
Visualisation of Non-Manifold Implicit
Surfaces

by

Dirk Jacob Harbinson

A thesis submitted for the degree of Doctor of Philosophy

CQUniversity

School of Computing Sciences

Faculty of Arts, Business, Informatics and Education

7th March, 2011

Abstract

This thesis addresses several visualisation problems for non-manifold and singular im-

plicit algebraic surfaces and proposes algorithms for fast and correct rendering of many

such surfaces. It is well known that non-manifold surfaces are particularly difficult to

render and hence these algorithms provide interesting perspectives in rendering these sur-

faces.

A main contribution is a GPU algorithm for point-based rendering of implicit surfaces.

This algorithm is based on a hierarchical decomposition of the bounding volume using an

octree spatial data structure and testing the occupied cells of the octree through interval

arithmetic. Previous work had difficulty in rendering the non-manifold and singular fea-

tures. The work also presents point-based anti-aliasing of silhouette and contour edges.

The second contribution is a GPU hybrid polygon and point-based rendering algorithm.

Previous work using polygons alone could not represent the non-manifold and singular

features. The third contribution is an algorithm for visualisation of curvature surfaces of

implicit surfaces. A robust visualisation of curvature surfaces is presented here for the

first time. A DVD is enclosed showing animations created using the discussed methods.

Even though Computer Aided geometric Design (CAD) uses predominately paramet-

ric surfaces, implicit surfaces are also used in this area as blending and offset surfaces

in CAD are often implicit surfaces. Curvature analysis is also used extensively in the

aeronautical and automotive manufacturing industries.

i

List of Publications

Publication 1 D.J. Harbinson, R.J. Balsys, and K.G. Suffern. 2007. Rendering Surface Features

Using Point Based Methods, ACM/GRAHITE 2007, 1-4th Dec 2007, Perth, Western

Australia. pp. 47-53.

This work [1] presents a point-based technique that improves the rendering of non-

manifold implicit surfaces compared to previous point-based methods, using point

and gradient information, to prune plotting nodes arising in octree spatial division,

with a subdivision criteria based on the natural interval extension of the surface’s

function. We successfully rendered non-manifold features of surfaces such as rays

and thin sections.

Publication 2 D.J. Harbinson, R.J. Balsys, and K.G. Suffern. 2008. Real-time Antialasing of

Edges and Contours of Point Rendered Implicit Surfaces, International Conference

on Computer Graphics, Imaging and Vision cgiv08, 26-28th August, 2008, USM,

Penang, Malaysia. pp. 38-46.

This work [2] deals with solving aliasing issues when rendering non-manifold sur-

faces with points.

Publication 3 D.J. Harbinson, R.J. Balsys, and K.G. Suffern. 2010. Polygonisation of Non-

Manifold Implicit Surfaces Using a Dual Grid and Points. International Conference

on Computer Graphics, Imaging and Vision 2010, 8-10th August, 2010, Sydney,

Australia.

This work shows how polygons and points can be used to render implicit surfaces.

ii

Papers accepted

Publication 4 R.J. Balsys, D.J. Harbinson, and K.G. Suffern. Determining the Point Geometry

of Non-Manifold and Singular Implicit Surfaces. IEEE Transactions on Computer

Graphics.

Papers under development

Publication 5 D.J. Harbinson, R.J. Balsys, and K.G. Suffern. Polygonisation and point hybrid

rendering for implicit surfaces. IEEE Transactions on Computer Graphics.

iii

Visualisation of Non-Manifold Implicit Sur-

faces

1 Introduction to implicit surfaces 1

1.1 Significance of Research . 7

1.2 Literature Review . 9

1.2.1 Space Partitioning . 10

1.2.2 Interval Methods . 12

1.2.3 Polygonisation . 14

1.2.4 Points . 17

1.2.5 Ray-tracing and GPGPU . 22

1.2.6 Anti-aliasing . 25

1.2.7 Contouring and Curvature . 28

1.2.8 Summary of implicit surface rendering techniques 31

1.3 Contributions . 34

iv

2 Point-based Anti-aliasing methods 37

2.1 Approaches . 38

2.1.1 Object space anti-aliasing . 38

2.1.2 Edge blur method . 40

2.1.3 Super-sample anti-aliasing (SSAA) 43

2.1.4 Adaptive pixel-tracing method 44

2.1.5 Jitter-based anti-aliasing . 50

2.2 Contour anti-aliasing . 52

2.2.1 Examples from real-time visualisation of contours 54

2.3 Filling missing pixels . 55

3 Point Rendering of Implicit Surfaces Using an Octree and Interval Arith-

metic 60

3.1 Plotting Node Trimming and Feature Extraction 63

3.1.1 Sign Test Results . 65

3.1.2 Rendering nodes containing rays 68

3.1.3 Multi-threading . 69

4 Visualisation of the Curvature of Non-Manifold Implicit Surfaces 72

v

4.1 Node subdivision algorithm . 75

4.2 GPU implementation . 86

4.3 Examples . 90

4.4 Comparison with ray-casting . 94

4.5 Rendering shadows on surfaces . 95

4.6 Rendering Contours on Surfaces . 100

4.7 Curvature Maps and Curves of Self Intersection 107

4.8 Curvature Surfaces . 107

5 Visualisation using Polygons 115

5.1 Dual-grid meshing . 118

5.2 GPU subdivision algorithm . 124

5.3 Rendering Non-Manifold Surface Sections 130

5.4 Comparison of Animations using; Points/Polygons, Surface Splatting,

and Ray-casting . 131

5.5 Visualisation of families of surfaces . 138

6 Conclusion 149

7 Future Work 157

vi

List of Figures

1.1 (a) Ellipsoid f [25] . (b) Barth Sextic f [6] . (c) Klein bottle f [3] 3

1.2 (a) Visualisation of a 3D charges surface with texturing f [14] . (b) Sphere

rendered with planar contour lines f [23] 6

1.3 The steps taken to produce a rendering using polygonisation, point-based

and ray-tracing techniques. 10

1.4 Octree showing subdivision of root node into eight child nodes. 11

1.5 Cyclide surface with adaptive tessellation. 15

1.6 (a) Moderate triangle count. (b) High triangle counts. 18

1.7 Illustration of a surfel disc, used to describe a point with dimensions in

3D space. 19

1.8 (a) Sparsely sampled point model. (b) The same model rendered using

EWA splatting for a solid rendering. 20

1.9 (a) Rendered model. (b) Point representation. (c) Triangle representation. 22

1.10 Mobius surface f [33] ray-casted on GPU. 23

vii

1.11 (a) Common aliased staircase effect, and (b) The result of an anti-aliasing

method. 26

1.12 The osculating circle tangent to the plane curve. 29

2.1 Illustration of surface coverage from querying octree nodes from the eye’s

perspective. 39

2.2 Object space anti-aliasing applied to curved surface. 40

2.3 Flowchart illustrating steps from surface geometry to an anti-aliased render. 41

2.4 Edge detection of bucky ball surface (2.1). (a) Silhouette edges in green.

(b) Aliased surface image. 42

2.5 The 3× 3 blur kernel used in weighting pixel colour contributions from

adjacent pixels. 42

2.6 Edge blur is satisfactory for moderate slopes in either direction but not for

steep or shallow edges. 43

2.7 The four position and style types for pixel anti-aliasing cases in the adap-

tive pixel-tracing method, labelled as Case 1, 2, 3 and 4. 45

2.8 (a) Common Aliased staircase effect, and (b) The result of our pixel-

traced anti-aliasing pass. 46

viii

2.9 Edge smoothing groups. (a) Opacity highest at left (bottom) of row (col-

umn), (b) opacity highest at right (bottom) of row (column), (c) opacity

highest at ends, and (d) opacity highest at centre. 47

2.10 Row of pixels of length L. 47

2.11 (a) Inside edge shown in dark grey. (b) Outside edge shown in dark grey. . 48

2.12 Demonstrating anti-aliasing on the inside and outside surface edges. (Top)

aliased image and (Bottom) anti-aliased image of the Cyclide (2.5) surface. 50

2.13 Flowchart illustrating steps from surface geometry to a 4x anti-aliased

render. 51

2.14 Illustration of the distance, x, of the surface point P from the centre of the

contour slab. 53

2.15 (a) Planes parallel to the y and z coordinate axes rendered on a bucky-ball

surface f [14] , and (b) Lines of constant Gaussian curvature rendered on

an ellipse. 55

2.16 Demonstrating missing pixel filling. (a) Rendered image with missing

pixels. (b) Final surface with missing pixels blended. (c) and (d) are

close-ups of (a) and (b) respectively. 56

2.17 Flowchart illustrating steps from surface geometry to filling holes in the

final image. 57

ix

2.18 Jitter-based anti-aliasing comparison on the star surface f [30] . (a) No

anti-aliasing. (b) Anti-aliasing. (c) and (d) are close-ups of (a) and (b)

respectively. 58

2.19 Anti-aliased non-manifold surfaces . 59

3.1 The steps to create point geometry from a surface equation. If the sign

test passes the point is stored. If the sign test fails the node is passed to

the gradient test. If the gradient test passes the point is stored, otherwise

it is discarded. 64

3.2 A small sphere located inside a plotting node showing values of sign at

node vertices. This demonstrates when a surface feature is too small to

intersect the node, which the sign test will not detect. 66

3.3 A small sphere located inside a plotting node showing values of gradient

at node vertices. The gradient evaluation of the function has revealed a

surface may be present by calculating a dot product on the node vertices. 67

3.4 The cyclide surface with plot depth = 9. (a) Interval subdivision and the

sign test, and (b) Interval subdivision and sign and gradient tests. 68

3.5 100 randomly sized spheres. Some of the spheres are smaller than the

node width at the maximum plot depth. 68

x

3.6 Shows the intersection edges detected for the infinite rays present in Steiner’s

roman surface. 69

3.7 Steiner’s relative (3.5) with plot depth = 9. (a) Interval subdivision, and

(b) Interval subdivision and sign and gradient tests. Shows a thin ray

emanating along the y axis. 70

3.8 Spiky surface with plot depth = 9. (a) Original surface showing spikes as

tubes, and (b) New method showing how the tubes converge to lines. . . . 71

3.9 Steiner’s roman surface with plot depth = 9. (a) Interval test only, and (b)

Interval and sign test. 71

4.1 (a) The K =−10 Bretzel f [4] curvature surface. (b) The K = 3 Mitre f [5]

curvature surface. (c) The K = −0.001 Steiner’s f [2] curvature surface

cut by the plotting volume to show inner structure with inset showing

inner region rotated to reveal 8 tubes meeting at origin. (d) The K = 0.2

Barth sextic f [6] curvature surface. 74

4.2 Bohemian star rendered with (a) Sign test, and (b) Gradient test. 76

4.3 Algorithm 1. f ind point in node() . 78

4.4 Steiner’s Roman surface f [2] , partially rendered with points, using points

that are, (a) Always at the center of the plotting node, and (b) At the

centroid of the polygon found by polygonizing the node. 80

xi

4.5 Steiner’s Roman surface f [2] rendered at a plot depth of 5 showing nodes

that are found. (a) Using intervals, (b) Using affine arithmetic, and (c)

Using the node pruning algorithm. 82

4.6 The bohemian star surface f [13] rendered using (a) Interval, (b) Affine

arithmetic, and (c) Interval pruning exclusion test at a plot depth of 9. . . 82

4.7 Algorithm 2. point sampling f ails() . 85

4.8 Algorithm 3. GPU subdivide 1() . 87

4.9 Algorithm 4. GPU subdivide 2() . 88

4.10 (a) The Klein bottle surface f [3] cut by the root node to show internal

structure. (b) The Mitre surface f [5] . 91

4.11 (a) The Spiky surface f [8] . (b) The Kusner-Schmidtt surface f [15] 92

4.12 (a) The T8 Chmutov surface f [9] , and (b) The T14 Chmutov surface f [10]

. 93

4.13 The T14 Chmutov surface cut by the plane x+y+ z = 0, and colour coded

yellow for outside the surface and blue for inside the surface. 94

4.14 The T14 Chmutov surface f [10] . (a) Point subdivided to depth 9. (b)

Interval ray-cast with e−14. 96

4.15 The bohemian star surface f [13] . (a) Point subdivided to depth 9. (b)

Interval ray-cast with e−14. 96

xii

4.16 (a) Steiner’s relative surface. (b) Steiner’s roman surface. 97

4.17 (a) Umbrella surface. (b) Cayley surface. 97

4.18 Scene composed of multiple objects. 98

4.19 Determining whether a pixel has Gaussian curvature contour, K(x,y,z) =

c, passing through it in image space. 101

4.20 Determining whether a pixel has Gaussian curvature contour, K(x,y,z) =

c, passing through it in object space. 101

4.21 (a) Super Toroid surface coloured with Gaussian gradient magnitude. (b)

Barth sextic surface f [6] with t = (1+
√

5)/2 and w = 1. 103

4.22 (a) The intersection of the planes zi =−3.5,−3,−2.5, · · · ,3,3.5, with the

Klein bottle surface f [3] . (b) 14th Order Chmutov split apart by planes

across the z axis. 104

4.23 (a) The curve of zero Gaussian curvature and the curve of self intersection

of Boy’s surface f [1] showing six points of intersection of the two curves

(red dots). (b) The bohemian star surface f [13] 105

4.24 (a) The bohemian dome surface f [11] with contour slabs parallel to the x,

y, and z, principal axes. (b) The super-toroid surface f [12] with a = b =

c = 4, ε1 = 3, and ε2 = 3, and contours of constant Gaussian curvature

rendered on the surface using the image space algorithm. 105

xiii

4.25 Curvature map for Gaussian curvature of Boy’s surface f [1] , left image

viewed from “front” camera position, middle image viewed rotated by

180◦ around the surface center. The right-most image is the curve of self-

intersection of Boy’s surface viewed from “front” position. 106

4.26 Right - left stereo pair for transverse viewing of the curve of zero Gaussian

curvature on Boy’s surface f [1] . 106

4.27 The curvature surfaces for Boy’s surface f [1] showing, (a) Kboys = −1,

(b) Kboys = 0, and (c) Kboys = 1. 110

4.28 The three forms for the cyclide surface [3] surface f [7] and their K = 0

curvature surfaces. Top row, (a) a = 2.95,r = 3 and f = 10, (b) a = 5,r =

0.25 and f = 10 and (c) a = 7.5,r = 10 and f = 2.5. Cyclide surface

shown in Pink and Lime, Curvature surface in Blue and Gold. Surfaces

cut and translated vertically to show internal structure. 111

4.29 (a) The Klein bottle surface f [3] and its K = 0 curvature surfaces shown

cut against the plane y = 0 to reveal internal structure, and (b) the K = 1

curvature surface of the Klein bottle surface. 112

4.30 (a) Cyclide curvature surface for k=0, (b) Combo split of k=0 and cyclide,

(c) Clipped cyclide curvature surface for k=0.05, and (d) Clipped combo

of k=0.05 and cyclide. 113

4.31 (a) Klein bottle combo for k=1. (b) Klein bottle combo. 114

xiv

5.1 Polygonising plot nodes using polygon outlines in adaptively subdivided

octree results in cracks occurring that are aligned with the shared faces be-

tween nodes subdivided to different plot depths (from Balsys and Suffern

[4]). 120

5.2 Quadtree adaptive subdivision of a 2D curve. The dual-grid is the lines

connecting adjacent nodes in the octree. Octree outlines in black, dual-

grid outlines in red, and surface in blue. 121

5.3 Forming triangles using a dual-grid. Plotting node centroids labelled one,

two, three, and f our. Dual mesh edges in red. 122

5.4 Forming quadrilaterals using a dual-grid. Plotting node centroids labelled

one, two, three, and f our. Dual mesh edges in red. 123

5.5 Surface rendered using the described dual-grid based meshing. 124

5.6 Phase 1: CUDA subdivide() . 126

5.7 Phase 2: CUDA polygonise() . 127

5.8 Phase 3: CUDA subdivide points() . 128

5.9 The Cassini-Singh surface f [17] showing GPU rendering. Polygon sec-

tions are outlined in blue while the middle section is filled with points. . . 140

