

Analysis of the hierarchical fuzzy

control using evolutionary algorithms

by

Juliusz Zajaczkowski

M.Sc.

A thesis submitted to:

School of Computing Sciences

Faculty of Arts, Business, Informatics and Education

CQUniversity

in fulfillment of the requirements for the degree of Doctor of Philosophy

April 2010

ii

Abstract

The research presented in this thesis examines the construction of a fuzzy logic controller for

complex nonlinear system by control system decomposition into hierarchical fuzzy logic sub-

systems. This decomposition reduces greatly the number of fuzzy rules to be defined and

addresses the problem of exponential increase of fuzzy rules with an increase in the number

of input variables or membership functions, so called ‗The curse of dimensionality‘. The

decomposition is not unique and often gives rise to variables with no physical significance.

This fact causes difficulties in obtaining a complete class of rules from experts. Hence, a

learning algorithm needs to be employed to learn fuzzy rules, for example an evolutionary

algorithm.

In this thesis evolutionary algorithm (EA) based methods are proposed to determine the

control system for the hierarchical fuzzy system (HFS). Evolutionary algorithm modifications

include EA operators, such as crossover, mutation schedules, elitism, and other methods of

passing the learned knowledge to the next generation. Variations on objective function

formulation are also considered.

Different HFS topologies for a given dynamical system (such as the inverted pendulum

system) are investigated and the controller (designed by the EA) performance is examined.

Investigation into hierarchical structures is performed on the inverted pendulum system as the

case study. For this particular dynamical system, a single layer, two layered, three layered,

and four layered HFS, with different variable input configuration is investigated. Effects of

different input configurations on controller performance are examined and discussed.

A new evolutionary algorithm based compositional method is proposed to control system

over the whole set of user-defined initial conditions. The method addresses directly the

problem of controlling the dynamical system from specific, user-defined initial conditions. In

many practical applications there is no necessity to secure controllability over the large

region in the state space, which is often difficult to achieve. Instead, a selected region of the

state space, or even specific initial conditions can be considered. Further investigation is

conducted into improvement of the compositional method by the use of the multiobjective

optimisation formalism. The multiobjective evolutionary algorithm (MOEA) based

compositional method is developed and tested on the example of the inverted pendulum

system. The MOEA based compositional method provides good controller performance over

large set of initial conditions and can be extended to other fuzzy logic control applications,

especially in robotics applications.

iii

Statement of originality

I certify that this thesis does not, to the best of my knowledge and belief:

1. Incorporate without acknowledgement any material previously submitted for a degree

in any institution of higher degree;

2. Contain any material previously published or written by another person except where

due references are made in the thesis text;

3. Contain any defamatory material.

Signature:

 Juliusz Zajaczkowski

Date: 21/03/2010

iv

Acknowledgements

I would like to thank my supervisor, Prof. Brijesh Verma, for his contribution, for making

possible completion of my thesis, and for his high and rigorous scientific standards that

significantly contributed to the final form of this thesis. I would also like to thank my

previous supervisor, Prof. Russel J. Stonier, for his role in the research work conducted for

this thesis. Especially for his generous hospitality over long years it took to complete this

research.

Many thanks to the High Performance Computing facility staff for their assistance in running

all computer simulations for my research.

I would like to convey my gratitude to the Faculty of Arts, Business, Informatics and

Education and the Research Office staff for their support, especially in the final stages of my

PhD thesis submission, and also for making it possible for me to attend national and

international conferences.

Last but not least, I would like to thank my parents, Czeslawa and Stanislaw Zajaczkowski,

and my children Esmi and Matthew, for their unending support in completion of this thesis.

v

List of publications

1. Zajaczkowski, J, Verma, B. (2010). MOEA based hierarchical fuzzy control over the

set of user-defined initial conditions. 2010 IEEE Conference on Fuzzy Systems,

WCCI2010, Barcelona, Spain (accepted).

2. Zajaczkowski, J, Verma, B. (2010). An evolutionary algorithm based approach for

selection of topologies in hierarchical fuzzy systems. 2010 IEEE Congress on

Evolutionary Computation, WCCI2010, Barcelona, Spain (accepted).

3. Zajaczkowski, J, Verma, B. (2009). A compositional method using an evolutionary

algorithm for finding fuzzy rules in 3-layered hierarchical fuzzy structure.

International Journal of Computational Intelligence and Applications IJCIA, Vol. 8,

No 4, pp. 467—485.

4. Zajaczkowski, J, Verma, B. (2009). A multiobjective evolutionary algorithm based

compositional method for hierarchical fuzzy control. ICMI 2009: International

Conference on Machine Intelligence, Bangkok, Thailand, pp. 1009—1016.

5. Zajaczkowski, J, Verma, B. (2008). Hierarchical fuzzy control for the inverted

pendulum over the set of initial conditions. Xiaodong Li et al. eds Simulated

Evolution and Learning. LNCS 5361, SEAL2008. Springer, Heidelberg, pp. 534—

543.

6. Zajaczkowski, J., Stonier, R.J. (2008). Analysis of hierarchical control for the

inverted pendulum. Complexity International, Vol. 12, Paper ID: msid49, URL:

http://www.complexity.org.au/vol12/msid49/

7. Zajaczkowski, J., Stonier, R.J. (2006). Co-evolutionary algorithm for hierarchical

fuzzy control of the inverted pendulum. Proceedings of WCCI2006, IEEE

International Conference on Fuzzy Systems, Vancouver, Canada, pp. 737—744.

8. Zajaczkowski, J., Stonier, R.J. (2004). Analysis of hierarchical control for the inverted

pendulum. Proceedings of Complex2004, Cairns, pp. 350—374.

9. Stonier, R.J., Zajaczkowski, J. (2003). Hierarchical fuzzy controllers for the inverted

pendulum. Proceedings of CIRAS 2003, on CD ISSN: 0219-613, PS01-4-03,

Singapore.

10. Stonier, R.J., Zajaczkowski, J. (2003). Model reference control using sliding mode

with Hamiltonian dynamics. The ANZIAM Journal (The Australian & New Zealand

Industrial and Applied Mathematics Journal) Vol. 45 Part E, Dec. 14, pp. E1—E40.

http://www.complexity.org.au/vol12/msid49/

vi

Contents
Chapter 1 Introduction .. 1

1.1 Overview ... 1

1.2 Significance of research .. 3

1.3 Aims of research ... 5

1.4 Original contributions ... 5

1.5 Organisation of the thesis .. 6

Chapter 2 Background knowledge and literature review .. 8

2.1 Review of the existing techniques .. 8

2.1.1 Fuzzy logic control .. 8

2.1.2 Hierarchical fuzzy control and evolutionary algorithm ... 16

2.2 Literature review ... 17

2.2.1 Literature review: fuzzy logic control .. 20

2.2.2 Literature review: fuzzy logic control and evolutionary algorithms 23

2.2.3 Literature review: hierarchical fuzzy control ... 24

2.2.4 Literature review: hybrid control systems.. 26

2.2.5 Literature review: MOEA related work ... 28

Chapter 3 Hierarchical fuzzy systems ... 32

3.1 Introduction ... 32

3.1.1 Case study: inverted pendulum system .. 32

3.1.2 Case study: fuzzy system for the inverted pendulum problem .. 33

3.1.3 Triangular membership functions .. 35

3.1.4 Gaussian membership functions .. 36

3.2 Control output ... 39

3.3 Single layer fuzzy system ... 40

3.4 Hierarchical fuzzy systems ... 41

3.4.1 Two layers .. 42

3.4.2 Three layers .. 44

3.4.3 Four layers ... 45

3.5 Non-standard hierarchical topologies ... 47

3.5.1 Non-standard two layers HFS .. 47

3.5.2 Non-standard three layers HFS .. 47

Chapter 4 Evolutionary algorithm ... 50

4.1 Introduction ... 50

4.2 Basic evolutionary algorithm .. 50

4.3 String encoding ... 53

vii

4.4 Evolutionary population and evolutionary operators .. 54

4.5 Objective function ... 56

4.5.1 Objective function for the single initial condition EA ... 56

4.5.2 Objective function for the compositional method EA ... 57

Chapter 5 Topologies for hierarchical fuzzy systems: case study .. 59

5.1 Introduction ... 59

5.2 Single layer fuzzy system ... 59

5.3 Hierarchical fuzzy systems ... 59

5.3.1 Two layered HFS ... 60

5.3.2 Three layered HFS ... 60

5.3.3 Four layered HFS ... 61

5.4 Non-standard hierarchical topologies ... 61

5.4.1 Non-standard two layered HFS .. 61

5.4.2 Non-standard three layered HFS .. 62

5.5 Fuzzy systems ... 62

5.6 Evolutionary algorithm ... 62

5.7 Experimental setup .. 63

5.7.1 Initial condition .. 64

5.7.2 Initial population .. 64

5.7.3 Population size ... 64

5.7.4 Termination condition .. 64

5.7.5 Fitness function .. 64

5.8 Computer simulations ... 64

5.8.1 One layer FS results ... 66

5.8.2 Two layered HFS results .. 67

5.8.3 Three layered HFS results .. 75

5.8.4 Four layered HFS results .. 89

5.8.5 Different topologies results .. 94

5.9 Controller tests .. 99

5.9.1 Two layers HFS controller test results ... 99

5.9.2 Three layers HFS controller test results ... 104

5.9.3 Controller test: remarks .. 111

5.10 Results ... 111

Chapter 6 Co-evolutionary algorithm for hierarchical fuzzy control of the inverted pendulum 115

6.1 Introduction ... 115

6.2 HFS topologies for co-evolutionary algorithm ... 117

viii

6.3 Co-evolutionary algorithm .. 117

6.4 Experimental setup .. 121

6.4.1 Initial condition .. 121

6.4.2 Initial population .. 121

6.4.3 Population size ... 122

6.4.4 Termination condition .. 122

6.4.5 Fitness function .. 122

6.4.6 Membership functions.. 122

6.5 Computer simulations ... 122

6.5.1 Uniform initial population ... 123

6.5.2 Random initial population .. 123

6.5.3 Widening the shape of Gaussian membership functions ... 124

6.5.4 Non-overlapping Gaussian membership functions .. 124

6.5.5 Gaussian membership functions: computer simulations .. 141

Chapter 7 Evolutionary algorithm based compositional method .. 156

7.1 Introduction ... 156

7.2 Evolutionary algorithm based compositional method ... 157

7.2.1 Hierarchical fuzzy system for compositional method .. 158

7.2.2 Defining evolutionary population .. 158

7.2.3 Fitness function .. 158

7.2.4 Membership functions.. 159

7.2.5 Crossover and mutation ... 159

7.2.6 Overview of the algorithm ... 160

7.3. Experimental setup ... 162

7.3.1 Initial conditions .. 162

7.3.2 Initial population .. 162

7.3.3 Population size ... 162

7.3.4 Termination condition .. 162

7.3.5 Elitism .. 162

7.3.6 Fitness function .. 163

7.4 Computer simulations ... 163

7.4.1 Amalgamated controller ... 163

7.4.2 Typical results .. 165

7.4.3 Good convergence of state variables.. 167

7.4.4 Discussion .. 168

Chapter 8 Multiobjective evolutionary algorithm based compositional method 170

ix

8.1 Introduction ... 170

8.1.1 Motivation for MOEA approach .. 170

8.1.2 Basic concepts and terminology .. 170

8.2 Multiobjective evolutionary algorithm based compositional method 172

8.2.1 Defining evolutionary population .. 172

8.2.2 Objective functions .. 172

8.2.3 Membership functions.. 174

8.2.4 Crossover and mutation ... 174

8.2.5 Overview of the multiobjective evolutionary algorithm .. 174

8.3 Experimental setup .. 175

8.3.1 Initial conditions .. 176

8.3.2 Initial population .. 176

8.3.3 Population size .. 176

8.3.4 Termination condition .. 177

8.3.5 Elitism .. 177

8.3.6 Objective functions .. 177

8.4 Computer simulations ... 177

Chapter 9 Conclusions and future directions .. 188

9.1 Conclusions ... 188

9.2 Topologies for hierarchical fuzzy structures ... 188

9.3 Co-evolutionary algorithm .. 191

9.4 Compositional method .. 192

9.5 MOEA based compositional method .. 192

9.6 Comparison of controller performance for proposed methods ... 193

9.6.1 Stabilisation times comparison .. 194

9.6.2 State variables convergence and control magnitude .. 195

9.6.3 Success rate for single EA and MOEA based compositional method 201

9.7 Summary of conclusions ... 202

9.8 Future directions ... 203

Appendix ... 204

References ... 207

x

List of figures

Figure 2.1 Basic diagram of the Fuzzy Logic Control System. ... 15

Figure 3.1 Inverted pendulum system. ... 33

Figure 3.2 Triangular membership functions for x1 and x2. ... 35

Figure 3.3 Triangular membership functions for x3. .. 35

Figure 3.4 Triangular membership functions for x4. .. 36

Figure 3.5 Triangular membership functions for u. ... 36

Figure 3.6 Gaussian membership function for x1 and x2 input variables. 37

Figure 3.7 Gaussian membership function for x3 input variable. .. 38

Figure 3.8 Gaussian membership function for x4 input variable. .. 38

Figure 3.9 Gaussian membership function for output variable.. 39

Figure 3.10 Single-layer topology. .. 40

Figure 3.11 Standard hierarchical fuzzy system input configuration. 42

Figure 3.12 HFS: 2-layered input configuration. ... 43

Figure 3.13 HFS: 3-layered standard input configuration. .. 45

Figure 3.14 HFS: 4-layered non-standard input configuration. ... 46

Figure 3.15 HFS: 2-layered non-standard input configuration. ... 47

Figure 3.16 HFS: 2-layered non-standard input configuration. ... 48

Figure 3.17 HFS: 3-layered non-standard input configuration. ... 48

Figure 3.18 HFS: 3-layered non-standard input configuration. ... 49

Figure 5.1 Minimum, average and maximum objective function values over 300 generations

for L2-34-12. .. 65

Figure 5.2 Minimum, average and maximum objective function values over 300 generations

for L3-34-1-2. .. 65

Figure 5.3 State variables convergence L1-1234. .. 66

Figure 5.4 Controller L1-1234. .. 66

Figure 5.5 State variables convergence L2-34-12. .. 69

Figure 5.6 Controller L2-34-12.. 69

Figure 5.7 State variables convergence L2-12-34. .. 70

Figure 5.8 Controller L2-12-34.. 70

Figure 5.9 State variables convergence L2-14-23. .. 71

Figure 5.10 Controller L2-14-23.. 71

Figure 5.11 State variables convergence L2-23-14. .. 72

Figure 5.12 Controller L2-23-14.. 72

Figure 5.13 State variables convergence L2-24-13. .. 73

Figure 5.14 Controller L2-24-13.. 73

Figure 5.15 State variables convergence L2-13-24. .. 74

Figure 5.16 Controller L2-13-24.. 74

Figure 5.17 State variables convergence L3-34-2-1. ... 77

Figure 5.18 Controller L3-34-2-1. ... 77

Figure 5.19 State variables convergence L3-34-1-2. ... 78

xi

Figure 5.20 Controller L3-34-1-2. ... 78

Figure 5.21 State variables convergence L3-13-2-4. ... 79

Figure 5.22 Controller L3-13-2-4. ... 79

Figure 5.23 State variables convergence L3-13-4-2. ... 80

Figure 5.24 Controller L3-13-4-2. ... 80

Figure 5.25 State variables convergence L3-23-4-1. ... 81

Figure 5.26 Controller L3-23-4-1. ... 81

Figure 5.27 State variables convergence L3-23-1-4. ... 82

Figure 5.28 Controller L3-23-1-4. ... 82

Figure 5.29 State variables convergence L3-14-2-3. ... 83

Figure 5.30 Controller L3-14-2-3. ... 83

Figure 5.31 State variables convergence L3-14-3-2. ... 84

Figure 5.32 Controller L3-14-3-2. ... 84

Figure 5.33 State variables convergence L3-12-3-4. ... 85

Figure 5.34 Controller L3-12-3-4. ... 85

Figure 5.35 State variables convergence L3-12-4-3. ... 86

Figure 5.36 Controller L3-12-4-3. ... 86

Figure 5.37 State variables convergence L3-24-3-1. ... 87

Figure 5.38 Controller L3-24-3-1. ... 87

Figure 5.39 State variables convergence L3-24-1-3. ... 88

Figure 5.40 Controller L3-24-1-3. ... 88

Figure 5.41 State variables convergence L4-4-3-2-1. .. 90

Figure 5.42 Controller L4-4-3-2-1. .. 90

Figure 5.43 State variables convergence L4-4-3-1-2. .. 91

Figure 5.44 Controller L4-4-3-1-2. .. 91

Figure 5.45 State variables convergence L4-3-4-2-1. .. 92

Figure 5.46 Controller L4-3-4-2-1. .. 92

Figure 5.47 State variables convergence L4-3-4-1-2. .. 93

Figure 5.48 Controller L4-3-4-1-2. .. 93

Figure 5.49 State variables convergence L2-3-412. .. 95

Figure 5.50 Controller L2-3-412.. 95

Figure 5.51 State variables convergence L2-341-2. .. 96

Figure 5.52 Controller L2-341-2.. 96

Figure 5.53 State variables convergence L3-3-41-2. ... 97

Figure 5.54 Controller L3-3-41-2. ... 97

Figure 5.55 State variables convergence L3-3-4-12. ... 98

Figure 5.56 Controller L3-3-4-12. ... 98

Figure 5.57 State variables convergence L2-34. .. 100

Figure 5.58 Controller L2-34. .. 100

Figure 5.59 State variables convergence L2-14. .. 101

Figure 5.60 Controller L2-14. .. 101

Figure 5.61 State variables convergence L2-13. .. 102

Figure 5.62 Controller L2-13. .. 102

Figure 5.63 State variables convergence L2-12. .. 103

xii

Figure 5.64 Controller L2-12. .. 103

Figure 5.65 State variables convergence L3-34-1. .. 105

Figure 5.66 Controller L3-34-1.. 105

Figure 5.67 State variables convergence L3-34. .. 106

Figure 5.68 Controller L3-34. .. 106

Figure 5.69 State variables convergence L3-23-4. .. 107

Figure 5.70 Controller L3-23-4.. 107

Figure 5.71 State variables convergence L3-23. .. 108

Figure 5.72 Controller L3-23. .. 108

Figure 5.73 State variables convergence L3-14-3. .. 109

Figure 5.74 Controller L3-14-3.. 109

Figure 5.75 State variables convergence L3-14. .. 110

Figure 5.76 Controller L3-14. .. 110

Figure 6.1 Explorative, uniform population, topology L3-34-2-1, simulation 4, state variables

xk, k = 1, … , 4. .. 125

Figure 6.2 Explorative, uniform population, topology L3-34-2-1, simulation 4, control u... 125

Figure 6.3 Explorative, uniform population, topology L3-34-2-1, simulation 8, state variables

xk, k = 1,…, 4. .. 126

Figure 6.4 Explorative, uniform population, topology L3-34-2-1, simulation 8, control u... 126

Figure 6.5 Explorative, uniform population, topology L3-34-1-2, simulation 5, state variables

xk, k = 1,…, 4. .. 127

Figure 6.6 Explorative, uniform population, topology L3-34-1-2, simulation 5, control u... 127

Figure 6.7 Explorative, uniform population, topology L3-34-1-2, simulation 10, state

variables xk, k = 1, … , 4. .. 128

Figure 6.8 Explorative, uniform population, topology L3-34-1-2, simulation 10, control u. 128

Figure 6.9 Greedy, uniform population, topology L3-34-2-1, simulation 4, state variables xk,

k = 1, … , 4. ... 129

Figure 6.10 Greedy, uniform population, topology L3-34-2-1, simulation 4, control u. 129

Figure 6.11 Greedy, uniform population, topology L3-34-2-1, simulation 8, state variables xk,

k = 1, … , 4. ... 130

Figure 6.12 Greedy, uniform population, topology L3-34-2-1, simulation 8, control u. 130

Figure 6.13 Greedy, uniform population, topology L3-34-1-2, simulation 3, state variables xk,

k = 1, … , 4. ... 131

Figure 6.14 Greedy, uniform population, topology L3-34-1-2, simulation 3, control u. 131

Figure 6.15 Greedy, uniform population, topology L3-34-1-2, simulation 10, state variables

xk, k = 1, … , 4. .. 132

Figure 6.16 Greedy, uniform population, topology L3-34-1-2, simulation 10, control u. 132

Figure 6.17 Explorative, random population, topology L3-34-2-1, simulation 2, state

variables xk, k = 1, … , 4. .. 133

Figure 6.18 Explorative, random population, topology L3-34-2-1, simulation 2, control u. 133

Figure 6.19 Explorative, random population, topology L3-34-2-1, simulation 7, state

variables xk, k = 1, … , 4. .. 134

Figure 6.20 Explorative, random population, topology L3-34-2-1, simulation 7, control u. 134

xiii

Figure 6.21 Explorative, random population, topology L3-34-1-2, simulation 5, state

variables xk, k = 1, … , 4. .. 135

Figure 6.22 Explorative, random population, topology L3-34-1-2, simulation 5, control u. 135

Figure 6.23 Explorative, random population, topology L3-34-1-2, simulation 8, state

variables xk, k = 1, … , 4. .. 136

Figure 6.24 Explorative, random population, topology L3-34-1-2, simulation 8, control u. 136

Figure 6.25 Greedy, random population, topology L3-34-2-1, simulation 2, state variables xk,

k = 1, … , 4. ... 137

Figure 6.26 Greedy, random population, topology L3-34-2-1, simulation 2, control u. 137

Figure 6.27 Greedy, random population, topology L3-34-2-1, simulation 3, state variables xk,

k = 1, … , 4. ... 138

Figure 6.28 Greedy, random population, topology L3-34-2-1, simulation 3, control u. 138

Figure 6.29 Greedy, random population, topology L3-34-1-2, simulation 3, state variables xk,

k = 1, … , 4. ... 139

Figure 6.30 Greedy, random population, topology L3-34-1-2, simulation 3, control u. 139

Figure 6.31 Greedy, random population, topology L3-34-1-2, simulation 5, state variables xk,

k = 1, … , 4. ... 140

Figure 6.32 Greedy, random population, topology L3-34-1-2, simulation 5, control u. 140

Figure 6.33 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x1. ... 142

Figure 6.34 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x2. ... 142

Figure 6.35 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x3. ... 143

Figure 6.36 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x4. ... 143

Figure 6.37 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x1. ... 147

Figure 6.38 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x2. ... 148

Figure 6.39 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x3. ... 148

Figure 6.40 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x4. ... 149

Figure 6.41 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, output variable u... 149

Figure 6.42 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x1. ... 152

Figure 6.43 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x2. ... 153

Figure 6.44 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x3. ... 153

Figure 6.45 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x4. ... 154

xiv

Figure 6.46 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, output variable u... 154

Figure 7.1 EA based compositional method block diagram. ... 161

Figure 7.2 Amalgamated controller: State variables convergence, minimum inference engine,

uniform crossover, no penalty schedule, init. cond. 4. .. 164

Figure 7.3 Amalgamated controller, init. cond. 4. ... 165

Figure 7.4 Typical result: State variables convergence, minimum inference engine, random

crossover, penalty schedule-A, init. cond. 88. ... 166

Figure 7.5 Typical result: controller, init. cond. 88. .. 166

Figure 7.6 Good state variables convergence: Mamdani inference engine, uniform crossover,

no penalty schedule, init. cond. 122. .. 167

Figure 7.7 Good convergence: controller, init. cond. 122. .. 168

Figure 8.1 MOEA based compositional method block diagram. ... 176

Figure 8.2 State variables convergence for init.cond. 78 (test-1) – controller no 1. 178

Figure 8.3 Controller no 1, init. cond. 78 (test-1). ... 178

Figure 8.4 State variables convergence for init.cond. 78 (test-1) – the best controller no 8. 179

Figure 8.5 Controller no 8, init. cond. 78 (test-1). ... 179

Figure 8.6 Pareto Front approximation for the MOEA (test-1) simulation: 43 solutions...... 180

Figure 8.7 State variables convergence for init.cond. 136 (test-2). 180

Figure 8.8 Controller no 1, init. cond. 136 (test-2). ... 181

Figure 8.9 Pareto Front approximation for the MOEA (test-2) simulation: 35 solutions. 181

Figure 8.10 Pareto Front approximation for MOEA (test-3) simulation: 48 solutions.......... 182

Figure 8.11 Number of convergences for every controller (43 controllers) in the Pareto set

(test-1). ... 185

Figure 8.12 Success rate for every controller (43 controllers) in the Pareto set (test-1). 185

Figure 8.13 Single objective EA state variables convergence for init. cond. 78. 186

Figure 8.14 Single objective EA controller, init. cond. 78. ... 186

Figure 9.1 State variables convergence for L2-34-12 and L3-34-1-2 (top) and L4-3-4-2-1 and

L3-34-2-1(bottom). .. 196

Figure 9.2 Control magnitude and smoothness of the control action for L2-34-12 and L3-34-

1-2 (top) and for L4-3-4-2-1 and L3-34-2-1 (bottom). ... 196

Figure 9.3 State variables convergence explorative L3-34-1-2 uniform, L3-34-1-2 random

(top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). .. 197

Figure 9.4 Control magnitude and smoothness of the control action for explorative L3-34-1-2

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). 197

Figure 9.5 State variables convergence greedy L3-34-1-2 uniform, L3-34-1-2 random (top),

L3-34-2-1 uniform, L3-34-2-1 random (bottom)... 198

Figure 9.6 Control magnitude and smoothness of the control action for greedy L3-34-1-2

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). 198

Figure 9.7 State variables convergence for single objective EA init. cond. no 88 (top left) and

MOEA test-1 (init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init.

cond. 122 (bottom right). ... 200

xv

Figure 9.8 Control action for single objective EA init. cond. no 88 (top left) and MOEA test-1

(init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init. cond. 122

(bottom right). .. 201

xvi

List of tables

Table 5.1 Stabilisation times for 1 and 2-layered HFS .. 68

Table 5.2 Stabilisation times for 3-layered HFS .. 89

Table 5.3 Stabilisation times for 4-layered HFS. ... 89

Table 5.4 Stabilisation times for 2 and 3-layered HFS: different topologies 94

Table 5.5 Learning speed: 1 and 2-layered HFS .. 112

Table 5.6 Learning speed: 3-layered HFS ... 113

Table 6.1 MF centres for uniform initial MF population: input variables. 141

Table 6.2 MF centres for uniform initial MF population: output variable. 141

Table 6.3 MF centres for L-34-2-1 explorative, uniform initial MF population: sim. no 4. . 141

Table 6.4 MF centres for L-34-2-1 explorative, uniform initial MF population, sim. no 8. . 144

Table 6.5 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 5. . 144

Table 6.6 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 10. 144

Table 6.7 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 4. 145

Table 6.8 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 8. 145

Table 6.9 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 3. 145

Table 6.10 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 10. 146

Table 6.11 MF centres for L-34-2-1 explorative, random initial MF population, input

variables, sim. no 2. ... 146

Table 6.12 MF centres for L-34-2-1 explorative, random initial MF population, sim. no 2. 146

Table 6.13 MF centres for L-34-2-1 explorative, random initial MF population, input

variables, sim. no 7. ... 146

Table 6.14 MF centres for L-34-2-1 explorative, random initial MF population, output

variable, sim. no 7. ... 147

Table 6.15 MF centres for L-34-1-2 explorative, random initial MF population, input

variables, sim. no 5. ... 147

Table 6.16 MF centres for L-34-1-2 explorative, random initial MF population, output

variable, sim. no 5. ... 150

Table 6.17 MF centres for L-34-1-2 explorative, random initial MF population, input

variables, sim. no 8. ... 150

Table 6.18 MF centres for L-34-1-2 explorative, random initial MF population, output

variable, sim. no 8. ... 150

Table 6.19 MF centres for L-34-2-1 greedy, random initial MF population, input variables,

sim. no 2. .. 150

Table 6.20 MF centres for L-34-2-1 greedy, random initial MF population, output variable,

sim. no 2. .. 150

Table 6.21 MF centres for L-34-2-1 greedy, random initial MF population, input. 151

Table 6.22 MF centres for L-34-2-1 greedy, random initial MF population, output variable,

sim. no 3. .. 151

Table 6.23 MF centres for L-34-1-2 greedy, random initial MF population, input variables,

sim. no 3. .. 151

xvii

Table 6.24 MF centres for L-34-1-2 greedy, random initial MF population, output variable,

sim. no 3. .. 151

Table 6.25 Memb. Funct. centres for L-34-1-2 greedy, random initial MF population, input

variables, sim. no 5. ... 152

Table 6.26 MF centres for L-34-1-2 greedy, random initial MF population, output variable,

sim. no 5. .. 152

Table 8.1 Number of convergences to TR and success rates, test-1. 184

Table 9.1 Stabilisation times for the examples of the best performing topologies, single initial

condition. ... 194

Table 9.2 Stabilisation times for co-evolutionary algorithm examples. 194

Table 9.3 Stabilisation time for randomly selected init. conditions for single objective EA and

MOEA based compositional method. .. 195

Table 9.4 The success rate for single EA and MOEA based composition method. 201

xviii

List of abbreviations and symbols

Abbreviations:

EA – Evolutionary algorithm

FLC – Fuzzy logic control

FS – Fuzzy system

GA – Genetic algorithm

HFS – Hierarchical fuzzy system

MF – Membership function

MIMO – Multiple-input multiple-output

MOEA – Multi-objective evolutionary algorithm

NN – Neural network

TR – Target region

Symbols:

 – normalised fuzzy set for input variable xi corresponding to l
th

 fuzzy rule

B
l
 – normalised fuzzy set for output variable (u1, u2, or u) corresponding to l

th
 fuzzy rule

fi – objective function or one of the objective MOEA functions

Mp – population size

M – number of elements in the individual string in the population

Nc – number of initial conditions in the user-defined set of initial conditions

Nmax – the maximum number of iterations

nT – tournament selection size

pc – crossover probability

pm – mutation probability

− individual string from the population defined as (a1, … , aM), where aj is an

 integer ∊ [1,7] and M is the size of the population

P(t) – population at time t , P(t) = { : k = 1, … , M }

PF – Pareto optimal front

PS – Pareto optimal set

T – time for which the simulation of the system is run in objective function evaluation

xix

Tf – time for which the controller is expected to act on the system in consideration

TS − survival time

u – control output

ui – intermediary control output from different layers in the hierarchical fuzzy structure

xi − state variable

 − state vector

ωi − positive weights in the objective function

1

Chapter 1 INTRODUCTION

1.1 Overview

Conventional modelling of physical systems is to develop a mathematical model and examine

its behaviour by running computer simulations of the model. However, for many highly non-

linear dynamical systems this method fails to adequately reflect physical reality. This is

especially true in the dynamical systems that can develop chaotic characteristics. In other

words, their dynamics matches chaotic motion. Examples of such systems can be found in

robotic systems and large input-output data systems due to high non-linearity and large

uncertainty in system parameters. A number of methods have been developed to address

control problems in such systems. Some of them have become widely accepted, especially

the artificial intelligence paradigms such as Neural Networks and Fuzzy Logic often coupled

with Evolutionary Algorithms, see for example (Anderson 1989), (Thrift 1991), (Cheng et

al. 1996), (Magdalena 1998), (Wang 1999), (Belarbi and Titel 2000), (Cordon et al. 2001a),

(Hsu et al. 2001), (Lee et al. 2003), (Lei and Langari 2003), (Leung et al. 2003), (Kumar and

Garg 2004), (Stonier and Mohammadian 2004), (Lin and Mon 2005), (Castillo et al. 2006).

Fuzzy control provides a practical alternative to conventional control techniques as it has

capability to incorporate heuristic information, coming from human experts either in directly

augmenting fuzzy rule base or by influencing automatic acquisition of fuzzy knowledge base.

However, apart from the obvious advantages of fuzzy control techniques there might be also

disadvantages and some of them were stated by K.M. Passino and S. Yurkowich as early as

1998, see (Passino and Yurkovich 1998).

Hierarchical fuzzy control is now a growing area of research in control systems. Increasing

the number of input variables or input fuzzy sets results in an exponential increase in

complexity of the rule base. The decomposition of the system into a layered or hierarchical

fuzzy logic system is intended to reduce the size of the rule base while maintaining an

adequate accuracy. The decomposition reduces greatly the number of fuzzy rules to be

defined, as it is known that in the single-layered control system, the number of fuzzy rules

exponentially increases with an increase in the number of input variables. It is so called ‗The

curse of dimensionality‘ that was first identified by Bellman (Bellman 1961).

2

The curse of dimensionality can be handled in variety of ways (Bellman 1961), (Wang 1997),

(Stonier and Mohammadian 2004):

 Clustering input variables in the inference engine to reduce the number of rules in

the knowledge base.

 Grouping the rules into prioritised levels to design hierarchical or multi-layered

structures.

 Reducing the size of the inference engine directly using notions of passive

decomposition of fuzzy relations.

 Decomposing the system into a finite number of reduced-order subsystems and

thus eliminating the need for a large-sized inference engine.

The research presented in this thesis examines the construction of a fuzzy logic control

system to control complex nonlinear system by its decomposition into hierarchical/multi-

layered fuzzy logic sub-systems.

Layered fuzzy logic systems utilize the modularity characterizing many physical systems and

their mathematical models. Specifically, in the context of fuzzy logic rule bases, the output

influenced by one closely related group of input variables may be largely independent of the

values of other variables. Therefore, a layered fuzzy logic system can decompose the rule

base along the weak interdependence between state variables and still maintain a high level of

accuracy. The decomposition is not unique and may give rise to variables with no physical

significance. This can cause difficulties in obtaining a complete class of rules from human

experts. Therefore, the rules need to be learnt by some learning algorithm, for example an

evolutionary algorithm (EA). These fuzzy rules are typically evolved with no previous

knowledge other than input-output data, or the physical system model.

Evolutionary algorithm, with various modifications, is used to determine the control system

for the hierarchical fuzzy system (HFS). Evolutionary algorithm modifications include EA

operators, such as crossover, mutation schedules, elitism, and other methods of passing the

learned knowledge to the next generation. Variations on objective function formulation are

also considered. Furthermore, the EA behaviour on the pre-define set of initial conditions is

examined.

In this thesis different HFS topologies for a given dynamical system (such as the inverted

pendulum system) are investigated and the performance of controllers designed by the EA for

3

these topologies are examined. Examination of the topologies gives insight into the workings

of the physical system and its control system. Investigation into hierarchical structures is

performed on the inverted pendulum system as the case study. For this particular dynamical

system, a single layer, two layered, three layered, and four layered HFS with different input

configurations are examined and controllers‘ performances compared.

The curse of dimensionality affects both fuzzy logic and evolutionary algorithms. Its effect in

fuzzy logic systems can be mitigated by using a hierarchical or multi-layered structure. The

same problem needs to be addressed for evolutionary algorithms. One approach being so

called co-evolutionary algorithms (De Jong and Potter 1995), (Pena-Reyes and Sipper 2001),

(Young and Stonier 2003). This approach is investigated further in this thesis for fine-tuning

of the fuzzy system membership functions.

The evolutionary algorithm based compositional method addresses a problem of designing

the control system over the user-defined set of initial conditions. The method is successfully

applied to the inverted pendulum system, see (Zajaczkowski and Verma 2008). Significant

improvement in the controller performance was observed after implementing multiobjective

optimisation formalism in the compositional method (Zajaczkowski and Verma 2009a).

Application of the hierarchical fuzzy control and evolutionary algorithm based compositional

method can be made to articulated robot arms and multi-robot systems in particular, although

it has much wider application.

1.2 Significance of research

Fuzzy logic control methods have been successfully applied in industrial, scientific, and

business-related problems. However, fuzzy systems suffer from dimensionality predicament,

which limits their practical applications due to computational limitations of

hardware/software. To enhance the usefulness of fuzzy logic control the research presented in

this thesis investigates hierarchical fuzzy systems approach. The investigation focuses on two

aspects:

 Overcoming high dimensionality problems by selecting fuzzy system representation

scheme and by using hierarchical fuzzy structures.

 Application of evolutionary algorithms to learn hierarchical fuzzy system knowledge

base by an automated process.

The presented research contributes to development of practical applications in robotics. The

use of hierarchical fuzzy systems makes possible developing a fuzzy control system for real-

4

time industrial applications, for example – a robotic manipulator. Standard single-layer fuzzy

control systems require a large number of rules and thus an immense computing power that

renders them impractical in real life applications. Approach to the control problem of the

inverted pendulum presented in this thesis makes practical applications of fuzzy systems

control more feasible.

The advantage of using hierarchical fuzzy systems is obvious in extreme case of

decomposition of a given fuzzy logic system into its subsystems (standard input

configuration, see Chapter 3), with two input variables in the first layer and one input per

layer in all subsequent layers. In such a case, the size of the rule base is a linear function of

the number of input variables.

The topologies of the hierarchical fuzzy systems are examined and analysed to address the

problem of how input configuration in multi-layered structure affects the output, i.e.,

controller performance. There are various approaches to building a topology of the HFS and

no consistent guidelines how to do it. In most cases it is human intuition or expert knowledge.

The problem of selecting the best topology and input configuration is examined on the

example of the inverted pendulum system. Extensive examination of the inverted pendulum

as a case study aims at developing methods for designing hierarchical fuzzy control system.

Such a case study can be very instructive for extending some of the relevant results to other

dynamical systems, in particular to a robotic manipulator. Research into inverted pendulum

problem includes designing architectures of the HFS and testing the best configuration of the

fuzzy system. Furthermore, it includes fine-tuning the evolutionary algorithm for the

hierarchical fuzzy control.

The problem of designing fuzzy control system over a user-defined set of initial condition is

investigated. Two methods can be used for this purpose: amalgamation and compositional

method. Amalgamation method develops fuzzy rule knowledge base for every initial

condition taken from a grid covering the region of state space that is under consideration and

then amalgamates them into a single knowledge base. Compositional method develops

knowledge base for the whole grid of initial conditions at once – by modifications done to a

fitness function and tuning the evolutionary algorithm. In this thesis, a novel compositional

method for hierarchical fuzzy system control has been developed and successfully applied to

the inverted pendulum system.

5

Further improvements to the compositional method are investigated by applying

multiobjective optimisation formalism to find the control system. The method is developed

on the example of the inverted pendulum system but with wide range of possible

applications. The multiobjective evolutionary algorithm based compositional method shows

good controller performance with possible further improvements by implementation of a

more sophisticated MOEA. The method shows potential for wide applications in robotics.

1.3 Aims of research

The main aim of the research presented in this thesis is to investigate the different topologies

of the hierarchical fuzzy control system using evolutionary algorithms and to examine their

impact on the controller performance. Specifically, the research presented in this thesis aims

to:

 Investigate the different topologies of a hierarchical fuzzy control structure with

single layer, two layers, three layers, and four layers with different variable input in

the two layered, three layered, and four layered structures. Determine how

hierarchical fuzzy structure affects controller performance.

 Investigate the role of membership functions in the co-evolutionary algorithm for the

hierarchical fuzzy control.

 Propose and investigate an evolutionary algorithm based compositional method for

hierarchical fuzzy control over the whole set of user-defined initial conditions.

 Propose and investigate a multiobjective evolutionary algorithm based compositional

method for hierarchical fuzzy control over the whole set of initial conditions.

