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Abstract 

 

Malware is a pervasive problem in distributed computer and network systems. 

Identification of malware variants provides great benefit in early detection. Control flow 

has been proposed as a characteristic that can be identified across variants, resulting in 

classification employing flowgraph based signatures. Static analysis is widely used to 

construct the signatures but can be ineffective if malware undergoes a code packing 

transformation to hide its real content. This thesis proposes a novel system, named 

Malwise, for malware classification using a fast application level emulator to reverse 

the code packing transformation, and two flowgraph matching algorithms to perform 

classification: exact flowgraph matching and approximate flowgraph matching. The 

exact flowgraph matching algorithm uses string based signatures of graph invariants, 

and is able to detect malware with near real-time performance. The approximate 

flowgraph matching algorithm is slower but more effective and uses the decompilation 

technique of structuring to generate string based signatures amenable to comparisons 

using the string edit distance. To demonstrate the effectiveness and efficiency of the 

automated unpacking and flowgraph based classification, we evaluate the system with 

synthetic malware and over 15,000 real samples. The evaluation shows our system is 

highly effective in terms of accuracy in revealing all a sample‟s hidden code, execution 

time for unpacking and classification, and accuracy in detection of malware variants.
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1 Introduction 

1.1 Background to the Study 

The presence of malicious software is a problem that plagues internet and network 

connectivity. Malicious software, also known as malware, are programs characterised 

by their malicious intent. They are hostile, intrusive or annoying software programs. 

Examples of malware include trojan horses, worms, backdoors, dialers and spyware. 

Malware is a problem that is increasing at a significant rate. According to the Symantec 

Internet Threat Report [1], 499,811 new malware samples were received in the second 

half of 2007. F-Secure additionally reported, “As much malware [was] produced in 

2007 as in the previous 20 years altogether“ [2]. 

The modern purpose of malware is that of criminal enterprise for financial gain [3]. In 

2008, “78 percent of confidential information threats exported user data” [3]. The 

stealing of banking information using malware known as spyware [4] to covertly log 

and relay such private information, is a common example of modern malware. 

The malware problem continues when malicious software remains undetected by users. 

The creation of criminal networks employing unauthorised use of users‟ computers is an 

example of a malicious botnet [5]. Botnets are illegally leased to criminal networks in 

order to create Email spamming networks, and to extort money from commercial 

entities using the threat of distributed denial of service attacks. A user‟s inability to 

prevent or detect malware often makes them liable to become an additional node in a 

botnet‟s zombie network. 
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Detection of malicious software provides much benefit in fighting the threat that 

malware poses to users‟ security. Detecting malware before it is allowed to execute its 

intent allows such software to be effectively disabled. To identify a program as being 

malicious or benign, automated analysis is required. The analysis can employ either a 

static or dynamic approach. In the dynamic approach, the malware is executed, possibly 

in a sandbox, and its runtime behaviour examined. In the purely static approach, the 

malware is never executed. 

Traditional Antivirus solutions to secure systems against malware have focused on 

static detection. Dynamic approaches [6], while having some benefits compared to 

static detection, also have disadvantages. The dynamic approach requires an execution 

environment in which to run, mandating that a virtual machine or sandbox is available. 

For cross platform systems, this may be an ineffective environment in which to operate. 

If a virtual environment is not provided, execution of the malware on the host is 

required, which may allow malware to execute its intent, before being detected. 

Additionally, a dynamic analysis may fail to identify malicious software if the 

malicious behaviour is not triggered during the analysis. While dynamic malware 

detection is an important topic, this thesis focuses only on the static detection of 

malware. 

Traditional solutions to static malware detection have employed the use of signatures. 

Signatures capture invariant characteristics, or fingerprints, in the malware that uniquely 

identify it. Because of performance constraints, the most predominantly used signature 

is a string containing patterns of the raw file content [7, 8]. This allows for a string 

search [9] to quickly identify patterns associated with known malware. However, these 
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patterns can easily be invalidated because minor changes to the malware source code 

have significant effects on the malware‟s raw content. Thus, traditional signatures can 

prove ineffective when dealing with unknown variants. 

Malware authors attempt to evade detection by creating polymorphic variants of their 

malware which are not detected by anti-malware systems. Polymorphism describes 

related, but different instances of malware sharing a common history of code. Code 

sharing among variants can have many sources, whether derived from autonomously 

self mutating malware, or manually copied by the malware creator to reuse previously 

authored code. Related to polymorphic malware are packed malware. Code packing is 

an obfuscation technique used to hide a malware‟s real content. A code packing tool is 

applied to a malware instance, as a post-processing binary rewriting stage, to produce a 

new packed version of the malware. It is often used to make manual analysis and 

automated analysis of the malware more difficult. Code packing is also used to evade 

signature detection by Antivirus software through the creation of malware variants 

which have no associated Antivirus signature.  

For a malware detection system to perform effectively, packed and polymorphic 

malware variants must be detected. The detection of polymorphic malware has 

generated an interest in classifying malware using features at a higher level abstraction 

than the traditional byte level content. The field of static program analysis has provided 

benefits to malware detection. 

This thesis investigates unpacking combined with the static detection and classification 

of malware and their polymorphic variants. We systematically examine packing and 
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polymorphism, develop algorithms to unpack malware, and develop algorithms to 

classify malicious software derived from known malware. 

1.2 Aim and Scope of the Research 

1.2.1 Aim 

The aim of this research is to discover effective and efficient methods for the detection 

and classification of malware. 

1.2.2 Scope 

The scope of this study is limited to malware in the form of executable program 

instances. Network intrusion detection of malicious content, or the general detection of 

worms based on network traffic, while important in their own right, are not investigated. 

To achieve the aim of detecting and classifying malware, the associated analyses must 

incorporate the removal of obfuscations incorporated by the malware creator(s) that 

would otherwise make such analyses ineffective. This mandates that the code packing 

obfuscation in malware, and the unpacking of such obfuscated malware, be 

investigated. The scope is limited to only the code packing transformations and 

obfuscations evident in malware. The scope does not extend into the general problem of 

deobfuscation and associated static analyses. The malware detection and classification, 

subsequent to the code unpacking, is limited to only static analyses. 

1.3 Structure of the Thesis 

This thesis is organized as follows. 
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 Chapter 2 surveys the related work of malware unpacking and static 

classification of malware. Insight is provided into how we chose to approach the 

problem of malware classification. The survey of related work specifically 

identifies the potential of application level emulation in contrast to the existing 

approaches in automated unpacking. The survey also examines the benefits of 

control flow as a static malware feature. 

 Chapter 3 precisely defines the malware classification problem we aim to 

address. We specifically examine the problem of malware variant detection 

based on constructing similarity between programs. This chapter also outlines 

the general approach for Malwise, our prototype malware classification system. 

 Chapter 4 provides our proposed automated unpacking system based on 

application level emulation. We also propose our method for detecting when 

unpacking is complete using the technique of entropy analysis. We evaluate the 

effectiveness and efficiency of the prototype unpacking system used in Malwise. 

 Chapter 5 examines the static features we extract from malware that we will use 

to classify malware. We propose two novel feature sets based on representing 

control flow graphs as strings. 

 Chapter 6 proposes our classification and database search algorithm based on 

identifying similarity between programs. We perform an evaluation of the 

effectiveness and efficiency of our prototype system, Malwise, that performs 

unpacking and malware classification. 

 Chapter 7 summarizes and concludes the thesis. 
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1.4 Major Contributions of the Thesis 

The major contributions of this thesis are as follows: 

 We propose, implement and evaluate the use of application level emulation in 

automated unpacking. Application level emulation has commercial interest, but 

has previously lacked academic evaluation. 

 We propose the use of entropy analysis to detect that automated unpacking is 

complete and the hidden code has been revealed. Entropy analysis has 

previously been used to detect packed binaries, but has not been used in 

malware unpacking. 

 We propose using a graph invariant based signature to estimate control flow 

graph isomorphism for the purpose of constructing a measure of program 

similarity. The graph invariant chosen has been used previously to aid detection 

of malware, but has not been used as a dominant feature in malware 

classification. 

 We propose using the decompilation technique of structuring to generate a string 

based control flow signature, amenable to comparisons using the string edit 

distance. This approach can be used for approximate control flow graph 

matching. Decompilation has not been used previously to construct control flow 

graph signatures or to perform malware classification 

 We propose a set similarity function and a set similarity search algorithm which 

form the basis for our malware classification system and which perform 
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efficiently in the expected case. The set similarity function and search are 

unique to our work. 

 We implement and evaluate our ideas in a novel prototype system named 

Malwise. 
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2 Related Work 

This chapter surveys the related work in malware unpacking and classification. The 

structure of this chapter is as follows: 

 Taxonomy of the techniques used to create polymorphic malware variants is 

described in Section 2.1. 

 Section 2.2 examines the code packing transformation technique used in 

polymorphic malware in more detail. The code packing transformation is used 

primarily as an obfuscation technique for malware. 

 Section 2.3 provides taxonomy of static features that are present in malware and 

benign samples that can be used for automated malware classification and 

detection purposes. 

 Section 2.4 compares the program features identified in the taxonomy. 

 Section 2.5 categorizes the taxonomy of static program features in terms of their 

abstract models and mathematical representations. 

 Section 2.6 examines static analysis techniques that can be used on malware and 

benign programs, such as disassembly and control flow reconstruction. 

 The automated unpacking of samples is examined in Section 2.7. 

 Section 2.8 then surveys the literature that investigates static classification of 

malware when control flow is used as a feature.  

 Section 2.9 examines future trends. 
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 Section 2.10 summarizes the chapter. 

2.1 Taxonomy of Malware Polymorphism 

2.1.1 Syntactic Changes 

A syntactic polymorphic malware technique is a method that changes the syntactic 

structure of the malware [10]. Though the syntactic structure changes in polymorphic 

malware, the malware semantically remains identical. The technique is predominantly 

used to evade byte level signature based detection and classification that is routinely 

employed by traditional Antivirus. Polymorphism borrows many of the techniques from 

the field of program obfuscation.  

Polymorphism is sometimes described by the similar term of metamorphism. In that 

usage it is used to describe the automated syntactic mutation of the malware‟s code and 

instructions. Under such terminology, polymorphism is used to describe syntactic 

mutation of limited parts of the malware‟s instruction content. The remaining parts of 

the malware are encoded at the byte level without regard to the instruction syntax or 

semantics. In this survey we treat polymorphism and metamorphism as identical to each 

other. 

2.1.1.1 Dead Code Insertion 

Dead code is also known as junk code and a semantic nop [10]. Dead code is 

semantically equivalent to a nil operation. Insertion of this type of code has no semantic 

impact on the malware. The insertion increases the size of the malware and modifies the 

byte and instruction level content of the malware. 
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2.1.1.2 Instruction Substitution 

Instruction substitution replaces specific instructions or sequences of instructions with 

semantically equivalent, but differing instructions and instruction sequences. The size of 

the malware may grow or shrink in this procedure. 

2.1.1.3 Variable Renaming 

Variable renaming [11] and the associated technique of register reassignment alters the 

use of variables and registers in a sequence of code such that the instructions are 

semantically equivalent but use different variables and registers when compared to the 

original code.  

mov $0,%eax

mov $1,%ebx

add %eax,%ebx

push %ebx

call $0x80482000

mov $0,%ebx

mov $1,%ecx

add %ebx,%ecx

push %ecx

call $0x80482000

Figure 3. Register reassignment. 

mov $0,%eax xor %eax,%eax

Figure 2. Instruction substituion. 

push %ebx

pop %ebx

Figure 1. A 

semantic nop. 
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2.1.1.4 Code Reordering 

Code reordering [11] changes the syntactic order of the code in the malware [10]. The 

actual or semantic execution path of the program does not change. However, the 

syntactic order as present in the malware image is altered. Code reordering includes the 

techniques of branch obfuscation, branch inversion, branch flipping, and the use of 

opaque predicates. 

2.1.1.5 Branch Obfuscation 

Branch obfuscation attempts to hide the target of a branch instruction. Examples include 

the use of Structured Exception Handling (SEH) on the Microsoft Windows platform. 

The use of SEH to obscure control flow is common in modern malware. Similar 

techniques involve indirect branching. Indirect branching uses data content as the target 

of a branch. This translates control flow identification into a harder data flow analysis 

problem. The use of a branch function [12] extends this approach and dispatches 

multiple branches through a single routine. The main purpose of branch obfuscation is 

to make the static analysis of the malware by an analyst or automated system harder to 

perform.  

mov $0x8048200,%eax

jmp *%eax

Figure 4. An indirect branch. 
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2.1.1.6 Branch Inversion and Flipping 

Branch inversion inverts the branch condition in conditional branches. Whereas the 

branch may originally transfer control when the condition is true, branch inversion 

alters the condition to branch when false. To maintain the original semantics of the 

program the branch instruction is also inverted. For example, a branch on condition true 

statement would be changed to a branch on condition false statement. Additionally, the 

condition being tested would also be inverted. Branch inversion is effectively a form of 

instruction substitution on control flow statements. 

