

Recognising the Capacities of Dynamic Reconfiguration for the QoS Assurance of
Running Systems in Concurrent and Parallel Environments

Wei Li

School of Information & Communication Technology
Central Queensland University

Rockhampton QLD 4702, Australia
Email: w.li@cqu.edu.au

Maolin Tang
Discipline of Networks and Communications

Queensland University of Technology
Brisbane QLD 4001, Australia

Email: m.tang@qut.edu.au

Abstract—Recognizing the impact of reconfiguration on the
QoS of running systems is especially necessary for choosing an
appropriate approach to dealing with dynamic evolution of
mission-critical or non-stop business systems. The rationale is
that the impaired QoS caused by inappropriate use of dynamic
approaches is unacceptable for such running systems. To
predict in advance the impact, the challenge is two-fold. First,
a unified benchmark is necessary to expose QoS problems of
existing dynamic approaches. Second, an abstract
representation is necessary to provide a basis for modeling and
comparing the QoS of existing and new dynamic
reconfiguration approaches. Our previous work [8] has
successfully evaluated the QoS assurance capabilities of
existing dynamic approaches and provided guidance of
appropriate use of particular approaches. This paper
reinvestigates our evaluations, extending them into concurrent
and parallel environments by abstracting hardware and
software conditions to design an evaluation context. We report
the new evaluation results and conclude with updated impact
analysis and guidance.

Keywords-dynamic reconfiguration; QoS assurance;
software maintenance; software evolution; quantitative analysis

I. INTRODUCTION
One important aspect of a running system is the Quality

of Service (QoS) it is obliged to maintain to satisfy
predefined domain requirements. In this paper, we use the
end-user observable performance attributes: throughput and
response time to measure the QoS of a running software
system. Another important aspect is that, over its lifecycle, a
system must change repeatedly to adapt to changing
business needs and consequent changed requirements,
differing from its original requirements. A reconfiguration
refers specifically to a specific change at a specific point in
the history of a system’s evolution. Previous research [5],
[11] shows that the combination of these two aspects, that
is, maintaining the QoS of a system over its lifecycle, have
never been addressed simultaneously. Static reconfiguration
has significant impact on the QoS of a running system
because it is performed out of band and involves stopping a
running system, recompiling its binaries, rebuilding its data,
altering its topology and then rebooting the system.
Dynamic reconfiguration [5], involving upgrading/altering a
system’s functionality and topology at runtime via addition,
deletion and replacement of components and connections,

was initially proposed to increase service availability of
evolving, running systems, taking a step towards addressing
both aspects. However, Vandewoude et al. [11] indicated
that quiescence [5], a characteristic of early approaches, has
a significant impact on the QoS of a running system. That
raised an issue: recognizing the impact of dynamic
reconfiguration is essential to both aspects.

Recognizing the impact of various reconfiguration
approaches has become a major concern [3] for dynamic
evolution of running systems because for mission-critical
services, any unpredictable change to QoS may be
unacceptable; for 24/7 business services, the possibility of
dissatisfaction increases due to the impaired QoS of the
running systems. By QoS assurance, we refer to the
capability of a reconfiguration approach to maintain some
pre-determined minimum QoS level for a running system
under reconfiguration (RSUR), even if there is some short
term reduction of QoS. Such a notion leads to the possibility
of enhancement of newer QoS assurance features.

The aim of this paper is to extend our previous work [8]
of the evaluation of QoS assurance capabilities of existing
dynamic approaches into concurrent and parallel
environments and to explore the effectiveness of our key
technologies of QoS assurance [7] in the face of
concurrency and parallelism. Modern hardware and
software conditions make parallel computing pervasive,
even on personal computers. For example, the new intel®
CORE™ i7 has 8 CPUs; the Java multi-threading provides
concurrency for multi-tasking. Therefore, it is necessary to
extend our previous research into concurrent and parallel
environments, exploiting these enhanced hardware and
software conditions for recognizing and minimizing the
impact of dynamic reconfiguration on the QoS of RSURs.

