence L3-34. 

 

 

 

Figure 5.68 Controller L3-34. 
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Figure 5.69 State variables convergence L3-23-4. 

 

 

 

Figure 5.70 Controller L3-23-4. 
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Figure 5.71 State variables convergence L3-23. 

 

 

 

Figure 5.72 Controller L3-23. 
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Figure 5.73 State variables convergence L3-14-3. 

 

 

 

Figure 5.74 Controller L3-14-3. 
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Figure 5.75 State variables convergence L3-14. 

 

 

 

Figure 5.76 Controller L3-14. 
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5.9.3 Controller test: remarks 

The approximate controllers even from the best performing topologies did not exhibit the 

same quality of control as the final controller u.  In some cases, approximate controllers from 

the ‗worse‘ performing topologies, performed reasonably well. Experiments with the HFS 

with layers removed show that the HFS is not a mere sum of its rule bases in the component 

layers. Topology of the HFS is a key factor in the performance of the controller. It has been 

shown that the HFS needs to be considered in its entirety, not as an assembly of the better or 

worse performing component layers. 

5.10 Results 

It can be seen that the performance of the fuzzy controller is not related to the speed of 

learning process. Some very good controllers require a great number of generations to be 

found, while some poor performers are very ‗fast learners‘. In an extreme case, one ‗lucky‘ 

run no 7 for topology L3-12-4-3 simulation produced a satisfactory controller after only one 

generation (due to a randomly generated initial population that accidently included 

individuals that were satisfactory solutions).  Simulation for topology L2-14-2-3 produced 

satisfactory controller after only four generations in run no 3. The fastest learning process in 

the 2-layered HFS is achieved in a simulation for topology L2-23-14 when satisfactory 

controller was found after seven generations. A single layer FS learning speed was steady at 

about 200 generations and even though it was slower than all other topologies, it produced a 

relatively well performing controller.  

In the 2-layered HFS, on average, the second ‗fastest‘ learner is the best performer: L2-34-12. 

In the 3-layered HFS there is not a clear trend, with L3-34-2-1 being the third.  Furthermore, 

L3-34-1-2 is found being an average ‗learner‘, with 5 other topologies besting its average 

learning speed. 

Obviously, in all simulations random nature of initial population played a role but if there had 

been a clear trend that better controllers are found faster, it would have been seen in the 

simulation data. The tables with learning speed are shown Table 5.5 in and Table 5.6.   

Obviously, for one-layer structure the learning speed can be examined for only one topology 

but for different initial populations. Empty space instead of a numeric value means that the 

algorithm failed to achieve the desired convergence in 300 generations, which happened four 

times in the case of topology L3-23-1-4. This is a surprising result as one would expect a 
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similar performance as in the case of the 2-layered HFS topology L2-23-14. As can be seen, 

this is not the case and both topologies are worlds apart in terms of performance due to a 

different architecture of the HFS. Even a seemingly insignificant difference, such as a 

decomposition which includes an additional layer, can prove critical, especially since 

physical significance of the intermediate control between layers is unknown. For example, 

the 2-layered HFS topology L2-14-23 can be further decomposed into the 3-layered HFS, 

either L3-14-2-3 or L3-14-3-2, the controller performance for those topologies is shown in 

Figure 5.29—Figure 5.32; L3-14-3-2 provides satisfactory control system while L3-14-2-3 

does not. 

Table 5.5 Learning speed: 1 and 2-layered HFS 

Run No L1-1234 L2-12-34 L2-13-24 L2-14-23 L2-23-14 L2-24-13 L2-34-12 

1 201 150 119 183 150 201 13 

2 181 93 174 204 170 188 160 

3 204 139 157 179 167 160 114 

4 180 54 111 222 150 152 103 

5 202 124 151 161 138 176 154 

6 217 126 139 199 7 106 169 

7 205 127 211 158 150 153 52 

8 201 114 159 188 155 158 150 

9 189 30 153 167 112 205 177 

10 199 44 169 203 151 227 172 

Average 198 100 154 186 135 173 126 

Total 

Avg 

198 146      
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Table 5.6 Learning speed: 3-layered HFS 

Run No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

1 28 153 210 166 109 192 144 202 154 204 81 55 

2 157 93 181 193 150 188 212 165 3 160 178 57 

3 156 103 172 115 4 171  179 153 156 161 157 

4 151 119 202 211 154 205 162 163 162 162 143 210 

5 164 150 201 176 112 236  167 164 244 68 94 

6 133 164 205 185 152 191 209 165 150 200 146 81 

7 150 1 206 158 117 169 159 208 23 195 152 27 

8 151 151 151 49 10 137  36 145 177 151 204 

9 152 62 233 174 145 170  184 157 166 156 150 

10 152 142 213 153 152 210 215 123 130 155 207 129 

Average 139 114 197 158 111 187 184 159 124 182 144 116 

Total 

Avg 

151            

where C1 denotes:  L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2,  C5: L3-14-2-3, 

C6: L3-14-3-2, C7: L3-23-1-4, C8: L3-23-4-1,  C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-

1-2, C12: L3-34-2-1  

After analysing ten simulation results for each topology, i.e., L2-34-12 and L3-34-1-2, it 

seems that the 2-layered HFS provides a better solution to the control problem of the inverted 

pendulum. This result is consistent with the physical model of the inverted pendulum system 

as the pole and cart variables can be grouped in two subsystems that are mirrored in the 2-

layered HFS.  

In general, the results confirm that the decomposition of the hierarchical fuzzy structure 

should be performed along weak interdependency between input variables.  
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Summary 

In this chapter different topologies associated with hierarchical fuzzy control of the inverted 

pendulum are examined (with nonlinear dynamics) to gain insight into the decomposition 

problem of hierarchical fuzzy systems. Investigation of HFS topologies is focused on the 

influence of the given topology on the controller performance. The fuzzy controllers are 

learnt by evolutionary algorithm.  The results, obtained to examine the efficiencies in 

learning by the evolutionary algorithms and fuzzy control of the pendulum, are compared.  

Furthermore, experiments with intermediate variables u1 and u2 (they can be considered as 

approximations to the controller action) have been conducted to determine the robustness of 

the controller for different HFS topologies.  Tests were performed with one or two layers 

removed from the HFS to gain insight into controller performance in the hierarchical 

structure. It has been demonstrated that the HFS needs to be considered in its entirety and not 

as an assembly of better or worse performing component rule bases.   
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Chapter 6 CO-EVOLUTIONARY ALGORITHM FOR 

HIERARCHICAL FUZZY CONTROL OF THE INVERTED 

PENDULUM 
 

6.1 Introduction 

Much research has been conducted on the hierarchical fuzzy control but relatively little on the 

problems associated with the problem of HFS decomposition to achieve the best controller 

performance. In (Stonier and Zajaczkowski 2003) and (Stonier and Zajaczkowski 2004) 

various aspects associated with layers decomposition of a hierarchical fuzzy controller for the 

control of the inverted pendulum problem are examined, in particular the non-uniqueness 

associated with such layers decomposition.  

A three layered HFS with angular speed and angular position of the pole as input in layer 1, 

cart‘s speed as input in layer 2, and cart‘s position as input in layer 3, provides the ‗best‘ 

controller under the given performance criteria, see Chapter 5. Very similar performance is 

achieved when input variables are reversed in the layer 2 and 3. Please note, this might not be 

true for other input configurations in general. 

It was noticed in the computer simulations that the state variables convergence was often 

oscillatory (‗underdamped‘) and the controller action was not smooth.  One way to improve 

the smoothness of the controller is to add appropriate penalty terms to the fitness function in 

the evolutionary algorithm but this adds to the complexity of the fitness function in the 

evolutionary algorithm.  

A co-evolutionary algorithm is used to fine tune parameters of the input and output 

membership sets as well as learn the fuzzy rules in the fuzzy controller, to yield more 

‗damped‘ convergence of the state variables and smoother controller function.  

One of the problem in designing hierarchical fuzzy system is the choice of membership 

functions for the input and output variables. In many cases the membership functions are 

arbitrarily chosen and uniformly spread over the range of the state variables. The purpose of 

this investigation is to examine how evolutionary algorithm can improve the controller 

performance by fine-tuning the membership functions associated with the fuzzy sets. 

Gaussian membership functions are used for the co-evolutionary algorithm. 
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Co-evolutionary algorithms (CEA) concept was introduced by D.W. Hills (Hills 1990) in a 

predator-prey model. In many cases, the CEA proved to be more efficient than conventional 

EA especially in complex multi-variable applications. The increased effectiveness of the 

CEA can be explained by the fact that the individuals in the population can either cooperate 

(in cooperative CEAs) or compete (in competitive CEAs) with other individuals in terms of 

their defined objectives.  

 

CEA differs from the conventional EA, which uses a single population, by employing two or 

more competing/cooperative populations using the common fitness function. Cooperative 

CEAs were proposed by M.A. Potter and K.A. De Jong (Potter and De Jong 1994).  They 

presented cooperative co-evolutionary genetic algorithms as a way of managing the 

increasing complexity in evolutionary problems. The search space increases exponentially 

with each additional element in the string representing an individual; the search space can be 

dramatically reduced by using multiple populations that each encodes only part of the 

complete solution. If there is only weak or no interdependence between the partial strings in 

different populations the narrower evolutionary focus does not adversely affect cooperative 

co-evolution, and it benefits from a reduced search space (Potter and De Jong 1994), (Potter 

and De Jong 1995), (Young and Stonier 2003). 

 

 In cooperative CEA the system is decomposed into a number of interacting component 

subsystems. All component subsystems evolve in parallel.  Just like with the hierarchical 

fuzzy system decomposition, the partial individuals that are to form co-evolutionary 

populations (subpopulations) are usually grouped to minimise interdependence between 

individuals from the created subpopulations.   

The idea behind cooperative co-evolution is to take a string of elements that completely 

specifies a solution and break it into smaller strings with each of the smaller strings encoding 

only part of the complete solution. Those partial strings are stored in different (genetically 

isolated) populations. Individuals in the same population are strings encoding the same part 

of the complete solution. Each population is then evolved by its own evolutionary algorithm 

mechanism, see (Pena-Reyes and Sipper 2001).  

Each individual in a co-evolutionary population encodes only part of the complete solution. 

Therefore, to evaluate the fitness value of any individual (potential solution) a representative 

from every co-evolutionary population is selected to recombine with the individual that is 
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evaluated. The recombined (complete) individual is then evaluated by a defined fitness 

function. The fitness value of the representatives is not evaluated at this point.   

In case of coevolving the membership functions properties two separate populations are 

defined that are coupled by the fitness function requiring strings from both populations for 

the fitness evaluation. In other words, an individual from the controller population needs to 

be matched with an individual from the membership functions population in order to evaluate 

fitness function, and vice versa.  

There are two different methods of selecting the representatives from the co-evolutionary 

populations: 

 Greedy: selection of the fittest individual. 

 Explorative: selection of a random individual. 

In Potter and De Jong‘s method (Potter and De Jong 1995) layers are added dynamically to a 

cascade neural network as required. Weicker‘s method (Weicker and Weicker 1999) takes an 

opposite approach: to start with an extreme decomposition (one variable per population) and 

merge populations as epistatic links become apparent between them (Potter and De Jong 

1994), (Potter and De Jong 1995), (Young and Stonier 2003). 

6.2 HFS topologies for co-evolutionary algorithm  

The architecture of the 3-layered HFS selected for the simulations is shown in Figure 3.13. 

This HFS structure has two input variables in the first layer then and one input variable in 

second and third layer of the 3-layered HFS. 

Two input configurations described in Chapter 3 and Chapter 5 are used for experiments with 

co-evolutionary algorithm: L-34-1-2 and L-34-2-1.  

6.3 Co-evolutionary algorithm 

A co-evolutionary algorithm is a version of the algorithm used in (Stonier and Zajaczkowski 

2004) to learn the fuzzy rules in the HFS with three knowledge bases and at the same time to 

learn the parameters for membership functions associated with the fuzzy system. 

In the evolutionary controller population every string is uniquely representing the hierarchical 

structure of the fuzzy system as described in Section 4.3. For co-evolutionary algorithm a 3-

layered HFS is selected that can be represented as a linear individual string of M = 25 + 35 + 

35 = 95 consequents,  (a1, ... , a95), where aj is an integer ∊ [1,7] for  j = 1, ... , 95.  
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The initial controller population P(0) = { : k = 1, ... , Mp }, is determined by choosing the aj 

as a random integer in [1,7], where Mp = 500 is the size of the evolutionary population. 

As in the EA described in Chapter 4 and Chapter 5, a new controller population P(t +1) is 

obtained from the old one by the use of genetic operators such as selection, crossover and 

mutation. Full replacement policy is implemented and requires that the population size 

remains constant from one generation to the next. Tournament selection with size nT  = 4 and 

a modified mutation operator is used. 

A method to evaluate fitness function for individuals in both co-evolutionary populations 

needs to be determined because it cannot be done directly as in classic evolutionary algorithm 

with one population only. An individual from the controller population needs to be matched 

with an individual from the MF population in order to evaluate fitness function, and vice 

versa. 

In the greedy version of the co-evolutionary algorithm each individual from the controller 

population is matched with the best individual of the MF population to evaluate the fitness 

function. Obviously, the best MF individual from the current population cannot be used (as 

their fitness values are not evaluated yet) but the best individual from the previous generation 

can be used instead. 

The same process is repeated by matching the best individual from controller population to 

evaluate the fitness function of the individual from the MF population. 

In the explorative version of the co-evolutionary algorithm a tournament selection is used: for 

any single individual from the controller population TN individuals are selected at random 

(tournament selection) from the MF population. Then fitness function is evaluated for that 

controller chromosome using each of the selected TN membership functions. The best fitness 

value is selected and assigned to the individual from the controller population. 

The evaluation of the fitness function of a given string in the controller population is 

described below. The membership functions for evaluation are chosen from the MF 

population using either greedy or explorative selection method. The fitness fk of a given string 

 in the controller population is evaluated as follows. Given an initial condition of the 

system each string  is decoded into three components defining the fuzzy knowledge base 

for each layer, then the Mamdani formula (see Equation 3.3) is used to evaluate u1 and u2 to 

find the final control u to be applied at each value of the state . Given an initial state the 
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system state equations are integrated by the Runge-Kutta algorithm (RK4) with step size 0.02 

over a time interval [0,T]. The fitness fk is then calculated according to Equation 4.1 and 4.2, 

see Section 4.5.1.  A penalty of 1000 is added to the objective function value if the final state 

leaves the designated TR. 