5.10 Crosscap surface f [18] rendered with GPU algorithm. (a) Polygons only,

and (b) Polygons and points. 141

xv

5.11 Spiky surface f [8] rendered with GPU algorithm. (a) Polygons only, and

(b) Polygons and points. 141

5.12 The Mitre surface f [5] rendered with, (a) Polygons / points with point

depth of 12, (b) Point splatting with a maximum point depth of 12, and

(c) Using interval ray-casting with an ε value of 2−11. 142

5.13 Boy’s surface f [1] rendered with GPU algorithm. (a) Polygons / points

with point depth of 12, (b) Point splatting with a maximum point depth of

12, and (c) Using interval ray-casting with an ε value of 2−16. 143

5.14 Steiner’s Roman surface f [2] rendered using, (a) Polygons / points with

point depth of 12, and (b) Interval ray-casting with an ε value of 2−12. . . 144

5.15 Frames from an animation moving down the z axis, where za = 10 and

zi = 4 with steps in z of -2
3 between each of the frames of the Klein bottle

surface f [3] . 145

5.16 Forms of the cyclide surface f [7] . (a) r << a < f , (b) r < a < f , (c)

r = a < f , (d) a < r < f , (e) a < r = f , and (f) a < f < r. 146

5.17 Various forms of the super-ellipsoid surface f [22] with a = 12, b = 8 and

c = 5. ε1 = 1.0, and ε2 varies from 0.4 to 3.6 in steps of 0.4 from left to

right, top to bottom of the figure. 147

xvi

5.18 Steiner’s surface in gold and the (a) K = −0.03, (b) K = 0, and (c) K =

+0.03 curvature surfaces in green/blue, superimposed in a single figure

with the curvature surfaces clipped to the xz plane. 148

6.1 Visualisation of two intersecting planes. 152

xvii

List of Tables

1 Definitions of implicit surfaces. xxi

2 Definitions of implicit surfaces. xxii

3 Definitions of implicit surfaces. xxiii

4.1 Surface timing (sec) for rendering using node center (NC) and polygon

centroid (PC) as the render point with plot depth of 9 using CPU algorithm. 79

4.2 Surface timing (sec), and number of nodes (millions) found using interval,

affine, and interval pruning exclusion tests at a plot depth of 9. 83

4.3 CPU and the GPU algorithm timing for rendering surfaces at a plot depth

of 9. 91

4.4 GPU timing (seconds) for various surfaces using interval pruning vs. ray-

casting. 99

5.1 Timings (sec) for rendering high resolution images of implicit surfaces us-

ing ray-casting, points/polygons and point splatting. Image size 1000x1000

pixels. 134

xviii

5.2 Timing for rendering stereo pairs for 25 frames of Steiner’s Roman sur-

face f [2] using points/polygons and ray-casting. Image size 1200x600

pixels. 137

6.1 Comparison of speed, robustness, quality and animation speed using ray-

casting, points/polygons and point splatting. 155

xix

List of Symbols

∈ belongs to or is a member of

ℜ the set of real numbers

f (x,y,z)− c = 0 implicit equation form

| ... | absolute value of ...

−→
N vector

• vector dot product

≤ less than or equal to

≥ greater than or equal to

[a,b] interval containing set of real numbers defined by [a,b] = {x | a≤ x≤ b}

ε a very small epsilon value

∞ infinity

Σ summation symbol

∇ gradient of an implicit function

ω opacity of a pixel

α a tolerance value

xx

Table 1: Definitions of implicit surfaces.

Surface Name Formulae

f [1] Boy’s surface 64(1− z)3z3−48(1− z2)z2(3x2 +3y2 +2z2)+12(1− z)z(
27(x2 + y2)2−24z2(x2 + y2)+36

√
2yz(y2−3x2)+4z2

)
+(9x2 +9y2−2z2)

(
−81(x2 + y2)2−72z2(x2 + y2)

+108
√

2xz(x2−3y2)+4z2
)
= 0

f [2] Steiner’s Roman x2y2 + y2z2 + x2z2− r2xyz = 0

f [3] Klein bottle (x2 + y2 + z2 +2y−1)
(
(x2 + y2 + z2−2y−1)2−8z2

)
+16xz(x2 + y2 + z2−2y−1) = 0

f [4] Bretzel
(

x2(1− x2)− y2
)2

+ z2−0.01 = 0

f [5] Mitre 4x2(x2 + y2 + z2)− y2(1− y2− z2) = 0

f [6] Barth Sextic 4(t2x2− y2)(t2y2− z2)(t2z2− x2)− (1+2t)(x2 + y2 + z2−1)2 = 0

where t = 0.5(1+ sqrt(5))

f [7] Cyclide (x2 + y2 + z2)2−2(x2 + r2)(f 2 +a2)−2(y2− z2)(a2− f 2)

+8a f rx+(a2− f 2)2 = 0

f [8] Spiky x8 + y8 + z8− x4y4− x4z4− y4z4−1 = 0

f [9] 8th order Chmutov 128x8−256x6 +160x4−32x2 +128y8−256y6 +160y4−32y2

+128z8−256z6 +160z4−32z2 +3 = 0

f [10] 14th order Chmutov 8192x14−28672x12 +39424x10−26880x8 +9408x6−1568x4 +98x2+

8192y14−28672y12 +39424y10−26880y8 +9408y6−1568y4 +98y2+

8192z14−28672z12 +39424z10−26880z8 +9408z6−1568z4 +98z2

−3 = 0

xxi

Table 2: Definitions of implicit surfaces.

Surface Name Formulae

f [11] Bohemian Dome −y4− x4− z4 +2x2z2 +4y2−2x2y2−2y2z2 = 0

f [12] Supertoroid
((

(x
a)

2
ε2 +(y

b)
2

ε2

) ε2
2 − d√

a2+b2

) 2
ε1
+(z

c)
2

ε1 = 0

f [13] Bohemian Star y4x4 +2y6x2 +2y4x2z2 + y8 +2y6z2 + y4z4−4y4x2−4y4z2

−16x2z2y2 +16x2z2 = 0

f [14] Charges Surface ∑
60
j=1

q j
(x−x j)2+(y−y j)2+(z−z j)2 − c = 0.

f [15] Kusner-Schmitt (x2 +3)(y2 +3)(z2 +3)−32(xyz+1) = 0

f [16] Steiner’s Relative x2y2 + y2z2−+x2z2− xyz = 0

f [17] Cassini ((x+a)2 + y2)((x−a)2 + y2)− z2 = 0

f [18] CrossCap 4x2(x2 + y2 + z3)+ y2(y2 + z2−1) = 0

f [19] Dodecube − 1
40

(
(−0.64+ x2 + y2)2 +(−1+ z2)2

)(
(−1+ y2)2 +(−0.64+ x2 + z2)2

)
(
(−1+ x2)2 +(−0.64+ y2 + z2)2

)
= 0

f [20] Tetrahedral x4 +2x2y2 +2x2z2 + y4 +2y2z2 + z4 +8xyz−10x2−10y2−10z2 +25 = 0

f [21] Barth Decic 8(x2− t4y2)(y2− t4z2)(z2− t4x2)(x4 + y4 + z4−2x2y2−2x2z2−2y2z2)+

+(3+5t)(x2 + y2 + z2−w2)2(x2 + y2 + z2− (2− t)w2)2w2 = 0

f [22] Super Ellipsoid
(
(x

a)
2

ε1 +(y
b)

2
ε1

) ε2
ε1 +(z

c)
2

ε1 = 0

f [23] Sphere x2 + y2 + z2− r2 = 0

f [24] Tangle x4−5x2 + y4−5y2 + z4−5z2 +11.8 = 0

f [25] Ellipsoid x2

a2 +
y2

b2 +
z2

c2 −1 = 0

f [26] Mitchell 17x2(y2 + z2)−20(x2 + y2 + z2)+4(x4 +(y2 + z2)2)+17 = 0

xxii

Table 3: Definitions of implicit surfaces.

Surface Name Formulae

f [27] Chair (x2 + y2 + z2−ac2)2−b
(
(z− c)2−2x2)

)(
(z+ c)2−2y2)

)
= 0

f [28] Hunt 4(x2 + y2 + z2−13)(x2 + y2 + z2−13)(x2 + y2 + z2−13)

+27(3x2 + y2−4z2−12)(3x2 + y2−4z2−12) = 0

f [29] Bicorn y2
(

a2− (x2 + z2)
)
− (x2 + z2 +2ay−a2)2 = 0

f [30] Star −3.849606112048
(
(x− z)(0.309016994219x−0.951056516346y− z)

(−0.809016994568x−0.587785252027y− z)

(−0.809016994086x+0.587785252691y− z)

(0.309016994999x+0.951056516092y− z)
)
+(1.−0.831253875555z)

(x2 + y2−1.0+1.927050983125z2)2 = 0

f [31] Cayley −5(x2y+ x2z+ y2x+ y2z+ z2y+ z2x)+2(xy+ xz+ yz) = 0

f [32] Umbrella x2− yz2 = 0

f [33] Mobius (t2 +u2)3−4bt2u2 = 0

where t = cos(−atan2(y,x)
2)

(
xcos(atan2(y,x))+ ysin(atan2(y,x))−a

)
+zsin(−atan2(y,x)

2)

and u =−sin(−atan2(y,x)
2)

(
xcos(atan2(y,x))+ ysin(atan2(y,x))−a

)
+zcos(−atan2(y,x)

2)

xxiii

Acknowledgments

I would like to give acknowledgment to all those who assisted me during my time

of study at Central Queensland University. Much praise and thank you to my supervisor

Ron Balsys, Central Queensland University, who first introduced me to implicit surface

research in my honours year. He has provided excellent guidance throughout this thesis,

and I have gained many skills as a result of his expertise.

Also thanks to Kevin Suffern, University of Technology Sydney, who reviewed and

provided feedback throughout the course of this work. I look forward to further collabo-

rations with Ron and Kevin.

xxiv

Declaration

This thesis contains no material that has been accepted for the award of another degree.

Furthermore, to the best of my knowledge, this thesis does not contain any material previ-

ously published or written by another person, except where due reference is made in the

text.

............................

Dirk Harbinson

xxv

Chapter 1

Introduction to implicit surfaces

This thesis contributes robust methods to visualise manifold and non-manifold im-

plicit surfaces, particularly on issues with respect to rendering non-manifold surfaces.

The methods have been designed to be parallel in execution, where possible, for execu-

tion on both multi-core CPU’s and GPU’s. The GPU algorithms were written in NV IDIA

CUDA. The techniques allow for real-time interaction and stereoscopic viewing. The

methods also enable the exploration of families of curvature surfaces, that haven’t previ-

ously been practical to render.

While the surface shape of many implicit surfaces are well known, the visualisation

of the shapes of more complex surfaces, particularly those with non-manifold or sharp

features, has been less well studied. Our objective for this research was twofold. First we

wish to be able to explore the shape of complex implicit surfaces in as close to real-time

as possible. In this context, by explore the shape, we mean to be able to arbitrarily rotate

the shape around a vector in 3D space. We also wish to be able to create stereo pairs of

the surfaces for viewing in virtual reality systems.

1

Our second objective was to be able to explore parameterised surfaces, such as the

cyclide and super-quadratic surfaces, and vary their parameters so that the effect of the

parameter change on the surface shape is immediately obvious.

Examination of the forms of surfaces such as Boy’s surface, Steiner’s Roman surface

and the Klein bottle surface convinced us that for us to be able to produce meaningful

results we would have to be able to render features such as rays, cusps, singular points

and thin sections to the pixel resolution of our display, for us to faithfully capture the

nature of curvature surfaces of these surfaces.

The implicit surfaces being investigated are complex, e.g. include singularities or

sharp features. Proper understanding of the surfaces through visualisation is dramatically

enhanced by several techniques, such as contouring, curvature maps and intersections.

We propose a visualisation model that combines point primitives and triangles to rep-

resent surfaces. Points are used to render non-manifold regions while polygons are used

elsewhere. These primitives are all rendered to the same colour buffers for seamless vi-

sualisation between manifold and singular sections. The enclosed DVD demonstrates

animations using the presented algorithms.

An implicit surface is a level (iso-valued) surface of a 3D scalar field f (x,y,z), which

we take to be the specific surface f (x,y,z)− c = 0, where c ∈ ℜ. Implicit surfaces are

specified by functions of the form;

f (x,y,z)− c = 0 (1.1)

2

Figure 1.1: (a) Ellipsoid f [25] . (b) Barth Sextic f [6] . (c) Klein bottle f [3] .

such as the function defining the implicit surface, Steiner’s surface;

f (x,y,z) = x2y2 + y2z2 + x2z2− r2xyz (1.2)

A fundamental property of implicit functions is their ability to partition space. An

implicit function partitions space into three categories, inside, outside and on the surface.

By convention, space inside the surface is given by f (x,y,z)< 0, space outside the surface

is given by f (x,y,z)> 0. The visualised points on the surface represent where f (x,y,z) =

0.

Implicit surfaces can be manifold or non-manifold. Manifold surfaces are those like

a sphere or an ellipsoid (Figure 1.1 (a)). Non-manifold surfaces have regions such as

singular points (Figure 1.1 (b)) or points of infinite curvature (Figure 1.1 (c)). A number

of problems therefore occur in rendering implicit functions, particularly on, and around,

these non-manifold features.

3

A fundamental property of all continuous surfaces is the curvature of the surface.

Curvature describes how curved a surface is at any point on the surface. The Gaussian

curvature K(x,y,z) of an implicit surface f (x,y,z) = 0 is a 3D scalar field. A specific

value of this scalar field K(x,y,z) = k, with k ∈ℜ is another implicit surface. We call this

the curvature surface [5] of f (x,y,z) = 0. If k ∈ [kmin,kmax] for f (x,y,z) = c, these two

surfaces will intersect.

Generating curvature surfaces is an open problem in rendering, especially for non-

manifold surfaces. Curvature surfaces are commonly used in CAD / CAM applications

where curvature is an important intrinsic quantity of the surface.