The rest of this paper is structured as follows: Section 2
reviews related work and its limitations with respect to QoS
assurance and impact evaluation. Section 3 reviews the
theoretical aspects of QoS assurance and impact evaluation.
In Section 4, we propose adaptive overhead control to adapt
reconfiguration to varying CPU availability in terms of
number of available CPUs and CPU usages. Section 5
details the design of a unified evaluation context. In section
6, we report the evaluation results and analysis. In section 7,
we conclude by characterizing QoS assurance capacities of

dynamic approaches in concurrent and parallel
environments.

II. RELATED WORK
Isolated evaluations of the impact of reconfiguration on

the QoS of RSURs can be found in related work [1], [6],
[10], [11]. These evaluations used local and isolated
evaluation criteria, case studies and metrics. Due to the
inability of representing a richer set of QoS problems,
inconsistent criteria or metrics among these evaluations, it is
difficult to gain a clear recognition of a wider range of
dynamic approaches in terms of choosing a particular
reconfiguration approach to satisfy a particular domain
application.

Hillman & Warren [4] compared the service continuity
(coexistence and concurrency) algorithm of Mitchell et al.
[9] and the quiescence (blocking) algorithm of Warren [12]
in terms of the wait-time that the components spent on
waiting for data from its upstream updating components in
the case study of a component-based router. The results
showed that the former was better in maintaining the QoS of
a RSUR. Truyen et al. [10] did a similar evaluation and
concluded that coexistence and concurrency between the old
and new sub-system had less disruption on the QoS of a
RSUR. The significance of these studies was a start of
quantitative comparison of dynamic approaches on their
disruptions to the QoS of RSURs.

Some work tried to address a richer evaluation of
reconfiguration approaches. Among them, Fung and Low
[2] proposed an evaluation framework, in which the scope
of impacts and performance characteristics were proposed
as feature requirements for the evaluation of impacts that
reconfiguration places upon the running systems. Survey of
domain experts for the importance of the proposed features
is the way of study, with a Wilcoxon signed-rank test to
rank the importance of the features. The strength of the
framework is a qualitative confirmation of the essential
features for the evaluation of reconfiguration approaches.
Among these features, dynamic change impact analysis
ranked the highest, and therefore it confirmed the
importance of recognizing change impact in order to
appropriately use reconfiguration approaches in different
situations.

III. THE THEORETICAL ASPECTS OF QOS ASSURANCE
AND IMPACT EVALUATION

Our previous work [7], [8] has advanced the research of
dynamic reconfiguration from two aspects. First, a set of
characteristics was defined to represent QoS assurance, to
which corresponding technologies were proposed and
practiced in provision of QoS assurance for RSURs. We
confirmed that QoS assurance for dynamic reconfiguration
was realizable under some acceptable constraints [7].
Second, exiting reconfiguration approaches were
represented and realized onto a unified evaluation context

by a set of abstract reconfiguration strategies, which were
exposed to a rich set of QoS problems through a benchmark.
A quantitative benchmarking of the exiting dynamic
approaches demonstrated their capabilities in achieving QoS
assurance for RSURs on a single-CPU environment [8].

A. Representation and Measurement of QoS
While the meaning of QoS is different in application

domains, the QoS was represented by a set of performance
characteristics: global consistency, service availability,
service continuity, stateless-equivalence and QoS-assurance
in our research of QoS assurance for RSURs. These
characteristics enabled a qualitative classification of existing
reconfiguration approaches [7]. Implementation of the QoS
characteristics and integration through plug-ins enabled the
representation of existing reconfiguration approaches onto a
unified evaluation context [8].

On considering the direct QoS experience of end-users,
the key evaluation metrics of QoS should be the throughput
and response time of a running system. System throughput
is the number of requests that the system can process for
completion in a predetermined time interval; system
response time is the time delay between a request
submission and its completion as confirmed by its response.