 Elitism policy is implemented with four copies of the ten top individuals in controller 

population passed to the next generation. Four copies of the best four individuals in MF 

population (sixteen copies altogether) are passed to the next generation. 

Random crossover of two parent strings to form two children in the next generation is used. 

Mutation is undertaken with probability pm whose value is determined by a mutation schedule 

that decreases from 0.8 to 0.001 over 300 generations. 

 if ( gen ≥ 0   & gen < 50  ) pm = 0.8 

 if ( gen ≥ 50  & gen < 100 ) pm = 0.7 

 if ( gen ≥ 100 & gen < 150 ) pm = 0.6 

 if ( gen ≥ 150 & gen < 200 ) pm = 0.3 

 if ( gen ≥ 200 & gen < 250 ) pm = 0.1 

 if ( gen ≥ 250 & gen < 300 ) pm = 0.01 

 if ( gen > 300) pm = 0.001 

 where gen denotes generation number.  

Each individual in the membership functions population represents the possible MFs 

definition for the control system. For the CEA with random initial population output variable 

MF centres are included in a chromosome in MF population. As five MFs cover the range of 

each input variables and seven MFs cover output variables range only three centres are 

needed to define five input MFs and five centres to define output membership functions.  

Therefore, a required chromosome length is:  

chromlMF = 3 + 3 + 3 + 3 + 5 = 17.   

MF chromosome is a linear array of blocks of three numbers representing centres of MFs for 

each of four input variables and output variable. The first three numbers describe MFs for the 

first input variable (here x3), next three numbers MFs for the second input variable (x4), etc. 

For the CEA with uniformly generated initial population only input variables MF centres are 

included in a chromosome in the MF population:  

  chromlMF = 3 + 3 + 3 + 3 = 12.  

Test simulations were run with full length of the MF chromosome for random and uniform 

initial MF population and it was found that the inclusion of output variable does not have a 
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significant effect on results of the CEA with uniform MF population. Therefore, the CEA 

with randomly generated initial MF population is run with the full length MF chromosome, 

and the CEA with uniformly generated initial MF population is run with MF chromosome 

without MF centres for the output variable (fixed MF centres for the output variable). 

The lower and upper boundaries for the MFs are defined below. For x1 and x2 the lower 

bound is LBMFx1x2  =  −2.0 and upper bound is UBMFx1x2 = 2.0. For x3 the lower bound is 

LBMFx3  =  −π /2.0 and upper bound is UBMFx3 =  π /2.0. For x4 the lower bound is LBMFx4  

=  −4.0 and upper bound is UBMFx4 = 4.0. Finally, for output variable y (that can be u1 , u2, 

or u) the lower bound is LBMFy  =  −15.0 and upper bound is UBMFy  = 15.0. 

For random initial MF population membership function centres are generated by random 

number generator within bounds specified above for each input and output variable. For 

uniform initial MF population membership function centres are evenly spaced within 

intervals defined by lower and upper bounds for each variable, see Table 6.1 and Table 6.2. 

Uniform initial MF population consists of identical individuals (i.e., Gaussian functions 

evenly spread over the range of each input and output variables) and then diversified in 

evolutionary process by crossover and mutation in consecutive populations. 

The initial MF population PMF(0) = {  : k = 1, … , MMF }, where MMF is the number 

of MF strings (the size of the MF population) and  : k = 1, … , MMF are MF 

chromosomes containing membership function centres. 

The same random crossover operator is used for the MF population (adjusted for real 

numbers that encode MF chromosome) as for the controller population. Mutation for the MF 

population is similarly undertaken with a mutation schedule that decreases from 0.4 to 0.001 

over 300 generations with typical form: 

 if ( gen ≥ 0   & gen < 50  ) pMFm = 0.4 

 if ( gen ≥ 50 & gen < 100  ) pMFm = 0.3 

 if ( gen ≥ 100 & gen < 150 ) pMFm = 0.2 

 if ( gen ≥ 150 & gen < 200 ) pMFm = 0.1 

 if ( gen ≥ 200 & gen < 250 ) pMFm = 0.05 

 if ( gen ≥ 250 & gen < 300 ) pMFm = 0.01 

 if ( gen > 300) pMFm = 0.001 

Mutation probability pd for each MF in a chromosome is decided by a flip of the coin to 

introduce strong mutation rate to reinforce diversity of the MF population (Michalewicz 

1994): 
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if (flip(0.5)) 

   pd = pMFm; 

 else 

   pd = 0.995; 

The MF mutation operator is defined by the following pseudo code: 

mutate = flip( pmutation ) // Flip the biased coin 

  if (mutate)     

     nmutation = nmutation + 1  

     poww = ((1.0 - pd) * (1.0 - pd)) 

     fact = 1.0 * (1.0 - power(MyRandom(), poww)) 

     if (flip(0.5)) 

         perturbation = fact * (lowerbound - alleleval) 

     else 

         perturbation = fact * (upperbound - alleleval) 

     temp = alleleval + perturbation  

   else 

     temp = alleleval 

where MyRandom() procedure generates a random number and power(x,y) calculates x
y
.  

The CEA is terminated at a fixed number of generations or allowed to continue until there is 

minimal change or no change to the string which has the best fitness. The fittest individual 

from each population is then taken as the best possible solution learnt by this algorithm. 

6.4 Experimental setup 

Ten simulations are run for each CEA version: 

 Explorative with uniform MF initial population. 

 Explorative with random MF initial population. 

 Greedy with uniform MF initial population. 

 Greedy with random MF initial population. 

6.4.1 Initial condition 

The initial state is: 0 (0.5, 0.0, 0.01, 0.0). 

6.4.2 Initial population 

The initial population has significant impact on the evolution of the knowledge base. 

Therefore a single run of the CEA resulting in a single controller should not be regarded as a 

sufficient representation of controllers for any particular topology. This is a reason each 
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variant of the CEA is run ten times to produce a representative sample. If the CEA does not 

produce a relatively uniform population at the end of the algorithm very different controllers 

are developed for the same topology. One way of dealing with this problem is careful fine-

tuning of the CEA parameters and large number of generations. 

6.4.3 Population size 

Controller population size is set at Mp = 200 and membership functions population at 50. 

6.4.4 Termination condition  

The algorithm is terminated after 500 generations. Usually, there is little or no change in the 

minimum value of the objective function in the following generations.  

6.4.5 Fitness function 

The fitness function positive weights are selected as: ω1 = 3000, ω2 = 2000, ω3 = 0, ω4 = 0, ω5 

= 5000.  

6.4.6 Membership functions 

The shape of Gaussian membership functions is varied, see Equation 3.2, by decreasing the 

value of the stretching coefficient from d = 10.0, gradually to d = 0.01; d = 10.0, d = 5.0, d = 

1.0, d = 0.1, to d = 0.01, which has the effect of widening the shape of the Gaussian curve. 

Simulations for all versions of the co-evolutionary algorithm are run to examine the effect of 

the wider MFs on the results. 

6.5 Computer simulations 

To illustrate the controller performance some of the best performing and some typical 

controllers from ten simulation results for every version of the co-evolutionary algorithm. 

Inclusion of output variable MF centres in MF chromosomes does not have any significant 

effect on the resulting control system. The initial MF population has much more impact on 

the resultant control system. There is a significant difference in control system and MF 

centres distribution between the CEA that uses uniform and randomly generated initial MF 

population. The CEA starting from a uniform population generally produces better 

performing controllers. However, in most cases, in spite of their differences, the controllers 

perform in a very similar fashion, i.e., having similar control time history and the character of 

state variables convergence. The MFs centres resulting from the CEA with uniform MF 



 

123 
 

population change very little from their original definitions and better results from such 

CEAs suggest that control system performs better with evenly spaced membership functions. 

6.5.1 Uniform initial population 

For the CEA that starts with uniform initial MF population the results are similar for most 

simulations. Controller performance is smooth and after initial jump in magnitude of control 

the control magnitude quickly approaches zero value. 

The best explorative algorithm results with uniform initial MF population for topology L-34-

2-1 are shown in Figure 6.1 – Figure 6.4. Best results for controller with topology L-34-1-2 

are shown in Figure 6.5 – Figure 6.8. Best greedy algorithm results with uniform initial MF 

population for topology L-34-2-1 are shown in Figure 6.9 – Figure 6.12. The best greedy 

algorithm results with uniform initial MF population for topology L-34-1-2 are shown in 

Figure 6.13 – Figure 6.16. 

6.5.2 Random initial population 

Generally, for the explorative algorithm with random MF initial population, controller 

performance with topology L3-34-2-1 is good. The best explorative results with random 

initial MF population are shown in: Figure 6.17 – Figure 6.20. 

In the second and seventh simulation a smooth and regular convergence of state variables is 

achieved, which indicates high performance of the control system. Magnitude of control is 

very low after initial effort to stabilise the system - it settles very quickly to values close to 

the origin. In the sixth simulation a very quick convergence of state variables is achieved. 

Magnitude of control is low after initial effort to stabilise the system. 

For the explorative algorithm with random MF initial population, the best results for the 

controller with topology L3-34-1-2 are shown in Figure 6.21 – Figure 6.24. For the greedy 

algorithm with random MF initial population, the controller performance with topology L3-

34-2-1 is shown in Figure 6.25 – Figure 6.28. In general there is not much difference between 

results from the explorative and greedy versions of the CEA with random initial population 

algorithms. For the greedy algorithm with random MF initial population, topology L3-34-1-2, 

good controller performance is in Figure 6.29 – Figure 6.32.  
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6.5.3 Widening the shape of Gaussian membership functions 

The shape of the membership functions has significant effect on the CEA performance. 

Wider Gaussian functions result in deterioration in the CEA performance with most 

simulations failing to converge for d = 0.1 and d = 0.01. Narrower MFs produce better 

results. A possible explanation can be found in (Wang 1997) where the author remarks that σ 

parameter (standard deviation) usually is found by trial-and-error method and that large σ can 

smooth out noisy data, while small σ can make the system as nonlinear as is required to 

approximate closely the training data. Indeed, by taking a bigger value of stretching 

coefficient d the value of standard deviation σ decreases. 

6.5.4 Non-overlapping Gaussian membership functions 

The effect of non-overlapping MFs on the controller performance is examined in a series of 

experiments. Each MF is cut at the ends of the interval it is defined on and has zero values 

outside that interval (no overlap between membership functions). For MFs defined in such a 

way the simulations results with initial uniform MF population are very poor. 

Apparently a combination of this kind of initial population and cut-off Gaussian membership 

functions had a dramatic effect on the controller performance. In many cases the CEA fails to 

converge to a desired solution, i.e., effective controller. 

The simulations with randomly generated initial populations produce much better results 

indicating that the cut-off MFs do not have much effect on the CEA performance. The results 

are similar to the ones achieved with overlapping membership functions. 
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Figure 6.1 Explorative, uniform population, topology L3-34-2-1, simulation 4, state variables 

xk, k = 1, … , 4. 

 

 

Figure 6.2 Explorative, uniform population, topology L3-34-2-1, simulation 4, control u. 
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Figure 6.3 Explorative, uniform population, topology L3-34-2-1, simulation 8, state variables 

xk, k = 1, … , 4. 

 

 

Figure 6.4 Explorative, uniform population, topology L3-34-2-1, simulation 8, control u. 
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Figure 6.5 Explorative, uniform population, topology L3-34-1-2, simulation 5, state variables 

xk, k = 1, … , 4. 

 

 

Figure 6.6 Explorative, uniform population, topology L3-34-1-2, simulation 5, control u. 
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Figure 6.7 Explorative, uniform population, topology L3-34-1-2, simulation 10, state 

variables xk, k = 1, … , 4. 

 

 

Figure 6.8 Explorative, uniform population, topology L3-34-1-2, simulation 10, control u. 
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Figure 6.9 Greedy, uniform population, topology L3-34-2-1, simulation 4, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.10 Greedy, uniform population, topology L3-34-2-1, simulation 4, control u. 
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Figure 6.11 Greedy, uniform population, topology L3-34-2-1, simulation 8, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.12 Greedy, uniform population, topology L3-34-2-1, simulation 8, control u. 
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Figure 6.13 Greedy, uniform population, topology L3-34-1-2, simulation 3, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.14 Greedy, uniform population, topology L3-34-1-2, simulation 3, control u. 
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Figure 6.15 Greedy, uniform population, topology L3-34-1-2, simulation 10, state variables 

xk, k = 1, … , 4. 

 

 

Figure 6.16 Greedy, uniform population, topology L3-34-1-2, simulation 10, control u. 
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Figure 6.17 Explorative, random population, topology L3-34-2-1, simulation 2, state 

variables xk, k = 1, … , 4. 

 

 

Figure 6.18 Explorative, random population, topology L3-34-2-1, simulation 2, control u. 
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Figure 6.19 Explorative, random population, topology L3-34-2-1, simulation 7, state 

variables xk, k = 1, … , 4. 

 

 

Figure 6.20 Explorative, random population, topology L3-34-2-1, simulation 7, control u. 
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Figure 6.21 Explorative, random population, topology L3-34-1-2, simulation 5, state 

variables xk, k = 1, … , 4. 

 

 

Figure 6.22 Explorative, random population, topology L3-34-1-2, simulation 5, control u. 
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Figure 6.23 Explorative, random population, topology L3-34-1-2, simulation 8, state 

variables xk, k = 1, … , 4. 

 

 

Figure 6.24 Explorative, random population, topology L3-34-1-2, simulation 8, control u. 
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Figure 6.25 Greedy, random population, topology L3-34-2-1, simulation 2, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.26 Greedy, random population, topology L3-34-2-1, simulation 2, control u. 
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Figure 6.27 Greedy, random population, topology L3-34-2-1, simulation 3, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.28 Greedy, random population, topology L3-34-2-1, simulation 3, control u. 
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Figure 6.29 Greedy, random population, topology L3-34-1-2, simulation 3, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.30 Greedy, random population, topology L3-34-1-2, simulation 3, control u. 
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Figure 6.31 Greedy, random population, topology L3-34-1-2, simulation 5, state variables xk, 

k = 1, … , 4. 