Branch flipping [12] is a similar technique to branch inversion and rewrites the branch 

instruction by substituting it with semantically equivalent code with different control 

flow properties. For example, if the original code is to branch on condition true then the 

new code branches on condition false to the original fall-through instruction. The new 

fall-through instruction then unconditionally branches to the original conditional branch 

target.  

jc $0x80482000
cmc # complement carry flag

jnc $0x80482000

Figure 5. Branch inversion. 

jz $0x80482000

L:

jnz L

jmp $0x80482000

L:

Figure 6. Branch flipping. 
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2.1.1.7 Opaque Predicate Insertion 

An opaque predicate [12] is a predicate that always evaluates to the same result. An 

opaque predicate is constructed so that it is difficult for an analyst or automated analysis 

to know the predicate result. Opaque predicates can be used to insert superfluous 

branching in the malware‟s control flow. They can also be used to assign variables 

values which are hard to determine statically. The use of opaque predicates is primarily 

for code obfuscation, and to prevent understanding by an analyst or automated static 

analysis.  

2.1.1.8 Code Packing 

Code packing [13, 14] is used to hide and obfuscate the contents of malware from an 

analyst and automated static analyses. Code packing is described in Section 2.2. 

2.1.2 Semantic Changes 

An extension to syntactic polymorphism is that of semantic polymorphism where the 

new variant is a derived work of the original malware. Semantic changes to malware 

occur due to the malware authors modifying the original source code or functionality. 

This can occur to a natural evolution of the malware during its software development 

life cycle. Additionally, it can occur when a malware author reuses existing malicious 

code in a new malware instance.  

mov $1,%eax

jz $0x80482000

Figure 7. A simplified opaque 

predicate. 
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2.1.2.1 Code Insertion 

Code insertion occurs when new functionality is added to the malware. 

2.1.2.2 Code Deletion 

Code deletion occurs when functionality is removed from the malware. 

2.1.2.3 Code Substitution 

Code substitution occurs when functionality in the malware is replaced by an alternative 

algorithm or code. 

2.1.2.4 Code Transposition 

Code transposition occurs when specific code and functionality of the malware is 

removed from its initial location and inserted into a semantically different location in 

the malware. 

2.2 Malware Obfuscation Using Code Packing 

Code packing is the dominant technique used to obfuscate malware and hinder an 

analyst‟s understanding of the malware‟s intent. In one month during 2007, 79% of 

identified malware from a commercial Antivirus vendor was found to be packed [15]. 

Additionally, almost 50% of new malware in 2006 were repacked versions of existing 

malware [16]. 

Code packing, in addition to obfuscating the understanding of the malware by an 

analyst, is also used by malware to evade an Antivirus system‟s detection. Polypack 
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[17] evaluated the effectiveness of code packing against Antivirus detection by 

providing a service to pack malware using a variety of code packing tools. Antivirus 

systems often have the capabilities of unpacking known code packing tools, and 

unpacking unknown tools has also had commercial interest [18]. However, Polypack 

demonstrated that packing can be an effective tool to defeat an Antivirus system with 

many commercial malware detection systems failing to identify the packed versions of 

existing malware. 

Code packing is used in the majority of malware, but code packing also serves to 

provide compression and software protection for the intellectual property contained in a 

program. It is not necessarily advantageous to flag all occurrences of code packing as 

being indicative of malicious activity. Code packing tools are freely available [19] and 

commercially sold to the public as legitimate software [20]. For this reason, unpacking 

of packed programs provides benefit. It is advisable to determine if the packed contents 

are malicious, rather than identifying only the fact that unknown contents are packed. 
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2.2.1 Traditional Code Packing 

The most common method of code packing is described in [13]. Malware employing 

this method of code packing transforms executable code into data as a post-processing 

stage in the malware development cycle. This transformation may perform compression 

or encryption, hindering an analyst's understanding of the malware when using static 

analysis. At runtime, the data, or hidden code, is restored to its original executable form 

through dynamic code generation using an associated restoration routine [21]. 

Execution then resumes as normal to the original entry point. The original entry point 

marks the entry point of the original malware, before the code packing transformation is 

applied. Execution of the malware, once the restoration routine is complete and control 

is transferred to the original entry point, is transparent to the fact that code packing and 

restoration had been performed. A malware may have the code packing transformation 

applied more than once. After the restoration routine of one packing transformation has 

Restoration 

Routine

Hidden Code = 

f(Original Code)

Original Code

Remnant Code 

and Restoration 

Routine

Original Code = 

g(Hidden Code)

Packing Runtime

Original Executable Packed Executable Memory Image at Runtime

Figure 8. The traditional code packing transformation. 
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been applied, control may transfer another packed layer. The original entry point is 

derived from the last such layer. 

2.2.2 Shifting Decode Frame 

An extension to traditional code packing is to maintain as much of the packed image in 

an encrypted form at run-time. During execution of the malware, blocks of memory can 

be decrypted as needed and subsequently re-encrypted to prevent an analyst or 

automated system from having access to all the hidden code at any single moment in 

time. This technique is known as the shifting decode frame [22]. The granularity of 

encryption can occur at the page level, the basic block level, and the instruction level. 

This type of code packing is not often used in wild malware, and in practice, traditional 

code packing and instruction virtualization are the dominant techniques used in real 

malware. 

2.2.3 Instruction Virtualization and Malware Emulators 

Code packing may employ the use of instruction virtualization also known as a malware 

emulator [14]. An emulator used by a malware should not be confused with an emulator 

Shifting Decode 

Frame Restoration 

Routine

Hidden Code = 

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Hidden Code

Shifting Decode 

Frame Restoration 

Routine

Original Code

Original Executable

Figure 9. Code packing using the shifting decode frame. 
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used for automated unpacking of the malware. This type of code packing transformation 

employing an emulator is used in a minority of malware. In this form of code packing, 

packing translates the original native code into a byte-code which is subsequently 

emulated by the malware at run-time. Using this form of code packing, the hidden code 

in its original form is never revealed. 

2.2.4 Resistance to Dynamic Analysis 

Many malware packers introduce code that intentionally makes run-time analysis of the 

packed malware more difficult [22]. Strategies employed by packed malware include 

detection of the malware being debugged, or detection of the malware being executed 

inside a virtual machine. These techniques are currently being employed by malware 

[23]. In these situations, when an attempted dynamic analysis is being performed, the 

execution of the malware packer diverges and the true malware behavior remains 

hidden without execution. 

Interpreter

Byte Code = 

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Original Executable

Interpreter

Byte Code = 

f(Original Code)

Figure 10. Code packing using instruction virtualization. 
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2.3 Taxonomy of Static Program Features 

Malware classification and detection involves the extraction of features which are 

subsequently used to characterize the malware. Features may be extracted dynamically 

or statically. Dynamic approaches to malware classification involve monitoring 

execution of the programs and extracting features based on their behaviour. Static 

approaches extract features without program execution. 

2.3.1 Object File Header Attributes 

The object file header contains attributes which are often custom written during link 

editing and binary rewriting. 

2.3.2 Bytes 

The simplest feature that can be extracted from a program is the raw byte level content 

of the malware executable file [24]. An alternative source of content comes from the 

individual program sections in the binary, including the code and data segments. 
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2.3.3 Instructions 

An executable program is constructed of code and data. The code is represented as 

assembly language. Extracting the assembly is the process of disassembling. The 

instruction level content of a program can represent a more resilient form than the byte 

level content if the instructions are considered by their type or mnemonic representation 

[25]. 

2.3.4 Basic Blocks 

A basic block is a straight line sequence of code without an intervening control transfer 

instruction [26]. The basic block may be treated at the byte level, or at the instruction 

level. Additionally, data dependencies within the basic block may be examined to 

construct a directed acyclic graph [27]. The basic blocks may also be grouped to form a 

set, or they may have additional structure imposed by the control flow graph. 

8d 4c 24 04             

83 e4 f0                

ff 71 fc                

55                      

89 e5                   

51                      

83 ec 24                

e8 6a 00 00 00          

c7 45 f8 00 00 00 00    

eb 10                   

c7 04 24 a0 20 40 00    

e8 5d 00 00 00          

83 45 f8 01             

83 7d f8 09             

7e ea                   

83 c4 24                

59                      

5d                      

8d 61 fc                

c3            

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

Figure 11. An example of basic blocks and instructions in a program. 



38 

 

2.3.5 Control Flow Graphs 

The control flow graph is a directed graph, where the nodes are basic blocks [28]. The 

edges in the graph represent the possible control flow of the associated procedure. The 

control flow graph represents the intra-procedural control flow. A program may be 

considered a set of control flow graphs, or the control flow graphs may have additional 

structure as dictated by the call graph. Alternatively, control flow graphs may represent 

inter-procedural and intra-procedural control flow in a single graph. In this case, the 

graph represents the whole program control flow graph. 

It is possible to construct alternative or abstracted representations of the control flow 

graph. Loop nest trees, dominator trees, and control dependency graphs can also be 

constructed [27]. 

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Figure 12. A control flow graph (left), and a call graph (right). 
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2.3.6 Call Graph 

Call graphs like control flow graph model the possible execution paths and control flow 

in a program [29]. The call graph is a directed graph representing the inter-procedural 

control flow. 

Like the control flow graph, alternative or abstracted representations are possible such 

as a dominator tree. 

2.3.7 API Calls 

Programs interface with the underlying operating system and libraries. The invocation 

of an API function from a known library can often be identified statically [30]. The API 

call sequence gives insight to the behaviour of the program. 

2.3.8 Data Flow 

The data flow of a program represents the set of possible values data may hold during 

program execution [31]. Many types of data flow analyses exist, including live variable 

analysis, reaching definitions, and value-set analysis. Each analysis looks at a particular 

property of the data at specific program points. Modelling the data flow requires that the 

control flow be successfully identified. A simpler model of data dependencies can be 

modelled as described in the basic block feature section. 

2.3.9 Procedure Dependence Graphs 

A procedure dependency graph combines the control dependencies and data 

dependencies of a procedure into a single graph. 
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2.3.10  System Dependence Graph 

The system dependence graph is a collection of procedure dependence graphs; one for 

each procedure in the program. 

2.4 Comparison of Static Program Features 

Malware may be polymorphic, but static program features are known to be invariant 

under different polymorphic techniques. 

Byte and instruction level program features perform poorly when faced with the 

polymorphic variations and mutations. Recompiling source code using different 

compile time options may result in syntactic changes including variable renaming, and 

instruction substitution. Code normalization [10] can sometimes reverse the effects of 

syntactic polymorphism and can work in practice, but is not based on a sound 

technique. Additionally, the byte and instruction stream may change when minor 

semantic alterations are made to the malware source code. 

The advantage of byte level content as a program feature is that the dependence on 

accurate static analysis of the programs semantics or structure is not required. 

If the instruction stream is used, additional challenges are presented because it is known 

that perfect disassembly of an unknown image is undecidable on the x86 platform [32].  

To avoid the problems of syntactic polymorphism, higher level abstractions of the 

program can be used. The control flow features including control flow graphs and call 

graphs are considered more invariant in polymorphic malware than byte and instruction 

level content [28]. However, opaque predicates may result in these features being 
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altered. The detection of opaque predicates has been investigated, but it is not evident 

that this is entirely satisfactory, and a sound method of detection against all unknown 

predicates is not possible. For example, it is known that some algorithms which are used 

to construct predicates are not proven to be true and remain only as conjectures that 

produce the same predicate under current testing. 

The presence of pointers and indirection in assembly language also present problems to 

static analyses which may not have the precision required to construct a control flow 

graph or call graph with the degree of accuracy required for malware classification. For 

all its disadvantages, control flow has shown to be an effective feature that is invariant 

in most current malware. 

The use of API calls is another approach to solve the syntactic polymorphism problem. 

This approach has problems with malware that obscures the use of those calls, as is the 

case of the stolen bytes technique [22] introduced by code packing tools.  

Data flow analysis is another high level abstraction but when used in the presence of 

pointers is compounded by the problems that static analyses must face. 

The procedure and system dependence graphs have similar problems with pointers and 

indirection even when the data dependencies of pointers are ignored. The dependence 

graphs are also dependent on accurate modelling of the instruction sequence. This 

avoids problems such as register reassignment because the data dependencies are 

represented as a graph. However, the problem occurs with the modelled instructions 

used in the data dependencies, which may be polymorphic and variant. Polymorphism is 

not handled effectively in this situation although code normalization may help. 
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2.5 Classification of Static Program Features 

The program features can be divided into four categories of models that enable 

manipulation of the features suitable for use in detection classification: 

 Vectors 

 Strings 

 Sets 

 Graphs 

2.5.1 Vectors 

Vectors represent the simplest object when processed for classification purposes. 