B. Logical and Physical Conditions of QoS Assurance
Our previous research confirmed that coexistence of the

old and new sub-system is a necessary condition to assure
the continuity of workflow of a RSUR. By coexistence the
new sub-system is brought into full effect before the
shutdown and removal of the old sub-system, and therefore,
the coexistence feature brings the benefit of logical
continuity of workflow. The key technology to provide
coexistence is Dynamic Version Management (DVM) [7],
which assures the non-interference of workflow in a structure
that is partially shared by the old and new sub-system during
the coexistence period.

Our previous research also confirmed that the
controllability of resource usage of reconfiguration is a
necessary condition to physically assure the QoS of a RSUR.
The capability of DVM is just a logical assurance of the QoS
of a RSUR. Competition for resources confers
reconfiguration the ability to physically decline the QoS of a
RSUR. In a single CPU environment where the CPU is not
saturated by the ongoing transactions, the pre-emptive
scheduling was effective to minimize the impact of
reconfiguration to zero. While the CPU is always saturated
by the ongoing transactions, the time-slice scheduling was
successfully applied in provision of controllability for the
impact on the QoS of a RSUR according to given QoS
requirements [8].

C. Representation of Reconfiguration Approaches
Benchmarking needs a representation of related work

onto a unified platform. We have successfully designed and
applied the abstract reconfiguration strategies [8] to

represent the whole spectrum of the-state-of-the-art
approaches to dynamic reconfiguration as summarized as
follows.

• avl-cpt: applying quiescence or tranquillity to
assure both application consistency and
availability. Reconfiguration has the same
capability as that of ongoing transactions to
compete for resources.

• con-cpt: applying DVM to assure the logical
continuity of the workflow of a RSUR.
Reconfiguration has the same capability as that of
ongoing transactions to compete for resources.

• sel-cpt: the same as that of con-cpt plus state-
sharing to minimize the load of state transfer to
zero and to acquire stateless-equivalence.

• qos-pre: the same as that of sel-cpt except that
reconfiguration is restricted to use free CPU time
only, i.e. replacing competitive scheduling with
pre-emptive scheduling. This strategy is applicable
to CPU non saturation only.

• qos-ts: the same as that of sel-cpt except that
reconfiguration is restricted only runnable in a
predefined time slot for each schedulable time-
slice, i.e. replacing competitive scheduling with
time-slice scheduling. This strategy is applicable to
CPU saturation only.

D. Benchmark
Our proposed Data Encryption & Digital Signature

System (DEDSS) was recognized by the research
community as an effective benchmark to evaluate the QoS
assurance capabilities of reconfiguration approaches in
terms of: accommodation of stateful components;
accommodation of both component dependency and
independency; allowing concurrency and varying workload.
The conceptual DEDSS was successfully implemented as a
component-based prototype C-DEDSS (illustrated in Fig. 1)
and a dataflow-based prototype F-DEDSS [8]. Both
prototypes created the environment of stateful system
needing state transfer; partially shared structure during the
coexistence period; component dependency needing
dependent updates. The benchmark is effective to expose a
richer set of QoS problems that reconfiguration must deal
with in order to maintain the QoS of a RSUR.

IV. QOS ASSURANCE IN CONCURRENT AND PARALLEL
ENVIRONMENTS

QoS assurance in concurrent and parallel environments
relies on both hardware and software conditions. The
hardware condition in parallel environments enables the
number of CPUs be a factor for QoS assurance. The
argument is that the number of CPUs represents the parallel
processing capacity of a system, and the reallocation of

CPUs is applicable to the overhead control of
reconfiguration.

Concurrency is a software condition to exploit parallel
resources, and multi-threading is available from
programming languages to support concurrency. In a single
CPU environment, the capacity of reconfiguration for
resource competition is always against ongoing transactions.
This is because multi-threaded transactions supports
concurrency but cannot support parallelism of multi-tasks
on a single physical CPU. A successful control of the
impact of overhead on the QoS of RSURs in single CPU
environments is time restriction (pre-emptive scheduling
and time-slice scheduling), which is effectively applied to
CPU non-saturation or saturation situations respectively [7].
In multi-CPU environments, concurrency can be further
exploited to service concurrent tasks in parallel, and
therefore it enables a better condition to apply overhead
control to reconfiguration.