1.4 Original contributions

The original contributions of this research are as follows:

 Extensive investigation of hierarchical fuzzy structures for the inverted pendulum.

Examination of the performance of the control system in different input

configurations and hierarchical fuzzy structures. The result of such analysis is a

controller with the ‗best‘ performance that is established arbitrary for the task.

 Co-evolutionary approach to the hierarchical fuzzy control of the inverted pendulum

system involving the membership functions adjustment for improved controller

performance. Investigation into different methods of co-evolutionary mechanisms and

their application to the fuzzy control.

6

 Evolutionary algorithm based compositional method for the hierarchical fuzzy control

over the user-defined set of initial conditions and its testing on the example of the

inverted pendulum system.

 The multi-objective approach to the problem of hierarchical fuzzy control over the set

of initial conditions. Implementation of the multi-objective evolutionary algorithm

for the compositional method.

1.5 Organisation of the thesis

This thesis is divided into nine chapters followed by the Appendix and References section.

Chapter 1: An introduction to the thesis is presented in this chapter. It provides an overview

of the research field, thesis objectives, its original contribution to scientific knowledge, and

thesis organisation.

Chapter 2: This chapter presents background knowledge and literature review.

Chapter 3: The inverted pendulum system is described as a test system. System dynamics is

given as a set of first order differential equations. System parameters are defined. Finally, the

hierarchical fuzzy systems and its application in fuzzy logic control are introduced.

Chapter 4: This chapter describes evolutionary algorithm that is used to find fuzzy rules for

the hierarchical fuzzy control system. Single and multiobjective evolutionary algorithms are

briefly introduced.

Chapter 5: The chapter provides detailed investigation of different topologies for the

inverted pendulum system and their impact on the controller performance.

Chapter 6: The chapter describes co-evolutionary approach to the inverted pendulum

problem that includes membership functions adjustments within the EA.

Chapter 7: This chapter presents an evolutionary algorithm based compositional method.

Chapter 8: The multiobjective optimization evolutionary algorithm based compositional

method is introduced as an improvement on the single objective compositional method.

Chapter 9: The final chapter provides final conclusions and discussion of results. Future

directions are briefly discussed.

7

Summary

In this chapter an overview of the thesis‘ topic is provided. Hierarchical fuzzy control is a

growing area of research in control systems as it addresses an important issue in fuzzy control

theory: increasing the number of input variables results in an exponential increase in the size

of the rule base (the curse of dimensionality). The decomposition of the system into a

hierarchical fuzzy logic system reduces the size of the rule base while maintaining an

adequate accuracy.

Significance of research is discussed. Research in this thesis being focused on two major

subjects: overcoming high dimensionality problems by using hierarchical fuzzy structures,

application of evolutionary algorithms to learn hierarchical fuzzy system knowledge base.

 Objectives and original contributions of the research presented in this thesis are stated.

Finally, the organization of the thesis is given.

8

Chapter 2 BACKGROUND KNOWLEDGE AND

LITERATURE REVIEW

2.1 Review of the existing techniques

2.1.1 Fuzzy logic control

The design of control systems for complex and high dimensional dynamical systems relies on

the availability of a system model under consideration. It is often difficult to create an

adequate model of the system or process due to a limited availability of mathematical theory

in case of very complex systems. Approximate models are often employed in such cases but

with the growing discrepancy between physical system and its mathematical (or

experimental) model. However, very complex systems can be controlled by human operators

with only a rudimentary knowledge of the dynamic model. This kind of control problems has

given rise to new intelligent control methods, fuzzy logic and neural networks being most

widely used.

Fuzzy logic origins lie in multi-valued logic concepts that were basis for the fuzzy theory

developed by Lofti A. Zadeh. The theory gained wider approval in the scientific community

in the 1980‘s with growing number of practical applications that proved its effectiveness. In

1990‘s the fuzzy logic control has become a viable and attractive alternative to classical

control techniques. It is a fast growing area of research, diversified in many sub-disciplines

and hybrid techniques.

There are two main problems with the design of the intelligent control methods. The first is

to obtain an adequate knowledge base for the controller, usually obtained from expert

knowledge, and the second problem is selection of key parameters defined in the method.

Evolutionary algorithms are often used for automated knowledge acquisition for fuzzy logic

controllers (Cordon et al. 2001a), (Cordon et al. 2002), (Konar 2005), (Mohammadian and

Stonier 1996a). However, there are a number of methods employed to knowledge base

acquisition (Cordon et al. 2001c):

 Fuzzy rule base derived from human experts. The expert specifies the linguistic labels

associated with linguistic variables, structure of the rule base, and the meaning of

each label.

9

 Fuzzy rule base derived from automated learning methods. There are many different

design techniques for automated learning methods apart from evolutionary

algorithms, for example: ad hoc data driven generation methods, variants of the least

squares method, descent method, neural networks, and clustering techniques.

Considering the fuzzy logic control methods record in engineering applications, its

popularity is not surprising. Success of fuzzy logic control can be attributed to a few factors:

 Fuzzy logic control is capable of using both sensor data and human expertise. It can

use both sources of information, or just one if the other is not available. This makes

the FLC a flexible control system with wide range of applications when other, more

rigorous methods, struggle to meet their control objectives.

 Fuzzy logic control is model-free approach; fuzzy logic techniques are not dependant

on the model of the physical system under consideration. This is important feature as

in some cases mathematical model of the system is not available.

 Fuzzy systems are universal approximators, which makes them suitable for non-linear

control system design.

 Fuzzy logic control provides good compromise between performance and cost. The

fuzzy logic control systems are easy to design and thus cutting development costs.

Most importantly, the fuzzy logic control is easy to understand which is important for

non-experts in the field.

However, fuzzy logic applications are limited by the heuristic nature of their knowledge

bases. Fuzzy logic control is often based upon knowledge derived from imprecise heuristic

knowledge of human operators. Some methods for transforming human knowledge into the

fuzzy logic knowledge base (rule base and database of a fuzzy inference system) are

described in (Harris et al. 1993).

The most popular application of fuzzy set theory are fuzzy rule-based systems as they

provided the framework for engineering applications. There are three major types of rule-

based systems (Babuska 2009):

 Linguistic fuzzy model in which both the antecedent and consequent part of IF-THEN

rule are fuzzy propositions (Zadeh 1973).

 Fuzzy relational model in which a particular antecedent proposition can be associated

with several different consequent propositions via a fuzzy relation (Pedrycz 1984).

 Takagi-Sugeno fuzzy model in which the consequent is a crisp function of antecedent

variables (Takagi and Sugeno 1985).

10

A large number of research papers still assume the original Zadeh‘s model of fuzzy rule base

due to its enduring flexibility in handling various practical applications.

There are also various classifications of fuzzy logic systems based on differences in fuzzy

rules and methods of their generation (Feng 2006):

 Fuzzy proportional-integral-derivative (PID) control.

 Hybrid techniques encompassing fuzzy logic, neural networks, evolutionary

algorithms, etc.

 Fuzzy-sliding mode control.

 Adaptive fuzzy control.

 Takagi–Sugeno model-based fuzzy control.

 Conventional fuzzy control.

2.1.1.1 Fuzzy PID control

PID controllers are still used in industrial applications due to their simplicity and low cost of

implementation. The reason for combining fuzzy logic control and PID control is that the

latter does not handle well highly nonlinear and uncertain systems. There are different types

of fuzzy PID controllers, one of the most efficient is so called ‗gain-scheduling‘ fuzzy

controller (Chiu 1998). In general, fuzzy PID controllers perform better than conventional

PID controllers but with the electronics becoming less and less expensive both are being

replaced by ‗intelligent‘ control systems. A good review of PID controllers can be found in

(Chen 1996).

2.1.1.2 Hybrid techniques

Hybrid techniques are often represented by neural networks control techniques combined

with fuzzy logic control. Such techniques are among most popular intelligent control methods

(Feng 2006). There are two major types of such hybrid systems: neuro-fuzzy systems (see

above) and fuzzy-neural systems, depending on which component is dominant in the hybrid

system. In neuro-fuzzy systems (combination of fuzzy logic control and neural networks) the

dominant component is the fuzzy control with NN fulfilling the role of the adaptation

mechanism. Neuro-fuzzy control method usually uses NN to find fuzzy rules and find/adjust

membership functions associated with fuzzy rules. Typically, fuzzy logic parameters are

represented by weights in NN nodes. Early applications of neuro-fuzzy systems were as

learning techniques to find/adjust the membership functions in the fuzzy control system

(Ichihashi and Tokunaga 1993).

11

Popularity of neuro-fuzzy control methods is due to their relatively robust, model-free control

techniques capable of storing and using knowledge for control decisions. NN control

acquires such knowledge by data training while fuzzy control acquires knowledge from

human experts. Both approaches have their advantages and disadvantages. NN control

derives knowledge from objective data sample but if the training data is not sufficiently

representative for the analysed problem it may fail in its objective or incur large errors. Fuzzy

logic knowledge is based on qualitative and imprecise human knowledge and therefore

subject to its limitations but at the same time it gives this approach relatively high robustness

and possibility of applications where other techniques are not applicable. Many researchers

decided to combine advantages of both approaches to achieve better control outcomes.

Further information about neuro-fuzzy control methods can be found in (Mitra and Hayashi

2000).

Fuzzy-neural systems are basically NN in which the imprecision represented by fuzzy sets is

applied to pattern recognition. Other fuzzy-neural systems NN augmented by fuzzy operators,

are based on the use of logical operators in the neural nodes (Gupta 1992). Another popular

approach to control problem is by using fuzzy logic and/or neural networks, evolutionary

algorithms, and even more hybridised techniques. Evolutionary algorithms were used to

optimise synaptic weights in NN but this approach has become obsolete with emergence of

better techniques, such as improved gradient methods. For elaboration on hybrid system with

NN and fuzzy system components see (Cordon et al. 2001a).

2.1.1.3 Fuzzy sliding mode control

Sliding mode control techniques proved themselves in many applications as robust control

systems for uncertain nonlinear systems, (Utkin 1992). Sliding mode techniques are often

used in robotic applications, and generally in MIMO (multiple-input multiple-output)

systems, as they display robustness in dealing with parameter uncertainty and external

disturbances. Inherent problems with sliding mode applications, namely chattering control

characteristics are dealt by a number of techniques, most popular being supervisory controller

(Wang 1993). Fuzzy sliding mode control eliminates chattering by defining fuzzy boundary

layers that replace crisp switching surfaces (Ha et al. 2001), (Feng 2006). The stability

analysis for sliding mode techniques is well developed which is another advantage of such

techniques. Sliding mode techniques are often combined with EAs to find/adjust membership

functions (Chen and Chang 1998), (Lin and Chen 1997) or with decomposition of the system

12

into several subsystems (Lo and Kuo 1998). See also (Kaynak et al. 2001) for further

information on sliding mode techniques.

2.1.1.4 Adaptive fuzzy control

Adaptive fuzzy system is defined as a fuzzy logic system with training algorithm. The fuzzy

logic system is designed from the fuzzy IF-THEN rules using fuzzy logic principles while

training algorithm adjusts the parameters and/or structure of the fuzzy logic system based on

numerical information (Wang 1994). In control theory many adaptive methods assume linear

or linearised systems and only for certain cases of non-linear dynamical systems adaptive

methods were developed (Ioannou and Sun 1995), (Krstic et al. 1995). Fuzzy systems are

capable of approximating any smooth function on the compact interval and this fact is used

by L.X. Wang to design an adaptive fuzzy controller for affine nonlinear systems with

unknown functions (Wang 1993). The parameters of the fuzzy system (including membership

functions) are updated according to the adaptive law derived from the Laypunov stability

theory. See also (Zeng and Singh 1994), (Zeng and Cai 2002) for other fuzzy systems

approximation examples.

A number of works in adaptive fuzzy control uses an idea of approximating unknown

nonlinear function by a fuzzy system and representing the fuzzy system in the form of linear

regression with respect to unknown parameters to use adaptive control techniques, which are

well developed for linear or near-linear systems as mentioned before, for example see

(Anderson et al. 1997), (Campos and Lewis 1999), (Han et al. 2001), (Koo 2001), Tong and

Li 2003), (Lee and Zak 2004), (Velez-Diaz and Tang 2004).

2.1.1.5 Takagi–Sugeno model-based fuzzy control

In many engineering applications both input and output values are numerical and therefore

fuzzy logic systems usually use fuzzifier and defuzziefier combination to translate the

problem into fuzzy logic formalism and back into crisp numerical values. T. Takagi and M.

Sugeno (Takagi and Sugeno 1985) proposed fuzzy system in which IF part in IF-THEN rules

is fuzzy but the THEN part is a linear combination of input variables:

If (x1 is A1
l
) and (x2 is A2

l
) and (x3 is A3

l
) and (xn is An

l
)) Then u = a0+a1x1+ a2x2+ … +anxn.

Takagi-Sugeno fuzzy systems are fuzzy dynamic models, for more details see (Cao et al.

1995), (Cao et al. 1997). The fuzzy dynamic model idea is based on using a set of local linear

models which are connected to a global nonlinear system by membership functions,

(Johansen et al. 2000), (Tanaka and Wang 2001), (Sugeno 1999). This approach does not

13

suffer from the ‗curse of dimensionality‘ as much as conventional fuzzy logic systems as it

reduces significantly the number of fuzzy rules. Another of its advantages is its stability

analysis that can be performed using classical stability theory including Lyapunov stability

analysis.

2.1.1.6 Conventional (Mamdani type) fuzzy logic control

The conventional fuzzy control, also called: Mamdani type fuzzy control, was widely used in

many practical applications, see for example (Tong et al. 1980), (Holmblad and Ostergaard

1982), (Larkin 1985), (Lee et al. 1994), (Kandel et al. 1999), (Baturone 2004), (Xiao 2004).

Advantage of conventional approach is that is heuristic and basically model-free. However,

this approach lacks developed stability analysis and consistency in controller design. Those

issues still need to be comprehensively resolved.

In spite of advantages of Takagi-Sugeno fuzzy systems they also suffer from serious

drawbacks, it is more difficult to incorporate expert knowledge in such systems and the

structure of the rule consequents is difficult to interpret for human experts. One of the major

advantages of using fuzzy logic approach in the first place is therefore diminished. The

conventional approach provides also more flexibility with using different fuzzy operators to

perform fuzzy inference (Cordon et al. 2001a). This is one of the reason the conventional

fuzzy logic control is still more popular in many practical applications.

The fuzzy logic application as a control system seems most successful in highly nonlinear

dynamical systems with large parameter uncertainty. Modeling of such systems is difficult (if

not impossible) and classical control methods are often inadequate. Fuzzy logic control can

be considered as a real-time expert system that employs fuzzy logic to analyse system input

to output. Fuzzy logic approach provides means to convert a linguistic control system

derived from the expert knowledge into automatic control system. Furthermore, fuzzy logic

control system provides means of controlling the control system evolution and its

performance, see (Konar 2005), (Wang 1997), (Stonier and Mohammadian 1996). A typical

fuzzy logic control system components are (see Figure 2.1):

 Fuzzification interface which converts crisp input values into fuzzy linguistic values

used in fuzzy reasoning mechanism.

 Knowledge base which is the collection of expert control knowledge required to

achieve the control objective.

 Fuzzy reasoning mechanism which employs various fuzzy logic operations to infer

14

the control action from the given fuzzy inputs.

 Defuzzification interface which converts the inferred fuzzy control action into the

crisp control values to be entered into the system process.

In general, fuzzy reasoning in the decision making unit is usually expressed as rules with

conjunctives and , or and else:

If (x1 is A1
l
) and (x2 is A2

l
) and (x3 is A3

l
) and (xn is An

l
)) Then (u1 is B1

l
) else (u2 is B2

l
) else

… else (um is Bm
l
) (2.1)

where Ak
l
 , k = 1, … , n are fuzzy sets for n input variables xk , k =1, … , n, and where Bk

l
 , k

= 1, … , m are fuzzy sets for m output variables uk, k =1, … , m. In this thesis, the

consequent part is assumed to be a single value:

If (x1 is A1
l
) and (x2 is A2

l
) and (x3 is A3

l
) and (xn is An

l
)) Then (u is B1

l
) (2.2)

Basic elements in fuzzy logic design are described below (Cordon et al. 2002a), (Cordon et

al. 2001b), (Cordon et al. 2001c), (Cordon et al. 2002).

Fuzzifiers and defuzzifiers are used to convert ‗crisp‘ values (such as state variables values)

into fuzzy membership functions and vice versa:

 Fuzzifier is a mapping from a real valued point x* in U to a fuzzy set A’ in U

(which is called a universe of discourse containing all elements in each particular

context). Typical fuzzifiers: singleton, Gaussian, triangular.

 Defuzzifier is a mapping from a fuzzy set B’ in V to a crisp value y* in V. Typical

defuzzifiers: centre of gravity defuzzifier, centre average defuzzifier, maximum

defuzzifier.

Inference engine lies at the heart of the fuzzy logic control system. In a fuzzy inference

engine, fuzzy logic principles are used to combine the fuzzy rules in the rule base into a

mapping from a fuzzy set A’ in U to a fuzzy set B’ in V. Two methods are used to infer with

a set of rules: composition based inference and individual-rule based inference. In

composition based inference, all rules in the fuzzy rule base are combined into a single fuzzy

relation in U×V, and used as a single fuzzy IF-THEN rule. In individual-rule based inference,

each rule in the fuzzy rule base determines an output fuzzy set and the output of the whole

fuzzy inference engine is the combination of the M (size of the rule base) individual fuzzy

sets. Combination may be taken either by union or intersection of fuzzy sets. If fuzzy rules

are viewed as independent conditional statements then the operator union is used. If fuzzy

15

rules are viewed as strongly coupled conditional statements then the operator intersection is

used.

Fuzzification
Interface

FUZZY LOGIC CONTROL SYSTEM

Knowledge Base

Data Base

Defuzzification
InterfaceInference System

Input OutputRule Base

Figure 2.1 Basic diagram of the Fuzzy Logic Control System.

Typical fuzzy system design process can be described as follows:

 Determine the input and output variables.

 Decide on the number of input variables and fuzzification.

 Decide on the number of the output variables and their defuzzification.

 Create the fuzzy knowledge base and inference engine.

Evolutionary algorithm is used to learn the fuzzy rules in the knowledge bases. The important

issue in determining the right type of evolutionary algorithm for a control problem is the

fuzzy rule base encoding method. Often, fuzzy rule base can be represented as a

multidimensional decision table. For a problem with n input variables taking mi values, i = 1,

… , n, the table has dimensions: m1 × m2 × … × mn. This decision table can be converted

into a linear string. The entire knowledge base is encoded uniquely as a string of integer

numbers representing the fuzzy rules. In this way, each fuzzy rule is uniquely defined by the

consequent part of the fuzzy rule. In some control problems it is more convenient to encode

strings using real valued string elements. However, in this thesis only integer encoding is

used.

16

2.1.2 Hierarchical fuzzy control and evolutionary algorithm

2.1.2.1 Hierarchical fuzzy control

In a hierarchical fuzzy logic structure, typically the most influential parameters are chosen as

the system variables in the first level, the next most important parameters are chosen as the

system variables in the second level, and so on (Raju et al. 1991). In this hierarchy, the first

level gives an approximate output which is then modified by the second level rule set, this

procedure can be repeated in succeeding levels of hierarchy.

In general, with n input variables and m fuzzy sets defined for each input variable, there is m
n

fuzzy rules in the rule base. In the hierarchical structure, the number of rules in a complete

rule set is so reduced to a linear function of the number of variables, but this number may still

be high. But which variables in a given system are the most influential and in what order

should variables be chosen? These questions in general are yet unanswered and an

understanding of fundamentals is required to determine the level of interdependence of input

variables. Also, given that different hierarchical structures can exist, how can the fuzzy

knowledge base and associated parameters in each layer be effectively learnt?

The decomposition into hierarchical fuzzy logic sub-systems reduces greatly the number of

fuzzy rules to be defined and to be learnt but such decomposition is not unique and it may

give rise to variables being output from one layer and input into the next layer, which do not

have any physical significance (Magdalena 1998). This can raise difficulties in obtaining a

complete class of rules from experts even when the number of variables is small (Stonier and

Mohammadian 2004), (Mohammadian 2003), (Kingham et al. 1998).

Hierarchical fuzzy systems combined with evolutionary algorithms (for learning fuzzy

knowledge base) can be used not just to reduce the size of the knowledge base but also to

improve model accuracy in regions where non-hierarchical models do not provide sufficient

performance (Cordon et al. 2004).

It is worth mentioning that reduction of the rule base can be achieved using other methods

than hierarchical decomposition, for example clustering approach presented by S. Chopra

(Chopra et al. 2005). K.S. Tang (Tang et al. 1998) proposed a scheme to reduce number of

fuzzy rules and membership functions by using a hierarchical genetic algorithm. Note that the

genetic algorithm structure is assumed hierarchical, not the fuzzy system topology. The

method does not require a priori knowledge of the fuzzy system topology.

17

2.1.2.2 Evolutionary algorithm

The evolutionary algorithm is a heuristic search technique that maintains a population of

individuals. Each individual can be considered to represent a potential solution to a given

problem. Each individual is assigned a measure of fitness which determines how accurate it

is as a potential solution to the problem. The new population is obtained from the old one by

the use of genetic operators such as crossover, and mutation. An elitism strategy is used to

pass the fittest individuals to the new population, so that the information encapsulated in the

best individual is not lost and passed to the next generation.

A selection process is used to obtain parents for mating in the current generation. The most

popular is proportional selection to select randomly two parents based on their fitness in

proportion to the overall total fitness of the population. Another is tournament selection in

which a specified number of possible parents are selected at random from the population. A

tournament is then held to select the two fittest strings and they are used as parents in the next

process of crossover to generate children to be passed into the next generation.

In the crossover operation a number of ‗parent‘ strings, typically two, are recombined to

create ‗child‘ strings. The most popular crossover operator is the one-point, arithmetic, and

uniform crossover. The crossover operator plays a role of sexual reproduction in which two

individuals exchange parts of their strings to produce offspring.

With a given probability the mutation operator mutates elements of the individual in the

population. This ensures satisfactory diversity within the population which is required for the

EA to find better approximate solutions to the problem.

With an appropriate selection of EA parameters and operators, the algorithm is allowed to

evolve. It is terminated when pre-defined termination condition is satisfied; usually at a fixed

number of generations or until there is minimal change or no change to the string which has

the best fitness. The fittest individual is taken as the best possible solution learnt by the

algorithm.

2.2 Literature review

Foundations of fuzzy theory were laid by Lofti A. Zadeh in 1965 in his famous paper ―Fuzzy

sets‖ (Zadeh 1965). Initially, the new theory did not attract much attention and remained

outside the mainstream of control theory techniques. After a series of publications (Zadeh

1968), (Bellman and Zadeh 1970), (Zadeh 1973), the fuzzy control theory started to emerge

18

as a serious competitor to the conventional control techniques. Zadeh‘s 1973 paper (Zadeh

1973) introduced the concept of linguistic variable and IF-THEN rules to encompass human

expert knowledge. Research work by E. Mamdani and S. Assilian (Mamdani and Assilian

1975) provided a groundwork for future fuzzy logic applications. With the first successful

application in the 1978 experiment in the cement kiln in Denmark, the fuzzy control theory

started to be seen as a practical alternative to classical control methods (Holmblad and

Ostergaard 1982). However, not much progress was made, mostly due to lack of funding and

interest from the industry, until successes of Japanese researchers and engineers (Fuji Electric

water purification plant, Sandai subway) in 1980‘s paved way to rapid increase in funding

and research in fuzzy control area. Fuzzy logic systems proved to be an excellent framework

for representing both human expert derived knowledge or/and automatically acquired via

some learning mechanism.

The successful real-life applications made fuzzy logic control recognised as one of the major

control theory techniques. Initially few papers were published on fuzzy logic control with

momentum gaining in 1980‘s. For examples of early publications on fuzzy logic control

methods see (Mamdani and Assilian 1975), (Mamdani 1976), (Kickert and Lemke 1976),

(Mamdani 1976), (Kickert and Mamdani 1978), (Procyk and Mamdani 1979), (Czolgala and

Pedrycz 1981), (Czolgala and Pedrycz 1982), (Ray and Majumder 1984), (Kiszka et al.

1985), (Takagi and Sugeno 1985), (Daley and Gill 1986), (Graham and Newell 1988), (Chen

and Tsao 1989). With increasing number of practical applications, such as washing

machines, image stabilisers, self-parking cars, etc, the researches encountered growing

problems related to complexity of the systems to be controlled. One of the most challenging

was exponential growth of fuzzy rules with the increase of input variables or number of fuzzy

sets associated with them (‗The curse of dimensionality‘).

There is a vast literature on fuzzy control systems, especially with applications to the inverted

pendulum (cart-pole system) as it is often used as a test system for proposed methods.

However, there is much less publications on hierarchical fuzzy control systems. A large

number of control systems (especially from 1980‘s and 1990‘s) rely on local linearization of

the dynamical system under consideration. Design of the stabilizing fuzzy logic controllers is

achieved via piece-wise linearization of the non-linear system, especially when authors are

implementing Lyapunov direct method. Lyapunov method can be used not just for stability

analysis but also to design fuzzy controllers, for example (Chen and Chen 1998), (Chen et al.

1999), (Zhong and Rock 2001).

19

It is difficult to study the problem of hierarchical decomposition for a large class of fuzzy

systems but it is possible to analyse such architectures on the example of a particular fuzzy

system. Obviously, topology of the HFS must be selected according to the physical properties

of the dynamical system under consideration. The selection process is subject to human

decision. It might be possible to design the EA for finding the most suitable (optimal or near-

optimal) topology for any particular problem (hierarchical EA), so the process can be

automated. There is a number of research projects dealing with variable control structures,

see for example (Hsu et al. 2001).

Fuzzy logic control applied to the inverted pendulum system can be found in many research

papers (as the inverted pendulum is often used as a test-system). In spite of providing

obvious advantages in reduction of the knowledge base size, hierarchical fuzzy control does

not often appear in research literature involving the inverted pendulum problem.

Furthermore, in most research papers implementing conventional Mamdani approach to

fuzzy rules a single or relatively few test initial conditions are examined (Takagi-Sugeno

approach allows use of Lyapunow stability analysis). Therefore, it was decided to investigate

a method that could control the inverted pendulum from a wide range of initial conditions,

including nonzero initial cart velocity and pole angular velocity (usually assumed to be zero).

Research papers on fuzzy control fall generally into five categories: sliding mode, adaptive,

EA & NN fuzzy control, and hybrid techniques encompassing two or more categories, see

also Section 2.1.1 for a general classification of fuzzy logic control techniques.

The research presented in this thesis has originated in research work by R.J. Stonier (Stonier

et al. 1998) and by R.J Stonier (Stonier 1999). In (Stonier et al. 1998) a two layered HFS is

investigated and the development of GA for knowledge base design is discussed in detail.

Research presented in this thesis is based on a modified algorithm from this paper, with

different parameters, crossover procedure and mutation schedule. Strong elitism is introduced

to bring the average of the population in the GA close to the desired minimum of objective

function.

Amalgamation and compositional method was investigated in (Stonier 1999). However,

attempts at replicating the results for amalgamation method achieved in the abovementioned

paper failed. The original simulations were run on Borland Turbo Pascal, with different

parameters and included variable scaling. Exact re-creation of simulations was not attempted

as Borland Turbo Pascal is not supported on newer platforms. The method of fuzzy

20

amalgamation relies on developing knowledge bases for every initial condition from a

configuration set separately and then amalgamating them into one final (global) knowledge

base by averaging the outputs for each rule in the knowledge bases. The compositional

method determines a single fuzzy knowledge base directly from a modified EA that learns

fuzzy rules over the grid of initial conditions.

2.2.1 Literature review: fuzzy logic control

Development of fuzzy logic control techniques began in earnest in 1980‘s with a large

number of papers published. The growth of fuzzy logic techniques was partly due to fuzzy

controllers solving previously intractable or very difficult control problems.

In this thesis, the inverted pendulum system is used as a case study therefore special

consideration is given to publications that solve the pole-cart problem, either as a research

paper dedicated to this particular problem or just using it for testing the proposed control

method.

In M.J. Desylvia‘s MSc thesis (Desylva 1994) a fuzzy logic controller was developed for the

task of balancing the inverted pendulum from an arbitrary set of initial conditions. The rule

base developed was based on intuition and logic rather than any mathematical model. This

approach made the control process much simpler as there was no need to solve nonlinear

differential equations. However, results achieved are specific to the inverted pendulum

system and have no much value as a method that can be extended to other dynamical

systems.

In the paper by K.J. Astrom and K. Furuta (Astrom and Furuta 2000) the authors discuss

simple strategies, based on Lyapunov analysis, for swinging up an inverted pendulum and

show that the cart-pendulum system critically depends on the ratio of the maximum

acceleration of the pivot to the gravity acceleration. Comparison of energy based strategies

with minimum time strategies are provided. In the paper, a designed controller is capable of

bringing the pendulum to the upright position in one swing, providing that the control force

satisfies u > 2g. Instead of controlling position and velocity of the cart-pendulum system, the

method relies on the control task being achieved by controlling the energy of the system,

namely acceleration of the pivot.

M. Margaliot and G. Langholz (Margaliot and Langholz 1999) used classical Lyapunov

approach to design fuzzy controllers. They used as one of their case studies the inverted

21

pendulum system. The system variables were restricted to the pole angle and its angular

velocity. The fuzzy rules were derived from the Lyapunov function derivative condition

(negative definite derivative). Five static initial conditions were selected to test the control

system and one with the initial angular velocity of 1rad/s. The method main advantage is that

it required very little knowledge about the system under consideration. The dynamic

equations do not need to be known, only the state of the system must be known (state

variables) and proportional dependence of input variable (angular speed) to the system

control output. Furthermore, the authors demonstrated that for linear time-invariant plants of

arbitrary order, four Mamdani-type fuzzy rules suffice to guarantee local asymptotic stability.

W.S. Yu and C.J. Sun (Yu and Sun 2001) developed a fuzzy adaptive control for a class of

nonlinear systems and verified it on the example of the inverted pendulum. The control

algorithm guarantees global stability of the system with the output of the system approaching

the origin if there are no disturbances and uncertainties, converging to the neighbourhood of

the origin for all realisations of uncertainties and disturbances.

Similar approach was presented by T. J. Koo (Koo 2001) using reference model adaptive

fuzzy control. N. Muskinja and N. Tovornik (Muskinja and Tovornik 2006) designed an

adaptive fuzzy controller for a real inverted pendulum and compared various control

strategies. Their investigation showed advantages of using fuzzy control theory in real-time

applications, specifically for the inverted pendulum system with the aim of fast stabilization

of the pendulum and the pendulum cart.

The most relevant to the compositional method described in this thesis are results by J. Yi

and N. Yubazaki (Yi and Yubazaki 2000), (Yi et al. 2002). They developed fuzzy controller

based on the single input rule modules (SIRM) and dynamic importance degree (DID). The

method was tested for a wide range of system parameters (cart and pole mass, pole‘s length,

etc.). They reported that for specific system parameters the inverted pendulum can be

stabilised for initial pole angle within [−30.0º, 30.0º]. In (Yi et al. 2002) the authors

investigate parallel inverted pendulum system and design the fuzzy control system that

stabilizes the system for angles within [−20.0º, 20.0º] defined as lower and upper limit of

controllability region. The control system is effective for initial angles up to 10.0º (depending

on the angle of the other parallel pendulum). Dynamic initial conditions are set to zero.

Sliding mode technique is one of the most popular techniques used to control the inverted

pendulum problem. W. Chang (Chang et al. 2002) used the inverted pendulum system as a

22

case study for the robust fuzzy-model-based sliding mode controller and tested it on several

initial conditions but with limited scope. The cart‘s position was fixed and located at the

origin, only pole angle varied: 0.08π, π/60, 89π/180, π/4. The focus of their research was on

system uncertainties not on the region of controllability. Sliding mode control provides a

robust controller but with inherent chattering problem that various techniques seek to

overcome, supervisory controller being one of the relatively simple solutions. F. Qiao (Qiao

et al. 2003) found efficient fuzzy sliding mode control for discrete nonlinear systems in the

presence of noise and tested it on the example of the inverted pendulum. Other control

methods utilizing sliding mode can be found in (Brunetti and Dotoli 2004), (Wai et al. 2003),

and (Allamehzadeh and Cheung 2002).

W.J. Wang (Wang et al. 2003) proposed a new GA based method to construct a fuzzy rules

base which does not require initialisation of the fuzzy rules‘ number, the positions of the

antecedent and the consequent fuzzy sets. Only the length and the structure of the

chromosome are set. With the specific structure of the chromosome (two strings encoding the

antecedent part of the IF-THEN rule), the special mutation operation (hierarchical mutation)

and the adequate fitness function (based on measured output error), GA generates the fuzzy

rule base spontaneously. The generated rule base has the small number of rules and arranges

the suitable placement of the premise‘s fuzzy sets and chooses the proper location of the

consequent singletons. The method is developed for multi-input multi-output systems with

arbitrary number of input and output variables.

Research by O. Castillo (Castillo et al. 2006) examined stability issues in fuzzy control

theory on the example of the inverted pendulum problem. In many real-life applications the

reliability of the controller is considered more important than stability issues but development

of the stability analysis allows the use of model based approach in fuzzy logic control. The

authors used Lyapunov theory to develop stable Mamdani type 2 fuzzy logic controllers.

P.A. Phan and T. Gale (Phan and Gale 2007) presented two-mode adaptive fuzzy control with

approximation error estimator. In the learning mode adaptive law is used to tune the fuzzy

system parameters and in the operating mode the fuzzy parameters are fixed and only the

estimator is updated.

A. Di Nola (Di Nola et al. 2007) used the inverted pendulum to demonstrate the control

system based on algebraic analysis of fuzzy systems. As the authors used it only as a

23

demonstration of the method no significant result was produced for the inverted pendulum

problem apart from providing another original approach to the fuzzy control problem.

A new fuzzy control method, scalar fuzzy control (SFC) was discussed in (Mlynski and

Zimmermann 2008). In general, the method is concerned with the problem of representing

imprecise statements and knowledge, and processing it to draw conclusions from them. The

method goes back to the principles of the multi-valued logic and introduces axiomatic

framework to develop SFC. The method is based on so called: Calculus of imprecise

knowledge and deals with linguistic variables. SFC is used to solve the inverted pendulum

problem. Surprisingly, the results achieved by SFC are quite similar to presented in this

thesis, especially state variables convergence. The initial conditions investigated being: pole

angle = 0 and 1 rad (≈ 57º), and cart‘s position x = 0.0m and x = 10.0m. The rate of

stabilisation is slightly slower then achieved in this project. The restrictions imposed on the

system in this thesis do not allow for cart‘s position to be larger than 1 m from the origin

therefore it is difficult to compare SFC results. The results achieved in (Mlynski and

Zimmermann 2008) make this method very robust and provide another proof of fuzzy logic

solving real-life problems.

2.2.2 Literature review: fuzzy logic control and evolutionary algorithms

A major problem for fuzzy systems is that they lack a learning mechanism. Coupling fuzzy

system with evolutionary algorithm provides a solution to the automated acquisition of the

fuzzy rule base. The fuzzy knowledge base can be derived by other learning mechanism but

evolutionary algorithms proved to be very successful search mechanism as they are efficient

global search techniques and capable of incorporating a priori knowledge, such as knowledge

derived from human experts.

An example of early work on combination of fuzzy control system and genetic algorithms is

the paper by M.G. Cooper and J.J. Vidal (Cooper and Vidal 1994). The focus of the paper is

on the problem of representation of the fuzzy rule base (encoding the individuals in the

genetic population). The compact encoding scheme is discussed and its implementation. This

scheme allows for a smaller fuzzy rule base size and is aimed at overcoming the ‗curse of

dimensionality‘ as the search space increases exponentially with string size. In the compact

encoding scheme, each of the input variables requires only two one byte integers: one giving

the centre and the other the half-length of the base of the isosceles triangle representing the

membership function. In general, each rule requires 2·m bytes where m is the total number of

24

control variables in the system. The authors use random initial population and the size of the

rule base emerges as a result of the genetic algorithm evolution. For an early example of a

method of simultaneous design of membership functions and fuzzy rule base see (Homaifar

and McCormick 1995). For other examples of fuzzy control and evolutionary learning see

(Lee and Takagi 1993), (Lee and Takagi 1993a), (Shimojima et al. 1995), (Mohammadian

and Stonier 1996a), (Stonier et al. 1998). (Matellan et al. 1998), (Mao et al. 2001),

(Damousis et al. 2002), (Kumar and Garg 2004). A good review of fuzzy logic control and

evolutionary algorithms can be found in (Cordon et al. 2001a) where the authors describe in

detail different approaches and methods in automated knowledge acquisition with particular

emphasis on rule-based systems and different variants of genetic/evolutionary algorithms.

They include both Michigan and Pittsburgh approach among other methods.

2.2.3 Literature review: hierarchical fuzzy control

The curse of dimensionality remains an unsolved problem in fuzzy logic control theory

(Abraham 2005). The problem is subject of many research papers with some authors focusing

on systematic design of fuzzy logic systems (Chen et al. 2007). There are also research

projects with focus on finding automatically fuzzy structure and parameters of the fuzzy

system, for example see (Huang and Wang 2000), (Wu and Chen 1999).

One of early methods to reduce the size of the rule base by introducing hierarchical fuzzy

control was developed G.V.S. Raju (Raju et al. 1991) and G.V.S. Raju and J. Zhou (Raju

and Zhou 1993). G.V.S. Raju proposed a hierachical structure in which the most influential

system variables were input in the first layer, the next most important variables as input in the

next layer, and so on. The first layer control output is an approximation of the controller and

is modified by the fuzzy rule base of the next layer, until the final layer produces the final

control output.

Another early attempt to overcome the dimensionality problem was made by M. Brown

(Brown et al. 1995) who proposed a low-dimensional rule base in a hierarchical structure.

Automatic determination of the fuzzy rule base in a hierarchical structure was proposed in

(Shimojima et al. 1995).

L.X. Wang (Wang 1997) provided proof that the HFS are universal approximators to any

continuous function on a compact set and analyses the sensitivity of the fuzzy system output

with respect to small perturbations in its input. This was further elaborated in (Wang 1999).

25

M.G. Joo and J.S. Lee (Joo and Lee 2002) extended Wang‘s results to a case where the

intermediary control outputs (between layers) are not part of the antecedent part of the IF-

THEN rules but only in the consequent part. This approach removed the problem of

intermediary control outputs that had little physical meaning and were difficult to interpret.

L.C. Lin and G.Y. Lee (Lin and Lee 1999) investigated optimization of the hierarchical

structure and its parameters for a five input variables fuzzy system in a low-speed control

problem. Input configuration analysis was performed by J.C. Duan and F.L. Chung (Duan

and Chung 2002), see also (Chen et al. 2007).