Examples of possible vectors in malware classification include opcode distributions 

[25]. Selecting features and reducing the dimensionality of a vector or feature vector is 

possible using data mining techniques. Exact matching of vectors can be done quickly, 

in linear time relative to the dimensionality of the vector. Approximate matching may 

employ distance metrics or similarity functions. Distance metrics exist between vectors 

including the Euclidean distance and the Manhattan distance. Additional methods to 

determine the similarity between two vectors include the cosine similarity. 

2.5.2 Strings 

Strings are often associated with byte level content in relation to malware classification. 

Searching for the presence of a substring in a body of text is a traditional technique used 

in commercial Antivirus. A dictionary search is often used in association with a 
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malware database. The Aho-Corasick [9] string matching algorithm can be performed in 

a time independent to the size of the database. Extensions to string matching include the 

use of wildcards in the string, and regular expressions. 

Byte level content may be treated as a string and approximate matching performed. The 

Levenshtein or edit distance between two strings is the minimum number of insertions, 

deletions and substitutions to transform one string to the other. The edit distance is the 

basis for an approximate dictionary search which identifies related strings with at most 

a specific number of errors. Related string metrics to show similarity between strings 

include the longest common subsequence (LCS), and the sequence alignment 

algorithms which are used frequently in the Bioinformatics field. The Smith-Waterman 

algorithm is a widely used for the optimal local sequence alignment. 

It is possible to extract all substrings of size n from the text to produce n-grams. Distinct 

n-grams represent dimensions in a feature vector. This approach can improve the 

effectiveness and efficiency when performing approximate matching. The use of n-

grams also allows for reordering of substrings that the edit distance would penalize 

heavily. The use of an n-gram feature vector reduces the problem of approximate 

matching of strings and byte or instruction level content to the problem of approximate 

vector matching. 

Alternative approaches to using strings include the use of statistical or information 

theory based algorithms to identify measurable properties such as Kolmogorov 

complexity or entropy. 
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2.5.3 Sets 

A number of malware classification problems are equivalent to showing the similarity 

between sets or collections of objects. Objects could include the control flow graphs or 

the basic blocks of a program. An example usage could be to show program similarity 

by identifying the set similarity between the programs‟ basic blocks. A number of set 

similarity functions exist such as the Dice coefficient or the Jaccard index [33]. 

2.5.4 Graphs 

Graphs naturally describe a number of program features including control flow graphs 

and call graphs. Finding the equivalence between two graphs is to show they are 

isomorphic. This problem has not been shown to run in polynomial time, but has also 

not been proven that it does not. Additionally, approximate and inexact graph matching 

has increased difficulty. Approximate graph matching is based on the graph edit 

distance or the maximum common subgraph. The graph edit distance is analogous to the 

string edit distance. 

To make graph based classification tractable, a number of approximations have been 

made. Graphs may be decomposed into subgraphs of fixed sizes where each distinct 

subgraph represents a feature [28]. The k-subgraph decomposition is analogous to an  n-

gram decomposition. 

2.6 Static Analysis of Malware 

Static Analysis is a process of determining properties of an analysed program wherein 

the program being analysed is not executed. This type of analysis is often employed 
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during program compilation for the purposes of code optimisation. Static Analysis of 

malware has many benefits in identifying features and building abstract models of 

malware. These features and models can be used to perform malware classification. 

Static analysis has been widely investigated, and its scope in this survey limited to its 

use in malware classification. 

2.6.1 Disassembly 

Disassembly is the process of translating machine code to assembly language. This is 

typically the first stage of a static analysis. 

Static disassembly parses the entire binary image statically without execution. In static 

disassembly, there are two main algorithms. In the Linear Sweep algorithm, the 

instructions are disassembled one instruction after another, starting from the beginning 

of code. The disadvantage of this method is that data introduced into instruction stream 

may be erroneously disassembled. 

The other main algorithm to perform disassembly is the Recursive Traversal algorithm. 

This algorithm decodes each instruction following the order of the control flow. This 

resolves the issue of embedded data, but may miss decoding instructions that are the 

target of indirect jumps or other situations when it is hard to resolve control flow 

statically. 

Speculative Disassembly attempts to remedy the problems of the Recursive Traversal 

algorithm problem by first performing the Recursive Traversal, and then performing a 

Linear Sweep in regions that are not decoded. Christodorescu et al additionally 
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proposed a more robust algorithm in [34] to disassemble binaries that had been 

purposely obfuscated. 

2.6.2 Control Flow Reconstruction 

It is necessary to use a program‟s disassembly to generate inter and intra procedural 

control flow information. The main hindrance to generating accurate representations is 

when a program uses indirect branches and procedure calls. The analysis of indirect 

targets requires data flow analysis. A number of approaches have been employed [35-

37], but the simplest approach is to ignore indirect targets completely and accept a less 

accurate representation. The edges of the graphs representing the control flow can be 

constructed by connecting the branch or call site to the branch or call target. 

2.6.2.1 Opaque Predication Detection 

The presence of opaque predicates in a control flow graph reduces the accuracy of the 

graph because of misleading branch targets. In [38] it was proposed to use the program 

analysis technique of abstract interpretation to detect specific classes of opaque 

predicate algorithms. 

2.6.3 Alias Analysis of Assembly Language 

Alias analysis is an analysis that seeks to statically determine the possible values that 

pointer variables may contain during program execution. Value-Set Analysis [39] has 

been proposed as an alias analysis, suitable for binary programs and assembly language. 

Value-Set Analysis has been used in malware detection [40] and the automated static 

unpacking of malware [41]. 
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2.6.4 Obfuscation and Limits to Static Analysis 

It is known that perfectly precise disassembly is undecidable [32]. Branch targets can be 

indirect, and precise understanding of those run-time values can be problematic. In [42] 

an analysis of some limits to static analysis of malware were identified. The use of 

opaque predicates with hard to analyse predicates were shown to confound the problem 

of precise program representation. Determining whether two programs are semantically 

equivalent is also known to an undecidable problem which is why malware detection is 

often based on heuristic and unsound solutions. 

2.7 Automated Unpacking Of Obfuscated Malware 

Automated unpacking is the process of revealing the hidden code that is introduced by 

the code packing transformation. An unpacked binary is important for malware 

classification because it is required for the static analysis to avoid false classification of 

the query sample based solely on the packing tool. 

2.7.1 Detecting the Code Packing Transformation 

It is advantageous to know early in the analysis if a potential malware has undergone a 

code packing transformation. By knowing that the sample is not packed, further 

unpacking analysis need not be performed. The process of identifying packed binaries 

begins with feature extraction. The raw file and section contents can be examined using 

statistical metrics or machine learning techniques to classify the contents. 
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program. 

Using entropy analysis to determine if a binary is packed was proposed in Bintropy by 

Hamrock and Lyda in [43]. The Entropy of a block of data is a statistical measure that 

describes the amount of information it contains. It is calculated as follows: 

 

where p(i) is the probability of the i
th

 unit of information in event x‟s sequence of N 

symbols. For the malware packing analysis, the unit of information is a byte value, N is 

256, and an event is a block of sequential data. 

Hamrock and Lyda made the key observation that compressed and encrypted data 

characterise packed malware samples, and compressed and encrypted data are 

characterised as having high entropy. Program code and data are found to have much 

lower entropies. Using this observation, packed malware is identified by the high 

entropy in its raw content. 
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Entropy analysis is simple to implement and shown to be effective, yet it has some 

limitations. Entropy analysis can fail to detect packed malware that intentionally lowers 

its own entropy. However, this form of evasion is not presently employed by malware. 

Additionally, entropy analysis can fail to identify code packing transformations which 

perform simple obfuscations on the malware content, and do not transform and 

obfuscate the malware using strong encryption or compression. Likewise, code packing 

that employs instruction virtualization does not require encryption or compression, 

making entropy analysis unable to identify binaries packed using this method. 

2.7.2 Unpacking Using a Dynamic Approach 

The majority of research in automated unpacking has targeted code packing 

transformations that employ a restoration routine. The restoration routine naturally 

reveals and restores the hidden code. After the restoration routine is complete, the 

malware transfers control to the restored code. Because the malware naturally reveals 

the hidden code during execution, dynamic analysis can allow for the extraction of the 

hidden code and has proven to be popular. 

Royal et al proposed an early system employing a combination of static analysis and 

dynamic analysis in PolyUnpack [13]. A similar technique was proposed in [44]. 

Polyunpack performed an initial static disassembly of the packed program. During 

execution, code that became evident and which was not present in the static 

disassembly, was identified. This was identified as the hidden code. The collection of 

hidden code constituted the unpacking process. Polyunpack provides a generic solution 

to unpacking, however performance is not high due to the requirement of disassembling 
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and single stepping through execution. Additionally, the dynamic analysis requires 

isolation of the running malware. This would imply the use of a virtual machine or 

whole system emulation with the associated performance cost. This system would not 

be viable for use in desktop Antivirus. 

The most common approach to automated unpacking has taken advantage of the fact 

that at the original entry point all of the hidden code is revealed. This has resulted in the 

following components when developing an automated unpacking system. 

 Simulation of the malware. 

 Detecting when to stop the simulation – when the restoration routine has 

completed and control is transferred to the original code  

 Extraction of the revealed code present in the process image. 

Simulation of the malware may involve whole system emulation, hardware based 

virtualization, or native execution. Execution is simulated until the hidden code is 

revealed. The most common technique in detecting when to stop the simulation is by 

maintaining a shadow memory of memory writes, and detecting execution of that 

memory. 

2.7.3 Malware Simulation 

2.7.3.1 Whole System Emulation 

Renovo was proposed by Kang et al in [21]. Renovo provided a completely dynamic 

approach to unpacking, employing whole system emulation. The technique of whole 

system emulation was similarly proposed by Christoderescu et al in [10]. Whole system 
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emulation emulates the physical hardware of a host machine. A complete unmodified 

guest operating system can be installed on the emulated machine. 

Renovo required the use of a kernel driver in the guest operating system being 

emulated. This is used to track the malware process being executed in the guest system. 

This requirement of modifying the guest system with a kernel driver may make the 

system more detectable. 

Pandora's Bochs also used whole system emulation, but requires no modifications to the 

guest operating system, and was proposed by Bohne in [22]. It is similar in concept to 

Renovo. Renovo utilises a dynamic binary translator based on QEMU [45] to perform 

the emulation, while Bochs uses an interpreter based emulator. Pandora's Bochs 

contribution while providing greater resiliency to detection than Renovo is still 

potentially prone to detection. Attacks to detect whole system emulation were shown in 

[46]. Methods to respond to these attacks are demonstrated in [47]. 

Both Pandora's Bochs and Renovo using whole system emulation are quite effective at 

analysing unknown malware samples if the emulation provides a faithful simulation. 

However, whole system emulation has shown poor performance. Neither Pandora‟s 

Bochs nor Renovo shows results that are suitable for a real-time Antivirus system. 

2.7.3.2 Application Level Emulation 

An alternative approach to whole system emulation is to emulate only the operating 

system interface to guest software. This form of emulation is significantly more 

efficient because there is no guest operating system that requires execution within the 

simulation. There has been some commercial interest in application level emulation 
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[18]. However, little literature has been published and no authoritative refereed 

publication exists. Likewise, there is almost no evaluation of these systems in existing 

literature. Application level emulation‟s main failing is that it provides a less faithful 

simulation than whole system emulation. This is because the implementer of the 

emulator must simulate the operating system‟s operation. In whole system emulation, 

the installed guest operating provides the authoritative implementation. 

2.7.3.3 Dynamic Binary Instrumentation 

Dynamic Binary Instrumentation was proposed by Quist in Saffron [48]. Quist proposed 

instrumenting the malware at runtime to track the execution of dynamically generated 

code. Saffron employed the use of the DBI framework PIN [49] which has problems 

with instrumenting anti-debugger code common in malware. 

2.7.3.4 Native Execution Hardware Paging 

Martignoni et al proposed Omnipack in [50] to natively execute and automatically 

unpack programs. Hardware page protections were used to monitor the activity of each 

program. Once unpacked, the image would be scanned by Antivirus software. A similar 

hardware based approach was employed in [48]. The Omnipack system is implemented 

to run co-operatively with an operating system, and perform unpacking and virus 

scanning on demand. The disadvantage of this approach is in the use of the unpacking 

system on Email gateways, possibly on a different architecture, which forces the 

provision of a virtual or emulated machine in which to run in. This reduces the level of 

performance and makes it unsuitable for real-time use. 
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2.7.3.5 Hardware Based Virtualization 

Using hardware based virtualization for malware analysis and automated unpacking was 

proposed by Dinaburg et al in Ether [51]. In this approach, execution of dynamically 

generated code triggered extraction of the malware's process image similar to Renovo. 