In multi-CPU environments, QoS assurance can be two-
tiers. The first tier exploits parallelism through optimized
reallocation of CPUs between reconfiguration and ongoing
transactions to minimize the impact from reconfiguration on
the QoS of a RSUR. The second tier restricts
reconfiguration for CPU usage to further control the
competition capacity of reconfiguration and assures the QoS
according to given requirements. The proposal of two-tier
assurance aims at ‘fine-grained’ control of reconfiguration
overhead by fully exploiting hardware and software
conditions in concurrent and parallel environments.

Figure 1. C-DEDSS [7]

A. CPU Reallocation
We suppose that the running priorities of all threads are

same and therefore we suppose that each thread has the
same competition capacity for resources. The reallocation of
CPUs in a parallel environment is through threading. We
also suppose that a parallel environment tries to reallocate
CPUs in a balanced way:

• It allocates a free CPU to a newly created thread
unless all CPUs are allocated. That is, a thread is
using its own CPU and there is no competition for
CPUs.

• While there are more threads than CPUs, the
overall computing load is balanced for all CPUs.
That is, a CPU can be reallocated to another thread
from time to time.

The competition capacity of reconfiguration can be
controlled by adjusting the number of reconfiguration
threads according to the number of ongoing transaction
threads. In an n-CPU environment, we suppose that the
number of reconfiguration threads is r and the number of
ongoing transaction threads is t. Consequently, we have the
following conditions:

• If r+t≤n, there is no competition of CPUs between
reconfiguration and ongoing transactions.

• If r+t>n, reconfiguration competes CPUs with
ongoing transactions. The competition capacity of
reconfiguration against that of ongoing transactions
is proportionate to r/t.

Based on the above conditions and given n and t,
reconfiguration could have no competition if t<n and r≤n-t.
Otherwise, if t≥n, the minimum competition of
reconfiguration will be achieved through r=1.

For example, in an 8-CPU environment, a
reconfiguration can be 1-threaded, 2-threaded, or 4-
threaded. If the ongoing transaction is already 4-threaded,
the competition capacity of reconfiguration is therefore 0.
However, if the ongoing transaction is already 8-threaded,
the competition capacity of reconfiguration is 1/8, 2/8, and
4/8 against that of ongoing transactions. Therefore, the
minimum competition of reconfiguration will be 1/8 with
only one reconfiguration thread.

B. CPU Time Reallocation
The discussion of CPU time reallocation is under the

condition that reconfiguration competition capacity has
already been minimized by CPU reallocation i.e. t≥n and
r=1. Under such a condition, to further minimize the
competition capacity of reconfiguration, we investigate CPU
usage and clarify it as saturation and non-saturation.

• While CPUs are non-saturated, they are idle from
time to time. Therefore, we suppose that pre-
emptive scheduling can minimise the competition

capacity of reconfiguration. By prioritising the
ongoing transactions, a reconfiguration is restricted
to use free CPU time only and its competition
capacity can be minimised to zero.

• While CPUs are saturated, we propose that the only
way to control competition is to restrict
reconfiguration for CPU time. We design time-slice
scheduling to divide time into schedulable time-
slices, of which each time-slice is further divided
into two time-slots. In each time-slice a
reconfiguration is put into runnable state in the
runnable time-slot but into suspension state in the
sleeping time-slot. By adjusting the length of the
runnable time-slot, the competition capacity of
reconfiguration is fully controlled and aligned to
given QoS requirements.

V. THE DESIGN OF EVALUATION CONTEXT
The hardware and software platform that we use for the

evaluation is an intel® CORE™ i7 8-CPU environment with
Windows® 7 and Java SE 6. We suppose that the original
system and the target system of the reconfiguration are on
the same physical machine. To evaluate the impact of
dynamic reconfiguration on the QoS of RSURs and cover
various situations in terms of hardware (multi-CPU) and
software (multi-threading) conditions and CPU usage
(saturation and non-saturation), we have designed the
following rules for the settings of evaluation context.