 

 

Figure 6.32 Greedy, random population, topology L3-34-1-2, simulation 5, control u. 
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6.5.5 Gaussian membership functions: computer simulations 

Membership functions centres for uniform initial MF population are given in Table 6.1 and 

Table 6.2. These values are chosen arbitrarily and can be compared to the MF centres 

generated by the CEA in selected simulations. 

Table 6.1 MF centres for uniform initial MF population: input variables. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -1.0 0.0 1.0 2.0 

x2 -2.0 -1.0 0.0 1.0 2.0 

x3 -1.5707963 -0.78539815 0.0 0.78539815 1.5707963 

x4 -4.0 -2.0 0.0 2.0 4.0 

where c1,c2,..., c5 denote centres of the membership functions. 

Table 6.2 MF centres for uniform initial MF population: output variable. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 

 

In the following tables membership functions centres are shown as found by the CEA. The 

major differences are found between results of CEA with uniform and CEA with randomly 

generated initial MF population. 

Table 6.3 MF centres for L-34-2-1 explorative, uniform initial MF population: sim. no 4. 

MF  c1 c2 c3 c4 c5 

x1 -2.0 -0.999987 -0.349197 0.999976 2.0 

x2 -2.0 -0.755659 0.000054 0.999914 2.0 

x3 -1.5707963 -0.785355 -0.000025 0.785264 1.5707963 

x4 -4.0 -2.000062 -0.000284 1.965566 4.0 
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Figure 6.33 Membership functions for explorative, uniform population, topology L3-34-2-1, 

simulation 4, x1. 

 

 

 

Figure 6.34 Membership functions for explorative, uniform population, topology L3-34-2-1, 

simulation 4, x2. 
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Figure 6.35 Membership functions for explorative, uniform population, topology L3-34-2-1, 

simulation 4, x3. 

 

 

 

Figure 6.36 Membership functions for explorative, uniform population, topology L3-34-2-1, 

simulation 4, x4. 
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Table 6.4 MF centres for L-34-2-1 explorative, uniform initial MF population, sim. no 8. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.999761 -0.476308 0.966232 2.0 

x2 -2.0 -0.999745 0.000074 0.999943 2.0 

x3 -1.5707963 -0.785398 -0.000015 0.649385 1.5707963 

x4 -4.0 -2.248928 -0.000061 1.999595 4.0 

 

Table 6.5 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 5. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -1.000000 0.191510 0.191510 2.0 

x2 -2.0 -1.000000 -0.190039 0.999810 2.0 

x3 -1.5707963 -0.727477 -0.000005 0.785352 1.5707963 

x4 -4.0 -2.911787 -0.000162 1.999668 4.0 

 

Table 6.6 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 10. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.951743 -0.000083 0.468950 2.0 

x2 -2.0 -0.999813 -0.112785 0.999956 2.0 

x3 -1.5707963 -0.785278 -0.004262 0.785277 1.5707963 

x4 -4.0 -2.863850 -0.004846 1.999147 4.0 
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Table 6.7 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 4. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.242209 0.330845 0.999604 2.0 

x2 -2.0 -0.524521 0.118957 0.806073 2.0 

x3 -1.5707963 -0.785256 0.000162 0.785324 1.5707963 

x4 -4.0 -2.325819 0.000509 2.000036 4.0 

 

Table 6.8 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 8. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.741330 -0.238746 0.687604 2.0 

x2 -2.0 -0.999952 0.419326 0.999608 2.0 

x3 -1.5707963 -0.785020 0.000034 0.785167 1.5707963 

x4 -4.0 -1.992406 -0.248836 2.677708 4.0 

 

Table 6.9 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 3. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.986411 -0.865216 -0.206337 2.0 

x2 -2.0 -0.526121 0.190813 0.228068 2.0 

x3 -1.5707963 -0.643332 -0.042579 0.709030 1.5707963 

x4 -4.0 -2.782232 -0.463713 2.544888 4.0 
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Table 6.10 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 10. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.929495 0.179905 0.999581 2.0 

x2 -2.0 -0.821071 -0.471415 0.999901 2.0 

x3 -1.5707963 -0.617001 -0.251729 0.402342 1.5707963 

x4 -4.0 0.302217 1.524897 2.949449 4.0 

 

Table 6.11 MF centres for L-34-2-1 explorative, random initial MF population, input 

variables, sim. no 2. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.4746 0.49005 0.67679 2.0 

x2 -2.0 -0.790297 0.995587 0.99977 2.0 

x3 -1.5707963 0.121182 0.273279 0.52306 1.5707963 

x4 -4.0 -2.105933 -1.726494 2.996628 4.0 

 

Table 6.12 MF centres for L-34-2-1 explorative, random initial MF population, sim. no 2.   

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -10.894 -0.018 7.896 10.848 12.226 15.0 

 

Table 6.13 MF centres for L-34-2-1 explorative, random initial MF population, input 

variables, sim. no 7. 

MF c1 c2 c3 c4 c5 

x1 -2.0 0.770300 0.770300 0.972722 2.0 

x2 -2.0 -0.986932 -0.979073 0.999532 2.0 

x3 -1.5707963 -0.283689 0.512616 0.519055 1.5707963 

x4 -4.0 -1.872221 2.459921 2.967251 4.0 
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Table 6.14 MF centres for L-34-2-1 explorative, random initial MF population, output 

variable, sim. no 7. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -12.986 -5.961 -0.169 11.411 11.503 15.0 

 

Table 6.15 MF centres for L-34-1-2 explorative, random initial MF population, input 

variables, sim. no 5. 

MF c1 c2 c3 c4 c5 

x1 -2.0 0.467513 0.967171 0.984325 2.0 

x2 -2.0 0.903821 0.999520 0.999616 2.0 

x3 -1.5707963 -0.499339 -0.173375 0.222275 1.5707963 

x4 -4.0 -1.851142 -1.200847 0.247133 4.0 

 

 

Figure 6.37 Membership functions for explorative, random population, topology L3-34-1-2, 

simulation 5, x1. 
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Figure 6.38 Membership functions for explorative, random population, topology L3-34-1-2, 

simulation 5, x2. 

 

 

 

Figure 6.39 Membership functions for explorative, random population, topology L3-34-1-2, 

simulation 5, x3. 
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Figure 6.40 Membership functions for explorative, random population, topology L3-34-1-2, 

simulation 5, x4. 

 

 

 

Figure 6.41 Membership functions for explorative, random population, topology L3-34-1-2, 

simulation 5, output variable u. 
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Table 6.16 MF centres for L-34-1-2 explorative, random initial MF population, output 

variable, sim. no 5. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -2.912 0.590 7.270 12.429 12.944 15.0 

 

Table 6.17 MF centres for L-34-1-2 explorative, random initial MF population, input 

variables, sim. no 8. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.779265 -0.340181 0.939943 2.0 

x2 -2.0 -0.256899 -0.024240 0.650496 2.0 

x3 -1.5707963 0.254259 0.522811 0.522922 1.5707963 

x4 -4.0 -2.806648 -1.628743 0.470980 4.0 

 

Table 6.18 MF centres for L-34-1-2 explorative, random initial MF population, output 

variable, sim. no 8. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -3.212 -1.046 -0.457 4.844 9.916 15.0 

 

Table 6.19 MF centres for L-34-2-1 greedy, random initial MF population, input variables, 

sim. no 2. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.999944 -0.963702 0.999855 2.0 

x2 -2.0 -0.786511 -0.568970 0.995108 2.0 

x3 -1.5707963 0.069727 0.367798 0.523443 1.5707963 

x4 -4.0 -1.199057 -0.287595 2.999328 4.0 

 

Table 6.20 MF centres for L-34-2-1 greedy, random initial MF population, output variable, 

sim. no 2. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -8.006 -5.253 7.034 8.571 9.943 15.0 
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Table 6.21 MF centres for L-34-2-1 greedy, random initial MF population, input. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.992531 -0.930294 0.999251 2.0 

x2 -2.0 -0.885832 0.499797 0.833121 2.0 

x3 -1.5707963 0.331195 0.450526 0.522577 1.5707963 

x4 -4.0 -1.699458 1.593186 2.899929 4.0 

 

Table 6.22 MF centres for L-34-2-1 greedy, random initial MF population, output variable, 

sim. no 3. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -12.831 -1.955 1.770 12.144 12.555 15.0 

 

Table 6.23 MF centres for L-34-1-2 greedy, random initial MF population, input variables, 

sim. no 3. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.537982 0.887288 0.997506 2.0 

x2 -2.0 -0.955511 -0.430739 0.987376 2.0 

x3 -1.5707963 -0.478354 0.458689 0.484029 1.5707963 

x4 -4.0 -1.456939 1.977950 2.923114 4.0 

 

Table 6.24 MF centres for L-34-1-2 greedy, random initial MF population, output variable, 

sim. no 3. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -12.494 -9.998 1.270 7.952 12.219 15.0 
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Table 6.25 Memb. Funct. centres for L-34-1-2 greedy, random initial MF population, input 

variables, sim. no 5. 

MF c1 c2 c3 c4 c5 

x1 -2.0 -0.972411 -0.033781 0.998627 2.0 

x2 -2.0 0.840976 0.895264 0.986912 2.0 

x3 -1.5707963 0.522430 0.523169 0.523427 1.5707963 

x4 -4.0 -2.791375 0.503425 1.041765 4.0 

 

Table 6.26 MF centres for L-34-1-2 greedy, random initial MF population, output variable, 

sim. no 5. 

MF c1 c2 c3 c4 c5 c6 c7 

y -15.0 -12.999 -10.974 -0.822 1.327 1.981 15.0 

 

 

Figure 6.42 Membership functions for greedy, random population, topology L3-34-1-2, 

simulation 5, x1. 
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Figure 6.43 Membership functions for greedy, random population, topology L3-34-1-2, 

simulation 5, x2. 

 

 

Figure 6.44 Membership functions for greedy, random population, topology L3-34-1-2, 

simulation 5, x3. 
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Figure 6.45 Membership functions for greedy, random population, topology L3-34-1-2, 

simulation 5, x4. 

 

 

Figure 6.46 Membership functions for greedy, random population, topology L3-34-1-2, 

simulation 5, output variable u. 
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As can be seen from the tables and diagrams illustrating MF centres distribution, the 

membership functions that are generated by the CEA with random initial MF population 

show tendency to cluster within their pre-defined intervals. Occasionally, membership 

function centres cluster very closely, for example MFs for x1 and x2, see Table 6.15 and Table 

6.25. One possible explanation for membership functions clustering effect is that they tend to 

cluster in the regions of state space where the magnitude of control is changing rapidly to 

stabilise the system. Detailed investigation of state trajectories should give more clues to 

explain this phenomenon. 

The membership function centres found by the CEA with the uniform initial MF population 

are usually similar to their original definitions in the initial population, i.e., they change little 

in the evolutionary process. 

 

Summary 

In this chapter a hierarchical fuzzy controller is designed, which gives improved performance 

for the control of the inverted pendulum using a co-evolutionary algorithm to fine tune 

parameters of the input and output sets membership sets in each layer as well as learn a 

complete set of fuzzy rules in the fuzzy knowledge base.  

Different versions of the co-evolutionary algorithm are investigated: explorative and greedy. 

Furthermore, the impact of initial membership functions population on the controller 

performance is investigated. The membership functions population is either randomly 

generated or initial membership functions are evenly spaced across input and output variables 

domains. The effect of different Gaussian function shapes on the controller performance is 

briefly discussed. 
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Chapter 7 EVOLUTIONARY ALGORITHM BASED 

COMPOSITIONAL METHOD 
 

7.1 Introduction 

In previous chapters, the EA has been used to develop the rule base to control the system to 

the target region from a single initial condition. Obviously, this procedure can be repeated for 

any other initial condition but that would be impractical approach to the real-life applications. 

The controller developed for a single initial condition may or may not control the system 

from a different initial condition. Therefore, a different approach is required to address the 

problem of controllability region.  

A new evolutionary algorithm based compositional method is proposed to control system 

over the set of user-defined initial conditions. The method addresses directly the problem of 

controlling the system from specific, user-defined initial conditions. In many practical 

applications there is no necessity to secure controllability over the large region in the state 

space, which is often difficult to achieve. Instead, a selected region of the state space, or even 

specific initial conditions can be considered. 

The problem of designing hierarchical fuzzy control over a set of initial conditions can be 

investigated by two methods:  amalgamation or compositional. The amalgamation method 

develops a fuzzy rule base for every initial condition in the user-defined region of state space 

separately and then amalgamates them into a single knowledge base.  Usually a regular grid 

of initial conditions is used to cover the region in the state space for which a control system is 

to be developed. Different initial conditions create different dynamical conditions for the 

system. In the inverted pendulum case that means different initial pole angles and angular 

velocities, different cart position and cart‘s velocity. Therefore, corresponding linguistic 

variable values are also diametrically different. In amalgamation method every initial 

condition is considered separately and the EA searches for a controller just for this particular 

condition. Every initial condition reflects a specific initial dynamics of the system and 

therefore the resulting control system can be diametrically different from other controllers 

developed for different initial conditions. For the inverted pendulum, the output linguistic 

variable takes integer values in [1,7]. After amalgamation the resulting control values are 

usually meaningless arithmetic average: either 3 or 4. The experiments with the 
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amalgamation method did not produce a successful result. Amalgamation method based on 

averaging the fuzzy rules for better performance and larger control region does not seem 

feasible. This fact is examined in a different series of experiments. It is possible that specific 

tuning of the evolutionary algorithm would produced more homogenous knowledge bases but 

at this point it is a mere speculation. Therefore amalgamation method to find an ‗averaged‘ 

controller (that would cover different initial populations and different initial conditions) fails, 

giving in result just an arithmetical average of the linguistic variables encoded as integer 

numbers ∊ [1,7] that does not stabilise the system. Amalgamation method might give good 

results for a set of initial conditions that do not generate diametrically different dynamics in 

the system, i.e., for a set of initial conditions representing similar dynamical conditions of the 

physical system.  

An alternative to amalgamation method approach is to let the evolutionary algorithm learn 

the ‗final‘ knowledge base by itself. This approach is called the compositional method. The 

learning of the knowledge base is achieved by evaluating the fitness of an individual at an 

arbitrary configuration within the pre-defined set of initial configurations in each generation. 

This local knowledge is then inherently learned from generation to generation in the 

evolution of the EA (Mohammadian and Stonier 1996a), (Stonier 1999). 