The difference is that the simulated environment is provided by a virtual machine using 

hardware support. Ether, like Pandoras Boch's requires no changes to the guest 

operating system. Unlike Pandora's Bochs, Ether does not have the same level of 

problems of a malware detecting the system emulator. However, it has been shown that 

hardware based virtualization is not immune to detection [46]. The use of a virtual 

machine, and the use whole system emulation, requires a software license for 

installation of the guest operating system. This restricts desktop adoption which 

typically uses a single license. Virtual Machines are also inhibited by slow start-up 

times which again are problematic for desktop Antivirus use. The use of a Virtual 

Machine also prevents the system being cross platform as the guest and host CPU's 

must be of the same architecture. 

2.7.4 Detecting End of Unpacking 

Detecting when the original entry point is reached and the hidden code of the packed 

program is revealed allows for subsequent hidden code extraction. 
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2.7.4.1 Renovo 

In Renovo, dynamic code generation was identified by the execution of previously 

written memory. In this approach, memory is tracked through the maintenance of a 

shadow memory associated with the running malwares process image. 

Malware is executed in the simulated machine and allowed to run until the dynamically 

generated code is executed. At this point, the memory image of the running malware is 

taken. There can exist multiple layers or stages of the code packing transformation, so 

the shadow memory is cleared and the process is restarted. This complete process is 

reiterated until a time-out expires in any particular stage.  

2.7.4.2 Pandora’s Bochs 

Instead of an exclusive time-out employed by Renovo in each stage to determine when 

to stop emulation, Pandora's Bochs identified markers that indicate unpacking is still 

occurring - such indications include if the ratio of memory writes to unique branches is 

high, the loading of a new dynamic Link Library, executing dynamically generated 

code, or the first use of dynamically loaded API functions. 

2.7.4.3 OmniUnpack 

The OmniUnpack approach employed the use of hardware based page protection to 

monitor writes to memory. Omnipack detects the end of unpacking stage when there is 

execution of dynamically generated code that invokes a dangerous system call. A 

dangerous system call is one which can leave the system in an unsafe state. The 
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granularity of tracking memory writes is in the unit of pages. The advantage of the 

approach employed by Omnipack is that of performance. 

2.7.4.4 Uncover 

A refinement to the typical technique of detecting execution of dynamically generated 

code was proposed by Wu et al in [52]. Two additional techniques were used to 

eliminate false positives. 1) That the stack pointer at the potential original entry point 

must be the same as when the malware is initially started. 2) That the potential original 

entry point must constitute part of a sequence of newly or dynamically generated 

written pages - and those pages must consist of what appears to be code. Determining if 

a page of memory is code is performed by entropy analysis. 

2.7.4.5 Hump-and-dump 

Sun et al proposed the Hump-and-Dump [53] method as an alternative for detecting 

when to stop the simulation. This technique is not based on detecting execution of 

dynamically generated code. Hump-and-Dump builds a histogram of the ordered 

addresses of executed instructions. The premise of this technique is to note that the 

unpacking or restoration routine is evident as a large spike in the histogram. Following 

the spike, is a flat section of height 1 which normally represents the original entry point. 

Once the original entry point is detected, simulation ceases and an image of the process 

is taken to reveal the hidden code. The process can be repeated to account for multiple 

packing stages. The Hump-and-dump approach requires the use of simulation such as 

emulation or virtualization. 
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2.8 Static Approaches to Malware Classification 

2.8.1 Classification Approaches 

Malware classification is the process of determining if an unknown binary belongs to 

the class of malicious programs or the class of benign programs. 

2.8.1.1 Statistical Classification 

A data mining approach to malware detection is to employ statistical classification. 

Each classification algorithm constructs a model, using machine learning, to represent 

the benign and malicious classes. In this approach, a labelled training set is required to 

build the class models during a process of supervised learning. Many statistical 

classification algorithms exist including Naive Bayes, Neural Networks, and Support 

Vector Machines. The key to statistical classification is to represent the malicious and 

benign samples in an appropriate manner to enable the classification algorithms to work 

effectively. Feature extraction is an important component of effective classification, and 

an associated feature vector that can accurately represent the invariant characteristics in 

the training sets and query samples is highly desirable. 

2.8.1.2 Instance-Based Learning 

Instance-based learning is a related and traditionally popular approach that can be 

employed wherein the query program is classified by identifying a high similarity to a 

known instance of malware in the training set. Traditional Antivirus utilises this 

approach when it performs signature based detection. The key component to perform 

classification using instance-based learning is a distance or similarity function between 
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the objects representing samples and queries. For a distance function to be effective 

between objects, the objects must be modelled by a limited set of features that capture 

the invariant characteristics of the malicious and benign programs. In some cases, the 

distance function is replaced with a test for equality. However, testing only for equality 

reduces the effectiveness of the classification process when dealing with malware 

variants. Instance-based learning can additionally identify high similarity to benign or 

white-listed samples, depending on the aims of the classification. 

2.8.1.3 The Similarity Search Used in Instance-Based Learning 

A search of a database to find similar, but not necessarily identical objects to a query is 

known as a similarity search. The similarity search is a central aspect of instance-based 

learning when applied to malware detection and classification using a large number of 

malware signatures and training instances. 

Distance functions between objects that have the properties of a metric can employ the 

use of Metric Access Methods. A similarity search using metric access methods 

performs faster than exhaustive linear search and enables significantly larger databases 
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Figure 4. The software similarity search.
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without being restricted by an equivalent increase in running time. Metric access 

methods may use either static [54] or dynamic databases [55]. In dynamic Metric 

Access Methods, dynamic database operations, such as object insertion, can be 

effectively performed with reasonable performance expectations. 

2.8.2 Control Flow Based Classification Approaches 

2.8.2.1 Control Flow Graphs 

2.8.2.1.1 Whole Program Control Flow Graph Isomorphism Recognition 

Using Tree Automata 

A fast approach to detecting whole program control flow graph isomorphism and 

subgraph isomorphism was proposed in [56]. This approach constructed a spanning tree 

based structure from the control flow graph, and then built a tree automaton for graph 

recognition. This approach appears to have reasonable performance. However, this 

technique is not effective at detecting malware variants that alter the control flow or 

have semantic changes. Nor does this approach attempt to perform unpacking. 

2.8.2.1.2 Common k-subgraphs 

Decomposing control flow graphs into subgraphs was proposed by Kruegel et al in [28] 

to classify polymorphic worms. The control flow graphs were decomposed into the set 

of all subgraphs of fixed size k, where k is the number of nodes in the subpgrah. The k-

subgraphs were subsequently transformed into their canonical labelled form. The 

adjacency matrix of the canonically label graph was transformed into a string. This 

string represented the k-subgraph feature of the control flow being analysed. Worm 
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detection and classification occured through identifying the prevalence of k-subgraph 

features between worm like executable content and unclassified executable programs. 

The performance of this system was reasonable. Because the classification only 

occurred on network streams identified as potential worms, it is hard to determine the 

accuracy of the classification when applied to a larger set of malware. Additionally, 

automated unpacking would be necessary for a general malware classification system. 

2.8.2.2 Call Graphs 

2.8.2.2.1 Whole Program Context-Free Control Flow 

It was proposed in [57] that the inter-procedural control flow information could be 

represented as a context free grammar with only some loss of information. A string 

could represent the grammar, and string equality used to show equivalence between the 

grammar, and inter-procedural control flow they represented. The advantage of this 

approach, is that string based representations allow for fast searches in a malware 

database using a dictionary search. The disadvantage of the approach investigated in 
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this research is that it did not employ approximate matching of the inter-procedural 

control flow. For polymorphic malware variants that alter the control flow through 

source code modification, an approximate match is necessary for detection of the 

malware. 

2.8.2.2.2 Flowgraph Based Classification using Fixed Points 

Carrera proposed an approximate flowgraph matching algorithm in [29] by identifying 

fixed points in the flowgraphs and successively matching surrounding nodes in the 

graph. Carrera built a similarity index between malware and used this to build 

phylogeny (evolutionary) trees for taxonomy. Dullien and Rolles expanded the 

approximate graph comparison algorithm in [58] to identify identical nodes between 

callgraphs and control flow graphs. Their algorithm worked by identifying nodes, or 

fixed points, between binaries that have uniquely identifiable features. Features for a 

node in the callgraph include the number of basic blocks, control flow edges, and 

number of subfunction calls. Carrera also proposed an estimation of a control flow 

graph isomorphism based on string equality and a string signature of the graph 

representing a graph traversal. Once a set of fixed points were known, their 

neighbouring nodes could be examined. Identifying neighbours sharing common and 

unique features iteratively allowed greater parts of the flowgraph to be identified. 

The advantage of this approach is that it allows for moderately fast pair-wise 

comparison between graphs. However, the approach does not perform efficiently for a 

database of graphs and is not fast enough for desktop Antivirus use. Additionally, 

automated unpacking, a requirement of the system to perform effectively, was assumed 
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to have occurred before classification is applied. A system for automated unpacking 

was not proposed. 

2.8.2.2.3 Approximating the Graph Edit Distance 

An alternative algorithm to approximate graph matching was proposed in the SMIT 

system [59]. SMIT employed the use of bipartite graphs and the Hungarian algorithm to 

find matching nodes between two call graphs being compared in O(N
3
) running time. 

The strength of their matching algorithm was that they allowed for it be used as an 

approximation to the graph edit distance. The graph edit distance between two graphs, 

is the number of edit operations to convert one graph to the other. The graph edit 

distance gives a sound basis for similarity and dissimilarity between graphs. 

2.8.2.2.4 Metric Access Methods 

The graph edit distance is known to have the properties of a metric which allows the use 

of metric access methods to search a database of objects. The metric access method 

used in SMIT to perform a nearest neighbor search of call graphs was a Vantage Point 

Tree [54]. The disadvantage of a Vantage Point Tree is that it is primarily a static data 

structure. Alternate metric access methods such as the M-Tree [55] can be used for the 

construction of dynamic structures, allowing for efficient object insertion times. 
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2.9 Trends 

2.9.1  Malware Development 

The driving force behind malware development is that of commercial gain by the 

malware authors. As such, malware development is becoming more rigorous and 

involves the typical development cycles as seen with legitimate software. Malware 

creators will continue to protect and extend the lifetime of their software using available 

techniques at their disposal. 

Malware authors have in the past responded to Antivirus detection techniques in an 

attempt to extend the lifetime of their malware. Techniques were developed for 

syntactic polymorphism to evade string based signatures. Likewise, dynamic analysis 

techniques employed by Antivirus systems and researchers including debugging and 

virtualization are now routinely detected by malware [23, 46]. The detection of 

individual software systems used for performing analyses will continue. If research 

systems become popular, it becomes financially rewarding for malware developers to 

detect these systems. The research community has responded in making analysis 

systems less identifiable and this trend will continue. 

We expect that malware authors will continue to use code packing [13] and 

polymorphism techniques to obfuscate and hinder analysis. Code packing involving 

instruction virtualization and malware emulators will grow in use due to the added 

resistance it provides against malware analysis [14]. Semantic changes to malware will 

also continue as malware authors reuse already developed malicious code. It is likely 

that syntactic polymorphism will continue to grow in use. Obfuscations will develop in 
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response to the static analyses used in detection systems to extract features from 

malware. Incorporating a variety of classification techniques and feature sets can 

mitigate these attacks. 

It should be noted that malware polymorphism development peaked during earlier 

historical times of virus development. Viruses are now infrequently employed by 

malware because the motivation for malware development is that of financial gain and 

not the notoriety once gained for virus writing. 

2.9.2  Static Malware Detection and Classification 

Malware obfuscation has been increasingly addressed by researchers, and deobfuscation 

will continue to be developed and incorporated into malware detection systems. These 

deobfuscation techniques have increasingly borrowed from formal program analyses in 

an attempt to make sound analyses possible in regards to their given constraints. 

Malware classification has employed statistical techniques to detect unknown malware. 

We believe research will continue using this approach and new features will be 

developed that can more accurately characterize malware. Instance-based learning will 

also be developed with particular research opportunity in working with large scale 

datasets. 

Static program features have been extracted at increasing levels of abstraction, and we 

expect this to continue in future research. Abstraction has the benefit of being resistant 

to lower level polymorphic changes. The performance of these research systems has not 

been fully investigated, and we expect that future research opportunity lies in making 

classification systems practical for industrial and widespread use. 
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2.10 Summary 

Malware is a significant problem in computing environments and has been addressed in 

research by malware classification systems. Effective malware classification systems 

must deal with polymorphism. Polymorphic malware introduces syntactic and semantic 

changes to the malware contents. Traditional byte-level approaches have performed 

poorly with polymorphic malware. Program abstractions including control flow are 

observed to be more invariant, when used as static features, than traditional approaches. 

However, efficient algorithms that use these static features are lacking. Efficiency is a 

requirement for research systems to be adopted in desktop environments or for the 

research systems to scale to the high number of malware found in the wild. 