CPU non saturation: First, we set the evaluation context
as r+t≤8, where r, t∈{1,2…,7} and make the 8 CPUs non-
saturated. We suppose that CPU reallocation is effective to
minimize the competition capacity of dynamic
reconfiguration under such a condition. Consequently, the
expected results will be no impact on the QoS of RSURs
from all applicable reconfiguration strategies (checking C of
Section 3) except for avl-cpt, which logically blocks the
workflow and results in decline of the QoS of a RSUR at
any situation. Second, we can enable t=8 but can set
computing load to still make the 8 CPUs non-saturated.
Such a condition necessitates the use of pre-emptive
scheduling (qos-pre). The expected results will be no impact
from qos-pre but with impact from all other applicable
strategies.

CPU saturation: We set t=8 with the computing load to
make the 8 CPUs saturated. Under such a condition, First,
we set r=1 to minimize the competition capacity of
reconfiguration by CPU reallocation. Second, CPU time
reallocation is necessary to apply through time-slice
scheduling. To demonstrate the controllability of time-slice
scheduling, we set a fixed length of time-slices and use
varying lengths of runnable time-slots. The expected results
are smaller impact from a shorter runnable time-slot than
those from a longer runnable time-slot scheduling.

Applying the above setting rules, we summarize the
evaluation scenarios in Table 1, aiming at exposing the
capacities of reconfiguration strategies on the QoS
assurance of RSURs and covering various hardware and
software conditions and CPU usages.

For the evaluation scenarios in Table 1, we use the
benchmark of both C-DEDSS and F-DEDSS prototypes to
expose the impact of dynamic reconfiguration on both
system throughput and response time. The evaluation results
and analysis are reported in next section.

VI. EVALUATION RESULT AND ANALYSIS
To cover the evaluation scenarios in Table 1 with 2

prototypes (C-DEDSS and F-DEDSS) of the benchmark and
2 QoS metrics (throughput and response time) and 5
reconfiguration strategies (avl-cpt, con-cpt, sel-cpt, qos-pre,
qos-ts), we conducted more than 100 evaluations on
DynaQoS platform [7], [8]. We confirm that all evaluation
results have the QoS impacts complying with the individual
situations as expected in column 3 of Table 1, and the
results are reproducible on both C-DEDSS and F-DEDSS,
and there is positive correlation between throughput and
response time, i.e. if the throughput of Strategy1 is
lower/higher than Strategy2, the response time of Strategy1
is correspondingly longer/shorter than Strategy2. By page
limit, we choose some typical evaluations of C-DEDSS to
report the results.

TABLE I. THE EVALUATION SCENARIOS AND EXPECTED IMPACTS

CPU
Usage

No. of reconfiguration
threads verse No. of
transaction threads

Expected QoS Impact

Non
saturation

[r, t], where r+t≤8 and
r, t∈{1, 2,…, 7}

Impact from avl-cpt only; no
impact from con-cpt, sel-cpt

[1, 8]
No impact from qos-pre;

impact from avl-cpt, con-cpt,
sel-cpt

Saturation [1, 8]
Controlled impact from qos-
ts uncontrolled impact from

avl-cpt, con-cpt, sel-cpt

Figure 2. The base throughput of C-DEDSS (non saturation)

Figure 3. The base response time of C-DEDSS (non saturation)

A. The Base and Multiplied QoS Performance
Enabling only 1 transaction thread with non-saturation

computing load, the base QoS performance of C-DEDSS is
measured respectively by throughput (Fig. 2) and response
time (Fig. 3) of the original system (ori lines) and the target
system (tar lines) without any reconfiguration involved. In
Fig. 2, the throughput of target system is lower than that of
original system, or in Fig. 3, the response time of target
system is longer than that of original system is due to the
higher computing load of target system (checking D of
Section 3 for the reconfiguration scenario).

