
1

Abstract

Malware is a pervasive problem in distributed computer and network systems.

Identification of malware variants provides great benefit in early detection. Control flow

has been proposed as a characteristic that can be identified across variants, resulting in

classification employing flowgraph based signatures. Static analysis is widely used to

construct the signatures but can be ineffective if malware undergoes a code packing

transformation to hide its real content. This thesis proposes a novel system, named

Malwise, for malware classification using a fast application level emulator to reverse

the code packing transformation, and two flowgraph matching algorithms to perform

classification: exact flowgraph matching and approximate flowgraph matching. The

exact flowgraph matching algorithm uses string based signatures of graph invariants,

and is able to detect malware with near real-time performance. The approximate

flowgraph matching algorithm is slower but more effective and uses the decompilation

technique of structuring to generate string based signatures amenable to comparisons

using the string edit distance. To demonstrate the effectiveness and efficiency of the

automated unpacking and flowgraph based classification, we evaluate the system with

synthetic malware and over 15,000 real samples. The evaluation shows our system is

highly effective in terms of accuracy in revealing all a sample‟s hidden code, execution

time for unpacking and classification, and accuracy in detection of malware variants.

2

Fast Automated Unpacking and Classification of

Malware

Silvio CESARE

Master of Informatics

School of Management and Information Systems

Faculty of Arts, Business, Informatics and Education

Central Queensland University

May 2010

3

Certificate of Authorship and Originality of thesis

The work contained in this thesis has not been previously submitted either in whole or

in part for a degree at Central Queensland University or any other tertiary institution. To

the best of my knowledge and belief, the material presented in this thesis is original

except where due reference is made in text.

Signed:

Date: 17 May 2010

4

Copyright statement

This thesis may be freely copied and distributed for private use and study, however, no

part of this thesis or the information contained therein may be included in or referred to

in publication without prior written permission of the author and/or any reference fully

acknowledged.

Signed:

Date: 17 May 2010

:

5

Table of Contents

1 Introduction .. 18

1.1 Background to the Study .. 18

1.2 Aim and Scope of the Research .. 21

1.2.1 Aim ... 21

1.2.2 Scope .. 21

1.3 Structure of the Thesis .. 21

1.4 Major Contributions of the Thesis .. 23

2 Related Work .. 25

2.1 Taxonomy of Malware Polymorphism ... 26

2.1.1 Syntactic Changes .. 26

2.1.1.1 Dead Code Insertion .. 26

2.1.1.2 Instruction Substitution ... 27

2.1.1.3 Variable Renaming .. 27

2.1.1.4 Code Reordering ... 28

2.1.1.5 Branch Obfuscation ... 28

2.1.1.6 Branch Inversion and Flipping .. 29

2.1.1.7 Opaque Predicate Insertion ... 30

6

2.1.1.8 Code Packing .. 30

2.1.2 Semantic Changes .. 30

2.1.2.1 Code Insertion ... 31

2.1.2.2 Code Deletion .. 31

2.1.2.3 Code Substitution .. 31

2.1.2.4 Code Transposition ... 31

2.2 Malware Obfuscation Using Code Packing ... 31

2.2.1 Traditional Code Packing ... 33

2.2.2 Shifting Decode Frame ... 34

2.2.3 Instruction Virtualization and Malware Emulators 34

2.2.4 Resistance to Dynamic Analysis .. 35

2.3 Taxonomy of Static Program Features ... 36

2.3.1 Object File Header Attributes ... 36

2.3.2 Bytes ... 36

2.3.3 Instructions ... 37

2.3.4 Basic Blocks ... 37

2.3.5 Control Flow Graphs .. 38

2.3.6 Call Graph .. 39

2.3.7 API Calls .. 39

7

2.3.8 Data Flow ... 39

2.3.9 Procedure Dependence Graphs ... 39

2.3.10 System Dependence Graph ... 40

2.4 Comparison of Static Program Features ... 40

2.5 Classification of Static Program Features .. 42

2.5.1 Vectors .. 42

2.5.2 Strings ... 42

2.5.3 Sets ... 44

2.5.4 Graphs ... 44

2.6 Static Analysis of Malware .. 44

2.6.1 Disassembly .. 45

2.6.2 Control Flow Reconstruction ... 46

2.6.2.1 Opaque Predication Detection ... 46

2.6.3 Alias Analysis of Assembly Language ... 46

2.6.4 Obfuscation and Limits to Static Analysis ... 47

2.7 Automated Unpacking Of Obfuscated Malware .. 47

2.7.1 Detecting the Code Packing Transformation ... 47

2.7.2 Unpacking Using a Dynamic Approach ... 49

2.7.3 Malware Simulation ... 50

8

2.7.3.1 Whole System Emulation .. 50

2.7.3.2 Application Level Emulation .. 51

2.7.3.3 Dynamic Binary Instrumentation .. 52

2.7.3.4 Native Execution Hardware Paging .. 52

2.7.3.5 Hardware Based Virtualization ... 53

2.7.4 Detecting End of Unpacking .. 53

2.7.4.1 Renovo .. 54

2.7.4.2 Pandora‟s Bochs .. 54

2.7.4.3 OmniUnpack ... 54

2.7.4.4 Uncover ... 55

2.7.4.5 Hump-and-dump ... 55

2.8 Static Approaches to Malware Classification ... 56

2.8.1 Classification Approaches .. 56

2.8.1.1 Statistical Classification .. 56

2.8.1.2 Instance-Based Learning ... 56

2.8.1.3 The Similarity Search Used in Instance-Based Learning 57

2.8.2 Control Flow Based Classification Approaches 58

2.8.2.1 Control Flow Graphs ... 58

9

2.8.2.1.1 Whole Program Control Flow Graph Isomorphism Recognition

Using Tree Automata ... 58

2.8.2.1.2 Common k-subgraphs ... 58

2.8.2.2 Call Graphs .. 59

2.8.2.2.1 Whole Program Context-Free Control Flow 59

2.8.2.2.2 Flowgraph Based Classification using Fixed Points..................... 60

2.8.2.2.3 Approximating the Graph Edit Distance 61

2.8.2.2.4 Metric Access Methods .. 61

2.9 Trends ... 62

2.9.1 Malware Development ... 62

2.9.2 Static Malware Detection and Classification ... 63

2.10 Summary ... 64

3 Problem Definition and Our Approach .. 65

3.1 Problem Definition ... 65

3.2 Our Approach ... 66

3.2.1 Exact Flowgraph Matching .. 67

3.2.2 Approximate Flowgraph Matching .. 67

4 Automated Unpacking .. 68

4.1 Identifying Packed Binaries Using Entropy Analysis 68

10

4.2 Application Level Emulation ... 68

4.2.1 Interpretation .. 69

4.2.1.1 x86 Instruction Set Architecture (ISA) ... 69

4.2.1.2 Virtual Memory ... 69

4.2.1.3 Windows API .. 70

4.2.1.4 Linking and Loading ... 71

4.2.1.5 Thread and Process Management .. 71

4.2.1.6 OS Specific Structures .. 71

4.2.2 Improvements to Emulation ... 72

4.2.2.1 Instruction Predecoding .. 72

4.2.2.2 Condition Codes .. 72

4.2.2.3 Emulating Known Sections of Code ... 72

4.2.3 Verification of Emulation ... 73

4.3 Entropy Analysis to Detect Completion of Hidden Code Extraction 74

4.4 Discussion ... 75

4.5 Evaluation ... 76

4.5.1 OEP Detection .. 76

4.5.2 Performance .. 80

4.6 Summary ... 82

11

5 Malware Feature Extraction ... 83

5.1 Static Analysis .. 83

5.2 Exact Flowgraph Matching .. 84

5.3 Approximate Flowgraph Matching .. 85

5.4 Discussion ... 89

5.5 Summary ... 90

6 Malware Classification ... 91

6.1 Malware Classification Using Set Similarity ... 91

6.2 The Set Similarity Search ... 93

6.3 Complexity Analysis .. 96

6.4 Evaluation ... 97

6.4.1 Effectiveness ... 97

6.4.2 Effectiveness of Exact Matching .. 99

6.4.3 Efficiency of Exact Matching ... 100

6.4.4 Efficiency of Exact Matching With A Synthetic Database 103

6.4.5 Malwise‟s Resilience to False Positives ... 104

6.5 Summary ... 106

7 Conclusions and Future Work .. 107

7.1 Future Work .. 107

12

7.2 Conclusions .. 108

13

List of Tables

Table 1. Metrics for identifying the original entry point in packed samples

(hostname.exe). ... 78

Table 2. Metrics for identifying the original entry point in packed samples (calc.exe). 79

Table 3. Running time to perform unpacking. ... 81

Table 4. Similarity matrices for malware using exact matching. 98

Table 5. Roron malware and similarity ratio threshold of 1.0. 98

Table 6. Similarity matrices for malware using approximate matching. 98

Table 7. Malware processing time. ... 101

Table 8. Benign sample processing time. ... 101

Table 9. Similarity matrix for non similar programs using approximate matching. 104

Table 10. Similarity matrix for non similar programs using exact matching. 104

Table 11. Histogram of similarities between executable files in Windows system

directory. ... 105

file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368534
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368534
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368535
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368536
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368537
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368538
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368539
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368540
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368541
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368542
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368543
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368544
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368544

14

List of Figures

Figure 1. A semantic nop. ... 27

Figure 2. Instruction substituion. .. 27

Figure 3. Register reassignment. .. 27

Figure 4. An indirect branch. .. 28

Figure 5. Branch inversion. .. 29

Figure 6. Branch flipping. .. 29

Figure 7. A simplified opaque predicate. ... 30

Figure 8. The traditional code packing transformation. ... 33

Figure 9. Code packing using the shifting decode frame. .. 34

Figure 10. Code packing using instruction virtualization. ... 35

Figure 11. An example of basic blocks and instructions in a program. 37

Figure 12. A control flow graph (left), and a call graph (right). 38

Figure 13. A packed program. .. 48

Figure 14. Block diagram of the Malwise malware classification system. 66

Figure 15. A depth first ordered flowgraph and its signature. .. 84

Figure 16. The relationship between a control flow graph, a high level structured graph,

and a signature. ... 86

Figure 17. The grammar to represent a structured control flow graph signature. 88

file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368511
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368512
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368513
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368514
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368515
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368516
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368517
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368518
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368519
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368520
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368521
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368522
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368523
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368524
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368525
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368526
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368526
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368527

15

Figure 18. Assignment of flowgraph strings between sets. .. 92

Figure 19. Malware classification using set similarity. .. 93

Figure 20. Pseudo code for the set similarity search. ... 95

Figure 21. Malware processing time. ... 101

Figure 22. Benign processing time. .. 101

Figure 23. Scalability of classification. .. 103

file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368528
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368529
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368530
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368531
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368532
file://cifs-m.its.deakin.edu.au/scesare/My%20Research%20Documents/Master's%20Research/Thesis/Thesis%20resubmission/Silvio%20Ceare%20-%20Resubmission%20of%20Thesis.doc%23_Toc276368533

16

Acknowledgments

I would first like to thank my family for their support and in particular my mother,

Maxine Cesare, whose assistance enabled me to have the opportunity to pursue my

ambitions of academic study. I am also thankful for the support of my principal

supervisor, Dr Yang Xiang, who provided continual assistance, including administrative

and scholarship support. I am thankful for his desire to publish during candidature.

17

List of Publications

[1] Silvio Cesare, and Yang Xiang 2010, Classification of Malware Using

Structured Control Flow, 8th Australasian Symposium on Parallel and

Distributed Computing (AusPDC 2010).

[2] Silvio Cesare, and Yang Xiang 2010, A Fast Flowgraph Based Classification

System for Packed and Polymorphic Malware on the Endhost, IEEE 24th

International Conference on Advanced Information Networking and Application

(AINA 2010), IEEE.

18

1 Introduction

1.1 Background to the Study

The presence of malicious software is a problem that plagues internet and network

connectivity. Malicious software, also known as malware, are programs characterised

by their malicious intent. They are hostile, intrusive or annoying software programs.

Examples of malware include trojan horses, worms, backdoors, dialers and spyware.

Malware is a problem that is increasing at a significant rate. According to the Symantec

Internet Threat Report [1], 499,811 new malware samples were received in the second

half of 2007. F-Secure additionally reported, “As much malware [was] produced in

2007 as in the previous 20 years altogether“ [2].

The modern purpose of malware is that of criminal enterprise for financial gain [3]. In

2008, “78 percent of confidential information threats exported user data” [3]. The

stealing of banking information using malware known as spyware [4] to covertly log

and relay such private information, is a common example of modern malware.

The malware problem continues when malicious software remains undetected by users.

The creation of criminal networks employing unauthorised use of users‟ computers is an

example of a malicious botnet [5]. Botnets are illegally leased to criminal networks in

order to create Email spamming networks, and to extort money from commercial

entities using the threat of distributed denial of service attacks. A user‟s inability to

prevent or detect malware often makes them liable to become an additional node in a

botnet‟s zombie network.

19

Detection of malicious software provides much benefit in fighting the threat that

malware poses to users‟ security. Detecting malware before it is allowed to execute its

intent allows such software to be effectively disabled. To identify a program as being

malicious or benign, automated analysis is required. The analysis can employ either a

static or dynamic approach. In the dynamic approach, the malware is executed, possibly

in a sandbox, and its runtime behaviour examined. In the purely static approach, the

malware is never executed.

Traditional Antivirus solutions to secure systems against malware have focused on

static detection. Dynamic approaches [6], while having some benefits compared to

static detection, also have disadvantages. The dynamic approach requires an execution

environment in which to run, mandating that a virtual machine or sandbox is available.

For cross platform systems, this may be an ineffective environment in which to operate.

If a virtual environment is not provided, execution of the malware on the host is

required, which may allow malware to execute its intent, before being detected.

Additionally, a dynamic analysis may fail to identify malicious software if the

malicious behaviour is not triggered during the analysis. While dynamic malware

detection is an important topic, this thesis focuses only on the static detection of

malware.

Traditional solutions to static malware detection have employed the use of signatures.

Signatures capture invariant characteristics, or fingerprints, in the malware that uniquely

identify it. Because of performance constraints, the most predominantly used signature

is a string containing patterns of the raw file content [7, 8]. This allows for a string

search [9] to quickly identify patterns associated with known malware. However, these

20

patterns can easily be invalidated because minor changes to the malware source code

have significant effects on the malware‟s raw content. Thus, traditional signatures can

prove ineffective when dealing with unknown variants.

Malware authors attempt to evade detection by creating polymorphic variants of their

malware which are not detected by anti-malware systems. Polymorphism describes

related, but different instances of malware sharing a common history of code. Code

sharing among variants can have many sources, whether derived from autonomously

self mutating malware, or manually copied by the malware creator to reuse previously

authored code. Related to polymorphic malware are packed malware. Code packing is

an obfuscation technique used to hide a malware‟s real content. A code packing tool is

applied to a malware instance, as a post-processing binary rewriting stage, to produce a

new packed version of the malware. It is often used to make manual analysis and

automated analysis of the malware more difficult. Code packing is also used to evade

signature detection by Antivirus software through the creation of malware variants

which have no associated Antivirus signature.