A set of 255 initial conditions in the state space (that is viable in terms of the inverted 

pendulum dynamics) is defined for experiments with the compositional method, see 

Appendix for the explicit values of initial conditions. Usually, only static initial conditions 

are considered for the inverted pendulum: the cart‘s position and the angle of the pole. In this 

investigation also dynamic initial conditions of the system are considered: the initial cart‘s 

velocity and the angular velocity of the pole. Thus, this constitutes a more comprehensive 

investigation of the initial conditions for the inverted pendulum system. The goal in this 

investigation is to achieve control to the target region from as many initial conditions as 

possible. 

7.2 Evolutionary algorithm based compositional method 

Basic features of the compositional method can be summarised in the following points: 

 Evolutionary algorithm based compositional method searches for a controller over the 

whole set of initial conditions at every generation.   

 Fitness of each individual reflects the controller performance for every initial 

condition in the set.  
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 Every string in the population is assigned the fitness value which is a composite value 

representing string's performance for every single initial condition in the user-defined 

set.  

7.2.1 Hierarchical fuzzy system for compositional method 

The development of the compositional method is based on the example of the inverted 

pendulum system (as the test system). However, the algorithm can be applied to a wide range 

of the HFS with suitable replacements (system dynamics, hierarchical structure, population 

encoding, objective functions definitions, etc). The HFS selected for the inverted pendulum 

system is the 3-layered topology L3-34-2-1 that is a good compromise between controller 

performance and the size of the knowledge base. Mamdani product and minimum inference 

engine are used in computer simulations, see Equation 3.3 and 3.4 respectively.  

7.2.2 Defining evolutionary population 

Each fuzzy rule in any of the HFS knowledge bases is uniquely defined by the consequent 

part that is associated with a particular output fuzzy set, for example B
k
, identified by the 

integer k ∊ [1,7], see Section 4.3 for details. The three fuzzy rule base structure is represented 

as a linear individual string of M = 95 elements and the evolutionary population is defined as 

the set of Mp individuals: P = { :   (a1, ... , a95), k = 1, ... , Mp,   aj  ∊ {1, ... , 7}  }. 

7.2.3 Fitness function 

Assume that there are Nc initial conditions in the user-defined set of initial conditions. To 

evaluate the objective function value for a given string  from the controller population first 

the objective function values fi , i = 1, ... , Nc,  are evaluated for every single initial condition. 

Then overall objective function value f is determined from the values fi, i = 1, ... , Nc,  

calculated for every single initial condition.  

The fitness for a single initial condition is evaluated as follows: each string  is decoded into 

three components defining the fuzzy knowledge base for each layer, then the Mamdani or 

minimum inference formula is used to evaluate u1, u2, and u to find the final control to be 

applied at each value of the state . The system state equations are integrated by the Runge-

Kutta algorithm (RK4) with step size 0.02 over time interval [0,T]. The fitness fi is then 

calculated based on the behaviour of the system over the time interval, see Equations 4.1 and 

4.2.  
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Then overall objective function value is determined from the fi values (calculated for every 

single initial condition) and assigned to the string  as its objective value.  The choice of 

fitness function evaluation method based on fitness values for every initial condition decides 

of effectiveness of the compositional method and therefore plays a crucial role. For this 

experiment with the EA based compositional method, a simple evaluation method is defined: 

the fitness function is evaluated as arithmetic average over all fitness values fi , i = 1, ... , Nc, 

calculated for every single initial condition and then assigned to a particular string in 

controller population. This is not an ideal choice – it may happen that only for a few initial 

conditions fitness function value is low and those initial conditions distort the average fitness 

value even though the rest of the initial conditions may give high fitness function values 

which is undesirable (minimisation problem).  

f  =                                                                                                         (7.1) 

A penalty is added to the objective if the final state breaks the following bounds: | | ≤ 0.1, 

| | ≤ 0.1, | | ≤ π/24, | | ≤ 3.0, i.e., leaves the designated TR. Two penalties schedules are 

tested, penalty schedule-A and penalty schedule-B, see Section 4.5.2. To test the influence of 

penalty schedules a number of simulations are run with and without any penalty schedule. 

7.2.4 Membership functions 

Another method to increase accuracy and achieve better performance from control system is 

to increase the number of membership functions covering input and output variables. This, 

however, increases the size of the knowledge base and therefore with larger number of rules 

to be learned the computation time is longer.  

7.2.5 Crossover and mutation  

The crossover operation maintains the diversity in the population. For this reason the choice 

of the crossover operator often plays a crucial role in the successful application of the EA. 

Too disruptive crossover procedure may cause extended number of generations before 

achieving convergence or can cause the EA to fail to find a solution at all. The right selection 

of the crossover operator is case dependant and crossover operator that performed 

successfully in one application may fail in another. For testing the compositional method 

random, arithmetic, and uniform crossover of two parent strings to form two children in the 

next generation are used.  
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Another mechanism of maintaining population diversity is mutation operator. It has also a 

role in preventing pre-mature convergence to a local minimum (or maximum, depending on 

the problem formulation). With a given probability, the mutation operator mutates elements 

of the strings in the population. Mutation is undertaken with probability pm whose value is 

determined by a mutation schedule that decreases typically from 0.8 to 0.001 over 1000 

generations. Below is the typical mutation schedule used in the simulations:  

 if ( gen ≥ 0   & gen < 100 ) pm = 0.8 

 if ( gen ≥ 100 & gen < 200 ) pm = 0.7 

 if ( gen ≥ 200 & gen < 300 ) pm = 0.6 

 if ( gen ≥ 300 & gen < 400 ) pm = 0.4 

 if ( gen ≥ 400 & gen < 500 ) pm = 0.2 

 if ( gen ≥ 500 & gen < 600 ) pm = 0.1 

 if ( gen ≥ 600 & gen < 800 ) pm = 0.01 

 if ( gen > 800) pm = 0.001 

 where gen denotes the generation number. The mutation operator is defined by the pseudo-

code given in Section 4.4. 

7.2.6 Overview of the algorithm 

The EA is used to learn fuzzy rules in the HFS that constitutes a control system for the 

inverted pendulum.  A schematic EA algorithm in its general form, applicable to a wide range 

of dynamical systems, is given below: 

1. EA parameters are selected: type of inference engine, crossover, mutation schedule, 

selection method, elitism, fitness function (with or without a penalty schedule), and 

termination condition ( i.e. number of generations or lack of significant change in the 

state vector). 

2. Population P(t), t = 0, is randomly initialised: every component of individual string is 

given a randomly selected value from a predefined interval. Objective functions are 

evaluated for the first generation P(0). 

3. t = t + 1: next generation is created using EA operators:  selection, crossover, 

mutation.   

4. Individual from the population is selected.   

5. Initial condition is selected from the predefined list.  

6. Dynamical system is simulated from a given initial condition.  

7. Final state of state variables and survival time are determined.  
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8. Based on values from the previous step temporary fitness function value is evaluated 

for an individual. Penalties are added to the fitness value (if penalty schedule is 

defined).  

9. Steps 5— 8 are repeated until all system simulations for every initial condition in the 

list are performed.  

10. Average of all temporary fitness values is calculated and assigned to the individual as 

its fitness.  

11. Steps 4—10 are repeated until all individuals in the population have their fitness 

evaluated.  

12. Steps 3—11 repeated until the termination condition is satisfied.  

13. Final control system is determined by either selecting the top individual or by 

averaging a pre-defined number of Ntop best (with regard to the objective function) 

individuals from the final population. Its performance is evaluated by running a 

simulation of the dynamical system for all initial conditions and counting initial 

conditions for which the final state variables are within the target region.  

 

               

EA parameters selection: inference engine, crossover, mutation, selection method, elitism, obj. functions.

Population P(0) is randomly initialised. Objective functions are evaluated for all individuals in P(0).

Next generation is created using EA operators t = t + 1

Individual from the population PS1(t) is selected

Initial condition is selected from the predefined set. 

The system is simulated from a given init. cond. Final state vector is determined. 

Obj. functions values are evaluated for an individual in population PS1(t) for 
every init. cond.

An average over all initial conditions is calculated for each obj. function and 
assigned to the individual. 

Final control system is given by any individual from the Pareto set. Its performance is evaluated by running a 
simulation of the system for all initial conditions and counting initial conditions for which the final state 

variables are within the target region TR. 

Termination 
condition

 

Figure 7.1 EA based compositional method block diagram. 
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7.3. Experimental setup 

The proposed method is implemented and the experiments are conducted. The goal of 

experiments is to find the optimal combination of EA parameters that would result in finding 

fuzzy rules capable of successfully controlling the inverted pendulum system to the target 

area from a large number of user-defined initial conditions.   

In all simulations the uniform crossover (some simulations were run with the random and 

arithmetic crossover) and mutation schedule described in Section 7.2.5 are used. 

7.3.1 Initial conditions 

A set of regularly interspaced 255 initial conditions is defined within the region given by: | | 

≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0. The table of initial conditions is shown in the 

Appendix. 

7.3.2 Initial population 

The initial population P(0) = { :  k = 1, ... , Mp }, is determined by choosing the aj as a 

random integer ∊ [1,7] where Mp is the size of the evolutionary population.  Full replacement 

policy is used and for selection process tournament selection with size  = 4 is used. 

7.3.3 Population size 

The population size is set at Mp = 500. Smaller population size is often sufficient but with the 

decreasing population size it is difficult for the EA to maintain the required diversity in 

population to avoid pre-mature convergence to the local minimum. 

7.3.4 Termination condition  

The EA is terminated after 1000 generations as it was found that the algorithm either finds 

solution in about 300—800 generations or fails regardless of how many generations follow. 

7.3.5 Elitism 

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest 

individual to the new population, so that the information encapsulated in the best individual is 

not lost and the fittest individuals are passed into the next generation. In most simulations a 

strong elitism policy is implemented with four copies of the ten top individuals (forty copies 

altogether) passed to the next generation.  
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7.3.6 Fitness function 

A fitness function given in Section 7.2.3, and by Equations 4.1, 4.2, and 4.3 is used in all 

experiments. The fitness function is adjusted to allow the EA a better selection of possible 

solutions.  By selecting some of ω weights to zero the fitness function can be manipulated to 

achieve a better performance for the control system.  The weights in the fitness function are 

adjusted in several simulations. The most commonly used sets of ω parameters are:  

ω1 = 1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000;   

ω1 = 0, ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 1;   

ω1 = 1000, ω2 = 100, ω3 = 1000, ω4 = 100, ω5 = 3000.   

Changing the weights ω in fitness function had a significant impact on the EA performance. 

In fact, the fifth component of the fitness function ω5 (survival time) implicitly contains all 

other components but by specifying them separately the EA process is influenced, i.e., 

smaller or bigger bias towards one or another component is introduced.  

7.4 Computer simulations 

More than 130 simulations were run to find the right combination of EA parameters that 

would result in finding fuzzy rules capable of successfully controlling the inverted pendulum 

system to the target area from a large user-defined of initial conditions.  The controller acted 

on the inverted pendulum for = 20.0s.  The results are illustrated on a few typical examples.  

7.4.1 Amalgamated controller 

Amalgamated controller is tested: top ten control strings from the final population is 

amalgamated into one final controller. The amalgamation is achieved by taking arithmetic 

average of corresponding components in ten controller strings; every element of the 

controller string represents values of the linguistic output variable.  Because top ten strings 

from the controller population do not differ significantly (and often there is little difference if 

any) the resulting controller string is not much different from the single top controller string. 

Had the differences been more pronounced (corresponding string elements differing in value 

significantly) the amalgamated controller would not succeed in controlling the system to the 

TR from a large number of initial conditions. This can be seen as a trade-off between 

controllability region and quality of control; for an increase in controllability region the 

quality of control for the remaining region is much lower.  With the controller defined as a 

single top string from the final population control is always maintained, i.e, the trajectories 

converge if not to the target area than relatively close to it.  Furthermore, as a side-effect of 
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controller amalgamation, the convergence of the state variables is much slower, especially for 

the cart‘s position x1 and its velocity x2   Example of amalgamated controller performance is 

shown in Figure 7.2 and Figure 7.3 for randomly selected initial condition no 4:  0 = (−0.75, 

−1.0, −0.2617, 1.0 ) and:  ω1 = 0, ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 1.  Minimum inference engine, 

uniform crossover, and no penalty schedule is used.  The inverted pendulum system is 

controlled successfully to the target area from 195 initial conditions out of 255, which 

constitutes 76% success rate. 

 

Figure 7.2 Amalgamated controller: State variables convergence, minimum inference engine, 

uniform crossover, no penalty schedule, init. cond. 4. 
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Figure 7.3 Amalgamated controller, init. cond. 4. 

 

7.4.2 Typical results 

Regardless of what combination of the EA parameters is used, in most simulations the 

percentage of initial conditions for which controller successfully controlled the system to the 

TR varied from about 40% to 60%, with a bulk of simulations achieving below 50% success 

rate. In many simulations the number of initial conditions from which the controller 

performance is satisfactory oscillated around 100 (out of 255). This trend might reflect the 

nature of the inverted pendulum dynamics. It was observed that even though for some initial 

conditions the state variables did not converge to the TR the final state variables values were 

very close to the TR. Typical result is illustrated in Figure 7.4 and Figure 7.5 for randomly 

selected initial condition no 88: 0 = (−0.35, −0.5, −0.1308, 1.0) and: ω1 = 1000, ω2 = 0,      

ω3 =1000, ω4 = 0, ω5 = 3000.  In this simulation minimum inference engine, random 

crossover, and penalty schedule-A in fitness function are used.  
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Figure 7.4 Typical result: State variables convergence, minimum inference engine, random 

crossover, penalty schedule-A, init. cond. 88. 

 

 

Figure 7.5 Typical result: controller, init. cond. 88. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-2

0

2

4

6

8

10

12

u



 

167 
 

7.4.3 Good convergence of state variables 

In series of experiments the performance of the product inference engine in the fuzzy control 

system is tested.  It was observed that, on average, product inference engine provided fast and 

smooth convergence of the state variables to the TR but at the cost of the size of 

controllability region. Minimum inference engine produced better results in terms of larger 

number of initial conditions from which the controller successfully controlled the system to 

the TR. Very good state variables convergence is achieved for a simulation with Mamdani 

inference engine (see Equation 3.3), uniform crossover, and no penalty schedule, but only for 

99 out of 255 initial conditions. All state variables converged quickly to zero, except with 

values remaining about 0.04 from the origin. A typical result for this simulation is shown in   

Figure 7.6 and Figure 7.7 for randomly selected initial condition no 122: 0 = (−0.75, −1.0, 

−0.2617, −1.0 ) and:  ω1 = 3000, ω2 = 100, ω3 = 100, ω4 = 0, ω5 = 2000. 