K.Y. Tu (Tu et al. 2000) presented a method for designing of a multilayer fuzzy logic

controller for multi-input multi-output systems. In this paper, we propose a multi-layer fuzzy

logic controller (MLFLC) for multi-input–multi-output (MIMO) systems. For the

convenience of analysis, the structure of the multi-layer fuzzy logic controller is divided into

multi-input–single-output (MISO) controllers. Each multi-input–single-output controller

consists of many fuzzy logic controllers (FLC). In the fuzzy logic controller the linguistic

rules are designed as a suction controller. A theorem shows that such fuzzy logic controller

has a switching line. The results of analysis show that the multi-layer fuzzy logic controller

has a switching manifold and its parameters are the scaling factors which normalize the input

variables. Moreover, a theorem which shows the stability of the proposed multi-layer fuzzy

logic controller can easily be formulated by properly selecting the denormalising scaling

factors. A cart-pole system with two links is used as an illustrated example for demonstration.

The demonstrations also include the links controlled to track a set of desired trajectories.

Simulation results show that the fuzzy control system is asymptotically stable, and the desired

trajectories can be followed very closely.

Y.J. Mon and C.M Lin (Mon and Lin 2002) proposed a hierarchical fuzzy sliding-mode

control to achieve asymptotic stability of the system. The nonlinear system is decomposed

into several subsystems and the state response of each subsystem can be designed to be

governed by a corresponding sliding surface. The whole system is controlled by a

hierarchical sliding-mode controller. The inverted pendulum system is used to test the

proposed method. Later they improved their hierarchical fuzzy sliding-mode controller with

decoupling of the nonlinear inverted pendulum system into several subsystems, see (Lin and

Mon 2005).

26

M.L. Lee (Lee et al. 2003) addressed the intermediate output from hierarchical fuzzy layers

that usually do not have a physical meaning. They proposed a new mapping of the rule base

that allows treating the intermediary control values as intermediary mapping variables. The

method aims at reducing the rule base size.

Z.M. Yeh and K.H. Li (Yeh and Li 2004) proposed a multistage control system for the

inverted pendulum system that reduced the number of rules. However, the fuzzy rules

formulation/generation was not clearly elaborated.

R.J. Stonier and M. Mohammadian (Stonier and Mohammadian 2004) presented introduction

to hierarchical fuzzy control with the use of evolutionary algorithms on several examples:

interest rate prediction, inverted pendulum, collision-avoidance in a robot system, micro-

robot control, and co-evolutionary algorithm.

L.X. Wang (Wang et al. 2005) designed a sliding mode controller for one-input multiple-

output system where sliding surfaces are organized in a cascade thus creating a hierarchical

system.

F. Cheong and R. Lai (Cheong and Lai 2007) addressed problems with the use of hierarchical

fuzzy logic controllers, especially in the automatic design of controllers. This includes the

coordination of intermediary outputs (approximate controllers) of sub-controllers at lower

levels of the hierarchy. The authors describe a method for the automatic design of a

hierarchical fuzzy logic controller using an evolutionary algorithm called differential

evolution. The method is developed for a wide class of control systems and the feasibility of

the method is demonstrated by developing a two-layered HFS for controlling the inverted

pendulum system.

Other examples of hierarchical fuzzy control applied to the inverted pendulum system can be

found in (Magdalena 1998) and (Lei and Langari 2003).

2.2.4 Literature review: hybrid control systems

Hybrid techniques are part of the wider quest for an intelligent control methodology. Many

researchers found that merging different control paradigms results in more efficient, often

adaptable, control techniques. Different approaches were tried to merge control technique. An

early example can be found in (Chiaberge et al. 1995) in which several control paradigms are

merged: fuzzy control, neural networks, linear control, optimisation algorithms (simulated

27

annealing and genetic optimisation), and finite state automata. The presented method, for

designing hybrid intelligent controllers, is based on an implementation of the fuzzy logic

control with real and binary weights. The learning is performed by the genetic algorithm and

is defined as a mixed integer constrained dynamic optimization. Training of the controller is

performed in a closed-loop simulation with the controller in the loop.

E.S. Sazonov (Sazonov et al. 2003) developed a hybrid control system, including neural

controller and linear quadratic Gaussian (LQG) controller. The neural controller was

optimised by genetic algorithms on the inverted pendulum system. The optimisation process

stipulated a region of asymptotic stability of the neural controller around the regulation point.

This paper has little relevance to the research presented in this thesis but it shows a variety of

approaches taken to solve control problems.

In (Saifizul et al. 2006) the authors presented a neuro-fuzzy controller for the inverted

pendulum. The mathematical model of the inverted pendulum gives a good representation of

the physical system taking into account a large number of system parameters, including

electrical characteristics of the actuators, damping forces, viscous damping, etc. The control

system, SESIP (self-erecting single inverted pendulum), consists of two control loops: swing-

up controller and stabilisation controller. Position-velocity controller is used to design swing-

up control and Takagi-Sugeno fuzzy controller with adaptive neuro-fuzzy inference system is

used to stabilise the pendulum at the unstable equilibrium position. The authors pay special

attention to control the cart‘s position which is returned to its original position. The control

system stabilises the pendulum in about 3.5s. The initial condition tested was pendulum angle

at 10 degrees and other initial values set to zero.

S. Khwan-on (Khwan-on et al. 2004) developed neuro-tabu-fuzzy controller to stabilize a

wide range of inverted pendulum systems using the same SIRM technique. They investigated

relation between the pendulum length and the initial angle of the pendulum in terms of

stabilization times.

M. Kumar and D.P. Garg (Kumar and Garg 2004) compared fuzzy logic control using GA-

fuzzy and neuro-fuzzy models. Neuro-fuzzy approach was faster but with higher PI value

while GA-fuzzy was slower but with lower PI value, where PI was defined as sum of squared

angle errors over a simulation period of 10s. Y. Gao and M.J. Err (Gao and Err 2003)

proposed an approach by combining neural networks with adaptive techniques and designed a

fuzzy controller for the inverted pendulum. J.A.K. Suykens (Suykens et al. 2001)

28

successfully implemented neural network techniques to achieve fast and smooth convergence

of state variables. Other examples of successful application of GAs and NNs in controlling

the inverted pendulum system can be found in (Sazonov et al. 2003), (Wu and Tam 2000).

A hybrid controller for stabilisation of the rotary inverted pendulum proposed by P. M. Melba

and N.S. Marimuthu (Melba and Marimuthu 2008) is another example of effectiveness of

hybrid methods. In this case the control system is designed in two parts: PD position control

to swing up the pendulum to approximately upright position and then FLC used to stabilise

the pendulum in the upright position. LQR (linear quadratic regulator) feedback control is

used for pendulum stabilisation.

Hybrid control methods is a very active research field with many researches trying to design

practical intelligent control systems when a single control paradigm fails to provide

satisfactory results.

2.2.5 Literature review: MOEA related work

There is a fast growing literature on multiobjective optimisation in the last decade. One of the

most influential are publications by Kalyanmoy Deb (Deb 2001) and by Carlos A. Coello

Coello (Coello Coello et al. 2002). More recent methodology can be found in (Abraham et

al. 2005).

The first application of the EA in finding multiple trade-off solutions was made by D. Shaffer

(Shaffer 1985) in which non-Pareto approach was used. After an idea about domination in

multi-objective optimization in D.E. Goldberg book (Goldberg 1989) a number of

multiobjective evolutionary algorithms were developed by different authors, for example see

(Fonseca and Fleming 1993), (Srinivas and Deb 1994), (Horn et al. 1994). E. Zitzler and L.

Thiele (Zitzler and Thiele 1999) proposed a Pareto based method, so called the strength

Pareto evolutionary algorithm (SPEA). The main characteristics of SPEA can be

summarized as:

 Sorting non-dominated solutions externally.

 Evaluating an individual‘s fitness on the basis of external non-dominated individuals

that dominate it.

 Preserving population diversity by using the Pareto dominance.

 Using clustering technique to reduce the non-dominated set.

H.A. Abbas (Abbass et al. 2001) developed differential evolution (DE) that is an EA

29

designed to handle optimization problems over continuous domains. The paper introduces a

novel Pareto-frontier differential evolution (PDE) algorithm to solve multiobjective

optimization problem (MOP). The solutions provided by the proposed algorithm for two

standard test problems, outperform the SPEA. The Pareto differential evolution (PDE)

algorithm performance varies according to the crossover and mutation rates. In (Abbas 2002)

a new version of PDE was presented with self-adaptive crossover and mutation. This new

version is called self-adaptive Pareto differential evolution (SPDE).

M. Laumanns (Laumanns et al. 2002) addressed the important problem of convergence to the

true Pareto set in MOEAs, which is related to the problem of maintaining diversity in solution

space. I.F. Sbalzarini (Sbalzarini et al. 2001) investigated similar problem, namely: How to

accomplish fitness assignment and selection in order to guide MOEA towards the Pareto set

and how to maintain a diverse population to prevent premature convergence. Further research

material on MOEA convergence can be found in (Deb et al. 2000), (Deb and Goel 2001),

(Zitzler et al. 2001) just as an example of the vast literature on the MOEA subject.

Multi-objective evolutionary algorithms usually perform well for problems with two or three

objectives. However, for many-objective optimisation with more than three objectives, the

algorithms applying Pareto optimality as a ranking metric may loose their effectiveness. This

problem is addressed by E.J. Hughes (Hughes 2005) who compares three different

approaches to generating Pareto surfaces on both multi and many objective problems. In the

first approach a Pareto ranking method (NSGA II) is used. The second approach combines

multiple single objective optimisations in a single run (MSOPS). The third uses multiple runs

of a single objective optimiser. The results show advantages of generating the entire Pareto

set in a single run compared to repeated single objective optimisations. NSGA II loses its

effectiveness as the problem dimensionality increases.

The growing number of MOEA methods required new methodology for method comparison.

Initial investigation into comparison of various MOEA methods was done by E. Zitzler and

L. Thiele (Zitzler and Thiele 1999). This issue was also addressed by D.A. Van Veldhuizen

and G.B. Lamont, (Van Veldhuizen and Lamont 2000). E. Zitzler and L. Thiele expanded

their work into more comprehensive study (Zitzler et al. 2000). E. Zitzler in (Zitzler et al.

2000) provided systematic comparison of various evolutionary approaches to multiobjective

optimisation based on selected six test functions. Selected test functions are known for

causing difficulties in implementation of multiobjective optimisation, mostly in convergence

30

to the Pareto front, see Chapter 8 for terminology. The authors introduce metrics to measure

the methods performance, addressing specifically three major objectives:

 Minimisation of the distance of the solutions set to the Pareto-optimal front.

 A good (that means in most cases uniform) distribution of the solutions.

 The extent to which the nondominated solutions should be maximised.

Eight algorithms are compared:

 RAND: a random search algorithm.

 FFGA: Fonseca and Fleming‘s multiobjective EA.

 NPGA: the niched Pareto genetic algorithm.

 HLGA: Hajela and Lin‘s weighted-sum based approach.

 VEGA: the vector evaluated genetic algorithm.

 NSGA: the nondominated sorting genetic algorithm.

 SOEA: a single objective evolutionary algorithm using weighted-sum aggregation.

 SPEA: the strength Pareto evolutionary algorithm.

Generally, it was found that multiobjective EAs performed better than random search

algorithm. It was also observed that NSGA outperforms the other nonelitist multiobjective

algorithms. The best overall performance is demonstrated by SPEA. The results also show

the importance of elitist strategies. Elitism plays important part in performance. Furthermore,

other methods when supplemented by SPEA elitism show improved performance.

Another comparison can be found in the paper of D.A. Van Veldhuizen and G.B. Lamont

(Veldhuizen and Lamont 2000). Four methods are compared: MOGA (same as FFGA, see

above), MOMGA (Van Veldhuizen and Lamont method incorporating fitness sharing and

Horn‘s tournament selection), and finally NPGA and NSGA as mentioned in (Zitzler et al.

2000). The authors performed in depth analysis of the investigated methods using three MOP

comparison metrics (generational distance, overall nondominated vector generation, and

spacing) and nonparametric statistical analyses. They showed that NSGA performance is

statistically worse than the other tested methods.

31

Summary

In this chapter the background knowledge and literature review is presented. The existing

techniques in fuzzy logic control, hierarchical fuzzy control, hybrid methods, and MOEA

methods are reviewed. Different approaches to fuzzy logic control are briefly described:

fuzzy proportional-integral-derivative (PID) control, hybrid techniques, fuzzy-sliding mode

control, adaptive fuzzy control, Takagi–Sugeno model-based fuzzy control, and conventional

fuzzy control. Many of the FLC methods encompass two or more different techniques. The

review was focused on fuzzy logic control coupled with evolutionary algorithm as a learning

method. Selected papers of interest are briefly described.

Compositional method, presented in Chapter 8, is formulated using multiobjective

optimisation formalism and for this reason MOEA methods are reviewed in a separate

section.

32

Chapter 3 HIERARCHICAL FUZZY SYSTEMS

3.1 Introduction

Hierarchical fuzzy systems are used not only to overcome the curse of dimensionality but

also to improve the control system performance. The decomposition into hierarchical

structure that reflects the physical properties of the system under investigation simplify the

control system and it might greatly improve its performance.

The fuzzy control methods are often tested on the example of the inverted pendulum system.

In some cases, especially when the control method is dependent on the physical properties of

the system, the method is developed on the example of the inverted pendulum and then

extended to other dynamical systems.

In the following sections, the case study setup for all experiments with the inverted pendulum

is described.

3.1.1 Case study: inverted pendulum system

The control of the inverted pendulum system has been undertaken using linear and nonlinear

dynamics and include both classical and fuzzy logic control techniques, see for example

(Slotine 1991), (Anderson 1989), (Lee and Takagi1993), (Stonier et al. 1998), (Magdalena

1998).

The inverted pendulum system consists of the cart and a rigid pole hinged to the top of the

cart, see Figure 3.1. The cart moves left or right on a straight bounded track and the pole

swings in the vertical plane determined by the track. The dynamics of the system is modelled

by the following equations:

 =

 = u + mp L (sin () – cos ())/(Mc+mp)

 = (3.1)

 =

where x1 is the position of the cart, x2 is the velocity of the cart, x3 is the angle of the pole, x4

is the angular velocity of the pole, u is the control force on the cart, mp is the mass of the pole,

Mc is the mass of the cart, L is the length of the pole, and g is gravitational acceleration. The

33

control force is applied to the cart to prevent the pole from falling while keeping the cart

within the specified bounds on the track. The system has the following parameters: mp =

0.1kg, Mc = 1.0kg, L = 0.5m, g = 9.81m , with state limits: −1.0 ≤ x1 ≤ 1.0 and −π /6 ≤ x3

≤ π/6. Even though the above system equations do not represent fully the physical dynamics

of the inverted pendulum system they are a good and relatively accurate approximation of the

real system.

Figure 3.1 Inverted pendulum system.

Fuzzy controller is to stabilise the system about the unstable reference position = as

quickly as possible, whilst maintaining the system within the target region (TR) defined by

the following bounds: | x1 | ≤ 0.1, | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0. The fuzzy controller is

required to control the system such that the state variables converge to the TR and are

maintained within TR for a prescribed time limit Tf, with Tf = 20.0s.

3.1.2 Case study: fuzzy system for the inverted pendulum problem

The control of the inverted pendulum (sometimes referred to as pole-cart system) has been

undertaken using linear and nonlinear dynamics and include both classical and fuzzy logic

control techniques, see for example (Slotine 1991), (Anderson 1989), (Lee 1993), (Stonier et

al. 1998), (Magdalena 1998).

In initial experiments all fuzzy membership functions are assumed to be triangular. After

experiments with co-evolutionary algorithm all fuzzy membership functions are assumed to

be Gaussian functions with their centres evenly spaced over the range of input and output

34

variables. The only exception being some experiments with co-evolutionary EA in which

centres of the membership functions are randomly generated.

It is worth noting that with the increase of the number of membership functions covering the

domains of input and output variables a better accuracy of the control system can be

achieved. However, it comes at a price, namely with a larger number of rules and

computational times increased dramatically. For this reason a compromise must be struck

between accuracy and computational requirements.

Each domain region for xi is divided into five overlapping intervals and assigned linguistic

values:

 NB – Negative Big

 NS – Negative Small

 NE – Neutral

 PS – Positive Small

 PB – Positive Big.

The defined linguistic values are associated with membership sets , k =1, ... , 5, which are

encoded numerically as integers from 1 to 5 respectively. Membership sets for x1 and x2 are

assumed the same. The set of five membership functions provides relatively small knowledge

base while maintaining a good controller performance.

As the output variable u range was found larger (by experiments), it is divided into seven

overlapping regions:

 NB – Negative Big

 NM – Negative Medium

 NS – Negative Small

 NE – Neutral

 PS – Positive Small

 PM – Positive Medium

 PB – Positive Big.

The seven linguistic values are associated with seven membership sets B
k
, k =1, ... , 7, with

output being an integer number from the interval [1,7]. It is more convenient to refer to the

linguistic variables values by their encoded integer values than by their linguistic values and

therefore this approach is assumed for the reminder of the thesis.

35

3.1.3 Triangular membership functions

The seven centres associated with the output sets B
l

are: −10.0, −4.5, −2.5, 0.0, 2.5, 4.5, 10.0.

These values are obtained by examining the values of u1, u2 and u obtained as output from the

integration of the state equations, see Equation 3.1. Triangular membership functions are

shown in Figure 3.2 − Figure 3.5.

Figure 3.2 Triangular membership functions for x1 and x2.

Figure 3.3 Triangular membership functions for x3.

36

Figure 3.4 Triangular membership functions for x4.

Figure 3.5 Triangular membership functions for u.

3.1.4 Gaussian membership functions

Each domain region for xi is divided into five overlapping intervals and each assigned

membership sets: Ai
k
, k =1, ... , 5, which are encoded numerically as integers from 1 to 5

respectively. As with the triangular functions, the set of five membership functions provides

small knowledge base while maintaining a good controller performance. The output variable

37

u range is divided into seven overlapping regions covered by seven membership sets B
k
, k =

1, ... , 7. All fuzzy membership functions are assumed to be Gaussian functions with their

centres evenly spaced over the range of input and output variables. Thus, for x1 and x2 there

are five Gaussian membership functions covering [−2.0, 2.0], see Figure 3.6. For x3 there are

five Gaussian membership functions covering [−π/2.0, π /2.0], see Figure 3.7. For x4 there are

five Gaussian membership functions covering [−4.0, 4.0], see Figure 3.8. For u there are

seven Gaussian membership functions covering [−15.0, 15.0], see Figure 3.9.

Each Gaussian membership function is defined by three numbers: its centre and the two

centres of the neighbouring membership functions (which define standard deviation σ): xmL –

the centre of the neighbouring MF to the left, xm – the centre, and xmR – the centre of the

neighbouring MF to the right. Because five membership functions are used to cover each

input variable – it suffices to have three centres to define five Gaussian functions covering

the range of input variable with left and right boundary of the range acting as extreme left and

right centres. If the value of the variable x falls within interval defined by xmL and xmR the

membership function value is calculated as:

 (3.2)

where d = 10.0 is a stretching parameter in the Gaussian Function.

0

0.2

0.4

0.6

0.8

1

1.2

-2.0 0 2.0

Figure 3.6 Gaussian membership function for x1 and x2 input variables.

38

0

0.2

0.4

0.6

0.8

1

1.2

−π/2.0 0 −π/2.0

Figure 3.7 Gaussian membership function for x3 input variable.

0

0.2

0.4

0.6

0.8

1

1.2

-4.0 0 4.0

Figure 3.8 Gaussian membership function for x4 input variable.

39

0

0.2

0.4

0.6

0.8

1

1.2

-15.0 15.00

Figure 3.9 Gaussian membership function for output variable.

3.2 Control output

At the heart of the fuzzy logic control system lies the inference engine that applies principles

of intelligent reasoning to interpret the rules to output an action from inputs. There are many

known types of inference engines in the literature, including the most popular Mamdani and

minimum inference engine (Wang 1997).

In all experiments presented in this thesis the control output u is calculated using either the

Mamdani product or minimum inference engine. In general, other inference engines can be

applied, see (Wang 1994). In experiments with the inverted pendulum problem, the product

Mamdami and minimum inference engines are used for their specific characteristics.

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given

in Equation 3.2 (with Mamdani inference engine) or Equation 3.3 (with minimum inference

engine) uses a singleton fuzzifier and centre average defuzzifier to determine output

variables.

u = (3.3)

u = (3.4)

40

where are centres of the output sets B
l
 and are membership functions associated with

fuzzy sets Ai
l
.

3.3 Single layer fuzzy system

An initial analysis of the learning of fuzzy rules in a single layered system is given in (Stonier

and Stacey 1998). In that paper a max-min inference engine is used and all variables are

normalised to have their values lie in the interval [−1, 1]. Nevertheless, the formalisation of

the knowledge base is similar to the approach used in this thesis.

The l
th

fuzzy rule for a single layer has the form:

If and (x1 is A1
l
) and (x2 is A2

l
) and (x3 is A3

l
) and (x4 is A4

l
)) Then (u is B

l
) (3.5)

Assuming there are n input variables and there are m fuzzy sets defined for each input

variable, the number of fuzzy rules is given by N = m
n
. The number of rules increases

exponentially with the increase of input variables. This is a common problem in all complex

systems; the complexity of the system growing exponentially with the number of variables

describing the system, and is not unique to fuzzy systems (Wang 1997).

With n = 4 input variables and m = 5 fuzzy sets defined for every input variable there are 625

rules in the rule base: m
n
 = 5

4
 = 625. Obviously there is only one possible topology for the

single layer fuzzy system with all variables as input into a single layer fuzzy system.

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given

in Equation 3.3 or 3.4 uses a singleton fuzzifier, Mamdani product or minimum inference

engine and centre average defuzzifier to determine output variables.

x3

x1

x2

x4

u

Figure 3.10 Single-layer topology.

41

3.4 Hierarchical fuzzy systems

The number of rules in the hierarchical fuzzy system is a linear function of the number of

input variables. Let assume that there are n input variables in L-layered structure. For every

input variable there are m fuzzy sets associated with that variable. Assume further that in the

first layer there is n1 input variables, 2 ≤ n1 < n, and ni + 1 in the i-th layer, ni ≥ 1. If n1 = ni

+ 1 = c is constant for i = 2, … , L, then the total number of rules in the hierarchical fuzzy

system is given by:

Furthermore, if m ≥ 2 the number of rules M is minimized when c = 2, which means that

there are two input variables in every layer (Wang 1997).

Let input configuration that has two input variables in every layer be called ‗standard

configuration‘ for convenience. Such a standard input configuration has in the first layer two

state variables as input and for successive layers: one state variable and one intermediary

variable that can be considered as control approximation in each layer. Such a configuration

is shown in Figure 3.11. This standard input configuration provides the minimal number of

fuzzy rules in the knowledge base but it does not necessarily provide the best configuration

from the control system perspective. Often, such systems do not provide sufficient control

performance, especially in complex high-dimensional systems.

Obviously, the 2-layered HFS does not constitute a standard configuration in the above sense

as there are 3 input variables in the second layer: two state variables and one intermediary

variable as output from the first layer. Therefore, the number of fuzzy rules in the 2-layered

HFS for the inverted pendulum system does not provide minimal size of the rule base.

However, for the sake of simplicity, this 2-layered HFS will be considered among standard

configurations even though it is not optimising the number of rules in the knowledge base.

As mentioned in Section 1.2, the size of the rule base changes exponentially with the

increase/decrease of the input variables. In the hierarchical fuzzy structure the size of the rule

base becomes a linear function of the number of input variables (Wang 1997). However,

standard input configuration can cause deterioration of the control performance. The

decomposition needs to be performed along the weak interdependencies between input

variables. Obviously, it requires certain knowledge of the physical system in the absence of

any automated method of the HFS decomposition.

42

...

x3

x1

x2

x4

xn

y1

y2

y3

yn-2

y = yn-1

Figure 3.11Standard hierarchical fuzzy system input configuration.

There exist other topologies, both in 2 and 3-layered structures, with a different number of

input variables in any particular layer than in the standard configuration. There are more or

less than two input variables in the first layer, and different input configurations in

subsequent layers for the 3-layered HFS.

Another possible topology for the inverted pendulum problem is the 4-layered HFS with a

single input variable in the first layer. However, the size of the knowledge base is larger than

in standard 3-layered HFS configuration.

The output for each layer is obtained using the Mamdani or minimum inference engine as

given in Equation 3.3 and 3.4, with the appropriate change of variable and associated

membership functions for that variable.

Please note that the size of the knowledge base does not automatically translate into better

controller performance. The size of the rule base is of paramount importance in high-

dimensional systems when the number of rules can make the control system completely

impractical due to a long computation time. This consideration is however case dependant.

3.4.1 Two layers

There are six different topologies of the two layered hierarchical fuzzy system in the ‗near-

standard‘ configuration: two input variables in the first layer and two input variables plus

intermediary control variable from layer 1 in layer 2. This decomposition does not exhaust all

43

possibilities as different input configurations can be considered (some of them discussed

later), for example: three input variables in layer 1 and one input variable plus intermediary

control from layer 1 in layer 2. Another possibility is to have one input in layer 1 and three

input variables plus intermediary control in layer 2 which would result in knowledge base

consisting of 880 rules (with current number of membership functions covering domains of

input and output variables) and this is more rules than in a single layer architecture thus

deeming it impractical. The number of rules may increase (the latter example) or decrease

(the first example) in different topologies. However, the two input configuration in each layer

seems the most reasonable. The architecture of the 2-layered HFS is shown in Figure 3.12.

For the inverted pendulum system the first knowledge base KB1 has the two inputs to

produce as output a first approximation of the control u1. This u1 together with another state

input xi and xj, i, j ∊ [1,4] are used as input in the second knowledge base KB2 to produce the

final control output u.

In the first layer there are 25 = 5
2
 rules in the knowledge base. The l

th
 fuzzy rule for the first

layer has the form:

If (xi is Ai
l
) and (xj is Aj

l
) Then (u1 is B

l
) (3.6)

where , k = 1,2,3,4, are fuzzy sets for input variables xk, k = 1,2,3,4, respectively, and

where are fuzzy sets for output variable u1.

xk

xi

xj

xl

u1

u

Figure 3.12 HFS: 2-layered input configuration.

For the second layer there are 175 = 7 · 5
2
 rules in the knowledge base. The l

th
fuzzy rule for

the second layer has the form:

44

If (u1 is C
l
) and (xi is Ai

l
) and (xj is Aj

l
)) Then (u is B

l
) (3.7)

where C
l
are fuzzy sets for the input control variable u. There are a total of 200 fuzzy rules in

this hierarchical structure with the output variable of each layer calculated using the

appropriate Equation 3.3 or 3.4.

This hierarchical system is different to that described in (Stonier et al. 1998) where the output

variable of the first layer is an offset angle added to x3 before input into the second layer.

Furthermore, this new fuzzy system uses a product inference engine rather than a min-max

inference engine and results in a different range of values for u1 and control u, requiring

adjustments to membership functions and centres.

The approximate control from the first layer u1 may have not any physical representation. It

is an artificial variable connecting the two layers, (Magdalena 1998). Only the final value of

control from layer two has actual physical meaning.

3.4.2 Three layers

In standard configuration there are twelve different topologies for the three layered

hierarchical fuzzy system with the following input configuration: two input variables in the

first layer, and one input variable plus intermediary control value in layer 2 and 3. Again, this

decomposition does not exhaust all possibilities, as different input configurations can be

considered but with an increased number of rules in the knowledge base. The architecture of

the 3-layered HFS is shown in Figure 3.13.

Standard hierarchical fuzzy logic structure has two input variables in the first layer. Then

there is one input variable in second and third layer of the 3-layered HFS. This standard input

configuration provides the minimal number of fuzzy rules in the knowledge base.

For this system the first knowledge base KB1 has the two inputs, xi and xj, i, j ∊ [1,4] to

produce as output a first approximation of the control u1. This u1 together with xk are used as

input in the second knowledge base KB2. Then the second layer produces another

approximation of control u2 which with xl is used as input to the third (and final) layer to

produce the final control output u.

45

xk

xi

xj

xl

u1

u2

u

Figure 3.13 HFS: 3-layered standard input configuration.

In the first layer there are 25 = 5
2
 rules in the knowledge base. The l

th
fuzzy rule for the first

layer has the form:

If (xi is Ai
l
) and (xj is Aj

l
) Then (u1 is B

l
) (3.8)

where k = 1,2,3,4, are fuzzy sets for input variables xk, k = 1,2,3,4, respectively, and

where B
l
 are fuzzy sets for output variable u1. For the second layer there are 35 = 7 · 5 rules in

the knowledge base and the l
th

fuzzy rule for the second layer has the form:

If (u1 is C
l
) and (xk is Ak

l
)) Then (u2 is B

l
) (3.9)

where C
l
 are fuzzy sets for the input control variable u. Similarly, there are 35 rules in the

third layer and the l
th

fuzzy rule has the form:

If (u2 is C
l
) and (xl is Al

l
) Then (u is B

l
) (3.10)

There are a total of 95 fuzzy rules in this hierarchical structure. Each domain region for xi is

divided into five overlapping intervals and each assigned membership sets: Ai
k
, k = 1, ... , 5;

which are encoded numerically as integers from 1 to 5 respectively. The set of five

membership functions provides relatively small knowledge base while maintaining a good

controller performance. The output for each layer is obtained using the Mamdani inference

engine as given in Equation 3.3 with the appropriate change of variable and associated

membership functions for that variable.

3.4.3 Four layers

There are twenty four different topologies for the four layered hierarchical fuzzy system for

the inverted pendulum with one input in every layer plus intermediary control value in layer

2, 3, and 4. The architecture of 4-layered HFS is shown in Figure 3.14. The first knowledge

46

base KB1 has one input xi to produce as output a first approximation to the control u1. This u1

together with xj are used as input in the second knowledge base KB2. Then the second layer

produces another approximation of control u2 which with xk is used as input to the third layer

to produce the approximate control output u3. Finally, the input xl and u3 in the fourth layer

produce the final control value u.

In the first layer there are only five rules in the knowledge base. The l
th

fuzzy rule for the first

layer has the form:

If (xi is) Then (u1 is B
l
) (3.11)

where , k = 1,2,3,4 are fuzzy sets for input variables xk, k = 1,2,3,4, respectively, and

where B
l
 are fuzzy sets for output variable u1.

xk

xi

xj

xl

u1

u2

u

u3

Figure 3.14 HFS: 4-layered non-standard input configuration.

For all the other layers there are 35 = 7 · 5 rules in their respective knowledge bases. For the

second layer the l
th

fuzzy rule has the form:

If ((u1 is C
l
) and (xk is Ak

l
)) Then (u2 is B

l
) (3.12)

where C
l
 are fuzzy sets for the input control variable u1.

Fuzzy rules for the third layer has a similar form.

If ((u2 is C
l
) and (xk is Ak

l
)) Then (u3 is B

l
) (3.13)

In the final fourth layer the l
th

 fuzzy rule has the form:

If (u3 is C
l
) and (xl is Al

l
) Then (u is B

l
) (3.14)

There are a total of 110 fuzzy rules in this 4-layered hierarchical structure.

47

3.5 Non-standard hierarchical topologies

There are other, non-standard, possible input configurations within two and three layered

hierarchical structures. They can be called ‗alternative topologies‘ as they do not satisfy the

condition for the smallest rule base, namely they do not have two inputs in the first layer.

3.5.1 Non-standard two layers HFS

Two examples of alternative input configurations are shown in Figure 3.15 and Figure 3.16.

In the first configuration there are three input variables in layer 1 and one input variable plus

intermediary control from layer 1 in layer 2 which results in 160 rules in the knowledge base,

less than in the previous 2-layered topologies. In the second configuration there is one input

in layer 1 and three input variables plus intermediary control in layer 2 which results in a

knowledge base of 880 rules - more than in a single layer knowledge base!

xk

xi

xj

xl

u1

u

Figure 3.15 HFS: 2-layered non-standard input configuration.

3.5.2 Non-standard three layers HFS

Two non-standard 3-layered input configurations considered for performance examination

are shown in Figure 3.17 and Figure 3.18. In the first configuration there is one input variable

in layer 1, two input variables plus intermediary control from layer 1 in layer 2, and one input

variable plus intermediary control from layer 2 in layer 3, which results in 215 rules in the

knowledge base. In the second configuration there is one input variable in layer 1, one input

variable plus intermediary control from layer 1 in layer 2, and two input variables plus

48

intermediary control from layer 2 in layer 3, which results again in 215 rules in the

knowledge base.

xk

xi

xj

xl

u1

u

Figure 3.16 HFS: 2-layered non-standard input configuration.

xk

xi

xj

xl

u1

u2

u

Figure 3.17 HFS: 3-layered non-standard input configuration.

49

xk

xi

xj

xl

u1

u2

u

Figure 3.18 HFS: 3-layered non-standard input configuration.

Summary

The mathematical model of the inverted pendulum is introduced. The dynamics and

parameters of the system are described. The control problem is defined. The bounds imposed

on the state variables are stated. The inverted pendulum is the case study to test the new

control methods throughout the rest of this thesis.

Basic concepts of the hierarchical fuzzy control systems are introduced. The minimum and

Mamdani inference engine is introduced. Membership functions used in this thesis are

defined: triangular and Gaussian membership functions. Different topologies are briefly

described. The terminology and notation used in the thesis is introduced. The hierarchical

fuzzy systems described in this chapter are used to define control problems in the following

chapters.

50

Chapter 4 EVOLUTIONARY ALGORITHM

4.1 Introduction

Evolutionary algorithms were introduced by J.H. Holland (Holland 1975), mimicking

Darwinian evolution and genetics in a mathematical model. Basically, every EA consist of a

population of competing individuals and employs the principle of the survival of the fittest.

Population evolves in a consecutive generations by applying evolutionary operators such as

selection method, crossover, and mutation. Evolutionary algorithms have been successfully

applied to a variety of engineering and scientific problems. In many cases they are used as

search methods in the solution space. An early practical application of genetic algorithms can

be found in D.L. Caroll paper (Caroll 1996).

4.2 Basic evolutionary algorithm

In this section a basic evolutionary algorithm (Michalewicz 1994) is described that is

subsequently used to learn (with various modifications) the fuzzy rules in the knowledge

bases. There are three different approaches to evolutionary learning:

 Michigan approach: Each individual encodes a single fuzzy rule. The knowledge base

is represented by the entire population. Crossover serves to provide a new

combination of rules and mutation yields new rules.

 Pittsburgh approach: Each individual encodes the entire rule base. The population is

then evolved maintaining a population of candidate rule sets and using genetic

operators such as selection, crossover and mutation to produce new rule sets. The

solution is found as best individual in the population.

 Iterative approach: Individuals code separate rules, and a new rule is adapted and

added to the rule set, in an iterative fashion, at every generation of the evolutionary

algorithm.

Both Michigan and Pittsburgh approaches have their advantages. Michigan approach is less

computationally demanding and therefore is often used for on-line learning. Pittsburgh

approach is more suitable for off-line learning because of its relatively large search space.

In this thesis Pittsburgh approach is used. The entire knowledge base is encoded uniquely as a

string of integer numbers representing the fuzzy rule base (Stonier and Mohammadian 2004)

and used to find the best rule base by using evolutionary algorithm. Each of the fuzzy rule

51

bases in the HFS can be represented as a linear string of M consequents (the size of all

knowledge bases of the HFS). This is possible because each fuzzy rule is uniquely defined by

the consequent part represented by an integer defining the output linguistic set. Each rule is

identified by the element‘s position in the linear string.

Evolutionary algorithm is a heuristic search technique that maintains a population of

individuals P(t) = { } at iteration t to the next t + 1. Each individual can be

considered to represent a potential solution to a given problem. Each individual is assigned a

measure of fitness (fitness function) which defines how accurate it is as a potential solution to

the problem. Depending on how it is defined, either as a maximisation or minimisation

problem, the best solution may be that string with the highest or lowest fitness value.

An initial population is created (often random-generated) from a pre-defined number of

strings and the fitness of each string is evaluated. Fitness of a given string (called individual

or chromosome) is evaluated by a fitness function (sometimes called also an objective

function). Typically the population is then ordered or ranked in terms of the fitness value of

each string. The new population P(t + 1) is obtained from the old one by the use of genetic

operators such as selection, crossover, and mutation. Full replacement policy, if implemented,

requires that the population size remains constant from one generation to the next.

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest

individual to the new population, so that the information encapsulated in the best individual is

not lost and the fittest individuals are passed into the next generation. In many applications

this is not necessary but influences the EA convergence.

A selection process is used to obtain parents for mating in the current generation. The most

popular is proportional selection to select randomly two parents based on their fitness in

proportion to the overall total fitness of the population. Another is tournament selection in

which a number of possible parents, say four are selected at random from the population. A

tournament is then held to select the two fittest strings and they are used as parents in the next

process of crossover to generate children to be passed into the next generation. In the

crossover operation a number of ‗parent‘ strings, typically two, are recombined to create

‗child‘ strings. The procedure can be explained on the example of the one-point crossover.

Assume that parent strings are:

 = (p11, p12, … , p1M)

 = (p21, p22, … , p2M)

52

A random point, an integer, is then selected in the range [1,M] with a certain probability.

Assume that the integer is k. The two child strings are then formed by swapping over the tail

ends of the two parent strings after the k-th position, that is:

 = (p11, p12, ... ,p2k, p2(k+1), ... , p2M)

 = (p21, p22, ... ,p1k, p1(k+1), ... , p1M)

Other forms of crossover exist in the literature and are popular in many applications, these

include multi-point crossover and variants of the arithmetic crossover, for a full discussion

see (Michalewicz 1994). The crossover operator plays a role of sexual reproduction in which

two individuals exchange parts of their strings to produce offspring. The children are then

added to complete the new population. They also undergo mutation by a mutation operator

which perturbs or mutates the strings‘ structure.

With a given probability, usually small, the mutation operator mutates elements of the strings

in the population. This ensures satisfactory diversity within the population which is required

for the EA to find better approximate solutions to the problem.

Depending on whether the problem is defined as a maximisation or minimisation problem,

the best solution may be the string with the highest or lowest fitness value respectively. The

inverted pendulum problem is defined as minimisation problem in this thesis.

The general structure of the evolutionary algorithm may be written as:

begin

 t = 0

 Create random P(0)

 Evaluate Fitness of P(0)

 while (not Terminated) do

 begin

 Evaluate Fitness of P(t)

 Create P(t+1) from P(t)

 t = t + 1

 end

end

With the right EA parameters and operators, the algorithm converges to a desired solution,

i.e., the fittest individual from the last generation satisfying predefined conditions. However

there are other possible techniques to produce the final solution, for example averaging the

top best individuals.

53

4.3 String encoding

Fuzzy rule base can be defined as a multidimensional fuzzy decision matrix (or decision

table) with values representing consequent part of fuzzy rules. Consider n input variables,

each taking mi values, i = 1, … , n, the matrix would have dimensions: m1 × m2 × … × mn.

Such a multidimensional fuzzy decision table representing the set of fuzzy IF THEN rules can

be decomposed into a linear string of rows (or columns depending on the assumed

convention). The string elements represent consequent part of fuzzy rules. Each rule is

identified by the element‘s position in the string (corresponding to the matrix structure).

Hence, the linear string represents the whole fuzzy rule base in the form that allows

convenient use of the classical EA‘s operators.

In the hierarchical knowledge base of any layer each fuzzy rule is also uniquely defined by

the position of the consequent part in the string. This consequent part is identified by a

particular output fuzzy set, for example, B
k
. Such a fuzzy set can be identified by the integer

k, which has a value in the set {1, … , NMF }, where NMF is the number of linguistic output

variable values (or the number of membership functions covering the system output domain).