For a malware detection system to perform effectively, packed and polymorphic

malware variants must be detected. The detection of polymorphic malware has

generated an interest in classifying malware using features at a higher level abstraction

than the traditional byte level content. The field of static program analysis has provided

benefits to malware detection.

This thesis investigates unpacking combined with the static detection and classification

of malware and their polymorphic variants. We systematically examine packing and

21

polymorphism, develop algorithms to unpack malware, and develop algorithms to

classify malicious software derived from known malware.

1.2 Aim and Scope of the Research

1.2.1 Aim

The aim of this research is to discover effective and efficient methods for the detection

and classification of malware.

1.2.2 Scope

The scope of this study is limited to malware in the form of executable program

instances. Network intrusion detection of malicious content, or the general detection of

worms based on network traffic, while important in their own right, are not investigated.

To achieve the aim of detecting and classifying malware, the associated analyses must

incorporate the removal of obfuscations incorporated by the malware creator(s) that

would otherwise make such analyses ineffective. This mandates that the code packing

obfuscation in malware, and the unpacking of such obfuscated malware, be

investigated. The scope is limited to only the code packing transformations and

obfuscations evident in malware. The scope does not extend into the general problem of

deobfuscation and associated static analyses. The malware detection and classification,

subsequent to the code unpacking, is limited to only static analyses.

1.3 Structure of the Thesis

This thesis is organized as follows.

22

 Chapter 2 surveys the related work of malware unpacking and static

classification of malware. Insight is provided into how we chose to approach the

problem of malware classification. The survey of related work specifically

identifies the potential of application level emulation in contrast to the existing

approaches in automated unpacking. The survey also examines the benefits of

control flow as a static malware feature.

 Chapter 3 precisely defines the malware classification problem we aim to

address. We specifically examine the problem of malware variant detection

based on constructing similarity between programs. This chapter also outlines

the general approach for Malwise, our prototype malware classification system.

 Chapter 4 provides our proposed automated unpacking system based on

application level emulation. We also propose our method for detecting when

unpacking is complete using the technique of entropy analysis. We evaluate the

effectiveness and efficiency of the prototype unpacking system used in Malwise.

 Chapter 5 examines the static features we extract from malware that we will use

to classify malware. We propose two novel feature sets based on representing

control flow graphs as strings.

 Chapter 6 proposes our classification and database search algorithm based on

identifying similarity between programs. We perform an evaluation of the

effectiveness and efficiency of our prototype system, Malwise, that performs

unpacking and malware classification.

 Chapter 7 summarizes and concludes the thesis.

23

1.4 Major Contributions of the Thesis

The major contributions of this thesis are as follows:

 We propose, implement and evaluate the use of application level emulation in

automated unpacking. Application level emulation has commercial interest, but

has previously lacked academic evaluation.

 We propose the use of entropy analysis to detect that automated unpacking is

complete and the hidden code has been revealed. Entropy analysis has

previously been used to detect packed binaries, but has not been used in

malware unpacking.

 We propose using a graph invariant based signature to estimate control flow

graph isomorphism for the purpose of constructing a measure of program

similarity. The graph invariant chosen has been used previously to aid detection

of malware, but has not been used as a dominant feature in malware

classification.

 We propose using the decompilation technique of structuring to generate a string

based control flow signature, amenable to comparisons using the string edit

distance. This approach can be used for approximate control flow graph

matching. Decompilation has not been used previously to construct control flow

graph signatures or to perform malware classification

 We propose a set similarity function and a set similarity search algorithm which

form the basis for our malware classification system and which perform

24

efficiently in the expected case. The set similarity function and search are

unique to our work.

 We implement and evaluate our ideas in a novel prototype system named

Malwise.

25

2 Related Work

This chapter surveys the related work in malware unpacking and classification. The

structure of this chapter is as follows:

 Taxonomy of the techniques used to create polymorphic malware variants is

described in Section 2.1.

 Section 2.2 examines the code packing transformation technique used in

polymorphic malware in more detail. The code packing transformation is used

primarily as an obfuscation technique for malware.

 Section 2.3 provides taxonomy of static features that are present in malware and

benign samples that can be used for automated malware classification and

detection purposes.

 Section 2.4 compares the program features identified in the taxonomy.

 Section 2.5 categorizes the taxonomy of static program features in terms of their

abstract models and mathematical representations.

 Section 2.6 examines static analysis techniques that can be used on malware and

benign programs, such as disassembly and control flow reconstruction.

 The automated unpacking of samples is examined in Section 2.7.

 Section 2.8 then surveys the literature that investigates static classification of

malware when control flow is used as a feature.

 Section 2.9 examines future trends.

26

 Section 2.10 summarizes the chapter.

2.1 Taxonomy of Malware Polymorphism

2.1.1 Syntactic Changes

A syntactic polymorphic malware technique is a method that changes the syntactic

structure of the malware [10]. Though the syntactic structure changes in polymorphic

malware, the malware semantically remains identical. The technique is predominantly

used to evade byte level signature based detection and classification that is routinely

employed by traditional Antivirus. Polymorphism borrows many of the techniques from

the field of program obfuscation.

Polymorphism is sometimes described by the similar term of metamorphism. In that

usage it is used to describe the automated syntactic mutation of the malware‟s code and

instructions. Under such terminology, polymorphism is used to describe syntactic

mutation of limited parts of the malware‟s instruction content. The remaining parts of

the malware are encoded at the byte level without regard to the instruction syntax or

semantics. In this survey we treat polymorphism and metamorphism as identical to each

other.

2.1.1.1 Dead Code Insertion

Dead code is also known as junk code and a semantic nop [10]. Dead code is

semantically equivalent to a nil operation. Insertion of this type of code has no semantic

impact on the malware. The insertion increases the size of the malware and modifies the

byte and instruction level content of the malware.

27

2.1.1.2 Instruction Substitution

Instruction substitution replaces specific instructions or sequences of instructions with

semantically equivalent, but differing instructions and instruction sequences. The size of

the malware may grow or shrink in this procedure.

2.1.1.3 Variable Renaming

Variable renaming [11] and the associated technique of register reassignment alters the

use of variables and registers in a sequence of code such that the instructions are

semantically equivalent but use different variables and registers when compared to the

original code.

mov $0,%eax

mov $1,%ebx

add %eax,%ebx

push %ebx

call $0x80482000

mov $0,%ebx

mov $1,%ecx

add %ebx,%ecx

push %ecx

call $0x80482000

Figure 3. Register reassignment.

mov $0,%eax xor %eax,%eax

Figure 2. Instruction substituion.

push %ebx

pop %ebx

Figure 1. A

semantic nop.

28

2.1.1.4 Code Reordering

Code reordering [11] changes the syntactic order of the code in the malware [10]. The

actual or semantic execution path of the program does not change. However, the

syntactic order as present in the malware image is altered. Code reordering includes the

techniques of branch obfuscation, branch inversion, branch flipping, and the use of

opaque predicates.

2.1.1.5 Branch Obfuscation

Branch obfuscation attempts to hide the target of a branch instruction. Examples include

the use of Structured Exception Handling (SEH) on the Microsoft Windows platform.

The use of SEH to obscure control flow is common in modern malware. Similar

techniques involve indirect branching. Indirect branching uses data content as the target

of a branch. This translates control flow identification into a harder data flow analysis

problem. The use of a branch function [12] extends this approach and dispatches

multiple branches through a single routine. The main purpose of branch obfuscation is

to make the static analysis of the malware by an analyst or automated system harder to

perform.

mov $0x8048200,%eax

jmp *%eax

Figure 4. An indirect branch.

29

2.1.1.6 Branch Inversion and Flipping

Branch inversion inverts the branch condition in conditional branches. Whereas the

branch may originally transfer control when the condition is true, branch inversion

alters the condition to branch when false. To maintain the original semantics of the

program the branch instruction is also inverted. For example, a branch on condition true

statement would be changed to a branch on condition false statement. Additionally, the

condition being tested would also be inverted. Branch inversion is effectively a form of

instruction substitution on control flow statements.

Branch flipping [12] is a similar technique to branch inversion and rewrites the branch

instruction by substituting it with semantically equivalent code with different control

flow properties. For example, if the original code is to branch on condition true then the

new code branches on condition false to the original fall-through instruction. The new

fall-through instruction then unconditionally branches to the original conditional branch

target.

jc $0x80482000
cmc # complement carry flag

jnc $0x80482000

Figure 5. Branch inversion.

jz $0x80482000

L:

jnz L

jmp $0x80482000

L:

Figure 6. Branch flipping.

30

2.1.1.7 Opaque Predicate Insertion

An opaque predicate [12] is a predicate that always evaluates to the same result. An

opaque predicate is constructed so that it is difficult for an analyst or automated analysis

to know the predicate result. Opaque predicates can be used to insert superfluous

branching in the malware‟s control flow. They can also be used to assign variables

values which are hard to determine statically. The use of opaque predicates is primarily

for code obfuscation, and to prevent understanding by an analyst or automated static

analysis.

2.1.1.8 Code Packing

Code packing [13, 14] is used to hide and obfuscate the contents of malware from an

analyst and automated static analyses. Code packing is described in Section 2.2.

2.1.2 Semantic Changes

An extension to syntactic polymorphism is that of semantic polymorphism where the

new variant is a derived work of the original malware. Semantic changes to malware

occur due to the malware authors modifying the original source code or functionality.

This can occur to a natural evolution of the malware during its software development

life cycle. Additionally, it can occur when a malware author reuses existing malicious

code in a new malware instance.

mov $1,%eax

jz $0x80482000

Figure 7. A simplified opaque

predicate.

31

2.1.2.1 Code Insertion

Code insertion occurs when new functionality is added to the malware.

2.1.2.2 Code Deletion

Code deletion occurs when functionality is removed from the malware.

2.1.2.3 Code Substitution

Code substitution occurs when functionality in the malware is replaced by an alternative

algorithm or code.

2.1.2.4 Code Transposition

Code transposition occurs when specific code and functionality of the malware is

removed from its initial location and inserted into a semantically different location in

the malware.

2.2 Malware Obfuscation Using Code Packing

Code packing is the dominant technique used to obfuscate malware and hinder an

analyst‟s understanding of the malware‟s intent. In one month during 2007, 79% of

identified malware from a commercial Antivirus vendor was found to be packed [15].

Additionally, almost 50% of new malware in 2006 were repacked versions of existing

malware [16].

Code packing, in addition to obfuscating the understanding of the malware by an

analyst, is also used by malware to evade an Antivirus system‟s detection. Polypack

32

[17] evaluated the effectiveness of code packing against Antivirus detection by

providing a service to pack malware using a variety of code packing tools. Antivirus

systems often have the capabilities of unpacking known code packing tools, and

unpacking unknown tools has also had commercial interest [18]. However, Polypack

demonstrated that packing can be an effective tool to defeat an Antivirus system with

many commercial malware detection systems failing to identify the packed versions of

existing malware.

Code packing is used in the majority of malware, but code packing also serves to

provide compression and software protection for the intellectual property contained in a

program. It is not necessarily advantageous to flag all occurrences of code packing as

being indicative of malicious activity. Code packing tools are freely available [19] and

commercially sold to the public as legitimate software [20]. For this reason, unpacking

of packed programs provides benefit. It is advisable to determine if the packed contents

are malicious, rather than identifying only the fact that unknown contents are packed.

33

2.2.1 Traditional Code Packing

The most common method of code packing is described in [13]. Malware employing

this method of code packing transforms executable code into data as a post-processing

stage in the malware development cycle. This transformation may perform compression

or encryption, hindering an analyst's understanding of the malware when using static

analysis. At runtime, the data, or hidden code, is restored to its original executable form

through dynamic code generation using an associated restoration routine [21].

Execution then resumes as normal to the original entry point. The original entry point

marks the entry point of the original malware, before the code packing transformation is

applied. Execution of the malware, once the restoration routine is complete and control

is transferred to the original entry point, is transparent to the fact that code packing and

restoration had been performed. A malware may have the code packing transformation

applied more than once. After the restoration routine of one packing transformation has

Restoration

Routine

Hidden Code =

f(Original Code)

Original Code

Remnant Code

and Restoration

Routine

Original Code =

g(Hidden Code)

Packing Runtime

Original Executable Packed Executable Memory Image at Runtime

Figure 8. The traditional code packing transformation.

34

been applied, control may transfer another packed layer. The original entry point is

derived from the last such layer.

2.2.2 Shifting Decode Frame

An extension to traditional code packing is to maintain as much of the packed image in

an encrypted form at run-time. During execution of the malware, blocks of memory can

be decrypted as needed and subsequently re-encrypted to prevent an analyst or

automated system from having access to all the hidden code at any single moment in

time. This technique is known as the shifting decode frame [22]. The granularity of

encryption can occur at the page level, the basic block level, and the instruction level.

This type of code packing is not often used in wild malware, and in practice, traditional

code packing and instruction virtualization are the dominant techniques used in real

malware.

2.2.3 Instruction Virtualization and Malware Emulators

Code packing may employ the use of instruction virtualization also known as a malware

emulator [14]. An emulator used by a malware should not be confused with an emulator

Shifting Decode

Frame Restoration

Routine

Hidden Code =

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Hidden Code

Shifting Decode

Frame Restoration

Routine

Original Code

Original Executable

Figure 9. Code packing using the shifting decode frame.

35

used for automated unpacking of the malware. This type of code packing transformation

employing an emulator is used in a minority of malware. In this form of code packing,

packing translates the original native code into a byte-code which is subsequently

emulated by the malware at run-time. Using this form of code packing, the hidden code

in its original form is never revealed.

2.2.4 Resistance to Dynamic Analysis

Many malware packers introduce code that intentionally makes run-time analysis of the

packed malware more difficult [22]. Strategies employed by packed malware include

detection of the malware being debugged, or detection of the malware being executed

inside a virtual machine. These techniques are currently being employed by malware

[23]. In these situations, when an attempted dynamic analysis is being performed, the

execution of the malware packer diverges and the true malware behavior remains

hidden without execution.

Interpreter

Byte Code =

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Original Executable

Interpreter

Byte Code =

f(Original Code)

Figure 10. Code packing using instruction virtualization.

36

2.3 Taxonomy of Static Program Features

Malware classification and detection involves the extraction of features which are

subsequently used to characterize the malware. Features may be extracted dynamically

or statically. Dynamic approaches to malware classification involve monitoring

execution of the programs and extracting features based on their behaviour. Static

approaches extract features without program execution.

2.3.1 Object File Header Attributes

The object file header contains attributes which are often custom written during link

editing and binary rewriting.

2.3.2 Bytes

The simplest feature that can be extracted from a program is the raw byte level content

of the malware executable file [24]. An alternative source of content comes from the

individual program sections in the binary, including the code and data segments.

37

2.3.3 Instructions

An executable program is constructed of code and data. The code is represented as

assembly language. Extracting the assembly is the process of disassembling. The

instruction level content of a program can represent a more resilient form than the byte

level content if the instructions are considered by their type or mnemonic representation

[25].

2.3.4 Basic Blocks

A basic block is a straight line sequence of code without an intervening control transfer

instruction [26]. The basic block may be treated at the byte level, or at the instruction

level. Additionally, data dependencies within the basic block may be examined to

construct a directed acyclic graph [27]. The basic blocks may also be grouped to form a

set, or they may have additional structure imposed by the control flow graph.