Surfaces can be visualised using a number of techniques, such as polygonisation, ray-

tracing, or using points. Polygonisation is the generation of a triangle mesh, requiring

a closed mesh for hole-free rendering. This mesh can be precomputed and later viewed

at faster speeds than non-primitive based methods like ray-tracing. The production of a

mesh also permits engineering applications, such as Finite Element Analysis (FEA).

Ray-tracing typically re-samples the surface for each rendered image, limiting appli-

cations for interactive visualisation. The modern GPGPU (General-purpose computing on

graphics processing units) era has sparked new interest into real-time ray-tracing work,

including implicit surface visualisation.

Point-based rendering has a different philosophy to polygonisation and ray-tracing.

Point work discards connectivity information and opts for visualising scenes through dis-

4

crete point samples. When each triangle in a polygonal mesh projects to a single pixel on

the image plane, we can get the same results from specifying a single point versus three

points for a triangle [6].

All methods employ common lighting models, such as Phong shading [7], to illumi-

nate the surface and provide visual cues. The normal
−→
N required in the Phong equation

can be computed from the implicit surface in multiple ways. If the function is differ-

entiable, the surface should have a defined normal everywhere; if the polynomial is not

differentiable, then the surface contains a singularity [8]. An approximated normal can

be generated from sampling the direction of the scalar field. The latter is popular for

methods that synthesise implicit functions at run-time and compile into GPU programs,

enabling the user to type in implicit surfaces without the functions being hard coded into

the application.

As an aid to visualisation, rendering the intersections of surfaces helps illustrate the

nature of the surface. An example is to render the intersection of a number of planes, or-

thogonal to the three coordinate axes, with the surface being visualised. These coordinate

planes help the viewer obtain more information than reflection models, such as Phong

shading, can supply.

Texturing, shadowing and transparency are other visual cues that improve the inter-

pretation and visualisation of implicit surfaces, such as Figure 1.2 (a).

In chapter two we investigate anti-aliasing of point-based surface renderings. This

5

Figure 1.2: (a) Visualisation of a 3D charges surface with texturing f [14] . (b) Sphere

rendered with planar contour lines f [23] .

significantly increases the quality of the final images. Chapter three looks at the subdivi-

sion and rendering process, and how well it can be controlled using select criteria such as

intervals.

In chapter four we address the limitations in the methods from the previous chapter.

We present techniques to reduce false-positives. Here we are interested in obtaining a set

of points on the surface and their associated normals. In chapter five we propose using

a combination of points and polygons to render a surface, reducing geometry needed to

render.

Lastly, chapter six presents conclusions on the methods presented in the thesis and

chapter seven discusses future work.

6

1.1 Significance of Research

Implicit surfaces have many uses in mathematics, science and engineering as they are

the iso-valued surfaces of scalar fields. Hence visualisations of implicit surfaces are useful

whenever we are rendering scalar fields. Also, even though Computer Aided geometric

Design (CAD) uses predominately parametric surfaces, implicit surfaces are also used in

this area. Blending and offset surfaces in CAD are often implicit surfaces. As implicit

surfaces are equations of the general form f (x,y,z)−c = 0 the proximity of a given point

to the surface can be tested by calculating the sign and magnitude of the implicit function

at the point. Parametric surfaces cannot be used for this task.

Implicit surfaces also find uses in real world problem solving in science and engi-

neering. The use of octrees as a spatial data structure greatly simplifies operations such

as finding surface intersections, locating a point or block in space, dealing with hidden

surface removal, connected neighbour finding, anti-aliasing, and polygonisation of poly-

gons, and in solving other topological problems. Thus octrees are useful in the problem

domains of solid modelling, computer graphics, computer aided design, computer vision,

image processing and robotics [9].

In the manufacturing domain, Beck et al. [10] discuss surface cutting by numerically

controlled (N.C.) milling machines. They state that algorithms previously used failed to

adequately cut the surface due to localised anomalies in the surface that were not detected

using simple rendering techniques. They assert that the anomalies are bypassed by per-

7

forming detailed curvature analysis of the surface to be machined. Such analysis reveals

the variations in the magnitude and direction of the principal curvatures across the surface.

The extreme values for the curvature constrain the tool size for gouge-free milling. They

also assert that curvature maps, that show the range of curvature across the surface are

valuable. Curvature analysis is also used extensively in the aeronautical and automotive

manufacturing industries.

This thesis makes an original contribution to knowledge in visualisation of non-manifold

surfaces, and in visualisation of important properties of implicit surfaces such as the mean

and Gaussian curvature. For each implicit surface we can define an infinite series of cur-

vature surfaces whose complexity may increase exponentially along the sequence. To our

knowledge, the only published image of families of curvature surfaces is in Suffern et

al. [11]. They only rendered the first curvature surface of an ellipsoid, which is another

ellipsoid.

This area is therefore relatively un-explored territory, which makes it a worthwhile

project in mathematics. No-one knows what the curvature surfaces of many interesting

surfaces (such as Boy’s surface) look like, or the potential applications they may have.

It’s also worthwhile because of the computational and rendering challenges that are in-

volved. Depending on the original implicit surfaces, we may only be able to render the

first few curvature surfaces in the sequences. The reason is the increasing complexity

of the equations and the attendant increase in geometric complexity of the surfaces. It

is interesting to see how far our current computational and rendering techniques can be

8

pushed, or adapted, to render these surfaces, or if new techniques will be required.

Any necessary advances in our techniques will benefit the rendering of implicit sur-

faces in other areas. Improving the rendering and visualisation methods of implicit sur-

faces ultimately has applications in games, the entertainment industries, and manufactur-

ing, science and engineering. Implicit surfaces have also been used for modelling organic

forms, such as trees, leaves and arms as discussed in Bloomenthal [12]. Bloomenthal also

reviews other visualisation applications, such as blobby/molecular modelling, of use in

the materials science, chemical and bio-medical areas.

1.2 Literature Review

Computer based visualisation is the rendering of multi-dimensional datasets, typically

onto a flat two-dimensional display device. The data must be transformed between spaces

e.g. three-dimensional data projected onto a two-dimensional plane, as described in Foley

[13].

To render implicit surfaces we must first define a viewpoint in the coordinate system,

with the same dimensionality as the function, e.g. 2D/3D/4D. The viewpoint can be

thought of as a virtual camera directed at the geometry; our display device provides a

visualisation of the cameras view. The resulting rendered image is a projection of the

function onto a two-dimensional plane. There are a number of techniques in common use

for rendering surfaces, the main ones being polygonisation, ray-tracing, and point-based

9

techniques. They all have their advantages, disadvantages, and limitations, as discussed

later. Figure 1.3 illustrates the stages of each render method beginning with the surface

equation to the final render.

Figure 1.3: The steps taken to produce a rendering using polygonisation, point-based and

ray-tracing techniques.

In this thesis we first present techniques for rendering static images of implicit sur-

faces. We then present techniques to produce animations of surfaces whose 3D shape is

hard to conceptualise from static images. We also do animations of parameterised im-

plicit surfaces where we change the parameter as a function of time. To produce these

interactive animations, we need to accelerate the rendering process with techniques like

space partitioning [13].

1.2.1 Space Partitioning

Rendering systems require the traversal of spatial datasets, in order to produce an im-

age. The speed at which spatial data can be processed is crucial to a rendering algorithms

efficiency. Many common data structures are employed in graphics rendering, such as

BSP [14], Quadtree [15], Octrees [15] and k-D trees [16]. Their purpose is to provide an

10

efficient mechanism for querying spatial data. This process is known as a spatial parti-

tioning scheme.

In respect to implicit visualisation, an implicit function may be evaluated millions of

times, over a vast area of space. A brute force search over this space becomes costly, and

infeasible for producing images of higher quality.

The spatial search needs to be optimised by partitioning the function space into sec-

tions. A popular partitioning scheme used during surface visualisation is octree based

subdivision. The interested reader is referred to books on this subject, such as those by

Samet [15]. Octree methods are most useful as they integrate well with interval arith-

metic. Octree methods begin with a root node (a bounds defined in the same dimension as

the function), then is split in the middle of each axis to create child nodes. This recursive

process is repeated until a specified level of depth is reached.

Figure 1.4: Octree showing subdivision of root node into eight child nodes.

Octree subdivision aids implicit visualisation in a couple of ways. Firstly, it allows

subdivision to occur in an adaptive manner. Nodes that do not contain any part of the

surface can be skipped, while remaining nodes can be subdivided to a required detail

11

level. Secondly, octree information can be retained for generation of polygonal meshes,

or further processing, for example of non-manifold sections.

Subdivision can be controlled by a combination of criteria. Point sampling can be used

to detect surface intersections against the octree node. Gradient information can be used

to detect surfaces inside a node. Curvature information can be used to drive minimum and

maximum subdivision levels. Interval analysis can be used to detect if a surface is inside

a node, preserving sharp features.

1.2.2 Interval Methods

An interval I = [a,b], a≤ b is a set of real numbers defined by [a,b] = {x | a≤ x≤ b}.

Interval Arithmetic defines operations for adding, subtracting, multiplying and dividing

intervals, as shown in the following equations.

[a,b]+ [c,d] = [a+ c,b+d] (1.3)

[a,b]− [c,d] = [ad,bc] (1.4)

[a,b]∗ [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)] (1.5)

[a,b]/[c,d] = [min(a/c,a/d,b/c,b/d),max(a/c,a/d,b/c,b/d)] (1.6)

See Moore [17], Suffern and Fackerell [18] and Snyder [19] for a full discussion on

the use of intervals in computer graphics.

12

The natural interval extension of a rational function f (x1, . . .xn) : ℜm→ ℜ denoted

by F(X1, . . .Xn), is obtained by replacing the xi’s by the intervals Xi and evaluating the

resultant interval expressions according to the rules of interval arithmetic.

The main reason for using intervals in this context comes from the property that the

natural interval extension of a function provides bounds on the variation of the function.

The bounds may not be very tight, but the values of the function f are guaranteed not

to be outside of this interval. Stolte [20] and Suffern and Balsys [11], show that octree

based volume decomposition with a subdivision criteria based on an interval exclusion

test, converges to nodes clustered about the implicit surfaces. Using this approach they

rendered many different types of surfaces.

The work in this thesis implements interval arithmetic as a C++ class and details

of the algorithms can be found in Balsys and Suffern [21]. An interval package is also

implemented in NV IDIA CUDA and NV IDIA CG for interval processing on graphics

hardware, in both a GPGPU and shader based context, respectively.

As the complexity of a function increases, interval arithmetic suffers from overesti-

mating the bounds of the function. Comba and Stolfi [22] developed Affine arithmetic

(AA) to produce tighter bounds than possible using traditional interval arithmetic. AA

achieves tighter bounds by storing additional information during calculation, keeping

track of correlations between AA operations. Consequently, AA is more demanding on

computer resources than IA (in both memory and computation) which can offset the gains

13

of tighter bounds on the end results. The choice to use either IA or AA can ultimately

only be determined by executing the rendering algorithm, as early rejection (at an added

computation cost) may not be ideal for best performance. Generally AA is used when a

tighter surface fit is required at a given plot depth and time is not an issue.

1.2.3 Polygonisation

Early renderings of implicit surfaces were done by constructing a triangle mesh from

the implicit surface. This is classified as forward mapping, where geometry is projected

forward onto the image plane, then rasterised to pixels. Rasterisation is the projection

of a primitive onto a discrete pixel grid, thus the primitive plays an important role in the

efficiency and appearance of the image. In the past, renderings were done with coarse

triangle meshes, which projected to large numbers of pixels, filling the image in the min-

imum amount of time.

Early work on polygonising implicit surfaces is by Lorenson and Cline [23] and Bloo-

menthal [24]. Lorenson and Cline formulated the novel marching cubes algorithm, which

extracts a polygonal mesh from a three-dimensional scalar field. The field is divided into

voxel cubes where each cube is polygonised separately, the final mesh is comprised of

all the polygons from each cube. Bloomenthal devised a method of polygonising implicit

surfaces by performing bi-sections on cube edges to have more accurate triangle meshes.

The advantage of assembling a surface into a polygonal mesh is the ability to render

14

images from any viewpoint, without recalculation of the implicit surface. Polygonisation

schemes revolve around either a marching cubes style algorithm [24] or stitching triangles

from intersections inside an octree node [25]. Recent work by Balsys and Suffern [25]

continued work on polygonisation, aiming to improve the correctness of the surface mesh

solution, and reduce problems such as holes in the polgyonisation process, to produce

higher quality images. They also use adaptive subdivision driven by curvature, creating a

mesh with varying level-of-detail.

Figure 1.5: Cyclide surface with adaptive tessellation.

Regular implicit surfaces can be polygonised for rendering, but the process is not

as straightforward as it is for parametric surfaces. A large number of papers have been

published on the polygonisation of implicit surfaces. Relevant examples include: Wyvill

et al. [26], Lorenson and Cline [23], Bloomenthal [24], Schmidt [27] and Balsys and

15

Suffern [4]. Thin sections, even if they are regular parts of surfaces, can also be difficult

to polygonise, as discussed in Balsys and Suffern [4].

Ohtake and Belyaev [28] used QEM (Quadratic Error Metrics) to measure the quadratic

energy inside the octree node. Vertex positions were moved to where there is mini-

mal quadratic energy. This created a better quality mesh that preserved sharp features.

Lewiner et al. [29] aimed to solve topology problems with traditional marching cubes

output. They produce a crack-free manifold mesh where previous marching cube imple-

mentations had failed. Ohtake et al. [30] furthered work on sharp feature preservation.

Instead of using QEM they use a mesh evolution formula which applies an attracting force

to a vertex, repositioning it to closely fit the surface.

Dual marching cubes by Schaefer and Warren [31] was a new application of marching

cubes to the dual-grid structure. They produce a grid which is topologically dual to the

octree structure, and then create non axis-aligned boxes using the dual-grid contour lines.

Each vertex is positioned on sharp features by solving a QEF (quadratic error function).

Marching cubes is then applied to these generated boxes. Ju [32] presented work that

can extract an intersection-free mesh from volumetric data. Paiva et al. [33] enhanced

the dual-grid marching cube approach by sliding vertices into triangles that had a better

aspect ratio.

Polygonisation can break down for complex surfaces that are non-manifold, indicating

a more robust operation is needed. In chapter five we show how to combine polygons and

16

points to create seamless implicit surface renderings.

1.2.4 Points

Triangle based methods have received attention as the most efficient and practical

3D rendering solution. Each new generation of graphics hardware offers a magnitude of

increased triangle processing capability over the last. These technological advancements

mean higher quality models are used in graphics rendering.

As triangle counts increase in a model, their individual contribution to the final image

is reduced. This can reach a point where each triangle projects to a single pixel on the

image plane; thereby the triangle representation and rasterisation process is no longer

optimal. At this stage, a reduction in processing can be achieved from simply rendering

models explicitly as points [6]. We can get the same results from specifying a single

point verses three points for a triangle. Chapter four is concerned with rendering implicit

surfaces using point-based methods.