 

Figure 7.6 Good state variables convergence:  Mamdani inference engine, uniform 

crossover, no penalty schedule, init. cond. 122. 
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Figure 7.7 Good convergence: controller, init. cond. 122. 

7.4.4 Discussion 

7.4.4.1 Variations in fitness function parameters  

Changing the weights ω in fitness function had a significant impact on the EA performance. 

In fact, the fifth component of the fitness function ω5 (survival time) implicitly contains all 

other components but by specifying them separately the EA process can be influenced, i.e., 

smaller or bigger bias towards one or another component is introduced. This is especially true 

for the first component ω1 that corresponds to the cart‘s position x1 As can be seen from 

some simulation results, see for example Figure 7.2, the EA ‗struggled‘ to drive the cart 

towards the target area (near the origin). Setting ω1 to a non-zero value introduces bias in the 

EA towards x1, or in plain language: makes it pay extra attention to the cart‘s position. Effect 

of penalty schedule depends on other EA parameters. In some cases it improved the results 

and in some others it had adverse effect. This shows that EA parameters need to be fine-tuned 

to achieve desired results and that finding the right balance between their values requires 

extensive experimentation.  Alternatively, some of them can be co-evolved with the original 

population. 
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7.4.4.2 Effect of penalty schedule 

Simulations were run both with penalty schedule-A and schedule-B. To test the impact of 

above penalty schemes the same simulations were run without any penalties with mixed 

results that proved that usually not one factor decides on the EA performance but a 

combination of EA parameters. As mentioned before, applying a penalty schedule can have 

an adverse effect on the EA. Penalty schedule can be seen as a temporary measure in the 

absence of a more fitting definition of the fitness function. 

7. 4.4.3 Effect of elitism 

By introducing strong elitist strategy the convergence of the average value of the objective 

function across population close to the minimum value of the objective function is achieved. 

Such a convergence of the population average to the minimum population fitness value is 

desired as an indication of good EA performance resulting in majority of population being 

valid control systems.  In several simulations the average population fitness is on par with the 

minimal fitness indicating that almost all individuals in the last population represented the 

control system of the same or very similar quality.  

7. 4.4.4 Product inference engine vs minimum inference engine 

It was observed that on average, product inference engine provided faster and smooth 

convergence of the state variables to the TR but at the cost of the size of controllability 

region. Minimum inference engine produced better results in terms of larger number of initial 

conditions from which the controller successfully controlled the system to the TR. 

 

Summary 

This chapter presents a novel evolutionary algorithm based compositional method for 

hierarchical fuzzy control over a large set of initial conditions, including dynamical 

conditions of the system under investigation.  Control system is designed as a three-layered 

hierarchical fuzzy logic structure. The inverted pendulum system is selected as an example of 

a dynamical system and used to test the proposed method. The proposed method can be 

applied to a wide range of dynamical systems with appropriate modifications.  Evolutionary 

population encoding, objective functions, number and range of membership functions, and 

the hierarchical fuzzy logic structure are case dependant but the overall algorithm covers a 

large number of control systems.  
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Chapter 8 MULTIOBJECTIVE EVOLUTIONARY 

ALGORITHM BASED COMPOSITIONAL 

METHOD 
 

8.1 Introduction 

8.1.1 Motivation for MOEA approach 

After development of the single objective EA compositional method there is a question of 

improving the EA performance. One approach to this task is to investigate how modularising 

the objective function, i.e., splitting into two or more components, might improve the 

controller performance.  This concerns especially the number of initial conditions from which 

the controller successfully controls the system to the target region. The single objective EA 

performance in this respect is not satisfactory. MOEA performance as a multi-objective 

optimisation method is secondary concern in this investigation which is primarly focused on 

the effect of modularisation of the objective function.     

8.1.2 Basic concepts and terminology 

The multiobjective optimisation definitions and terminology are based on the following 

publications: (Zitzler 1999), (Zitzler et al. 2000), (Deb 2001), (Coello Coello et al. 2002). 

Multiobjective optimisation problem can be formulated as follows: 

Definition 8.1. Multiobjective Optimisation (MOP). Find vector  
*
 = ( )  in 

decision space X that minimises/maximises objective vector function:  

 ( ) = ( f1( ), ... ,  fn( ) )   ∊ Y 

subject to:      ∊ Xc   X ,     ( )   ∊ Yc    Y 

Usually Xc  takes form of inequality and equality constraints: 

gi( ) ≥ 0, i = 1, ... , m 

hi ( ) = 0, i = 1, ... , p,   p <  n         

Without loss of generality a minimisation problem can be assumed. Maximisation problem 

can be converted into minimisation problem by the following formula:  

max fi ( )  = − min ( − fi ( ) )             
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Definition 8.2. Pareto Dominance. Consider two solutions and ,    ∊  X. Solution  

dominates  , denoted as     ,  if and only if:    

       fi ( )  ≤    fi ( )  and  :     fj ( )  <   fj ( ),    i,j  ∊  {1, ... , n} 

All solutions that are not dominated by any other solution are called non-dominated. The set 

of all non-dominated solutions is called Pareto-optimal set, see the definition below.  

Let say, that for any two objective vectors   and : 

        =        if and only if         ui = vi   i  ∊  {1, ... , n} 

        ≤        if and only if         ui ≤ vi   i  ∊  {1, ... , n} 

        <        if and only if         ui < vi   i  ∊  {1, ... , n} 

Similarly, relations  >  and  ≥  can be defined accordingly.   

Definition 8.3. Pareto-optimal set. For a given MOP   ( ), the Pareto optimal set P is 

defined as: 

  

Definition 8.4. Pareto Front. For a given multiobjective optimisation problem defined by the 

vector function  ( ) and Pareto optimal set P, the Pareto Front (PF) is defined as:   

 PF = {  =  = (f1( ), ... ,  fn( ) ) :  ∊ P }. 

As in the single objective EA described in Chapter 7, the proposed multiobjective 

evolutionary algorithm based compositional method searches for a controller over the whole 

set of initial conditions at every generation.  Objective function value of each individual 

reflects the controller performance over the whole set of initial conditions in the set. In other 

words, every string in the population is assigned the objective function value which is a 

composite value representing string‘s performance for every single initial condition in the 

user-defined set. Each individual represents a potential solution to a given problem. 

Depending on whether the problem is defined as a maximisation or minimisation problem, 

the best solution may be the string with the highest or lowest objective function value (the 

inverted pendulum problem is defined as minimisation problem). 

In applying an evolutionary algorithm to multiobjective optimisation three most important 

issues need to be addressed (Zitzler et al. 2000): 

 Objective functions evaluation method. 

 Selection process to guide the EA evolution towards the Pareto set. 

 Maintaining sufficient population diversity to prevent premature convergence and to 

generate well distributed Pareto Front. 
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8.2 Multiobjective evolutionary algorithm based compositional 

method 

In the following subsections the multiobjective evolutionary algorithm for compositional 

method is described on the example of the inverted pendulum. Using case study is required as 

the MOEA and fuzzy system are strongly coupled and developing the method in general form 

would be meaningless, apart from the algorithm description. 

8.2.1 Defining evolutionary population 

The three fuzzy rule base structure, described in Chapter 3, is represented as a linear 

individual string of M = 95 elements. The population is defined as a set of Mp individuals:  

P = { :   (a1, … , a95),   k = 1, ... , Mp,    aj ∊ {1, ... , 7}  }. 

A simple method is used to handle MOEA population size in the algorithm: 

1. Initial population P(0) is generated. 

2. Pareto set PS is selected from the non-dominated individuals of P(0). 

3. If population size of PS smaller than a pre-defined threshold then PS is refilled with 

either randomly generated individuals or by the use of elitist strategy: filling the 

reminder of PS with the best (with regard to each and every objective function) 

individuals from the previous population. 

4. MOEA operators are used on PS to generate the next generation PS1. Population PS1 

is copied to P.    

5. Steps 2—4 are repeated until termination condition is satisfied.  

8.2.2 Objective functions 

Assume that there are Nc initial conditions in the user-defined set of initial conditions. To 

evaluate the objective function value for a given string  from the controller population first 

the objective function values fij ,i = 1, ... , Nc, j = 1,2, are evaluated for every single initial 

condition.  Then overall objective function value is determined from the values calculated for 

every single initial condition.  

The fitness for a single initial condition is evaluated as follows: each string  is decoded into 

three components defining the fuzzy knowledge base for each layer, then the Mamdani or 

minimum inference formula is used to evaluate u1, u2, and u to find the final control to be 

applied at each value of the state . The system state equations are integrated by the Runge-
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Kutta algorithm (RK4) with step size 0.02 over time interval [0,T]. The fitness fij is then 

calculated based on the behaviour of the system over the time interval.  The objective 

function has the general form: 

  = ω 1 F1 + ω 2 F2 + ω 3 F3+ ω 4 F4                                                                   (8.1) 

with: F1 =     ,  F2=    ,  F3=    ,  F4=   

The objective function  has the general form: 

  = ω 5 F5 with:  F5= T − TS),                                                                      (8.2) 

where xmax = 1.0, θmax =  π/6, max= 1.0, max = 3.0, N is the number of iteration steps, 

survival time  TS =  0.02·N, T =  0.02· Nmax with the maximum number of iterations Nmax= 

1000,  and ω k are selected positive weights.  

A simple evaluation method is defined, similar to the method described in Chapter 7, the 

fitness function value (either f1 or f2) is evaluated as arithmetic average over all fitness values 

fij , i = 1, ... , Nc, j = 1,2, calculated for every single initial condition, and then assigned to a 

particular string in controller population:  

f1  =                                                                                                     (8.3) 

f2  =                                                                                                     (8.4) 

According to the Definition 8.2, Pareto dominance condition with two objective functions  

and can be expressed as:  individual  from the population dominates another individual   

if    ( )  ≤   ( ) and  :      ( )  <    ( ),    i,j  ∊ {1,2}. 

The restrictions are given by: −1.0  ≤  x1  ≤  1.0 and  −π /6  ≤  x3  ≤  π/6.  

Objective functions can be modified in order to reward strings which successfully control the 

system from a large number of initial conditions. One of the simplest methods is to establish 

threshold values for the objective function and penalise strings that exceed those threshold 

values (for each initial condition), see penalty schedules-A and B, Chapter 4. In MOEA 

experiments penalty schedule-A is used: 

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg  then ObjFun = ObjFun + 500.0 

if ObjFun ≥ 0.5·avg and ObjFun < 0.8·avg  then ObjFun = ObjFun + 1000.0 

if ObjFun ≥ 0.8·avg then  ObjFun = ObjFun + 2000.0 

where avg is a variable representing average objective function value (either  or ) of the 

previous population (in a preceding generation). Penalties need to be fine-tuned to focus the 

MOEA on selecting strings that perform well for the large number of initial conditions.  
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8.2.3 Membership functions 

Gaussian functions are used as membership functions in all experiments. To increase 

accuracy and achieve better performance from control system one can increase the number of 

membership functions covering input and output variables. This, however, increases the size 

of the knowledge base and therefore with larger number of rules to be learned the 

computation time is longer.  

8.2.4 Crossover and mutation 

For MOEA compositional method four crossover operators were tested: random, uniform, 

arithmetic, and one-point crossover. The use of one-point crossover was abandoned after 

several simulations that provided inferior results to results from simulations run with other 

crossover operators. It proves only that in this particular application one point-crossover is 

not suitable (it was used in initial experiments, see Chapter 5). 

The mutation operator, described in Chapter 4, mutates elements of the strings in the 

population to ensure satisfactory diversity within the population which is required for the 

MOEA to find better approximate solutions to the problem. Mutation is undertaken with 

probability pm determined by a mutation schedule that decreases typically from 0.8 to 0.001 

over the fixed number of generations. The same mutation schedule is used as described in 

Chapter 7. 

8.2.5 Overview of the multiobjective evolutionary algorithm 

The MOEA is used to learn fuzzy rules in the HFS that constitutes a control system for the 

inverted pendulum.  A schematic MOEA algorithm, in a very general form, is given below: 

1. MOEA parameters are selected: type of inference engine, crossover, mutation 

schedule, selection method, elitism, objective functions (with or without a penalty 

schedule), and termination condition (number of generations or lack of significant change 

in the state vector). 

2. Population PS(t), t = 0, is randomly initialised: every component of individual string is 

given a randomly selected value from a predefined interval. Objective functions are 

evaluated for the first generation PS(0). 

3.  t = t + 1: next generation is created using MOEA operators:  selection, crossover, and 

mutation. 

4. Pareto set PS1(t) is created from the non-dominated solutions of PS(t). 
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5. If size(PS1(t)) < Threshold then the population is filled to its maximum size 

(maintaining the constant population size) with randomly generated individuals or by use 

of the elitist strategy: copying the best individuals (with respect to each objective 

function) from PS(t). 

6. Individual from the population PS1(t) is selected. 

7. Initial condition is selected from the predefined set.  

8. Dynamical system is simulated from a given initial condition.  

9. Final state of state vector is determined.  

10. Based on values from Step 9 objective functions values are evaluated for an 

individual in population PS1(t). Penalties are added to the objective functions values (if 

penalty schedule is defined).  

11. Steps 7—10 are repeated until all system simulations for every initial condition in the 

set are performed.  

12. An average over all initial conditions is calculated for each objective function and 

assigned to the individual. Optionally, fitness function value is evaluated as a function of 

objective functions values (usually as a linear combination of component objective 

functions).  

13. Steps 6—12 are repeated until all individuals in the population have their objective 

functions values evaluated.  

14. Pareto set PS2(t) is selected from the population PS1(t). 

15. Pareto set PS2(t) is copied to PS(t). 

16. Steps 3— 5 are repeated until the termination condition is satisfied.  

17. Final control system is given by any individual from the Pareto set. Its performance is 

evaluated by running a simulation of the dynamical system for all initial conditions and 

counting initial conditions for which the final state variables are within the target region.  

A simplified MOEA based compositional method block diagram is shown in Figure 8.1. 