8d 4c 24 04

83 e4 f0

ff 71 fc

55

89 e5

51

83 ec 24

e8 6a 00 00 00

c7 45 f8 00 00 00 00

eb 10

c7 04 24 a0 20 40 00

e8 5d 00 00 00

83 45 f8 01

83 7d f8 09

7e ea

83 c4 24

59

5d

8d 61 fc

c3

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

Figure 11. An example of basic blocks and instructions in a program.

38

2.3.5 Control Flow Graphs

The control flow graph is a directed graph, where the nodes are basic blocks [28]. The

edges in the graph represent the possible control flow of the associated procedure. The

control flow graph represents the intra-procedural control flow. A program may be

considered a set of control flow graphs, or the control flow graphs may have additional

structure as dictated by the call graph. Alternatively, control flow graphs may represent

inter-procedural and intra-procedural control flow in a single graph. In this case, the

graph represents the whole program control flow graph.

It is possible to construct alternative or abstracted representations of the control flow

graph. Loop nest trees, dominator trees, and control dependency graphs can also be

constructed [27].

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Figure 12. A control flow graph (left), and a call graph (right).

39

2.3.6 Call Graph

Call graphs like control flow graph model the possible execution paths and control flow

in a program [29]. The call graph is a directed graph representing the inter-procedural

control flow.

Like the control flow graph, alternative or abstracted representations are possible such

as a dominator tree.

2.3.7 API Calls

Programs interface with the underlying operating system and libraries. The invocation

of an API function from a known library can often be identified statically [30]. The API

call sequence gives insight to the behaviour of the program.

2.3.8 Data Flow

The data flow of a program represents the set of possible values data may hold during

program execution [31]. Many types of data flow analyses exist, including live variable

analysis, reaching definitions, and value-set analysis. Each analysis looks at a particular

property of the data at specific program points. Modelling the data flow requires that the

control flow be successfully identified. A simpler model of data dependencies can be

modelled as described in the basic block feature section.

2.3.9 Procedure Dependence Graphs

A procedure dependency graph combines the control dependencies and data

dependencies of a procedure into a single graph.

40

2.3.10 System Dependence Graph

The system dependence graph is a collection of procedure dependence graphs; one for

each procedure in the program.

2.4 Comparison of Static Program Features

Malware may be polymorphic, but static program features are known to be invariant

under different polymorphic techniques.

Byte and instruction level program features perform poorly when faced with the

polymorphic variations and mutations. Recompiling source code using different

compile time options may result in syntactic changes including variable renaming, and

instruction substitution. Code normalization [10] can sometimes reverse the effects of

syntactic polymorphism and can work in practice, but is not based on a sound

technique. Additionally, the byte and instruction stream may change when minor

semantic alterations are made to the malware source code.

The advantage of byte level content as a program feature is that the dependence on

accurate static analysis of the programs semantics or structure is not required.

If the instruction stream is used, additional challenges are presented because it is known

that perfect disassembly of an unknown image is undecidable on the x86 platform [32].

To avoid the problems of syntactic polymorphism, higher level abstractions of the

program can be used. The control flow features including control flow graphs and call

graphs are considered more invariant in polymorphic malware than byte and instruction

level content [28]. However, opaque predicates may result in these features being

41

altered. The detection of opaque predicates has been investigated, but it is not evident

that this is entirely satisfactory, and a sound method of detection against all unknown

predicates is not possible. For example, it is known that some algorithms which are used

to construct predicates are not proven to be true and remain only as conjectures that

produce the same predicate under current testing.

The presence of pointers and indirection in assembly language also present problems to

static analyses which may not have the precision required to construct a control flow

graph or call graph with the degree of accuracy required for malware classification. For

all its disadvantages, control flow has shown to be an effective feature that is invariant

in most current malware.

The use of API calls is another approach to solve the syntactic polymorphism problem.

This approach has problems with malware that obscures the use of those calls, as is the

case of the stolen bytes technique [22] introduced by code packing tools.

Data flow analysis is another high level abstraction but when used in the presence of

pointers is compounded by the problems that static analyses must face.

The procedure and system dependence graphs have similar problems with pointers and

indirection even when the data dependencies of pointers are ignored. The dependence

graphs are also dependent on accurate modelling of the instruction sequence. This

avoids problems such as register reassignment because the data dependencies are

represented as a graph. However, the problem occurs with the modelled instructions

used in the data dependencies, which may be polymorphic and variant. Polymorphism is

not handled effectively in this situation although code normalization may help.

42

2.5 Classification of Static Program Features

The program features can be divided into four categories of models that enable

manipulation of the features suitable for use in detection classification:

 Vectors

 Strings

 Sets

 Graphs

2.5.1 Vectors

Vectors represent the simplest object when processed for classification purposes.

Examples of possible vectors in malware classification include opcode distributions

[25]. Selecting features and reducing the dimensionality of a vector or feature vector is

possible using data mining techniques. Exact matching of vectors can be done quickly,

in linear time relative to the dimensionality of the vector. Approximate matching may

employ distance metrics or similarity functions. Distance metrics exist between vectors

including the Euclidean distance and the Manhattan distance. Additional methods to

determine the similarity between two vectors include the cosine similarity.

2.5.2 Strings

Strings are often associated with byte level content in relation to malware classification.

Searching for the presence of a substring in a body of text is a traditional technique used

in commercial Antivirus. A dictionary search is often used in association with a

43

malware database. The Aho-Corasick [9] string matching algorithm can be performed in

a time independent to the size of the database. Extensions to string matching include the

use of wildcards in the string, and regular expressions.

Byte level content may be treated as a string and approximate matching performed. The

Levenshtein or edit distance between two strings is the minimum number of insertions,

deletions and substitutions to transform one string to the other. The edit distance is the

basis for an approximate dictionary search which identifies related strings with at most

a specific number of errors. Related string metrics to show similarity between strings

include the longest common subsequence (LCS), and the sequence alignment

algorithms which are used frequently in the Bioinformatics field. The Smith-Waterman

algorithm is a widely used for the optimal local sequence alignment.

It is possible to extract all substrings of size n from the text to produce n-grams. Distinct

n-grams represent dimensions in a feature vector. This approach can improve the

effectiveness and efficiency when performing approximate matching. The use of n-

grams also allows for reordering of substrings that the edit distance would penalize

heavily. The use of an n-gram feature vector reduces the problem of approximate

matching of strings and byte or instruction level content to the problem of approximate

vector matching.

Alternative approaches to using strings include the use of statistical or information

theory based algorithms to identify measurable properties such as Kolmogorov

complexity or entropy.

44

2.5.3 Sets

A number of malware classification problems are equivalent to showing the similarity

between sets or collections of objects. Objects could include the control flow graphs or

the basic blocks of a program. An example usage could be to show program similarity

by identifying the set similarity between the programs‟ basic blocks. A number of set

similarity functions exist such as the Dice coefficient or the Jaccard index [33].

2.5.4 Graphs

Graphs naturally describe a number of program features including control flow graphs

and call graphs. Finding the equivalence between two graphs is to show they are

isomorphic. This problem has not been shown to run in polynomial time, but has also

not been proven that it does not. Additionally, approximate and inexact graph matching

has increased difficulty. Approximate graph matching is based on the graph edit

distance or the maximum common subgraph. The graph edit distance is analogous to the

string edit distance.

To make graph based classification tractable, a number of approximations have been

made. Graphs may be decomposed into subgraphs of fixed sizes where each distinct

subgraph represents a feature [28]. The k-subgraph decomposition is analogous to an n-

gram decomposition.

2.6 Static Analysis of Malware

Static Analysis is a process of determining properties of an analysed program wherein

the program being analysed is not executed. This type of analysis is often employed

45

during program compilation for the purposes of code optimisation. Static Analysis of

malware has many benefits in identifying features and building abstract models of

malware. These features and models can be used to perform malware classification.

Static analysis has been widely investigated, and its scope in this survey limited to its

use in malware classification.

2.6.1 Disassembly

Disassembly is the process of translating machine code to assembly language. This is

typically the first stage of a static analysis.

Static disassembly parses the entire binary image statically without execution. In static

disassembly, there are two main algorithms. In the Linear Sweep algorithm, the

instructions are disassembled one instruction after another, starting from the beginning

of code. The disadvantage of this method is that data introduced into instruction stream

may be erroneously disassembled.

The other main algorithm to perform disassembly is the Recursive Traversal algorithm.

This algorithm decodes each instruction following the order of the control flow. This

resolves the issue of embedded data, but may miss decoding instructions that are the

target of indirect jumps or other situations when it is hard to resolve control flow

statically.

Speculative Disassembly attempts to remedy the problems of the Recursive Traversal

algorithm problem by first performing the Recursive Traversal, and then performing a

Linear Sweep in regions that are not decoded. Christodorescu et al additionally

46

proposed a more robust algorithm in [34] to disassemble binaries that had been

purposely obfuscated.

2.6.2 Control Flow Reconstruction

It is necessary to use a program‟s disassembly to generate inter and intra procedural

control flow information. The main hindrance to generating accurate representations is

when a program uses indirect branches and procedure calls. The analysis of indirect

targets requires data flow analysis. A number of approaches have been employed [35-

37], but the simplest approach is to ignore indirect targets completely and accept a less

accurate representation. The edges of the graphs representing the control flow can be

constructed by connecting the branch or call site to the branch or call target.

2.6.2.1 Opaque Predication Detection

The presence of opaque predicates in a control flow graph reduces the accuracy of the

graph because of misleading branch targets. In [38] it was proposed to use the program

analysis technique of abstract interpretation to detect specific classes of opaque

predicate algorithms.

2.6.3 Alias Analysis of Assembly Language

Alias analysis is an analysis that seeks to statically determine the possible values that

pointer variables may contain during program execution. Value-Set Analysis [39] has

been proposed as an alias analysis, suitable for binary programs and assembly language.

Value-Set Analysis has been used in malware detection [40] and the automated static

unpacking of malware [41].

47

2.6.4 Obfuscation and Limits to Static Analysis

It is known that perfectly precise disassembly is undecidable [32]. Branch targets can be

indirect, and precise understanding of those run-time values can be problematic. In [42]

an analysis of some limits to static analysis of malware were identified. The use of

opaque predicates with hard to analyse predicates were shown to confound the problem

of precise program representation. Determining whether two programs are semantically

equivalent is also known to an undecidable problem which is why malware detection is

often based on heuristic and unsound solutions.

2.7 Automated Unpacking Of Obfuscated Malware

Automated unpacking is the process of revealing the hidden code that is introduced by

the code packing transformation. An unpacked binary is important for malware

classification because it is required for the static analysis to avoid false classification of

the query sample based solely on the packing tool.

2.7.1 Detecting the Code Packing Transformation

It is advantageous to know early in the analysis if a potential malware has undergone a

code packing transformation. By knowing that the sample is not packed, further

unpacking analysis need not be performed. The process of identifying packed binaries

begins with feature extraction. The raw file and section contents can be examined using

statistical metrics or machine learning techniques to classify the contents.

48

Restoration

Routine

High Entropy

Hidden Code

Packed Executable

Figure 13. A packed

program.

Using entropy analysis to determine if a binary is packed was proposed in Bintropy by

Hamrock and Lyda in [43]. The Entropy of a block of data is a statistical measure that

describes the amount of information it contains. It is calculated as follows:

where p(i) is the probability of the i
th

 unit of information in event x‟s sequence of N

symbols. For the malware packing analysis, the unit of information is a byte value, N is

256, and an event is a block of sequential data.

Hamrock and Lyda made the key observation that compressed and encrypted data

characterise packed malware samples, and compressed and encrypted data are

characterised as having high entropy. Program code and data are found to have much

lower entropies. Using this observation, packed malware is identified by the high

entropy in its raw content.

N

i ip

ipipip
xH

1

2

0)(,0

0)(),(log)(
)(

49

Entropy analysis is simple to implement and shown to be effective, yet it has some

limitations. Entropy analysis can fail to detect packed malware that intentionally lowers

its own entropy. However, this form of evasion is not presently employed by malware.

Additionally, entropy analysis can fail to identify code packing transformations which

perform simple obfuscations on the malware content, and do not transform and

obfuscate the malware using strong encryption or compression. Likewise, code packing

that employs instruction virtualization does not require encryption or compression,

making entropy analysis unable to identify binaries packed using this method.

2.7.2 Unpacking Using a Dynamic Approach

The majority of research in automated unpacking has targeted code packing

transformations that employ a restoration routine. The restoration routine naturally

reveals and restores the hidden code. After the restoration routine is complete, the

malware transfers control to the restored code. Because the malware naturally reveals

the hidden code during execution, dynamic analysis can allow for the extraction of the

hidden code and has proven to be popular.

Royal et al proposed an early system employing a combination of static analysis and

dynamic analysis in PolyUnpack [13]. A similar technique was proposed in [44].

Polyunpack performed an initial static disassembly of the packed program. During

execution, code that became evident and which was not present in the static

disassembly, was identified. This was identified as the hidden code. The collection of

hidden code constituted the unpacking process. Polyunpack provides a generic solution

to unpacking, however performance is not high due to the requirement of disassembling

50

and single stepping through execution. Additionally, the dynamic analysis requires

isolation of the running malware. This would imply the use of a virtual machine or

whole system emulation with the associated performance cost. This system would not

be viable for use in desktop Antivirus.

The most common approach to automated unpacking has taken advantage of the fact

that at the original entry point all of the hidden code is revealed. This has resulted in the

following components when developing an automated unpacking system.

 Simulation of the malware.

 Detecting when to stop the simulation – when the restoration routine has

completed and control is transferred to the original code

 Extraction of the revealed code present in the process image.

Simulation of the malware may involve whole system emulation, hardware based

virtualization, or native execution. Execution is simulated until the hidden code is

revealed. The most common technique in detecting when to stop the simulation is by

maintaining a shadow memory of memory writes, and detecting execution of that

memory.

2.7.3 Malware Simulation

2.7.3.1 Whole System Emulation

Renovo was proposed by Kang et al in [21]. Renovo provided a completely dynamic

approach to unpacking, employing whole system emulation. The technique of whole

system emulation was similarly proposed by Christoderescu et al in [10]. Whole system

51

emulation emulates the physical hardware of a host machine. A complete unmodified

guest operating system can be installed on the emulated machine.

Renovo required the use of a kernel driver in the guest operating system being

emulated. This is used to track the malware process being executed in the guest system.

This requirement of modifying the guest system with a kernel driver may make the

system more detectable.

Pandora's Bochs also used whole system emulation, but requires no modifications to the

guest operating system, and was proposed by Bohne in [22]. It is similar in concept to

Renovo. Renovo utilises a dynamic binary translator based on QEMU [45] to perform

the emulation, while Bochs uses an interpreter based emulator. Pandora's Bochs

contribution while providing greater resiliency to detection than Renovo is still

potentially prone to detection. Attacks to detect whole system emulation were shown in

[46]. Methods to respond to these attacks are demonstrated in [47].

Both Pandora's Bochs and Renovo using whole system emulation are quite effective at

analysing unknown malware samples if the emulation provides a faithful simulation.

However, whole system emulation has shown poor performance. Neither Pandora‟s

Bochs nor Renovo shows results that are suitable for a real-time Antivirus system.