Therefore, each individual string in the evolutionary controller population uniquely

represents the hierarchical structure of the fuzzy system.

The above explanation can be formalized as follows: the fuzzy rule bases can be represented

as a linear individual string of M consequents, = (a1, ... ,aM), where aj is an integer ∊ [1,NMF]

for j = 1, ... , M. The population can be defined as set of Mp strings: (a1, ... ,aM), where aj

is an integer ∊ [1,NMF] for j = 1, ... , M, and NMF is the number of linguistic output variable

values (or the number of membership functions covering the system output domain).

For example, the two fuzzy rule bases for the inverted pendulum system can therefore be

represented as a linear individual string of M = 25 + 175 = 200 consequents, = (a1,…, a200),

where aj is an integer ∊ [1,7] for j = 1, ... , 200. The three fuzzy rule base structure can be

represented as a linear individual string of M = 25 + 35 + 35 = 95 so the population can be

defined as follows: P = { : (a1, ... , a95), k = 1, ... , Mp, aj ∊ [1,7] }. Similarly, other

hierarchical fuzzy structures can be encoded as linear strings of the length depending on their

topology.

54

4.4 Evolutionary population and evolutionary operators

For experiments with the inverted pendulum system the EA setup is described below. The

initial population P(0) = { : k = 1, ... , Mp }, where Mp is the number of strings (the size of

the evolutionary population), is determined by choosing the aj as a random integer ∊ [1,7].

Mp has been usually set at 300 or 500. In determining successive populations full replacement

policy is used and tournament selection with size nT = 4 and a modified mutation operator.

An elitism policy is also used with copies of the best string from a given generation passed to

the next generation. The number is dependent upon the size of the population. Typically, for

a population of Mp = 100, two or four copies of the best individual are passed to the next

generation. For a population of size Mp = 500, four copies of the top five individuals are

passed to the next generation.

To maintain diversity of the population crossover operators of parent strings to form two

children in the next generation are used. In initial experiments for a single initial condition

the crossover is taken as the usual one-point crossover with pc = 0.6. In examination of

different topologies and co-evolutionary algorithm so called random crossover is

implemented. In later experiments with the compositional method arithmetic and uniform

crossover are used.

The random crossover procedure creates child1 from parent2 by copying it, then randomly

selecting m-genes in the parent1 string to copy them in the corresponding positions in the

child1 string. The procedure is repeated for the child2 string with parent strings roles

reversed. The children are then added to complete the new population. The random crossover

operator gives more control over crossover process as the number of genes subject to

exchange can be arbitrarily determined. They also undergo mutation by a mutation operator

which perturbs or mutates the string structures. The pseudo-code below illustrates the

procedure:

 i = 1

 mgenarray[i]=rnd(1,lchrom)

 while (i <= mgen-1)

 {i = i +1

 check = 0

 while (check == 0)

 { // random number generation

 temp = rnd(1,lchrom)

 check = checkunique(temp,mgenarray,i-1)}

55

 mgenarray[i] = temp;}

 for (i =1; i <= lchrom; i++)

 { child1[i] = parent2[i]

 child2[i] = parent1[i] }

// exchange of genes from parent1 to child1:

for (i =1; i <= mgen; i++)

 child1[mgenarray[i]]=parent1[mgenarray[i]]

// end of creation of child1

where lchrom is a length of a string. Please note, that crossover operator performance is

case dependent and other operators may perform better.

With a given probability pm the mutation operator mutates elements of the strings in the

population. This ensures satisfactory diversity within the population which is required for the

EA to find better approximate solutions to the problem. Mutation is undertaken with

probability pm whose value is determined by a mutation schedule that decreases typically

from 0.8 to 0.001 over 1000 generations. Below is the typical mutation schedule used in the

computer simulations:

 if (gen ≥ 0 & gen < 100) pm= 0.8

 if (gen ≥ 100 & gen < 200) pm= 0.7

 if (gen ≥ 200 & gen < 300) pm= 0.6

 if (gen ≥ 300 & gen < 400) pm = 0.4

 if (gen ≥ 400 & gen < 500) pm = 0.2

 if (gen ≥ 500 & gen < 600) pm= 0.1

 if (gen ≥ 600 & gen < 800) pm = 0.01

 if (gen > 800) pm = 0.001

 where gen denotes the generation number. The operator is defined by the following pseudo

code:

 if (mutate) {

 if (ak = 7) ak = ak - rnd(1,3)

 else if (ak = 1) ak = ak + rnd(1,3)

 else if (flip(0.5)) ak= ak + rnd(1,3)

 else ak = ak - rnd(1,3)

 if (ak > 7) ak = 7

 if (ak < 1) ak = 1 }

Full replacement policy is implemented and requires that the population size remains constant

from one generation to the next.

56

A selection process is undertaken using tournament selection in which a number of possible

parents are selected at random from the population. A tournament is then held to select the

two fittest strings and they are used as parents in the next process of crossover to generate

children to be passed into the next generation. Tournament selection with size nT = 4 is used

in all experiments.

4.5 Objective function

4.5.1 Objective function for the single initial condition EA

The fitness for a single initial condition is evaluated as follows: given an initial condition of

the system each string can be decoded into the two or more components defining the fuzzy

knowledge base for each layer, then the Mamdani or minimum inference formula is used to

evaluate u1, u2, and u (or only some of the control outputs depending on the selected

hierarchical structure) to find the final control to be applied at each value of the state . Given

an initial state the system state equations are integrated by the Runge-Kutta algorithm (RK4)

with step size 0.02 over a sufficiently long time interval [0,T]. The fitness f to be minimised,

is then calculated based on certain measures of the behaviour of the system over the time

interval. These include, the accumulated sum of normalised absolute deviations of x1 and x3

from zero, the average deviation from vertical, the average deviation from the origin or T - TS

where TS (the survival time) is taken to mean the total time before the pole and cart break

defined bounds. A penalty is added to the objective if the final state breaks the following

bounds: | x1 | ≤ 0.1, | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0, i.e., leaves the designated target

region.

The objective function has the following form:

f = ω 1 F1 + ω 2 F2 + ω 3 F3+ ω 4 F4+ ω 5 F5 (4.1)

with:

F1 = , F2= , F3= , F4=

F5= T - TS) (4.2)

where xmax= 1.0, θmax= π/6, max= 1.0, max = 3.0, N is the number of iteration steps.

Survival time is defined as: TS = 0.02·N, with T = 0.02·Nmax, where the maximum number of

iterations Nmax= 1000. The weights ωk in the fitness function are all positive real numbers.

The first and second terms determine the accumulated sum of normalised absolute deviations

57

of and from zero, similarly for the third term and fourth terms in relation to x3 and x4,

and the last term when minimised, maximises the survival time.

4.5.2 Objective function for the compositional method EA

The fitness fi of a given string is evaluated first for every single initial condition, i = 1, ... ,

Nc, where Nc denotes the number of initial conditions . Then overall fitness f is determined

from the values fi calculated for every single initial condition and assigned to the string.

A simple evaluation method is selected for the compositional method: the fitness function is

evaluated as arithmetic average over all fitness values fi , i = 1, ... , Nc, calculated for every

single initial condition:

f = (4.3)

A penalty is added to the objective if the final state breaks the following bounds (i.e., leaves

the designated target region):

 | x1 | ≤ 0.1, | x2 | ≤ 0.1, | x3 | ≤ π/24, | x4 | ≤ 3.0

Fitness function can be modified in order to reward strings which successfully control the

system from a large number of initial conditions. One of the simple methods is to establish

threshold values for the objective function and penalize strings that exceed those threshold

values (for each init. condition). For example:

Penalty schedule-A:

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg then ObjFun = ObjFun + 500.0

if ObjFun ≥ 0.5·avg and ObjFun < 0.8·avg then ObjFun = ObjFun + 1000.0

if ObjFun ≥ 0.8·avg then ObjFun = ObjFun + 2000.0

Penalty schedule-B:

if ObjFun ≥ 0.2·avg and ObjFun < 0.3·avg then ObjFun = ObjFun + 500.0

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg then ObjFun = ObjFun + 1000.0

if ObjFun ≥ 0.5·avg and ObjFun < 0.6·avg then ObjFun = ObjFun + 2000.0

if ObjFun ≥ 0.6·avg and ObjFun < 0.8·avg then ObjFun = ObjFun + 3000.0

if ObjFun ≥ 0.8·avg then ObjFun = ObjFun + 5000.0

where avg is a variable representing average fitness value of the previous population.

Please note, that increasing penalty values might ‗derail‘ the evolutionary algorithm.

Therefore penalties need to be fine-tuned to focus the EA on selecting strings that perform

well for the large number of initial conditions.

58

Summary

Basic concept of evolutionary algorithm for hierarchical fuzzy control is introduced.

Michigan, Pittsburgh and iterative approach are explained briefly. Pittsburgh approach is

assumed in this thesis. The structure of the evolutionary algorithm and its functioning is

described: population creation, population size, its evolution from generation to generation.

Handling of the evolutionary population is described, including the use of the elitist strategy.

Basic evolutionary operators are described: selection method, crossover, and mutation. The

inverted pendulum problem encoding is explained. This string encoding is used in all further

methods presented in this thesis.

59

Chapter 5 TOPOLOGIES FOR HIERARCHICAL FUZZY

SYSTEMS: CASE STUDY

5.1 Introduction

In the context of the HFS, topology means both structure (layers architecture) and input

configuration of the hierarchical fuzzy system. In the inverted pendulum problem there are

four possible layer structures: 1-layer, 2-layers, 3-layers, and 4-layers, with different input

configuration (except single layer topology that have obviously only one possible input

configuration).

In this chapter, a single layer fuzzy system and different HFS structures are examined; two

layered, three layered, and four layered HFS, with different input configuration. For clarity,

some basic facts about HFS are elaborated further.

5.2 Single layer fuzzy system

As described in Section 3.1, each domain region for input variables xi is divided into five

overlapping intervals covered by membership sets , k = 1, ... , 5, encoded as integers from 1

to 5. The output variable u is divided into seven regions covered by membership sets B
k
, k =

1, ... , 7. All fuzzy membership functions are assumed to be triangular, see Section 3.1.3 and

Figure 3.2 – Figure 3.5.

There are 625 rules in the single layer rule base: 5
4
 = 625. Given a fuzzy rule base with M

rules and n antecedent variables, a fuzzy controller as given in Equation 3.3 uses a singleton

fuzzifier, Mamdani product inference engine and centre average defuzzifier to determine

output variables.

Obviously, there is only one possible topology for the single layer fuzzy system with all

variables as input into a single layer fuzzy system.

5.3 Hierarchical fuzzy systems

If hierarchical fuzzy structure has two input variables in every layer it optimises the size of

the rule base (Wang 1997). For reasons stated in Chapter 3, the 2-layered HFS for the

inverted pendulum system does not provide the minimal number of fuzzy. However, the 2-

60

layered HFS with two input variables in the first layer can be considered as ‗near standard

configuration‘.

There exist other topologies with a different number of input variables in any particular level

than in the standard configuration. This means that different number of input variables in the

first layer, less than 2 or more than 2, is considered. Similarly the configuration of input

variables in subsequent layers may vary from the standard configuration, from ‗2—2 input

variables‘ for the 2-layered HFS and from ‗2—1—1 input variables‘ for the 3-layered HFS

(ignoring intermediary variables in this notation).

Another possible topology for the inverted pendulum problem is the 4-layered HFS with

single input variable in each layer. The size of the knowledge base increases in such

topologies compared to the standard configuration.

5.3.1 Two layered HFS

There are six different architectures or topologies of the two layered hierarchical fuzzy

system with input configuration as follows: two input variables in the first layer and two

input variables plus intermediary variable from layer 1 in layer 2. Other possible

configurations include:

 Three input variables in layer 1 and one input variable plus intermediary control from

layer 1 in layer 2.

 One input in layer 1 and three input variables plus intermediary control in layer 2 with

knowledge base of 880 rules.

For the standard configuration in the inverted pendulum system the first knowledge base KB1

has the two inputs to produce as output a first approximation u1 to the control variable u.

This approximate control variable u1 is used with input variables xi and xj, i, j ∊ {1,2,3,4} as

input in the second knowledge base KB2. The final control output u is given by Equation 3.3.

The l
th

 fuzzy rule in KB1 is given by Equation 3.6 and the l
th

 fuzzy rule in KB2 is given by

Equation 3.7. In both knowledge bases KB1 and KB2 there are a total of 200 fuzzy rules.

5.3.2 Three layered HFS

There are twelve different topologies for the three layered hierarchical fuzzy system in

standard input configuration: two input variables in the first layer, and one input variable plus

61

intermediary control value in layer 2 and 3. Other, non-standard, input configurations can be

considered but with an increased number of rules in the knowledge base.

For the inverted pendulum system, in standard configuration the first knowledge base KB1

has two inputs, xi and xj, i, j ∊ {1,2,3,4}. The first layer produces a first approximation of the

control u1. This u1 together with xk are used as input in the second knowledge base KB2.

Then the second layer produces another approximation of control u2 which with xl is used as

input to the third, and final, layer to produce the final control output u.

The l
th

fuzzy rule in the first knowledge base KB1 has the form given by Equation 3.8. The l
th

fuzzy rule in the second knowledge base KB2 is given by Equation 3.9. The l
th

fuzzy rule in

the third knowledge base KB3 is given by Equation 3.10. In all three knowledge bases there

are a total of 95 fuzzy rules. The output for each layer is obtained using the Mamdani

inference engine as given in Equation 3.3.

5.3.3 Four layered HFS

The four layered topology for the inverted pendulum system has by necessity a non-standard

input configuration, see Figure 3.14. There are twenty four possible topologies in the four

layered structure. Every layer has one state variable input and additional control

approximation in layer 2, 3, and 4. The l
th

fuzzy rule for every knowledge base KB1—KB4 is

given by Equations 3.11—3.14. There are a total of 110 fuzzy rules in all knowledge bases

KB1—KB4.

5.4 Non-standard hierarchical topologies

As mentioned before, non-standard input configurations within two and three layered

hierarchical structures can be considered as viable hierarchical fuzzy structures. Some of

them are examined in search for the best performing control system for the inverted

pendulum.

5.4.1 Non-standard two layered HFS

Figure 3.15 shows non-standard topology with three input variables in layer 1 and one input

variable plus intermediary control from layer 1 in layer 2. This input configuration produces a

total of 160 rules in the knowledge base; a smaller knowledge base than in ‗near standard

configuration‘. In the second configuration, see Figure 3.16, there is one input in layer 1 and

62

three input variables plus intermediary control in layer 2 which generates a knowledge base

of 880 rules.

5.4.2 Non-standard three layered HFS

In the first configuration, shown in Figure 3.17, there is one input variable in layer 1, two

input variables plus intermediary control from layer 1 in layer 2, and one input variable plus

intermediary control from layer 2 in layer 3, which results in 215 rules in the knowledge base.

In the second configuration, shown in Figure 3.18, there is one input variable in layer 1, one

input variable plus intermediary control from layer 1 in layer 2, and two input variables plus

intermediary control from layer 2 in layer 3, which results again in 215 rules in the

knowledge base.

5.5 Fuzzy systems

The fuzzy system for the HFS topology investigation is described in Chapter 3. All fuzzy

membership functions are assumed to be triangular, see Section 3.1.3.

Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as given

in Equation 3.3 uses a singleton fuzzifier, Mamdani product inference engine and centre

average defuzzifier to determine output variables.

5.6 Evolutionary algorithm

As stated in Chapter 4, the two fuzzy rule base structure can be represented as a linear

individual string of M = 25 + 175= 200 consequents, (a1 , … , a200), where aj is an

integer ∊ [1,7] for j = 1, ... , 200. The three fuzzy rule base structure can be represented as a

linear individual string of M = 25 + 35 + 35 = 95 consequents, (a1 , … , a95), where aj is

an integer ∊ [1,7] for j = 1, ... , 95. Other hierarchical fuzzy system structures can be

represented in a similar fashion.

The fitness fk of a given string can be evaluated as described in Section 4.5.1. The

Mamdani formula is used to evaluate u1, u2, u3 and u (depending on the fuzzy logic topology)

to find the final control to be applied at each value of the state . Given an initial state the

system state equations are integrated by the Runge-Kutta algorithm (RK4) with step size 0.02

over a time interval [0,T], where T = 0.02 · Nmax with the maximum number of iterations Nmax

63

= 1000. The fitness fk to be minimised, is then calculated according to Equation 4.1 and 4.2.

A penalty of 1000 is added to the objective if the final state leaves the designated TR.

The initial population P(0) = { : k = 1, ... , Mp } is determined by choosing the aj as a

random integer ∊ [1,7]. Mp denotes the number of strings – the size of the evolutionary

population. The new population P(t + 1) is obtained from the old one by the use of genetic

operators. Full replacement policy is implemented and requires that the population size

remains constant from one generation to the next. A selection process is undertaken using

tournament selection with size nT = 4.

An elitism policy is implemented with four copies of the ten top individuals (forty copies

altogether) passed to the next generation. In investigation of the HFS topologies random

crossover is used, see Section 4.4 for details.

In experiments with various topologies for the inverted pendulum system the mutation is

undertaken with probability pm. Its value is determined by a mutation schedule that decreases

from 0.8 to 0.001 over 300 generations.

 if (gen ≥ 0 & gen < 50) pm = 0.8

 if (gen ≥ 50 & gen < 100) pm = 0.7

 if (gen ≥ 100 & gen < 150) pm = 0.6

 if (gen ≥ 150 & gen < 200) pm = 0.3

 if (gen ≥ 200 & gen < 250) pm = 0.1

 if (gen ≥ 250 & gen < 300) pm = 0.01

 if (gen > 300) pm = 0.001

 where gen denotes generation number. This mutation schedule is different from the schedule

described in Chapter 4.

The above described evolutionary algorithm is used to learn fuzzy rules in the HFS that

constitutes a control system for the inverted pendulum system.

5.7 Experimental setup

The relatively low number of all possible topologies enables their examination one by one

and finding the topology with the best controller performance. Which topology provides the

best controller is decided by considering the various aspects of controller performance:

 State variables convergence history (for example: undesired oscillations).

 Time in which the system reaches the target region.

 Control action magnitude and degree of controller smoothness.

64

For each topology ten simulations are run with randomly generated initial populations.

5.7.1 Initial condition

The initial state is that given in (Stonier et al 1998): 0 = (0.5, 0.0, 0.01, 0.0) in order to

make results comparable.

5.7.2 Initial population

Initial population is randomly generated. Every string element (representing an individual in

EA population) is assigned randomly generated integer value ∊ [1,7].

5.7.3 Population size

The population size is set at Mp = 500 and maintained at this level for all generations.

5.7.4 Termination condition

The evolutionary algorithm is terminated after 300 generations; except for single layer FS

that is terminated after 500 generations, as there is little or no change in the minimum value

of the objective function in the following generations. The best controllers at this generation

are seen not to break defined constraints and the system is stabilised within the determined

target region, see Section 3.1.1.

5.7.5 Fitness function

The following fitness function parameters: ω1 = 3000, ω2 = 2000, ω3 = 0, ω4 = 0, ω5 = 5000, are

selected for all simulations except single layer fuzzy system with: ω1 = 1000, ω2 = 0, ω3 = 1000,

ω4 = 0, ω5 = 5000. The values were determined by experimentation.

5.8 Computer simulations

The minimum, average and maximum of objective function are examined for every topology

over consecutive generations. The results are fairly similar, both for the 2 and 3-layered HFS.

Examples for typical simulations are given in Figure 5.1 and Figure 5.2. To illustrate the

controller performance (for each HFS topology) one of the best performing controllers from

ten simulation results is selected, see Figure 5.3 – Figure 5.56.

65

Figure 5.1 Minimum, average and maximum objective function values over 300 generations

for L2-34-12.

Figure 5.2 Minimum, average and maximum objective function values over 300 generations

for L3-34-1-2.

0

2000

4000

6000

8000

10000

12000

14000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

MinPop AvgPop MaxPop

0

2000

4000

6000

8000

10000

12000

14000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

MinPop AvgPop MaxPop

66

5.8.1 One layer FS results

Figure 5.3 State variables convergence L1-1234.

Figure 5.4 Controller L1-1234.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u

67

The EA is run ten times for the single layer FS with different initial random populations.

Within around 200 generations the best fuzzy controller at each generation achieved

convergence of state variables to the designated TR and maintained it within this region for

the remainder of the prescribed time Tf. Typical convergence and controller output values are

shown in Figure 5.3 and Figure 5.4. As it can be seen from Figure 5.3 the stabilisation is

smooth and regular for all state variables. The controller is ‗frugal‘, with values lying in

[−0.83, 0.202], the best simulation results in terms of control magnitude. In ten simulations

for L1-1234 there are controllers with faster stabilisation times but with higher control

magnitude.

5.8.2 Two layered HFS results

The EA is run for the 2-layered HFS with many different initial random populations and the

controller, evolved within 110—170 generations, achieves convergence of the state variables

to the target region and maintains them within specified TR bounds until final time Tf. The

evolutionary algorithm converges thus faster than in (Stonier et al 1998), (Stonier and

Zajaczkowski 2003).

The best result is shown in Figure 5.5 and Figure 5.6, where pole angle x3 and its angular

velocity x4 are input to layer 1, and cart position x1 and its speed x2 as input variables to layer

2. It is also the easiest knowledge base to learn. Stabilisation is very quick for a wide range of

parameters ωk, and it is typically to 5 decimal place accuracy for all variables. This result

gives the first indication as to which input configuration provides the best controller

performance. Furthermore in some simulations a small control effort is required, one of the

best results being with control values in [−2.0, 1.6]. The controller shown in Figure 5.6 has

control magnitude in [−6.4, 4.1].

Because the HFS decomposition should match weak interdependency between input

variables, this results shows that the inverted pendulum system can be split into two

subsystems:

 Pole, represented by input variables x3 and x4.

 Cart, represented by input variables x1 and x2.

Obviously, if topology L2-34-12 provides good control structure then L2-12-34 controller is

expected to achieve similar performance as it is decomposed along the same weak

interdependence between input variables only with pole variables replaced with cart variables

as input in the first layer. Indeed, the L2-12-34 controller performance is good and very

68

similar in both state variable convergence and controller magnitude to L2-34-12 controller.

However, results for controllers with topology L2-12-34 were much less consistent in ten

simulation runs than for L2-34-12. On average, controller with topology L2-34-12 provides

slightly better performance and consistency of the EA solutions. Comparison between

controllers with L2-14-23 topology and L2-23-14 shows that swapping input variables

between layer 1 and layer 2 can have a significant effect on the controller performance. This

indicates that the HFS topology is a decisive factor in the controller performance. This

assertion is confirmed by the 3-layered HFS results presented in the following section.

The most ‗frugal‘ is controller with topology L2-23-14, with values in [−0.87, 0.97] but state

variable convergence to the TR is not considered satisfactory, see Figure 5.11. An acceptable

convergence of the state variables to the TR is achieved by some of the L2-13-24 controllers

but it is affected by continuing small oscillations in all state variables, see Figure 5.15.

The relatively good controller performance is delivered by controller with topology L2-14-23

characterised by regular and smooth convergence of all state variables. A typical for ten

simulations result is shown in Figure 5.9 and Figure 5.10, where the cart position x1 and

angular velocity of the pole x4 are input to layer 1. This topology is an example of

configuration of ‗mixed‘ input variables where decomposition breaks strong interdependence

of state variables. A poor controller performance can be expected in such cases but if most

significant state variable is an input in the first layer then it has positive moderating effect on

the control process, see (Raju and Zhou 1993), (Zajaczkowski and Stonier 2008). The

controllers with topologies L2-23-14 and L2-24-13 do not exhibit the desired convergence to

the TR and their performance is erratic, see for Figure 5.11 and Figure 5.13 respectively.

Stabilisation times (the time at which all state variables reach the TR and remain within its

bounds) for each HFS are grouped in the Table 5.1. The stabilisation times are given in

seconds.

Table 5.1 Stabilisation times for 1 and 2-layered HFS

Run

No

L1-

1234

L2-12-

34

L2-13-

24

L2-14-

23

L2-23-

14

L2-24-

13

L2-34-

12

10 3.92 9.12 4.16 3.1 9.02 9.36 2.74

69

Figure 5.5 State variables convergence L2-34-12.

Figure 5.6 Controller L2-34-12.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-8

-6

-4

-2

0

2

4

6

u

70

Figure 5.7 State variables convergence L2-12-34.

Figure 5.8 Controller L2-12-34.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-8

-6

-4

-2

0

2

4

u

71

Figure 5.9 State variables convergence L2-14-23.

Figure 5.10 Controller L2-14-23.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

u

72

Figure 5.11 State variables convergence L2-23-14.

Figure 5.12 Controller L2-23-14.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

u

73

Figure 5.13 State variables convergence L2-24-13.

Figure 5.14 Controller L2-24-13.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u

74

Figure 5.15 State variables convergence L2-13-24.

Figure 5.16 Controller L2-13-24.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

u

75

5.8.3 Three layered HFS results

For the 3-layered HFS, the evolutionary algorithm evolves within 150—200 generations and

the controller achieves convergence of the state variables to the target region and maintains

them within the specified bounds for the remainder of the prescribed time Tf. Different

topologies vary significantly in the number of generations that the EA takes to find the

controller capable to perform such a task. For L3-34-1-2, it takes the EA about 140—160

generations, for L3-12-3-4 it is 150—160, but for L3-13-2-4 it usually takes about 200

generations. On average, in case of the 3-layered HFS the evolutionary algorithm takes

longer to evolve to a satisfactory controller than in case of the 2-layered HFS.

Controller defined by topology L3-34-1-2 achieves all state variables smooth convergence to

the origin without any large oscillations. The controller performance is smooth after initial

peak of −2.396 at t = 1.06, see Figure 5.20. The magnitude of control is reasonably low,

within range of [−2.4, 1.4]. It is one of the best controllers among the 3-layered HFS.

However, in ten simulations the controllers L3-34-2-1 generally outperformed the controllers

L3-34-1-2 and therefore should be considered as the best controller amongst the 3-layered

HFS.

Comparing convergence of the state variables and control values of L2-34-12 and L3-34-1-2

it can be seen that 3-layered HFS provides smoother convergence and control. The best result

is shown in Figure 5.19. Note, that the state variables convergence to the TR is faster for L2-

34-12 than for L3-34-1-2.

As can be seen from comparison of L3-13-2-4 and L3-13-4-2 controllers, a seemingly

insignificant change in input configuration in layer 2 and layer 3 results in a significant

change in the controller performance, see Figure 5.21 and Figure 5.23 respectively. A similar

effect can be seen by comparing controller performance for topologies L3-14-2-3 and L3-14-

3-2.

Controller with topology L3-23-4-1 exhibits satisfactory convergence but with a long period

of settling time, see Figure 5.25. The magnitude of the controller is in the range of [−4.83,

9.5], and thus relatively large compared to the other controllers. Controller with topology L3-

14-3-2 provides very smooth good convergence of the state variables but with some

oscillations in x4, which is barely visible in the diagram, see Figure 5.31, but is manifested

more visibly in numerical values of the state variables convergence.

76

Surprisingly, topology L2-14-23 that provided good stabilisation for the 2-layered HFS in

most of the ten simulations does not have a match in L3-14-2-3 for the 3-layered HFS. A

typical result from ten simulations is shown in Figure 5.29 and Figure 5.30. On the other

hand, the controller with topology L3-14-3-2 performs much better, being one of the better

performing controllers, see Figure 5.31 and Figure 5.32. This illustrates how important the

selection of topology of the HFS is for controller performance.

The worst results are shown in Figure 5.21 and Figure 5.22; and also Figure 5.27 and Figure

5.28. The controllers with topologies L3-13-2-4, L3-23-1-4, L3-23-4-1 and L3-24-1-3 do not

produce satisfactory state variables convergence and control characteristics.

Convergence times to the target region are grouped in Table 5.2. Empty space for L3-23-1-4

means no convergence in the prescribed time for the controller in the simulation no 10 (some

of the L3-23-1-4 controllers achieve convergence to the TR). The numeric values for

convergence times can be deceptive as the character of convergence must be taken into

account and in some cases short convergence time does not necessarily translate into ‗good

convergence‘. Another candidate topology L3-23-4-1, see Figure 5.25 and Figure 5.26,

requires much more power expenditure and its characteristic is not as smooth as the

controllers with topologies L3-34-1-2 or L3-34-2-1.

Three-layered topology breaks strong interdependence between state variables in layers 2 and

3. This does not have adverse effect on the controller performance for the ‗best‘ topologies

L3-34-1-2 and L3-34-2-1 because decomposition reflects physical properties of the system.

However, for L3-12-3-4 or L3-12-4-3 it has slightly detrimental effect because the HFS

decomposition breaks state variables interdependence. In some other cases, for example L3-

14-2-3 or L3-14-3-2, it has a profound effect. As mentioned earlier, physical properties of the

system under consideration require grouping of the input variables along weak state variables

interdependence. In case of the inverted pendulum this grouping corresponds to two

subsystems: the cart represented by x1 and x2, and the pole represented by x3 and x4.

Swapping the input variables between the layers but preserving to some extent

abovementioned groupings has little effect on the controller performance. When this

grouping principle is broken, the results are often detrimental (depending which variables are

more influential in the dynamical system). In case of L3-14-2-3 and L3-14-3-2 it seems that

controlling the angle of the pole is more crucial than controlling the cart‘s velocity as it is

reflected in both topologies.

77

Figure 5.17 State variables convergence L3-34-2-1.

Figure 5.18 Controller L3-34-2-1.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-4

-2

0

2

4

6

8

10

u

78

Figure 5.19 State variables convergence L3-34-1-2.

Figure 5.20 Controller L3-34-1-2.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u

79

Figure 5.21 State variables convergence L3-13-2-4.

Figure 5.22 Controller L3-13-2-4.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

10

u

80

Figure 5.23 State variables convergence L3-13-4-2.

Figure 5.24 Controller L3-13-4-2.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-5

-4

-3

-2

-1

0

1

2

3

u

81

Figure 5.25 State variables convergence L3-23-4-1.

Figure 5.26 Controller L3-23-4-1.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

u

82

Figure 5.27 State variables convergence L3-23-1-4.

Figure 5.28 Controller L3-23-1-4.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-15

-10

-5

0

5

10

15

u

83

Figure 5.29 State variables convergence L3-14-2-3.

Figure 5.30 Controller L3-14-2-3.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

u

84

Figure 5.31 State variables convergence L3-14-3-2.

Figure 5.32 Controller L3-14-3-2.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-8

-6

-4

-2

0

2

4

6

u

85

Figure 5.33 State variables convergence L3-12-3-4.

Figure 5.34 Controller L3-12-3-4.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

u

86

Figure 5.35 State variables convergence L3-12-4-3.

Figure 5.36 Controller L3-12-4-3.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

u

87

Figure 5.37 State variables convergence L3-24-3-1.

Figure 5.38 Controller L3-24-3-1.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

10

u

88

Figure 5.39 State variables convergence L3-24-1-3.

Figure 5.40 Controller L3-24-1-3.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u

89

Table 5.2 Stabilisation times for 3-layered HFS

Run

No

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

10 9.18 13.72 2.52 2.54 3.68 3.5 2.14 12.2 6.96 2.9 2.06

where C1 denotes: L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2, C5: L3-14-2-3,

C6: L3-14-3-2, C7: L3-23-1-4, C8: L3-23-4-1, C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-

1-2, C12: L3-34-2-1.

5.8.4 Four layered HFS results

Four variants of the 4-layered topology: L4-3-4-1-2, L4-3-4-2-1, L4-4-3-1-2, and L4-4-3-2-1

are investigated, see Figure 5.41—Figure 5.48. The last two topologies produced good

performance of the controllers. One of the controllers representing topology L4-3-4-1-2

produced a very reasonable control with magnitude in the range [−2.0, 2.8], see Figure 5.48.

By examining the 4-layered topologies it can be found which input variables are most

influential in the inverted pendulum system. It was found that topologies L2-34-12, L3-34-2-

1, L3-34-1-2 provide the best performing controllers. The simulation results show that the

topology L4-4-3-2-1 is the most consistent in producing well performing controllers for ten

different initial populations with L4-4-3-1-2 close behind, see Figure 5.41 and Figure 5.43

respectively. This clearly indicates that the most influential input variable is the angular speed

of the pole x4, second - the angle of the pole x3, and then cart‘s speed x2 and its position x1.

After comparing the 4-layered topologies controller performance with previously analysed

controllers it was found that the 4-layered HFS are outperformed by the HFS controllers with

lower number of layers using criteria stated in Section 5.7. This indicates that for the inverted

pendulum problem this ladder-like structure of the 4-layered HFS does not produce the best

performing controllers.

Stabilisation times are relatively fast for the 4-layered HFS, see Table 5.3.

Table 5.3 Stabilisation times for 4-layered HFS.

L4-3-4-1-2 L4-3-4-2-1 L4-4-3-1-2 L4-4-3-2-1

3.22 1.68 2.64 1.82

90

Figure 5.41 State variables convergence L4-4-3-2-1.

Figure 5.42 Controller L4-4-3-2-1.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-10

-5

0

5

10

15

u

91

Figure 5.43 State variables convergence L4-4-3-1-2.

Figure 5.44 Controller L4-4-3-1-2.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

4

u

92

Figure 5.45 State variables convergence L4-3-4-2-1.

Figure 5.46 Controller L4-3-4-2-1.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

u

93

Figure 5.47 State variables convergence L4-3-4-1-2.

Figure 5.48 Controller L4-3-4-1-2.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u

94

5.8.5 Different topologies results

Simulations are conducted for selected 2 and 3-layered HFS with modifications to the

number of inputs in the first layer, i.e., with more/less than two inputs in the first layer 1. The

performance of controllers with such topologies is tested. The tested topologies are: L2-3-

412, L2-341-2, L3-3-41-2 and L3-3-4-12.

Results are shown in Figure 5.49—Figure 5.56. As can be seen from the figures, the

controller performance is better than expected, especially for topologies L3-3-41-2, see

Figure 5.53, and for L3-3-4-12, see Figure 5.55, as it provides smooth control with reasonable

control magnitude and fast stabilisation of the system. In L3-3-41-2 the variable x1 (cart‘s

position) does not converge to a near-zero value but stays in the target region, which is

satisfactory.

Stabilisation times for the selected examples of different topologies are shown in Table 5.4.

Surprisingly, they are faster than corresponding stabilisation times for L3-34-1-2.

Considering the performance and speed of these controllers they cannot be ruled out just

because of the high number of fuzzy rules in their knowledge bases. The large number of

rules does not hamper performance. They also prove that the HFS topology is crucial in

achieving good control performance.

Table 5.4 Stabilisation times for 2 and 3-layered HFS: different topologies

L2-341-2 L2-3-412 L3-3-4-12 L3-3-41-2

4.58 2.4 1.4 1.74

95

Figure 5.49 State variables convergence L2-3-412.

Figure 5.50 Controller L2-3-412.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

4

5

u

96

Figure 5.51 State variables convergence L2-341-2.

Figure 5.52 Controller L2-341-2.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

4

u

97

Figure 5.53 State variables convergence L3-3-41-2.

Figure 5.54 Controller L3-3-41-2.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

10

u

98

Figure 5.55 State variables convergence L3-3-4-12.

Figure 5.56 Controller L3-3-4-12.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

10

u

99

5.9 Controller tests

As mentioned earlier, intermediate variables u1 and u2 may have not any physical

representation. They can be considered as approximations to the controller action. By testing

their performance, with one or two layers removed from the HFS one can expect to determine

the robustness of the controller. Examining the approximate control provides insight into

‗working parts‘ of the HFS.

When one layer is eliminated it is denoted by L2-mn or L3-mn-k. In a 3-layered HFS L3-mn

denotes elimination of the two last layers.

For controller tests the best controllers for the 2 and 3-layered HFS are selected. The best 2-

layered HFS are: L2-34-12, L2-14-23, L2-13-24 and L2-12-34. The best 3-layered HFS are:

L3-34-1-2, L3-14-3-2, and L3-13-4-2.

5.9.1 Two layers HFS controller test results

The best performing among the 2-layered HFS is the controller with topology L2-34-12, see

Figure 5.5 and Figure 5.6. The controller is tested with its last layer removed: topology L2-

34. The controller stabilises the system for 1.6 time units before ‗crashing‘, i.e., until

breaking the state bounds: |x1| ≤ 1.0 and | x3 | ≤ π/6, see Figure 5.57. Otherwise the controller

exhibits very regular behaviour.

Then the controller with topology L2-14-23 is tested, see Figure 5.9 and Figure 5.10, with its

last layer removed. One layer version L2-24 ‗crashed‘ at t = 0.8, the angular velocity of the

pole x4 rising steeply, Figure 5.59.

The controller with topology L2-13-24 is tested with its last layer removed. As can be seen in

Figure 5.61 and Figure 5.62, the approximate controller with only one layer rule base

attempts to stabilise the system for the whole period of time Tf = 20: the angle of the pole x3

is stabilised in a narrow band around the origin, the angular velocity x4 oscillates but the

values of x4 remain within [−1, 1] band. Therefore, the approximate controller, with second

layer removed, performs well, while the controller with full rule base performs poorly, see

Figure 5.15.

The controller with topology L2-12-34 with its last layer removed is one of the worst

performing controllers, see Figure 5.63 and Figure 5.64. This poor performance comes in

spite of relatively good performance of the controller with the full rule base, see Figure 5.7.

100

The controller stabilises the system for 3.76 time units until the angle of the pole x3 breaks the

state limits.

Figure 5.57 State variables convergence L2-34.

Figure 5.58 Controller L2-34.

-6

-5

-4

-3

-2

-1

0

1

2

x1 x2 x3 x4
1.6

-4

-2

0

2

4

6

8

10

12

u 1.6

101

Figure 5.59 State variables convergence L2-14.

Figure 5.60 Controller L2-14.

-6

-5

-4

-3

-2

-1

0

1

2

x1 x2 x3 x4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u
0.8

102

Figure 5.61 State variables convergence L2-13.

Figure 5.62 Controller L2-13.

-1.5

-1

-0.5

0

0.5

1

1.5

x1 x2 x3 x4
20.0

-8

-6

-4

-2

0

2

4

6

8

10

12

u

103

Figure 5.63 State variables convergence L2-12.

Figure 5.64 Controller L2-12.

-10

-5

0

5

10

15

20

25

x1 x2 x3 x4
3.76

-12

-10

-8

-6

-4

-2

0

2

4

u
3.76

104

5.9.2 Three layers HFS controller test results

In the 3-layered HFS the controllers are tested by removing the last layer or the two last

layers. The controller with topology L3-34-1-2 is analysed first. The simulation results are

shown in Figure 5.67 and Figure 5.68 (the two last layers removed from the HFS) and in

Figure 5.65 and Figure 5.66 (the last layer removed from the HFS). The approximate

controller u2 maintains control of the system for the whole prescribed time Tf = 20 and

exhibits very regular behaviour.

The controller with topology L3-23-4-1 is analysed and simulation results are shown in

Figure 5.71 and Figure 5.72 (with two last layers removed) and in Figure 5.69 and Figure

5.70 (with the last layer removed). The control pattern is regular but the ‗crash-time‘ for this

controller is relatively short (1.2 and 0.78 respectively).