The problem of classification and analysis is compounded when a malware is packed 

and the true contents of the malicious software are hidden. Automated unpacking 

reveals the hidden content. Efficiency is a key requirement for desktop adoption and 

widespread use. 
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3 Problem Definition and Our Approach 

The problem of malware classification and variant detection is defined in this chapter. 

The problem summary is to use instance based learning and perform a similarity search 

over a malware database. Additionally defined in this chapter is an overview of our 

approach to design the prototype malware unpacking and classification system, 

Malwise. 

3.1 Problem Definition 

A malware classification system is assumed to have advance access to a set of known 

malware. This is for construction of an initial malware database. The database is 

constructed by identifying invariant characteristics in each malware and generating an 

associated signature to be stored in the database. After database initialization, normal 

use of the system commences. The system has as input a previously unknown binary 

that is to be classified as being malicious or non malicious. The input binary and the 

initial malware binaries may have additionally undergone a code packing 

transformation to hinder static analysis. The classifier calculates similarities between 

the input binary and each malware in the database. The similarity is measured as a real 

number between 0 and 1 - 0 indicating not at all similar and 1 indicating an identical or 

very similar match. This similarity is a based on the similarity between malware 

characteristics in the database. If the similarity exceeds a given threshold for any 

malware in the database, then the input binary is deemed a variant of that malware, and 
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therefore malicious. If identified as a variant, the database may be updated to 

incorporate the potentially new set of generated signatures associated with that variant. 

3.2 Our Approach 

Our approach employs both dynamic and static analysis to classify malware. Entropy 

analysis initially determines if the binary has undergone a code packing transformation. 

If packed, dynamic analysis employing application level emulation reveals the hidden 

code using entropy analysis to detect when unpacking is complete. Static analysis then 

identifies characteristics, building signatures for control flow graphs in each procedure. 

The similarities between the set of control flow graphs and those in a malware database 

accumulate to establish a measure of similarity. A similarity search is performed on the 

malware database to find similar objects to the query. The system design of our 

prototype system, Malwise, is presented in figure 1. Two approaches are employed to 

generate and compare flowgraph signatures: exact flowgraph matching and approximate 

flowgraph matching. 
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Figure 14. Block diagram of the Malwise malware classification system. 
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3.2.1 Exact Flowgraph Matching 

An ordering of the nodes in the control flow graph is used to generate a string based 

signature or graph invariant of the flowgraph. String equality between graph invariants 

is used to estimate isomorphic graphs. 

3.2.2 Approximate Flowgraph Matching 

The control flow graph is structured in this approach. Structuring is the process of 

decompiling unstructured control flow into higher level, source code like constructs 

including structured conditions and iteration. Each signature representing the structured 

control flow is represented as a string. These signatures are then used for querying the 

database of known malware using an approximate dictionary search. A similarity 

between flowgraphs can subsequently be constructed using the string edit distance. 
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4 Automated Unpacking 

Automated unpacking is used to process malware samples before subsequent feature 

extraction and classification. In this chapter, the automated unpacking component of the 

Malwise system is proposed and evaluated. 

4.1 Identifying Packed Binaries Using Entropy Analysis 

Malwise performs an initial analysis on the input binary to determine if it has undergone 

a code packing transformation. Entropy analysis [43] is used to identify packed binaries. 

The entropy of a block of data describes the amount of information it contains. 

Compressed and encrypted data have relatively high entropy. Program code and data 

have much lower entropy. Packed data is typically characterised as being encrypted or 

compressed, therefore high entropy in the malware can indicate packing. 

An analysis most similar to Uncover [52] is employed. Identification of packed 

malware is established if there exists sequential blocks of high entropy data in the input 

binary. If the binary is identified as being packed, then the dynamic analysis to perform 

automated unpacking proceeds. If the binary is not packed, then the static analysis and 

classification commences immediately. 

4.2 Application Level Emulation 

Automated unpacking requires malware execution to be simulated so that the malware 

may reveal its hidden code. The hidden code once revealed is then extracted from the 

process image. 
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Application level emulation provides an alternate approach to whole system emulation 

for automated unpacking. Application level emulation simulates the instruction set 

architecture and system call interface. In the Windows OS, the officially supported 

system call interface is the Windows API. 

4.2.1 Interpretation 

Malwise utilises interpretation to perform simulation. The features of the emulator 

implemented by Malwise are described in this section. 

4.2.1.1 x86 Instruction Set Architecture (ISA) 

Much of the 32-bit x86 ISA has been implemented in Malwise. Extensions to the ISA, 

including SSE and MMX instructions, have been partially implemented. A partial 

implementation is adequate because the majority of programs do not employ full use of 

the ISA. FPU, SSE, and MMX instructions are primarily used by malware to evade or 

detect emulation. Malware may also use the debugging interface component of the ISA, 

including debug registers and the trap flag, which are primarily used to obfuscate 

control flow.  

4.2.1.2 Virtual Memory 

x86 employs a segmented memory architecture. The Windows OS utilises these 

segment registers to reference thread specific data. Thread specific data is additionally 

used by Windows Structured Exception Handling (SEH). SEH is used to gracefully 

handle abnormal conditions such as division by zero and is routinely used by packers 

and malware to obfuscate control flow. 
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Segmented memory is handled in Malwise by maintaining a table of segment 

descriptions, known in the x86 ISA as the descriptor table. Addressed memory is 

associated with a segment, known in the ISA as segment selectors, which hold an index 

into the descriptor table. This enables a translation from segmented addressing to a flat 

linear addressing. 

Virtual memory is maintained by a table of memory regions referenced by their linear 

address. Each memory region maintains its associated memory contents. Each region 

also maintains a shadow memory that is utilised by the automated unpacking logic. The 

shadow memory maintains a flag for each address that is set if that location has been 

written to or of it has been read. 

4.2.1.3 Windows API 

The Windows API is the official system call interface provided by Windows. Malwise 

detects calls to the Windows API by inspecting the simulated program counter. If the 

program counter contains the address of a Windows API function, then a handler 

implementing the functionality of the API is executed. 

There are too many windows API functions to fully emulate, so only the most common 

APIs are implemented. Commonly used APIs include heap management, object 

management, and file system management. 
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4.2.1.4 Linking and Loading 

Program loading entails allocating the appropriate virtual memory, loading the program 

text, data and dynamic libraries and performing any required relocations. OS specific 

structures and machine state must also be initialized. 

The exported functions of a dynamically linked library may be entirely simulated 

without having access to the native library. Such a system may have benefit when the 

emulator is cross platform and when licensing issues should be avoided. Malwise 

performs full dynamic library loading using the native libraries. This is done to provide 

a more faithful simulation. 

4.2.1.5 Thread and Process Management 

Multithreading in applications must be emulated. Malwise implements this using user-

level threads - only one thread is running on the host at any particular time and each 

thread is rescheduled after a specific number of instructions. 

Support for emulating multiple processes was not implemented. 

4.2.1.6 OS Specific Structures 

Windows has process and thread specific structures that require initialization such as the 

Process Environment Block, Thread Environment Block, and Loader Module. These 

structures are visible to applications and can be used by malware. 
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4.2.2 Improvements to Emulation 

A naive implementation of emulation can result in poor simulation speed. We make a 

number of improvements in Malwise as follows, and also make additional 

improvements to enable a mechanism to address anti-emulation code used by malware. 

4.2.2.1 Instruction Predecoding 

Instruction predecoding [14] is adopted and produces a significant gain in simulation 

speed. In this technique, the decoding of unique instructions is cached. This results in a 

performance gain because disassembly in a naive emulator consumes a large amount of 

processor time. Predecoding can also be used to cache a function pointer directly to the 

opcode handler. When used in this way, predecoding allows for fast implementation of 

the x86 debugging ISA including hardware breakpoints and single step execution used 

by debuggers. In this optimisation, the cache holding a function pointer to the opcode 

handler is modified on-demand to reflect that it should execute the breakpoint or trap 

logic. This removes explicit checks for these conditions from the emulator's main loop. 

4.2.2.2 Condition Codes 

The x86 condition codes are another point of optimisation and the prototype defers to 

lazy evaluation of these at the time of their use, similar to QEMU [45]. 

4.2.2.3 Emulating Known Sections of Code 

Many instances of malware use modified variants of the same packer or share similar 

code between different packers. Taking advantage of this, it is possible to detect known 
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sections of code during emulation and handle them more specifically, and therefore 

more efficiently than interpretation [60]. To implement this it is noted that each stage 

during unpacking gives access to a layer of hidden code that has been revealed, and the 

memory in each layer can be searched for sections of known code. These sections of 

code can then be emulated, in whole, using custom handlers. This approach achieves 

significantly greater performance than interpreting each individual instruction. Typical 

code sections that can have written handlers include decryption loops, decompression 

loops and checksum calculations. Handlers can also be written and used to dynamically 

remove specific anti-emulation code. 

Malwise implements handlers for frequently used loops in several well known packers. 

4.2.3 Verification of Emulation 

An automated approach to testing the correctness of emulation is implemented similar 

to that of testing whole system emulation [61]. To achieve this, the program being 

emulated is executed in parallel on the host machine. The host program is monitored 

using the Windows debugging API. At the commencement of each instruction, the 

emulator machine state is compared against the host version and examined for deviant 

behaviour. This allows the detection of unfaithful simulation. 

Faithful emulation is made more difficult, as some instructions and Windows API 

functions behave differently when debugged. Malwise rewrites these instructions and 

functions to emit behaviour consistent to that in a non debugged environment. This 

enabled testing of packers and malware that employ known techniques to detect and 

evade debugging. 
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4.3 Entropy Analysis to Detect Completion of Hidden Code 

Extraction 

Detection of the original entry point (OEP) during emulation identifies the point at 

which the hidden code is revealed and execution of the original unpacked code begins 

to take place. Detecting the execution of dynamic code generation by tracking memory 

writes was used as an estimation of the original entry point in Renovo [21]. In this 

approach the emulator executes the malware, and a shadow memory is maintained to 

track newly written memory. If any newly written memory is executed, then the hidden 

code in the packed binary being will now be revealed. To complicate this approach, 

multiple layers or stages of hidden code may be present, and malware may be packed 

more than once. This scenario is handled by clearing the shadow memory contents, 

continuing emulation, and repeating the monitoring process until a timeout expires. 

Malwise extends the concept of identifying the original entry point when unpacking 

multiple stages by identifying more precisely at which stage to terminate the process, 

without relying on a timeout. The intuition behind our approach is that if there exists 

high entropy packed data that has not been used by the packer during execution, then it 

remains to be unpacked. To determine if a particular stage of unpacking represents the 

original entry point, the entropy of new or unread memory in the process image is 

examined. Newly written memory is indicated by the shadow memory for the current 

stage being unpacked. Unread memory is maintained globally, in a shadow memory for 

all stages. If the entropy of the analysed data is low, then it is presumed that no more 

compressed or encrypted data is left to be unpacked. This heuristically indicates 
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completion of unpacking. Malwise also performs the described entropy analysis to 

detect unpacking completion after a Windows API imposes a significant change to the 

entropy. This is commonly seen when the packer deallocates large amounts of memory 

during unpacking. In the remaining case that the original entry point is not identified at 

any point, an attempt in the emulation to execute an unimplemented Windows API 

function will have the same effect as having identified the original entry point at this 

location. 

4.4 Discussion 

Automated unpacking can potentially be thwarted to result in malware that cannot be 

unpacked. Application level emulation presents inherent deficiencies when 

implemented to emulate the Windows operating system. The Windows API is a large 

set of APIs that requires significant effort to faithfully emulate. Complete emulation of 

the API has not been achieved in the prototype and faithful emulation of undocumented 

side effects may be near impossible. Malware that circumvents usual calling 

mechanisms and malware that employs the use of uncommon APIs may result in 

incomplete emulation. Malware is reportedly more frequently using the technique of 

uncommon APIs to evade Antivirus emulation. 

An alternative approach is to emulate the Native API which is used by the Windows 

API implementation. However, the only complete and official documentation for 

system call interfaces is the Windows API. The Windows API is a library interface, but 

malware may employ the use of the Native API to interface directly with the kernel. 
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There does exist reported malware that employ the Native API to evade Antivirus 

software. 

Another problem that exists is early termination of unpacking due to time constraints. 

Due to real-time constraints of desktop Antivirus, unpacking may be terminated if too 

much time is consumed during emulation. Malware may employ the use of code which 

purposely consumes time for the purpose of causing early termination of unpacking. 

Dynamic binary translation may provide some relief through faster emulation. 

Additionally, individual cases of anti-emulation code may be treated using custom 

handlers to perform the simulation where anti-emulation code is detected. 

Application level emulation performs optimally against variations of known packers, or 

unknown packers that do not introduce significantly novel anti-emulation techniques. 

Many newly discovered malware fulfil these criteria. 