2.7.3.2 Application Level Emulation

An alternative approach to whole system emulation is to emulate only the operating

system interface to guest software. This form of emulation is significantly more

efficient because there is no guest operating system that requires execution within the

simulation. There has been some commercial interest in application level emulation

52

[18]. However, little literature has been published and no authoritative refereed

publication exists. Likewise, there is almost no evaluation of these systems in existing

literature. Application level emulation‟s main failing is that it provides a less faithful

simulation than whole system emulation. This is because the implementer of the

emulator must simulate the operating system‟s operation. In whole system emulation,

the installed guest operating provides the authoritative implementation.

2.7.3.3 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation was proposed by Quist in Saffron [48]. Quist proposed

instrumenting the malware at runtime to track the execution of dynamically generated

code. Saffron employed the use of the DBI framework PIN [49] which has problems

with instrumenting anti-debugger code common in malware.

2.7.3.4 Native Execution Hardware Paging

Martignoni et al proposed Omnipack in [50] to natively execute and automatically

unpack programs. Hardware page protections were used to monitor the activity of each

program. Once unpacked, the image would be scanned by Antivirus software. A similar

hardware based approach was employed in [48]. The Omnipack system is implemented

to run co-operatively with an operating system, and perform unpacking and virus

scanning on demand. The disadvantage of this approach is in the use of the unpacking

system on Email gateways, possibly on a different architecture, which forces the

provision of a virtual or emulated machine in which to run in. This reduces the level of

performance and makes it unsuitable for real-time use.

53

2.7.3.5 Hardware Based Virtualization

Using hardware based virtualization for malware analysis and automated unpacking was

proposed by Dinaburg et al in Ether [51]. In this approach, execution of dynamically

generated code triggered extraction of the malware's process image similar to Renovo.

The difference is that the simulated environment is provided by a virtual machine using

hardware support. Ether, like Pandoras Boch's requires no changes to the guest

operating system. Unlike Pandora's Bochs, Ether does not have the same level of

problems of a malware detecting the system emulator. However, it has been shown that

hardware based virtualization is not immune to detection [46]. The use of a virtual

machine, and the use whole system emulation, requires a software license for

installation of the guest operating system. This restricts desktop adoption which

typically uses a single license. Virtual Machines are also inhibited by slow start-up

times which again are problematic for desktop Antivirus use. The use of a Virtual

Machine also prevents the system being cross platform as the guest and host CPU's

must be of the same architecture.

2.7.4 Detecting End of Unpacking

Detecting when the original entry point is reached and the hidden code of the packed

program is revealed allows for subsequent hidden code extraction.

54

2.7.4.1 Renovo

In Renovo, dynamic code generation was identified by the execution of previously

written memory. In this approach, memory is tracked through the maintenance of a

shadow memory associated with the running malwares process image.

Malware is executed in the simulated machine and allowed to run until the dynamically

generated code is executed. At this point, the memory image of the running malware is

taken. There can exist multiple layers or stages of the code packing transformation, so

the shadow memory is cleared and the process is restarted. This complete process is

reiterated until a time-out expires in any particular stage.

2.7.4.2 Pandora’s Bochs

Instead of an exclusive time-out employed by Renovo in each stage to determine when

to stop emulation, Pandora's Bochs identified markers that indicate unpacking is still

occurring - such indications include if the ratio of memory writes to unique branches is

high, the loading of a new dynamic Link Library, executing dynamically generated

code, or the first use of dynamically loaded API functions.

2.7.4.3 OmniUnpack

The OmniUnpack approach employed the use of hardware based page protection to

monitor writes to memory. Omnipack detects the end of unpacking stage when there is

execution of dynamically generated code that invokes a dangerous system call. A

dangerous system call is one which can leave the system in an unsafe state. The

55

granularity of tracking memory writes is in the unit of pages. The advantage of the

approach employed by Omnipack is that of performance.

2.7.4.4 Uncover

A refinement to the typical technique of detecting execution of dynamically generated

code was proposed by Wu et al in [52]. Two additional techniques were used to

eliminate false positives. 1) That the stack pointer at the potential original entry point

must be the same as when the malware is initially started. 2) That the potential original

entry point must constitute part of a sequence of newly or dynamically generated

written pages - and those pages must consist of what appears to be code. Determining if

a page of memory is code is performed by entropy analysis.

2.7.4.5 Hump-and-dump

Sun et al proposed the Hump-and-Dump [53] method as an alternative for detecting

when to stop the simulation. This technique is not based on detecting execution of

dynamically generated code. Hump-and-Dump builds a histogram of the ordered

addresses of executed instructions. The premise of this technique is to note that the

unpacking or restoration routine is evident as a large spike in the histogram. Following

the spike, is a flat section of height 1 which normally represents the original entry point.

Once the original entry point is detected, simulation ceases and an image of the process

is taken to reveal the hidden code. The process can be repeated to account for multiple

packing stages. The Hump-and-dump approach requires the use of simulation such as

emulation or virtualization.

56

2.8 Static Approaches to Malware Classification

2.8.1 Classification Approaches

Malware classification is the process of determining if an unknown binary belongs to

the class of malicious programs or the class of benign programs.

2.8.1.1 Statistical Classification

A data mining approach to malware detection is to employ statistical classification.

Each classification algorithm constructs a model, using machine learning, to represent

the benign and malicious classes. In this approach, a labelled training set is required to

build the class models during a process of supervised learning. Many statistical

classification algorithms exist including Naive Bayes, Neural Networks, and Support

Vector Machines. The key to statistical classification is to represent the malicious and

benign samples in an appropriate manner to enable the classification algorithms to work

effectively. Feature extraction is an important component of effective classification, and

an associated feature vector that can accurately represent the invariant characteristics in

the training sets and query samples is highly desirable.

2.8.1.2 Instance-Based Learning

Instance-based learning is a related and traditionally popular approach that can be

employed wherein the query program is classified by identifying a high similarity to a

known instance of malware in the training set. Traditional Antivirus utilises this

approach when it performs signature based detection. The key component to perform

classification using instance-based learning is a distance or similarity function between

57

the objects representing samples and queries. For a distance function to be effective

between objects, the objects must be modelled by a limited set of features that capture

the invariant characteristics of the malicious and benign programs. In some cases, the

distance function is replaced with a test for equality. However, testing only for equality

reduces the effectiveness of the classification process when dealing with malware

variants. Instance-based learning can additionally identify high similarity to benign or

white-listed samples, depending on the aims of the classification.

2.8.1.3 The Similarity Search Used in Instance-Based Learning

A search of a database to find similar, but not necessarily identical objects to a query is

known as a similarity search. The similarity search is a central aspect of instance-based

learning when applied to malware detection and classification using a large number of

malware signatures and training instances.

Distance functions between objects that have the properties of a metric can employ the

use of Metric Access Methods. A similarity search using metric access methods

performs faster than exhaustive linear search and enables significantly larger databases

q

Query Malicious

Query Benign

d(p,q)

p

r

Malware

Query

Figure 4. The software similarity search.

58

without being restricted by an equivalent increase in running time. Metric access

methods may use either static [54] or dynamic databases [55]. In dynamic Metric

Access Methods, dynamic database operations, such as object insertion, can be

effectively performed with reasonable performance expectations.

2.8.2 Control Flow Based Classification Approaches

2.8.2.1 Control Flow Graphs

2.8.2.1.1 Whole Program Control Flow Graph Isomorphism Recognition

Using Tree Automata

A fast approach to detecting whole program control flow graph isomorphism and

subgraph isomorphism was proposed in [56]. This approach constructed a spanning tree

based structure from the control flow graph, and then built a tree automaton for graph

recognition. This approach appears to have reasonable performance. However, this

technique is not effective at detecting malware variants that alter the control flow or

have semantic changes. Nor does this approach attempt to perform unpacking.

2.8.2.1.2 Common k-subgraphs

Decomposing control flow graphs into subgraphs was proposed by Kruegel et al in [28]

to classify polymorphic worms. The control flow graphs were decomposed into the set

of all subgraphs of fixed size k, where k is the number of nodes in the subpgrah. The k-

subgraphs were subsequently transformed into their canonical labelled form. The

adjacency matrix of the canonically label graph was transformed into a string. This

string represented the k-subgraph feature of the control flow being analysed. Worm

59

detection and classification occured through identifying the prevalence of k-subgraph

features between worm like executable content and unclassified executable programs.

The performance of this system was reasonable. Because the classification only

occurred on network streams identified as potential worms, it is hard to determine the

accuracy of the classification when applied to a larger set of malware. Additionally,

automated unpacking would be necessary for a general malware classification system.

2.8.2.2 Call Graphs

2.8.2.2.1 Whole Program Context-Free Control Flow

It was proposed in [57] that the inter-procedural control flow information could be

represented as a context free grammar with only some loss of information. A string

could represent the grammar, and string equality used to show equivalence between the

grammar, and inter-procedural control flow they represented. The advantage of this

approach, is that string based representations allow for fast searches in a malware

database using a dictionary search. The disadvantage of the approach investigated in

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

L_0

L_3

L_6

L_1

L_2 L_4

L_5

0101000

0000000

0000010

0010100

0000010

0000001

1001000

0001010

0000000

1000000

0000100

0010000

0101000

1000000

0000001

0000100

0000001

0010000

0001010

0010000

0100100

Figure 5. The k-subgraph feature.

60

this research is that it did not employ approximate matching of the inter-procedural

control flow. For polymorphic malware variants that alter the control flow through

source code modification, an approximate match is necessary for detection of the

malware.

2.8.2.2.2 Flowgraph Based Classification using Fixed Points

Carrera proposed an approximate flowgraph matching algorithm in [29] by identifying

fixed points in the flowgraphs and successively matching surrounding nodes in the

graph. Carrera built a similarity index between malware and used this to build

phylogeny (evolutionary) trees for taxonomy. Dullien and Rolles expanded the

approximate graph comparison algorithm in [58] to identify identical nodes between

callgraphs and control flow graphs. Their algorithm worked by identifying nodes, or

fixed points, between binaries that have uniquely identifiable features. Features for a

node in the callgraph include the number of basic blocks, control flow edges, and

number of subfunction calls. Carrera also proposed an estimation of a control flow

graph isomorphism based on string equality and a string signature of the graph

representing a graph traversal. Once a set of fixed points were known, their

neighbouring nodes could be examined. Identifying neighbours sharing common and

unique features iteratively allowed greater parts of the flowgraph to be identified.

The advantage of this approach is that it allows for moderately fast pair-wise

comparison between graphs. However, the approach does not perform efficiently for a

database of graphs and is not fast enough for desktop Antivirus use. Additionally,

automated unpacking, a requirement of the system to perform effectively, was assumed

61

to have occurred before classification is applied. A system for automated unpacking

was not proposed.

2.8.2.2.3 Approximating the Graph Edit Distance

An alternative algorithm to approximate graph matching was proposed in the SMIT

system [59]. SMIT employed the use of bipartite graphs and the Hungarian algorithm to

find matching nodes between two call graphs being compared in O(N
3
) running time.

The strength of their matching algorithm was that they allowed for it be used as an

approximation to the graph edit distance. The graph edit distance between two graphs,

is the number of edit operations to convert one graph to the other. The graph edit

distance gives a sound basis for similarity and dissimilarity between graphs.

2.8.2.2.4 Metric Access Methods

The graph edit distance is known to have the properties of a metric which allows the use

of metric access methods to search a database of objects. The metric access method

used in SMIT to perform a nearest neighbor search of call graphs was a Vantage Point

Tree [54]. The disadvantage of a Vantage Point Tree is that it is primarily a static data

structure. Alternate metric access methods such as the M-Tree [55] can be used for the

construction of dynamic structures, allowing for efficient object insertion times.

62

2.9 Trends

2.9.1 Malware Development

The driving force behind malware development is that of commercial gain by the

malware authors. As such, malware development is becoming more rigorous and

involves the typical development cycles as seen with legitimate software. Malware

creators will continue to protect and extend the lifetime of their software using available

techniques at their disposal.

Malware authors have in the past responded to Antivirus detection techniques in an

attempt to extend the lifetime of their malware. Techniques were developed for

syntactic polymorphism to evade string based signatures. Likewise, dynamic analysis

techniques employed by Antivirus systems and researchers including debugging and

virtualization are now routinely detected by malware [23, 46]. The detection of

individual software systems used for performing analyses will continue. If research

systems become popular, it becomes financially rewarding for malware developers to

detect these systems. The research community has responded in making analysis

systems less identifiable and this trend will continue.

We expect that malware authors will continue to use code packing [13] and

polymorphism techniques to obfuscate and hinder analysis. Code packing involving

instruction virtualization and malware emulators will grow in use due to the added

resistance it provides against malware analysis [14]. Semantic changes to malware will

also continue as malware authors reuse already developed malicious code. It is likely

that syntactic polymorphism will continue to grow in use. Obfuscations will develop in

63

response to the static analyses used in detection systems to extract features from

malware. Incorporating a variety of classification techniques and feature sets can

mitigate these attacks.

It should be noted that malware polymorphism development peaked during earlier

historical times of virus development. Viruses are now infrequently employed by

malware because the motivation for malware development is that of financial gain and

not the notoriety once gained for virus writing.

2.9.2 Static Malware Detection and Classification

Malware obfuscation has been increasingly addressed by researchers, and deobfuscation

will continue to be developed and incorporated into malware detection systems. These

deobfuscation techniques have increasingly borrowed from formal program analyses in

an attempt to make sound analyses possible in regards to their given constraints.

Malware classification has employed statistical techniques to detect unknown malware.

We believe research will continue using this approach and new features will be

developed that can more accurately characterize malware. Instance-based learning will

also be developed with particular research opportunity in working with large scale

datasets.

Static program features have been extracted at increasing levels of abstraction, and we

expect this to continue in future research. Abstraction has the benefit of being resistant

to lower level polymorphic changes. The performance of these research systems has not

been fully investigated, and we expect that future research opportunity lies in making

classification systems practical for industrial and widespread use.

64

2.10 Summary

Malware is a significant problem in computing environments and has been addressed in

research by malware classification systems. Effective malware classification systems

must deal with polymorphism. Polymorphic malware introduces syntactic and semantic

changes to the malware contents. Traditional byte-level approaches have performed

poorly with polymorphic malware. Program abstractions including control flow are

observed to be more invariant, when used as static features, than traditional approaches.

However, efficient algorithms that use these static features are lacking. Efficiency is a

requirement for research systems to be adopted in desktop environments or for the

research systems to scale to the high number of malware found in the wild.

The problem of classification and analysis is compounded when a malware is packed

and the true contents of the malicious software are hidden. Automated unpacking

reveals the hidden content. Efficiency is a key requirement for desktop adoption and

widespread use.

65

3 Problem Definition and Our Approach

The problem of malware classification and variant detection is defined in this chapter.

The problem summary is to use instance based learning and perform a similarity search

over a malware database. Additionally defined in this chapter is an overview of our

approach to design the prototype malware unpacking and classification system,

Malwise.