The well performing controller L3-14-3-2, see Figure 5.31 and Figure 5.32, is analysed and

simulation results are shown in Figure 5.75 and Figure 5.76 (with two last layers removed)

and in Figure 5.73 and Figure 5.74 (with the last layer removed). The additional rule base in

the control system L3-14-3 produces a better result than smaller rule base in L3-14.

In general, the approximate controller u2 (intermediary control between layer 2 and layer 3)

maintained control of the system for longer periods of time than approximate controller u1

(intermediate control between layer 1 and layer 2), which is not surprising as the controller u2

has a larger knowledge base to rely on.

105

Figure 5.65 State variables convergence L3-34-1.

Figure 5.66 Controller L3-34-1.

-50

0

50

100

150

200

250

300

x1 x2 x3 x4
20.0

0

0.5

1

1.5

2

2.5

u
20.0

106

Figure 5.67 State variables convergence L3-34.

Figure 5.68 Controller L3-34.

-50

0

50

100

150

200

250

300

x1 x2 x3 x4
20.0

-5

-4

-3

-2

-1

0

1

2

3

u 20.0

107

Figure 5.69 State variables convergence L3-23-4.

Figure 5.70 Controller L3-23-4.

-4

-2

0

2

4

6

8

10

x1 x2 x3 x4
1.2

-12

-10

-8

-6

-4

-2

0

2

4

u
1.2

108

Figure 5.71 State variables convergence L3-23.

Figure 5.72 Controller L3-23.

-6

-5

-4

-3

-2

-1

0

1

2

x1 x2 x3 x4
0.78

-4

-2

0

2

4

6

8

10

u 0.78

109

Figure 5.73 State variables convergence L3-14-3.

Figure 5.74 Controller L3-14-3.

-1

0

1

2

3

4

5

6

x1 x2 x3 x4 2.1

-6

-4

-2

0

2

4

6

u
2.1

110

Figure 5.75 State variables convergence L3-14.

Figure 5.76 Controller L3-14.

-6

-5

-4

-3

-2

-1

0

1

2

3

x1 x2 x3 x4
0.46

0

1

2

3

4

5

6

7

8

u 0.46

111

5.9.3 Controller test: remarks

The approximate controllers even from the best performing topologies did not exhibit the

same quality of control as the final controller u. In some cases, approximate controllers from

the ‗worse‘ performing topologies, performed reasonably well. Experiments with the HFS

with layers removed show that the HFS is not a mere sum of its rule bases in the component

layers. Topology of the HFS is a key factor in the performance of the controller. It has been

shown that the HFS needs to be considered in its entirety, not as an assembly of the better or

worse performing component layers.

5.10 Results

It can be seen that the performance of the fuzzy controller is not related to the speed of

learning process. Some very good controllers require a great number of generations to be

found, while some poor performers are very ‗fast learners‘. In an extreme case, one ‗lucky‘

run no 7 for topology L3-12-4-3 simulation produced a satisfactory controller after only one

generation (due to a randomly generated initial population that accidently included

individuals that were satisfactory solutions). Simulation for topology L2-14-2-3 produced

satisfactory controller after only four generations in run no 3. The fastest learning process in

the 2-layered HFS is achieved in a simulation for topology L2-23-14 when satisfactory

controller was found after seven generations. A single layer FS learning speed was steady at

about 200 generations and even though it was slower than all other topologies, it produced a

relatively well performing controller.

In the 2-layered HFS, on average, the second ‗fastest‘ learner is the best performer: L2-34-12.

In the 3-layered HFS there is not a clear trend, with L3-34-2-1 being the third. Furthermore,

L3-34-1-2 is found being an average ‗learner‘, with 5 other topologies besting its average

learning speed.

Obviously, in all simulations random nature of initial population played a role but if there had

been a clear trend that better controllers are found faster, it would have been seen in the

simulation data. The tables with learning speed are shown Table 5.5 in and Table 5.6.

Obviously, for one-layer structure the learning speed can be examined for only one topology

but for different initial populations. Empty space instead of a numeric value means that the

algorithm failed to achieve the desired convergence in 300 generations, which happened four

times in the case of topology L3-23-1-4. This is a surprising result as one would expect a

112

similar performance as in the case of the 2-layered HFS topology L2-23-14. As can be seen,

this is not the case and both topologies are worlds apart in terms of performance due to a

different architecture of the HFS. Even a seemingly insignificant difference, such as a

decomposition which includes an additional layer, can prove critical, especially since

physical significance of the intermediate control between layers is unknown. For example,

the 2-layered HFS topology L2-14-23 can be further decomposed into the 3-layered HFS,

either L3-14-2-3 or L3-14-3-2, the controller performance for those topologies is shown in

Figure 5.29—Figure 5.32; L3-14-3-2 provides satisfactory control system while L3-14-2-3

does not.

Table 5.5 Learning speed: 1 and 2-layered HFS

Run No L1-1234 L2-12-34 L2-13-24 L2-14-23 L2-23-14 L2-24-13 L2-34-12

1 201 150 119 183 150 201 13

2 181 93 174 204 170 188 160

3 204 139 157 179 167 160 114

4 180 54 111 222 150 152 103

5 202 124 151 161 138 176 154

6 217 126 139 199 7 106 169

7 205 127 211 158 150 153 52

8 201 114 159 188 155 158 150

9 189 30 153 167 112 205 177

10 199 44 169 203 151 227 172

Average 198 100 154 186 135 173 126

Total

Avg

198 146

113

Table 5.6 Learning speed: 3-layered HFS

Run No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 28 153 210 166 109 192 144 202 154 204 81 55

2 157 93 181 193 150 188 212 165 3 160 178 57

3 156 103 172 115 4 171 179 153 156 161 157

4 151 119 202 211 154 205 162 163 162 162 143 210

5 164 150 201 176 112 236 167 164 244 68 94

6 133 164 205 185 152 191 209 165 150 200 146 81

7 150 1 206 158 117 169 159 208 23 195 152 27

8 151 151 151 49 10 137 36 145 177 151 204

9 152 62 233 174 145 170 184 157 166 156 150

10 152 142 213 153 152 210 215 123 130 155 207 129

Average 139 114 197 158 111 187 184 159 124 182 144 116

Total

Avg

151

where C1 denotes: L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2, C5: L3-14-2-3,

C6: L3-14-3-2, C7: L3-23-1-4, C8: L3-23-4-1, C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-

1-2, C12: L3-34-2-1

After analysing ten simulation results for each topology, i.e., L2-34-12 and L3-34-1-2, it

seems that the 2-layered HFS provides a better solution to the control problem of the inverted

pendulum. This result is consistent with the physical model of the inverted pendulum system

as the pole and cart variables can be grouped in two subsystems that are mirrored in the 2-

layered HFS.

In general, the results confirm that the decomposition of the hierarchical fuzzy structure

should be performed along weak interdependency between input variables.

114

Summary

In this chapter different topologies associated with hierarchical fuzzy control of the inverted

pendulum are examined (with nonlinear dynamics) to gain insight into the decomposition

problem of hierarchical fuzzy systems. Investigation of HFS topologies is focused on the

influence of the given topology on the controller performance. The fuzzy controllers are

learnt by evolutionary algorithm. The results, obtained to examine the efficiencies in

learning by the evolutionary algorithms and fuzzy control of the pendulum, are compared.

Furthermore, experiments with intermediate variables u1 and u2 (they can be considered as

approximations to the controller action) have been conducted to determine the robustness of

the controller for different HFS topologies. Tests were performed with one or two layers

removed from the HFS to gain insight into controller performance in the hierarchical

structure. It has been demonstrated that the HFS needs to be considered in its entirety and not

as an assembly of better or worse performing component rule bases.

115

Chapter 6 CO-EVOLUTIONARY ALGORITHM FOR

HIERARCHICAL FUZZY CONTROL OF THE INVERTED

PENDULUM

6.1 Introduction

Much research has been conducted on the hierarchical fuzzy control but relatively little on the

problems associated with the problem of HFS decomposition to achieve the best controller

performance. In (Stonier and Zajaczkowski 2003) and (Stonier and Zajaczkowski 2004)

various aspects associated with layers decomposition of a hierarchical fuzzy controller for the

control of the inverted pendulum problem are examined, in particular the non-uniqueness

associated with such layers decomposition.

A three layered HFS with angular speed and angular position of the pole as input in layer 1,

cart‘s speed as input in layer 2, and cart‘s position as input in layer 3, provides the ‗best‘

controller under the given performance criteria, see Chapter 5. Very similar performance is

achieved when input variables are reversed in the layer 2 and 3. Please note, this might not be

true for other input configurations in general.

It was noticed in the computer simulations that the state variables convergence was often

oscillatory (‗underdamped‘) and the controller action was not smooth. One way to improve

the smoothness of the controller is to add appropriate penalty terms to the fitness function in

the evolutionary algorithm but this adds to the complexity of the fitness function in the

evolutionary algorithm.

A co-evolutionary algorithm is used to fine tune parameters of the input and output

membership sets as well as learn the fuzzy rules in the fuzzy controller, to yield more

‗damped‘ convergence of the state variables and smoother controller function.

One of the problem in designing hierarchical fuzzy system is the choice of membership

functions for the input and output variables. In many cases the membership functions are

arbitrarily chosen and uniformly spread over the range of the state variables. The purpose of

this investigation is to examine how evolutionary algorithm can improve the controller

performance by fine-tuning the membership functions associated with the fuzzy sets.

Gaussian membership functions are used for the co-evolutionary algorithm.

116

Co-evolutionary algorithms (CEA) concept was introduced by D.W. Hills (Hills 1990) in a

predator-prey model. In many cases, the CEA proved to be more efficient than conventional

EA especially in complex multi-variable applications. The increased effectiveness of the

CEA can be explained by the fact that the individuals in the population can either cooperate

(in cooperative CEAs) or compete (in competitive CEAs) with other individuals in terms of

their defined objectives.

CEA differs from the conventional EA, which uses a single population, by employing two or

more competing/cooperative populations using the common fitness function. Cooperative

CEAs were proposed by M.A. Potter and K.A. De Jong (Potter and De Jong 1994). They

presented cooperative co-evolutionary genetic algorithms as a way of managing the

increasing complexity in evolutionary problems. The search space increases exponentially

with each additional element in the string representing an individual; the search space can be

dramatically reduced by using multiple populations that each encodes only part of the

complete solution. If there is only weak or no interdependence between the partial strings in

different populations the narrower evolutionary focus does not adversely affect cooperative

co-evolution, and it benefits from a reduced search space (Potter and De Jong 1994), (Potter

and De Jong 1995), (Young and Stonier 2003).

 In cooperative CEA the system is decomposed into a number of interacting component

subsystems. All component subsystems evolve in parallel. Just like with the hierarchical

fuzzy system decomposition, the partial individuals that are to form co-evolutionary

populations (subpopulations) are usually grouped to minimise interdependence between

individuals from the created subpopulations.

The idea behind cooperative co-evolution is to take a string of elements that completely

specifies a solution and break it into smaller strings with each of the smaller strings encoding

only part of the complete solution. Those partial strings are stored in different (genetically

isolated) populations. Individuals in the same population are strings encoding the same part

of the complete solution. Each population is then evolved by its own evolutionary algorithm

mechanism, see (Pena-Reyes and Sipper 2001).

Each individual in a co-evolutionary population encodes only part of the complete solution.

Therefore, to evaluate the fitness value of any individual (potential solution) a representative

from every co-evolutionary population is selected to recombine with the individual that is

117

evaluated. The recombined (complete) individual is then evaluated by a defined fitness

function. The fitness value of the representatives is not evaluated at this point.

In case of coevolving the membership functions properties two separate populations are

defined that are coupled by the fitness function requiring strings from both populations for

the fitness evaluation. In other words, an individual from the controller population needs to

be matched with an individual from the membership functions population in order to evaluate

fitness function, and vice versa.

There are two different methods of selecting the representatives from the co-evolutionary

populations:

 Greedy: selection of the fittest individual.

 Explorative: selection of a random individual.

In Potter and De Jong‘s method (Potter and De Jong 1995) layers are added dynamically to a

cascade neural network as required. Weicker‘s method (Weicker and Weicker 1999) takes an

opposite approach: to start with an extreme decomposition (one variable per population) and

merge populations as epistatic links become apparent between them (Potter and De Jong

1994), (Potter and De Jong 1995), (Young and Stonier 2003).

6.2 HFS topologies for co-evolutionary algorithm

The architecture of the 3-layered HFS selected for the simulations is shown in Figure 3.13.

This HFS structure has two input variables in the first layer then and one input variable in

second and third layer of the 3-layered HFS.

Two input configurations described in Chapter 3 and Chapter 5 are used for experiments with

co-evolutionary algorithm: L-34-1-2 and L-34-2-1.

6.3 Co-evolutionary algorithm

A co-evolutionary algorithm is a version of the algorithm used in (Stonier and Zajaczkowski

2004) to learn the fuzzy rules in the HFS with three knowledge bases and at the same time to

learn the parameters for membership functions associated with the fuzzy system.

In the evolutionary controller population every string is uniquely representing the hierarchical

structure of the fuzzy system as described in Section 4.3. For co-evolutionary algorithm a 3-

layered HFS is selected that can be represented as a linear individual string of M = 25 + 35 +

35 = 95 consequents, (a1, ... , a95), where aj is an integer ∊ [1,7] for j = 1, ... , 95.

118

The initial controller population P(0) = { : k = 1, ... , Mp }, is determined by choosing the aj

as a random integer in [1,7], where Mp = 500 is the size of the evolutionary population.

As in the EA described in Chapter 4 and Chapter 5, a new controller population P(t +1) is

obtained from the old one by the use of genetic operators such as selection, crossover and

mutation. Full replacement policy is implemented and requires that the population size

remains constant from one generation to the next. Tournament selection with size nT = 4 and

a modified mutation operator is used.

A method to evaluate fitness function for individuals in both co-evolutionary populations

needs to be determined because it cannot be done directly as in classic evolutionary algorithm

with one population only. An individual from the controller population needs to be matched

with an individual from the MF population in order to evaluate fitness function, and vice

versa.

In the greedy version of the co-evolutionary algorithm each individual from the controller

population is matched with the best individual of the MF population to evaluate the fitness

function. Obviously, the best MF individual from the current population cannot be used (as

their fitness values are not evaluated yet) but the best individual from the previous generation

can be used instead.

The same process is repeated by matching the best individual from controller population to

evaluate the fitness function of the individual from the MF population.

In the explorative version of the co-evolutionary algorithm a tournament selection is used: for

any single individual from the controller population TN individuals are selected at random

(tournament selection) from the MF population. Then fitness function is evaluated for that

controller chromosome using each of the selected TN membership functions. The best fitness

value is selected and assigned to the individual from the controller population.

The evaluation of the fitness function of a given string in the controller population is

described below. The membership functions for evaluation are chosen from the MF

population using either greedy or explorative selection method. The fitness fk of a given string

 in the controller population is evaluated as follows. Given an initial condition of the

system each string is decoded into three components defining the fuzzy knowledge base

for each layer, then the Mamdani formula (see Equation 3.3) is used to evaluate u1 and u2 to

find the final control u to be applied at each value of the state . Given an initial state the

119

system state equations are integrated by the Runge-Kutta algorithm (RK4) with step size 0.02

over a time interval [0,T]. The fitness fk is then calculated according to Equation 4.1 and 4.2,

see Section 4.5.1. A penalty of 1000 is added to the objective function value if the final state

leaves the designated TR.

 Elitism policy is implemented with four copies of the ten top individuals in controller

population passed to the next generation. Four copies of the best four individuals in MF

population (sixteen copies altogether) are passed to the next generation.

Random crossover of two parent strings to form two children in the next generation is used.

Mutation is undertaken with probability pm whose value is determined by a mutation schedule

that decreases from 0.8 to 0.001 over 300 generations.

 if (gen ≥ 0 & gen < 50) pm = 0.8

 if (gen ≥ 50 & gen < 100) pm = 0.7

 if (gen ≥ 100 & gen < 150) pm = 0.6

 if (gen ≥ 150 & gen < 200) pm = 0.3

 if (gen ≥ 200 & gen < 250) pm = 0.1

 if (gen ≥ 250 & gen < 300) pm = 0.01

 if (gen > 300) pm = 0.001

 where gen denotes generation number.

Each individual in the membership functions population represents the possible MFs

definition for the control system. For the CEA with random initial population output variable

MF centres are included in a chromosome in MF population. As five MFs cover the range of

each input variables and seven MFs cover output variables range only three centres are

needed to define five input MFs and five centres to define output membership functions.

Therefore, a required chromosome length is:

chromlMF = 3 + 3 + 3 + 3 + 5 = 17.

MF chromosome is a linear array of blocks of three numbers representing centres of MFs for

each of four input variables and output variable. The first three numbers describe MFs for the

first input variable (here x3), next three numbers MFs for the second input variable (x4), etc.

For the CEA with uniformly generated initial population only input variables MF centres are

included in a chromosome in the MF population:

 chromlMF = 3 + 3 + 3 + 3 = 12.

Test simulations were run with full length of the MF chromosome for random and uniform

initial MF population and it was found that the inclusion of output variable does not have a

120

significant effect on results of the CEA with uniform MF population. Therefore, the CEA

with randomly generated initial MF population is run with the full length MF chromosome,

and the CEA with uniformly generated initial MF population is run with MF chromosome

without MF centres for the output variable (fixed MF centres for the output variable).

The lower and upper boundaries for the MFs are defined below. For x1 and x2 the lower

bound is LBMFx1x2 = −2.0 and upper bound is UBMFx1x2 = 2.0. For x3 the lower bound is

LBMFx3 = −π /2.0 and upper bound is UBMFx3 = π /2.0. For x4 the lower bound is LBMFx4

= −4.0 and upper bound is UBMFx4 = 4.0. Finally, for output variable y (that can be u1 , u2,

or u) the lower bound is LBMFy = −15.0 and upper bound is UBMFy = 15.0.

For random initial MF population membership function centres are generated by random

number generator within bounds specified above for each input and output variable. For

uniform initial MF population membership function centres are evenly spaced within

intervals defined by lower and upper bounds for each variable, see Table 6.1 and Table 6.2.

Uniform initial MF population consists of identical individuals (i.e., Gaussian functions

evenly spread over the range of each input and output variables) and then diversified in

evolutionary process by crossover and mutation in consecutive populations.

The initial MF population PMF(0) = { : k = 1, … , MMF }, where MMF is the number

of MF strings (the size of the MF population) and : k = 1, … , MMF are MF

chromosomes containing membership function centres.

The same random crossover operator is used for the MF population (adjusted for real

numbers that encode MF chromosome) as for the controller population. Mutation for the MF

population is similarly undertaken with a mutation schedule that decreases from 0.4 to 0.001

over 300 generations with typical form:

 if (gen ≥ 0 & gen < 50) pMFm = 0.4

 if (gen ≥ 50 & gen < 100) pMFm = 0.3

 if (gen ≥ 100 & gen < 150) pMFm = 0.2

 if (gen ≥ 150 & gen < 200) pMFm = 0.1

 if (gen ≥ 200 & gen < 250) pMFm = 0.05

 if (gen ≥ 250 & gen < 300) pMFm = 0.01

 if (gen > 300) pMFm = 0.001

Mutation probability pd for each MF in a chromosome is decided by a flip of the coin to

introduce strong mutation rate to reinforce diversity of the MF population (Michalewicz

1994):

121

if (flip(0.5))

 pd = pMFm;

 else

 pd = 0.995;

The MF mutation operator is defined by the following pseudo code:

mutate = flip(pmutation) // Flip the biased coin

 if (mutate)

 nmutation = nmutation + 1

 poww = ((1.0 - pd) * (1.0 - pd))

 fact = 1.0 * (1.0 - power(MyRandom(), poww))

 if (flip(0.5))

 perturbation = fact * (lowerbound - alleleval)

 else

 perturbation = fact * (upperbound - alleleval)

 temp = alleleval + perturbation

 else

 temp = alleleval

where MyRandom() procedure generates a random number and power(x,y) calculates x
y
.

The CEA is terminated at a fixed number of generations or allowed to continue until there is

minimal change or no change to the string which has the best fitness. The fittest individual

from each population is then taken as the best possible solution learnt by this algorithm.

6.4 Experimental setup

Ten simulations are run for each CEA version:

 Explorative with uniform MF initial population.

 Explorative with random MF initial population.

 Greedy with uniform MF initial population.

 Greedy with random MF initial population.

6.4.1 Initial condition

The initial state is: 0 (0.5, 0.0, 0.01, 0.0).

6.4.2 Initial population

The initial population has significant impact on the evolution of the knowledge base.

Therefore a single run of the CEA resulting in a single controller should not be regarded as a

sufficient representation of controllers for any particular topology. This is a reason each

122

variant of the CEA is run ten times to produce a representative sample. If the CEA does not

produce a relatively uniform population at the end of the algorithm very different controllers

are developed for the same topology. One way of dealing with this problem is careful fine-

tuning of the CEA parameters and large number of generations.

6.4.3 Population size

Controller population size is set at Mp = 200 and membership functions population at 50.

6.4.4 Termination condition

The algorithm is terminated after 500 generations. Usually, there is little or no change in the

minimum value of the objective function in the following generations.

6.4.5 Fitness function

The fitness function positive weights are selected as: ω1 = 3000, ω2 = 2000, ω3 = 0, ω4 = 0, ω5

= 5000.

6.4.6 Membership functions

The shape of Gaussian membership functions is varied, see Equation 3.2, by decreasing the

value of the stretching coefficient from d = 10.0, gradually to d = 0.01; d = 10.0, d = 5.0, d =

1.0, d = 0.1, to d = 0.01, which has the effect of widening the shape of the Gaussian curve.

Simulations for all versions of the co-evolutionary algorithm are run to examine the effect of

the wider MFs on the results.

6.5 Computer simulations

To illustrate the controller performance some of the best performing and some typical

controllers from ten simulation results for every version of the co-evolutionary algorithm.

Inclusion of output variable MF centres in MF chromosomes does not have any significant

effect on the resulting control system. The initial MF population has much more impact on

the resultant control system. There is a significant difference in control system and MF

centres distribution between the CEA that uses uniform and randomly generated initial MF

population. The CEA starting from a uniform population generally produces better

performing controllers. However, in most cases, in spite of their differences, the controllers

perform in a very similar fashion, i.e., having similar control time history and the character of

state variables convergence. The MFs centres resulting from the CEA with uniform MF

123

population change very little from their original definitions and better results from such

CEAs suggest that control system performs better with evenly spaced membership functions.

6.5.1 Uniform initial population

For the CEA that starts with uniform initial MF population the results are similar for most

simulations. Controller performance is smooth and after initial jump in magnitude of control

the control magnitude quickly approaches zero value.

The best explorative algorithm results with uniform initial MF population for topology L-34-

2-1 are shown in Figure 6.1 – Figure 6.4. Best results for controller with topology L-34-1-2

are shown in Figure 6.5 – Figure 6.8. Best greedy algorithm results with uniform initial MF

population for topology L-34-2-1 are shown in Figure 6.9 – Figure 6.12. The best greedy

algorithm results with uniform initial MF population for topology L-34-1-2 are shown in

Figure 6.13 – Figure 6.16.

6.5.2 Random initial population

Generally, for the explorative algorithm with random MF initial population, controller

performance with topology L3-34-2-1 is good. The best explorative results with random

initial MF population are shown in: Figure 6.17 – Figure 6.20.

In the second and seventh simulation a smooth and regular convergence of state variables is

achieved, which indicates high performance of the control system. Magnitude of control is

very low after initial effort to stabilise the system - it settles very quickly to values close to

the origin. In the sixth simulation a very quick convergence of state variables is achieved.

Magnitude of control is low after initial effort to stabilise the system.

For the explorative algorithm with random MF initial population, the best results for the

controller with topology L3-34-1-2 are shown in Figure 6.21 – Figure 6.24. For the greedy

algorithm with random MF initial population, the controller performance with topology L3-

34-2-1 is shown in Figure 6.25 – Figure 6.28. In general there is not much difference between

results from the explorative and greedy versions of the CEA with random initial population

algorithms. For the greedy algorithm with random MF initial population, topology L3-34-1-2,

good controller performance is in Figure 6.29 – Figure 6.32.

124

6.5.3 Widening the shape of Gaussian membership functions

The shape of the membership functions has significant effect on the CEA performance.

Wider Gaussian functions result in deterioration in the CEA performance with most

simulations failing to converge for d = 0.1 and d = 0.01. Narrower MFs produce better

results. A possible explanation can be found in (Wang 1997) where the author remarks that σ

parameter (standard deviation) usually is found by trial-and-error method and that large σ can

smooth out noisy data, while small σ can make the system as nonlinear as is required to

approximate closely the training data. Indeed, by taking a bigger value of stretching

coefficient d the value of standard deviation σ decreases.

6.5.4 Non-overlapping Gaussian membership functions

The effect of non-overlapping MFs on the controller performance is examined in a series of

experiments. Each MF is cut at the ends of the interval it is defined on and has zero values

outside that interval (no overlap between membership functions). For MFs defined in such a

way the simulations results with initial uniform MF population are very poor.

Apparently a combination of this kind of initial population and cut-off Gaussian membership

functions had a dramatic effect on the controller performance. In many cases the CEA fails to

converge to a desired solution, i.e., effective controller.

The simulations with randomly generated initial populations produce much better results

indicating that the cut-off MFs do not have much effect on the CEA performance. The results

are similar to the ones achieved with overlapping membership functions.

125

Figure 6.1 Explorative, uniform population, topology L3-34-2-1, simulation 4, state variables

xk, k = 1, … , 4.

Figure 6.2 Explorative, uniform population, topology L3-34-2-1, simulation 4, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-2

-1

0

1

2

3

4

5

6

7

u

126

Figure 6.3 Explorative, uniform population, topology L3-34-2-1, simulation 8, state variables

xk, k = 1, … , 4.

Figure 6.4 Explorative, uniform population, topology L3-34-2-1, simulation 8, control u.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

u

127

Figure 6.5 Explorative, uniform population, topology L3-34-1-2, simulation 5, state variables

xk, k = 1, … , 4.

Figure 6.6 Explorative, uniform population, topology L3-34-1-2, simulation 5, control u.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

2

u

128

Figure 6.7 Explorative, uniform population, topology L3-34-1-2, simulation 10, state

variables xk, k = 1, … , 4.

Figure 6.8 Explorative, uniform population, topology L3-34-1-2, simulation 10, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-4

-3

-2

-1

0

1

2

3

u

129

Figure 6.9 Greedy, uniform population, topology L3-34-2-1, simulation 4, state variables xk,

k = 1, … , 4.

Figure 6.10 Greedy, uniform population, topology L3-34-2-1, simulation 4, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-2

-1

0

1

2

3

4

5

6

7

8

u

130

Figure 6.11 Greedy, uniform population, topology L3-34-2-1, simulation 8, state variables xk,

k = 1, … , 4.

Figure 6.12 Greedy, uniform population, topology L3-34-2-1, simulation 8, control u.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-2

-1

0

1

2

3

4

5

u

131

Figure 6.13 Greedy, uniform population, topology L3-34-1-2, simulation 3, state variables xk,

k = 1, … , 4.

Figure 6.14 Greedy, uniform population, topology L3-34-1-2, simulation 3, control u.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-5

-4

-3

-2

-1

0

1

2

3

4

u

132

Figure 6.15 Greedy, uniform population, topology L3-34-1-2, simulation 10, state variables

xk, k = 1, … , 4.

Figure 6.16 Greedy, uniform population, topology L3-34-1-2, simulation 10, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-4

-2

0

2

4

6

8

10

u

133

Figure 6.17 Explorative, random population, topology L3-34-2-1, simulation 2, state

variables xk, k = 1, … , 4.

Figure 6.18 Explorative, random population, topology L3-34-2-1, simulation 2, control u.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

4

5

u

134

Figure 6.19 Explorative, random population, topology L3-34-2-1, simulation 7, state

variables xk, k = 1, … , 4.

Figure 6.20 Explorative, random population, topology L3-34-2-1, simulation 7, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-2

-1

0

1

2

3

4

5

6

u

135

Figure 6.21 Explorative, random population, topology L3-34-1-2, simulation 5, state

variables xk, k = 1, … , 4.

Figure 6.22 Explorative, random population, topology L3-34-1-2, simulation 5, control u.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-2

-1

0

1

2

3

4

5

u

136

Figure 6.23 Explorative, random population, topology L3-34-1-2, simulation 8, state

variables xk, k = 1, … , 4.

Figure 6.24 Explorative, random population, topology L3-34-1-2, simulation 8, control u.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

u

137

Figure 6.25 Greedy, random population, topology L3-34-2-1, simulation 2, state variables xk,

k = 1, … , 4.

Figure 6.26 Greedy, random population, topology L3-34-2-1, simulation 2, control u.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

0

1

2

3

4

5

6

u

138

Figure 6.27 Greedy, random population, topology L3-34-2-1, simulation 3, state variables xk,

k = 1, … , 4.

Figure 6.28 Greedy, random population, topology L3-34-2-1, simulation 3, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

u

139

Figure 6.29 Greedy, random population, topology L3-34-1-2, simulation 3, state variables xk,

k = 1, … , 4.

Figure 6.30 Greedy, random population, topology L3-34-1-2, simulation 3, control u.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

u

140

Figure 6.31 Greedy, random population, topology L3-34-1-2, simulation 5, state variables xk,

k = 1, … , 4.

Figure 6.32 Greedy, random population, topology L3-34-1-2, simulation 5, control u.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u

141

6.5.5 Gaussian membership functions: computer simulations

Membership functions centres for uniform initial MF population are given in Table 6.1 and

Table 6.2. These values are chosen arbitrarily and can be compared to the MF centres

generated by the CEA in selected simulations.

Table 6.1 MF centres for uniform initial MF population: input variables.

MF c1 c2 c3 c4 c5

x1 -2.0 -1.0 0.0 1.0 2.0

x2 -2.0 -1.0 0.0 1.0 2.0

x3 -1.5707963 -0.78539815 0.0 0.78539815 1.5707963

x4 -4.0 -2.0 0.0 2.0 4.0

where c1,c2,..., c5 denote centres of the membership functions.

Table 6.2 MF centres for uniform initial MF population: output variable.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

In the following tables membership functions centres are shown as found by the CEA. The

major differences are found between results of CEA with uniform and CEA with randomly

generated initial MF population.

Table 6.3 MF centres for L-34-2-1 explorative, uniform initial MF population: sim. no 4.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.999987 -0.349197 0.999976 2.0

x2 -2.0 -0.755659 0.000054 0.999914 2.0

x3 -1.5707963 -0.785355 -0.000025 0.785264 1.5707963

x4 -4.0 -2.000062 -0.000284 1.965566 4.0

142

Figure 6.33 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x1.

Figure 6.34 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x2.

143

Figure 6.35 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x3.

Figure 6.36 Membership functions for explorative, uniform population, topology L3-34-2-1,

simulation 4, x4.

144

Table 6.4 MF centres for L-34-2-1 explorative, uniform initial MF population, sim. no 8.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.999761 -0.476308 0.966232 2.0

x2 -2.0 -0.999745 0.000074 0.999943 2.0

x3 -1.5707963 -0.785398 -0.000015 0.649385 1.5707963

x4 -4.0 -2.248928 -0.000061 1.999595 4.0

Table 6.5 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 5.

MF c1 c2 c3 c4 c5

x1 -2.0 -1.000000 0.191510 0.191510 2.0

x2 -2.0 -1.000000 -0.190039 0.999810 2.0

x3 -1.5707963 -0.727477 -0.000005 0.785352 1.5707963

x4 -4.0 -2.911787 -0.000162 1.999668 4.0

Table 6.6 MF centres for L-34-1-2 explorative, uniform initial MF population, sim. no 10.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.951743 -0.000083 0.468950 2.0

x2 -2.0 -0.999813 -0.112785 0.999956 2.0

x3 -1.5707963 -0.785278 -0.004262 0.785277 1.5707963

x4 -4.0 -2.863850 -0.004846 1.999147 4.0

145

Table 6.7 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 4.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.242209 0.330845 0.999604 2.0

x2 -2.0 -0.524521 0.118957 0.806073 2.0

x3 -1.5707963 -0.785256 0.000162 0.785324 1.5707963

x4 -4.0 -2.325819 0.000509 2.000036 4.0

Table 6.8 MF centres for L-34-2-1 greedy, uniform initial MF population, sim. no 8.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.741330 -0.238746 0.687604 2.0

x2 -2.0 -0.999952 0.419326 0.999608 2.0

x3 -1.5707963 -0.785020 0.000034 0.785167 1.5707963

x4 -4.0 -1.992406 -0.248836 2.677708 4.0

Table 6.9 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 3.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.986411 -0.865216 -0.206337 2.0

x2 -2.0 -0.526121 0.190813 0.228068 2.0

x3 -1.5707963 -0.643332 -0.042579 0.709030 1.5707963

x4 -4.0 -2.782232 -0.463713 2.544888 4.0

146

Table 6.10 MF centres for L-34-1-2 greedy, uniform initial MF population, sim. no 10.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.929495 0.179905 0.999581 2.0

x2 -2.0 -0.821071 -0.471415 0.999901 2.0

x3 -1.5707963 -0.617001 -0.251729 0.402342 1.5707963

x4 -4.0 0.302217 1.524897 2.949449 4.0

Table 6.11 MF centres for L-34-2-1 explorative, random initial MF population, input

variables, sim. no 2.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.4746 0.49005 0.67679 2.0

x2 -2.0 -0.790297 0.995587 0.99977 2.0

x3 -1.5707963 0.121182 0.273279 0.52306 1.5707963

x4 -4.0 -2.105933 -1.726494 2.996628 4.0

Table 6.12 MF centres for L-34-2-1 explorative, random initial MF population, sim. no 2.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -10.894 -0.018 7.896 10.848 12.226 15.0

Table 6.13 MF centres for L-34-2-1 explorative, random initial MF population, input

variables, sim. no 7.

MF c1 c2 c3 c4 c5

x1 -2.0 0.770300 0.770300 0.972722 2.0

x2 -2.0 -0.986932 -0.979073 0.999532 2.0

x3 -1.5707963 -0.283689 0.512616 0.519055 1.5707963

x4 -4.0 -1.872221 2.459921 2.967251 4.0

147

Table 6.14 MF centres for L-34-2-1 explorative, random initial MF population, output

variable, sim. no 7.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -12.986 -5.961 -0.169 11.411 11.503 15.0

Table 6.15 MF centres for L-34-1-2 explorative, random initial MF population, input

variables, sim. no 5.

MF c1 c2 c3 c4 c5

x1 -2.0 0.467513 0.967171 0.984325 2.0

x2 -2.0 0.903821 0.999520 0.999616 2.0

x3 -1.5707963 -0.499339 -0.173375 0.222275 1.5707963

x4 -4.0 -1.851142 -1.200847 0.247133 4.0

Figure 6.37 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x1.

148

Figure 6.38 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x2.

Figure 6.39 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x3.

149

Figure 6.40 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, x4.

Figure 6.41 Membership functions for explorative, random population, topology L3-34-1-2,

simulation 5, output variable u.

150

Table 6.16 MF centres for L-34-1-2 explorative, random initial MF population, output

variable, sim. no 5.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -2.912 0.590 7.270 12.429 12.944 15.0

Table 6.17 MF centres for L-34-1-2 explorative, random initial MF population, input

variables, sim. no 8.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.779265 -0.340181 0.939943 2.0

x2 -2.0 -0.256899 -0.024240 0.650496 2.0

x3 -1.5707963 0.254259 0.522811 0.522922 1.5707963

x4 -4.0 -2.806648 -1.628743 0.470980 4.0

Table 6.18 MF centres for L-34-1-2 explorative, random initial MF population, output

variable, sim. no 8.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -3.212 -1.046 -0.457 4.844 9.916 15.0

Table 6.19 MF centres for L-34-2-1 greedy, random initial MF population, input variables,

sim. no 2.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.999944 -0.963702 0.999855 2.0

x2 -2.0 -0.786511 -0.568970 0.995108 2.0

x3 -1.5707963 0.069727 0.367798 0.523443 1.5707963

x4 -4.0 -1.199057 -0.287595 2.999328 4.0

Table 6.20 MF centres for L-34-2-1 greedy, random initial MF population, output variable,

sim. no 2.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -8.006 -5.253 7.034 8.571 9.943 15.0

151

Table 6.21 MF centres for L-34-2-1 greedy, random initial MF population, input.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.992531 -0.930294 0.999251 2.0

x2 -2.0 -0.885832 0.499797 0.833121 2.0

x3 -1.5707963 0.331195 0.450526 0.522577 1.5707963

x4 -4.0 -1.699458 1.593186 2.899929 4.0

Table 6.22 MF centres for L-34-2-1 greedy, random initial MF population, output variable,

sim. no 3.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -12.831 -1.955 1.770 12.144 12.555 15.0

Table 6.23 MF centres for L-34-1-2 greedy, random initial MF population, input variables,

sim. no 3.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.537982 0.887288 0.997506 2.0

x2 -2.0 -0.955511 -0.430739 0.987376 2.0

x3 -1.5707963 -0.478354 0.458689 0.484029 1.5707963

x4 -4.0 -1.456939 1.977950 2.923114 4.0

Table 6.24 MF centres for L-34-1-2 greedy, random initial MF population, output variable,

sim. no 3.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -12.494 -9.998 1.270 7.952 12.219 15.0

152

Table 6.25 Memb. Funct. centres for L-34-1-2 greedy, random initial MF population, input

variables, sim. no 5.

MF c1 c2 c3 c4 c5

x1 -2.0 -0.972411 -0.033781 0.998627 2.0

x2 -2.0 0.840976 0.895264 0.986912 2.0

x3 -1.5707963 0.522430 0.523169 0.523427 1.5707963

x4 -4.0 -2.791375 0.503425 1.041765 4.0

Table 6.26 MF centres for L-34-1-2 greedy, random initial MF population, output variable,

sim. no 5.

MF c1 c2 c3 c4 c5 c6 c7

y -15.0 -12.999 -10.974 -0.822 1.327 1.981 15.0

Figure 6.42 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x1.

153

Figure 6.43 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x2.

Figure 6.44 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x3.

154

Figure 6.45 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, x4.

Figure 6.46 Membership functions for greedy, random population, topology L3-34-1-2,

simulation 5, output variable u.

155

As can be seen from the tables and diagrams illustrating MF centres distribution, the

membership functions that are generated by the CEA with random initial MF population

show tendency to cluster within their pre-defined intervals. Occasionally, membership

function centres cluster very closely, for example MFs for x1 and x2, see Table 6.15 and Table

6.25. One possible explanation for membership functions clustering effect is that they tend to

cluster in the regions of state space where the magnitude of control is changing rapidly to

stabilise the system. Detailed investigation of state trajectories should give more clues to

explain this phenomenon.

The membership function centres found by the CEA with the uniform initial MF population

are usually similar to their original definitions in the initial population, i.e., they change little

in the evolutionary process.

Summary

In this chapter a hierarchical fuzzy controller is designed, which gives improved performance

for the control of the inverted pendulum using a co-evolutionary algorithm to fine tune

parameters of the input and output sets membership sets in each layer as well as learn a

complete set of fuzzy rules in the fuzzy knowledge base.

Different versions of the co-evolutionary algorithm are investigated: explorative and greedy.