Levoy and Whitted [6] first introduced the use of points as a rendering primitive in

1985. A sparse collection of papers have cropped up from then until the late 1990s. Since

the year 2000 a great deal of interest has arisen in using models comprised of points,

as laser scanning devices became more commonly used. Laser scanners produce their

data as scattered point samples (collectively known as a point cloud), such as Stanford’s

scanning repository [34]. These scanned points would normally be used in a conversion

17

Figure 1.6: (a) Moderate triangle count. (b) High triangle counts.

algorithm to construct a triangle based mesh, which could then be rendered using standard

techniques. When dealing with objects that feature millions of point samples, constructing

a triangle mesh becomes difficult. Point-based methods enable this data to be visualised in

its native form, which is highly considering resources. As sampling an implicit function

results in a point that lies relative to the implicit surface, visualising these points directly is

a robust solution as no further processing of the geometry is required. Gross [35] recently

discussed the growing use of points as a display primitive.

Point-based rendering techniques use points, or objects such as discs, as rendering

primitives. Rockwood [36] is an early paper on rendering parametric surfaces using

points. Witkin and Heckbert [37] used repulsive particles called floaters that can slide

over implicit surfaces for their modelling and rendering. The repulsion creates uniform

distributions of particles on the surface which are rendered as discs. They further refined

the results in [38] to handle more complex models.

18

De Figueiredo and Gomes [39] used physically based particles that obey Newtonian

equations of motion to render differentiable implicit surfaces. They used points for ren-

dering, but did not produce shaded images. Rosch et al. [40] used large discs to inter-

actively render self intersecting, singular, algebraic implicit surfaces with non-manifold

points (cusps).

Work by Tanaka et al. [41], [42] used particles that obey stochastic differential equa-

tions to render twice differentiable implicit surfaces. The points are evenly distributed

over the surfaces, and surface intersections can also be rendered. These are nice features

of their work, but the method is complex, and would be a lot of work to implement from

scratch. Shaded images of single surfaces are produced by splatting with discs.

Figure 1.7: Illustration of a surfel disc, used to describe a point with dimensions in 3D

space.

Pfister et al. [43] introduced the concept of the surface element or surfel. A surfel is

an extension of the point primitive, with the following characteristics. It faces a direction

using a normal, and it has dimensions. Like polygons it can also store other attributes

19

like colour, diffuse, specular components etc. Pfister et al. developed algorithms to render

geometries based on these elements, and used surface splatting for visibility testing.

Similarly, Rusinkiewicz and Levoy [44] developed an algorithm that speeds up ren-

dering of point-based objects based on splatting. Zwicker et al. [45] used the elliptical

weighted average filter, EWA, of Heckbert [46], to avoid aliasing artifacts with textures

when using splatting to render point clouds. In chapter five we compare splatting points

sampled on the implicit surface with polygon/points and ray-tracing.

Figure 1.8: (a) Sparsely sampled point model. (b) The same model rendered using EWA

splatting for a solid rendering.

More recently, Botsch et al. [47] based the lighting of a splat on a linearly varying

normal field and showed the resulting Phong splats are superior to that of previous work.

They give a simple and effective method of constructing the Phong splats for given input

data sets. Zwicker et al. [48] use homogeneous coordinate systems to produce perspective

accurate splats which provides high image quality with anisotropic texture filtering. They

20

also present an extension of their rendering primitive to deal with sharp edges and corners,

such as those that occur in non-manifold surfaces. We also use Phong shading on the

splats in chapter five to improve the quality.

Co et al. [49] developed an algorithm for rendering iso-surfaces using a point-based

method. As their first step they generate points in the domain of the sample space. In the

second step these points are projected onto the iso-surface of interest in the domain. The

resulting point set is then rendered using a point splatting approach.

In Balsys and Suffern [50] is a sampling technique that uses octree space subdivision

with a natural interval exclusion test to minimise the octree subdivision process. They

used a similar technique for polygonising implicit surfaces in Balsys and Suffern [4].

With this technique, they can render implicit surfaces with times comparable to parametric

surfaces. Their intention is to produce high quality images where there is no possibility

that portions of the surface are either rendered incorrectly or are missed, and the use of

interval techniques is ideal for this purpose [18].

Balsys et al. [51] also presented criteria for the complete pixel coverage of implicit

surfaces. This algorithm was a major contribution of the paper. Other than stopping the

rendering, this technique ran automatically with no user intervention. It also has the fol-

lowing advantages over previous point-based rendering algorithms for implicit surfaces;

it’s simple, in the case of implicit surfaces much faster, it will not miss small surface

sections in the plotting volume, and if rendered to the required plot depth will have no

21

rendering artifacts (holes).

A disadvantage of the work was that for certain surfaces rendering artifacts occur due

to the use of the interval subdivision method, and rays were rendered as tubes. In chapter

four we reduce these artifacts by pruning away excess nodes around these non-manifold

regions.

Figure 1.9: (a) Rendered model. (b) Point representation. (c) Triangle representation.

1.2.5 Ray-tracing and GPGPU

In chapter four and five we compare our point and polygon methods to recent work

in ray-tracing implicit surfaces [52]. Unlike our forward rendering solution, ray-tracing

(backward mapping) traces rays from the viewpoint through a pixel on the image plane.

A vector can be defined from the eye position and view direction that can be used to find

where the ray first intersects surfaces in the view volume. This process is usually referred

to as ray-casting, if the ray is traced to the first surface hit in the scene, or ray-tracing

22

when the colour contribution to a pixel is determined from multiple reflections.

Rays can be bounced around geometry, making possible complex lighting solutions

for photo-realistic rendering. This type of system is termed an off-line renderer, aiming

for very high quality images over speed, and it can take a matter of hours to render a single

frame of complex scenes at high resolution. This is commonly done in the animation and

entertainment industries. Its slow speed is attributed to the fact that, in the past, it was a

pure software based solution (CPU). The advancement of both CPU and GPU technology

is proving scalable to produce practical ray-tracing solutions.

Figure 1.10: Mobius surface f [33] ray-casted on GPU.

Implicit surfaces can be ray-traced in a number of ways. A generalised ray-intersection

test can be constructed for a surface, then integrated into a ray-tracing system. Solving

23

the intersection test becomes immensely difficult as the surface equation increases in com-

plexity, the intersection test must solve all possible roots of the function.

This approach is therefore only suitable for simple surface formulae without many

root solutions. Another limitation is the accuracy of non-manifold features such as rays.

If the projected ray does not align with a non-manifold feature, it will not show up in

the rendered image. Performing a ray-intersection with an implicit surface can miss these

important visual features.

Other works [53], [52] have shown that it is not necessary to ray-trace surfaces by ex-

plicitly solving the intersection test. Their approach is similar to the interval and sign test-

ing used in implicit polygonisation. The projected rays are partitioned into sections, which

can be tested against the function. They show interactive speeds can be achieved through

processing the rays in parallel. CPUs that feature multiple cores increase computational

power exponentially, through their parallel architecture. Knoll et al. [53] uses multi-core

CPUs along with SIMD functionality to render implicit surfaces at a few frames per sec-

ond.

The GPU is even more parallel in design compared with the CPU. As of 2007, GPUs

have overtaken CPUs in raw processing power, with high-end graphics cards featuring

up to 128 parallel execution units, whereas CPUs currently only have a handful of cores.

Unlike the CPU, the GPU is limited to SIMD style processing. NV IDIA refers to their de-

sign as Single Instruction Multiple Threads (SIMT) processing, in order to maintain high

24

performance. Conditional logic branching causing thread divergence is not optimal when

performed on the GPU, and considerably lowers its maximum theoretical performance.

Diverging threads must be serialised and executed in order, until the threads converge and

parallel execution can continue. Singh and Narayanan [52] compared logic driven implicit

rendering and brute force implicit rendering. As expected using conditional branching,

they report logic based methods (such as interval calculations) are inefficient to implement

on the GPU. On the other hand, brute force SIMD algorithms were able to get promising

speeds in the hundreds of frames per second for 512x512 pixel ray-cast images of implicit

surfaces.

However, the accuracy and correctness of the renderings breaks down for certain non-

manifold surfaces, such as for Steiner’s surface where converging tubes appear in the

image instead of as singular lines. This is discussed in the ray-tracing comparisons in

chapter four.

1.2.6 Anti-aliasing

A computer rendered image is the result of discretely sampling a continuous dataset.

These discrete samples form a raster image, which is displayed on a computer monitor.

Discrete sampling a continuous dataset can cause aliasing problems, resultant images will

be sharp and jaggy looking such as stair-casing. Anti-aliasing is a technique to produce

smooth and production quality images, that are free from such artifacts. In surface visual-

isation, aliasing is most noticeable on the silhouette edges of surfaces, where the surface

25

(a) (b)

Figure 1.11: (a) Common aliased staircase effect, and (b) The result of an anti-aliasing

method.

occludes the background or self occludes.

Aliasing also occurs along contour edges when contours are rendered on the surfaces.

Aliasing along the silhouette edge can be very prominent, as well as along contour edges.

Non-manifold surfaces suffer the worst, with thin sections appearing jaggy and inconsis-

tent. Anti-aliasing techniques can address the entire image (known as super-sampling) or

selectively work on troublesome regions, like polygon edges (multi-sampling). Methods

like multi-sampling are an optimisation of super-sampling. Multi-sampling evaluates the

pixel colour once, while the depth is sampled multiple times. In chapter two we present

methods for anti-aliasing point-based renderings and compare results with existing meth-

ods.

Zwicker et al. [45][48] used the elliptical weighted average filter, EWA, of Heckbert

[46] to avoid aliasing problems with textures when using splatting to render point clouds.

Anti-aliasing for polygonal surfaces can be performed using the built-in features of mod-

ern graphics hardware. Multi-sampling (or super-sampling, see Foley & Van Dam [13])

26

of scenes composed of polygons is very effective. When anti-aliasing polygon scenes the

geometry’s complexity remains constant, regardless of the anti-aliasing method being ap-

plied. The performance is satisfactory as the bottleneck lies in the graphic cards memory

bandwidth.

The point-based methods used in previous work [5], [54], [51], and [1], were not anti-

aliased, as it was not clear how to proceed with anti-aliasing point rendered scenes. In a

native point approach, the anti-aliasing scheme of Zwicker et al. [45] and Heckbert [46] is

not applicable and in neither of these is aliasing on the silhouette edge, or contour edges,

fixed.

Balsys et al. [5] rendered anti-aliased contours on ray-traced surfaces. In that work

a slab algorithm was used to ensure that the contour slabs drawn on the surface have an

apparent constant thickness. Formulae for curved and non curved slabs were given. These

are used in this work to control the thickness of the contours rendered on the surfaces. In

the same work reference is made to anti-aliasing of the surfaces. In ray-tracing extra rays

are shot into each pixel to allow for a calculation of the average colour of a pixel. The

number and distribution of these rays determine the quality and nature of the resulting

anti-aliasing, see for example Foley et al. [13] or Whitted [55].

Stolte et al. [20], and Stolte [56] used interval arithmetic for voxelising implicit sur-

faces and used interval methods with rectangular coordinates. The voxel space has a res-

olution of 5123, and the painter’s algorithm is used for rendering the voxels. Anti-aliasing

27

is not discussed.

Bloomenthal [57] discusses anti-aliasing of Z-buffer programs. This work developed

a simple algorithm that can be used to anti-alias the silhouette edges of complex con-

nected regions. This work is an important original contribution to anti-aliasing what are

essentially bitmaps.

As is the case with this dissertation, Balsys et al. [51] also rendered implicit surfaces

using points. For certain surfaces, rendering artifacts occurred due to the use of the in-

terval subdivision method, for example singular lines (rays) were rendered as tubes. Also

aliasing was evident on silhouette edges, along surface contours, and along the singular

lines.

1.2.7 Contouring and Curvature

A better understanding can be achieved by rendering visual cues onto the surface, such

as intersection/contour lines or curvature maps. In chapter four we produce renderings of

surfaces with contouring, curvature maps and intersections with other surfaces. Balsys

et al. [54] used point-based algorithms for rendering the intersections of a surface with

a series of level surfaces of other scalar fields gi(x,y,z), i = 1..n. One example is the

intersection of an ellipsoid with the curvature of the curvature surface of an ellipsoid.

These are the surfaces gi(x,y,z)− c = 0 for different values of c. The intersections are

rendered as contour lines on f (x,y,z) = 0. They visualise the intersections of various

28

planes [12] with implicit surfaces. Alternatively, the scalar fields may be functions related

to the implicit surface such as its curvature function, which wish to be visualised on the

surface.

Figure 1.12: The osculating circle tangent to the plane curve.

In chapter four we also visualise curvature surfaces. Curvature is measured as the

radius of the osculating circle on the plane curve. In two-dimensions, this is illustrated in

Figure 1.12 by positioning a circle at point P tangent to the plane curve C. The radius R of

the osculating circle represents the level of curvature. In three-dimensions the curvature

at point P will change depending on the orientation of the normal plane. This results in a

minimum and maximum curvature value at any point on the curve. The maximum curva-

ture value is known as the maximum principle curvature κ1, and the minimum curvature

value is known as the minimum principle curvature κ2.

Gaussian curvature, introduced by Carl Gauss, is the product of the two principal cur-

vatures K = κ1κ2. Gaussian curvature classifies points on a surface as elliptic, hyperbolic

and parabolic. A point is elliptic if K(P) > 0. A hyperbolic point is when K(P) < 0 and

a parabolic point is when K(P) = 0.

29

A curvature map is the visualisation of curvature values across the surface, such as

Gaussian curvature. A scalar field they consider in [54] is the Gaussian curvature of

f (x,y,z) = c, which is an intrinsic property of the surface.

Spivak [8] gives general formulae and examples for the Gaussian curvature of implicit

surfaces; see also Mitchell and Hanrahan [58] for an independent derivation of the for-

mulae. Potzmann and Opitz [59] presented formulae for curvature analysis of curvature

functions. Guid, Oblosek and Zalig [60] asserted curvature is one of the most important

tools for surface analysis. Balsys and Suffern [4] presented general implicit equations to

produce a Gaussian curvature function from an implicit function.

According to Spivak the principle curvatures κ1 and κ2 are given by

κi =−
1√

(f 2
x + f 2

y + f 2
z)

λi, (1.7)

where fx =
∂ f
∂x , fy =

∂ f
∂y , fz =

∂ f
∂z , and λi are the roots of the quadratic equation

det

fxx−λ fxy fxz fx

fyx fyy−λ fyz fy

fzx fzy fzz−λ fz

fx fy fz 0

= 0, (1.8)

with fxx =
∂2 f
∂x2 , fxy =

∂2 f
∂x∂y , etc. From this expression Balsys and Suffern [4] give the

expressions for the Gaussian curvature, K, and the mean curvature [8], H as:

K =− A
(f 2

x + f 2
y + f 2

z)
2 (1.9)

30

where

A = 2
[

fx fy(fxy fzz− fxz fyz)+ fx fz(fxz fyy− fxy fyz)

+ fy fz(fyz fxx− fxy fxz)
]
− f 2

x (fyy fzz− f 2
yz)

− f 2
y (fxx fzz− f 2

xz)− f 2
z (fxx fyy− f 2

xy), (1.10)

and

H =
B

2(f 2
x + f 2

y + f 2
z)

3
2
, (1.11)

where

B = −2(fx fy fxy + fx fz fxz + fy fz fyz)

+ f 2
x (fyy + fzz)+ f 2

y (fxx + fzz)+ f 2
z (fxx + fyy). (1.12)

1.2.8 Summary of implicit surface rendering techniques

Upon reviewing available literature sources there are four key issues identified in the

rendering of implicit surfaces, common to either a forward or backward mapped system.