3.1 Problem Definition

A malware classification system is assumed to have advance access to a set of known

malware. This is for construction of an initial malware database. The database is

constructed by identifying invariant characteristics in each malware and generating an

associated signature to be stored in the database. After database initialization, normal

use of the system commences. The system has as input a previously unknown binary

that is to be classified as being malicious or non malicious. The input binary and the

initial malware binaries may have additionally undergone a code packing

transformation to hinder static analysis. The classifier calculates similarities between

the input binary and each malware in the database. The similarity is measured as a real

number between 0 and 1 - 0 indicating not at all similar and 1 indicating an identical or

very similar match. This similarity is a based on the similarity between malware

characteristics in the database. If the similarity exceeds a given threshold for any

malware in the database, then the input binary is deemed a variant of that malware, and

66

therefore malicious. If identified as a variant, the database may be updated to

incorporate the potentially new set of generated signatures associated with that variant.

3.2 Our Approach

Our approach employs both dynamic and static analysis to classify malware. Entropy

analysis initially determines if the binary has undergone a code packing transformation.

If packed, dynamic analysis employing application level emulation reveals the hidden

code using entropy analysis to detect when unpacking is complete. Static analysis then

identifies characteristics, building signatures for control flow graphs in each procedure.

The similarities between the set of control flow graphs and those in a malware database

accumulate to establish a measure of similarity. A similarity search is performed on the

malware database to find similar objects to the query. The system design of our

prototype system, Malwise, is presented in figure 1. Two approaches are employed to

generate and compare flowgraph signatures: exact flowgraph matching and approximate

flowgraph matching.

Win32

Executable

Packed?
Generate

Signatures
ClassifyYes Yes

Malware

Database

Non

Malicious
Malicious

New

Signature

No

Dynamic Analysis

Emulate
End of

Unpacking?

No

Figure 14. Block diagram of the Malwise malware classification system.

67

3.2.1 Exact Flowgraph Matching

An ordering of the nodes in the control flow graph is used to generate a string based

signature or graph invariant of the flowgraph. String equality between graph invariants

is used to estimate isomorphic graphs.

3.2.2 Approximate Flowgraph Matching

The control flow graph is structured in this approach. Structuring is the process of

decompiling unstructured control flow into higher level, source code like constructs

including structured conditions and iteration. Each signature representing the structured

control flow is represented as a string. These signatures are then used for querying the

database of known malware using an approximate dictionary search. A similarity

between flowgraphs can subsequently be constructed using the string edit distance.

68

4 Automated Unpacking

Automated unpacking is used to process malware samples before subsequent feature

extraction and classification. In this chapter, the automated unpacking component of the

Malwise system is proposed and evaluated.

4.1 Identifying Packed Binaries Using Entropy Analysis

Malwise performs an initial analysis on the input binary to determine if it has undergone

a code packing transformation. Entropy analysis [43] is used to identify packed binaries.

The entropy of a block of data describes the amount of information it contains.

Compressed and encrypted data have relatively high entropy. Program code and data

have much lower entropy. Packed data is typically characterised as being encrypted or

compressed, therefore high entropy in the malware can indicate packing.

An analysis most similar to Uncover [52] is employed. Identification of packed

malware is established if there exists sequential blocks of high entropy data in the input

binary. If the binary is identified as being packed, then the dynamic analysis to perform

automated unpacking proceeds. If the binary is not packed, then the static analysis and

classification commences immediately.

4.2 Application Level Emulation

Automated unpacking requires malware execution to be simulated so that the malware

may reveal its hidden code. The hidden code once revealed is then extracted from the

process image.

69

Application level emulation provides an alternate approach to whole system emulation

for automated unpacking. Application level emulation simulates the instruction set

architecture and system call interface. In the Windows OS, the officially supported

system call interface is the Windows API.

4.2.1 Interpretation

Malwise utilises interpretation to perform simulation. The features of the emulator

implemented by Malwise are described in this section.

4.2.1.1 x86 Instruction Set Architecture (ISA)

Much of the 32-bit x86 ISA has been implemented in Malwise. Extensions to the ISA,

including SSE and MMX instructions, have been partially implemented. A partial

implementation is adequate because the majority of programs do not employ full use of

the ISA. FPU, SSE, and MMX instructions are primarily used by malware to evade or

detect emulation. Malware may also use the debugging interface component of the ISA,

including debug registers and the trap flag, which are primarily used to obfuscate

control flow.

4.2.1.2 Virtual Memory

x86 employs a segmented memory architecture. The Windows OS utilises these

segment registers to reference thread specific data. Thread specific data is additionally

used by Windows Structured Exception Handling (SEH). SEH is used to gracefully

handle abnormal conditions such as division by zero and is routinely used by packers

and malware to obfuscate control flow.

70

Segmented memory is handled in Malwise by maintaining a table of segment

descriptions, known in the x86 ISA as the descriptor table. Addressed memory is

associated with a segment, known in the ISA as segment selectors, which hold an index

into the descriptor table. This enables a translation from segmented addressing to a flat

linear addressing.

Virtual memory is maintained by a table of memory regions referenced by their linear

address. Each memory region maintains its associated memory contents. Each region

also maintains a shadow memory that is utilised by the automated unpacking logic. The

shadow memory maintains a flag for each address that is set if that location has been

written to or of it has been read.

4.2.1.3 Windows API

The Windows API is the official system call interface provided by Windows. Malwise

detects calls to the Windows API by inspecting the simulated program counter. If the

program counter contains the address of a Windows API function, then a handler

implementing the functionality of the API is executed.

There are too many windows API functions to fully emulate, so only the most common

APIs are implemented. Commonly used APIs include heap management, object

management, and file system management.

71

4.2.1.4 Linking and Loading

Program loading entails allocating the appropriate virtual memory, loading the program

text, data and dynamic libraries and performing any required relocations. OS specific

structures and machine state must also be initialized.

The exported functions of a dynamically linked library may be entirely simulated

without having access to the native library. Such a system may have benefit when the

emulator is cross platform and when licensing issues should be avoided. Malwise

performs full dynamic library loading using the native libraries. This is done to provide

a more faithful simulation.

4.2.1.5 Thread and Process Management

Multithreading in applications must be emulated. Malwise implements this using user-

level threads - only one thread is running on the host at any particular time and each

thread is rescheduled after a specific number of instructions.

Support for emulating multiple processes was not implemented.

4.2.1.6 OS Specific Structures

Windows has process and thread specific structures that require initialization such as the

Process Environment Block, Thread Environment Block, and Loader Module. These

structures are visible to applications and can be used by malware.

72

4.2.2 Improvements to Emulation

A naive implementation of emulation can result in poor simulation speed. We make a

number of improvements in Malwise as follows, and also make additional

improvements to enable a mechanism to address anti-emulation code used by malware.

4.2.2.1 Instruction Predecoding

Instruction predecoding [14] is adopted and produces a significant gain in simulation

speed. In this technique, the decoding of unique instructions is cached. This results in a

performance gain because disassembly in a naive emulator consumes a large amount of

processor time. Predecoding can also be used to cache a function pointer directly to the

opcode handler. When used in this way, predecoding allows for fast implementation of

the x86 debugging ISA including hardware breakpoints and single step execution used

by debuggers. In this optimisation, the cache holding a function pointer to the opcode

handler is modified on-demand to reflect that it should execute the breakpoint or trap

logic. This removes explicit checks for these conditions from the emulator's main loop.

4.2.2.2 Condition Codes

The x86 condition codes are another point of optimisation and the prototype defers to

lazy evaluation of these at the time of their use, similar to QEMU [45].

4.2.2.3 Emulating Known Sections of Code

Many instances of malware use modified variants of the same packer or share similar

code between different packers. Taking advantage of this, it is possible to detect known

73

sections of code during emulation and handle them more specifically, and therefore

more efficiently than interpretation [60]. To implement this it is noted that each stage

during unpacking gives access to a layer of hidden code that has been revealed, and the

memory in each layer can be searched for sections of known code. These sections of

code can then be emulated, in whole, using custom handlers. This approach achieves

significantly greater performance than interpreting each individual instruction. Typical

code sections that can have written handlers include decryption loops, decompression

loops and checksum calculations. Handlers can also be written and used to dynamically

remove specific anti-emulation code.

Malwise implements handlers for frequently used loops in several well known packers.

4.2.3 Verification of Emulation

An automated approach to testing the correctness of emulation is implemented similar

to that of testing whole system emulation [61]. To achieve this, the program being

emulated is executed in parallel on the host machine. The host program is monitored

using the Windows debugging API. At the commencement of each instruction, the

emulator machine state is compared against the host version and examined for deviant

behaviour. This allows the detection of unfaithful simulation.

Faithful emulation is made more difficult, as some instructions and Windows API

functions behave differently when debugged. Malwise rewrites these instructions and

functions to emit behaviour consistent to that in a non debugged environment. This

enabled testing of packers and malware that employ known techniques to detect and

evade debugging.

74

4.3 Entropy Analysis to Detect Completion of Hidden Code

Extraction

Detection of the original entry point (OEP) during emulation identifies the point at

which the hidden code is revealed and execution of the original unpacked code begins

to take place. Detecting the execution of dynamic code generation by tracking memory

writes was used as an estimation of the original entry point in Renovo [21]. In this

approach the emulator executes the malware, and a shadow memory is maintained to

track newly written memory. If any newly written memory is executed, then the hidden

code in the packed binary being will now be revealed. To complicate this approach,

multiple layers or stages of hidden code may be present, and malware may be packed

more than once. This scenario is handled by clearing the shadow memory contents,

continuing emulation, and repeating the monitoring process until a timeout expires.

Malwise extends the concept of identifying the original entry point when unpacking

multiple stages by identifying more precisely at which stage to terminate the process,

without relying on a timeout. The intuition behind our approach is that if there exists

high entropy packed data that has not been used by the packer during execution, then it

remains to be unpacked. To determine if a particular stage of unpacking represents the

original entry point, the entropy of new or unread memory in the process image is

examined. Newly written memory is indicated by the shadow memory for the current

stage being unpacked. Unread memory is maintained globally, in a shadow memory for

all stages. If the entropy of the analysed data is low, then it is presumed that no more

compressed or encrypted data is left to be unpacked. This heuristically indicates

75

completion of unpacking. Malwise also performs the described entropy analysis to

detect unpacking completion after a Windows API imposes a significant change to the

entropy. This is commonly seen when the packer deallocates large amounts of memory

during unpacking. In the remaining case that the original entry point is not identified at

any point, an attempt in the emulation to execute an unimplemented Windows API

function will have the same effect as having identified the original entry point at this

location.

4.4 Discussion

Automated unpacking can potentially be thwarted to result in malware that cannot be

unpacked. Application level emulation presents inherent deficiencies when

implemented to emulate the Windows operating system. The Windows API is a large

set of APIs that requires significant effort to faithfully emulate. Complete emulation of

the API has not been achieved in the prototype and faithful emulation of undocumented

side effects may be near impossible. Malware that circumvents usual calling

mechanisms and malware that employs the use of uncommon APIs may result in

incomplete emulation. Malware is reportedly more frequently using the technique of

uncommon APIs to evade Antivirus emulation.

An alternative approach is to emulate the Native API which is used by the Windows

API implementation. However, the only complete and official documentation for

system call interfaces is the Windows API. The Windows API is a library interface, but

malware may employ the use of the Native API to interface directly with the kernel.

76

There does exist reported malware that employ the Native API to evade Antivirus

software.

Another problem that exists is early termination of unpacking due to time constraints.

Due to real-time constraints of desktop Antivirus, unpacking may be terminated if too

much time is consumed during emulation. Malware may employ the use of code which

purposely consumes time for the purpose of causing early termination of unpacking.

Dynamic binary translation may provide some relief through faster emulation.

Additionally, individual cases of anti-emulation code may be treated using custom

handlers to perform the simulation where anti-emulation code is detected.

Application level emulation performs optimally against variations of known packers, or

unknown packers that do not introduce significantly novel anti-emulation techniques.

Many newly discovered malware fulfil these criteria.

4.5 Evaluation

4.5.1 OEP Detection

To verify our system correctly performs hidden code extraction, we tested the Malwise

prototype against 14 public packing tools. These tools perform various techniques in the

resulting code packing transformation including compression, encryption, code

obfuscation, debugger detection and virtual machine detection. The samples chosen to

undergo the packing transformation were the Microsoft Windows XP system binaries

hostname.exe and calc.exe. hostname.exe is 7680 bytes in size, and calc.exe is 114688

bytes.

77

The original entry point identified by the unpacking system was compared against what

was identified as the real OEP. To identify the real OEP, the program counter was

inspected during emulation and the memory at that location examined. If the program

counter was found to have the same entry point as the original binary, and the 10 bytes

of memory at that location was the same as the original binary, then that address was

designated the real OEP.

The results of the OEP detection evaluation are in table 1 and table 2. The revealed code

column in the tabulated results identifies the size of the dynamically generated code and

data. The number of unpacking stages to reach the real OEP is also tabulated, as is the

number of stages actually unpacked using entropy based OEP detection. Finally, the

percentage of instructions that were unpacked, compared to the number of instructions

that were executed to reach the real OEP is also shown. This last metric is not a

definitive metric by itself, as the result of the unaccounted for instructions may not

affect the revelation of hidden code – the instructions could be only used for debugger

evasion for example. Entries where the OEP was not identified are marked with err.

Binaries that failed to pack correctly are marked as fail. The closer the results in column

3 and 4 indicates better performance. The closer the result in column 5 to 100%

indicates better performance. A score of 100% indicates a perfect result in unpacking.

78

Name Revealed

code and

data

Number of

stages to real

OEP

 Stages

unpacked

 % of instr. to

real OEP

unpacked

upx 13107 1 1 100.00

rlpack 6947 1 1 100.00

mew 4808 1 1 100.00

fsg 12348 1 1 100.00

npack 10890 1 1 100.00

expressor 59212 1 1 100.00

packman 10313 2 1 99.99

pe compact 18039 4 3 99.98

acprotect 99900 46 39 98.81

winupack 41250 2 1 98.80

telock 3177 19 15 93.45

yoda's

protector 3492 6 2 85.81

aspack 2453 6 1 43.41

pepsin err 23 err err

Table 1. Metrics for identifying the original entry point in packed samples (hostname.exe).

79

Name Revealed

code and

data

Number of

stages to real

OEP

 Stages

unpacked

 % of instr. to

real OEP

unpacked

upx 125308 1 1 100.00

rlpack 114395 1 1 100.00

mew 152822 2 2 100.00

fsg 122936 1 1 100.00

npack 169581 1 1 100.00

expressor fail fail fail fail

packman 188657 2 1 99.99

pe compact 145239 4 3 99.99

acprotect 251152 209 159 96.51

winupack 143477 2 1 95.84

telock fail fail fail fail

yoda's

protector 112673 6 3 95.82

aspack 227751 4 2 99.90

pespin err 23 err err

Table 2. Metrics for identifying the original entry point in packed samples (calc.exe).

80

The results show that unpacking the samples reveals most of the hidden code. The OEP

of pespin was not identified, possibly due to unused encrypted data remaining in the

process image, which would raise the entropy and affect the heuristic OEP detection.

The OEP in the packed calc.exe samples was more accurately identified, relative to the

metrics, than in the hostname.exe samples. This may be due to fixed size stages during

unpacking that were not executed due to incorrect OEP detection. Interestingly, in many

cases, the revealed code was greater than the size of the original unpacked sample. This

is because the metric for hidden code is all the code and data that is dynamically

generated. Use of the heap, and the dynamic generation of internally used hidden code

will increase the resultant amount.