8.3 Experimental setup  

The experiments were conducted to test the proposed method. The experiments aimed at 

finding the combination of MOEA parameters that would result in finding fuzzy rules 

capable of successfully controlling the inverted pendulum system to the target area from the 

largest possible number of initial conditions. In the following subsections the computer 
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simulations setup is described and then typical results are illustrated on the successful 

versions of MOEA algorithm. 

MOEA parameters selection: inference engine, crossover, mutation, selection method, elitism, obj. functions.

Population PS(0) is randomly initialised. Objective functions are evaluated for all individuals in PS(0).

t = t + 1

Pareto set PS1(t) is created from the non-dominated solutions of PS(t).

If size(PS1(t)) < Threshold then the population is filled to its maximum size 

Individual from the population PS1(t) is selected

Initial condition is selected from the predefined set. 

The system is simulated from a given init. cond. Final state vector is determined. 

Obj. functions values are evaluated for an individual in population PS1(t) for 
every init. cond.

An average over all initial conditions is calculated for each obj. function and 
assigned to the individual. 

Pareto set PS2(t) is selected from the population PS1(t).  PS2(t) is copied 
to PS(t).

Final control system is given by any individual from the Pareto set. Its performance is evaluated by running a 
simulation of the system for all initial conditions and counting initial conditions for which the final state 

variables are within the target region TR. 
 

Figure 8.1 MOEA based compositional method block diagram. 

8.3.1 Initial conditions 

A set of regularly interspaced 255 initial conditions (Nc = 255) is defined within the region 

defined by: | | ≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0, see Appendix. 

8.3.2 Initial population 

The initial population P(0) = { :  k = 1, ... , Mp }, is determined by choosing the aj as a 

random integer ∊ [1,7] where Mp is the size of the evolutionary population.  Full replacement 

policy is used and for selection process tournament selection with size  = 4.  

8.3.3  Population size 

The initial population size is set at Mp = 500. Smaller population size is possible but then it is 

more difficult to maintain the required population diversity to avoid pre-mature convergence 

to the local minimum.  



 

177 
 

8.3.4 Termination condition  

Similarly to single objective EA simulations, the MOEA is terminated after 1000 generations 

as it is found that the algorithm either finds solution in about 300—500 generations or fails 

regardless of how many generations follow. 

8.3.5 Elitism 

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest 

individual to the new population, so that the information encapsulated in the best individual is 

not lost and the fittest individuals are passed into the next generation. A variable number of 

copies of best individuals in terms of f1 and f2 were passed to the next generation to maintain 

the fixed population size.  

8.3.6 Objective functions 

Objective functions given by Equation 8.3 and 8.4 are used in all experiments.  The weights 

in the objective functions, see Equation 8.1 and 8.2, are adjusted in several simulations with 

most commonly used sets of ω parameters: ω1 = 1000, ω2 = 1, ω3 = 1000, ω4 = 1, ω5 = 3000,  

and also ω1 = 1, ω2 = 1,  ω3 = 1, ω4 = 1, ω5 = 1.  Changing the weights ω in the objective 

functions has a significant impact on the MOEA performance.  

8.4 Computer simulations 

Simulations are run to fine-tune the EA parameters that in turn result in finding fuzzy rules 

capable of successfully controlling the inverted pendulum system to the target area from the 

largest number from a pre-defined set of 255 initial conditions.  In a computer simulation the 

controller acted on the inverted pendulum for Tf  = 20.0s.   

The successful, in terms of convergence, modification of MOEA (test-1) has the following 

parameters: minimum inference engine, uniform crossover, mutation schedule, and 

tournament selection.  Termination condition: exceeding 1000 generations. Positive weights 

in the objective functions were defined as: ω1 = 1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000. 

Population P(t), t = 0, is randomly initialised, with every component of individual string 

given by a randomly selected value from [1,7].  If size(PS1(t)) < 0.3 · MAXPOP (where 

MAXPOP is maximum population size) then the best individuals with regard to f1  and best 

individuals with regard to f2  are copied to the 2/3 of the reminder of the population P(t+1). 

The remaining reminder is filled with individuals from the previous population P(t). The 
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algorithm follows the methodology described in Section 4.5. This version of MOEA found 43 

non-dominated solutions that are the approximation of the true Pareto Front. 

 

Figure 8.2 State variables convergence for init.cond. 78 (test-1) – controller no 1. 

 

Figure 8.3 Controller no 1, init. cond. 78 (test-1). 
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Figure 8.4 State variables convergence for init.cond. 78 (test-1) – the best controller no 8. 

 

 

 

Figure 8.5 Controller no 8, init. cond. 78 (test-1). 
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Figure 8.6 Pareto Front approximation for the MOEA (test-1) simulation: 43 solutions. 

 

 

 

Figure 8.7 State variables convergence for init.cond. 136 (test-2). 
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Figure 8.8 Controller no 1, init. cond. 136 (test-2). 

 

 

Figure 8.9 Pareto Front approximation for the MOEA (test-2) simulation: 35 solutions. 
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Figure 8.10 Pareto Front approximation for MOEA (test-3) simulation: 48 solutions. 

 

The reason for a very low percentage of success in 10-th controller is that it narrowly failed 

to keep the cart (represented by x1) within the target region. In majority of failed control 

actions the margin was about 0.001. However close the x1 was to the target region it was still 

outside it in the final state at T = 20.0s and therefore was considered a failure. Average 

success rate in test-1 for all 43 controllers in the Pareto set is 81.4% (208 init. cond.) 

including anomalous controller no 10, and 83.3% (212 init. cond.) without anomalous 

controller no 10. 

Results are illustrated on randomly selected initial condition 78: 0 = (0.35, 1.0,−0.261799, 

−0.5), for the first and 8-th controller in the Pareto set, see Figure 8.2 and Figure 8.3 (first 

controller) and Figure 8.4 and Figure 8.5 (8-th controller). This first controller achieved 

81.4% success rate, controlling the system from 207 (out of 255) initial conditions to the 

target region. The best controller, see Table 8.1, is controller no 8 with 94.5% success rate 

(241 convergences to the TR out of total 255 initial conditions).  

Another successful MOEA version (test-2) used product inference engine and   ω1 = 1, ω2 = 

1, ω3 = 1, ω4 = 1, ω5 = 1 and found 35 non-dominated solutions. This result is illustrated by 
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the state variables convergence from a selected initial condition 136: 0 = 

(0.3,−0.5,−0.261799, 1.0). The controller is selected as the first solution in the Pareto set. Out 

of 255 initial conditions, the controller successfully controlled the system from 184 initial 

conditions (about 72% success rate) to the TR, see Figure 8.7 and Figure 8.8.  

The same MOEA (test-3) but with different set of weights in the objective functions: ω1 = 

1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000, found 48 non-dominated solutions, see Figure 

8.10. Please note the different objective functions values resulting from different weights 

values ω used in definition of objective functions. Better approximation of Pareto Front can 

be generated with the increase of population size but it would also significantly increase the 

computation time.  

In experiments with a single objective EA, as described in Chapter 7, similar EA parameters 

were used, which enables an adequate comparison with the MOEA results. The objective 

function is defined as: f = ω1 F1 + ω2 F2 + ω3 F3+ ω4 F4+ ω5 F5, which is simply f = f1 + f2. 

MOEA solutions consistently approached or, as in most cases, exceeded 80% success rate 

while single objective EA averaged 50%, see (Zajaczkowski and Verma 2008). The best 

MOEA based method result is 94.5% success rate.  

Better MOEA results seem to indicate that splitting the objective function into its composite 

parts might improve the controller performance.  In case of the inverted pendulum example 

one objective function is defined as a measure of state variables ‗distance‘ to the target region 

and second one as survival time (the total time in which the pole and cart remain within 

specified bounds). This split represented two different aspects of the inverted pendulum 

problem even though they are strongly coupled. The state variables convergence for the same 

initial condition no 78 (as shown in Figure 8.2) but for the single objective EA is shown in 

Figure 8.13 and Figure 8.14. 

The MOEA (test-1, see Figure 8.2) final state for initial condition no 78 is: f = (0.043230, 

0.0, 0.0, 0.0).  The single objective EA (see Figure 8.13) final state for initial condition no 78 

is: f = (0.00145, 0.0, 0.0, 0.0). In terms of state variables convergence both method 

performed on par, which is not surprising as they share the same EA parameters (with 

different variations in values), same fuzzy system and membership functions. What 

distinguishes them is the definition of the objective function and algorithm that 

accommodates such a modification (MOEA).  
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Table 8.1 Number of convergences to TR and success rates, test-1. 

Controller 1 2 3 4 5 6 7 8 9 10 

No of 

Init.Cond. 

207 209 209 206 203 202 215 241 205 3 

Percentage 81.2 82.0 82.0 81.0 79.6 79.2 84.3 94.5 80.4 1.2 

Controller 11 12 13 14 15 16 17 18 19 20 

No of 

Init.Cond. 

212 220 203 213 209 210 221 212 214 206 

Percentage 83.1 86.3 79.6 83.5 82.0 82.6 86.7 83.1 83.9 81.0 

Controller 21 22 23 24 25 26 27 28 29 30 

No of init. 

cond. 

203 216 218 226 198 211 225 220 217 208 

Percentage 79.6 84.7 85.5 88.6 77.6 82.7 88.2 86.3 85.1 81.6 

Controller 31 32 33 34 35 36 37 38 39 40 

No of init. 

cond. 

220 216 224 211 202 215 206 216 211 205 

Percentage 86.3 84.7 87.8 82.7 79.2 84.3 81.0 84.7 82.7 80.4 

Controller 41 42 43        

No of init. 

cond. 

206 219 212        

Percentage 81.0 85.9 3.1        

 

MOEA also allows greater flexibility in algorithm design. Considering arbitrary dynamical 

system to be controlled, the objective functions can reflect various aspects of the system. 

They can be adjusted to achieve better control system performance, as proven by comparison 

of the single objective EA and MOEA solutions. 
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Figure 8.11 Number of convergences for every controller (43 controllers) in the Pareto set 

(test-1). 

 

 

Figure 8.12 Success rate for every controller (43 controllers) in the Pareto set (test-1). 
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Figure 8.13 Single objective EA state variables convergence for init. cond. 78. 

 

 

 

Figure 8.14 Single objective EA controller, init. cond. 78. 
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Summary 

In this chapter the multiobjective evolutionary algorithm based compositional method is 

introduced as an extension of the method presented in Chapter 7 for a single objective 

function. Detailed algorithm description is provided followed by simulation results on the 

example of the inverted pendulum system.  

Two objective functions are defined for multiobjective evolutionary algorithm by splitting 

single objective EA fitness function into its components: sum of deviations of state variables 

from the origin as the first objective function and survival time (the total time in which the 

pole and cart remain within specified bounds) as a second objective function. A constant 

population size is maintained after selection of the Pareto set by the use of elitist strategy.  

The multiobjective modification of the EA (modularising the objective function) provides 

better and more consistent results than single objective compositional method described in 

Chapter 7. The controller performance from the Pareto set for one particular MOEA version 

is presented in terms of the number of initial conditions from which the system was 

controlled to the target region. A satisfactory controller is developed for the set of pre-defined 

initial conditions with the controlled system controlled to the target region from 94.5% of all 

initial conditions. 
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Chapter 9 CONCLUSIONS AND FUTURE DIRECTIONS 
 

9.1 Conclusions 

In the following subsections the final conclusions of the research carried out in this thesis are 

presented. Future directions of the current research are discussed briefly afterwards.   

9.2 Topologies for hierarchical fuzzy structures  

The hierarchical fuzzy control of the simple inverted pendulum was examined and 

evolutionary algorithm was used to learn a fuzzy controller for all possible hierarchical 

topologies: single layer, two-layered HFS, three-layered HFS, and four-layered HFS with 

different input configurations. It has been shown that it is important to select the correct input 

variables into the first layer to achieve effective and accurate control. Furthermore, structure 

of the second and third layer in the 3 layered HFS plays a significant role as reversed order in 

input in those layers produced dramatically different results, as shown for example in case of  

L3-13-2-4 (poor results) and L3-13-4-2 (good results), see Figure 5.21 and Figure 5.23 

respectively. Similarly, controller L3-14-2-3 shows poor results and L3-14-3-2 good results, 

see Figure 5.29 and Figure 5.31 respectively. Both cases illustrate how intricate 

interdependencies between input variables can be. 

It was shown that the inverted pendulum system should be decomposed into two input 

variables groupings:  

 cart variables: x1 and x2 (cart‘s position and its velocity). 

 pole variables: x3 and x4 ( pole angle and pole‘s angular velocity). 

Results from the 4-layered HFS simulations established that the most influential variable is x4   

(angular velocity), then x3 (pole angle) in the first grouping followed by x2 (cart‘s velocity) 

and x1 (cart‘s position) in the second grouping. Simulation results obtained for the two, three 

and four layered HFS confirm that it is important to control the inverted pendulum, by 

examining first its angular speed and angular position then the cart‘s speed and position 

displacement, as the best overall results (in terms of state variables convergence and control 

magnitude) are achieved in both cases by topologies L2-34-12 and L3-34-2-1, L3-34-1-2, and 

L4-4-3-2-1, see Figure 5.5, Figure 5.17, Figure 5.19, and Figure 5.41. 



 

189 
 

Alternatively, a good result is achieved when cart velocity and pole angle are examined first 

and then the cart velocity and angular velocity of the pole, which is represented by topology 

L3-23-4-1. A small change in the input configuration, as in L3-23-1-4, renders this topology 

one of the worst performers and proves how important is to find the right topology for the 

control system.   

Three-layered topology breaks strong interdependence between state variables in layers 2 and 

3 but it does not have adverse effect on the controller performance for topologies L3-34-1-2 

and L3-34-2-1 as this decomposition reflects physical properties of the system (ranking of the 

most influential variables). For topologies L3-14-2-3 or L3-14-3-2 the difference in 

decomposition has a profound effect as can be seen in Figure 5.29 and Figure 5.31. 

Decomposition needs to reflect the physical properties of the system under consideration and 

it requires grouping of the input variables along weak interdependences between state 

variables. The inverted pendulum can be decomposed into two subsystems: the cart 

represented by x1 and x2, and the pole represented by x3 and x4. Swapping the input variables 

between the layers but preserving to some extent abovementioned groupings has little effect 

on the controller performance. When this grouping principle is broken, the results are often 

detrimental (depending which variables are more influential in the dynamical system). The 

simulation for 4-layered topologies show that the topology L4-4-3-2-1 is the most consistent 

controller in ten different simulations  indicating the ranking of the most influential input 

variables: first - x4, second - x3, third - x2, and finally x1. 