4.5 Evaluation 

4.5.1 OEP Detection 

To verify our system correctly performs hidden code extraction, we tested the Malwise 

prototype against 14 public packing tools. These tools perform various techniques in the 

resulting code packing transformation including compression, encryption, code 

obfuscation, debugger detection and virtual machine detection. The samples chosen to 

undergo the packing transformation were the Microsoft Windows XP system binaries 

hostname.exe and calc.exe. hostname.exe is 7680 bytes in size, and calc.exe is 114688 

bytes. 
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The original entry point identified by the unpacking system was compared against what 

was identified as the real OEP. To identify the real OEP, the program counter was 

inspected during emulation and the memory at that location examined. If the program 

counter was found to have the same entry point as the original binary, and the 10 bytes 

of memory at that location was the same as the original binary, then that address was 

designated the real OEP. 

The results of the OEP detection evaluation are in table 1 and table 2. The revealed code 

column in the tabulated results identifies the size of the dynamically generated code and 

data. The number of unpacking stages to reach the real OEP is also tabulated, as is the 

number of stages actually unpacked using entropy based OEP detection. Finally, the 

percentage of instructions that were unpacked, compared to the number of instructions 

that were executed to reach the real OEP is also shown. This last metric is not a 

definitive metric by itself, as the result of the unaccounted for instructions may not 

affect the revelation of hidden code – the instructions could be only used for debugger 

evasion for example. Entries where the OEP was not identified are marked with err. 

Binaries that failed to pack correctly are marked as fail. The closer the results in column 

3 and 4 indicates better performance. The closer the result in column 5 to 100% 

indicates better performance. A score of 100% indicates a perfect result in unpacking. 
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Name Revealed 

code and 

data 

Number of 

stages to real 

OEP 

 Stages 

unpacked 

 % of instr. to 

real OEP 

unpacked 

upx 13107 1 1 100.00 

rlpack 6947 1 1 100.00 

mew 4808 1 1 100.00 

fsg 12348 1 1 100.00 

npack 10890 1 1 100.00 

expressor 59212 1 1 100.00 

packman 10313 2 1 99.99 

pe compact 18039 4 3 99.98 

acprotect 99900 46 39 98.81 

winupack 41250 2 1 98.80 

telock 3177 19 15 93.45 

yoda's 

protector 3492 6 2 85.81 

aspack 2453 6 1 43.41 

pepsin err 23 err err 

 

Table 1. Metrics for identifying the original entry point in packed samples (hostname.exe). 
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Name Revealed 

code and 

data 

Number of 

stages to real 

OEP 

 Stages 

unpacked 

 % of instr. to 

real OEP 

unpacked 

upx 125308 1 1 100.00 

rlpack 114395 1 1 100.00 

mew 152822 2 2 100.00 

fsg 122936 1 1 100.00 

npack 169581 1 1 100.00 

expressor fail fail fail fail 

packman 188657 2 1 99.99 

pe compact 145239 4 3 99.99 

acprotect 251152 209 159 96.51 

winupack 143477 2 1 95.84 

telock fail fail fail fail 

yoda's 

protector 112673 6 3 95.82 

aspack 227751 4 2 99.90 

pespin err 23 err err 

 

Table 2. Metrics for identifying the original entry point in packed samples (calc.exe). 
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The results show that unpacking the samples reveals most of the hidden code. The OEP 

of pespin was not identified, possibly due to unused encrypted data remaining in the 

process image, which would raise the entropy and affect the heuristic OEP detection. 

The OEP in the packed calc.exe samples was more accurately identified, relative to the 

metrics, than in the hostname.exe samples. This may be due to fixed size stages during 

unpacking that were not executed due to incorrect OEP detection. Interestingly, in many 

cases, the revealed code was greater than the size of the original unpacked sample. This 

is because the metric for hidden code is all the code and data that is dynamically 

generated. Use of the heap, and the dynamic generation of internally used hidden code 

will increase the resultant amount. 

The worst result was in hostname.exe using aspack. 43% of the instructions to the real 

OEP were not executed, yet nearly 2.5K of hidden of code and data was revealed, which 

is around a third of the original sample size. While some of this may be heap usage and 

the result not ideal, it may still potentially result in enough revealed procedures to use 

for the Malwise classification system in the static analysis phase. 

4.5.2 Performance 

The system used to evaluate the performance of the unpacking prototype was a modern 

desktop - a 2.4 GHz Quad core computer, with 4G of memory, running 32-bit Windows 

Vista Home Premium with Service Pack 1. The performance of the unpacking system is 

shown in table 3. The running time is total time minus start-up time of 0.60s. Binaries 

that failed to pack correctly are marked as fail. The number of instructions emulated 

during unpacking is also shown. 
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 hostname.exe calc.exe 

Name Time(s) # Instr. Time(s) # Instr. 

mew 0.13 56042 1.21 12691633 

fsg 0.13 58138 0.23 964168 

upx 0.11 61654 0.19 1008720 

packman 0.13 123959 0.28 1999109 

npack 0.14 129021 0.40 2604589 

aspack 0.15 161183 0.51 4078540 

pe compact 0.14 179664 0.83 7691741 

expressor 0.20 620932 fail fail 

winupack 0.20 632056 0.93 7889344 

yoda’s 

protector 0.15 659401 0.24 2620100 

rlpack 0.18 916590 0.56 7632460 

telock 0.20 1304163 fail fail 

acprotect 0.67 3347105 0.53 5364283 

pespin 0.64 10482466 1.60 27583453 

 

 

Table 3. Running time to perform unpacking. 
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In this evaluation full interpretation of every instruction is performed. The results 

demonstrate the system is fast enough for integration into a desktop anti-malware 

system. 

4.6 Summary 

The analysis of malicious software is made more challenging due to the presence of 

packed malware. In this chapter we proposed fast algorithms to unpack malware using 

application level emulation. We implemented and evaluated a prototype. To detect the 

completion of unpacking, we proposed and evaluated the use of entropy analysis. The 

detection of the original entry point worked with a high degree of accuracy. The 

automated unpacking was demonstrated to work against a promising number of 

synthetic samples using known packing tools, with high speed. This demonstrated that 

the automated unpacking system is fast enough for potential desktop integration. The 

automated unpacking system is efficient and effective and lays the foundation for 

further malware analysis and classification. 
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5 Malware Feature Extraction 

In this chapter, algorithms to extract the static features of malware are proposed. These 

features characterize the malware samples and are used for subsequent classification in 

the Malwise system. 

5.1 Static Analysis 

The static analysis component of Malwise proceeds once it receives an unpacked 

binary. The analysis is used to extract characteristics from the input binary that can be 

used for classification. The characteristic for each procedure in the input binary is 

obtained through transforming its control flow into compact representation that is 

amenable to string matching. This transformation, or signature generation, is described 

in Section 5.2 and 5.3. 

To initiate the static analysis process, the memory image of the binary is disassembled 

using speculative disassembly [34]. Procedures are identified during this stage. A 

heuristic is used to eliminate incorrectly identified procedures during speculation of 

disassembly - the target of a call instruction identifies a procedure, only if the call site 

belongs to an existing procedure. Data runs of more than 256 bytes all having the value 

of zero are ignored. Once processed, the disassembly is translated into an intermediate 

representation. Using an intermediate representation is not strictly necessary; however 

Malwise is built as a general binary analysis platform which utilizes the intermediate 

form. The intermediate representation is used to generate an architecture independent 

control flow graph for each identified procedure. The control flow graph is then 
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transformed into a signature represented as a character string. The signature is also 

associated with a weight, described in the following sections. The weight intuitively 

represents the importance of the signature when used to determine program similarity. 

5.2 Exact Flowgraph Matching 

It is possible to generate a signature using a fast and simple method if the matching 

algorithm only identifies graph isomorphism [29]. This approach takes note that if the 

signatures or graph invariants of two graphs are not the same, then the graphs are not 

isomorphic. The converse, while not strictly sound, is used as a good estimate to 

indicate isomorphism. To generate a signature, the algorithm orders the nodes in the 

control flow graph using a depth first order, although other orderings are equally 

sufficient. A signature subsequently consists of a list of graph edges for the ordered 

nodes, using the node ordering as node labels. This signature can be represented as a 

string. An example signature is shown in figure 15. 

To improve the performance, a hash of the string signature can be used instead. CRC64 

is used in Malwise. The advantage of this matching algorithm over approximate 

42
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Figure 15. A depth first ordered flowgraph and its 

signature. 
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matching is that classification using exact matches of signatures can be performed very 

efficiently using a dictionary lookup. 

The normalized weight of procedure x is defined as: 

 

where Bi is the number of basic blocks of procedure i in the binary.  

The similarity ratio between two flowgraphs in exact matching, with signatures x and y 

is: 

 

In Malwise, balanced binary trees implement the exact search of the flowgraph 

database. The runtime complexity is O(log(N)). 

5.3 Approximate Flowgraph Matching 

Malware classification using approximate matches of signatures is employed. 

Intuitively, using approximate matches of a control flow graph, instead of exact 

isomorphism tests, should enable identification a greater number of malware variants. 

In our approach we use structuring to generate a signature that enables approximate 

matching using string edit distances. 
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Structuring is the process of recovering high level structured control flow from a control 

flow graph. In our system, the control flow graphs in a binary are structured to produce 

signatures that are amenable to comparison and approximate matching using string edit 

distances. 

The intuition behind using structuring as a signature is that similarities between 

malware variants are reflected by variants sharing similar high level structured control 

flow. If the source code of the variant is a modified version of the original malware, 

then this intuition would appear to hold true. 

The structuring algorithm implemented in Malwise is a modified algorithm of that 

proposed in the DCC decompiler [62]. If the algorithm cannot structure the control flow 

graph then an unstructured branch is generated. Surprisingly, even when graphs are 

reducible (a measure of how inherently structured the graph is), the algorithm generates 

unstructured branches in a small but not insignificant number of cases. Further 

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

BW|{BI{B}E{B}B}BR

proc(){

L_0: 

  while (v1 || v2) {

L_1: 

    if (v3) {

L_2:

    } else {

L_4: 

    }

L_5: 

  }

L_7: 

  return;

}

Figure 16. The relationship between a control flow graph, a high level 

structured graph, and a signature. 
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improvements to this algorithm to reduce the generation of unstructured branches have 

been proposed [63, 64]. However, these improvements were not implemented.  

The result of structuring is output consisting of a string of character tokens representing 

high level structured constructs that are typical in a structured programming language. 

Subfunction calls are represented, as are gotos; however, the goto and subfunction 

targets are ignored. The grammar for a resulting signature is defined in figure 17. 

The normalized weight of procedure x is defined as: 

 

where si is signature of procedure i in the binary. The weights are normalized so that the 

sum of the set of weights is equal to 1. 

The similarity ratio [26] was proposed to measure the similarity between basic blocks. It 

is used in our research to establish the number of allowable errors between flowgraph 

signatures in an approximate dictionary search. For two signatures or structured graphs 

represented as strings x and y, the similarity ratio is defined as: 

 

where ed(x,y) is the edit distance. Malwise defines the edit distance as the Levenshtein 

distance – the number of insertions, deletions, and substitutions to convert one string to 

another. Signatures that have a similarity ratio equal or exceeding a threshold t (t=0.9) 

are identified as positive matches. This figure was derived empirically through a pilot 

study. 
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Figure 17.  The grammar to represent a structured control flow graph 

signature. 

Procedure  ::= StatementList 

StatementList ::= Statement | Statement StatementList 

Statement  ::= Return | Break | Continue | Goto | Conditional | Loop | BasicBlock 

Goto  ::= 'G' 

Return  ::= 'R' 

Break  ::= 'B' 

Continue  ::= 'C' 

BasicBlock ::= 'B' | 'B' SubRoutineList 

SubRoutineList ::= 'S' | 'S' SubRoutineList 

Condition  ::= | ConditionTerm | ConditionTerm NextConditionTerm 

NextConditionTerm ::= '!' Condition | Condition 

ConditionTerm ::= '&' | '|' 

IfThenCondition ::= Condition | '!' Condition 

Conditional ::= IfThen | IfThenElse 

IfThen  ::= 'I' IfThenCondition '{' StatementList '}' 

IfThenElse  ::=  'I' Condition '{' StatementList „}‟ „E‟ „{„ StatementList '}' 

Loop  ::= PreTestedLoop | PostTestedLoop | EndlessLoop 

PreTestedLoop ::= 'W' Condition '{' StatementList '}' 

PostTestedLoop ::= 'D' '{' StatementList '}' Condition 

EndlessLoop ::= 'F' '{' StatementList '}' 
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Using the similarity ratio t as a threshold, the number of allowable errors, E, or edit 

distance, for signature x to be identified as a matching graph, is defined as: 

To identify matching graphs from a flowgraph database, an approximate dictionary 

search is performed on signature x, allowing E errors. The search is performed using 

BK Trees [65]. BK Trees exploit knowledge that the Levenshtein distance forms a 

metric space. The BK Tree search algorithm is faster than an exhaustive comparison of 

each signature in the dictionary. 