Enabling t (t≤8) transaction threads, the t-times QoS
performance is measured by throughput or response time of
the original system and the target system without any
reconfiguration involved. Under the same parameters as
those in Fig. 2 and Fig. 3, the 4-times QoS performance of
C-DEDSS is shown in Fig. 4 and Fig. 5 respectively for the
running system’s throughput and response time (ori and tar
lines for the original and target system respectively). It is
evident that the system’s throughput (ori and tar lines in Fig.
4) is 4-times as large as those of the base throughput (ori and
tar line in Fig. 2) but the system’ response time (ori and tar
lines in Fig. 5) remain unchanged (ori and tar lines in Fig.
3), reflecting no change of computing load of the application
between Fig. 2 & Fig. 3, or Fig. 4 & Fig. 5.

B. Evaluation Results of CPU non Saturation
For [r, t] (r+t≤8) evaluation scenarios, we report the

evaluation results of C-DEDSS of [1, 4] for throughput in
Fig. 4 and response time in Fig 5. As expected, only avl-cpt
has impacts on both throughput and response time. All other
applicable reconfiguration strategies have no impact on
either throughput or response time. We claim that for any [r,
t] (r+t≤8), we obtained reproducible results as those of [1,
4]. These results confirmed the effectiveness of CPU
reallocation in minimization of reconfiguration impact on
the QoS of RSURs.

For the evaluation scenario of [1, 8], all 8 CPUs are used
by the ongoing transactions. Under such a condition, all the
previous strategies, i.e. avl-cpt, con-cpt, sel-cpt have impact
on the 8-times QoS performance. The qos-pre is then
applied to further exploit free CPU time for minimizing the
impact of dynamic reconfiguration. The results are as

expected, i.e. qos-pre has no impact but all other applicable
strategies have impact on the QoS of the RSUR as reported
in Fig. 6 and Fig. 7. These results confirmed the
effectiveness of combining CPU reallocation and CPU time
reallocation in minimization of reconfiguration impact on
the QoS of RSURs.

C. Evaluation Results of CPU Saturation
For the evaluation scenario of [1, 8] and CPU saturation,

all the previously applicable strategies, i.e. avl-cpt, con-cpt,
sel-cpt, have impact on the 8-times QoS performance as

reported in Fig. 8 and Fig. 9. Under such a situation, the
QoS assurance strategy qos-ts is applied. To demonstrate the
controllability of strategy qos-ts, we evaluate qos-ts0.7 (a
700ms runnable time-slot in a 1000ms time-slice) and qos-
ts0.4 (a 400ms runnable time-slot in a 1000ms time-slice)
scheduling. As expected, qos-ts0.4 has smaller impact than
qos-ts0.7. The impact ratios of qos-ts0.7 and qos-ts0.4 are
proportionate to the lengths of their runnable timeslots as
reported in Fig. 8 and Fig. 9. These results confirmed the
effectiveness of time-slice scheduling for the controllability
to reconfiguration impact on the QoS of RSURs.

Figure 4. The C-DEDSS throughput of [1, 4] (non saturation) under the reconfiguration strategies

Figure 5. The C-DEDSS response time of [1, 4] (non saturation) under the reconfiguration strategies

Figure 6. The C-DEDSS throughput of [1, 8] (non saturation) under the reconfiguration strategies

Figure 7. The C-DEDSS response time of [1, 8] (non saturation) under the reconfiguration strategies

Figure 8. The C-DEDSS throughput of [1, 8] (saturation) under the reconfiguration strategies

Figure 9. The C-DEDSS response time of [1, 8] (saturation) under the reconfiguration strategies

VII. CONCLUSION
Based on the reproducibility of the results on both C-

DEDSS and F-DEDSS, and the positive correlation between
throughput and response time for each reconfiguration
strategy, we conclude evidently the impact of dynamic
reconfiguration on the QoS of RSURs in concurrent and
parallel environments. The necessary condition of QoS
assurance is the logical continuity of workflow, i.e. the
removal of blocking operation. To further exploit
parallelism in multi-CPU environments, QoS assurance of
dynamic reconfiguration can be fine-grained into two-tiers.
First, while CPUs are not saturated: free CPUs or non free
CPU but free CPU time, the impact of dynamic
reconfiguration can be minimized to zero on RSURs via
CPUs reallocation and/or CPU time reallocation (through
pre-emptive scheduling). Second, while CPUs are always
saturated, dynamic reconfiguration will definitely have
impact on the QoS of RSURs. Time slice scheduling is the
solution to gaining the controllability for the impact aligned
with given QoS requirements. Our future work includes
formal modeling of the theoretical framework for predicting
the impact of and planning the QoS assurance for dynamic
reconfiguration.