Each method can be judged and compared based on these criteria;

Image Quality The visual accuracy of the implicit surface image. Anti-aliasing capabil-

ities are required for smooth images, and are dependent upon the rendering algo-

rithm. Rasterised systems can be anti-aliased without extra sampling of the implicit

surface, while ray-casted systems need to be sampled multiple times per ray.

31

Efficiency The practicality of a rendering algorithm is limited upon its efficiency. This

is measured from time to produce a rendered frame. A technique that is too slow is

infeasible to apply to complex problems;

Scalability A technique has limited usefulness if it is only applicable to a specific task.

It needs to be able to scale well to other problems. For instance, brute force ray-

casting on the GPU is fast, yet yields inaccurate results when compared to more

logic driven methods such as intervals;

Resources Resources, while a lower priority concern, are important when dealing with

large datasets, as storage requirements can be a considerable problem;

Implicit surfaces are prone to error when visualised, from complex geometry present

on non-manifold and self-intersecting surfaces. Robust polygonisation methods are dif-

ficult, requiring handling of special cases to minimise problems in the output mesh, e.g.

fixing cracks from adaptive polygonisation, dealing with octree nodes with self intersec-

tions, rays etc.

Ray-tracing efforts have previously shown limited success, often missing such fea-

tures. Recent work in GPU ray-tracing offers much more reliable results at reasonable

speeds, as intervals can now be used on a GPU through programmable shaders.

Splatting is ideal for visualisation of a surface with minimal sample points, as each

sample can be rendered as an oriented splat disc, but again non-manifold features are

problematic, such as rendering singular lines. A pure point-based approach can techni-

32

cally represent infinitely thin features such as rays, as points by definition have no dimen-

sions, they are infinitely small themselves.

An under-examined aspect of implicit surface research is the scalability of an algo-

rithm when extended to rendering of anti-aliasing, contouring, curvature, shadows and

transparency. Some of these will be fast with some methods, while slow with others. For

instance, anti-aliasing geometry primitives (polygons or points) can be done efficiently

through graphics hardware, while ray-tracing methods need to bounce multiple rays per

pixel into the surface, cutting the frame rates down. This further complicates judging

which are currently the best options for implicit surface visualisation.

33

1.3 Contributions

This thesis makes the following contributions to implicit surface rendering.

We present algorithms for anti-aliasing silhouette edges of manifold and non-manifold

implicit surfaces. The first algorithm identifies edge regions and applies anti-aliasing. The

second uses the GPU to render multiple buffers which are combined into an anti-aliased

image. We also present new algorithms for rendering contours on surfaces rendered us-

ing points. Contours we examine are planar contours and contours of constant Gaussian

curvature. We also discuss the anti-aliasing of contours rendered in real-time on implicit

surfaces. The GPU anti-aliasing method also allows us, for instance, to animate contours

on a surface by changing contour parameters. We give examples showing the results of

our anti-aliasing techniques for various types of contours rendered on surfaces as an aid

to their visualisation.

We present a point-based technique that improves the rendering of non-manifold im-

plicit surfaces by using point and gradient information to prune plotting nodes resulting

from using octree spatial subdivision based on the natural interval extension of the sur-

face’s function. The use of intervals guarantees that no parts of the surfaces are missed

in the view volume and the combination of point and gradient sampling preserves this

feature while greatly enhancing the quality of point-based rendering of implicit surfaces.

We also successfully render non-manifold features of implicit surfaces such as rays and

thin sections. We illustrated the technique with a number of example surfaces.

34

We also present a point-based technique that does not require gradient information.

This algorithm uses point sampling and the natural interval extension as a subdivision

criteria and for non-manifold sections uses a pruning algorithm based on a signed distance

function to prune plotting nodes around the non-manifold features to more accurately

render these features.

Using this approach we can produce high quality rendered thin sections of surfaces,

cusps, ridges and singular lines of surfaces. These features can be rendered whether they

are aligned with the octree node edges or not. So, for example, we can render thin rays at

arbitrary angles with this algorithm. This is not possible using the algorithm given in our

point and gradient approach.

We also discuss the advantages and disadvantages of the algorithm. Our results com-

pare quite favourably with those obtained by GPU based ray-casting the surfaces and we

give timings comparing the approaches. A typical surface will take from seconds to hours

to produce, depending on the resolution, and the number of points used representing the

surface. The algorithm was implemented on the GPU and we discuss our implementation

of this.

We use this algorithm to explore the curvature of implicit surfaces. In particular we

examine the curvature surfaces of non-manifold implicit surfaces such as Boy’s surface,

the cyclide surface and the Klein bottle surface.

Finally, we present algorithms for rendering high quality animations of manifold and

35

non-manifold implicit surfaces. We show how to produce animations of surfaces whose

3D shape is hard to conceptualise from static images. We also do animations of parame-

terised implicit surfaces where we change the parameter as a function of time.

The first algorithm uses a mixture of polygons and point data to do shaded rendering

of the surface. The second uses point splatting to render the surface. We compare the

relative advantages and disadvantages of these algorithms to interval ray-casting.

We discuss the implementation of both algorithms on the GPU using CUDA. We com-

pare the GPU ray-casting approach to our GPU polygon/points and point splatting algo-

rithms in terms of; robustness, speed, and quality.

36

Chapter 2

Point-based Anti-aliasing methods

Rendering implicit surfaces without aliasing problems is a reoccurring problem, as

solutions are generally specific to the rendering method in use. Aliasing occurs on the

silhouette edges of surfaces, where the surface meets the background or self occludes.

Aliasing also occurs along contour edges when contours are rendered on the surfaces.

Aliasing along the silhouette edge can be very prominent, as can be seen in Figure 2.8

(a). Aliasing along contour edges can be equally prominent. We are concerned with

the quality of the images produced by our point-based method and the speed of the anti-

aliasing technique, as we wish to apply it to rendering manifold and non-manifold implicit

surfaces.

From previous work [61] it is not clear how anti-aliasing should proceed on point-

based surfaces. We report here on a number of approaches to anti-aliasing along silhouette

edges and give recommendations as to the best anti-aliasing approach. We also consider

methods to remove aliasing in contours rendered on the surface and in doing so, show

how contours can be rendered in real time. Finally, we show how anti-aliasing can be

37

done along singular lines.

2.1 Approaches

Various anti-aliasing techniques were investigated for use in a point-based rendering

system. Each method is described in the following subsections.

2.1.1 Object space anti-aliasing

Aliasing of an implicit function occurs as we are discretely point sampling a contin-

uous function. Take, for example, the curved 2D function in Figure 2.8 (a) where each

pixel is fully rendered when the surface covers at least 50% of the pixel boundaries and

otherwise is not rendered at all. This creates jaggy edges, causing the well known stair-

case effect which is visually unpleasing. A better approach would be to texture the surface

based on the percentage coverage of the pixel by the surface. This is illustrated in Figure

2.8 (b). The normal way of achieving this is to blend the background and surface texture

based on the surface coverage. Effectively this can be achieved by blending the surface

and background colours of the affected pixel.

In our work we consider the surface colour to have a certain opacity value, ω [62].

The edge pixel’s colour is combined with the background pixel colour to determine the

boundary pixel colour. For each pixel we need to calculate the opacity level based on

surface coverage of the pixel. In our system each pixel is a projection of an octree node

38

onto a regular grid of pixels, so this can be accomplished by analysing each octree node at

the final rendering depth. Each octree node has 8 vertices which may or may not be inside

the surface. We can divide the number of vertices which are within the surface by eight

to obtain a fraction between zero and one which will be used to represent the opacity of

the surface pixel.

Figure 2.1: Illustration of surface coverage from querying octree nodes from the eye’s

perspective.

A problem arises in that only octree nodes along the silhouette edge of the surface

(or a contour) need to be anti-aliased and these need to be found as shown in Figure 2.1.

Nodes should only be blended using surface coverage if the surface normal is perpendic-

ular with the camera. This is done by first creating an image where the value of the pixel

is zero or one depending on whether the pixel is along a silhouette or contour edge. In the

rendering path, for pixels on the silhouette edge we blend the ω times surface colour with

the background colour based on this value. The final result is shown in Figure 2.2.

39

Figure 2.2: Object space anti-aliasing applied to curved surface.

This result was not considered effective, as the resultant anti-aliasing edges were faint

and inconsistent.

2.1.2 Edge blur method

Edge blurring is a post-process technique [63] that reduces aliasing along the edge

geometry. The method is applied after all the points in the complete scene have been

found. It is implemented as a filter in image space. This is common in deferred shading

applications that, under some platforms, cannot perform multi-sampling with floating-

point multiple render-target (MRT) hardware buffers.

Typically a renderer [63] that uses MRT defers the lighting stage to the end of the

rendering chain. This significantly reduces lighting computations to O(1) time from O(n).

In our work lighting calculations are not the bottleneck, so we do not defer the lighting

stage to the end of the rendering pipeline. We do however use a second render target to

store the point type (surface or contour) and depth information, illustrated in Figure 2.3.

40

Figure 2.3: Flowchart illustrating steps from surface geometry to an anti-aliased render.

We begin by looking at a figure of the Buckyball surface (C60) which is the iso-

potential surface defined by 60 point charges in 3D given by

f (x,y,z) = (2.1)

60

∑
j=1

q j

(x− x j)2 +(y− y j)2 +(z− z j)2 − c = 0.

Here, (x j,y j,z j) is the location of the charge, with charge value q j, and c is the value of

the potential surface. We produce an image showing where the edges are located (see

Figure 2.4 (a)). This is done by comparing the depth value between neighbouring pixels’

in horizontal, vertical and diagonal directions. If the depth offset between these pixels

is outside a tolerance value, α, the pixel is flagged as an edge pixel (rendered green in

Figure 2.4 (a)).

Pixels that are part of the contour are detected in a fragment shader using equations as

given in Balsys et al. [54]. Pixels that are detected as being part of a contour have a depth

offset added to them so that they can be detected in the final edge detection pass and thus

be anti-aliased.

In the next stage we take the image (Figure 2.4 (b)) and overlay it with the edge map

41

(a) (b)

Figure 2.4: Edge detection of bucky ball surface (2.1). (a) Silhouette edges in green. (b)

Aliased surface image.

(Figure 2.4 (a)). For each pixel not on an edge, the output colour is the same as the source

pixel colour. If a pixel lies on an edge then the coverage is examined inside a 3×3 kernel,

as shown in Figure 2.5, and is used to average the colour samples.

Figure 2.5: The 3×3 blur kernel used in weighting pixel colour contributions from adja-

cent pixels.

The colour contribution of the neighbouring pixels’ is calculated using the pre-computed

weighting values shown in Figure 2.5. We have found this method to be successful in re-

moving sharp aliasing features in an image. However the anti-aliasing quality appears

42

to be dependent upon the angle of the edge; it works best on irregular pixel lines. Steep

edges produce a very harsh staircase effect, and in our tests the blur method does not han-

dle this well, and only softens / accentuates the problem, as shown in Figure 2.6. More

expensive methods of estimating edge coverage were not pursued, as a motivation of the

research was real-time animations.

Figure 2.6: Edge blur is satisfactory for moderate slopes in either direction but not for

steep or shallow edges.

As a result we don’t consider the visual quality of this method to be satisfactory com-

pared to other anti-aliasing methods we explored. The positive aspect of this method is

that it is compatible with both standard and deferred rendering systems, and can be ap-

plied with moderate efficiency in real-time.

2.1.3 Super-sample anti-aliasing (SSAA)

The classic brute force method of anti-aliasing is known as super-sampling and is

discussed in Foley et al. [13]. Super-sampling involves rendering the scene to a much

higher resolution than required, and then down-sampling this image to a smaller size.

43

Each pixel is a result of multiple samples averaged together from the over-sampled image

using some form of weighted average.

Super-sampling is very slow, as it significantly increases memory use. In respect to

our point-based method, rendering a larger image requires sampling many more points to

ensure there are no holes in the final image. To achieve this we need to increase the octree

depth, with an exponential increase in running time. For example a surface that takes 5

minutes to render at 512×512 pixels could take over 30 minutes to render at 1024×1024

pixels with 2×2 super-sampling applied. While the result will be of high quality, this is

impractical for complex surfaces and limits real-time applications.

2.1.4 Adaptive pixel-tracing method

Our next method begins by creating an edge map, similar to that for the edge blurring

method with but with an alteration. When a surface self occludes we want to blend the

edge of the front surface with the back surface colour. This enables us to fade out the edge

of the surface in front, into the colour of the surface in the back. Edge pixels are blended

with the background colour.

The edge blur method’s limiting factor is that it applies a constant level of colour

averaging on detected edges through a 3× 3 kernel. In contrast the pixel-trace method

is an adaptive technique that tries to locate jagged edges and then soften them, for a

44

result that looks closer to super-sampling. The pixel-trace method produces sharper and

smoother images than the edge blur method. This method is also compatible with both

standard and deferred shading systems, although real-time performance has not been a

goal, as we focus on image quality.

In this approach a shader algorithm is used to anti-alias pixels so that they are shaded

in relation to surrounding pixels. The shader algorithm determines what surface edge the

pixel is located on and how many other pixels share that edge in a particular relationship

with the pixel to be anti-aliased. The shader uses this information to determine the opacity

factor applied to the pixel based on its position and style. Position and style is based on

the run length of the row of pixels in the same horizontal / vertical line and how the run is

terminated.

Figure 2.7: The four position and style types for pixel anti-aliasing cases in the adaptive

pixel-tracing method, labelled as Case 1, 2, 3 and 4.

The different styles of edges that are handled by the shader are shown in Figure 2.7.

The technique begins by detecting monotonically increasing or decreasing edges (Case 2

and 4) as illustrated in Figure 2.8 (a).

45

(a) (b)

Figure 2.8: (a) Common Aliased staircase effect, and (b) The result of our pixel-traced

anti-aliasing pass.

For each pixel on a front surface edge (sampled from the previously described edge

map texture), we trace a horizontal row of pixels, left and right, to find the start and end

of the horizontal row of pixels along the monotonically increasing or decreasing surface

edge. If the width of the row is one then we alternately check if the pixel is the start of a

vertical column of pixels instead.

If we have detected a horizontal row it needs to be smoothed out at its ends. The start

of the edge will have the lowest opacity level and the end of the edge will have the highest

opacity level (the opacity is 1−al pha value of the pixel).

There are four possible positions of horizontal / vertical runs of pixels, see Figure 2.9.