The runtime complexity of the edit distance between two signatures or strings is O(nm), 

where n and m are the lengths of each respective signature. The algorithm employs 

dynamic programming. 

5.4 Discussion 

Malware classification based on static analysis has a number of inherent problems and 

may fail to perform correctly in all cases. Performing static disassembly, identifying 

procedures and generating control flow graphs is, in the general case, undecidable. 

Malware may specifically craft itself to make static analysis hard. In practice, the 

majority of malware is compiled from a high level language and obfuscated as a post-

processing stage. The primary method of obfuscation is the code packing 

transformation. Due to these considerations, static analysis generally performs well in 

practice. 

)1)(( txlenE 
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5.5 Summary 

Malware variants can be detected by identifying similarity in control flow to existing 

malware. In this chapter we proposed two algorithms to extract control flow graph 

features from malware. We proposed an algorithm using an estimation of control flow 

graph isomorphism through the string equality of graph invariants. We also proposed 

the decompilation technique of structuring to generate a string signature of a flowgraph 

for use in approximate graph matching. The structured signature was amenable to 

approximate matching using the string edit distance. These features lay the foundation 

for malware classification. 
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6 Malware Classification 

6.1 Malware Classification Using Set Similarity 

To classify an input binary, the analysis makes use of a malware database. The database 

contains the sets of flowgraph signatures, represented as strings, of known malware. To 

classify the input binary, a similarity is constructed between the set of the binary‟s 

flowgraph strings and each set of flowgraphs associated with malware in the database. 

To construct the similarity between the two sets of flowgraph strings we construct a 

mapping or assignment between the strings from each set. For exact matching, the 

assignment is based on string equality. For approximate matching, a greedy assignment 

is made for the best approximate matching string where the similarity ratio is above 0.9. 

An example assignment is shown in figure 18.  

Two weights are associated with each matching flowgraph signature. The weights have 

been normalized and the sum of matching weights identifies the size of the matching 

subset. Formally, the asymmetric similarity is: 

 

where t is the empirical threshold value of 0.9,  wed is the similarity ratio between the i
th

 

control flow graph of the input binary and the matching graph in the malware database, 

and  weightx is the weight of the cfg where x is either the input binary or the malware 

binary in the database. 
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The analysis performs more accurately with a greater number of procedures and hence 

signatures. If the input binary has too few procedures, then classification cannot be 

performed. The prototype does not perform classification on binaries with less than 10 

procedures. For the exact matching classification, an additional requirement is that the 

control flow graph has at least 5 basic blocks. 

The program similarity is the final measure of similarity used for classification and is 

the product of the asymmetric similarities. The program similarity is defined as: 

 

where i is the input binary, d is the database malware instance, Si and Sd are the 

asymmetric symmetries. An example construction of program similarity is shown in 

figure 19. 

If the program similarity of the examined program to any malware in the database 

equals or exceeds a threshold of 0.6, then it is deemed to be a variant. As the database 

contains only malicious software, the binary of unknown status is also deemed 
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Figure 18. Assignment of flowgraph strings between sets. 
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malicious. The threshold of 0.6 was chosen empirically through a pilot study. If the 

binary is identified as malicious, and not deemed as excessively similar to an existing 

malware in the database, the new set of malware signatures can be stored in the 

database as part of an automatic system. Program similarity exceeding 0.95 is used in 

Malwise to define signatures excessively similar. 

6.2 The Set Similarity Search 

To classify the query program as malicious or benign, a similarity search is performed 

to find any similar malware in the database. The search can be performed exhaustively 

but has poor performance. To improve the performance, the similarity between 

programs, represented as sets, can utilise an alternative algorithm. The expected case 

when performing the set similarity search, is that the query is not similar to any 

malware in the database and our algorithm exploits this expected case. 

s1,a1,b1

s3,a3,b3

a1

a3

a4

a5

a2

a6

b2

b4

b3

b1
s1

s3

S=Si*Sd

S=(s1*a1 + s3*a3) * (s1*b1 + s3*b3)

Figure 19. Malware classification using set similarity. 
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Our first proposed algorithm iterates through each flowgraph string in the query 

program and finds matching strings from malware using a global database. From this, 

the asymmetric similarities associated with each malware are constructed during each 

round. After processing the query program, the matching malware are examined to 

identify those that have a program similarity above the threshold of 0.6. 

The problem with this initial approach is that some flowgraph strings have many 

matching malware. To handle this problem, we divide the classification process into 

two stages. In the first stage, we only build the asymmetric similarity for flowgraphs 

which are associated with a unique or nearly unique malware. At completion of 

processing uniquely matching malware, we prune those that cannot have an eventual 

program similarity above 0.6. Finally, we process the remaining flowgraph strings, but 

we do not employ the entire flowgraph database, and instead use a local database for 

each of the malware remaining from the previous stage. Pseudo code to describe the 

algorithm is given in figure 20. We then return the remaining malware equal to or 

exceeding the program similarity of 0.6. This part of the process is not shown to 

conserve space. 

The set similarity search algorithm can be used for approximate matching by using an 

approximate dictionary search over the standard dictionary search used in exact 

matching. The similarity ratio threshold defines the maximum number of errors allowed 

in the search. 
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S = 0.6 

matches[name][Sa,Sb] : output : input initialized Sa=0, Sb=0 

db        : input  : malware database 

in   : input  : input binary 

solutions  : global temporary 

 

ProcessMatch(s: malware signature, similarityTogo) 

{ 

        if (!seenBefore(s) && !solutions.seenBefore(s.malwareName)) { 

                if (!matches[s.malwareName].find(s) and similarityTogo < S) { 

                        // do nothing 

                } else if (matches.find(s) && 

                        similarityTogo + matches[s.malwareName].Sa < S &&  

                        similarityTogo + matches[s.malwareName].Sb < S) 

                { 

                        matches[s.malwareName].erase(s) 

                } else { 

                        matches[s.malwareName].Sa += weight_of_malware_cfg(s) 

                        matches[s.malwareName].Sb += weight_of_input_cfg(s) 

                } 

        } 

} 

 

Classify(in: input binary, db: malware database) 

{ 

        similarityTogo = 1.0 

        foreach u in unique_cfg_matches(db, cfgs(in)) { 

                solutions.reset() 

                ProcessMatch(u, similarityTogo) 

                similarityTogo -= weight_of_input_cfg(u) 

        } 

        dups = duplicate_cfg_matches(db, cfgs(in)) 

        foreach d in dups { 

                if (1.0 - similarityTogo >= 1.0 – S) 

                        break 

                solutions.reset() 

                foreach e in cfgs(d) { 

                        ProcessMatch(malware_signature(d), similarityTogo) 

                } 

                similarityTogo -= weight_of_input_cfg(u) 

                dups.erase(d) 

        } 

        foreach c in matches { 

                tempSimilarityTogo = similarityTogo 

                foreach d in dups { 

                        solutions.reset() 

                        foreach e in matching_cfgs_in_specific_db(db, d, c.malwareName)) { 

                                ProcessMatch(malware_signature(e), tempSimilarityTogo) 

                        } 

                        tempSimilarityTogo -= weight_of_input_cfg(d) 

                } 

        } 

        return matches 

} 

 

Figure 20. Pseudo code for the set similarity search. 
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6.3 Complexity Analysis 

We assume a search complexity is O(log(N)) for both global and local flowgraph 

databases. The runtime complexity of malware classification is on average O(Nlog(M)) 

where M is the number of control flow graphs in the database, and N is the number of 

control flow graphs in the input binary. N is proportional to the input binary size and 

not more than several hundred in most cases. The worst case can be expected to have a 

runtime complexity of O(Nlog(M) + ANlog(N)), where A is the number of similar 

malware to the input binary. It is desirable that the malware database is not populated 

with a significant number of similar malware. In practice, this condition is unlikely to 

be significant. It is expected that the average case is processing benign samples. 

The runtime complexity, in existing literature, to identify similarity between two call 

graphs using the Hungarian method [59] is N
3
, where N is the sum of nodes in each 

graph. Metric trees can avoid exhaustive comparisons in the database, which naively 

would be MN
3
, where M is the number of indexed malware. An average of 70% of the 

database size M, was pruned when identifying the 10 nearest neighbours in a search 

utilizing metric trees [59]. Our algorithm, has similar intentions and comparable results 

in identifying malware variants, and performs significantly more efficiently. The 

runtime complexity of a typical multi-pattern string matching algorithm used in 

Antivirus systems, employing the Aho-Corasick algorithm [9] is linear to the size of the 

input program and number of identified matches. The disadvantage of this approach is 

that pre-processing is required on the malware database to enable linear scanning time 

that is independent of the database size. Our system imposes more overhead by 

performing unpacking and static analysis, but is potentially capable of real-time updates 
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to the malware database, and is capable of maintaining efficient runtime complexity. 

Additionally, in traditional Antivirus, false positives increase as the program sizes 

increase [56]. Our system is more resilient to false positives under these conditions 

because increased flowgraph complexity enables more precise signatures. 

6.4 Evaluation 

6.4.1 Effectiveness 

To compare the effectiveness of exact matching and approximate matching, 40 malware 

variants from the Netsky, Klez, Roron and Frethem families of malware were classified. 

The Netsky, Klez and Roron malware samples were chosen to mimic a selection of the 

malware and evaluation metrics in previous research [29]. The malware was obtained 

through a public database [66]. A number of the malware samples were packed. 

Malwise automatically identifies and unpacks such malware as necessary. Each of the 

40 malware sample were compared to every other sample. In approximate matching, 

252 comparisons identified variants. The same evaluation was performed using exact 

matching, and 188 comparisons identified variants. Approximate matching identifies 

more variants as expected. Exact matching, while less accurate, is demonstrated to be 

effective at detecting malware variants. 
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Table 5. Similarity matrices for malware 

using exact matching. 

 a b c d g h 

a  0.76 0.82 0.69 0.52 0.51 

b 0.76  0.83 0.80 0.52 0.51 

c 0.82 0.83  0.69 0.51 0.51 

d 0.69 0.80 0.69  0.51 0.50 

g 0.52 0.52 0.51 0.51  0.85 

h 0.51 0.51 0.51 0.50 0.85  

 Klez (exact). 

 aa ac f j p t x y 

aa  0.74 0.59 0.67 0.49 0.72 0.50 0.83 

ac 0.74  0.69 0.78 0.40 0.55 0.37 0.63 

f 0.59 0.69  0.88 0.44 0.61 0.41 0.70 

j 0.67 0.78 0.88  0.49 0.69 0.46 0.79 

p 0.49 0.40 0.44 0.49  0.68 0.85 0.58 

t 0.72 0.55 0.61 0.69 0.68  0.63 0.86 

x 0.50 0.37 0.41 0.46 0.85 0.63  0.54 

y 0.83 0.63 0.70 0.79 0.58 0.86 0.54  

Netsky(exact). 

 ao b d e g k m q a 

ao  0.44 0.28 0.27 0.28 0.55 0.44 0.44 0.47 

b 0.44  0.27 0.27 0.27 0.51 1.00 1.00 0.58 

d 0.28 0.27  0.48 0.56 0.27 0.27 0.27 0.27 

e 0.27 0.27 0.48  0.59 0.27 0.27 0.27 0.27 

g 0.28 0.27 0.56 0.59  0.27 0.27 0.27 0.27 

k 0.55 0.51 0.27 0.27 0.27  0.51 0.51 0.75 

m 0.44 1.00 0.27 0.27 0.27 0.51  1.00 0.58 

q 0.44 1.00 0.27 0.27 0.27 0.51 1.00  0.58 

a 0.47 0.58 0.27 0.27 0.27 0.75 0.58 0.58  

Roron (exact). 

Table 6. Roron malware and similarity 

ratio threshold of 1.0. 

 

ao b d e g k m q a 

ao   0.41 0.27 0.27 0.27 0.46 0.41 0.41 0.44 

b 0.41 

 

0.27 0.26 0.27 0.48 1.00 1.00 0.56 

d 0.27 0.27 

 

0.44 0.50 0.27 0.27 0.27 0.27 

e 0.27 0.26 0.44 

 

0.56 0.26 0.26 0.26 0.26 

g 0.27 0.27 0.50 0.56 

 

0.26 0.27 0.27 0.26 

k 0.46 0.48 0.27 0.26 0.26 

 

0.48 0.48 0.73 

m 0.41 1.00 0.27 0.26 0.27 0.48 

 

1.00 0.56 

q 0.41 1.00 0.27 0.26 0.27 0.48 1.00 

 

0.56 

a 0.44 0.56 0.27 0.26 0.26 0.73 0.56 0.56   

 

Table 4. Similarity matrices for malware 

using approximate matching. 