ACKNOWLEDGEMENT
The authors would like to thank Dr. Ian Peake from

RMIT University Australia for his proof-reading and other
useful comments for the writing of this paper.

REFERENCES
[1] S. Ajmani, B. Liskov, and L. Shrira, “Modular Software Upgrades for

Distributed Systems,” Proc. of 20th European Conf. on Object-
Oriented Programming, Springer, pp. 452-476, 2006.

[2] K. Fung and G. Low, “Methodology Evaluation Framework for
Dynamic Evolution in Composition-Based Distributed Applications,”
Journal of Systems and Software, Elsevier, 82(12), pp. 1950-1965,
2009.

[3] J. Hillman and I. Warren, “An Open Framework for Dynamic
Reconfiguration,” Proc. of 26th International Conf. on Software
Engineering, IEEE Press, pp. 594-603, 2004.

[4] J. Hillman and I. Warren, “Quantitative Analysis of Dynamic
Reconfiguration Algorithms,” Proc. of International Conf. on Design,
Analysis and Simulation of Distributed Systems, The Society for
Modeling & Simulation International (SCS), 2004.

[5] J. Kramer and J. Magee, “The Evolving Philosophers Problem:
Dynamic Change Management,” IEEE Transactions on Software
Engineering, IEEE Press, 16(11), pp. 1293-1306, 1990.

[6] M. Leger, T. Ledoux, and T. Coupaye, “Reliable Dynamic
Reconfigurations in a Reflective Component Model,” Lecture Notes
in Computer Science, Springer, 6092, pp. 74-92, 2010.

[7] W. Li, “QoS Assurance for Dynamic Reconfiguration of Component
Based Software Systems,” IEEE Transactions on Software
Engineering, doi: 10.1109/TSE.2011.37, 2011.

[8] W. Li, “Evaluating the Impacts of Dynamic Reconfiguration on the
QoS of Running Systems,” Journal of Systems and Software,
ELSEVIER, 84, pp. 2123– 2138, 2011.

[9] S. Mitchell, H. Naguib, G. Coulouris, and T. Kindberg, “A QoS
Support Framework for Dynamically Reconfigurable Multimedia
Applications,” Proc. of International Conf. on Distributed
Applications and Interoperable Systems, Kluwer, pp. 17-30, 1999.

[10] E. Truyen, N. Janssens, F. Sanen, and W. Joosen, “Support for
Distributed Adaptations in Aspect-Oriented Middleware,” Proc. of
7th International Conf. on Aspect-Oriented Software Development,
ACM Press, pp. 120-131, 2008.

[11] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt,
“Tranquility: A Low Disruptive Alternative to Quiescence for
Ensuring Safe Dynamic Updates,” IEEE Transactions on Software
Engineering, IEEE Press, 33(12), pp. 856-868, 2007.

[12] I. Warren, “A Model for Dynamic Configuration which Preserves
Application Integrity,” PhD thesis, Lancaster University, UK, 2000.

	I. Introduction
	II. Related Work
	III. The Theoretical Aspects of QoS Assurance and Impact Evaluation
	A. Representation and Measurement of QoS
	B. Logical and Physical Conditions of QoS Assurance
	C. Representation of Reconfiguration Approaches
	D. Benchmark

	IV. QoS Assurance in Concurrent and Parallel Environments
	A. CPU Reallocation
	B. CPU Time Reallocation

	V. The Design of Evaluation Context
	VI. Evaluation Result and Analysis
	Table I. The evaluation scenarios and expected impacts
	A. The Base and Multiplied QoS Performance
	B. Evaluation Results of CPU non Saturation
	C. Evaluation Results of CPU Saturation

	VII. Conclusion
	Acknowledgement
	References