The initial population (randomly generated in the simulations) has significant impact on the 

evolution of the knowledge base. Some controllers, from ten control systems developed for 

each topology, differ considerably in their performance. Therefore a simulation resulting in a 

single controller should not be regarded as a sufficient representation of controllers developed 

for any particular topology. Especially, if the EA does not produce a relatively uniform 

population at the end of the algorithm. Developing a relatively homogenous set of controllers 

requires careful fine-tuning of the EA parameters and usually a large number of generations. 

In most cases, in spite of their differences, the controllers perform in a very similar fashion, 

i.e., having similar control time history and the character of state variables convergence. 

In the case of a single layer topology L1-1234, the controller stabilises the system relatively 

well, with no preference given to any input variable, and interdependence between input 

variables (being locked in the fuzzy rules) remains hidden. Only by decomposition of the 
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HFS (by breaking a single knowledge base into a hierarchically structured knowledge base) 

this interdependence comes into play with dramatic effect. 

It was observed that the performance of the fuzzy controller is not related to the speed of 

learning process.  

The analysis performed in Chapter 5 shows that the 2-layered HFS provides a slightly better 

solution to the control problem of the inverted pendulum than the 3-layered HFS. This result 

reflects the physical nature of the inverted pendulum system with pole and cart variables 

grouped in two separate ‗subsystems‘ that are mirrored in the 2-layered HFS. However, the 3-

layered HFS significantly reduces the size of the knowledge bases while providing control 

system of similar performance. 

By introducing the hierarchical structure the control system is greatly simplified (with the 

exception of ‗different topologies‘). One would argue that a complex fuzzy rule base should 

stabilise the system better than a simple one, but on the other hand the complex knowledge 

base is usually more vulnerable to external disturbances and uncertainty. The investigation 

into the HFS topologies suggests that the size of the knowledge base, i.e. number of rules, is 

not a decisive factor in controller performance. On one side of the ‗spectrum‘ there is 

topology L2-3-412 with 880 fuzzy rules or single layer topology L1-1234 with 625 fuzzy 

rules, and on the other side there is 3-layered topology with 95 fuzzy rules in its knowledge 

base (except those 3 layered topologies investigated as ‗different topologies‘), with some of 

them providing similar controller performance. However, the topology of the HFS seems to 

be the decisive factor in controller performance. 

Similarly, the HFS topologies investigation shows that the number of layers is not an 

important factor in performance of the controller (in terms of control magnitude and 

stabilisation rate of the state variables). This fact allows large knowledge base of simple 

structure (for example: single layer) to be replaced with the HFS without loss of controller 

performance. In fact, the HFS produced more efficient controllers (in terms of system 

stabilisation) than single layer controller except for magnitude of control which for single 

layer control system is the lowest. 

The tests performed on topologies with one or two layers removed have demonstrated that the 

hierarchical fuzzy system needs to be considered in its entirety and not as an assembly of its 

better or worse performing component rule bases. 
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The simulation results indicate that a particular input configuration in the HFS layers is more 

important than the number of layers as good controller performance was achieved for both: 2 

layered L2-34-12 and 3 layered L3-34-2-1 and L3-34-1-2, see Figure 5.5, Figure 5.17, and 

Figure 5.19 respectively.  This indicates that interdependence of variables plays a crucial role 

in finding the ‗optimal‘ HFS for a particular problem. Examining the nature of variables 

interdependence is a key to an automated determination of the decomposition of the fuzzy 

model of control. The decomposition of the hierarchical fuzzy structure should be performed 

along weak interdependency between input variables. However, with more complex 

dynamical systems there might be multiple weak interdependencies in input configuration. In 

such cases either expert knowledge is required to resolve the decomposition problem or an 

automated process that finds optimal or near optimal hierarchical fuzzy topology. 

9.3 Co-evolutionary algorithm  

In Chapter 6 the hierarchical fuzzy control of the simple inverted pendulum was examined 

and co-evolutionary algorithm was used to learn a fuzzy controller and its membership 

functions (within a class of Gaussian membership functions). 

It was observed that for every simulation a different knowledge base was developed. The 

controllers from different simulations are different partly because the EA starts from different 

initial controller population (randomly initialized). With the increased number of generations 

(5000—10000) co-evolutionary algorithm still converges to different solutions but very 

similar in performance. The state variables convergence and controller time history look very 

similar for all simulations. The knowledge bases are thus different but control system 

performance is very similar. One possible explanation is that there are several or more 

suboptimal solutions in search space and co-evolutionary algorithm converges to one of 

them. 

The algorithm starting from a uniform MF population generally produces better performing 

controllers. However, in most cases, in spite of their differences, the controllers perform in a 

very similar fashion, i.e., having similar control time history and similar character of state 

variables convergence. The MFs centres resulting from the EA with uniform MF population 

change very little from their original definitions and better results from such EAs suggest that 

control systems perform better with evenly spaced membership functions. 
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The results of the co-evolutionary algorithm are non-trivial especially on the part of evolved 

membership functions. In case of the EA with randomly generated MF initial population, MF 

centres are not uniformly spread over system variables range but tend to congregate in certain 

regions of the input or output variable range. Such ‗clustering‘ of the membership functions 

requires additional investigation. The working hypothesis would be that MFs tend to 

‗gravitate‘ towards region where the final states of the state variables values lie after 

simulation of the dynamical system. 

9.4   Compositional method  

In Chapter 7 an evolutionary algorithm based compositional method has been examined and 

applied to a simple dynamical system (inverted pendulum).  Evolutionary algorithm designed 

for the compositional method is used to learn fuzzy rules for a 3-layered hierarchical fuzzy 

control system over a user-defined set of initial conditions. The initial conditions include both 

static and dynamic conditions of the system. For the inverted pendulum problem the static 

initial conditions include the cart‘s position and the angle of the pole, and dynamic initial 

conditions: the initial cart‘s velocity and the angular velocity of the pole. 

The experiments with the compositional method for the inverted pendulum system prove that 

with the right combination of the EA parameters the resulting fuzzy control system is capable 

of controlling the system from the wide range of initial conditions, the best result being 76% 

success rate (the system was controlled to the TR from 195 out of 255 of initial conditions), 

while most simulations averaged slightly above 50% success rate.  

For the system that starts from diametrically different initial conditions it is unlikely to find 

reasonably small fuzzy rule base capable of handling every possible dynamics of the system. 

This fact reflects physical reality of complex non-linear dynamical systems, including even 

relatively simple inverted pendulum dynamics.  

9.5 MOEA based compositional method  

A multiobjective evolutionary algorithm based compositional method is used to learn fuzzy 

rules for a three-layered hierarchical fuzzy control system over the large set of initial 

conditions. The proposed method has a relatively high success rate in terms of the number of 

initial conditions from which the system is controlled to the TR.  
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In experiments with a single objective EA: f =  + , with similar EA parameters, success 

rate averaged 50% while the MOEA based method consistently approached or exceeded 80% 

success rate. The best achieved result was 94.5% success rate (the system controlled to the 

TR from 241 out of total 255 initial conditions).  

Better MOEA results indicate that splitting the objective function into its composite parts 

improves the controller performance.  In case of the inverted pendulum one objective 

function is defined as a measure of state variables ‗distance‘ to the target region and second 

one as survival time (the total time in which the pole and cart remain within specified 

bounds). This split represents two different aspects of the inverted pendulum problem but 

they are strongly coupled.  

The proposed MOEA based compositional method shows significant improvement over 

single objective EA especially in terms of consistency of results from different controllers, 

see Section 8.4. The MOEA used in the investigation is a simple modification of the EA used 

in all other experiments.  This was done in order to examine the effect of modularising the 

objective function definition. Further improvements in the MOEA performance are expected 

with refinement of objective functions definitions and more efficient MOEA scheme, such as 

NSGA II or SPEA-2.  

Just as the single objective EA based compositional method, the MOEA based compositional 

method can also be applied to a wide range of dynamical systems. This require a re-definition 

of system dynamics, MOEA encoding, objective functions, and determining a set of initial 

conditions. The hierarchical structure is also case-dependent and reflects the physical 

properties of the dynamical system. Therefore, the number of membership functions and their 

range needs to be adjusted. However, the overall algorithm structure remains the same, see 

Section 8.2.5. The proposed MOEA based compositional method is specifically tailored to 

control the system from a user defined set of initial conditions and this is its greatest 

advantage. 

9.6 Comparison of controller performance for proposed methods  

The developed control methods for the inverted pendulum system allow the comparison of 

certain aspects of the controller performance. Two aspects are selected for comparison:  

 System stabilisation times. 

 State variables convergence and control magnitude. 
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For clarity, only the best performing controllers developed in the course of this investigation 

are compared. 

9.6.1 Stabilisation times comparison 

The stabilisation time is compared for the selected best performing topologies for different 

methods: single initial condition EA (Chapter 5), co-evolutionary algorithm (Chapter 6) and 

MOEA based compositional method. 

Table 9.1 Stabilisation times for the examples of the best performing topologies, single initial 

condition. 

Topology C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Stabilisation 

time (sec) 

2.74 2.9 2.06 3.22 1.68 2.64 1.82 2.4 4.32 1.4 1.74 3.92 

where C1 denotes:  L2-34-12, C2: L3-34-1-2, C3: L3-34-2-1, C4: L4-3-4-1-2,  C5: L4-3-4-2-

1, C6: L4-4-3-1-2, C7: L4-4-3-2-1, C8: L2-3-412,  C9: L2-342-1, C10: L3-3-4-12, C11: L3-3-

41-2, C12: L1-1234. 

Alternative topologies L3-3-4-12 and L3-3-41-2 are characterised by very fast stabilisation 

times but relatively large knowledge base of 215 rules compared to 95 rules in any L3-mn-k-l 

topology, m,n,k,l ∊ {1,2,3,4}.   

 Stabilisation times for controllers developed by the co-evolutionary algorithm (see Chapter 

6) are shown in Table 9.2. On average, the co-evolutionary algorithm produces faster acting 

controllers than the conventional EA investigated in Chapter 5. 

Table 9.2 Stabilisation times for co-evolutionary algorithm examples. 

Topology C1 C2 C3 C4 C5 C6 C7 C8 

Stabilisation 

time (sec) 

2.6 2.78 1.8 1.63 2.14 2.94 1.84 2.74 

where C1 denotes:  L3-34-1-2 explorative, uniform, C2: L3-34-1-2 explorative, random, C3: 

L3-34-1-2 greedy, uniform, C4: L3-34-1-2 greedy, random,  C5: L3-34-2-1 explorative, 

uniform, C6: L3-34-2-1 explorative, random, C7: L3-34-2-1 greedy, uniform, C8: L3-34-2-1 

greedy, random. 
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Table 9.3 Stabilisation time for randomly selected init. conditions for single objective EA and 

MOEA based compositional method. 

Topology 

L3-34-2-1 

EA  

init. 4  

best 

controller 

EA  

init. 88 

MOEA  

init. 78 

controller no 8 

MOEA  

init. 78 

controller no 1 

MOEA  

init. 136 

Stabilisation 

time (sec) 

16.84 4.22 2.94 2.90 2.32 

 

As can be seen from stabilisation time comparison, the co-evolutionary algorithm improves 

the controller performance compared to the earlier EA version investigated in Chapter 5.  

MOEA based compositional method is a significant improvement on the single objective EA 

based method in terms of stabilisation times. However, in case of the compositional method 

this is not a decisive factor in evaluating the controller performance. As was mentioned 

before, the MOEA based method is far superior to single objective EA in terms of the total 

number of initial conditions from which it controls the system to the target region. 

9.6.2 State variables convergence and control magnitude 

One of the critical controller performance criteria was state variable convergence to the target 

region and magnitude of control. Additionally smoothness of both state variable convergence 

and controller time history were taken into account. The examples of the best performing 

controllers are compared in this section. 

Comparison of state variables convergence for selected examples of the best performing 

topologies is shown in Figure 9.1: L2-34-12 and L3-34-1-2 (top) and L4-3-4-2-1 and L3-34-2-

1 (bottom). Comparison of control magnitude and smoothness of the control action over [0,T] 

interval is shown in Figure 9.2: L2-34-12 and L3-34-1-2 (top) L4-3-4-2-1 and L3-34-2-1 

(bottom). State variables convergence for explorative co-evolutionary examples is shown in 

Figure 9.3: L3-34-1-2 uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 

random (bottom). 
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Figure 9.1 State variables convergence for L2-34-12 and L3-34-1-2 (top) and L4-3-4-2-1 and 

L3-34-2-1(bottom). 
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Figure 9.2 Control magnitude and smoothness of the control action for L2-34-12 and L3-34-

1-2 (top) and  for L4-3-4-2-1 and L3-34-2-1 (bottom). 
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Figure 9.3 State variables convergence explorative L3-34-1-2 uniform, L3-34-1-2 random 

(top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). 
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Figure 9.4 Control magnitude and smoothness of the control action for explorative L3-34-1-2 

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). 
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Figure 9.5 State variables convergence greedy L3-34-1-2 uniform, L3-34-1-2 random (top), 

L3-34-2-1 uniform, L3-34-2-1 random (bottom). 
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Figure 9.6 Control magnitude and smoothness of the control action for greedy L3-34-1-2 

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). 
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Control magnitude and smoothness of the control action over [0,T] interval is shown in 

Figure 9.4 for explorative co-evolutionary examples: L3-34-1-2 uniform, L3-34-1-2 random 

(top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). State variables convergence for 

greedy co-evolutionary examples is shown in Figure 9.5: L3-34-1-2 uniform, L3-34-1-2 

random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). Comparison of control 

magnitude and smoothness of the control action over [0,T ] interval is shown in Figure 9.6 for 

greedy co-evolutionary examples: L3-34-1-2 uniform, L3-34-1-2 random (top), L3-34-2-1 

uniform, L3-34-2-1 random (bottom). 