Furthermore, the impact of initial membership functions population on the controller

performance is investigated. The membership functions population is either randomly

generated or initial membership functions are evenly spaced across input and output variables

domains. The effect of different Gaussian function shapes on the controller performance is

briefly discussed.

156

Chapter 7 EVOLUTIONARY ALGORITHM BASED

COMPOSITIONAL METHOD

7.1 Introduction

In previous chapters, the EA has been used to develop the rule base to control the system to

the target region from a single initial condition. Obviously, this procedure can be repeated for

any other initial condition but that would be impractical approach to the real-life applications.

The controller developed for a single initial condition may or may not control the system

from a different initial condition. Therefore, a different approach is required to address the

problem of controllability region.

A new evolutionary algorithm based compositional method is proposed to control system

over the set of user-defined initial conditions. The method addresses directly the problem of

controlling the system from specific, user-defined initial conditions. In many practical

applications there is no necessity to secure controllability over the large region in the state

space, which is often difficult to achieve. Instead, a selected region of the state space, or even

specific initial conditions can be considered.

The problem of designing hierarchical fuzzy control over a set of initial conditions can be

investigated by two methods: amalgamation or compositional. The amalgamation method

develops a fuzzy rule base for every initial condition in the user-defined region of state space

separately and then amalgamates them into a single knowledge base. Usually a regular grid

of initial conditions is used to cover the region in the state space for which a control system is

to be developed. Different initial conditions create different dynamical conditions for the

system. In the inverted pendulum case that means different initial pole angles and angular

velocities, different cart position and cart‘s velocity. Therefore, corresponding linguistic

variable values are also diametrically different. In amalgamation method every initial

condition is considered separately and the EA searches for a controller just for this particular

condition. Every initial condition reflects a specific initial dynamics of the system and

therefore the resulting control system can be diametrically different from other controllers

developed for different initial conditions. For the inverted pendulum, the output linguistic

variable takes integer values in [1,7]. After amalgamation the resulting control values are

usually meaningless arithmetic average: either 3 or 4. The experiments with the

157

amalgamation method did not produce a successful result. Amalgamation method based on

averaging the fuzzy rules for better performance and larger control region does not seem

feasible. This fact is examined in a different series of experiments. It is possible that specific

tuning of the evolutionary algorithm would produced more homogenous knowledge bases but

at this point it is a mere speculation. Therefore amalgamation method to find an ‗averaged‘

controller (that would cover different initial populations and different initial conditions) fails,

giving in result just an arithmetical average of the linguistic variables encoded as integer

numbers ∊ [1,7] that does not stabilise the system. Amalgamation method might give good

results for a set of initial conditions that do not generate diametrically different dynamics in

the system, i.e., for a set of initial conditions representing similar dynamical conditions of the

physical system.

An alternative to amalgamation method approach is to let the evolutionary algorithm learn

the ‗final‘ knowledge base by itself. This approach is called the compositional method. The

learning of the knowledge base is achieved by evaluating the fitness of an individual at an

arbitrary configuration within the pre-defined set of initial configurations in each generation.

This local knowledge is then inherently learned from generation to generation in the

evolution of the EA (Mohammadian and Stonier 1996a), (Stonier 1999).

A set of 255 initial conditions in the state space (that is viable in terms of the inverted

pendulum dynamics) is defined for experiments with the compositional method, see

Appendix for the explicit values of initial conditions. Usually, only static initial conditions

are considered for the inverted pendulum: the cart‘s position and the angle of the pole. In this

investigation also dynamic initial conditions of the system are considered: the initial cart‘s

velocity and the angular velocity of the pole. Thus, this constitutes a more comprehensive

investigation of the initial conditions for the inverted pendulum system. The goal in this

investigation is to achieve control to the target region from as many initial conditions as

possible.

7.2 Evolutionary algorithm based compositional method

Basic features of the compositional method can be summarised in the following points:

 Evolutionary algorithm based compositional method searches for a controller over the

whole set of initial conditions at every generation.

 Fitness of each individual reflects the controller performance for every initial

condition in the set.

158

 Every string in the population is assigned the fitness value which is a composite value

representing string's performance for every single initial condition in the user-defined

set.

7.2.1 Hierarchical fuzzy system for compositional method

The development of the compositional method is based on the example of the inverted

pendulum system (as the test system). However, the algorithm can be applied to a wide range

of the HFS with suitable replacements (system dynamics, hierarchical structure, population

encoding, objective functions definitions, etc). The HFS selected for the inverted pendulum

system is the 3-layered topology L3-34-2-1 that is a good compromise between controller

performance and the size of the knowledge base. Mamdani product and minimum inference

engine are used in computer simulations, see Equation 3.3 and 3.4 respectively.

7.2.2 Defining evolutionary population

Each fuzzy rule in any of the HFS knowledge bases is uniquely defined by the consequent

part that is associated with a particular output fuzzy set, for example B
k
, identified by the

integer k ∊ [1,7], see Section 4.3 for details. The three fuzzy rule base structure is represented

as a linear individual string of M = 95 elements and the evolutionary population is defined as

the set of Mp individuals: P = { : (a1, ... , a95), k = 1, ... , Mp, aj ∊ {1, ... , 7} }.

7.2.3 Fitness function

Assume that there are Nc initial conditions in the user-defined set of initial conditions. To

evaluate the objective function value for a given string from the controller population first

the objective function values fi , i = 1, ... , Nc, are evaluated for every single initial condition.

Then overall objective function value f is determined from the values fi, i = 1, ... , Nc,

calculated for every single initial condition.

The fitness for a single initial condition is evaluated as follows: each string is decoded into

three components defining the fuzzy knowledge base for each layer, then the Mamdani or

minimum inference formula is used to evaluate u1, u2, and u to find the final control to be

applied at each value of the state . The system state equations are integrated by the Runge-

Kutta algorithm (RK4) with step size 0.02 over time interval [0,T]. The fitness fi is then

calculated based on the behaviour of the system over the time interval, see Equations 4.1 and

4.2.

159

Then overall objective function value is determined from the fi values (calculated for every

single initial condition) and assigned to the string as its objective value. The choice of

fitness function evaluation method based on fitness values for every initial condition decides

of effectiveness of the compositional method and therefore plays a crucial role. For this

experiment with the EA based compositional method, a simple evaluation method is defined:

the fitness function is evaluated as arithmetic average over all fitness values fi , i = 1, ... , Nc,

calculated for every single initial condition and then assigned to a particular string in

controller population. This is not an ideal choice – it may happen that only for a few initial

conditions fitness function value is low and those initial conditions distort the average fitness

value even though the rest of the initial conditions may give high fitness function values

which is undesirable (minimisation problem).

f = (7.1)

A penalty is added to the objective if the final state breaks the following bounds: | | ≤ 0.1,

| | ≤ 0.1, | | ≤ π/24, | | ≤ 3.0, i.e., leaves the designated TR. Two penalties schedules are

tested, penalty schedule-A and penalty schedule-B, see Section 4.5.2. To test the influence of

penalty schedules a number of simulations are run with and without any penalty schedule.

7.2.4 Membership functions

Another method to increase accuracy and achieve better performance from control system is

to increase the number of membership functions covering input and output variables. This,

however, increases the size of the knowledge base and therefore with larger number of rules

to be learned the computation time is longer.

7.2.5 Crossover and mutation

The crossover operation maintains the diversity in the population. For this reason the choice

of the crossover operator often plays a crucial role in the successful application of the EA.

Too disruptive crossover procedure may cause extended number of generations before

achieving convergence or can cause the EA to fail to find a solution at all. The right selection

of the crossover operator is case dependant and crossover operator that performed

successfully in one application may fail in another. For testing the compositional method

random, arithmetic, and uniform crossover of two parent strings to form two children in the

next generation are used.

160

Another mechanism of maintaining population diversity is mutation operator. It has also a

role in preventing pre-mature convergence to a local minimum (or maximum, depending on

the problem formulation). With a given probability, the mutation operator mutates elements

of the strings in the population. Mutation is undertaken with probability pm whose value is

determined by a mutation schedule that decreases typically from 0.8 to 0.001 over 1000

generations. Below is the typical mutation schedule used in the simulations:

 if (gen ≥ 0 & gen < 100) pm = 0.8

 if (gen ≥ 100 & gen < 200) pm = 0.7

 if (gen ≥ 200 & gen < 300) pm = 0.6

 if (gen ≥ 300 & gen < 400) pm = 0.4

 if (gen ≥ 400 & gen < 500) pm = 0.2

 if (gen ≥ 500 & gen < 600) pm = 0.1

 if (gen ≥ 600 & gen < 800) pm = 0.01

 if (gen > 800) pm = 0.001

 where gen denotes the generation number. The mutation operator is defined by the pseudo-

code given in Section 4.4.

7.2.6 Overview of the algorithm

The EA is used to learn fuzzy rules in the HFS that constitutes a control system for the

inverted pendulum. A schematic EA algorithm in its general form, applicable to a wide range

of dynamical systems, is given below:

1. EA parameters are selected: type of inference engine, crossover, mutation schedule,

selection method, elitism, fitness function (with or without a penalty schedule), and

termination condition (i.e. number of generations or lack of significant change in the

state vector).

2. Population P(t), t = 0, is randomly initialised: every component of individual string is

given a randomly selected value from a predefined interval. Objective functions are

evaluated for the first generation P(0).

3. t = t + 1: next generation is created using EA operators: selection, crossover,

mutation.

4. Individual from the population is selected.

5. Initial condition is selected from the predefined list.

6. Dynamical system is simulated from a given initial condition.

7. Final state of state variables and survival time are determined.

161

8. Based on values from the previous step temporary fitness function value is evaluated

for an individual. Penalties are added to the fitness value (if penalty schedule is

defined).

9. Steps 5— 8 are repeated until all system simulations for every initial condition in the

list are performed.

10. Average of all temporary fitness values is calculated and assigned to the individual as

its fitness.

11. Steps 4—10 are repeated until all individuals in the population have their fitness

evaluated.

12. Steps 3—11 repeated until the termination condition is satisfied.

13. Final control system is determined by either selecting the top individual or by

averaging a pre-defined number of Ntop best (with regard to the objective function)

individuals from the final population. Its performance is evaluated by running a

simulation of the dynamical system for all initial conditions and counting initial

conditions for which the final state variables are within the target region.

EA parameters selection: inference engine, crossover, mutation, selection method, elitism, obj. functions.

Population P(0) is randomly initialised. Objective functions are evaluated for all individuals in P(0).

Next generation is created using EA operators t = t + 1

Individual from the population PS1(t) is selected

Initial condition is selected from the predefined set.

The system is simulated from a given init. cond. Final state vector is determined.

Obj. functions values are evaluated for an individual in population PS1(t) for
every init. cond.

An average over all initial conditions is calculated for each obj. function and
assigned to the individual.

Final control system is given by any individual from the Pareto set. Its performance is evaluated by running a
simulation of the system for all initial conditions and counting initial conditions for which the final state

variables are within the target region TR.

Termination
condition

Figure 7.1 EA based compositional method block diagram.

162

7.3. Experimental setup

The proposed method is implemented and the experiments are conducted. The goal of

experiments is to find the optimal combination of EA parameters that would result in finding

fuzzy rules capable of successfully controlling the inverted pendulum system to the target

area from a large number of user-defined initial conditions.

In all simulations the uniform crossover (some simulations were run with the random and

arithmetic crossover) and mutation schedule described in Section 7.2.5 are used.

7.3.1 Initial conditions

A set of regularly interspaced 255 initial conditions is defined within the region given by: | |

≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0. The table of initial conditions is shown in the

Appendix.

7.3.2 Initial population

The initial population P(0) = { : k = 1, ... , Mp }, is determined by choosing the aj as a

random integer ∊ [1,7] where Mp is the size of the evolutionary population. Full replacement

policy is used and for selection process tournament selection with size = 4 is used.

7.3.3 Population size

The population size is set at Mp = 500. Smaller population size is often sufficient but with the

decreasing population size it is difficult for the EA to maintain the required diversity in

population to avoid pre-mature convergence to the local minimum.

7.3.4 Termination condition

The EA is terminated after 1000 generations as it was found that the algorithm either finds

solution in about 300—800 generations or fails regardless of how many generations follow.

7.3.5 Elitism

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest

individual to the new population, so that the information encapsulated in the best individual is

not lost and the fittest individuals are passed into the next generation. In most simulations a

strong elitism policy is implemented with four copies of the ten top individuals (forty copies

altogether) passed to the next generation.

163

7.3.6 Fitness function

A fitness function given in Section 7.2.3, and by Equations 4.1, 4.2, and 4.3 is used in all

experiments. The fitness function is adjusted to allow the EA a better selection of possible

solutions. By selecting some of ω weights to zero the fitness function can be manipulated to

achieve a better performance for the control system. The weights in the fitness function are

adjusted in several simulations. The most commonly used sets of ω parameters are:

ω1 = 1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000;

ω1 = 0, ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 1;

ω1 = 1000, ω2 = 100, ω3 = 1000, ω4 = 100, ω5 = 3000.

Changing the weights ω in fitness function had a significant impact on the EA performance.

In fact, the fifth component of the fitness function ω5 (survival time) implicitly contains all

other components but by specifying them separately the EA process is influenced, i.e.,

smaller or bigger bias towards one or another component is introduced.

7.4 Computer simulations

More than 130 simulations were run to find the right combination of EA parameters that

would result in finding fuzzy rules capable of successfully controlling the inverted pendulum

system to the target area from a large user-defined of initial conditions. The controller acted

on the inverted pendulum for = 20.0s. The results are illustrated on a few typical examples.

7.4.1 Amalgamated controller

Amalgamated controller is tested: top ten control strings from the final population is

amalgamated into one final controller. The amalgamation is achieved by taking arithmetic

average of corresponding components in ten controller strings; every element of the

controller string represents values of the linguistic output variable. Because top ten strings

from the controller population do not differ significantly (and often there is little difference if

any) the resulting controller string is not much different from the single top controller string.

Had the differences been more pronounced (corresponding string elements differing in value

significantly) the amalgamated controller would not succeed in controlling the system to the

TR from a large number of initial conditions. This can be seen as a trade-off between

controllability region and quality of control; for an increase in controllability region the

quality of control for the remaining region is much lower. With the controller defined as a

single top string from the final population control is always maintained, i.e, the trajectories

converge if not to the target area than relatively close to it. Furthermore, as a side-effect of

164

controller amalgamation, the convergence of the state variables is much slower, especially for

the cart‘s position x1 and its velocity x2 Example of amalgamated controller performance is

shown in Figure 7.2 and Figure 7.3 for randomly selected initial condition no 4: 0 = (−0.75,

−1.0, −0.2617, 1.0) and: ω1 = 0, ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 1. Minimum inference engine,

uniform crossover, and no penalty schedule is used. The inverted pendulum system is

controlled successfully to the target area from 195 initial conditions out of 255, which

constitutes 76% success rate.

Figure 7.2 Amalgamated controller: State variables convergence, minimum inference engine,

uniform crossover, no penalty schedule, init. cond. 4.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x1 x2 x3 x4

165

Figure 7.3 Amalgamated controller, init. cond. 4.

7.4.2 Typical results

Regardless of what combination of the EA parameters is used, in most simulations the

percentage of initial conditions for which controller successfully controlled the system to the

TR varied from about 40% to 60%, with a bulk of simulations achieving below 50% success

rate. In many simulations the number of initial conditions from which the controller

performance is satisfactory oscillated around 100 (out of 255). This trend might reflect the

nature of the inverted pendulum dynamics. It was observed that even though for some initial

conditions the state variables did not converge to the TR the final state variables values were

very close to the TR. Typical result is illustrated in Figure 7.4 and Figure 7.5 for randomly

selected initial condition no 88: 0 = (−0.35, −0.5, −0.1308, 1.0) and: ω1 = 1000, ω2 = 0,

ω3 =1000, ω4 = 0, ω5 = 3000. In this simulation minimum inference engine, random

crossover, and penalty schedule-A in fitness function are used.

-20

-15

-10

-5

0

5

10

15

u

166

Figure 7.4 Typical result: State variables convergence, minimum inference engine, random

crossover, penalty schedule-A, init. cond. 88.

Figure 7.5 Typical result: controller, init. cond. 88.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-2

0

2

4

6

8

10

12

u

167

7.4.3 Good convergence of state variables

In series of experiments the performance of the product inference engine in the fuzzy control

system is tested. It was observed that, on average, product inference engine provided fast and

smooth convergence of the state variables to the TR but at the cost of the size of

controllability region. Minimum inference engine produced better results in terms of larger

number of initial conditions from which the controller successfully controlled the system to

the TR. Very good state variables convergence is achieved for a simulation with Mamdani

inference engine (see Equation 3.3), uniform crossover, and no penalty schedule, but only for

99 out of 255 initial conditions. All state variables converged quickly to zero, except with

values remaining about 0.04 from the origin. A typical result for this simulation is shown in

Figure 7.6 and Figure 7.7 for randomly selected initial condition no 122: 0 = (−0.75, −1.0,

−0.2617, −1.0) and: ω1 = 3000, ω2 = 100, ω3 = 100, ω4 = 0, ω5 = 2000.

Figure 7.6 Good state variables convergence: Mamdani inference engine, uniform

crossover, no penalty schedule, init. cond. 122.

-1

-0.5

0

0.5

1

1.5

x1 x2 x3 x4

168

Figure 7.7 Good convergence: controller, init. cond. 122.

7.4.4 Discussion

7.4.4.1 Variations in fitness function parameters

Changing the weights ω in fitness function had a significant impact on the EA performance.

In fact, the fifth component of the fitness function ω5 (survival time) implicitly contains all

other components but by specifying them separately the EA process can be influenced, i.e.,

smaller or bigger bias towards one or another component is introduced. This is especially true

for the first component ω1 that corresponds to the cart‘s position x1 As can be seen from

some simulation results, see for example Figure 7.2, the EA ‗struggled‘ to drive the cart

towards the target area (near the origin). Setting ω1 to a non-zero value introduces bias in the

EA towards x1, or in plain language: makes it pay extra attention to the cart‘s position. Effect

of penalty schedule depends on other EA parameters. In some cases it improved the results

and in some others it had adverse effect. This shows that EA parameters need to be fine-tuned

to achieve desired results and that finding the right balance between their values requires

extensive experimentation. Alternatively, some of them can be co-evolved with the original

population.

-4

-2

0

2

4

6

8

10

12

14

u

169

7.4.4.2 Effect of penalty schedule

Simulations were run both with penalty schedule-A and schedule-B. To test the impact of

above penalty schemes the same simulations were run without any penalties with mixed

results that proved that usually not one factor decides on the EA performance but a

combination of EA parameters. As mentioned before, applying a penalty schedule can have

an adverse effect on the EA. Penalty schedule can be seen as a temporary measure in the

absence of a more fitting definition of the fitness function.

7. 4.4.3 Effect of elitism

By introducing strong elitist strategy the convergence of the average value of the objective

function across population close to the minimum value of the objective function is achieved.

Such a convergence of the population average to the minimum population fitness value is

desired as an indication of good EA performance resulting in majority of population being

valid control systems. In several simulations the average population fitness is on par with the

minimal fitness indicating that almost all individuals in the last population represented the

control system of the same or very similar quality.

7. 4.4.4 Product inference engine vs minimum inference engine

It was observed that on average, product inference engine provided faster and smooth

convergence of the state variables to the TR but at the cost of the size of controllability

region. Minimum inference engine produced better results in terms of larger number of initial

conditions from which the controller successfully controlled the system to the TR.

Summary

This chapter presents a novel evolutionary algorithm based compositional method for

hierarchical fuzzy control over a large set of initial conditions, including dynamical

conditions of the system under investigation. Control system is designed as a three-layered

hierarchical fuzzy logic structure. The inverted pendulum system is selected as an example of

a dynamical system and used to test the proposed method. The proposed method can be

applied to a wide range of dynamical systems with appropriate modifications. Evolutionary

population encoding, objective functions, number and range of membership functions, and

the hierarchical fuzzy logic structure are case dependant but the overall algorithm covers a

large number of control systems.

170

Chapter 8 MULTIOBJECTIVE EVOLUTIONARY

ALGORITHM BASED COMPOSITIONAL

METHOD

8.1 Introduction

8.1.1 Motivation for MOEA approach

After development of the single objective EA compositional method there is a question of

improving the EA performance. One approach to this task is to investigate how modularising

the objective function, i.e., splitting into two or more components, might improve the

controller performance. This concerns especially the number of initial conditions from which

the controller successfully controls the system to the target region. The single objective EA

performance in this respect is not satisfactory. MOEA performance as a multi-objective

optimisation method is secondary concern in this investigation which is primarly focused on

the effect of modularisation of the objective function.

8.1.2 Basic concepts and terminology

The multiobjective optimisation definitions and terminology are based on the following

publications: (Zitzler 1999), (Zitzler et al. 2000), (Deb 2001), (Coello Coello et al. 2002).

Multiobjective optimisation problem can be formulated as follows:

Definition 8.1. Multiobjective Optimisation (MOP). Find vector
*
 = () in

decision space X that minimises/maximises objective vector function:

 () = (f1(), ... , fn()) ∊ Y

subject to: ∊ Xc X , () ∊ Yc Y

Usually Xc takes form of inequality and equality constraints:

gi() ≥ 0, i = 1, ... , m

hi () = 0, i = 1, ... , p, p < n

Without loss of generality a minimisation problem can be assumed. Maximisation problem

can be converted into minimisation problem by the following formula:

max fi () = − min (− fi ())

171

Definition 8.2. Pareto Dominance. Consider two solutions and , ∊ X. Solution

dominates , denoted as , if and only if:

 fi () ≤ fi () and : fj () < fj (), i,j ∊ {1, ... , n}

All solutions that are not dominated by any other solution are called non-dominated. The set

of all non-dominated solutions is called Pareto-optimal set, see the definition below.

Let say, that for any two objective vectors and :

 = if and only if ui = vi i ∊ {1, ... , n}

 ≤ if and only if ui ≤ vi i ∊ {1, ... , n}

 < if and only if ui < vi i ∊ {1, ... , n}

Similarly, relations > and ≥ can be defined accordingly.

Definition 8.3. Pareto-optimal set. For a given MOP (), the Pareto optimal set P is

defined as:

Definition 8.4. Pareto Front. For a given multiobjective optimisation problem defined by the

vector function () and Pareto optimal set P, the Pareto Front (PF) is defined as:

 PF = { = = (f1(), ... , fn()) : ∊ P }.

As in the single objective EA described in Chapter 7, the proposed multiobjective

evolutionary algorithm based compositional method searches for a controller over the whole

set of initial conditions at every generation. Objective function value of each individual

reflects the controller performance over the whole set of initial conditions in the set. In other

words, every string in the population is assigned the objective function value which is a

composite value representing string‘s performance for every single initial condition in the

user-defined set. Each individual represents a potential solution to a given problem.

Depending on whether the problem is defined as a maximisation or minimisation problem,

the best solution may be the string with the highest or lowest objective function value (the

inverted pendulum problem is defined as minimisation problem).

In applying an evolutionary algorithm to multiobjective optimisation three most important

issues need to be addressed (Zitzler et al. 2000):

 Objective functions evaluation method.

 Selection process to guide the EA evolution towards the Pareto set.

 Maintaining sufficient population diversity to prevent premature convergence and to

generate well distributed Pareto Front.

172

8.2 Multiobjective evolutionary algorithm based compositional

method

In the following subsections the multiobjective evolutionary algorithm for compositional

method is described on the example of the inverted pendulum. Using case study is required as

the MOEA and fuzzy system are strongly coupled and developing the method in general form

would be meaningless, apart from the algorithm description.

8.2.1 Defining evolutionary population

The three fuzzy rule base structure, described in Chapter 3, is represented as a linear

individual string of M = 95 elements. The population is defined as a set of Mp individuals:

P = { : (a1, … , a95), k = 1, ... , Mp, aj ∊ {1, ... , 7} }.

A simple method is used to handle MOEA population size in the algorithm:

1. Initial population P(0) is generated.

2. Pareto set PS is selected from the non-dominated individuals of P(0).

3. If population size of PS smaller than a pre-defined threshold then PS is refilled with

either randomly generated individuals or by the use of elitist strategy: filling the

reminder of PS with the best (with regard to each and every objective function)

individuals from the previous population.

4. MOEA operators are used on PS to generate the next generation PS1. Population PS1

is copied to P.

5. Steps 2—4 are repeated until termination condition is satisfied.

8.2.2 Objective functions

Assume that there are Nc initial conditions in the user-defined set of initial conditions. To

evaluate the objective function value for a given string from the controller population first

the objective function values fij ,i = 1, ... , Nc, j = 1,2, are evaluated for every single initial

condition. Then overall objective function value is determined from the values calculated for

every single initial condition.

The fitness for a single initial condition is evaluated as follows: each string is decoded into

three components defining the fuzzy knowledge base for each layer, then the Mamdani or

minimum inference formula is used to evaluate u1, u2, and u to find the final control to be

applied at each value of the state . The system state equations are integrated by the Runge-

173

Kutta algorithm (RK4) with step size 0.02 over time interval [0,T]. The fitness fij is then

calculated based on the behaviour of the system over the time interval. The objective

function has the general form:

 = ω 1 F1 + ω 2 F2 + ω 3 F3+ ω 4 F4 (8.1)

with: F1 = , F2= , F3= , F4=

The objective function has the general form:

 = ω 5 F5 with: F5= T − TS), (8.2)

where xmax = 1.0, θmax = π/6, max= 1.0, max = 3.0, N is the number of iteration steps,

survival time TS = 0.02·N, T = 0.02· Nmax with the maximum number of iterations Nmax=

1000, and ω k are selected positive weights.

A simple evaluation method is defined, similar to the method described in Chapter 7, the

fitness function value (either f1 or f2) is evaluated as arithmetic average over all fitness values

fij , i = 1, ... , Nc, j = 1,2, calculated for every single initial condition, and then assigned to a

particular string in controller population:

f1 = (8.3)

f2 = (8.4)

According to the Definition 8.2, Pareto dominance condition with two objective functions

and can be expressed as: individual from the population dominates another individual

if () ≤ () and : () < (), i,j ∊ {1,2}.

The restrictions are given by: −1.0 ≤ x1 ≤ 1.0 and −π /6 ≤ x3 ≤ π/6.

Objective functions can be modified in order to reward strings which successfully control the

system from a large number of initial conditions. One of the simplest methods is to establish

threshold values for the objective function and penalise strings that exceed those threshold

values (for each initial condition), see penalty schedules-A and B, Chapter 4. In MOEA

experiments penalty schedule-A is used:

if ObjFun ≥ 0.3·avg and ObjFun < 0.5·avg then ObjFun = ObjFun + 500.0

if ObjFun ≥ 0.5·avg and ObjFun < 0.8·avg then ObjFun = ObjFun + 1000.0

if ObjFun ≥ 0.8·avg then ObjFun = ObjFun + 2000.0

where avg is a variable representing average objective function value (either or) of the

previous population (in a preceding generation). Penalties need to be fine-tuned to focus the

MOEA on selecting strings that perform well for the large number of initial conditions.

174

8.2.3 Membership functions

Gaussian functions are used as membership functions in all experiments. To increase

accuracy and achieve better performance from control system one can increase the number of

membership functions covering input and output variables. This, however, increases the size

of the knowledge base and therefore with larger number of rules to be learned the

computation time is longer.

8.2.4 Crossover and mutation

For MOEA compositional method four crossover operators were tested: random, uniform,

arithmetic, and one-point crossover. The use of one-point crossover was abandoned after

several simulations that provided inferior results to results from simulations run with other

crossover operators. It proves only that in this particular application one point-crossover is

not suitable (it was used in initial experiments, see Chapter 5).

The mutation operator, described in Chapter 4, mutates elements of the strings in the

population to ensure satisfactory diversity within the population which is required for the

MOEA to find better approximate solutions to the problem. Mutation is undertaken with

probability pm determined by a mutation schedule that decreases typically from 0.8 to 0.001

over the fixed number of generations. The same mutation schedule is used as described in

Chapter 7.

8.2.5 Overview of the multiobjective evolutionary algorithm

The MOEA is used to learn fuzzy rules in the HFS that constitutes a control system for the

inverted pendulum. A schematic MOEA algorithm, in a very general form, is given below:

1. MOEA parameters are selected: type of inference engine, crossover, mutation

schedule, selection method, elitism, objective functions (with or without a penalty

schedule), and termination condition (number of generations or lack of significant change

in the state vector).

2. Population PS(t), t = 0, is randomly initialised: every component of individual string is

given a randomly selected value from a predefined interval. Objective functions are

evaluated for the first generation PS(0).

3. t = t + 1: next generation is created using MOEA operators: selection, crossover, and

mutation.

4. Pareto set PS1(t) is created from the non-dominated solutions of PS(t).

175

5. If size(PS1(t)) < Threshold then the population is filled to its maximum size

(maintaining the constant population size) with randomly generated individuals or by use

of the elitist strategy: copying the best individuals (with respect to each objective

function) from PS(t).

6. Individual from the population PS1(t) is selected.

7. Initial condition is selected from the predefined set.

8. Dynamical system is simulated from a given initial condition.

9. Final state of state vector is determined.

10. Based on values from Step 9 objective functions values are evaluated for an

individual in population PS1(t). Penalties are added to the objective functions values (if

penalty schedule is defined).

11. Steps 7—10 are repeated until all system simulations for every initial condition in the

set are performed.

12. An average over all initial conditions is calculated for each objective function and

assigned to the individual. Optionally, fitness function value is evaluated as a function of

objective functions values (usually as a linear combination of component objective

functions).

13. Steps 6—12 are repeated until all individuals in the population have their objective

functions values evaluated.

14. Pareto set PS2(t) is selected from the population PS1(t).

15. Pareto set PS2(t) is copied to PS(t).

16. Steps 3— 5 are repeated until the termination condition is satisfied.

17. Final control system is given by any individual from the Pareto set. Its performance is

evaluated by running a simulation of the dynamical system for all initial conditions and

counting initial conditions for which the final state variables are within the target region.

A simplified MOEA based compositional method block diagram is shown in Figure 8.1.

8.3 Experimental setup

The experiments were conducted to test the proposed method. The experiments aimed at

finding the combination of MOEA parameters that would result in finding fuzzy rules

capable of successfully controlling the inverted pendulum system to the target area from the

largest possible number of initial conditions. In the following subsections the computer

176

simulations setup is described and then typical results are illustrated on the successful

versions of MOEA algorithm.

MOEA parameters selection: inference engine, crossover, mutation, selection method, elitism, obj. functions.

Population PS(0) is randomly initialised. Objective functions are evaluated for all individuals in PS(0).

t = t + 1

Pareto set PS1(t) is created from the non-dominated solutions of PS(t).

If size(PS1(t)) < Threshold then the population is filled to its maximum size

Individual from the population PS1(t) is selected

Initial condition is selected from the predefined set.

The system is simulated from a given init. cond. Final state vector is determined.

Obj. functions values are evaluated for an individual in population PS1(t) for
every init. cond.

An average over all initial conditions is calculated for each obj. function and
assigned to the individual.

Pareto set PS2(t) is selected from the population PS1(t). PS2(t) is copied
to PS(t).

Final control system is given by any individual from the Pareto set. Its performance is evaluated by running a
simulation of the system for all initial conditions and counting initial conditions for which the final state

variables are within the target region TR.

Figure 8.1 MOEA based compositional method block diagram.

8.3.1 Initial conditions

A set of regularly interspaced 255 initial conditions (Nc = 255) is defined within the region

defined by: | | ≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0, see Appendix.

8.3.2 Initial population

The initial population P(0) = { : k = 1, ... , Mp }, is determined by choosing the aj as a

random integer ∊ [1,7] where Mp is the size of the evolutionary population. Full replacement

policy is used and for selection process tournament selection with size = 4.

8.3.3 Population size

The initial population size is set at Mp = 500. Smaller population size is possible but then it is

more difficult to maintain the required population diversity to avoid pre-mature convergence

to the local minimum.

177

8.3.4 Termination condition

Similarly to single objective EA simulations, the MOEA is terminated after 1000 generations

as it is found that the algorithm either finds solution in about 300—500 generations or fails

regardless of how many generations follow.

8.3.5 Elitism

An elitism strategy is typically used to pass the fittest individuals or copies of the fittest

individual to the new population, so that the information encapsulated in the best individual is

not lost and the fittest individuals are passed into the next generation. A variable number of

copies of best individuals in terms of f1 and f2 were passed to the next generation to maintain

the fixed population size.

8.3.6 Objective functions

Objective functions given by Equation 8.3 and 8.4 are used in all experiments. The weights

in the objective functions, see Equation 8.1 and 8.2, are adjusted in several simulations with

most commonly used sets of ω parameters: ω1 = 1000, ω2 = 1, ω3 = 1000, ω4 = 1, ω5 = 3000,

and also ω1 = 1, ω2 = 1, ω3 = 1, ω4 = 1, ω5 = 1. Changing the weights ω in the objective

functions has a significant impact on the MOEA performance.

8.4 Computer simulations

Simulations are run to fine-tune the EA parameters that in turn result in finding fuzzy rules

capable of successfully controlling the inverted pendulum system to the target area from the

largest number from a pre-defined set of 255 initial conditions. In a computer simulation the

controller acted on the inverted pendulum for Tf = 20.0s.

The successful, in terms of convergence, modification of MOEA (test-1) has the following

parameters: minimum inference engine, uniform crossover, mutation schedule, and

tournament selection. Termination condition: exceeding 1000 generations. Positive weights

in the objective functions were defined as: ω1 = 1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000.

Population P(t), t = 0, is randomly initialised, with every component of individual string

given by a randomly selected value from [1,7]. If size(PS1(t)) < 0.3 · MAXPOP (where

MAXPOP is maximum population size) then the best individuals with regard to f1 and best

individuals with regard to f2 are copied to the 2/3 of the reminder of the population P(t+1).

The remaining reminder is filled with individuals from the previous population P(t). The

178

algorithm follows the methodology described in Section 4.5. This version of MOEA found 43

non-dominated solutions that are the approximation of the true Pareto Front.

Figure 8.2 State variables convergence for init.cond. 78 (test-1) – controller no 1.

Figure 8.3 Controller no 1, init. cond. 78 (test-1).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

u

179

Figure 8.4 State variables convergence for init.cond. 78 (test-1) – the best controller no 8.

Figure 8.5 Controller no 8, init. cond. 78 (test-1).

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

u

180

Figure 8.6 Pareto Front approximation for the MOEA (test-1) simulation: 43 solutions.

Figure 8.7 State variables convergence for init.cond. 136 (test-2).

1730

1732

1734

1736

1738

1740

1742

1744

1746

475 480 485 490 495 500 505 510 515 520 525

f2

f1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

181

Figure 8.8 Controller no 1, init. cond. 136 (test-2).

Figure 8.9 Pareto Front approximation for the MOEA (test-2) simulation: 35 solutions.

-7

-6

-5

-4

-3

-2

-1

0

1

2

u

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

485 490 495 500 505 510

f2

f1

182

Figure 8.10 Pareto Front approximation for MOEA (test-3) simulation: 48 solutions.

The reason for a very low percentage of success in 10-th controller is that it narrowly failed

to keep the cart (represented by x1) within the target region. In majority of failed control

actions the margin was about 0.001. However close the x1 was to the target region it was still

outside it in the final state at T = 20.0s and therefore was considered a failure. Average

success rate in test-1 for all 43 controllers in the Pareto set is 81.4% (208 init. cond.)

including anomalous controller no 10, and 83.3% (212 init. cond.) without anomalous

controller no 10.

Results are illustrated on randomly selected initial condition 78: 0 = (0.35, 1.0,−0.261799,

−0.5), for the first and 8-th controller in the Pareto set, see Figure 8.2 and Figure 8.3 (first

controller) and Figure 8.4 and Figure 8.5 (8-th controller). This first controller achieved

81.4% success rate, controlling the system from 207 (out of 255) initial conditions to the

target region. The best controller, see Table 8.1, is controller no 8 with 94.5% success rate

(241 convergences to the TR out of total 255 initial conditions).

Another successful MOEA version (test-2) used product inference engine and ω1 = 1, ω2 =

1, ω3 = 1, ω4 = 1, ω5 = 1 and found 35 non-dominated solutions. This result is illustrated by

2885

2890

2895

2900

2905

2910

2915

700 710 720 730 740 750 760 770 780

f2

f1

183

the state variables convergence from a selected initial condition 136: 0 =

(0.3,−0.5,−0.261799, 1.0). The controller is selected as the first solution in the Pareto set. Out

of 255 initial conditions, the controller successfully controlled the system from 184 initial

conditions (about 72% success rate) to the TR, see Figure 8.7 and Figure 8.8.

The same MOEA (test-3) but with different set of weights in the objective functions: ω1 =

1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000, found 48 non-dominated solutions, see Figure

8.10. Please note the different objective functions values resulting from different weights

values ω used in definition of objective functions. Better approximation of Pareto Front can

be generated with the increase of population size but it would also significantly increase the

computation time.

In experiments with a single objective EA, as described in Chapter 7, similar EA parameters

were used, which enables an adequate comparison with the MOEA results. The objective

function is defined as: f = ω1 F1 + ω2 F2 + ω3 F3+ ω4 F4+ ω5 F5, which is simply f = f1 + f2.

MOEA solutions consistently approached or, as in most cases, exceeded 80% success rate

while single objective EA averaged 50%, see (Zajaczkowski and Verma 2008). The best

MOEA based method result is 94.5% success rate.

Better MOEA results seem to indicate that splitting the objective function into its composite

parts might improve the controller performance. In case of the inverted pendulum example

one objective function is defined as a measure of state variables ‗distance‘ to the target region

and second one as survival time (the total time in which the pole and cart remain within

specified bounds). This split represented two different aspects of the inverted pendulum

problem even though they are strongly coupled. The state variables convergence for the same

initial condition no 78 (as shown in Figure 8.2) but for the single objective EA is shown in

Figure 8.13 and Figure 8.14.

The MOEA (test-1, see Figure 8.2) final state for initial condition no 78 is: f = (0.043230,

0.0, 0.0, 0.0). The single objective EA (see Figure 8.13) final state for initial condition no 78

is: f = (0.00145, 0.0, 0.0, 0.0). In terms of state variables convergence both method

performed on par, which is not surprising as they share the same EA parameters (with

different variations in values), same fuzzy system and membership functions. What

distinguishes them is the definition of the objective function and algorithm that

accommodates such a modification (MOEA).

184

Table 8.1 Number of convergences to TR and success rates, test-1.

Controller 1 2 3 4 5 6 7 8 9 10

No of

Init.Cond.

207 209 209 206 203 202 215 241 205 3

Percentage 81.2 82.0 82.0 81.0 79.6 79.2 84.3 94.5 80.4 1.2

Controller 11 12 13 14 15 16 17 18 19 20

No of

Init.Cond.

212 220 203 213 209 210 221 212 214 206

Percentage 83.1 86.3 79.6 83.5 82.0 82.6 86.7 83.1 83.9 81.0

Controller 21 22 23 24 25 26 27 28 29 30

No of init.

cond.

203 216 218 226 198 211 225 220 217 208

Percentage 79.6 84.7 85.5 88.6 77.6 82.7 88.2 86.3 85.1 81.6

Controller 31 32 33 34 35 36 37 38 39 40

No of init.

cond.

220 216 224 211 202 215 206 216 211 205

Percentage 86.3 84.7 87.8 82.7 79.2 84.3 81.0 84.7 82.7 80.4

Controller 41 42 43

No of init.

cond.