The worst result was in hostname.exe using aspack. 43% of the instructions to the real

OEP were not executed, yet nearly 2.5K of hidden of code and data was revealed, which

is around a third of the original sample size. While some of this may be heap usage and

the result not ideal, it may still potentially result in enough revealed procedures to use

for the Malwise classification system in the static analysis phase.

4.5.2 Performance

The system used to evaluate the performance of the unpacking prototype was a modern

desktop - a 2.4 GHz Quad core computer, with 4G of memory, running 32-bit Windows

Vista Home Premium with Service Pack 1. The performance of the unpacking system is

shown in table 3. The running time is total time minus start-up time of 0.60s. Binaries

that failed to pack correctly are marked as fail. The number of instructions emulated

during unpacking is also shown.

81

 hostname.exe calc.exe

Name Time(s) # Instr. Time(s) # Instr.

mew 0.13 56042 1.21 12691633

fsg 0.13 58138 0.23 964168

upx 0.11 61654 0.19 1008720

packman 0.13 123959 0.28 1999109

npack 0.14 129021 0.40 2604589

aspack 0.15 161183 0.51 4078540

pe compact 0.14 179664 0.83 7691741

expressor 0.20 620932 fail fail

winupack 0.20 632056 0.93 7889344

yoda’s

protector 0.15 659401 0.24 2620100

rlpack 0.18 916590 0.56 7632460

telock 0.20 1304163 fail fail

acprotect 0.67 3347105 0.53 5364283

pespin 0.64 10482466 1.60 27583453

Table 3. Running time to perform unpacking.

82

In this evaluation full interpretation of every instruction is performed. The results

demonstrate the system is fast enough for integration into a desktop anti-malware

system.

4.6 Summary

The analysis of malicious software is made more challenging due to the presence of

packed malware. In this chapter we proposed fast algorithms to unpack malware using

application level emulation. We implemented and evaluated a prototype. To detect the

completion of unpacking, we proposed and evaluated the use of entropy analysis. The

detection of the original entry point worked with a high degree of accuracy. The

automated unpacking was demonstrated to work against a promising number of

synthetic samples using known packing tools, with high speed. This demonstrated that

the automated unpacking system is fast enough for potential desktop integration. The

automated unpacking system is efficient and effective and lays the foundation for

further malware analysis and classification.

83

5 Malware Feature Extraction

In this chapter, algorithms to extract the static features of malware are proposed. These

features characterize the malware samples and are used for subsequent classification in

the Malwise system.

5.1 Static Analysis

The static analysis component of Malwise proceeds once it receives an unpacked

binary. The analysis is used to extract characteristics from the input binary that can be

used for classification. The characteristic for each procedure in the input binary is

obtained through transforming its control flow into compact representation that is

amenable to string matching. This transformation, or signature generation, is described

in Section 5.2 and 5.3.

To initiate the static analysis process, the memory image of the binary is disassembled

using speculative disassembly [34]. Procedures are identified during this stage. A

heuristic is used to eliminate incorrectly identified procedures during speculation of

disassembly - the target of a call instruction identifies a procedure, only if the call site

belongs to an existing procedure. Data runs of more than 256 bytes all having the value

of zero are ignored. Once processed, the disassembly is translated into an intermediate

representation. Using an intermediate representation is not strictly necessary; however

Malwise is built as a general binary analysis platform which utilizes the intermediate

form. The intermediate representation is used to generate an architecture independent

control flow graph for each identified procedure. The control flow graph is then

84

transformed into a signature represented as a character string. The signature is also

associated with a weight, described in the following sections. The weight intuitively

represents the importance of the signature when used to determine program similarity.

5.2 Exact Flowgraph Matching

It is possible to generate a signature using a fast and simple method if the matching

algorithm only identifies graph isomorphism [29]. This approach takes note that if the

signatures or graph invariants of two graphs are not the same, then the graphs are not

isomorphic. The converse, while not strictly sound, is used as a good estimate to

indicate isomorphism. To generate a signature, the algorithm orders the nodes in the

control flow graph using a depth first order, although other orderings are equally

sufficient. A signature subsequently consists of a list of graph edges for the ordered

nodes, using the node ordering as node labels. This signature can be represented as a

string. An example signature is shown in figure 15.

To improve the performance, a hash of the string signature can be used instead. CRC64

is used in Malwise. The advantage of this matching algorithm over approximate

42

3

T F

TT

1

(1 -> 2), (1 -> 4)

(2 -> 3), ()

(), ()

(4 -> 3), ()

Figure 15. A depth first ordered flowgraph and its

signature.

85

matching is that classification using exact matches of signatures can be performed very

efficiently using a dictionary lookup.

The normalized weight of procedure x is defined as:

where Bi is the number of basic blocks of procedure i in the binary.

The similarity ratio between two flowgraphs in exact matching, with signatures x and y

is:

In Malwise, balanced binary trees implement the exact search of the flowgraph

database. The runtime complexity is O(log(N)).

5.3 Approximate Flowgraph Matching

Malware classification using approximate matches of signatures is employed.

Intuitively, using approximate matches of a control flow graph, instead of exact

isomorphism tests, should enable identification a greater number of malware variants.

In our approach we use structuring to generate a signature that enables approximate

matching using string edit distances.

i

i

x
x

B

B
weight

yx

yx
wed

,0

,1

86

Structuring is the process of recovering high level structured control flow from a control

flow graph. In our system, the control flow graphs in a binary are structured to produce

signatures that are amenable to comparison and approximate matching using string edit

distances.

The intuition behind using structuring as a signature is that similarities between

malware variants are reflected by variants sharing similar high level structured control

flow. If the source code of the variant is a modified version of the original malware,

then this intuition would appear to hold true.

The structuring algorithm implemented in Malwise is a modified algorithm of that

proposed in the DCC decompiler [62]. If the algorithm cannot structure the control flow

graph then an unstructured branch is generated. Surprisingly, even when graphs are

reducible (a measure of how inherently structured the graph is), the algorithm generates

unstructured branches in a small but not insignificant number of cases. Further

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

BW|{BI{B}E{B}B}BR

proc(){

L_0:

 while (v1 || v2) {

L_1:

 if (v3) {

L_2:

 } else {

L_4:

 }

L_5:

 }

L_7:

 return;

}

Figure 16. The relationship between a control flow graph, a high level

structured graph, and a signature.

87

improvements to this algorithm to reduce the generation of unstructured branches have

been proposed [63, 64]. However, these improvements were not implemented.

The result of structuring is output consisting of a string of character tokens representing

high level structured constructs that are typical in a structured programming language.

Subfunction calls are represented, as are gotos; however, the goto and subfunction

targets are ignored. The grammar for a resulting signature is defined in figure 17.

The normalized weight of procedure x is defined as:

where si is signature of procedure i in the binary. The weights are normalized so that the

sum of the set of weights is equal to 1.

The similarity ratio [26] was proposed to measure the similarity between basic blocks. It

is used in our research to establish the number of allowable errors between flowgraph

signatures in an approximate dictionary search. For two signatures or structured graphs

represented as strings x and y, the similarity ratio is defined as:

where ed(x,y) is the edit distance. Malwise defines the edit distance as the Levenshtein

distance – the number of insertions, deletions, and substitutions to convert one string to

another. Signatures that have a similarity ratio equal or exceeding a threshold t (t=0.9)

are identified as positive matches. This figure was derived empirically through a pilot

study.

i

i

x
x

slen

slen
weight

)(

)(

))(),(max(

),(
1

ylenxlen

yxed
wed

88

Figure 17. The grammar to represent a structured control flow graph

signature.

Procedure ::= StatementList

StatementList ::= Statement | Statement StatementList

Statement ::= Return | Break | Continue | Goto | Conditional | Loop | BasicBlock

Goto ::= 'G'

Return ::= 'R'

Break ::= 'B'

Continue ::= 'C'

BasicBlock ::= 'B' | 'B' SubRoutineList

SubRoutineList ::= 'S' | 'S' SubRoutineList

Condition ::= | ConditionTerm | ConditionTerm NextConditionTerm

NextConditionTerm ::= '!' Condition | Condition

ConditionTerm ::= '&' | '|'

IfThenCondition ::= Condition | '!' Condition

Conditional ::= IfThen | IfThenElse

IfThen ::= 'I' IfThenCondition '{' StatementList '}'

IfThenElse ::= 'I' Condition '{' StatementList „}‟ „E‟ „{„ StatementList '}'

Loop ::= PreTestedLoop | PostTestedLoop | EndlessLoop

PreTestedLoop ::= 'W' Condition '{' StatementList '}'

PostTestedLoop ::= 'D' '{' StatementList '}' Condition

EndlessLoop ::= 'F' '{' StatementList '}'

89

Using the similarity ratio t as a threshold, the number of allowable errors, E, or edit

distance, for signature x to be identified as a matching graph, is defined as:

To identify matching graphs from a flowgraph database, an approximate dictionary

search is performed on signature x, allowing E errors. The search is performed using

BK Trees [65]. BK Trees exploit knowledge that the Levenshtein distance forms a

metric space. The BK Tree search algorithm is faster than an exhaustive comparison of

each signature in the dictionary.

The runtime complexity of the edit distance between two signatures or strings is O(nm),

where n and m are the lengths of each respective signature. The algorithm employs

dynamic programming.

5.4 Discussion

Malware classification based on static analysis has a number of inherent problems and

may fail to perform correctly in all cases. Performing static disassembly, identifying

procedures and generating control flow graphs is, in the general case, undecidable.

Malware may specifically craft itself to make static analysis hard. In practice, the

majority of malware is compiled from a high level language and obfuscated as a post-

processing stage. The primary method of obfuscation is the code packing

transformation. Due to these considerations, static analysis generally performs well in

practice.

)1)((txlenE

90

5.5 Summary

Malware variants can be detected by identifying similarity in control flow to existing

malware. In this chapter we proposed two algorithms to extract control flow graph

features from malware. We proposed an algorithm using an estimation of control flow

graph isomorphism through the string equality of graph invariants. We also proposed

the decompilation technique of structuring to generate a string signature of a flowgraph

for use in approximate graph matching. The structured signature was amenable to

approximate matching using the string edit distance. These features lay the foundation

for malware classification.

91

6 Malware Classification

6.1 Malware Classification Using Set Similarity

To classify an input binary, the analysis makes use of a malware database. The database

contains the sets of flowgraph signatures, represented as strings, of known malware. To

classify the input binary, a similarity is constructed between the set of the binary‟s

flowgraph strings and each set of flowgraphs associated with malware in the database.

To construct the similarity between the two sets of flowgraph strings we construct a

mapping or assignment between the strings from each set. For exact matching, the

assignment is based on string equality. For approximate matching, a greedy assignment

is made for the best approximate matching string where the similarity ratio is above 0.9.

An example assignment is shown in figure 18.

Two weights are associated with each matching flowgraph signature. The weights have

been normalized and the sum of matching weights identifies the size of the matching

subset. Formally, the asymmetric similarity is:

where t is the empirical threshold value of 0.9, wed is the similarity ratio between the i
th

control flow graph of the input binary and the matching graph in the malware database,

and weightx is the weight of the cfg where x is either the input binary or the malware

binary in the database.

i edxed

ed

x
twweightw

tw
S

iii

i

,

,0

92

The analysis performs more accurately with a greater number of procedures and hence

signatures. If the input binary has too few procedures, then classification cannot be

performed. The prototype does not perform classification on binaries with less than 10

procedures. For the exact matching classification, an additional requirement is that the

control flow graph has at least 5 basic blocks.

The program similarity is the final measure of similarity used for classification and is

the product of the asymmetric similarities. The program similarity is defined as:

where i is the input binary, d is the database malware instance, Si and Sd are the

asymmetric symmetries. An example construction of program similarity is shown in

figure 19.

If the program similarity of the examined program to any malware in the database

equals or exceeds a threshold of 0.6, then it is deemed to be a variant. As the database

contains only malicious software, the binary of unknown status is also deemed

diSSdiS),(

q
d=ed(p,q)

p

BW|{B}BR

BI{B}BR

BSSR

BSR

BSSSR

BR

BW|{B}BR

BSSR

BSSSSR

BR

Figure 18. Assignment of flowgraph strings between sets.

93

malicious. The threshold of 0.6 was chosen empirically through a pilot study. If the

binary is identified as malicious, and not deemed as excessively similar to an existing

malware in the database, the new set of malware signatures can be stored in the

database as part of an automatic system. Program similarity exceeding 0.95 is used in

Malwise to define signatures excessively similar.

6.2 The Set Similarity Search

To classify the query program as malicious or benign, a similarity search is performed

to find any similar malware in the database. The search can be performed exhaustively

but has poor performance. To improve the performance, the similarity between

programs, represented as sets, can utilise an alternative algorithm. The expected case

when performing the set similarity search, is that the query is not similar to any

malware in the database and our algorithm exploits this expected case.

s1,a1,b1

s3,a3,b3

a1

a3

a4

a5

a2

a6

b2

b4

b3

b1
s1

s3

S=Si*Sd

S=(s1*a1 + s3*a3) * (s1*b1 + s3*b3)

Figure 19. Malware classification using set similarity.

94

Our first proposed algorithm iterates through each flowgraph string in the query

program and finds matching strings from malware using a global database. From this,

the asymmetric similarities associated with each malware are constructed during each

round. After processing the query program, the matching malware are examined to

identify those that have a program similarity above the threshold of 0.6.

The problem with this initial approach is that some flowgraph strings have many

matching malware. To handle this problem, we divide the classification process into

two stages. In the first stage, we only build the asymmetric similarity for flowgraphs

which are associated with a unique or nearly unique malware. At completion of

processing uniquely matching malware, we prune those that cannot have an eventual

program similarity above 0.6. Finally, we process the remaining flowgraph strings, but

we do not employ the entire flowgraph database, and instead use a local database for

each of the malware remaining from the previous stage. Pseudo code to describe the

algorithm is given in figure 20. We then return the remaining malware equal to or

exceeding the program similarity of 0.6. This part of the process is not shown to

conserve space.

The set similarity search algorithm can be used for approximate matching by using an

approximate dictionary search over the standard dictionary search used in exact

matching. The similarity ratio threshold defines the maximum number of errors allowed

in the search.

95

S = 0.6

matches[name][Sa,Sb] : output : input initialized Sa=0, Sb=0

db : input : malware database

in : input : input binary

solutions : global temporary

ProcessMatch(s: malware signature, similarityTogo)

{

 if (!seenBefore(s) && !solutions.seenBefore(s.malwareName)) {

 if (!matches[s.malwareName].find(s) and similarityTogo < S) {

 // do nothing

 } else if (matches.find(s) &&

 similarityTogo + matches[s.malwareName].Sa < S &&

 similarityTogo + matches[s.malwareName].Sb < S)

 {

 matches[s.malwareName].erase(s)

 } else {

 matches[s.malwareName].Sa += weight_of_malware_cfg(s)

 matches[s.malwareName].Sb += weight_of_input_cfg(s)

 }

 }

}

Classify(in: input binary, db: malware database)

{

 similarityTogo = 1.0

 foreach u in unique_cfg_matches(db, cfgs(in)) {

 solutions.reset()

 ProcessMatch(u, similarityTogo)

 similarityTogo -= weight_of_input_cfg(u)

 }

 dups = duplicate_cfg_matches(db, cfgs(in))

 foreach d in dups {

 if (1.0 - similarityTogo >= 1.0 – S)

 break

 solutions.reset()

 foreach e in cfgs(d) {

 ProcessMatch(malware_signature(d), similarityTogo)

 }

 similarityTogo -= weight_of_input_cfg(u)

 dups.erase(d)

 }

 foreach c in matches {

 tempSimilarityTogo = similarityTogo

 foreach d in dups {

 solutions.reset()

 foreach e in matching_cfgs_in_specific_db(db, d, c.malwareName)) {

 ProcessMatch(malware_signature(e), tempSimilarityTogo)

 }

 tempSimilarityTogo -= weight_of_input_cfg(d)

 }

 }

 return matches

}

Figure 20. Pseudo code for the set similarity search.