How we calculate the opacity depends on the position, which we label left (case 2), right

(case 4), top (case 1) and bottom (case 3) given in Figure 2.7. Analogous cases are used

for column runs of pixels.

For a pixel in the row of Figure 2.9 (a) each pixel’s opacity value, ω, is found by first

finding the distance x from the start of the pixel line. In Figure 2.10 x = 5 if the edge

46

(a)

(b)

(c)

(d)

Figure 2.9: Edge smoothing groups. (a) Opacity highest at left (bottom) of row (column),

(b) opacity highest at right (bottom) of row (column), (c) opacity highest at ends, and (d)

opacity highest at centre.

starts on the left side. The number of pixels in the line L is 9. Dividing the distance x by

the number of pixels in the row L gives us the opacity, ω = 5
9 = 55%.

Figure 2.10: Row of pixels of length L.

ω =
x
L

(2.2)

Once the opacity value, ω, has been found we use it to calculate the final pixel colour

47

using;

Colour.rgb = (sourceColour.rgb∗ω)

+ (edgeColour.rgb∗ (1−ω) (2.3)

If the opacity change is reversed, as in Figure 2.9 (b), we simply invert the opacity

value, ω, and use it in Equation 3.

We now consider cases (c) and (d) when an edge is either on the “outside” of a surface

or “inside” the surface. These cases must be specially coded as the aliasing needs to fade

in and then out again, or vice versa.

(a) (b)

Figure 2.11: (a) Inside edge shown in dark grey. (b) Outside edge shown in dark grey.

Figure 2.11 (a) illustrates an inside edge occurrence (case 3 in Figure 2.7) in dark

grey, the light grey areas show the surface pixels. In this case the edge does not simply

fade out into nothing. It must fade/blend between both sides of the surface to ensure a

smooth appearance, as shown in Figure 2.9 (c). Figure 2.11 (b) illustrates an outside edge

occurrence (case 1 in Figure 2.7). The outside edge in dark grey needs to be faded as

48

shown in Figure 2.9 (d) for a resulting smooth appearance.

For case 3 we modify the existing opacity value, ω, found in Equation (1) and recal-

culate ω’s value as

ω = abs((ω−0.5)∗2) (2.4)

For case 1 we invert the opacity value calculated in Equation (3) and use it in Equation

(4).

If a pixel has been found to lie on a column edge rather than a row edge as described

previously, we perform the same procedure but scan up and down the column rather than

left and right as in the row. The process is then exactly the same as just described for the

rows.

In anti-aliasing care must be taken when a surface self occludes to avoid problems.

Our edge map only includes pixels along the surface edge and has no contribution from

background pixels. This solves potential problems and ensures we only smooth the edge.

We found this method works well on geometry that features clear silhouette lines on

the edge map. When the edge map is too noisy from sharp features, the algorithm has

trouble detecting the previous described edge cases, so we invested further solutions.

49

Figure 2.12: Demonstrating anti-aliasing on the inside and outside surface edges. (Top)

aliased image and (Bottom) anti-aliased image of the Cyclide (2.5) surface.

The Cyclide surface in Figure 2.12 is given by f [7]

f (x,y,z) = (x2 + y2 + z2)2

− 2(x2 + r2)(f 2 +a2)−2(y2− z2)(a2− f 2)

+ 8a f rx+(a2− f 2)2 (2.5)

with a = 10, f = 2 and r = 2.

2.1.5 Jitter-based anti-aliasing

Anti-aliasing by rendering the scene multiple times to the accumulation buffer is de-

scribed in [64]. Each pass increments the sample level of every pixel, e.g four passes

produces 4x anti-aliasing. Before each pass the camera origin is jittered with respect to

the pixel grid. As discussed in Cook [65] uniform spaced sampling will cause aliasing

artifacts, the jittering values should make an irregular pattern to make them “noisy”. Ir-

50

regular jitter values for different sampling levels are provided in [64].

We cannot use an accumulation buffer as discussed in [64] as the accumulation buffer

requires the z-buffer be cleared before each pass. As we render while we are subdividing

the surface in real-time, we would clear the depth associated with these rendered points.

To get around this problem, we use multiple render buffers with their own attached z-

buffer.

Figure 2.13: Flowchart illustrating steps from surface geometry to a 4x anti-aliased render.

For 16x anti-aliased images we create sixteen render buffers each with its own z-buffer

and colour buffer. The image is rendered into each of the sixteen z-buffer and colour

buffers. The colour values in the separate buffers are averaged to give the final colour to

be assigned to the pixel. This results in anti-aliasing of the pixels colour. It works equally

well for anti-aliasing silhouette edges and contour edges.

Essentially this is a super-sampling approach, the viewpoint is rendered multiple

times, each time the viewpoint is offset by amounts smaller than a pixel, and the colour

values are then averaged to give the pixel colour. The method requires the entire scene

geometry to be determined beforehand, so each render pass has exactly the same geom-

51

etry. This can be performed while the samples are being generated, thereby making the

sampling process interactive and able to be run in real time.

2.2 Contour anti-aliasing

Rendering contours onto surfaces can present aliasing artifacts. Originally we tried to

offset the depth of a pixel on a contour away from the object’s surface. The contour edge

could then be identified in the edge anti-aliasing pass. However, the erratic nature of runs

of pixels sampled along contour edges resulted in severe pixellation artifacts. To solve

this problem we moved the contour generation phase from object space into image space.

We first tested if a sampled point lay on a contour strip, and changed that pixel colour

to the contour colour. This has the limitation of having to test every point in the scene,

most of which are not directly visible from the viewpoint. In our method we move this test

into image space, only testing each visible pixel on the screen, eliminating the bottleneck.

A simple surface such as a sphere takes the same amount of processing time to contour

as a complex surface such as the bucky-ball surface. This opens up the possibility of

rendering contours in real-time on a scene, no matter how complex the scene.

To smooth (anti-alias) the contours appearance we interpolate the distance, x, between

each point in the plotting node and the center origin of the contour slab, with D the

distance between the center of the slab and the outside of the slab. This is illustrated in

Figure 2.14. The pixel colour is the average of 1− x
x+D times the contour colour plus

52

Figure 2.14: Illustration of the distance, x, of the surface point P from the centre of the

contour slab.

x
x+D times the surface colour. The distance value x determines the pixel colour based on a

linear average of the surface and contour colours.

This means that:

• as explained above we don’t test every sampled point in the octree, only the points

visible from the camera. This results in large speed-ups in contour rendering [5]

times.

• contour calculation is just as fast on a simple surface as it is on a very complex

surface.

• deferred shading lets us smooth out the contour values based on all the visible

points, and so the smoothing can vary depending on the plot depth in the octree.

• using a deferred renderer means we can render a complex surface from a specific

53

viewpoint and then use the points seen from this viewpoint to perform real-time

visualisation of contours. We can also rotate and modify lights in real-time. In

particular we can animate moving contours across a surface at real-time speeds

(regardless of how long the surface originally took to sample).

2.2.1 Examples from real-time visualisation of contours

First, in Figure 2.15 (a) we show anti-aliasing of planar contours such as planes or-

thogonal to the y and z axes, and in Figure 2.15 (b), we show lines of Gaussian curva-

ture rendered on an ellipse. To smooth (anti-alias) the contours appearance, we test the

distance between each pixel and the center of the contour slab. This distance value de-

termines the strength of the contour colour opacity, ω = 1− x
x+D , overlaying the surface.

The width of the contour slab is set using the formulae for curved (Gaussian curvature)

and non-curved (planar contours) slabs given in Balsys and Suffern [5].

For a planar slab with width w, the slab thickness d is;

d = w
√

1− (n f ·ng)2 (2.6)

where n f is the unit normal to the surface, and ng =
∇g
|∇g| is the unit normal to the slab.

For a curved slab the distance s to the center of the contour is approximately;

s =
| g(p)− c |
| ∇g(p)sinθ |

(2.7)

As the renderer defers the lighting calculations to the contouring pass, surface lighting

54

(a) (b)

Figure 2.15: (a) Planes parallel to the y and z coordinate axes rendered on a bucky-ball

surface f [14] , and (b) Lines of constant Gaussian curvature rendered on an ellipse.

and changing contours can be rendered in real time using this approach.

2.3 Filling missing pixels

Our renderer represents each surface sample in the plotting node by a single pixel on

the image plane.

It is well known that point rendering can result in missing pixels on the surface im-

age [5], indicating we needed to render the surface and subdivide to a higher plot depth

55

(a) (b)

(c) (d)

Figure 2.16: Demonstrating missing pixel filling. (a) Rendered image with missing pixels.

(b) Final surface with missing pixels blended. (c) and (d) are close-ups of (a) and (b)

respectively.

(see Figure 2.16 (a)). We can fill in missing pixels without significantly increasing our

rendering times in the anti-aliasing pass as follows.

After the lighting stage in the viewing pipeline we loop through each pixel and com-

pared neighbouring pixels for depth changes, as illustrated in Figure 2.17. If we find a

pixel is surrounded by 5 or more points closer to the camera (within a tolerance α) than

itself the pixel is considered a missing pixel (hole) in the surface. The colour of the pixel

56

Figure 2.17: Flowchart illustrating steps from surface geometry to filling holes in the final

image.

is calculated as a weighted sum of the neighbouring pixels’ colours. Figure 2.16 (b) shows

the final sphere rendering with the missing pixel’s colour blended as specified.

57

(a) (b)

(c) (d)

Figure 2.18: Jitter-based anti-aliasing comparison on the star surface f [30] . (a) No anti-

aliasing. (b) Anti-aliasing. (c) and (d) are close-ups of (a) and (b) respectively.

58

(a) Cassini (b) Cross Cap (c) Bicorn

(d) Hunt (e) Barth Sextic (f) Klein Bottle

(g) Mitre (h) Steiner′s Sur f ace (i) Boys

Figure 2.19: Anti-aliased non-manifold surfaces. (a) Cassini, (b) Cross cap, (c) Bicorn,

(d) Hunt, (e) Barth Sextic, (f) Klein bottle, (g) Mitre, (h) Steiner’s surface, and (i) Boy’s

surface.
59

Chapter 3

Point Rendering of Implicit Surfaces Us-

ing an Octree and Interval Arithmetic

In [1] we presented a point-based technique that improves the rendering of non-

manifold implicit surfaces, using point and gradient information, to prune plotting nodes

arising in octree spatial division, with a subdivision criteria based on the natural interval

extension of the surface’s function. We successfully rendered non-manifold features of

surfaces such as rays and thin sections. We were not concerned with the time it takes to

generate the surface but the correctness (accuracy) and quality of the resultant images.

From previous work on the polygonal rendering of implicit surfaces, Balsys and Suf-

fern [4] and Suffern and Balsys [11], we know that octree based volume decomposition

with a subdivision criteria based on an interval exclusion test, converges to nodes clustered

about the implicit surfaces. We use this approach by rendering a point within the plotting

nodes of an octree recursively subdivided using an interval exclusion test as discussed in

[21].

60

The main reason for using intervals in this context comes from the property that the

natural interval extension of a function provides bounds on the variation of the function.

The bounds may not be very tight, but the values of the function f are guaranteed not to

be outside of this interval. A consequence of the bounds not being very tight is that pixels

may be rendered in nodes that do not contain surface elements. This is an undesirable

effect as it leads to display anomalies as shown in Figure 3.8 and Figure 3.9. Further

testing needs to be performed in each node to filter out those which do not contain the

surface.

Our interval arithmetic package includes infinite intervals, to extend the range of func-

tions that we can render. Infinite intervals result from the division of intervals where

0 ∈ [c,d] for the interval [a,b]/[c,d]. Hansen [66] gives formulae for infinite intervals and

the computer implementation of infinite intervals is given in Ratschek and Rokne [67].

In our subdivision process the view volume (defined as an axis aligned cube of 3D

space) is subdivided into 8 sub-nodes, and interval analysis is made at each node to see if

it may contain part of the surface. If this is true, the node is recursively subdivided. The re-

cursion proceeds to a fixed maximum depth in the octree, which we call the plotDepth. At

the plot depth a point is generated within the node and we call such nodes plotting nodes.

The coordinate of this point is used in the shading algorithm to render the surface. Al-

though the interval test does not guarantee that the surface exists in any plotting node, it

does guarantee that any node of the octree that is discarded does not contain the surface.

We investigated methods to discard nodes at the plot depth that do not contain surface

61

elements even though the interval test indicates they may contain surface elements.

A single parameter controls the time it takes to generate the surface: the plot depth.

The plot depth is set by the user. In [21] they estimated the plot depth required for com-

plete coverage of the surface and gave a formula to calculate the required plot depth so

that no surface “holes” appear in the final image.

Balsys and Suffern [21] reported on a number of surfaces which have problems when

rendered when using the methods so far described. For example, implicit surfaces with

very thin sections or singularities can create problems for point-based methods. Consider

the spiky surface f [8]

f (x,y,z) = x2n + y2n + z2n− xnyn− xnzn− ynzn, (3.1)

as shown in Figure 3.8 for n = 4. The thickness of the spikes approaches zero as their

distance from the center becomes infinite. As we stop subdividing our octree at a given

plot depth and we use interval subdivision an error in rendering the surface occurs. The

interval method guarantees that we will not reject a plotting node that may contain a

surface section, but we may have a number of plotting nodes that do not actually contain a

surface section in the plotting node. This results in pixels being erroneously rendered with

the surface colour even though the surface does not lie in the plotting node represented by

that pixel. As a result thin sections of diameter less than the plot depth will be rendered

as thin tubes. The situation is worse for Steiner’s roman surface f [2]

f (x,y,z) = x2y2 + y2z2 + x2z2 + xyz = 0, (3.2)

62

which has three (infinitely thin) double lines along the coordinate axes, see Figure 3.9

(a). Our technique renders these with a minimum radius, the fact that they are singulari-

ties has confused the technique so that it has rendered them with an increasing radius as

they approach the surface. This gives the misleading impression that the Steiner’s roman

surface exists outside a sphere of radius one centered on the origin, which it does not.

We can improve the appearance by increasing the plot depth but this does not solve the

problem. Sederberg and Zundal [68] successfully rendered the singular lines with a scan-

line algorithm but it’s much more complicated than our point-based algorithm. Balsys and

Suffern [25] successfully rendered the singular lines with degenerate polygons, but again,

their polygonisation algorithm is much more complicated, than the point-based solution

described in the next section.

3.1 Plotting Node Trimming and Feature Extraction

As previously stated interval bounds may not be very tight, f is guaranteed to be zero

outside the interval. An undesirable consequence of this is that pixels may be rendered in

nodes that do not contain surface elements. We investigated methods to discard nodes at

the plot depth that do not contain surface elements even though the interval test indicates

they may contain surface elements. This process is illustrated in Figure 3.1

We first evaluate the function value at each vertex of the plotting node. We then use a

sign test [24] to determine whether an intersection occurs on an edge of a plotting node.

63

Figure 3.1: The steps to create point geometry from a surface equation. If the sign test

passes the point is stored. If the sign test fails the node is passed to the gradient test. If

the gradient test passes the point is stored, otherwise it is discarded.