As can be seen in figures showing state variables convergence and control action for both 

explorative and greedy co-evolutionary algorithm examples, the smoothest and relatively low 

magnitude of control is exhibited by the controller with topology L3-34-2-1 (EA with 

uniform initial population of membership functions), see left bottom part of Figure 9.4, and 

by the controller with topology L3-34-2-1 (EA with random initial population of membership 

functions), see left bottom part of Figure 9.6. Compared to control action shown in Figure 

9.2, it shows smooth time history without oscillations. Only initial large magnitude control 

action is required at the very beginning of system stabilisation and then the controller quickly 

stabilises the system. This is true for all co-evolutionary controllers which exhibit smoother 

control action than controllers designed without fine-tuning of membership functions. Based 

on this comparison it can be concluded that co-evolutionary algorithm delivers better 

controller performance than any controller investigated in Chapter 5. 

Comparison of single objective EA (init. cond. no 88) and MOEA state variables 

convergence for test-1 (init. cond. 78), controller no 8 and 1, and test-2 (init. cond. 122) are 

shown in Figure 9.7. Controller action for the same examples is shown in Figure 9.8. Both 

single objective and MOEA solutions exhibit low magnitude control action. MOEA 

controllers have relatively fast stabilisation time. In case of the compositional method 

controllers the crucial performance index was the number of initial conditions from which the 

controller stabilises the system. In this respect, the controller no 8, see top right of Figure 9.7, 

is beyond doubt the best solution for the control problem with 94.5% success rate (241 

convergences to the TR out of total 255 initial conditions) even though the state variable 

convergence is not as regular as shown in other examples. As can be seen in all examples for 

the compositional method, the position of the cart x1 was the most difficult to control. None 

of the MOEA solutions achieves smoothness of state variables convergence and control 

action of co-evolutionary algorithm solutions. This needs to be seen as a trade-off between 
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quality of control and meeting its major objective (the largest controllability region).  In the 

end, the MOEA based compositional method strikes a good compromise, delivering 

controllers with better performance than initially investigated in Chapter 5 and slightly worse 

performing controllers than delivered by the co-evolutionary algorithm.   
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Figure 9.7 State variables convergence for single objective EA init. cond. no 88 (top left) and 

MOEA test-1 (init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init. 

cond. 122 (bottom right). 
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Figure 9.8 Control action for single objective EA init. cond. no 88 (top left) and MOEA test-1 

(init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init. cond. 122 

(bottom right).  

9.6.3 Success rate for single EA and MOEA based compositional method 

The difference between single EA and MOEA based compositional method is illustrated in 

the table with the number of initial conditions from which the selected controllers developed 

by both methods stabilised the system to the target region. 

 Table 9.4 The success rate for single EA and MOEA based composition method. 

 EA best 

controller 

EA typical MOEA test-1 

controller no 8 

MOEA test-1 

typical 

No of init. cond. 

converged to TR 

205 ≈ 100 241 

 

≈ 207 

 

 

The average for test-1 was 207.6 (including failed controller no 10) and 212.4 without taking 

into account controller no 10 (see Section 8.4 for more details). Therefore, controller no 1 

represents typical controller performance for test-1. Full results for MOEA success rate test-1 

can be found Table 8.1. 
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9.7 Summary of conclusions 

The major conclusions of the thesis can be summarized as: 

 Selection of the right topology, both input configuration and hierarchical fuzzy system 

structure, plays crucial role in the control system performance. It is also vital for the 

fast evolutionary algorithm convergence to a desired solution. The number of layers is 

not an important factor in performance of the controller (in terms of control 

magnitude and stabilisation rate of the state variables). This fact allows large and 

simple structure knowledge base (for example: single layer) to be replaced with the 

HFS without loss of controller performance. In fact, the HFS produced controllers that 

performed more efficiently in terms of system stabilisation than single layer controller 

except for magnitude of control which for single layer control system is the lowest. A 

particular configuration of input in the HFS layers is more important than the number 

of layers. This indicates that interdependence of variables plays a crucial role in 

finding the ‗optimal‘ HFS for a particular problem. Examining the nature of variables 

interdependence is a key to an automated determination of the decomposition of the 

fuzzy model of control. 

 It was observed that for every simulation of co-evolutionary algorithm a different 

knowledge base is evolved. The controller is different partly because the EA starts 

from different initial population. With the increased number of generations (5000—

10000) co-evolutionary algorithm still converges to different solutions but very 

similar in performance. The knowledge bases are thus different but control systems 

performance very similar. One possible explanation is that there are several or more 

suboptimal solutions in search space and co-evolutionary algorithm converges to one 

of them in every simulation. 

 The co-evolutionary algorithm starting from a uniform membership functions 

population generally produces better performing controllers. However, in most cases, 

the controllers perform in a very similar fashion, i.e., having similar control time 

history and similar character of state variables convergence. The membership 

functions centres resulting from the EA with uniform membership function population 

change very little from their original definitions and better results from such EAs 

suggest that control systems perform better with evenly spaced membership functions. 

 The proposed MOEA based compositional method shows significant improvement 

over single objective EA especially in terms of consistency of results from different 
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controllers. Further improvements are expected with refinement of objective functions 

definitions and use of more efficient MOEA. The MOEA based compositional 

method can be applied to a wide range of dynamical systems with a re-definition of 

system equations, encoding of evolutionary population, objective functions, and 

appropriate set of initial conditions. The proposed MOEA based compositional 

method is specifically tailored to control the system from a user defined set of initial 

conditions; this being its greatest advantage. 

9.8 Future directions 

A common problem encountered with designing the evolutionary algorithm is selection of the 

algorithm parameters. Development of a general approach to fine-tuning of the EA 

parameters is required. This can be achieved by using pre-defined set of EA parameters, such 

as a range of crossover operators, mutation rates, selection methods, population size, 

encoding methods, etc. Definition of the objective function (or functions) is case dependant 

and therefore it is not possible to define objective function via any automated process unless 

the problem is simple enough to use one of the standard objective functions, such as 

Euclidean distance to the target region, sum of squared differences between state vector and 

the origin, etc.    

The obvious extension of this research would be investigation into the method of an 

automated determination of the optimal or sub-optimal topology of the hierarchical fuzzy 

control system. There are difficulties to overcome in such an investigation, namely handling 

variable length of strings in the population and their different encoding methods. One 

possible approach is to use multiple populations. Another approach would be using extended 

strings with another vector containing information about encoded structure. With a number of 

additional assumptions such an automated method is feasible. 

The methods presented in this thesis used the inverted pendulum as a test system. To fully 

test the applicability of the MOEA based compositional method a more complex test system 

needs to be used. Multi-link robotic manipulator would be a good example. Other 

applications include financial systems, production control, traffic control, etc. 

Presented methods show a potential for future development and refinement. 
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APPENDIX 

The table below contains a set of regularly interspaced 255 initial conditions within the 

region defined by: | | ≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0. This set of initial conditions 

was used to test evolutionary algorithm based compositional method. 

Table Appendix. Initial conditions set. 

   x1    x2       x3    x4    x1    x2      x3      x4   

     0.75     1.0   0.261799      1.0    0.35     0.5   0.261799      1.0   

     0.75     1.0   0.261799      0.5    0.35     1.0   0.261799      1.0   

     0.75     1.0   0.261799      0.5    0.35     1.0   0.261799      0.5   

     0.75     1.0   0.261799      1.0    0.35     1.0   0.261799      0.5   

     0.75     0.5   0.261799      1.0    0.35     1.0   0.261799      1.0   

     0.75     0.5   0.261799      0.5    0.35     1.0   0.261799     1.0   

     0.75     0.5   0.261799      0.5    0.35     1.0   0.261799     0.5   

     0.75     0.5   0.261799      1.0    0.35     1.0   0.261799     0.5   

     0.75     0.5   0.261799      1.0    0.35     1.0   0.261799     1.0   

     0.75     0.5   0.261799      0.5    0.35     0.5   0.261799     1.0   

     0.75     0.5   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     0.5   0.261799      1.0    0.35     0.5   0.261799     0.5   

     0.75     1.0   0.261799      1.0    0.35     0.5   0.261799     1.0   

     0.75     1.0   0.261799      0.5    0.35     0.5   0.261799     1.0   

     0.75     1.0   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     1.0   0.261799      1.0    0.35     0.5   0.261799     0.5   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.261799     1.0   

     0.75     1.0   0.130899      0.5    0.35     1.0   0.261799     1.0   

     0.75     1.0   0.130899      0.5    0.35     1.0   0.261799     0.5   

     0.75     1.0   0.130899      1.0    0.35     1.0   0.261799     0.5   

     0.75     0.5   0.130899      1.0    0.35     1.0   0.261799     1.0   

     0.75     0.5   0.130899      0.5    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     1.0   0.130899     0.5   

     0.75     0.5   0.130899      1.0    0.35     1.0   0.130899     0.5   

     0.75     0.5   0.130899      1.0    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     0.5   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     0.5   0.130899      1.0    0.35     0.5   0.130899     0.5   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.130899      0.5    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.130899     0.5   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.130899      0.5    0.35     1.0   0.130899     1.0   

     0.75     1.0   0.130899      0.5    0.35     1.0   0.130899     0.5   

     0.75     1.0   0.130899      1.0    0.35     1.0   0.130899     0.5   

     0.75     0.5   0.130899      1.0    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     1.0   0.130899     0.5   
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     0.75     0.5   0.130899      1.0    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     0.5   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     0.5   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     0.5   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     1.0   0.130899      0.5    0.35     0.5   0.130899     0.5   

     0.75     1.0   0.130899      1.0    0.35     0.5   0.130899     1.0   

     0.75     1.0   0.261799      1.0    0.35     1.0   0.130899     1.0   

     0.75     1.0   0.261799      0.5    0.35     1.0   0.130899     0.5   

     0.75     1.0   0.261799      0.5    0.35     1.0   0.130899     0.5   

     0.75     1.0   0.261799      1.0    0.35     1.0   0.130899     1.0   

     0.75     0.5   0.261799      1.0    0.35     1.0   0.261799     1.0   

     0.75     0.5   0.261799      0.5    0.35     1.0   0.261799     0.5   

     0.75     0.5   0.261799      0.5    0.35     1.0   0.261799     0.5   

     0.75     0.5   0.261799      1.0    0.35     1.0   0.261799     1.0   

     0.75     0.5   0.261799      1.0    0.35     0.5   0.261799     1.0   

     0.75     0.5   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     0.5   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     0.5   0.261799      1.0    0.35     0.5   0.261799     1.0   

     0.75     1.0   0.261799      1.0    0.35     0.5   0.261799     1.0   

     0.75     1.0   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     1.0   0.261799      0.5    0.35     0.5   0.261799     0.5   

     0.75     1.0   0.261799      1.0    0.35     0.5   0.261799     1.0   

     0.35     1.0   0.261799      1.0    0.35     1.0   0.261799     1.0   

     0.35     1.0   0.261799      0.5    0.35     1.0   0.261799     0.5   

     0.35     1.0   0.261799      0.5    0.35     1.0   0.261799     0.5   

     0.35     1.0   0.261799      1.0    0.35     1.0   0.261799     1.0   

     0.35     0.5   0.261799      1.0    0.75     1.0   0.261799     1.0   

     0.35     0.5   0.261799      0.5    0.75     1.0   0.261799     0.5   

     0.35     0.5   0.261799      0.5    0.75     1.0   0.261799     0.5   

     0.35     0.5   0.261799      1.0    0.75     1.0   0.261799     1.0   

     0.35     0.5   0.261799      1.0    0.75     0.5   0.261799     1.0   

     0.35     0.5   0.261799      0.5    0.75     0.5   0.261799     0.5   

     0.35     0.5   0.261799      0.5    0.75     0.5   0.261799     0.5   

     0.35     0.5   0.261799      1.0    0.75     0.5   0.261799     1.0   

     0.35     1.0   0.261799      1.0    0.75     0.5   0.261799     1.0   

     0.35     1.0   0.261799      0.5    0.75     0.5   0.261799     0.5   

     0.35     1.0   0.261799      0.5    0.75     0.5   0.261799     0.5   

     0.35     1.0   0.261799      1.0    0.75     0.5   0.261799     1.0   

     0.35     1.0   0.130899      1.0    0.75     1.0   0.261799     1.0   

     0.35     1.0   0.130899      0.5    0.75     1.0   0.261799     0.5   

     0.35     1.0   0.130899      0.5    0.75     1.0   0.261799     0.5   

     0.35     1.0   0.130899      1.0    0.75     1.0   0.261799     1.0   

     0.35     0.5   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.130899      0.5    0.75     1.0   0.130899     0.5   

     0.35     0.5   0.130899      0.5    0.75     1.0   0.130899     0.5   
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     0.35     0.5   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     0.5   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     0.5   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     0.5   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     1.0   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     1.0   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     1.0   0.130899      0.5    0.75     1.0   0.130899     0.5   

     0.35     1.0   0.130899      0.5    0.75     1.0   0.130899     0.5   

     0.35     1.0   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.130899      0.5    0.75     1.0   0.130899     0.5   

     0.35     0.5   0.130899      0.5    0.75     1.0   0.130899     0.5   

     0.35     0.5   0.130899      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     0.5   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     0.5   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     0.5   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     1.0   0.130899      0.5    0.75     0.5   0.130899     0.5   

     0.35     1.0   0.130899      1.0    0.75     0.5   0.130899     1.0   

     0.35     1.0   0.261799      1.0    0.75     1.0   0.130899     1.0   

     0.35     1.0   0.261799      0.5    0.75     1.0   0.130899     0.5   

     0.35     1.0   0.261799      0.5    0.75     1.0   0.130899     0.5   

     0.35     1.0   0.261799      1.0    0.75     1.0   0.130899     1.0   

     0.35     0.5   0.261799      1.0    0.75     1.0   0.261799     1.0   

     0.35     0.5   0.261799      0.5    0.75     1.0   0.261799     0.5   

     0.35     0.5   0.261799      0.5    0.75     1.0   0.261799     0.5   

     0.35     0.5   0.261799      1.0    0.75     1.0   0.261799     1.0   

     0.35     0.5   0.261799      1.0    0.75     0.5   0.261799     1.0   

     0.35     0.5   0.261799      0.5    0.75     0.5   0.261799     0.5   

     0.35     0.5   0.261799      0.5    0.75     0.5   0.261799     0.5   

      0.75     0.5   0.261799     1.0    0.75     1.0   0.261799     1.0   

      0.75     0.5   0.261799     1.0    0.75     1.0   0.261799     0.5   

      0.75     0.5   0.261799     0.5    0.75     1.0   0.261799     0.5   

      0.75     0.5   0.261799     0.5    0.75     1.0   0.261799     1.0   

      0.75     0.5   0.261799     1.0              
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