96

6.3 Complexity Analysis

We assume a search complexity is O(log(N)) for both global and local flowgraph

databases. The runtime complexity of malware classification is on average O(Nlog(M))

where M is the number of control flow graphs in the database, and N is the number of

control flow graphs in the input binary. N is proportional to the input binary size and

not more than several hundred in most cases. The worst case can be expected to have a

runtime complexity of O(Nlog(M) + ANlog(N)), where A is the number of similar

malware to the input binary. It is desirable that the malware database is not populated

with a significant number of similar malware. In practice, this condition is unlikely to

be significant. It is expected that the average case is processing benign samples.

The runtime complexity, in existing literature, to identify similarity between two call

graphs using the Hungarian method [59] is N
3
, where N is the sum of nodes in each

graph. Metric trees can avoid exhaustive comparisons in the database, which naively

would be MN
3
, where M is the number of indexed malware. An average of 70% of the

database size M, was pruned when identifying the 10 nearest neighbours in a search

utilizing metric trees [59]. Our algorithm, has similar intentions and comparable results

in identifying malware variants, and performs significantly more efficiently. The

runtime complexity of a typical multi-pattern string matching algorithm used in

Antivirus systems, employing the Aho-Corasick algorithm [9] is linear to the size of the

input program and number of identified matches. The disadvantage of this approach is

that pre-processing is required on the malware database to enable linear scanning time

that is independent of the database size. Our system imposes more overhead by

performing unpacking and static analysis, but is potentially capable of real-time updates

97

to the malware database, and is capable of maintaining efficient runtime complexity.

Additionally, in traditional Antivirus, false positives increase as the program sizes

increase [56]. Our system is more resilient to false positives under these conditions

because increased flowgraph complexity enables more precise signatures.

6.4 Evaluation

6.4.1 Effectiveness

To compare the effectiveness of exact matching and approximate matching, 40 malware

variants from the Netsky, Klez, Roron and Frethem families of malware were classified.

The Netsky, Klez and Roron malware samples were chosen to mimic a selection of the

malware and evaluation metrics in previous research [29]. The malware was obtained

through a public database [66]. A number of the malware samples were packed.

Malwise automatically identifies and unpacks such malware as necessary. Each of the

40 malware sample were compared to every other sample. In approximate matching,

252 comparisons identified variants. The same evaluation was performed using exact

matching, and 188 comparisons identified variants. Approximate matching identifies

more variants as expected. Exact matching, while less accurate, is demonstrated to be

effective at detecting malware variants.

98

Table 5. Similarity matrices for malware

using exact matching.

 a b c d g h

a 0.76 0.82 0.69 0.52 0.51

b 0.76 0.83 0.80 0.52 0.51

c 0.82 0.83 0.69 0.51 0.51

d 0.69 0.80 0.69 0.51 0.50

g 0.52 0.52 0.51 0.51 0.85

h 0.51 0.51 0.51 0.50 0.85

 Klez (exact).

 aa ac f j p t x y

aa 0.74 0.59 0.67 0.49 0.72 0.50 0.83

ac 0.74 0.69 0.78 0.40 0.55 0.37 0.63

f 0.59 0.69 0.88 0.44 0.61 0.41 0.70

j 0.67 0.78 0.88 0.49 0.69 0.46 0.79

p 0.49 0.40 0.44 0.49 0.68 0.85 0.58

t 0.72 0.55 0.61 0.69 0.68 0.63 0.86

x 0.50 0.37 0.41 0.46 0.85 0.63 0.54

y 0.83 0.63 0.70 0.79 0.58 0.86 0.54

Netsky(exact).

 ao b d e g k m q a

ao 0.44 0.28 0.27 0.28 0.55 0.44 0.44 0.47

b 0.44 0.27 0.27 0.27 0.51 1.00 1.00 0.58

d 0.28 0.27 0.48 0.56 0.27 0.27 0.27 0.27

e 0.27 0.27 0.48 0.59 0.27 0.27 0.27 0.27

g 0.28 0.27 0.56 0.59 0.27 0.27 0.27 0.27

k 0.55 0.51 0.27 0.27 0.27 0.51 0.51 0.75

m 0.44 1.00 0.27 0.27 0.27 0.51 1.00 0.58

q 0.44 1.00 0.27 0.27 0.27 0.51 1.00 0.58

a 0.47 0.58 0.27 0.27 0.27 0.75 0.58 0.58

Roron (exact).

Table 6. Roron malware and similarity

ratio threshold of 1.0.

ao b d e g k m q a

ao 0.41 0.27 0.27 0.27 0.46 0.41 0.41 0.44

b 0.41

0.27 0.26 0.27 0.48 1.00 1.00 0.56

d 0.27 0.27

0.44 0.50 0.27 0.27 0.27 0.27

e 0.27 0.26 0.44

0.56 0.26 0.26 0.26 0.26

g 0.27 0.27 0.50 0.56

0.26 0.27 0.27 0.26

k 0.46 0.48 0.27 0.26 0.26

0.48 0.48 0.73

m 0.41 1.00 0.27 0.26 0.27 0.48

1.00 0.56

q 0.41 1.00 0.27 0.26 0.27 0.48 1.00

0.56

a 0.44 0.56 0.27 0.26 0.26 0.73 0.56 0.56

Table 4. Similarity matrices for malware

using approximate matching.

a b c d g h

a 0.84 1.00 0.76 0.47 0.47

b 0.84

0.84 0.87 0.46 0.46

c 1.00 0.84

0.76 0.47 0.47

d 0.76 0.87 0.76

0.46 0.45

g 0.47 0.46 0.47 0.46

0.83

h 0.47 0.46 0.47 0.45 0.83

Klez (approximate).

aa ac f j p t x y

aa

0.78 0.61 0.70 0.47 0.67 0.44 0.81

ac 0.78

0.66 0.75 0.41 0.53 0.35 0.64

f 0.61 0.66

0.86 0.46 0.59 0.39 0.72

j 0.70 0.75 0.86

0.52 0.67 0.44 0.83

p 0.47 0.41 0.46 0.52

0.61 0.79 0.56

t 0.67 0.53 0.59 0.67 0.61

0.61 0.79

x 0.44 0.35 0.39 0.44 0.79 0.61

0.49

y 0.81 0.64 0.72 0.83 0.56 0.79 0.49

Netsky (approximate).

ao b d e g k m q a

ao 0.70 0.28 0.28 0.27 0.75 0.70 0.70 0.75

b 0.74

0.31 0.34 0.33 0.82 1.00 1.00 0.87

d 0.28 0.29

0.50 0.74 0.29 0.29 0.29 0.29

e 0.31 0.34 0.50

0.64 0.32 0.34 0.34 0.33

g 0.27 0.33 0.74 0.64

0.29 0.33 0.33 0.30

k 0.75 0.82 0.29 0.30 0.29

0.82 0.82 0.96

m 0.74 1.00 0.31 0.34 0.33 0.82

1.00 0.87

q 0.74 1.00 0.31 0.34 0.33 0.82 1.00

0.87

a 0.75 0.87 0.30 0.31 0.30 0.96 0.87 0.87

Roron (approximate).

99

Table 4 and table 6 evaluates the flowgraph matching system in more detail using

generated similarities between malware using approximate and exact matching. In

normal operation, the system does not calculate the complete similarity between

binaries which are not considered variants, however this performance feature was

relaxed for this evaluation metric. Highlighted cells identify a malware variant, defined

as having a similarity equal to or exceeding 0.60. In approximate matching, a flowgraph

is classed as being a variant of another flowgraph if the similarity ratio is equal to or in

excess of 0.9. To improve the performance of exact matching, procedures with less than

5 basic blocks were not included, which on occasion results in higher similarity being

identified than approximate matching, as demonstrated by the Netsky.t and Netsky.f

malware. The results demonstrate that the system finds high similarities between

malware families using both approximate and exact matching.

Table 5 shows the difference in the similarity matrix when the threshold for the

similarity ratio is increased to 1.0. Differences of up to 30% were noted across the

malware variants using the two similarity ratio thresholds. Using a threshold of 1.0 for

the similarity ratio is similar, but not identical, to the results of exact matching.

6.4.2 Effectiveness of Exact Matching

To evaluate exact matching in Malwise on a larger scale, 15,409 malware samples with

unique MD5 hashes were collected between 02-01-2009 and 8-12-2009 from honeypots

in the mwcollect Alliance [67] network. The malware samples were sorted according to

collection time, and processed in order. 94.4% of malware samples were found to have

a similarity of more than 95% to previously classified malware in the set. 863

100

representative malware signatures were stored in the database, where none were more

than 95% similar to other signatures. It was found that 88.26% of malware were

detected as variants of previously classified malware. This high probability represents

strong evidence that detecting malware variants has much benefit in the detection of

unknown malware samples. It was also found that 34.24% of malware were 100%

similar to existing malware, once unpacked. This corroborates research [16] that many

new instances of malware are repacked versions of existing malware. The results after

evaluating 15,409 malware, demonstrate the classification algorithm used by Malwise is

highly effective in detecting malware. The accuracy of these results is dependent on

successfully unpacking the malware samples. Manual inspection was performed on a

smaller set of samples shown in Section 6.4.3 to validate the results.

6.4.3 Efficiency of Exact Matching

809 malware samples with unique MD5 hashes were collected between 29-04-2009 and

17-05-2009 from honeypots in the mwcollect Alliance network [67] and form a subset

of the previously classified 15,409 malware. All malware were used to populate the

database, irrespective of having identical or near identical signatures to existing

malware. 754 samples were found to have at least one other sample in the set which was

a variant. Table 7 and figure 21 evaluates the speed of processing these malware

samples, including unpacking and classification time but excluding the loading time of

the malware database. The evaluation was performed on a 2.4 GHz Quad Core Desktop

PC with 4G of memory, running 32-bit Windows Vista Home Premium with Service

Pack 1, as was used in the unpacking performance testing. 86% of the malware were

processed in under 1.3 seconds. The only malware that was not processed in under 5

101

Table 7. Malware processing time.

Time(s) Num. of Samples

Samples 0-1 299

1-2 401

2-3 46

3-4 30

4-5 32

5+ 1

Table 8. Benign sample processing time.

Time(s) Num. of Samples

0.0 0

0.1 139

0.2 80

0.3 42

0.4 28

0.5 10

0.6 10

0.7 3

0.8 6

0.9 5

1-2 17

2+ 6

Figure 22. Benign processing time. Figure 21. Malware processing time.

102

seconds instead took nearly 14 seconds. This was because nearly 163 Million

instructions were emulated during unpacking. This is possibly the result of an anti-

emulation loop. Manual inspection of the results also reveal some malware were not

fully unpacked. The static analysis is therefore likely generating signatures based on the

packing tool, which becomes blacklisted by system.

To evaluate the speed of classifying benign samples, 346 binaries in the Windows

system directory were evaluated using the malware database created in the previous

evaluation. The results are shown in table 8 and figure 22. The median time to perform

classification was 0.25 seconds. The slowest sample classified required 5.12 seconds.

Only 6 samples required more than 2 seconds.

It is much faster to process benign samples than malicious samples. Malicious samples

are typically packed and the unpacking consumes the majority of processing time. The

results clearly show this difference, and give more evidence that our system performs

quickly in the average case. The results shown demonstrate efficient processing in the

majority of benign and real malware samples, with speeds suitable for potential desktop

adoption.

103

6.4.4 Efficiency of Exact Matching With A Synthetic Database

To evaluate the scalability of the classification algorithm used in exact matching, a

synthetic database was constructed. To simulate conditions likely in real samples, 10%

of the control flow graphs were made common to all malware. The synthetic database

contained up to a maximum of 70,000 malware, with each malware having 200 control

flow graphs. The malware signatures were randomly generated. The time to perform

100,000 repetitions of classification of an executable and no other processing is shown

in figure 23. Less than a millisecond was required to complete a single repetition of

classification for all evaluated database sizes. The trend of the graph is logarithmic, as

predicted, when classifying a benign binary.

Figure 23. Scalability of classification.

104

6.4.5 Malwise’s Resilience to False Positives

To evaluate the generation of false positives in Malwise, table 9 and table 10 shows

classification among non similar binaries using approximate and exact matching. Low

similarity was found among these samples as expected.

To further evaluate the exact matching algorithm against false positives, the malware

database created from the 809 samples in Section 6.4.3 was used for classifying the

binaries in the windows system directory. No false positives were identified. The

highest matching sample showed a similarity of 0.34. All other binaries had similarities

below 0.25. This result clearly shows resilience against false positives.

Table 9. Similarity matrix for non similar

programs using approximate matching.

cmd.exe calc.exe netsky.aa klez.a roron.ao

cmd.exe

0.00 0.00 0.00 0.00

calc.exe 0.00

0.00 0.00 0.00

netsky.aa 0.00 0.00

0.19 0.08

klez.a 0.00 0.00 0.19

0.15

roron.ao 0.00 0.00 0.08 0.15

Table 10. Similarity matrix for non similar

programs using exact matching.

 cmd.exe calc.exe netsky.aa klez.a roron.ao

cmd.exe 0.00 0.00 0.00

calc.exe 0.00 0.00 0.00 0.00

netsky.aa 0.00 0.00 0.15 0.09

klez.a 0.00 0.15 0.13

roron.ao 0.00 0.00 0.09 0.13

105

To continue evaluation of exact and approximate matching, table 11 shows a more

thorough test for false positive generation by comparing each executable binary to every

other binary in the Windows Vista system directory. The histogram groups binaries that

shares similarity in buckets grouped in intervals of 0.1. The results show there exist

similarities between some of the binaries, but for the majority of comparisons the

similarity is less than 0.1. This seems a reasonable result as most binaries will be

unrelated. Exact matching identifies fewer similarities than approximate matching as

Table 11. Histogram of

similarities between executable

files in Windows system

directory.

Similarity Matches

(approx.)

Matches

(exact)

0.0 105497 97791

0.1 2268 1598

0.2 637 532

0.3 342 324

0.4 199 175

0.5 121 122

0.6 44 34

0.7 72 24

0.8 24 22

0.9 20 12

1.0 6 0

106

expected. Exact matching also produces fewer comparisons due to the added

requirement of each flowgraph having at least 5 basic blocks, which resulted in some

binaries being ineligible for analysis.

6.5 Summary

Malware can be classified according to similarity in its flowgraphs. We proposed an

algorithm to identify the similarity between programs based on sets of control flow

graph features. We additionally proposed a similarity search algorithm that allowed for

efficient database searching to find similar sets to our query. We implemented these

algorithms in the prototype Malwise system. It was shown that our system can

effectively identify variants of malware in samples of real malware. It was also shown

that there is a high probability that new malware is a variant of existing malware.