This occurs when there is a sign difference between the vertices of the edge of a node. If

there is an intersection on the edge then we have confirmed the presence of the function

in the node and a pixel with coordinates equal to the centre of the node is drawn with the

Phong reflection model.

However the sign test will fail to detect a surface in the node in a number of situa-

tions, see for example Balsys and Suffern [25]. For example the sign test will fail if a

surface element is contained within the plotting node, or if the surface function intersect

the plotting node edge more than once. In previous work [25] to polygonise an implicit

surface with non-manifold features they introduced a gradient test to guard against these

possibilities.

The sign and gradient test we use are

Sign Test: fa ∗ fb < 0

Gradient Test: ∇ga ·∇gb ≤ 0.1 (3.3)

64

where fa and fb are the values of f at the endpoint a and b of an edge and ∇ga and ∇gb

are the gradients of the function f at the endpoint a and b of an edge. The value of 0.1

in the gradient test corresponds to an angle of divergence of about 84◦. This minimum

amount of divergence between the gradients has been shown to give good results for the

surfaces we have tested.

If the sign test indicates there is no root of f on the edge, but the gradient test indicates

there may be, the possibility exists that more than one root of f exists on that edge. As

we are already at maximum depth, we choose to render that node as if it does contain a

surface element (gradient test) even though the sign test indicates it does not contain a

surface element. Figure 3.8 (b) shows the result for the Spiky surface when the sign and

gradient tests are applied.

3.1.1 Sign Test Results

The sign test produces highly accurate renderings of the surface. Figure 3.9 (a) shows

Steiner’s roman surface rendered explicitly with the interval test, and Figure 3.9 (b) shows

the same surface rendered including the sign test in the plotting node. The interval test

suffers from overestimating the possibility of a surface being inside a node, creating tubes

curving into where the rays intersect the surface. The sign test can correctly visualise the

rays without such anomalies.

In some cases the sign test will fail, either when a surface intersects an edge more

65

than once, or if a surface does not intersect an edge but is still contained within the node.

The gradient test can successfully detect surfaces that are smaller than the final plotting

depth node. The sign and gradient test when applied to Steiner’s roman surface produce

the results given in Figure 3.9 (b). By itself the sign test will improve the rendering of

some surfaces but will cause problems with others.

Figure 3.2: A small sphere located inside a plotting node showing values of sign at node

vertices. This demonstrates when a surface feature is too small to intersect the node,

which the sign test will not detect.

Figure 3.2 demonstrates how a surface function inside a node is not detected by the

sign test method as no intersections of the edges take place. Figure 3.3 shows how the

gradient, ∇ f , differs at each corner for the same surface. The angle between the gradient

vectors can be used to indicate the surface is present.

Combining the sign and gradient test provides a significant advantage over the interval

66

Figure 3.3: A small sphere located inside a plotting node showing values of gradient at

node vertices. The gradient evaluation of the function has revealed a surface may be

present by calculating a dot product on the node vertices.

method alone. Consider the cyclide surface given by f [7]

f (x,y,z) = (x2 + y2 + z2)2

− 2(x2 + r2)(f 2 +a2)−2(y2− z2)(a2− f 2)

+ 8a f rx+(a2− f 2)2 (3.4)

with a = 10, f = 2 and r = 2, as shown in Figure 3.4. When interval subdivision and the

sign test is used the thin section joining two lobes of this surface is missed, as shown in

Figure 3.4 (a). When the gradient test is used with interval subdivision and the sign and

gradient test the thin section joining the two lobes is rendered, as shown in Figure 3.4 (b).

Another example that illustrates the necessity of the gradient test is given in Figure 3.5

where many spheres are rendered. Some of the spheres are smaller than a node and would

not be detected using the sign test alone. When the gradient test is also used plotting

nodes containing spheres are rendered as a single pixel.

67

(a) (b)

Figure 3.4: The cyclide surface with plot depth = 9. (a) Interval subdivision and the sign

test, and (b) Interval subdivision and sign and gradient tests.

3.1.2 Rendering nodes containing rays

The sign and gradient test does not detect rays in some cases. By examining the

plotting nodes that surround the singular lines of Steiner’s roman surface in Figure 3.9,

we found that the lines lie along node edges. We used the sign test for this, and the

assumption that if both ends of an edge evaluate to zero, the edge is part of the surface.

Figure 3.5: 100 randomly sized spheres. Some of the spheres are smaller than the node

width at the maximum plot depth.

68

Figure 3.6: Shows the intersection edges detected for the infinite rays present in Steiner’s

roman surface.

Figure 3.6 shows the vertices that evaluate to zero for a sequence of plotting nodes. In

all these plotting nodes we can determine that a single edge of the plotting node is part of

the surface and we render these edges by shading a pixel on the mid point of the plotting

node edge. This is done for Steiner’s roman surface in Figure 3.9 (a) and for Steiner’s

relative surface f [16] , given as

x2y2 + y2z2− x2z2− xyz = 0, (3.5)

and shown in Figure 3.7. In Figure 3.7 we render one side of the surface in orange and

the other side in Blue to aid the visualisation of the shape of the surface.

3.1.3 Multi-threading

We use octree subdivision and thus our algorithm readily lends itself to acceleration by

multi-threading the octree code. This results in improved performance on modern multi-

core processors. The root node is split into 8 child nodes, each of which initiate their own

thread and subdivide concurrently. The OpenMP standard was chosen to implement this

69

functionality due to its cross-platform ability. Rendering Steiner’s roman surface on an

Intel Core 2 Duo processor without threading and with threading and taking the ratio of

the time required to render the surface in both cases, indicated a speed increase due to

threading of 1.9 for a two processor system. This indicates that the octree based subdi-

vision process is an algorithmic method well suited for use on the multi-core processors

being actively developed by the chip manufacturers and finding their way into current

PC’s.

(a) (b)

Figure 3.7: Steiner’s relative (3.5) with plot depth = 9. (a) Interval subdivision, and (b)

Interval subdivision and sign and gradient tests. Shows a thin ray emanating along the y

axis.

70

(a) (b)

Figure 3.8: Spiky surface with plot depth = 9. (a) Original surface showing spikes as

tubes, and (b) New method showing how the tubes converge to lines.

(a) (b)

Figure 3.9: Steiner’s roman surface with plot depth = 9. (a) Interval test only, and (b)

Interval and sign test.

71

Chapter 4

Visualisation of the Curvature of Non-

Manifold Implicit Surfaces

Curvature is an intrinsic property of surfaces and analysis of curvature has many ap-

plications in science and engineering. Two terms are fundamental to the understanding

of curvature; these are the minimum and maximum curvatures of the surface, denoted

as κ1 and κ2. From these the mean curvature, H = (κ1+κ2
2) and the Gaussian curvature,

K = κ1κ2 are derived. The Gaussian and mean curvatures are intrinsic properties of con-

tinuous implicit surfaces [8]. For an implicit surface the magnitude of both H and K can

also be expressed as an implicit surface.

Our motivation for the work presented in this chapter was to visualise the curvature

surfaces [5] of some well known implicit surfaces such as Boy’s surface f [1] , Steiner’s

Roman surface f [2] and the Klein bottle f [3] . Although curvature surfaces of simple

implicit surfaces have been visualised in the past, those of more complex implicit sur-

faces, non-manifold surfaces, and singular surfaces, have not been rendered. Figure 4.1

72

illustrates the curvature surfaces of surfaces rendered using the algorithms given in this

work.

Another issue we would have to tackle was to be able to capture these images and

manipulate them in as near to real-time as possible. For instance to visualise the 3D shape

of Boy’s surface from a single static image is exceedingly difficult. It is not until one is

able to rotate this surface in real-time that one is able to appreciate of the 3D nature of this

surface. Even better would be the ability to view stereo pairs of the surface in real-time in

a VR system so that the depth information is apparent. The mathematical complexity of

the implicit function for this surface, however, means that doing this has not been practical

until recently.

We were encouraged by recent work in ray tracing surfaces using the GPU, see for

example Knoll et al. [53] and Singh et al. [52], to believe that our goal was feasible.

However we did not believe that ray tracing would be an appropriate vehicle for our

work as we needed to capture surface geometry so that we could then render our surface

from any point of view. Ray tracing is not useful for defining surface geometry, since

as the camera rays all diverge, surface points found using the ray-surface intersection

calculations result in non-uniform sampling of the surface.

Finally as our surfaces are arbitrarily complex and are generally higher order the ray-

surface intersection calculation will be either a bottleneck, or infeasible to calculate. Us-

ing interval ray calculations may help in this regard, but achieving the required accuracy

73

(a) (b)

(c) (d)

Figure 4.1: (a) The K = −10 Bretzel f [4] curvature surface. (b) The K = 3 Mitre f [5]

curvature surface. (c) The K =−0.001 Steiner’s f [2] curvature surface cut by the plotting

volume to show inner structure with inset showing inner region rotated to reveal 8 tubes

meeting at origin. (d) The K = 0.2 Barth sextic f [6] curvature surface.

74

will still be a limiting factor. Another issue with ray tracing is that no information about

surface topology is gained and thus numerous model operations cannot be performed.

4.1 Node subdivision algorithm

Bloomenthal [24][69] and Schmidt[27] used octrees with curvature driven subdivision

to efficiently polygonise surfaces. Suffern et al. [18], Stolte et al. [20], Stolte [56], Balsys

et al. [4] and Harbinson et al. [1] all used the natural interval extension to drive the node

subdivision.

Here, we present a new algorithm that combines the relative speed of the point sam-

pling approaches with the accuracy provided by the use of the properties of the natural

interval extension of the function. This algorithm uses point sampling and the natural

interval extension as a subdivision criteria and for non-manifold sections uses a pruning

algorithm based on a signed distance function to prune plotting nodes around the non-

manifold features to more accurately render these features.

We present this algorithm to address the limitations in the sign and gradient methods

from chapter three. As discussed the ray detection using the sign test is limited to those

which align with the node edges. Figure 4.2 (a) shows the bohemian star with rays not

detected by the sign method. Any parts of the surface which lie inside a node and does

not intersect the node edges will be missed. Incorporating the gradient test will detect

these rays, however it will also overestimate and detect too many false positives around

75

(a) (b)

Figure 4.2: Bohemian star rendered with (a) Sign test, and (b) Gradient test.

non-manifold sections as in Figure 4.2 (b). To solve this problem, our new algorithm aims

to prune away the excess nodes, without missing parts of the surface like the sign test.

The algorithm begins by defining a viewing cube with center point C(x,y,z), and width

w. This defines the parent octree node. Eight child nodes are created with center points,

Ci=1,8(x± w
4 ,y±

w
4 ,z±

w
4), and width w/2. These nodes converge to the surface based on

the interval exclusion test. The use of rectangular boxes results in a tiling of space that is

guaranteed to bound the surface. We can therefore use each of these nodes as though it

were a root node.

If required the subdivision process will then recursively descend to a maximum plot

depth d, but a child node will be further subdivided only if the natural interval extension

76

F(X ,Y,Z) of the surface function f (x,y,z) has 0.0 in the interval, see Stolte [56] and

Balsys et al. [4]. This indicates that the surface may be present in the interval defined by

the vertices of the octree node. Only if we are at the final plot depth, and if the surface

may be present, do we render the surface in the plotting node.

If the surface is not present in the node we do not subdivide further and this is the step

that provides the algorithm its efficiency as it eliminates sections of space from further

consideration. If the node may contain a surface element then we either further subdivide,

or if we are at the maximum plot depth, define a point that will be used to represent the

surface in the plotting node. We can do this as we can use plot depths that result in nodes

that subtend an area of less that one pixel on the image plane, see Balsys et al. [51].

In Algorithm 4.3 the function f ind point in node() contains the steps we take to de-

cide whether or not a point will be rendered in the node, depending on the established

criteria. Here, we use point sampling at the vertices of the plotting node to determine the

signs of the function f (x,y,z) at the vertices. If any of these evaluates to 0.0 we push the

vertex’s coordinates into the point list as the vertex is on the surface. Although it’s not

common, a vertex can lie exactly on a surface, and ignoring this can result in rendering

artifacts. This is particularly important for rendering rays aligned along an octree axis.

We need an approximation for the point f (x,y,z) = 0 and the surface gradient g(x,y,z)

in the plotting node as these are both needed to render the point with shading. As we

are working with implicitly defined points the gradient function g(x,y,z) is computed by

77

1

([])
< 0

() ()

sign_change

(c, g(c))

(C, w)

[] ()
(())

()

?

?

?

? ?

> 0?

7

()

Figure 4.3: Algorithm 1. f ind point in node(). Algorithm for putting point data into a

vector for display. Here, C(x,y,z) is the center coordinate of the plot node, c the centroid

of the polygon contained in the node, p the coordinates of the vertex with a zero evalua-

tion, and w the node width. The vertex array holds the 8 computed corner point function

values, f , being rendered; g(x,y,z) is the gradient function, ∇ f .

78

numerically evaluating ∇ f using forward or backward differencing.

If we detect a sign change between any two vertices of the node, part of the implicit

surface must cross an edge of the plotting node, and so the surface is unambiguously

present. We explored two options for determining which point to use in the plotting node

to represent the surface, with the results shown in Figure 4.4 for Steiner’s surface [70],

see equation f [2] . In Figure 4.4 (a) we use the center of the plotting node. In Figure 4.4

(b) we use the centroid of the polygon. This results in points that are closer to the surface

in the node and results in a smoother surface appearance with less shading artifacts. For

illustration purposes we used a low subdivision depth so the points do not completely

cover the surface. This makes it appear semi-transparent. We timed these approaches, for

a number of surfaces with the results given in Table 4.1.

Table 4.1: Surface timing (sec) for rendering using node center (NC) and polygon centroid

(PC) as the render point with plot depth of 9 using CPU algorithm.

Surface NC PC Ratio

Mitre 1.72 2.53 0.68

Cyclide 24.50 25.86 0.95

Steiner’s Roman 5.83 6.43 0.91

Chmutov 8th 272 278 0.98

Bohemian star 127 132 0.96

Boy’s 28.89 29.84 0.97

79

(a) (b)

Figure 4.4: Steiner’s Roman surface f [2] , partially rendered with points, using points that

are, (a) Always at the center of the plotting node, and (b) At the centroid of the polygon

found by polygonizing the node.

These timings show that there is about a 5% penalty in finding the polygon centroid

rather than using the node center. As using the polygon center gives better visual results,

we use this approach. Since the surface is present in the node we can find the centroid

of the polygon by simply averaging the surface intersections along the node edges. We

investigated the use of a gradient descent method to move in the direction of the zero

of the ∇g(x,y,z) in the plot node, but this appreciably slowed the algorithm with little

improvement in image quality.

If no intersection occurs along a node edge it is still possible that at least one of the

node vertices is exactly on the surface as previously discussed. In this case we use the

80

coordinates of the zero vertices as the point in the node. This is particularly important for

rendering rays aligned along an octree axis.