206 219 212

Percentage 81.0 85.9 3.1

MOEA also allows greater flexibility in algorithm design. Considering arbitrary dynamical

system to be controlled, the objective functions can reflect various aspects of the system.

They can be adjusted to achieve better control system performance, as proven by comparison

of the single objective EA and MOEA solutions.

185

Figure 8.11 Number of convergences for every controller (43 controllers) in the Pareto set

(test-1).

Figure 8.12 Success rate for every controller (43 controllers) in the Pareto set (test-1).

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

number of initial conditions

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

success rate

186

Figure 8.13 Single objective EA state variables convergence for init. cond. 78.

Figure 8.14 Single objective EA controller, init. cond. 78.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

u

187

Summary

In this chapter the multiobjective evolutionary algorithm based compositional method is

introduced as an extension of the method presented in Chapter 7 for a single objective

function. Detailed algorithm description is provided followed by simulation results on the

example of the inverted pendulum system.

Two objective functions are defined for multiobjective evolutionary algorithm by splitting

single objective EA fitness function into its components: sum of deviations of state variables

from the origin as the first objective function and survival time (the total time in which the

pole and cart remain within specified bounds) as a second objective function. A constant

population size is maintained after selection of the Pareto set by the use of elitist strategy.

The multiobjective modification of the EA (modularising the objective function) provides

better and more consistent results than single objective compositional method described in

Chapter 7. The controller performance from the Pareto set for one particular MOEA version

is presented in terms of the number of initial conditions from which the system was

controlled to the target region. A satisfactory controller is developed for the set of pre-defined

initial conditions with the controlled system controlled to the target region from 94.5% of all

initial conditions.

188

Chapter 9 CONCLUSIONS AND FUTURE DIRECTIONS

9.1 Conclusions

In the following subsections the final conclusions of the research carried out in this thesis are

presented. Future directions of the current research are discussed briefly afterwards.

9.2 Topologies for hierarchical fuzzy structures

The hierarchical fuzzy control of the simple inverted pendulum was examined and

evolutionary algorithm was used to learn a fuzzy controller for all possible hierarchical

topologies: single layer, two-layered HFS, three-layered HFS, and four-layered HFS with

different input configurations. It has been shown that it is important to select the correct input

variables into the first layer to achieve effective and accurate control. Furthermore, structure

of the second and third layer in the 3 layered HFS plays a significant role as reversed order in

input in those layers produced dramatically different results, as shown for example in case of

L3-13-2-4 (poor results) and L3-13-4-2 (good results), see Figure 5.21 and Figure 5.23

respectively. Similarly, controller L3-14-2-3 shows poor results and L3-14-3-2 good results,

see Figure 5.29 and Figure 5.31 respectively. Both cases illustrate how intricate

interdependencies between input variables can be.

It was shown that the inverted pendulum system should be decomposed into two input

variables groupings:

 cart variables: x1 and x2 (cart‘s position and its velocity).

 pole variables: x3 and x4 (pole angle and pole‘s angular velocity).

Results from the 4-layered HFS simulations established that the most influential variable is x4

(angular velocity), then x3 (pole angle) in the first grouping followed by x2 (cart‘s velocity)

and x1 (cart‘s position) in the second grouping. Simulation results obtained for the two, three

and four layered HFS confirm that it is important to control the inverted pendulum, by

examining first its angular speed and angular position then the cart‘s speed and position

displacement, as the best overall results (in terms of state variables convergence and control

magnitude) are achieved in both cases by topologies L2-34-12 and L3-34-2-1, L3-34-1-2, and

L4-4-3-2-1, see Figure 5.5, Figure 5.17, Figure 5.19, and Figure 5.41.

189

Alternatively, a good result is achieved when cart velocity and pole angle are examined first

and then the cart velocity and angular velocity of the pole, which is represented by topology

L3-23-4-1. A small change in the input configuration, as in L3-23-1-4, renders this topology

one of the worst performers and proves how important is to find the right topology for the

control system.

Three-layered topology breaks strong interdependence between state variables in layers 2 and

3 but it does not have adverse effect on the controller performance for topologies L3-34-1-2

and L3-34-2-1 as this decomposition reflects physical properties of the system (ranking of the

most influential variables). For topologies L3-14-2-3 or L3-14-3-2 the difference in

decomposition has a profound effect as can be seen in Figure 5.29 and Figure 5.31.

Decomposition needs to reflect the physical properties of the system under consideration and

it requires grouping of the input variables along weak interdependences between state

variables. The inverted pendulum can be decomposed into two subsystems: the cart

represented by x1 and x2, and the pole represented by x3 and x4. Swapping the input variables

between the layers but preserving to some extent abovementioned groupings has little effect

on the controller performance. When this grouping principle is broken, the results are often

detrimental (depending which variables are more influential in the dynamical system). The

simulation for 4-layered topologies show that the topology L4-4-3-2-1 is the most consistent

controller in ten different simulations indicating the ranking of the most influential input

variables: first - x4, second - x3, third - x2, and finally x1.

The initial population (randomly generated in the simulations) has significant impact on the

evolution of the knowledge base. Some controllers, from ten control systems developed for

each topology, differ considerably in their performance. Therefore a simulation resulting in a

single controller should not be regarded as a sufficient representation of controllers developed

for any particular topology. Especially, if the EA does not produce a relatively uniform

population at the end of the algorithm. Developing a relatively homogenous set of controllers

requires careful fine-tuning of the EA parameters and usually a large number of generations.

In most cases, in spite of their differences, the controllers perform in a very similar fashion,

i.e., having similar control time history and the character of state variables convergence.

In the case of a single layer topology L1-1234, the controller stabilises the system relatively

well, with no preference given to any input variable, and interdependence between input

variables (being locked in the fuzzy rules) remains hidden. Only by decomposition of the

190

HFS (by breaking a single knowledge base into a hierarchically structured knowledge base)

this interdependence comes into play with dramatic effect.

It was observed that the performance of the fuzzy controller is not related to the speed of

learning process.

The analysis performed in Chapter 5 shows that the 2-layered HFS provides a slightly better

solution to the control problem of the inverted pendulum than the 3-layered HFS. This result

reflects the physical nature of the inverted pendulum system with pole and cart variables

grouped in two separate ‗subsystems‘ that are mirrored in the 2-layered HFS. However, the 3-

layered HFS significantly reduces the size of the knowledge bases while providing control

system of similar performance.

By introducing the hierarchical structure the control system is greatly simplified (with the

exception of ‗different topologies‘). One would argue that a complex fuzzy rule base should

stabilise the system better than a simple one, but on the other hand the complex knowledge

base is usually more vulnerable to external disturbances and uncertainty. The investigation

into the HFS topologies suggests that the size of the knowledge base, i.e. number of rules, is

not a decisive factor in controller performance. On one side of the ‗spectrum‘ there is

topology L2-3-412 with 880 fuzzy rules or single layer topology L1-1234 with 625 fuzzy

rules, and on the other side there is 3-layered topology with 95 fuzzy rules in its knowledge

base (except those 3 layered topologies investigated as ‗different topologies‘), with some of

them providing similar controller performance. However, the topology of the HFS seems to

be the decisive factor in controller performance.

Similarly, the HFS topologies investigation shows that the number of layers is not an

important factor in performance of the controller (in terms of control magnitude and

stabilisation rate of the state variables). This fact allows large knowledge base of simple

structure (for example: single layer) to be replaced with the HFS without loss of controller

performance. In fact, the HFS produced more efficient controllers (in terms of system

stabilisation) than single layer controller except for magnitude of control which for single

layer control system is the lowest.

The tests performed on topologies with one or two layers removed have demonstrated that the

hierarchical fuzzy system needs to be considered in its entirety and not as an assembly of its

better or worse performing component rule bases.

191

The simulation results indicate that a particular input configuration in the HFS layers is more

important than the number of layers as good controller performance was achieved for both: 2

layered L2-34-12 and 3 layered L3-34-2-1 and L3-34-1-2, see Figure 5.5, Figure 5.17, and

Figure 5.19 respectively. This indicates that interdependence of variables plays a crucial role

in finding the ‗optimal‘ HFS for a particular problem. Examining the nature of variables

interdependence is a key to an automated determination of the decomposition of the fuzzy

model of control. The decomposition of the hierarchical fuzzy structure should be performed

along weak interdependency between input variables. However, with more complex

dynamical systems there might be multiple weak interdependencies in input configuration. In

such cases either expert knowledge is required to resolve the decomposition problem or an

automated process that finds optimal or near optimal hierarchical fuzzy topology.

9.3 Co-evolutionary algorithm

In Chapter 6 the hierarchical fuzzy control of the simple inverted pendulum was examined

and co-evolutionary algorithm was used to learn a fuzzy controller and its membership

functions (within a class of Gaussian membership functions).

It was observed that for every simulation a different knowledge base was developed. The

controllers from different simulations are different partly because the EA starts from different

initial controller population (randomly initialized). With the increased number of generations

(5000—10000) co-evolutionary algorithm still converges to different solutions but very

similar in performance. The state variables convergence and controller time history look very

similar for all simulations. The knowledge bases are thus different but control system

performance is very similar. One possible explanation is that there are several or more

suboptimal solutions in search space and co-evolutionary algorithm converges to one of

them.

The algorithm starting from a uniform MF population generally produces better performing

controllers. However, in most cases, in spite of their differences, the controllers perform in a

very similar fashion, i.e., having similar control time history and similar character of state

variables convergence. The MFs centres resulting from the EA with uniform MF population

change very little from their original definitions and better results from such EAs suggest that

control systems perform better with evenly spaced membership functions.

192

The results of the co-evolutionary algorithm are non-trivial especially on the part of evolved

membership functions. In case of the EA with randomly generated MF initial population, MF

centres are not uniformly spread over system variables range but tend to congregate in certain

regions of the input or output variable range. Such ‗clustering‘ of the membership functions

requires additional investigation. The working hypothesis would be that MFs tend to

‗gravitate‘ towards region where the final states of the state variables values lie after

simulation of the dynamical system.

9.4 Compositional method

In Chapter 7 an evolutionary algorithm based compositional method has been examined and

applied to a simple dynamical system (inverted pendulum). Evolutionary algorithm designed

for the compositional method is used to learn fuzzy rules for a 3-layered hierarchical fuzzy

control system over a user-defined set of initial conditions. The initial conditions include both

static and dynamic conditions of the system. For the inverted pendulum problem the static

initial conditions include the cart‘s position and the angle of the pole, and dynamic initial

conditions: the initial cart‘s velocity and the angular velocity of the pole.

The experiments with the compositional method for the inverted pendulum system prove that

with the right combination of the EA parameters the resulting fuzzy control system is capable

of controlling the system from the wide range of initial conditions, the best result being 76%

success rate (the system was controlled to the TR from 195 out of 255 of initial conditions),

while most simulations averaged slightly above 50% success rate.

For the system that starts from diametrically different initial conditions it is unlikely to find

reasonably small fuzzy rule base capable of handling every possible dynamics of the system.

This fact reflects physical reality of complex non-linear dynamical systems, including even

relatively simple inverted pendulum dynamics.

9.5 MOEA based compositional method

A multiobjective evolutionary algorithm based compositional method is used to learn fuzzy

rules for a three-layered hierarchical fuzzy control system over the large set of initial

conditions. The proposed method has a relatively high success rate in terms of the number of

initial conditions from which the system is controlled to the TR.

193

In experiments with a single objective EA: f = + , with similar EA parameters, success

rate averaged 50% while the MOEA based method consistently approached or exceeded 80%

success rate. The best achieved result was 94.5% success rate (the system controlled to the

TR from 241 out of total 255 initial conditions).

Better MOEA results indicate that splitting the objective function into its composite parts

improves the controller performance. In case of the inverted pendulum one objective

function is defined as a measure of state variables ‗distance‘ to the target region and second

one as survival time (the total time in which the pole and cart remain within specified

bounds). This split represents two different aspects of the inverted pendulum problem but

they are strongly coupled.

The proposed MOEA based compositional method shows significant improvement over

single objective EA especially in terms of consistency of results from different controllers,

see Section 8.4. The MOEA used in the investigation is a simple modification of the EA used

in all other experiments. This was done in order to examine the effect of modularising the

objective function definition. Further improvements in the MOEA performance are expected

with refinement of objective functions definitions and more efficient MOEA scheme, such as

NSGA II or SPEA-2.

Just as the single objective EA based compositional method, the MOEA based compositional

method can also be applied to a wide range of dynamical systems. This require a re-definition

of system dynamics, MOEA encoding, objective functions, and determining a set of initial

conditions. The hierarchical structure is also case-dependent and reflects the physical

properties of the dynamical system. Therefore, the number of membership functions and their

range needs to be adjusted. However, the overall algorithm structure remains the same, see

Section 8.2.5. The proposed MOEA based compositional method is specifically tailored to

control the system from a user defined set of initial conditions and this is its greatest

advantage.

9.6 Comparison of controller performance for proposed methods

The developed control methods for the inverted pendulum system allow the comparison of

certain aspects of the controller performance. Two aspects are selected for comparison:

 System stabilisation times.

 State variables convergence and control magnitude.

194

For clarity, only the best performing controllers developed in the course of this investigation

are compared.

9.6.1 Stabilisation times comparison

The stabilisation time is compared for the selected best performing topologies for different

methods: single initial condition EA (Chapter 5), co-evolutionary algorithm (Chapter 6) and

MOEA based compositional method.

Table 9.1 Stabilisation times for the examples of the best performing topologies, single initial

condition.

Topology C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Stabilisation

time (sec)

2.74 2.9 2.06 3.22 1.68 2.64 1.82 2.4 4.32 1.4 1.74 3.92

where C1 denotes: L2-34-12, C2: L3-34-1-2, C3: L3-34-2-1, C4: L4-3-4-1-2, C5: L4-3-4-2-

1, C6: L4-4-3-1-2, C7: L4-4-3-2-1, C8: L2-3-412, C9: L2-342-1, C10: L3-3-4-12, C11: L3-3-

41-2, C12: L1-1234.

Alternative topologies L3-3-4-12 and L3-3-41-2 are characterised by very fast stabilisation

times but relatively large knowledge base of 215 rules compared to 95 rules in any L3-mn-k-l

topology, m,n,k,l ∊ {1,2,3,4}.

 Stabilisation times for controllers developed by the co-evolutionary algorithm (see Chapter

6) are shown in Table 9.2. On average, the co-evolutionary algorithm produces faster acting

controllers than the conventional EA investigated in Chapter 5.

Table 9.2 Stabilisation times for co-evolutionary algorithm examples.

Topology C1 C2 C3 C4 C5 C6 C7 C8

Stabilisation

time (sec)

2.6 2.78 1.8 1.63 2.14 2.94 1.84 2.74

where C1 denotes: L3-34-1-2 explorative, uniform, C2: L3-34-1-2 explorative, random, C3:

L3-34-1-2 greedy, uniform, C4: L3-34-1-2 greedy, random, C5: L3-34-2-1 explorative,

uniform, C6: L3-34-2-1 explorative, random, C7: L3-34-2-1 greedy, uniform, C8: L3-34-2-1

greedy, random.

195

Table 9.3 Stabilisation time for randomly selected init. conditions for single objective EA and

MOEA based compositional method.

Topology

L3-34-2-1

EA

init. 4

best

controller

EA

init. 88

MOEA

init. 78

controller no 8

MOEA

init. 78

controller no 1

MOEA

init. 136

Stabilisation

time (sec)

16.84 4.22 2.94 2.90 2.32

As can be seen from stabilisation time comparison, the co-evolutionary algorithm improves

the controller performance compared to the earlier EA version investigated in Chapter 5.

MOEA based compositional method is a significant improvement on the single objective EA

based method in terms of stabilisation times. However, in case of the compositional method

this is not a decisive factor in evaluating the controller performance. As was mentioned

before, the MOEA based method is far superior to single objective EA in terms of the total

number of initial conditions from which it controls the system to the target region.

9.6.2 State variables convergence and control magnitude

One of the critical controller performance criteria was state variable convergence to the target

region and magnitude of control. Additionally smoothness of both state variable convergence

and controller time history were taken into account. The examples of the best performing

controllers are compared in this section.

Comparison of state variables convergence for selected examples of the best performing

topologies is shown in Figure 9.1: L2-34-12 and L3-34-1-2 (top) and L4-3-4-2-1 and L3-34-2-

1 (bottom). Comparison of control magnitude and smoothness of the control action over [0,T]

interval is shown in Figure 9.2: L2-34-12 and L3-34-1-2 (top) L4-3-4-2-1 and L3-34-2-1

(bottom). State variables convergence for explorative co-evolutionary examples is shown in

Figure 9.3: L3-34-1-2 uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1

random (bottom).

196

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

Figure 9.1 State variables convergence for L2-34-12 and L3-34-1-2 (top) and L4-3-4-2-1 and

L3-34-2-1(bottom).

-8

-6

-4

-2

0

2

4

6

u

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u

-4

-2

0

2

4

6

8

10

u

-6

-4

-2

0

2

4

6

8

u

Figure 9.2 Control magnitude and smoothness of the control action for L2-34-12 and L3-34-

1-2 (top) and for L4-3-4-2-1 and L3-34-2-1 (bottom).

197

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

Figure 9.3 State variables convergence explorative L3-34-1-2 uniform, L3-34-1-2 random

(top), L3-34-2-1 uniform, L3-34-2-1 random (bottom).

-1

-0.5

0

0.5

1

1.5

2

u

-1

-0.5

0

0.5

1

1.5

u

-2

-1

0

1

2

3

4

5

6

u

-2

-1

0

1

2

3

4

5

6

7

u

Figure 9.4 Control magnitude and smoothness of the control action for explorative L3-34-1-2

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom).

198

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 x2 x3 x4

Figure 9.5 State variables convergence greedy L3-34-1-2 uniform, L3-34-1-2 random (top),

L3-34-2-1 uniform, L3-34-2-1 random (bottom).

-2

-1

0

1

2

3

4

5

6

7

8

u

-4

-2

0

2

4

6

8

10

u

-1

0

1

2

3

4

5

6

u

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u

Figure 9.6 Control magnitude and smoothness of the control action for greedy L3-34-1-2

uniform, L3-34-1-2 random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom).

199

Control magnitude and smoothness of the control action over [0,T] interval is shown in

Figure 9.4 for explorative co-evolutionary examples: L3-34-1-2 uniform, L3-34-1-2 random

(top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). State variables convergence for

greedy co-evolutionary examples is shown in Figure 9.5: L3-34-1-2 uniform, L3-34-1-2

random (top), L3-34-2-1 uniform, L3-34-2-1 random (bottom). Comparison of control

magnitude and smoothness of the control action over [0,T] interval is shown in Figure 9.6 for

greedy co-evolutionary examples: L3-34-1-2 uniform, L3-34-1-2 random (top), L3-34-2-1

uniform, L3-34-2-1 random (bottom).

As can be seen in figures showing state variables convergence and control action for both

explorative and greedy co-evolutionary algorithm examples, the smoothest and relatively low

magnitude of control is exhibited by the controller with topology L3-34-2-1 (EA with

uniform initial population of membership functions), see left bottom part of Figure 9.4, and

by the controller with topology L3-34-2-1 (EA with random initial population of membership

functions), see left bottom part of Figure 9.6. Compared to control action shown in Figure

9.2, it shows smooth time history without oscillations. Only initial large magnitude control

action is required at the very beginning of system stabilisation and then the controller quickly

stabilises the system. This is true for all co-evolutionary controllers which exhibit smoother

control action than controllers designed without fine-tuning of membership functions. Based

on this comparison it can be concluded that co-evolutionary algorithm delivers better

controller performance than any controller investigated in Chapter 5.

Comparison of single objective EA (init. cond. no 88) and MOEA state variables

convergence for test-1 (init. cond. 78), controller no 8 and 1, and test-2 (init. cond. 122) are

shown in Figure 9.7. Controller action for the same examples is shown in Figure 9.8. Both

single objective and MOEA solutions exhibit low magnitude control action. MOEA

controllers have relatively fast stabilisation time. In case of the compositional method

controllers the crucial performance index was the number of initial conditions from which the

controller stabilises the system. In this respect, the controller no 8, see top right of Figure 9.7,

is beyond doubt the best solution for the control problem with 94.5% success rate (241

convergences to the TR out of total 255 initial conditions) even though the state variable

convergence is not as regular as shown in other examples. As can be seen in all examples for

the compositional method, the position of the cart x1 was the most difficult to control. None

of the MOEA solutions achieves smoothness of state variables convergence and control

action of co-evolutionary algorithm solutions. This needs to be seen as a trade-off between

200

quality of control and meeting its major objective (the largest controllability region). In the

end, the MOEA based compositional method strikes a good compromise, delivering

controllers with better performance than initially investigated in Chapter 5 and slightly worse

performing controllers than delivered by the co-evolutionary algorithm.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1 x2 x3 x4

Figure 9.7 State variables convergence for single objective EA init. cond. no 88 (top left) and

MOEA test-1 (init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init.

cond. 122 (bottom right).

201

-2

0

2

4

6

8

10

12

u

-7

-6

-5

-4

-3

-2

-1

0

1

2

u

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

u

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

u

Figure 9.8 Control action for single objective EA init. cond. no 88 (top left) and MOEA test-1

(init. cond. 78), controller no 8 (top right) and 1 (bottom left), and test-2 init. cond. 122

(bottom right).

9.6.3 Success rate for single EA and MOEA based compositional method

The difference between single EA and MOEA based compositional method is illustrated in

the table with the number of initial conditions from which the selected controllers developed

by both methods stabilised the system to the target region.

 Table 9.4 The success rate for single EA and MOEA based composition method.

 EA best

controller

EA typical MOEA test-1

controller no 8

MOEA test-1

typical

No of init. cond.

converged to TR

205 ≈ 100 241

≈ 207

The average for test-1 was 207.6 (including failed controller no 10) and 212.4 without taking

into account controller no 10 (see Section 8.4 for more details). Therefore, controller no 1

represents typical controller performance for test-1. Full results for MOEA success rate test-1

can be found Table 8.1.

202

9.7 Summary of conclusions

The major conclusions of the thesis can be summarized as:

 Selection of the right topology, both input configuration and hierarchical fuzzy system

structure, plays crucial role in the control system performance. It is also vital for the

fast evolutionary algorithm convergence to a desired solution. The number of layers is

not an important factor in performance of the controller (in terms of control

magnitude and stabilisation rate of the state variables). This fact allows large and

simple structure knowledge base (for example: single layer) to be replaced with the

HFS without loss of controller performance. In fact, the HFS produced controllers that

performed more efficiently in terms of system stabilisation than single layer controller

except for magnitude of control which for single layer control system is the lowest. A

particular configuration of input in the HFS layers is more important than the number

of layers. This indicates that interdependence of variables plays a crucial role in

finding the ‗optimal‘ HFS for a particular problem. Examining the nature of variables

interdependence is a key to an automated determination of the decomposition of the

fuzzy model of control.

 It was observed that for every simulation of co-evolutionary algorithm a different

knowledge base is evolved. The controller is different partly because the EA starts

from different initial population. With the increased number of generations (5000—

10000) co-evolutionary algorithm still converges to different solutions but very

similar in performance. The knowledge bases are thus different but control systems

performance very similar. One possible explanation is that there are several or more

suboptimal solutions in search space and co-evolutionary algorithm converges to one

of them in every simulation.

 The co-evolutionary algorithm starting from a uniform membership functions

population generally produces better performing controllers. However, in most cases,

the controllers perform in a very similar fashion, i.e., having similar control time

history and similar character of state variables convergence. The membership

functions centres resulting from the EA with uniform membership function population

change very little from their original definitions and better results from such EAs

suggest that control systems perform better with evenly spaced membership functions.

 The proposed MOEA based compositional method shows significant improvement

over single objective EA especially in terms of consistency of results from different

203

controllers. Further improvements are expected with refinement of objective functions

definitions and use of more efficient MOEA. The MOEA based compositional

method can be applied to a wide range of dynamical systems with a re-definition of

system equations, encoding of evolutionary population, objective functions, and

appropriate set of initial conditions. The proposed MOEA based compositional

method is specifically tailored to control the system from a user defined set of initial

conditions; this being its greatest advantage.

9.8 Future directions

A common problem encountered with designing the evolutionary algorithm is selection of the

algorithm parameters. Development of a general approach to fine-tuning of the EA

parameters is required. This can be achieved by using pre-defined set of EA parameters, such

as a range of crossover operators, mutation rates, selection methods, population size,

encoding methods, etc. Definition of the objective function (or functions) is case dependant

and therefore it is not possible to define objective function via any automated process unless

the problem is simple enough to use one of the standard objective functions, such as

Euclidean distance to the target region, sum of squared differences between state vector and

the origin, etc.

The obvious extension of this research would be investigation into the method of an

automated determination of the optimal or sub-optimal topology of the hierarchical fuzzy

control system. There are difficulties to overcome in such an investigation, namely handling

variable length of strings in the population and their different encoding methods. One

possible approach is to use multiple populations. Another approach would be using extended

strings with another vector containing information about encoded structure. With a number of

additional assumptions such an automated method is feasible.

The methods presented in this thesis used the inverted pendulum as a test system. To fully

test the applicability of the MOEA based compositional method a more complex test system

needs to be used. Multi-link robotic manipulator would be a good example. Other

applications include financial systems, production control, traffic control, etc.

Presented methods show a potential for future development and refinement.

204

APPENDIX

The table below contains a set of regularly interspaced 255 initial conditions within the

region defined by: | | ≤ 0.75, | | ≤ 1.0, | | ≤ π/12, | | ≤ 1.0. This set of initial conditions

was used to test evolutionary algorithm based compositional method.

Table Appendix. Initial conditions set.

 x1 x2 x3 x4 x1 x2 x3 x4

 0.75 1.0 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.75 1.0 0.261799 0.5 0.35 1.0 0.261799 1.0

 0.75 1.0 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.75 1.0 0.261799 1.0 0.35 1.0 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 1.0 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 1.0 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 0.5 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 0.5 0.261799 0.5

 0.75 1.0 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.75 1.0 0.261799 0.5 0.35 0.5 0.261799 1.0

 0.75 1.0 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 1.0 0.261799 1.0 0.35 0.5 0.261799 0.5

 0.75 1.0 0.130899 1.0 0.35 0.5 0.261799 1.0

 0.75 1.0 0.130899 0.5 0.35 1.0 0.261799 1.0

 0.75 1.0 0.130899 0.5 0.35 1.0 0.261799 0.5

 0.75 1.0 0.130899 1.0 0.35 1.0 0.261799 0.5

 0.75 0.5 0.130899 1.0 0.35 1.0 0.261799 1.0

 0.75 0.5 0.130899 0.5 0.35 1.0 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 1.0 0.130899 0.5

 0.75 0.5 0.130899 1.0 0.35 1.0 0.130899 0.5

 0.75 0.5 0.130899 1.0 0.35 1.0 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 0.5 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 0.5 0.130899 1.0 0.35 0.5 0.130899 0.5

 0.75 1.0 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 1.0 0.130899 0.5 0.35 0.5 0.130899 1.0

 0.75 1.0 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 1.0 0.130899 1.0 0.35 0.5 0.130899 0.5

 0.75 1.0 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 1.0 0.130899 0.5 0.35 1.0 0.130899 1.0

 0.75 1.0 0.130899 0.5 0.35 1.0 0.130899 0.5

 0.75 1.0 0.130899 1.0 0.35 1.0 0.130899 0.5

 0.75 0.5 0.130899 1.0 0.35 1.0 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 1.0 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 1.0 0.130899 0.5

205

 0.75 0.5 0.130899 1.0 0.35 1.0 0.130899 1.0

 0.75 0.5 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 0.5 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 0.5 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 0.5 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 1.0 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 1.0 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 1.0 0.130899 0.5 0.35 0.5 0.130899 0.5

 0.75 1.0 0.130899 1.0 0.35 0.5 0.130899 1.0

 0.75 1.0 0.261799 1.0 0.35 1.0 0.130899 1.0

 0.75 1.0 0.261799 0.5 0.35 1.0 0.130899 0.5

 0.75 1.0 0.261799 0.5 0.35 1.0 0.130899 0.5

 0.75 1.0 0.261799 1.0 0.35 1.0 0.130899 1.0

 0.75 0.5 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.75 0.5 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.75 0.5 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.75 0.5 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 0.5 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.75 1.0 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.75 1.0 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 1.0 0.261799 0.5 0.35 0.5 0.261799 0.5

 0.75 1.0 0.261799 1.0 0.35 0.5 0.261799 1.0

 0.35 1.0 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.35 1.0 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.35 1.0 0.261799 0.5 0.35 1.0 0.261799 0.5

 0.35 1.0 0.261799 1.0 0.35 1.0 0.261799 1.0

 0.35 0.5 0.261799 1.0 0.75 1.0 0.261799 1.0

 0.35 0.5 0.261799 0.5 0.75 1.0 0.261799 0.5

 0.35 0.5 0.261799 0.5 0.75 1.0 0.261799 0.5

 0.35 0.5 0.261799 1.0 0.75 1.0 0.261799 1.0

 0.35 0.5 0.261799 1.0 0.75 0.5 0.261799 1.0

 0.35 0.5 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.35 0.5 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.35 0.5 0.261799 1.0 0.75 0.5 0.261799 1.0

 0.35 1.0 0.261799 1.0 0.75 0.5 0.261799 1.0

 0.35 1.0 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.35 1.0 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.35 1.0 0.261799 1.0 0.75 0.5 0.261799 1.0

 0.35 1.0 0.130899 1.0 0.75 1.0 0.261799 1.0

 0.35 1.0 0.130899 0.5 0.75 1.0 0.261799 0.5

 0.35 1.0 0.130899 0.5 0.75 1.0 0.261799 0.5

 0.35 1.0 0.130899 1.0 0.75 1.0 0.261799 1.0

 0.35 0.5 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.130899 0.5 0.75 1.0 0.130899 0.5

 0.35 0.5 0.130899 0.5 0.75 1.0 0.130899 0.5

206

 0.35 0.5 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 0.5 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 0.5 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 0.5 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 1.0 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 1.0 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 1.0 0.130899 0.5 0.75 1.0 0.130899 0.5

 0.35 1.0 0.130899 0.5 0.75 1.0 0.130899 0.5

 0.35 1.0 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.130899 0.5 0.75 1.0 0.130899 0.5

 0.35 0.5 0.130899 0.5 0.75 1.0 0.130899 0.5

 0.35 0.5 0.130899 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 0.5 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 0.5 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 0.5 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 1.0 0.130899 0.5 0.75 0.5 0.130899 0.5

 0.35 1.0 0.130899 1.0 0.75 0.5 0.130899 1.0

 0.35 1.0 0.261799 1.0 0.75 1.0 0.130899 1.0

 0.35 1.0 0.261799 0.5 0.75 1.0 0.130899 0.5

 0.35 1.0 0.261799 0.5 0.75 1.0 0.130899 0.5

 0.35 1.0 0.261799 1.0 0.75 1.0 0.130899 1.0

 0.35 0.5 0.261799 1.0 0.75 1.0 0.261799 1.0

 0.35 0.5 0.261799 0.5 0.75 1.0 0.261799 0.5

 0.35 0.5 0.261799 0.5 0.75 1.0 0.261799 0.5

 0.35 0.5 0.261799 1.0 0.75 1.0 0.261799 1.0

 0.35 0.5 0.261799 1.0 0.75 0.5 0.261799 1.0

 0.35 0.5 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.35 0.5 0.261799 0.5 0.75 0.5 0.261799 0.5

 0.75 0.5 0.261799 1.0 0.75 1.0 0.261799 1.0

 0.75 0.5 0.261799 1.0 0.75 1.0 0.261799 0.5

 0.75 0.5 0.261799 0.5 0.75 1.0 0.261799 0.5

 0.75 0.5 0.261799 0.5 0.75 1.0 0.261799 1.0

 0.75 0.5 0.261799 1.0

207

REFERENCES

Abbass, H.A., Sarker, R., Newton, C. (2001). PDE: a Pareto-frontier differential evolution

approach formulti-objective optimization problems. Proceedings of the 2001 Congress on

Evolutionary Computation, Vol. 2, pp. 971–978.

Abbass, H.A. (2002). The self-adaptive Pareto differential evolution algorithm. CEC '02,

Proceedings of the 2002 Congress on Evolutionary Computation, Vol. 1, pp. 831–836.

Abraham, A. (2005). Adaptation of fuzzy inference system using neural learning, fuzzy system

engineering: Theory and practice. Eds. Edjah, N. et al. Springer-Verlag, Chapter 3, pp. 53–

83.

Abraham, A., Jain, L.C, Goldberg, R. (2005). Evolutionary multiobjective optimizations:

theoretical advances and applications. Springer Verlag, London.

 Ahn, C.W., Ramakrishna, R.S. (2003). Elitism-based compact genetic algorithms. IEEE

Transactions on Evolutionary Computation, Vol. 7, No. 4, pp. 367–385.

Allamehzadeh, H., Cheung, J.Y. (2002). Chattering-free sliding mode fuzzy control with

continuous inherent boundary layer. FUZZ-IEEE'02, Proceedings of the 2002 IEEE

International Conference on Fuzzy Systems, Vol. 2, pp. 1393–1398.

Anderson, C.W. (1987). Strategy learning with multilayer connectionist representations.

Methods of A.M. Liapunov and their applications, Proceedings 4th International Workshop

Machine Learning, Pub. Morgan Kaufmann, pp. 103–114.

Andersen, H.C. Lotfi, A., Tsoi, A.C. (1997). A new approach to adaptive fuzzy control: The

controller output error method. IEEE Transactions on Systems, Man, and Cybernetics, Vol.

27, No. 4, pp. 686–691.

Anderson, C.W. (1989). Learning to control an inverted pendulum using neural networks.

IEEE Control Systems Magazine, pp. 31–36.

Astrom, K.J., Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica,

Vol. 36, pp. 287–295.

Babuska, R. (1998). Fuzzy modelling for control. Kluwer Academic Press.

Babuska, R. (2009). Computational intelligence in modelling and control. Delft University of

Technology, http://www.dcsc.tudelft.nl/~rbabuska/CTU/transp/lecture_notes_ctu.pdf.

Baturone, I., Moreno-Velo, F.J., Sanchez-Solano, S., Ollero, A. (2004). Automatic design of

fuzzy controllers for car-like autonomous robots. IEEE Transactions on Fuzzy Systems, Vol.

12, No. 4, pp. 447–465.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7440
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7876
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7876
http://www.dcsc.tudelft.nl/~rbabuska/CTU/transp/lecture_notes_ctu.pdf

208

Beceriklia, Y., Celik, B.K. (2007). Mathematical and computer modeling. Proceedings of the

International Conference on Computational Methods in Sciences and Engineering 2004, Vol.

46, Issues 1-2, pp. 24–37.

Bellman, R.E. (1961). Adaptive Control Processes. Princeton University Press, Princeton, NJ.

Bellman, R.E., Zadeh, L.A. (1970). Decision making in a fuzzy environment. Management

Science, Vol.17, No. 4, pp. 141–164.

Belarbi, K., Titel, F. (2000). Genetic algorithm for the design of a class of fuzzy controllers:

an alternative approach. IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4, August 2000,

pp. 398–405.

Brown, M., Bossley, K.M., Mills, D.J., Harris, C.J. (1995). High dimensional neurofuzzy

systems: Overcoming the curse of dimensionality. Proceedings of the 4
th

 International

Conference on Fuzzy Systems, pp. 2139–2146.

Brunetti, C., Dotoli, M. (2004). Rule-based decoupled fuzzy sliding mode control for inverted

pendulum swing-up. 2004 IEEE International Symposium on Industrial Electronics, Vol.1,

pp. 495–500.

Campos, J., Lewis, F.L. (1999). Deadzone compensation in discrete time using adaptive

fuzzy logic. IEEE Transactions on Fuzzy Systems, Vol. 7, No. 6, pp. 697–707.

Cao, S.G., Rees, N.W., Feng, G. (1995). Analysis and design of fuzzy control systems using

dynamic fuzzy global models. Fuzzy Sets and Systems, Vol. 75, pp. 47–62.

Cao, S.G., Rees, N.W., Feng, G. (1997). Analysis and design for a class of complex control

systems—Part II: Fuzzy controller design. Automatica, Vol. 33, pp. 1029–1039.

Caroll, D.L. (1996). Chemical laser modelling with genetic algorithms. AIAA Journal, Vol.

34, No. 2, pp. 338–346.

Castillo, O., Cazarez, N., Rico, D. (2006). Intelligent control of dynamic systems using type-

2 fuzzy logic and stability issues. International Mathematical Forum, Vol. 1, No 28, pp.

1371–1382.

Chang, W., Park, J.B., Joo, Y.H., Chen, G. (2002). Design of robust fuzzy-model based

controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets and Systems,

Vol. 125, pp. 1–22.

Chen, B.S., Uang, H.J., Tseng, C.S. (1999). Robustness design of nonlinear dynamic systems

via fuzzy linear control. IEEE Transactions on Fuzzy Systems, Vol. 7, No. 5, pp. 571–585.

Chen, C.L., Chang, M.H. (1998). Optimal design of fuzzy sliding mode control: A

comparative study. Fuzzy Sets and Systems, Vol. 93, pp. 37–48.

Chen, C.S., Chen, W.L. (1998). Robust adaptive sliding-mode control using fuzzy modelling

for an inverted-pendulum system. IEEE Transactions on Industrial Electronics, Vol. 45, No.

2, pp. 297–306.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10499

209

Chen, G. (1996). Conventional and fuzzy PID controllers: An overview. International

Journal on Intelligent Control Systems, Vol. 1, pp. 235–246.

Chen, Y.Y., Tsao, T.C. (1989). A description of the dynamical behavior of fuzzy systems.

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 4, pp. 745–755.

Chen, Y., Yang, B., Abraham, A., Peng, L. (2007). Automatic design of hierarchical Takagi-

Sugeno type fuzzy systems using evolutionary algorithms. IEEE Transactions on Fuzzy

Systems, Vol. 15, No. 3, pp. 385–397.

Cheng, F.Y., Zhong, G.M., Li Y.S., Xu, Z.M. (1996). Fuzzy control of a double inverted

pendulum. Fuzzy Sets and Systems, Vol. 79, pp. 315–321.

Cheong, F., Lai, R. (2007). Designing a hierarchical fuzzy controller using the differential

evolution approach. Applied Soft Computing, Vol. 7, No. 2, pp. 481–491.

 Chiaberge, M., Di Bene,G., Di Pascoli, S., Lazzerini, B., Maggiore, A., Reyneri, L.M.

(1995). An integrated hybrid approach to the design of high-performance intelligent

controllers. Proceedings of the 1995 International IEEE/IAS Conference on Industrial

Automation and Control: Emerging Technologies, pp. 436–443.

Chiu, S. (1998). Using fuzzy logic in control applications: Beyond fuzzy PID control. IEEE

Control Systems Magazine, Vol. 18, No. 5, pp. 100–104.

Chopra, S., Mitra, R., Kumar, V. (2005). Fuzzy controller: Choosing an appropriate and

smallest rule set. International Journal of Computational Cognition, Vol. 3, No. 4, pp. 73–79.

Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B. (2002). Evolutionary algorithms

for solving multiobjective problems. Kluwer Academic Publishers.