 

a b c d g h 

a   0.84 1.00 0.76 0.47 0.47 

b 0.84 

 

0.84 0.87 0.46 0.46 

c 1.00 0.84 

 

0.76 0.47 0.47 

d 0.76 0.87 0.76 

 

0.46 0.45 

g 0.47 0.46 0.47 0.46 

 

0.83 

h 0.47 0.46 0.47 0.45 0.83   

Klez (approximate). 

 

aa ac f j p t x y 

aa 

 

0.78 0.61 0.70 0.47 0.67 0.44 0.81 

ac 0.78 

 

0.66 0.75 0.41 0.53 0.35 0.64 

f 0.61 0.66 

 

0.86 0.46 0.59 0.39 0.72 

j 0.70 0.75 0.86 

 

0.52 0.67 0.44 0.83 

p 0.47 0.41 0.46 0.52 

 

0.61 0.79 0.56 

t 0.67 0.53 0.59 0.67 0.61 

 

0.61 0.79 

x 0.44 0.35 0.39 0.44 0.79 0.61 

 

0.49 

y 0.81 0.64 0.72 0.83 0.56 0.79 0.49 

 
Netsky (approximate). 

 

ao b d e g k m q a 

ao   0.70 0.28 0.28 0.27 0.75 0.70 0.70 0.75 

b 0.74 

 

0.31 0.34 0.33 0.82 1.00 1.00 0.87 

d 0.28 0.29 

 

0.50 0.74 0.29 0.29 0.29 0.29 

e 0.31 0.34 0.50 

 

0.64 0.32 0.34 0.34 0.33 

g 0.27 0.33 0.74 0.64 

 

0.29 0.33 0.33 0.30 

k 0.75 0.82 0.29 0.30 0.29 

 

0.82 0.82 0.96 

m 0.74 1.00 0.31 0.34 0.33 0.82 

 

1.00 0.87 

q 0.74 1.00 0.31 0.34 0.33 0.82 1.00 

 

0.87 

a 0.75 0.87 0.30 0.31 0.30 0.96 0.87 0.87   

Roron (approximate). 
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Table 4 and table 6 evaluates the flowgraph matching system in more detail using 

generated similarities between malware using approximate and exact matching. In 

normal operation, the system does not calculate the complete similarity between 

binaries which are not considered variants, however this performance feature was 

relaxed for this evaluation metric. Highlighted cells identify a malware variant, defined 

as having a similarity equal to or exceeding 0.60. In approximate matching, a flowgraph 

is classed as being a variant of another flowgraph if the similarity ratio is equal to or in 

excess of 0.9. To improve the performance of exact matching, procedures with less than 

5 basic blocks were not included, which on occasion results in higher similarity being 

identified than approximate matching, as demonstrated by the Netsky.t and Netsky.f 

malware. The results demonstrate that the system finds high similarities between 

malware families using both approximate and exact matching. 

Table 5 shows the difference in the similarity matrix when the threshold for the 

similarity ratio is increased to 1.0. Differences of up to 30% were noted across the 

malware variants using the two similarity ratio thresholds. Using a threshold of 1.0 for 

the similarity ratio is similar, but not identical, to the results of exact matching. 

6.4.2 Effectiveness of Exact Matching 

To evaluate exact matching in Malwise on a larger scale, 15,409 malware samples with 

unique MD5 hashes were collected between 02-01-2009 and 8-12-2009 from honeypots 

in the mwcollect Alliance [67] network. The malware samples were sorted according to 

collection time, and processed in order. 94.4% of malware samples were found to have 

a similarity of more than 95% to previously classified malware in the set. 863 
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representative malware signatures were stored in the database, where none were more 

than 95% similar to other signatures. It was found that 88.26% of malware were 

detected as variants of previously classified malware. This high probability represents 

strong evidence that detecting malware variants has much benefit in the detection of 

unknown malware samples. It was also found that 34.24% of malware were 100% 

similar to existing malware, once unpacked. This corroborates research [16] that many 

new instances of malware are repacked versions of existing malware. The results after 

evaluating 15,409 malware, demonstrate the classification algorithm used by Malwise is 

highly effective in detecting malware. The accuracy of these results is dependent on 

successfully unpacking the malware samples. Manual inspection was performed on a 

smaller set of samples shown in Section 6.4.3 to validate the results. 

6.4.3 Efficiency of Exact Matching 

809 malware samples with unique MD5 hashes were collected between 29-04-2009 and 

17-05-2009 from honeypots in the mwcollect Alliance network [67] and form a subset 

of the previously classified 15,409 malware. All malware were used to populate the 

database, irrespective of having identical or near identical signatures to existing 

malware. 754 samples were found to have at least one other sample in the set which was 

a variant. Table 7 and figure 21 evaluates the speed of processing these malware 

samples, including unpacking and classification time but excluding the loading time of 

the malware database. The evaluation was performed on a 2.4 GHz Quad Core Desktop 

PC with 4G of memory, running 32-bit Windows Vista Home Premium with Service 

Pack 1, as was used in the unpacking performance testing. 86% of the malware were 

processed in under 1.3 seconds. The only malware that was not processed in under 5
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Table 7. Malware processing time. 

Time(s)  Num. of Samples 

Samples 0-1 299 

1-2 401 

2-3 46 

3-4 30 

4-5 32 

5+     1 

 

Table 8. Benign sample processing time. 

Time(s)  Num. of Samples 

0.0 0 

0.1 139 

0.2 80 

0.3 42 

0.4 28 

0.5 10 

0.6 10 

0.7 3 

0.8 6 

0.9 5 

1-2 17 

2+ 6 

 

 

 

Figure 22. Benign processing time. Figure 21. Malware processing time. 
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seconds instead took nearly 14 seconds. This was because nearly 163 Million 

instructions were emulated during unpacking. This is possibly the result of an anti-

emulation loop. Manual inspection of the results also reveal some malware were not 

fully unpacked. The static analysis is therefore likely generating signatures based on the 

packing tool, which becomes blacklisted by system.  

To evaluate the speed of classifying benign samples, 346 binaries in the Windows 

system directory were evaluated using the malware database created in the previous 

evaluation. The results are shown in table 8 and figure 22. The median time to perform 

classification was 0.25 seconds. The slowest sample classified required 5.12 seconds. 

Only 6 samples required more than 2 seconds.  

It is much faster to process benign samples than malicious samples. Malicious samples 

are typically packed and the unpacking consumes the majority of processing time. The 

results clearly show this difference, and give more evidence that our system performs 

quickly in the average case. The results shown demonstrate efficient processing in the 

majority of benign and real malware samples, with speeds suitable for potential desktop 

adoption. 
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6.4.4 Efficiency of Exact Matching With A Synthetic Database 

To evaluate the scalability of the classification algorithm used in exact matching, a 

synthetic database was constructed. To simulate conditions likely in real samples, 10% 

of the control flow graphs were made common to all malware. The synthetic database 

contained up to a maximum of 70,000 malware, with each malware having 200 control 

flow graphs. The malware signatures were randomly generated. The time to perform 

100,000 repetitions of classification of an executable and no other processing is shown 

in figure 23. Less than a millisecond was required to complete a single repetition of 

classification for all evaluated database sizes. The trend of the graph is logarithmic, as 

predicted, when classifying a benign binary.  

Figure 23. Scalability of classification. 
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6.4.5 Malwise’s Resilience to False Positives 

To evaluate the generation of false positives in Malwise, table 9 and table 10 shows 

classification among non similar binaries using approximate and exact matching. Low 

similarity was found among these samples as expected. 

To further evaluate the exact matching algorithm against false positives, the malware 

database created from the 809 samples in Section 6.4.3 was used for classifying the 

binaries in the windows system directory. No false positives were identified. The 

highest matching sample showed a similarity of 0.34. All other binaries had similarities 

below 0.25. This result clearly shows resilience against false positives. 

Table 9. Similarity matrix for non similar 

programs using approximate matching. 

 

cmd.exe calc.exe netsky.aa klez.a roron.ao 

cmd.exe 

 

0.00 0.00 0.00 0.00 

calc.exe 0.00 

 

0.00 0.00 0.00 

netsky.aa 0.00 0.00 

 

0.19 0.08 

klez.a 0.00 0.00 0.19 

 

0.15 

roron.ao 0.00 0.00 0.08 0.15 

 
Table 10. Similarity matrix for non similar 

programs using exact matching. 

 cmd.exe calc.exe netsky.aa klez.a roron.ao 

cmd.exe  0.00 0.00  0.00 

calc.exe 0.00  0.00 0.00 0.00 

netsky.aa 0.00 0.00  0.15 0.09 

klez.a  0.00 0.15  0.13 

roron.ao 0.00 0.00 0.09 0.13  
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To continue evaluation of exact and approximate matching, table 11 shows a more 

thorough test for false positive generation by comparing each executable binary to every 

other binary in the Windows Vista system directory. The histogram groups binaries that 

shares similarity in buckets grouped in intervals of 0.1. The results show there exist 

similarities between some of the binaries, but for the majority of comparisons the 

similarity is less than 0.1. This seems a reasonable result as most binaries will be 

unrelated. Exact matching identifies fewer similarities than approximate matching as 

Table 11. Histogram of 

similarities between executable 

files in Windows system 

directory. 

Similarity Matches 

(approx.) 

Matches 

(exact) 

0.0 105497 97791 

0.1 2268 1598 

0.2 637 532 

0.3 342 324 

0.4 199 175 

0.5 121 122 

0.6 44 34 

0.7 72 24 

0.8 24 22 

0.9 20 12 

1.0 6 0 
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expected. Exact matching also produces fewer comparisons due to the added 

requirement of each flowgraph having at least 5 basic blocks, which resulted in some 

binaries being ineligible for analysis. 

6.5 Summary 

Malware can be classified according to similarity in its flowgraphs. We proposed an 

algorithm to identify the similarity between programs based on sets of control flow 

graph features. We additionally proposed a similarity search algorithm that allowed for 

efficient database searching to find similar sets to our query. We implemented these 

algorithms in the prototype Malwise system. It was shown that our system can 

effectively identify variants of malware in samples of real malware. It was also shown 

that there is a high probability that new malware is a variant of existing malware. 

Finally, we evaluated the speed and efficiency of the complete Malwise system 

including unpacking and malware classification. The demonstrated speed warrants 

Malwise as suitable for potential applications including desktop and Internet gateway 

and Antivirus systems. 
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7  Conclusions and Future Work 

7.1 Future Work 

The Malwise system performs effectively but we believe the malware detection rate 

could be improved by employing more precise algorithms when comparing and 

assigning control flow graphs between sets of programs. The Malwise system currently 

employs a greedy solution to the assignment problem. This could be replaced with an 

optimal assignment to minimize the sum of distances. 

In addition to effectiveness, the efficiency of the Malwise system could also potentially 

be improved. The automated unpacking system could employ dynamic binary 

translation. Approximate matching could use heuristic based comparisons. The more 

sound string edit distance could subsequently be used to refine the results. Additionally, 

alternative string metrics are possible such as the sequence alignment algorithms 

frequently employed in the field of Bioinformatics. 

The malware detection could also be made more robust against different forms of 

polymorphism. Particular features may be found to be more effective in particular 

situations. The use of multiple features, including call graph information and data 

dependencies, could be used. Finally, statistical classification could be applied to 

control flow features in the detection of unknown and novel malware samples. 
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7.2 Conclusions 

This thesis provided a survey of existing literature in the automated unpacking of 

malware and static classification of malware. The thesis proposed novel approaches to 

effectively unpack and classify malware while maintaining a high degree of efficiency. 

Our approach employed application level emulation for unpacking malware and used 

control flow graphs as static features to characterize malware. 

The major contributions of this thesis are summarized follows: 

 We proposed the use of application level emulation for automated unpacking. 

 We proposed using entropy analysis to detect when unpacking was complete. 

 We proposed using a graph invariant based signature to estimate control flow 

graph isomorphism for the purpose of constructing a measure of program 

similarity. 

 We proposed using the decompilation technique of structuring to generate a 

string based control flow signature, amenable to comparisons using the string 

edit distance. This approach was used for approximate control flow graph 

matching. 

 We proposed a set similarity function and a set similarity search algorithm 

which formed the basis for our malware classification system and performed 

efficiently in the expected case. 

We implemented and evaluated our ideas in a novel prototype system named Malwise. 

The automated unpacking system was found to accurately unpack samples that were 
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obfuscated using known packing tools. The speed and efficiency of the unpacking 

system was found to be suitable for potential desktop adoption. The malware 

classification system was demonstrated to detect variants of real malware. It was shown 

that a high probability existed that a new malware instance was a variant of existing 

malware. Approximate matching was shown to detect more malware variants than exact 

matching, yet exact matching was shown to have comparable effectiveness. The exact 

matching classification system was found to perform efficiently in our evaluation with 

performance suitable for potential application in an Internet gateway or in desktop 

Antivirus. 
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