Finally, we evaluated the speed and efficiency of the complete Malwise system

including unpacking and malware classification. The demonstrated speed warrants

Malwise as suitable for potential applications including desktop and Internet gateway

and Antivirus systems.

107

7 Conclusions and Future Work

7.1 Future Work

The Malwise system performs effectively but we believe the malware detection rate

could be improved by employing more precise algorithms when comparing and

assigning control flow graphs between sets of programs. The Malwise system currently

employs a greedy solution to the assignment problem. This could be replaced with an

optimal assignment to minimize the sum of distances.

In addition to effectiveness, the efficiency of the Malwise system could also potentially

be improved. The automated unpacking system could employ dynamic binary

translation. Approximate matching could use heuristic based comparisons. The more

sound string edit distance could subsequently be used to refine the results. Additionally,

alternative string metrics are possible such as the sequence alignment algorithms

frequently employed in the field of Bioinformatics.

The malware detection could also be made more robust against different forms of

polymorphism. Particular features may be found to be more effective in particular

situations. The use of multiple features, including call graph information and data

dependencies, could be used. Finally, statistical classification could be applied to

control flow features in the detection of unknown and novel malware samples.

108

7.2 Conclusions

This thesis provided a survey of existing literature in the automated unpacking of

malware and static classification of malware. The thesis proposed novel approaches to

effectively unpack and classify malware while maintaining a high degree of efficiency.

Our approach employed application level emulation for unpacking malware and used

control flow graphs as static features to characterize malware.

The major contributions of this thesis are summarized follows:

 We proposed the use of application level emulation for automated unpacking.

 We proposed using entropy analysis to detect when unpacking was complete.

 We proposed using a graph invariant based signature to estimate control flow

graph isomorphism for the purpose of constructing a measure of program

similarity.

 We proposed using the decompilation technique of structuring to generate a

string based control flow signature, amenable to comparisons using the string

edit distance. This approach was used for approximate control flow graph

matching.

 We proposed a set similarity function and a set similarity search algorithm

which formed the basis for our malware classification system and performed

efficiently in the expected case.

We implemented and evaluated our ideas in a novel prototype system named Malwise.

The automated unpacking system was found to accurately unpack samples that were

109

obfuscated using known packing tools. The speed and efficiency of the unpacking

system was found to be suitable for potential desktop adoption. The malware

classification system was demonstrated to detect variants of real malware. It was shown

that a high probability existed that a new malware instance was a variant of existing

malware. Approximate matching was shown to detect more malware variants than exact

matching, yet exact matching was shown to have comparable effectiveness. The exact

matching classification system was found to perform efficiently in our evaluation with

performance suitable for potential application in an Internet gateway or in desktop

Antivirus.

110

References

[1] Symantec 2008, Symantec internet security threat report: Volume xii, Symantec.

[2] F-Secure 2007, F-secure reports amount of malware grew by 100% during

2007, viewed 19 August 2009, http://www.f-secure.com/en_EMEA/about-

us/pressroom/news/2007/fs_news_20071204_1_eng.html

[3] Symantec 2009, Symantec internet security threat report: Volume xiv,

Symantec.

[4] Heng, Y., Dawn, S., Manuel, E., Christopher, K. & Engin, K. 2007, Panorama:

Capturing system-wide information flow for malware detection and analysis,

Proceedings of the 14th ACM conference on Computer and communications

security, Alexandria, Virginia, USA, ACM.

[5] Feily, M., Shahrestani, A. & Ramadass, S. 2009, A survey of botnet and botnet

detection, Third International Conference on Emerging Security Information,

Systems and Technologies (SECURWARE '09), pp. 268-273.

[6] Kolbitsch, C., Comparetti, P. M., Kruegel, C., Kirda, E., Zhou, X., Wang, X. F.

& Santa Barbara, U. C. 2009, Effective and efficient malware detection at the

end host, 18th USENIX Security Symposium.

[7] Griffin, K., Schneider, S., Hu, X. & Chiueh, T. 2009, Automatic generation of

string signatures for malware detection, Recent Advances in Intrusion

Detection: 12th International Symposium, RAID 2009, Saint-Malo, France,

Springer.

http://www.f-secure.com/en_EMEA/about-us/pressroom/news/2007/fs_news_20071204_1_eng.html
http://www.f-secure.com/en_EMEA/about-us/pressroom/news/2007/fs_news_20071204_1_eng.html

111

[8] Kephart, J. O. & Arnold, W. C. 1994, Automatic extraction of computer virus

signatures, 4th Virus Bulletin International Conference, pp. 178-184.

[9] Aho, A. V. & Corasick, M. J. 1975, 'Efficient string matching: An aid to

bibliographic search', Communications of the ACM, vol. 18, pp. 340.

[10] Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S. & Veith, H. 2005,

Malware normalization, Technical Report #1539, University of Wisconsin,

Madison, Wisconsin, USA.

[11] Mihai, C. & Somesh, J. 2004, Testing malware detectors, Proceedings of the

2004 ACM SIGSOFT international symposium on Software testing and

analysis, Boston, Massachusetts, USA, ACM.

[12] Cullen, L. & Saumya, D. 2003, Obfuscation of executable code to improve

resistance to static disassembly, Proceedings of the 10th ACM conference on

Computer and communications security, Washington D.C., USA, ACM.

[13] Royal, P., Halpin, M., Dagon, D., Edmonds, R. & Lee, W. 2006, Polyunpack:

Automating the hidden-code extraction of unpack-executing malware, Computer

Security Applications Conference, pp. 289-300.

[14] Sharif, M., Lanzi, A., Giffin, J. & Lee, W. 2009, Rotalume: A tool for automatic

reverse engineering of malware emulators.

[15] Panda Research 2007, Mal(ware)formation statistics - panda research blog,

viewed 19 August 2009,

http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-

statistics.aspx

http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx

112

[16] Stepan, A. 2006, Improving proactive detection of packed malware, Virus

Bulletin Conference.

[17] Oberheide, J., Bailey, M. & Jahanian, F. 2009, Polypack, USENIX Workshop

on Offensive Technologies (WOOT „09), Montreal, Canada.

[18] Graf, T. 2005, Generic unpacking: How to handle modified or unknown pe

compression engines, Virus Bulletin Conference.

[19] 2010, Upx: The ultimate packer for executables, viewed 6 April 2010,

http://upx.sourceforge.net/

[20] 2010, Themida, viewed 6 April 2010, http://www.themida.com/

[21] Kang, M. G., Poosankam, P. & Yin, H. 2007, Renovo: A hidden code extractor

for packed executables, Workshop on Recurring Malcode, pp. 46-53.

[22] Boehne, L. 2008, Pandora‟s bochs: Automatic unpacking of malware, Thesis,

University of Mannheim.

[23] Guizani, W., Marion, J. Y. & Reynaud-Plantey, D. 2009, Server-side dynamic

code analysis, Malicious and Unwanted Software (MALWARE), 2009 4th

International Conference on, pp. 55-62.

[24] Kolter, J. Z. & Maloof, M. A. 2004, Learning to detect malicious executables in

the wild, International Conference on Knowledge Discovery and Data Mining,

pp. 470-478.

[25] Bilar, D. 2007, 'Opcodes as predictor for malware', International Journal of

Electronic Security and Digital Forensics, vol. 1, pp. 156-168.

http://upx.sourceforge.net/
http://www.themida.com/

113

[26] Gheorghescu, M. 2005, An automated virus classification system, Virus Bulletin

Conference, pp. 294-300.

[27] Aho, A. V., Sethi, R. & Ullman, J. D. 1986, Compilers: Principles, techniques,

and tools, Addison-Wesley, Reading, MA.

[28] Kruegel, C., Kirda, E., Mutz, D., Robertson, W. & Vigna, G. 2006,

'Polymorphic worm detection using structural information of executables',

Lecture notes in computer science, vol. 3858, pp. 207.

[29] Carrera, E. & Erdélyi, G. 2004, Digital genome mapping–advanced binary

malware analysis, Virus Bulletin Conference, pp. 187-197.

[30] Ye, Y., Wang, D., Li, T. & Ye, D. 2007, Imds: Intelligent malware detection

system, Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM.

[31] Christodorescu, M., Jha, S., Seshia, S. A., Song, D. & Bryant, R. E. 2005,

Semantics-aware malware detection, Proceedings of the 2005 IEEE Symposium

on Security and Privacy (S&P 2005), Oakland, California, USA.

[32] Horspool, R. N. & Marovac, N. 1979, 'An approach to the problem of

detranslation of computer programs', The Computer Journal, vol. 23, pp. 223-

229.

[33] Salton, G. & Mcgill, M. J. 1983, Introduction to modern information retrieval,

McGraw-Hill New York.

[34] Kruegel, C., Robertson, W., Valeur, F. & Vigna, G. 2004, Static disassembly of

obfuscated binaries, USENIX Security Symposium, vol. 13, pp. 18-18.

114

[35] Johannes, K., Florian, Z. & Helmut, V. 2009, An abstract interpretation-based

framework for control flow reconstruction from binaries, Proceedings of the

10th International Conference on Verification, Model Checking, and Abstract

Interpretation, Savannah, GA, Springer-Verlag.

[36] Daniel, K., Stner & Stephan, W. 2002, 'Generic control flow reconstruction from

assembly code', SIGPLAN Not., vol. 37, pp. 46-55.

[37] Theiling, H. 2000, Extracting safe and precise control flow from binaries,

Proceedings of the Seventh International Conference on Real-Time Systems and

Applications, IEEE Computer Society.

[38] Dalla Preda, M., Madou, M., De Bosschere, K. & Giacobazzi, R. 'Opaque

predicates detection by abstract interpretation', Algebraic Methodology and

Software Technology, pp. 81–95.

[39] Balakrishnan, G., Reps, T., Melski, D. & Teitelbaum, T. 2007, 'Wysinwyx:

What you see is not what you execute', Verified Software: Theories, Tools,

Experiments, pp. 202-213.

[40] Leder, F., Steinbock, B. & Martini, P. 2009, Classification and detection of

metamorphic malware using value set analysis, Proc. of 4th International

Conference on Malicious and Unwanted Software (Malware 2009), Montreal,

Canada.

[41] Debray, K. C. S. & Townsend, T. K. G. 2009, Automatic static unpacking of

malware binaries, Working Conference on Reverse Engineering - WCRE.

115

[42] Moser, A., Kruegel, C. & Kirda, E. 2007, Limits of static analysis for malware

detection, Annual Computer Security Applications Conference (ACSAC).

[43] Lyda, R. & Hamrock, J. 2007, 'Using entropy analysis to find encrypted and

packed malware', IEEE Security and Privacy, vol. 5, pp. 40.

[44] Josse, S. 2007, 'Secure and advanced unpacking using computer emulation',

Journal in Computer Virology, vol. 3, pp. 221-236.

[45] Bellard, F. 2005, Qemu, a fast and portable dynamic translator, USENIX

Annual Technical Conference, pp. 41–46.

[46] Raffetseder, T., Kruegel, C. & Kirda, E. 2007, 'Detecting system emulators',

Lecture notes in computer science, vol. 4779, pp. 1.

[47] Min Gyung, K., Heng, Y., Steve, H., Stephen, M. & Dawn, S. 2009, Emulating

emulation-resistant malware, Proceedings of the 1st ACM workshop on Virtual

machine security, Chicago, Illinois, USA, ACM.

[48] Quist, D. & Valsmith 2007, Covert debugging circumventing software armoring

techniques, Black Hat Briefings USA.

[49] Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V. J. & Hazelwood, K. 2005, Pin: Building customized program analysis

tools with dynamic instrumentation, Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation, ACM New

York, NY, USA.

116

[50] Martignoni, L., Christodorescu, M. & Jha, S. 2007, Omniunpack: Fast, generic,

and safe unpacking of malware, Proceedings of the Annual Computer Security

Applications Conference (ACSAC), pp. 431-441.

[51] Dinaburg, A., Royal, P., Sharif, M. & Lee, W. 2008, Ether: Malware analysis

via hardware virtualization extensions, Proceedings of the 15th ACM

conference on Computer and communications security, ACM New York, NY,

USA, pp. 51-62.

[52] Wu, Y., Chiueh, T. & Zhao, C. 2009, Efficient and automatic instrumentation

for packed binaries, International Conference and Workshops on Advances in

Information Security and Assurance, pp. 307-316.

[53] Sun, L., Ebringer, T. & Boztas, S. 2008, Hump-and-dump: Efficient generic

unpacking using an ordered address execution histogram, International

Computer Anti-Virus Researchers Organization (CARO) Workshop.

[54] Peter, N. Y. 1993, Data structures and algorithms for nearest neighbor search

in general metric spaces, Proceedings of the fourth annual ACM-SIAM

Symposium on Discrete algorithms, Austin, Texas, United States, Society for

Industrial and Applied Mathematics, pp. 311-321.

[55] Paolo, C., Marco, P. & Pavel, Z. 1997, M-tree: An efficient access method for

similarity search in metric spaces, Proceedings of the 23rd International

Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc.

117

[56] Bonfante, G., Kaczmarek, M. & Marion, J. Y. 2008, Morphological detection of

malware, International Conference on Malicious and Unwanted Software, IEEE,

Alexendria VA, USA, pp. 1-8.

[57] Gerald, R. T. & Lori, A. F. 2007, 'Polymorphic malware detection and

identification via context-free grammar homomorphism', Bell Labs Technical

Journal, vol. 12, pp. 139-147.

[58] Dullien, T. & Rolles, R. 2005, Graph-based comparison of executable objects

(english version), SSTIC.

[59] Hu, X., Chiueh, T. & Shin, K. G. Large-scale malware indexing using function-

call graphs, Computer and Communications Security, Chicago, Illinois, USA,

ACM, pp. 611-620.

[60] Babar, K., Khalid, F. & Pakistan, P. 2009, Generic unpacking techniques,

International Conference On Computer, Control and Communication.

[61] Martignoni, L., Paleari, R., Roglia, G. F. & Bruschi, D. 2009, Testing cpu

emulators, Proceedings of the eighteenth international symposium on Software

testing and analysis, Chicago, IL, USA, ACM, pp. 261-272.

[62] Cifuentes, C. 1994, Reverse compilation techniques, Thesis, Queensland

University of Technology.

[63] Moretti, E., Chanteperdrix, G. & Osorio, A. 2001, New algorithms for control-

flow graph structuring, Software Maintenance and Reengineering, pp. 184.

118

[64] Wei, T., Mao, J., Zou, W. & Chen, Y. 2007, Structuring 2-way branches in

binary executables, International Computer Software and Applications

Conference, vol. 01, pp. 115-118.

[65] Baeza-Yates, R. & Navarro, G. 1998, Fast approximate string matching in a

dictionary, South American Symposium on String Processing and Information

Retrieval (SPIR'98), pp. 14-22.

[66] 2009, Offensive computing, viewed 21 September 2009,

http://www.offensivecomputing.net

[67] 2009, Mwcollect alliance, viewed 21 September 2009,

http://alliance.mwcollect.org

http://www.offensivecomputing.net/
http://alliance.mwcollect.org/