Cooper, M.G., Vidal, J.J. (1994). Genetic design of fuzzy controllers: the cart and jointed-

pole problem. The Third IEEE International Conference on Fuzzy Systems, Orlando, Florida,

Vol. 2, pp. 1332–1337.

Cordon, O., Herrera, F., Zwir, I. (2002). Linguistic modeling of hierarchical systems of

linguistic rules. IEEE Transactions on Fuzzy Systems, Vol. 10, No. 1, pp. 2–20.

Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L. (2001a). Genetic fuzzy systems:

evolutionary tuning and learning of fuzzy knowledge bases. Advances in Fuzzy Systems

Applications and Theory, Vol. 19, World Scientific Publishing.

Cordon, O., Herrera, F., Villar, P. (2001b). Generating the knowledge base of a fuzzy rule-

based system by the genetic learning of the data base. IEEE Transactions on Fuzzy Systems,

Vol. 9, No. 4, pp. 667–674.

Cordon, O., Herrera, F., Hoffman, F., Magdalena, L. (2001c). Genetic fuzzy systems. World

Scientific, Singapore.

Cordon, O., Herrera, F., Zwir, I. (2002). Linguistic modelling by hierarchical systems of

linguistic rules. IEEE Transactions on Fuzzy Systems, Vol. 10, No. 1, pp. 2–20.

210

Cordon, O., Gomide, F., Herrera, F., Hoffman, F., Magdalena, L. (2004). Ten years of

genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems, Vol. 141,

pp. 5–31.

Czogala, E., Pedrycz, W. (1981). On identification in fuzzy systems and its applications in

control problems. Fuzzy Sets and Systems, Vol. 6, pp. 73—83.

Czogala, E., Pedrycz, W. (1982). Control problems in fuzzy systems. Fuzzy Sets and Systems,

Vol. 7, pp. 257–273.

Daley, S., Gill, K.F. (1986). A design study of a self-organsing fuzzy logic controller. Proc.

Institute of Mechanical Engineers, Vol. 200, C1, pp. 59–69.

Dadios, E.P., Williams, D.J. (1996). A fuzz-genetic controller for the flexible pole-cart

balancing problem. IEEE International Conference on Evolutionary Computing, Nagoya,

Japan, pp. 223–228.

Damousis, I.G., Satsios, K.J., Labridis, D.P., Dokopoulos, P.S. (2002). Combined fuzzy logic

and genetic algorithm techniques-application to an electromagnetic field problem. Fuzzy Sets

and System, Vol. 129, No. 3, pp. 371–386.

Deb, K., Agraval, S., Pratap, A., Meyarivan, T. (2000). A fast elitist non-dominated sorting

genetic algorithm for multiobjective optimization NSGA II. Parallel Problem Solving from

Nature – PPSN VI, Springer, Berlin, pp. 849–858.

Deb, K. (2001). Multiobjective optimization using evolutionary algorithms. John Wiley &

Sons.

Deb, K., Goel, T. (2001). Controlled elitist non-dominated sorting genetic algorithims for

better convergence. Proceedings of the First International Confrence on Evolutionary

Multi-Criterion Optimization (EMO-2001), pp. 67–81.

De Jong, K.A., Potter, M.A. (1995). Evolving complex structures via cooperative

coevolution. Fourth Annual Conference on Evolutionary Programming, San Diego, CA, pp.

307–317.

Demirci, M. (2004). Design of feedback controllers for linear system with applications to

control of a double-inverted pendulum. International Journal of Computational Cognition,

Vol. 2, No. 4, pp. 65–84.

Desylva, M.J. (1994). Hybrid fuzzy logic control to stabilize an inverted pendulum from

arbitrary initial conditions. M.S. Thesis Air Force Inst. of Tech., Wright-Patterson AFB, OH.

Di Nola, A., Lettieri, A., Perfilieva, I., Novak, V. (2007). Algebraic analysis of fuzzy sets.

Fuzzy Sets and Systems, Vol. 158, No 1, pp. 1–22.

Doostfatemeh, M., Kremer, S.C. (2005). Developing a new fuzzy controller. Fuzzy

Information Processing Society, NAFIPS 2005, pp. 187–192.

http://portal.acm.org/author_page.cfm?id=81430604271&coll=GUIDE&dl=GUIDE&trk=0&CFID=67787951&CFTOKEN=85008726

211

Duan, J.C., Chung, F.L. (2002). Multilevel fuzzy relational systems: Structure and

identification. Soft Comp. Vol. 6, pp. 71–86.

Feng, M., Harris, C.J. (2001). Piecewise Lyapunov stability conditions of fuzzy systems.

IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 31, No. 2,

pp. 259–262.

Feng, G. (2002). An approach to adaptive control of fuzzy dynamic systems. IEEE

Transactions on Fuzzy Systems, Vol. 10, No. 5, pp. 676–697.

Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems.

IEEE Transactions on Fuzzy Systems, Vol. 14, No. 2, pp. 268–275.

Fischle, K., Schroder, D. (1999). An improved stable adaptive fuzzy control method. IEEE

Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 27–40.

Fonseca, C. M., Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization. Genetic Algorithms: Proceedings of the Fifth

International Conference, Urbana-Champaign, USA, pp. 416–423.

Fonseca, C.M., J. Fleming, P.J. (1998). Multiobjective Optimization and Multiple Constraint

Handling with Evolutionary Algorithms—Part I: A Unified Formulation. IEEE Transactions

on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 28, No. 1, pp. 26–37.

Fonseca, C.M., J. Fleming, P.J. (1998). Multiobjective Optimization and Multiple Constraint

Handling with Evolutionary Algorithms—Part II: A Application Example. IEEE

Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 28, No.

1, pp. 38–47.

Gao, Y., Err, M.J. (2003). Online adaptive fuzzy neural identification and control of a class of

MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, Vol.11, Issue 4, pp. 462–

477.

Goldberg, D.E. (1989). Genetic algorithms for search, optimisation, and machine learning.

Reading, MA, Addison-Wesley.

Goldberg, D.E. (2002). Genetic algorithms. Addison Wesley, USA.

Golea, N., Golea, A., Benmahammed, K. (2002). Fuzzy model reference adaptive control.

IEEE Transactions on Fuzzy Systems, Vol. 10, No. 6, pp. 803–805.

Graham, P, Newell, R. (1988). Fuzzy identification and control of a liquid level rig. Fuzzy

Sets and Systems, Vol. 26. pp. 255–273.

Gupta, M.M., (1992). Fuzzy logic and neural networks. Proceedings of the Tenth

International Conference on Multiple Criteria Decision Making, Taipei, pp. 281–294.

Han, H., Su, C.Y., Stepanenko, Y. (2001). Adaptive control of a class of nonlinear systems

with nonlinearly parameterized fuzzy approximators. IEEE Transactions on Fuzzy Systems,

Vol. 9, No. 2, pp. 315–323.

212

Harris, C.J., Moore, C.G., Brown, M., (1993). Intelligent control: Aspects of fuzzy logic and

neural nets. World Scientific, Singapore.

Hills, D.W. (1990). Co-evolving parasites improve simulated evolution as an optimization

procedure. Artificial Life II, Addison Wesley, pp. 313–324.

Holland, J.H. (1975). Adaptation in neural and artificial systems. University of Michigan

Press.

Holmblad, L.P., Ostergaard, J.J. (1982). Control of a cement kiln by fuzzy logic. Eds. Gupta,

M.M., Sanchez, E., Fuzzy Information and Decision Processes, Amsterdam, pp. 398–409.

Homaifar, A., McCormick, E. (1995). Simultaneous design of membership functions and rule

sets for fuzzy controllers using genetic algorithms. IEEE Transactions on Fuzzy Systems,

Vol.3, No. 2, pp. 129–139.

Horn, J., Nafploitis, N., Goldberg, D. (1994). A niched Pareto genetic algorithm for multi-

objective optimisation. Proceeding of the First IEEE Conference on Evolutionary

Computation, pp. 82–87.

Hsu, Y.C., Chen,G., Li, H.X. (2001). A fuzzy adaptive variable structure controller with

applications to robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics –

Part B: Cybernetics, Vol. 31, No. 3, pp. 331–340.

Huang, Y.P., Wang, S.F. (2000). Designing a fuzzy model by adaptive macroevolution

genetic algorithms. Fuzzy Sets Syst., Vol. 113, pp. 367–379.

Hughes, E.J. (2005). Evolutionary many-objective optimisation: many once or one many?

Evolutionary Computation, Vol. 1, pp. 222–227.

Ichihashi, H., Tokunaga, M. (993). Neuro-fuzzy optimal control of backing up a trailer truck.

Proceedings of IEEE International Conference on Neural Networks, ICNN‘93, San

Francisco, pp. 306–311.

Ioannou, P.A., Sun, J. (1995). Stable and robust adaptive control. Englewood Cliffs,

Prentice-Hall.

Jamshidi, M., Coelho, L.S., Krohling, R.A., Fleming, P.J. (2003). Robust control systems

with genetic algorithms. CRC Press.

Johansen, T.A., Shorten, R., Murray-Smith, R. (2000). On the interpretation and

identification of dynamic Takagi–Sugeno models. IEEE Transactions on Fuzzy Systems, Vol.

8, No. 3, pp. 297–313.

Joo, M.G., Lee, J.S. (2002). Universal approximation by hierarchical fuzzy system with

constrains on the fuzzy rul. Fuzzy Sets and Systems, Vol. 130, pp. 175–188.

Kandel, A., Manor, O., Klein, Y., Fluss, S. (1999). ATM traffic management and congestion

control using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part C,

Appl. Rev., Vol. 29, No. 3, pp. 474–480.

213

Kaynak, O., Erbatur, K., Ertugnrl, M. (2001). The fusion of computationally intelligent

methodologies and sliding-mode control – A survey. IEEE Transactions on Industrial

Electronics, Vol. 48, No. 1, pp. 4–17.

Khwan-on, S., Kulworawanichpong, T., Srikaew, A., Sujitjorn, S. (2004). Neuro-tabu-fuzzy

controller to stabilize an inverted pendulum system. TENCON 2004, 2004 IEEE Region 10

Conference, Vol. D, pp. 562–565.

Kickert, W.J.M., Lemke, H.V.N. (1976). Application of a fuzzy controller in a warm water

plant. Automatica, Vol. 12, No. 4, pp. 301–308.

Kickert, W.J.M., Mamdani, E. (1978). Analysis of a fuzzy logic controller. Fuzzy Sets and

Systems, Vol. 1, pp. 29–44

Kingham, M., Mohammadian, M., Stonier, R.J. (1998). Prediction of interest rate using

neural networks and fuzzy logic. Proceedings of ISCA 7th International Conference on

Intelligent Systems, Melun, Paris, pp. 72–75.

Kiszka, J.B., Gupta, M.M., Nikiforuk, P.N. (1985). Energestistic stability of fuzzy dynamic

systems. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 6, pp. 783–792.

Konar, A. (2005). Computational intelligence. Springer Verlag, Berlin.

Koo, T.J. (2001). Stable Model Reference Adaptive Fuzzy Control of a Class of Nonlinear

Systems. IEEE Transactions on Fuzzy Systems, Vol. 9, No. 4, pp. 624–636.

Kosko, B. (1992). Neural networks and fuzzy system: a dynamical approach to machine

intelligence. Englewood Cliffs, Prentice Hall, USA.

Kosko, B. (1993). Fuzzy thinking: the new science of fuzzy logic. Hyperion, NY, USA.

Krstic, M., Kanellakopoulos, I., Kokotovic, P. (1995). Nonlinear and adaptive control

design. New York, Wiley.

Kumar, M., Garg, D.P. (2004). Intelligent learning of fuzzy logic controllers via neural

network and genetic algorithm. Proceedings of 2004 JUSFA, 2004 Japan – USA Symposium

on Flexible Automation, Denver, Colorado, pp. 1–8.

Kwon, Y.H., Kim, B.S., Lee,S.Y., Lim, M.T. (2001). Swing up controller for inverted

pendulum system. Proceedings of the 32
nd

 ISR (International Symposium on Robotics),

Mexico City, pp. 896–901.

Larkin, L.I. (1985). A fuzzy logic controller for aircraft flight control. Ed. M. Sugeno,

Industrial Applications of Fuzzy Control, Amsterdam, pp. 87–104.

Laumans, M., Thiele, L., Deb, K., Zitzler, E. (2002). Combining convergence and diversity in

evolutionary multiobjective optimization. Evolutionary Computation, Vol. 10 No. 3,

Massachusetts Institute of Technology, pp. 263–282.

214

Lee, C.C. (1990). Fuzzy logic in control systems: fuzzy logic controller, part I and II. IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, pp. 404–436.

Lee, M.A. Takagi, H. (1993). Integrating design stages of fuzzy systems using genetic

algorithms. Proceedings IEEE International Conference Fuzzy Systems, Vol. I, pp. 612–617.

Lee, M.A. Takagi, H. (1993a). Dynamic control of genetic algorithms using fuzzy logic

techniques. Proceedings of the Fifth International Conference on Genetic Algorithms, pp.

76–83.

Lee, M.L., Chung, H.Y., Yu, F.M. (2003). Modeling of hierarchical fuzzy systems. Fuzzy

Sets and Systems, 138, pp. 343–361.

Lee, Y.M., Jang, S.I., Chung, K.W., Lee, D.Y., Kim, W.C., Lee, C.W. (1994). A fuzzy-

control processor for automatic focusing. IEEE Transactions on Consumer Electronics, Vol.

40, No. 2, pp. 138–144.

Lee, Y.G., Zak, S.H. (2004). Uniformly ultimately bounded fuzzy adaptive tracking

controllers for uncertain systems. IEEE Transactions on Fuzzy Systems, Vol. 12, No. 6, pp.

797–811.

Lei, S., Langari, R. (2000). Hierarchical fuzzy logic control of a double inverted pendulum.

Fuzzy System 2000, FUZZ IEEE 2000, The Ninth IEEE International Conference, Vol. 2, pp.
1074–1077.

Lei, S., Langari, R. (2003). Synthesis and approximation of fuzzy logic controllers for

nonlinear systems. International Journal of Fuzzy Systems, Vol. 5, No 2, pp. 98–105.

Leung, F.H.F., Lam, H.K., Tam, P.K.S., Lee, Y.S. (2003). Stable fuzzy controller design for

uncertain nonlinear systems: genetic algorithm approach. FUZZ '03, The 12th IEEE

International Conference on Fuzzy Systems, Vol. 1, pp. 500–505.

Lin, C.T., Lee, C.S.G. (1996). Neural fuzzy systems. Prentice Hall.

Lin, S.C., Chen, Y.Y. (1997). Design of self learning fuzzy sliding mode controllers based on

genetic algorithms. Fuzzy Sets and Systems, Vol. 86, pp. 139–153.

Lin, L.C., Lee, G.Y. (1999). Hierarchical fuzzy control for C-axis of CNC tuning centres

using genetic algorithms. Journal of Intelligent Robotic Systems, Vol. 25, No. 3, pp. 255–175.

Lin, C.M., Mon, Y.J. (2005). Decoupling control by hierarchical fuzzy sliding-mode

controller. IEEE Transactions on Control Systems Technology, Vol. 13, Issue 4, pp. 593–

589.

Lo, J.C., Kuo, Y.H. (1998). Decoupled fuzzy sliding mode control. IEEE Transactions on

Fuzzy Systems, Vol. 6, No. 3, pp. 426–435.

Magdalena, L. (1998). Hierarchical fuzzy control of a complex system using meta-

knowledge. Proceedings of the 7th International conference on Information Processing and

Management of Uncertainty in Knowledge-based Systems, Paris, pp. 630–637.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8573
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8573
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8573
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91

215

Margaliot, M., Langholz, G. (1999). Fuzzy Lyapunov-based approach to the design of fuzzy

controllers. Fuzzy Sets and Systems, Vol. 106, pp. 49—59.Mamdani, E., Assilian, S. (1975).

An experiment in linguistic synthesis with fuzzy logic controller. International Journal of

Man-Machine Studies, Vol. 7, No. 1, pp. 1–13.

Mamdani, E. (1976). Advances in the linguistic synthesis of fuzzy controllers. International

Journal of Man-Machine Studies, Vol. 8, No. 6, pp. 669–678.

Mao, X., Stonier, R.J., Thomas, P. (2001). An effective fuzzy image filter. Proceedings of

the International Conference on Computational Intelligence for Modelling Control and

Automation (CIMCA'01), Las Vegas, pp. 280–285.

Matellan, V., Fernandez, C., Molina, J.M. (1998). Genetic learning of fuzzy reactive

controllers. Robotics and Autonomous Systems, Vol. 25, pp. 33–41.

Melba, M.P., Marimuthu, N.S. (2008). Design of intelligent hybrid controller for swing-up

and stabilisation of rotary inverted pendulum. ARPN Journal of Engineering and Applied

Science, Vol. 3, No. 4, pp. 60–70.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. 2nd

Ed., Springer Verlag.

Mitra, S., Hayashi, Y.(2000). Neuro-fuzzy rule generation: Survey in soft computing

framework. IEEE Transactions on Neural Networks, Vol. 11, No. 3, pp. 748–768.

Mlynski, M.F., Zimmermann H.J. (2008). An efficient method to represent and process

imprecise knowledge. Applied Soft Computing, 8, pp. 1050–1067.

Mohammadian, M., Stonier, R.J. (1995a). Adaptive two layer fuzzy logic control of a mobile

robot system. Proceedings of IEEE International Conference on Evolutionary Computing,

Perth, WA, Australia, Vol.1, pp. 204–209.

Mohammadian, M., Stonier, R.J. (1995b). Self learning hierarchical fuzzy logic controller in

multi-robot systems. Proceedings of the IEA Conf. Control95, Melbourne, Australia, pp.

381–386.

Mohammadian, M., Stonier, R.J. (1996). Fuzzy rule generation by genetic learning for target

tracking. Proc. of the 5th Int. Intelligent Systems Conference, Reno, Nevada, pp. 10–14.

Mohammadian, M.,Stonier, R.J. (1996a). Evolutionary learning in fuzzy logic control

systems. Eds. R.Stocker et al., Complex Systems 96; From Local Interactions to Global

Phenoma, IOS Press, pp. 193–212.

Mohammadian, M., Stonier, R.J. (1996b). Intelligent hierarchical control for obstacle-

avoidance. Computation Techniques and Applications: CTAC95, World Scientific, pp. 733–

740.

216

Mohammadian, M., Stonier, R.J. (2000). Hierarchical fuzzy control. Eds. Bouchon-Meunier,

B., Yager, R.R., Zadeh, L.A., Uncertainty in Intelligent and Information Systems, Advances

in Fuzzy Systems - Application and Theory Vol. 20, World Scientific, pp. 119–130.

Mohammadian, M. (2002). Designing customised hierarchical fuzzy systems for modelling

and prediction. Proceedings of the International Conference on simulated Evolution and

Learning (SEAL'02), Singapore, CD ISBN: 981047523.

Mohammadian, M., Kingham, M. (2004). An adaptive hierarchical fuzzy logic system for

modelling of financial systems. Journal of Intelligent Systems in Accounting, Finance, and

Management, Wiley Interscience, Vol. 12, pp. 61—82.

Mon, Y.J., Lin, C.M. (2002). Hierarchical fuzzy sliding-mode control. The 2002 IEEE World

Congress on Computational Intelligence, pp. 656–661.

Muskinja, N., Tovornik, B. (2006). Swinging up and stabilization of a real inverted

pendulum. IEEE Transactions on Industrial Electronics, Vol. 53, Issue 2, pp. 631–639.

Nainar, I., Mohammadian, M., Stonier, R.J., Millar, J. (1996). An adaptive fuzzy logic

controller for control of traffic signals. Proceedings of the 4th International Conference on

Control, Automation, Robotics and Computer Vision (ICARCV'96), Singapore, pp. 578–582.

Odetayo. M.O., McGregor, D.R. (1989). Genetic algorithm for inducing control rules for a

dynamic system. Proc. of the 3
rd

 International Conference on Genetic Algorithms, George

Mason University, pp. 177–182.

Paulo, S. (2005). Clustering and hierarchization of fuzzy systems. Soft Comp. Journal, Vol.

9, No. 10, pp. 715–731.

Pal, T., Pal, N.R. (2003). SOGARG: A self-organized genetic algorithm-based rule

generation scheme for fuzzy controllers. IEEE Transactions on Evolutionary Computation,

Vol. 7, No. 4, pp. 397–415.

Passino, K.M., Yurkovich, S. (1998). Fuzzy control. Addison-Wesley.

Pedrycz, W. (1984). An identification algorithm in fuzzy relational systems. Fuzzy Sets and

Systems, Vol. 13, pp. 153–167.

Pedrycz, W. (1993). Fuzzy control and fuzzy systems. New York, Wiley.

Pena-Reyes, C.A., Sipper, M. (2001). Fuzzy CoCo: A cooperative-coevolutionary approach

to fuzzy modeling. IEEE Transactions on Fuzzy Systems, Vol. 9, No. 5, pp. 727–737.

Phan, P.A., Gale, T. (2007). Two-mode adaptive fuzzy control with approximation error

estimator. IEEE Transactions on Fuzzy Systems, Vol. 15, Issue 5, pp. 493–955.

Potter, M.A., De Jong, K. (1994). A cooperative coevolutionary approach to function

optimization. Proceedings of Parallel Problem Solving from Nature III (PPSN III), Berlin,

Springer Verlag, pp. 249–257.

217

Potter, M.A., De Jong, K. (1995). Evolving neural networks with collaborative species.

Summer Computer Simulation Conference. The Society of Computer Simulation, pp. 340–

345.

Procyk, T., Mamdani, E. (1979). A linguistic self-organising process controller. Automatica,

Vol. 15, No. 1, pp. 15–30.

Qiao, F., Zhu, Q.M., Winfield, A., Melhuish, C. (2003). Fuzzy sliding mode control for

discrete nonlinear systems. Transactions of China Automation Society, Vol. 22, No 2, pp.

313–315.

Rajapakse, A., Furuta, K., Kondo, S. (2002). Evolutionary learning of fuzzy logic controllers

and their adaptation through perpetual evolution. IEEE Transactions on Fuzzy Systems, Vol.

10, No. 3, pp. 309–321.

Raju, G.V.S., Zhou, J., Kisner, R.A., (1990). Fuzzy logic control for steam generator

feedwater control. Proceedings of American Control Conference, San Diego, CA, pp. 1491–

1493.

Raju, G.V.S., Zhou, J., Kisner, R.A., (1991). Hierarchical fuzzy control. International

Journal on Control, Vol. 54, No. 5, pp. 1201–1216.

Raju, G.V.S, Zhou, J. (1993). Adaptive hierarchical fuzzy controller. IEEE Transactions on

Systems, Man, Cybernetics, Vol. 23, No. 4, pp. 973–980.

Ray, K.S., Majumder, D.D. (1984). Application of circle criteria for stabilisaty analysis of

linear SISO and MIMO systems associated with fuzzy logic controllers. IEEE Transactions

on Systems, Man, Cybernetics, Vol. 14, No. 2, pp. 345–349.

Ramos, M.C., Koivo, A.J. (2002). Fuzzy logic-based optimization for redundant

manipulators. IEEE Transactions On Fuzzy Systems, Vol. 10, No. 4, pp. 498–509.

Rojas, I., Pomares, H., Ortega, J., Prieto, A. (2000). Self-organized fuzzy system generation

from training examples. IEEE Transactions On Fuzzy Systems, Vol. 8, No. 1, pp. 23–36.

Russo, M. (2000). Genetic fuzzy learning. IEEE Transactions on Evolutionary Computing,

Vol. 4, No. 3, pp. 259–273.

Saifuzul, A.A., Abu Osman, N.A., Azlan, C.A., Ungku Ibrahim, U.F.S. (2006). Intelligent

control for self-erecting inverted pendulum via adaptive neuro-fuzzy inference system.

American Journal of Applied Sciences, 3 (4), pp. 1795–1802.

Sazonov, E.S., Klinkhachorn, P., Klein, R.L. (2003). Hybrid LQG-Neural controller for

inverted pendulum system. Proceedings of the 35th Southeastern Symposium on System

Theory, pp. 206–210.

Sbalzarini, I.F., Muller, S., Koumoutsakos, P. (2001). Multiobjective optimization using

evolutionary algorithms. Proceedings of the Summer Program 2000, Center for Turbulance

Research, pp. 63–74.

218

Shaffer, J.D. (1985). Multiple objective optimisation with vector evaluated genetic

algorithms. Proceedings of the 1
st
 International Conference on Genetic Algorithms, pp. 93–

100.

Sharma, S.K., Irwin, G.W. (2003). Fuzzy coding of genetic algorithms. IEEE Transactions

on Evolutionary Computation, Vol. 7, No. 4, pp. 344–355.

Shimojima, K., Fukuda, T., Hasegawa, Y. (1995). Self-tuning fuzzy modelling with adaptive

membership function, rules, and hierarchical structure based on genetic algorithm. Fuzzy Sets

Syst., Vol. 71, pp. 295–309.

Slotine J.J.E., Li, W. (1991). Applied nonlinear control. Prentice Hall.

Srinivas, N, Deb, K. (1994). Multio-bjective function optimisation using non-dominated

sorting genetic algorithms. Evolutionary Computation Journal, Vol. 2, No. 3, pp. 221–248.

Stonier, R.J., Mohammadian, M. (1995). Self learning hierarchical fuzzy logic controller in

multi-robot systems. Proceedings of the IEA Conference Control95, Melbourne, Australia,

pp. 381–386.

Stonier, R.J., Mohammadian, M. (1996a). Evolutionary learning in fuzzy logic control

systems. Invited Address, Proceedings of the third National Conference on Complex Systems

96; From Local Interactions to Global Phenomena, IOS Press, pp. 193–212.

Stonier, R.J., Mohammadian, M. (1996b). Intelligent hierarchical control for obstacle-

avoidance. Computational Techniques and Applications: CTAC95, World Scientific, pp.

733–740.

Stonier, R.J. (1999). Evolutionary learning of fuzzy logic controllers over a region of initial

states. Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 2, Washington,

pp. 2131–2138.

Stonier, R.J., Stacey, A.J., Messom, C. (1998). Learning fuzzy controls for the inverted

pendulum. Proceedings of ISCA 7
th

 International Conference on Intelligent Systems, Melun,

pp. 64–67.

Stonier, R.J., Mohammadian, M. (1998). Knowledge acquisition for target capture.

Proceedings of the IEEE International Conference on Evolutionary Computing, ICEC'98,

Anchorage, Alaska, pp. 721–726.

Stonier, R.J., Stacey, A., Mohammadian M., Smith, S.F. (1999). Application of evolutionary

learning in fuzzy logic and optimal control. Ed. M. Mohammadian, Computational

Intelligence for Modelling, Control and Automation, IOS Press, pp. 76–85.

Stonier, R.J., Drumm, M.J., Bell, J. (2003). Optimal boundary control of a tracking problem

for a parabolic distributed system using hierarchical fuzzy control and evolutionary

algorithms. Proceedings of the 18th International Conference on Computers and their

Applications, Honolulu, Hawaii, on CD ISBN 1-880843-46-3, pp. 214–218.

219

Stonier, R.J. Mohammadian, M. (2004). Multi-layered and hierarchical fuzzy modelling

using evolutionary algorithms. Proceedings of the International Conference on

Computational Intelligence for Modelling Control and Automation (CIMCA'2004), Gold

Coast, Australia, pp. 321–344.

Stonier, R.J., Zajaczkowski, J. (2003). Model reference control using sliding mode with

Hamiltonian dynamics. The ANZIAM Journal (The Australian & New Zealand Industrial and

Applied Mathematics Journal) Vol. 45 Part E, 2003, pp. E1–E40.

Stonier, R.J., Zajaczkowski, J. (2003). Hierarchical fuzzy controllers for the inverted

pendulum. Proceedings of CIRAS 2003, on CD ISSN: 0219-613, PS01-4-03, Singapore.

M. Sugeno, M. (1999). On stability of fuzzy systems expressed by fuzzy rules with singleton

consequents. IEEE Transactions on Fuzzy Systems, Vol. 7, No. 2, pp. 201–224.

Sun, Y.L., Er, M.J. (2004). Hybrid fuzzy control of robotics systems. IEEE Transactions on

Fuzzy Systems, Vol. 12, Issue 6, pp. 755—765.

Suykens, J.A.K., Vandewalle, J., de Moor, B. (2001). Optimal control by least squares

support vector machines. Neural Networks, Vol. 14, pp. 23–35.

Takagi, T., Sugeno, M. (1985). Fuzzy identification of systems and its applications to

modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1,

pp. 116–132.

Tanaka, K., Wang, H.O. (2001). Fuzzy Control Systems Design and Analysis: A LMI

Approach. New York, Wiley.

Tang, K.S, Man, K.F, Liu, Z.F., Kwong, S. (1998). Minimal fuzzy memberships and rules

using hierarchical genetic algorithms. IEEE Transactions on Industrial Electronics, Vol. 45,

No. 1, pp. 162–169.

Tang,Y., Velez-Diaz, D. (2003). Robust control of mechanical systems. IEEE Transactions

On Fuzzy Systems, Vol. 11, No. 3, pp. 411–410.

Thomas, P.J., Stonier, R.J. (2003). Fuzzy control in robot-soccer, evolutionary learning in the

first layer of control. Journal of Systems, Cybernetics and Informatics, Vol. 1, No. 1, pp. 75–

80.

Thomas, P.J., Stonier, R.J. (2003). Evolutionary learning of a 5I2O fuzzy controller including

wheel lift constraint. Proceedings of the 2
nd

 International Conference on Computational

Intelligence, Robotics and Autonomous Systems (CIRAS 2003), Singapore, CD, ISSN: 0219-

613, PS04-4-01.

Thomas, P.J., Stonier, R.J. (2003). Hierarchical fuzzy control in robot soccer using evolving

algorithms. Proceedings of the International Congress on Evolutionary Computation

(CEC2003), Canberra, Vol. 4, pp. 2434–2440.

220

Thrift, P. (1991). Fuzzy logic synthesis with genetic algorithms. Eds. Belew, R.K., Booker,

L.B., Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan

Kaufmann Pub., San Mateo CA, pp. 509–513.

Tong, R.M., Beck, M. B., Latten, A. (1980). Fuzzy control of the activated sludge wastewater

treatment process. Automatica, Vol. 6, pp. 695–701.

Tong, S.C., Li, H.X. (2003). Fuzzy adaptive sliding-mode control for MIMO nonlinear

systems. IEEE Transactions on Fuzzy Systems, Vol. 11, No. 3, pp. 354–360.

Torra, V. (2002). A review of the construction of hierarchical fuzzy systems. IJIS, Vol. 17,

pp. 531–543.

Tu, K.Y., Lee, T.T, Wang, W.J. (2000). Design of a multilayer fuzzy logic controller for

multi-input multi-output systems. Fuzzy Sets and Systems, Vol. 111, pp. 199–214.

Utkin, V. I. (1992). Sliding Modes in Control Optimization. Berlin, Germany, Springer

Verlag.

Van Veldhuizen, D.A., Lamont, G.B. (2000). On measuring multiobjective evolutionary

algorithm performance. Evolutionary Computation 2000, Vol.1, pp. 204–211.

Varsek, A., Urbancic, T., Filipic, B. (1993). Genetic algorithms in controller design and

tuning. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 5, pp. 1330–

1339.

Velez-Diaz, D., Tang, Y. (2004). Adaptive robust fuzzy control of nonlinear systems. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, Vol. 34, No. 3, pp. 1596–1601.

Wai, R.J., Lee, J.D., Chang, L.J. (2003). Development of adaptive sliding-mode control for

nonlinear dual-axis inverted-pendulum system. AIM 2003, Proceedings of 2003 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Vol. 2, pp. 815–820.

Wang, L.X. (1993). Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions

on Fuzzy Systems, Vol. 1, No. 2, pp. 146–155.

Wang, L.X. (1994). Adaptive fuzzy systems and control. Prentice Hall, Englewood Cliffs,

New Jersey, USA.

Wang, L.X. (1997). A Course in fuzzy systems and control. Prentice Hall, NJ, USA.

Wang, L.X. (1999). Analysis and design of hierarchical fuzzy Systems. IEEE Transactions

on Fuzzy Systems, Vol. 7, No. 5, pp. 617–624.

Wang,W.J., Yen, T.G., Sun, C.H. (2004). GA-based fuzzy rules generation. International

Symposium on Computer and Communication Engineering, Korea, pp. 123–129.

Wang, W., Yi, J., Zhao, D., Liu, X. (2005). Design of cascade fuzzy sliding-mode controller.

2005 American Control Confrence, Portland, USA, pp. 4649–4654.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8678
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8678
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8678

221

Weicker, K., Weicker, N. (1999). On the improvement of coevolutionary optimizers by

learning variable interdependencies. Congress on Evolutionary Computation, Washington,

IEEE Press, pp. 1627–1632.

Wu, T.P., Chen, S.M. (1999). A new method for constructing membership functions and

fuzzy rules from training examples. IEEE Transactions on Systems, Man, and Cybernatics,

Vol. 29, No. 1, pp. 25–40.

Wu, A., Tam, P.K.S. (2000). A fuzzy neural network based on fuzzy hierarchy error

approach. IEEE Transactions on Fuzzy Systems, Vol. 8, Issue 6, pp. 808–816.

Xiao, J., Xiao, J.Z., Xi, N., Tummala, R. L., Mukherjee, R. (2004). Fuzzy controller for wall-

climbing microrobots. IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, pp. 466–480.

Yager, R.R. (1998). On the construction of hierarchical fuzzy systems models. IEEE

Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, Vol. 28,

No. 1, pp. 55–66.

Yeh, Z.M., Li, K.H. (2004). A systematic approach for designing multistage fuzzy control

systems. Fuzzy Sets and Systems, Vol. 143, No. 2, pp. 251–273.

Yen, G.G., Lu, H. (2003). Dynamic multiobjective evolutionary algorithm: Adaptive cell-

based rank and density estimation. IEEE Transactions on Evolutionary Computation, Vol. 7,

No. 3, pp.253–274.

Yi, J., Yubazaki, N. (2000). Stabilization fuzzy control of inverted pendulum systems.

Artificial Intelligence in Engineering, Vol. 14, pp. 153–163.

Yi, J., Yubazaki, N., Hirota, K. (2002). A new fuzzy controller for stabilization of parallel-

type double inverted pendulum system. Fuzzy Sets and Systems, Vol. 126, pp. 105–119.

Young, N., Stonier, R.J. (2003). Co-evolutionary learning and hierarchical fuzzy control for

the inverted pendulum. Proceedings of the International Congress on Evolutionary

Computation (CEC2003), Canberra, Vol 1, pp. 467–473.

Yu, W.S., Sun, C.J. (2001). Fuzzy model based adaptive control for a class of nonlinear

systems. IEEE Transactions on Fuzzy Systems, Vol. 9, pp. 413–425.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, Vol. 8, pp. 338–353.

Zadeh, L.A. (1968). Fuzzy algorithms. Information and Control, Vol. 12, No. 2, pp. 94–102.

Zadeh, L.A. (1971). Towards a theory of fuzzy systems. Eds. Kalman, R.E, DeClaris, N.,

Aspects of Network and System Theory, pp. 209–245.

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and

decision processes . IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 1, pp.

177–200.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91

222

Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate

reasoning I, II, III. Information Sciences, Vol. 8, pp. 199–251, pp. 301–357, pp. 43–80.

Zadeh, L.A. (1978). Fuzzy sets as a basis for theory of possibility. Fuzzy Sets and Systems,

Vol. 1, pp. 3–28.

Zadeh, L.A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy

Systems, Vol. 4, pp. 103–111.

Zajaczkowski, J. (2000). Model reference adaptive control in hamiltonian systems. Central

Queensland University, Rockhampton, MSc Thesis.

Zajaczkowski, J., Stonier, R.J. (2004). Analysis of hierarchical control for the inverted

pendulum. Proceedings of Complex2004, Cairns, (CD-ROM).

Zajaczkowski, J., Stonier, R.J. (2006). Co-evolutionary algorithm for hierarchical fuzzy

control of the inverted pendulum. Proceedings of WCCI2006, IEEE International Conference

on Fuzzy Systems, Vancouver, Canada, pp. 737–744.

Zajaczkowski, J., Stonier, R.J. (2008). Analysis of hierarchical control for the inverted

pendulum. Complexity International, Vol. 12, Paper ID: msid49, URL:

http://www.complexity.org.au/vol12/msid49/

Zajaczkowski, J, Verma, B. (2008). Hierarchical fuzzy control for the inverted pendulum

over the set of initial conditions. Eds. Xiaodong Li et al. Simulated Evolution and Learning.

LNCS 5361, SEAL2008. Springer, Heidelberg, pp. 534–543.

Zajaczkowski, J, Verma, B. (2009a). A compositional method using an evolutionary

algorithm for finding fuzzy rules in 3-layered hierarchical fuzzy structure.

International Journal of Computational Intelligence and Applications, Vol. 8, No 4, pp. 467–

485.

Zajaczkowski, J, Verma, B. (2009b). A multiobjective evolutionary algorithm based

compositional method for hierarchical fuzzy control. ICMI 2009: International Conference

on Machine Intelligence, Bangkok, Thailand, pp. 1009–1016.

Zajaczkowski, J, Verma, B. (2010a). MOEA based hierarchical fuzzy control over the set of

user-defined initial conditions. 2010 IEEE Conference on Fuzzy Systems, WCCI2010

Barcelona, Spain (accepted).

Zajaczkowski, J, Verma, B. (2010b). An evolutionary algorithm based approach for selection

of topologies in hierarchical fuzzy systems. 2010 IEEE Congress on Evolutionary

Computation, WCCI2010, Barcelona, Spain (accepted).

Zeng, X.J., Singh, M.G. (1994). Approximation theory of fuzzy systems-SISO case. IEEE

Transactions on Fuzzy Systems, Vol. 2, No. 2, pp. 162–176.

Zeng, X.J., Cai, L.L. (2002). Nonlinear adaptive control using the Fourier integral and its

application to CSTR systems. IEEE Transactions on Systems, Man, Cybernetics, Part B, vol.

32, no. 3, pp. 367–372.

http://www.complexity.org.au/vol12/msid49/

223

Zhong, W., Rock, H. (2001). Energy and passivity based control of the double inverted

pendulum on a cart. 2001 IEEE Conference on Control Applications, pp. 896–901.

Zhou,Y.S., Lai, L.Y. (2000). Optimal design for fuzzy controllers by genetic algorithms.

IEEE Transactions on Industry Applications, Vol. 36, No. 1, pp. 93–97.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: methods and

applications. PhD dissertation, Computer Engineering and Networks Laboratory, Swiss

Federal Institute of Technology, Zurich.

Zitzler, E., Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case

study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,

Vol. 3, No 4, pp. 257–271.

Zitzler, E., Deb, K., Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms:

empirical results. Evolutionary Computation, Vol. 2, No. 2, pp. 173–195.

Zitzler, E., Laumanns, M., Thiele, L. (2001). SPEA2 improving the strength Pareto

evolutionary algorithm. Technical Report 103. Computer Engineering and Networks

Laboratory TIK, Swiss Federal Institute of Technology, Zurich.

Zurada, J., Marks, R., Robinson, C. (Editors) (1994). Computational intelligence: imitating

life. IEEE Press.