If neither of the above situations has occurred we have a quandary. Point sampling

fails in the plotting node, but the interval test indicates the surface may be present. As we

render to high plot depths where the projection of the plotting node is less than the size

of the pixel we could, naively, just push a point at the center of all such nodes and thus

render all the extra points.

However, it is well known that intervals overestimate the possibility that the surface

exists in an interval. The test guarantees not to miss regions that may contain the surface,

but it is not an inclusion test. So pushing points in the nodes that fail the sign test will

result in too many points being generated, particularly around thin sections, cusps, ridges,

tube and ray-like sections. This is undesirable as it results in rendering artifacts around

such features. A possible solution is to use affine arithmetic [39], [71], in place of the

interval test as affine arithmetic intervals are tighter than those from intervals.

We examined this problem in some detail. Figure 4.5 (a) and (b) shows the nodes

of Steiner’s Roman surface produced using interval subdivision and affine arithmetic.

These illustrate how the number of nodes produced increases around the rays and cusps.

Although affine arithmetic produces less nodes than intervals, neither technique produces

accurate images of the non-manifold features. Moreover, the time penalty for using affine

arithmetic can be high. The images in Figure 4.5 (a) and (b) were rendered on the CPU

81

(a) (b) (c)

Figure 4.5: Steiner’s Roman surface f [2] rendered at a plot depth of 5 showing nodes that

are found. (a) Using intervals, (b) Using affine arithmetic, and (c) Using the node pruning

algorithm.

(a) (b) (c)

Figure 4.6: The bohemian star surface f [13] rendered using (a) Interval, (b) Affine arith-

metic, and (c) Interval pruning exclusion test at a plot depth of 9.

82

to a plot depth of 5. The resulting timings are given in Table 4.2. For this example affine

arithmetic is five times slower than the equivalent interval approach.

Table 4.2: Surface timing (sec), and number of nodes (millions) found using interval,

affine, and interval pruning exclusion tests at a plot depth of 9.

Intervals Affine Pruning

Surface time nodes time nodes time nodes

Mitre 1.35 1.75 41.2 1.42 1.72 1.40

Cyclide 6.98 9.09 87.0 1.83 24.5 1.82

Steiner’s Roman 2.04 2.20 20.4 0.61 5.83 0.55

Chmutov 8th 34.7 45.9 251 1.79 272 1.44

Bohemian star 16.8 18.5 142 1.18 127 0.84

Boy’s 6.91 5.09 131 0.62 28.9 0.56

As a result we looked for a method to prune the “false positives” from the interval

test. Because we subdivide the space using octrees, we can generate the values of points

in the neighbourhood of f (x,y,z). In particular, we can represent these neighbour points

as f (xi,yi,zi) where i ∈ {−1,0,1}. Using these points we test the relation between the

center of the plot node at f (x0,y0,z0) and the neighbour centers at f (xi,yi,zi). We use the

| f (xi,yy,zi)| to determine their distance to the surface at f (x,y,z) = 0. If three neighbour

points on a side of the node are all closer to the surface, then the plot node f (x0,y0,z0) is

discarded by the algorithm, as there is a planar patch in the neighbourhood of the point that

83

is closer to the surface. Using this approach we get, for example, a small set of plotting

nodes that bound the line for a ray passing through the octree. Even if we zoom in we

will get a similar small set of points for the ray. This is evident even at a low plot depth =

5, as in Figure 4.5. In Table 4.2 we give the number of plot nodes produced by the three

approaches. From this Table we see that the interval pruning approach produced 29% of

the nodes using intervals alone, and 45% of the nodes produced using affine arithmetic

for this example. This is typical of the results we get for the wide variety of functions we

have tested.

Our solution is encapsulated in the function point sampling f ails() in Algorithm 2.

The reduction of nodes produced for Steiner’s Roman surface is shown in Figure 4.5 (c).

The timing using this approach is also given in Table 4.2. The interval test is fastest, with

our algorithm being about half as fast. The affine arithmetic test is about 5 times slower

than the interval test and about twice as slow as our approach. From Figure 4.5 it is

obvious that more pruning has occurred using our algorithm than occurs with using affine

arithmetic, a far slower approach. We conclude that the algorithm is fast and efficient at

node pruning, and perceptually produces the highest quality images.

Each node in the 3× 3× 3 voxel grid is defined with center coordinate points p, of

nodes of width w, centered on the current plot node with center C(x,y,z). The 27 points

are then the centers of the 26 face, edge and corner neighbours of the plot node, and the

plot node itself. Each node is tested if it may contain the surface, and if so, the node is

flagged and the function value is stored.

84

point_sampling_fails()
(C)

 -1

true
? false

? false

true

-1

?
false

true

 -1

?
false

true

 ()
 ()

()?
true

false

voxels.prune()

voxels.get()
voxels.get(). (p)

voxels.get() ?
true

point_list.push((C))
false

return

Figure 4.7: Algorithm 2. point sampling f ails(). Here f is the function being evalu-

ated. C is the center coordinate of the plot node, and w is the width of the plot node. A

voxel node is a struct that stores the point coordinate, normal, function value, and flags

for whether the surface is present in the node, and whether the node is to be pruned or

not. A voxel grid is an array of 3×3×3 voxel nodes’s centered on the current plot node.

Then a voxels is of type voxel grid.

85

Next, the method voxels.prune() is called. This considers all 26 neighbouring nodes to

the central plot node, to determine whether the plot node should be added to the vector of

points on the surface. We do this by first removing neighbours that do not contain surface

elements. Neighbour nodes that may contain surface elements then have the function

f (x,y,z) evaluated at their centers. If the value of | f (x,y,z)| of the is less than the value

for the plot node, the neighbour is closer to the surface than the point, and we increment

a count variable by one. When the count of closer neighbours on a side reaches three we

mark the plot node to be pruned, since the three points define a planar patch that is closer

to the surface than the plot node.

Only if the plot node is not pruned do we push the plot node centre, C(x,y,z), and

gradient function, g(x,y,z), into the output vector of points to be plotted. In this manner

we fill the output vector with a large number of points that are close to the surface, and

thus used to render the surface. The resultant normal and point values are used with Phong

shading and a z-buffer to render the surface. We use the jitter based anti-aliasing approach

from chapter two to anti-alias the resulting images.

4.2 GPU implementation

If we directly implemented our CPU algorithm on the GPU, the resultant algorithm

would be inefficient. This is because, as we proceed down a subdivision pathway, we get

to leaf nodes quickly down some pathways and not others. Ideally we need an algorithm

86

(node[i], F)
surface_present

false
?

create_plot_node(node[i])

GPU_subdivide_1(x, y, z, w, depth)

for i in 0..7
node[i] (1)

true

Figure 4.8: Algorithm 3. GPU subdivide 1(). Eight child nodes (indexed 0-7) of input

node created. If the surface may be present in the node the node is added to the vector

of nodes to be subdivided. The nodes found in the first iteration of GPU subdivide 1()

each recall GPU subdivide 1() and create new child nodes that repeat the process until

the node vector reaches a set limit.

that will terminate all threads at approximately the same time. The worst case scenario is

when the entire subdivision takes place by the subdivision of a single node as this would

use a single thread.

Typical GPU’s are organised as a set of multi-processors each of which has execution

units. For instance, the NV IDIA 275 has 30 multi-processors with 8 execution units. Each

execution unit can run one thread at a time, so this card can run 240 simultaneous threads.

To obtain good performance from the GPU we need to try and keep all execution units

running. This implies that we balance the load across the execution units.

We used CUDA to implement a GPU version of our algorithm. CUDA threads must

begin execution in the same function. The GPU treats the display as blocks (the block

87

depth ==point_plot_depth
true

false?

return

GPU_subdivide_2(x, y, z, w, depth+1)

GPU_subdivide_2(x, y, z, w, depth)
(F, x, y, z, w)

surface_present
true

false
return?

find_point_in_node()

Figure 4.9: Algorithm 4. GPU subdivide 2(). The nodes found in GPU subdivide 1()

each call GPU subdivide 2(). If the surface may be present the node recursively calls

GPU subdivide 2() until a point plot depth is reached when the f ind point in node()

algorithm is called. Recursion is implemented using a stack on the GPU.

is identified by the blockId) of threads, the block contains an array of threads whose

array size is defined by the blockDim value. An individual thread is then identified by

specifying the threads blockId, the blocks blockDim, and the threadId within the block.

Before launching a CUDA kernel we need to specify values that define the array size of

the block and the number of blocks in the grid. The programmer optimises these for their

application.

The main problem we solved is how to proceed with the node subdivision process so

that each thread processes the same code, and when a thread finishes, it is allocated a new

node subdivision task. We also need to be able to collect the points that are found in the

subdivision process into a single array.

88

We arrived at a two step solution shown in Figure 4.8 as Algorithm 3 and in Figure

4.9 as Algorithm 4. In Algorithm 1 we subdivide the root node to a plot depth d. This

can generate a theoretical maximum of d8 nodes to be processed. The actual number

generated will be less than this due to node pruning. As the GPU has limited memory we

stop generating nodes before we run out of memory. On our GPU card with 980 MB of

RAM this occurs when around one million nodes are generated.

The first iteration of Algorithm 3 has a single input, the root node. This will produce

up to eight new nodes, the actual number will be returned as the next value of N. Each

thread then uses an interval test on each child node to determine if it is to be processed.

If it is, an atomic index variable is incremented. This index is used to index the position

in a node array which stores the child node’s center coordinate, width, and depth for later

processing. When the function returns, the index is the count of the number of nodes N,

to be processed on the next iteration.

The output nodes found in Algorithm 3 becomes the input to the next stage, Algorithm

4. Each starting node is recursively subdivided until its children are discarded or a child

reaches the maximum plot depth. Recursion is not supported by the GPU, so we use an

array to implement a stack of node elements. While the stack is not empty, we check if

the current node’s depth is less than the point subdivision depth. If so, we create child

data structures for each child node that may have the surface present in it. If the maximum

plot depth has been reached we process the node as described in the f ind point in node()

function, but on the GPU. As this is straightforward we don’t elaborate it here.

89

Most of the figures in this paper were rendered at a plot depth between 9 and 11.

We used a recursion depth of 5 to 7 during the first subdivision stage (Algorithm 3), and

a depth of 3 to 4 during the second stage (Algorithm 4). The depth used in the first

stage is limited for two reasons. First, limited depth ensures that the time for each thread

to execute is similar, and thus minimises stalls between the parallel tasks. Second, the

computationally expensive process of finding a point in a plot node is performed in the

second stage.

When we find a point on the surface and compute the associated normal we also use

an atomic variable to assign an unique index to the array used to store the point and

normal data. In this way each point and normal is added to a shared data structure, such

that no data is lost through shared access. By storing the points in this data structure,

we can quickly render new views of the surface without further evaluation of the implicit

function. Table 4.3 compares the time taken to render a number of surfaces using the

CPU and GPU algorithms. This shows that the performance increases on the GPU from

a factor of 5 to 84 times, depending on the surface.

4.3 Examples

Surfaces that self-intersect, such as the Klein bottle surface [72] f [3] in Figure 4.10

(a), and the Mitre surface [73] f [5] in Figure 4.10 (b), are rendered without artifacts.

We can also render rays, as in Steiner’s Roman surface f [2] , (Figure 4.4, and the

90

Table 4.3: CPU and the GPU algorithm timing for rendering surfaces at a plot depth of 9.

Surface CPU (sec) CUDA (sec) Ratio

Mitre 2.53 0.44 5.7

Steiner’s Roman 6.43 0.82 14.0

Cyclide 25.9 1.84 14.0

Chmutov 8th 278 5.56 50

Bohemian star 132 2.94 44.8

Boy’s 29.8 1.52 19.6

Chmutov 14th 2233 26.41 84.5

(a) (b)

Figure 4.10: (a) The Klein bottle surface f [3] cut by the root node to show internal struc-

ture. (b) The Mitre surface f [5] .

91

(a) (b)

Figure 4.11: (a) The Spiky surface f [8] . (b) The Kusner-Schmidtt surface f [15] .

Mitre surface (Figure 4.10 (b)). Furthermore, we can render ray-like tubes as in the Spiky

surface [4] f [8] in Figure 4.11 (a), which have elongated spikes asymptotic to the four

lines x = ±y = ±z. These become rays in the limit as (x,y,z)→ ∞. Other non-manifold

features we can render are cusps / ridges, as on the Kusner-Schmitt surface [74] f [15] ,

in Figure 4.11 (b), and in Figure 4.24 (b) the super-toroid [75] f [12] surface. Finally, we

can render thin and flat sections as shown in 4.10 (b) and 4.24 (b), thin sections in 4.11

(b), and multiple double points as shown in Figures 4.12 and 4.21.

Our algorithm can render high order algebraic surfaces. In Figures 4.12 (a) and 4.12

(b) we render the 8th and 14th order Chmutov surfaces [76] given by Tn(x) + Tn(y) +

Tn(z) = 0, where Tn(x) is an nth order Chebyshev polynomial of the first kind. For n = 8

this is equation f [9] . In Figure 4.12 (b) the 14th order Chmutov surface f [10] is shown.

92

(a) (b)

Figure 4.12: (a) The T8 Chmutov surface f [9] , and (b) The T14 Chmutov surface f [10] .

Plot depths of 9 were required to render these surfaces without holes. The complex

internal structure of the T14 surface is shown in Figure 4.13 by clipping it with the plane

f (x,y,z) = x+ y+ z = 0.

We can easily render the intersections of a plane (or planes) with implicit surfaces

as illustrated in Figure 4.22 (a), and the intersection of arbitrary implicit surfaces can be

done in the same manner. For the intersection of a set of planes with the Klein bottle

surface [72] f [3] in Figure 4.22 (a) we test for the point in the plot node being on the

plane and on the Klein bottle surface. The test for the intersection of two general surfaces

involves testing whether the point P(x,y,z) in the plot node is on both surfaces.

It is also simple to render textures with our point-based algorithms. We illustrate this

93

Figure 4.13: The T14 Chmutov surface cut by the plane x+ y+ z = 0, and colour coded

yellow for outside the surface and blue for inside the surface.

with projected textures on the Barth sextic surface [77] f [6] in Figure 4.21 (b). As the

implicit surface has no texture coordinates, the textures are projected across each axis

onto the surface.

4.4 Comparison with ray-casting

We implemented and compared the GPU interval ray-casting method in Singh and

Narayanam [52] with our GPU approach in terms of image quality and speed using an

Intel Core2 Quad PC and an NV IDIA 275 graphics card. We set the plot depth for the

interval pruning method and then adjusted the interval precision term in the ray-caster to

produce visually similar results with the same viewing geometry and image resolution. As

94

Table 4.4 shows, our GPU based algorithm is much slower than ray-casting for the simpler

surfaces, but as the complexity of the surface expression increases, the difference in timing

decreases. For the 14th order Chmutov surfaces our method is faster than ray-casting.

The timings for anti-aliasing with the method discussed in chapter two is very low, but

we only used a single ray per pixel for the ray-casting. Ray-traced images are commonly

anti-aliased with nine or sixteen rays per pixel, with the rendering times proportional to

the number of rays used.

Ray-casting does not converge as fast when rendering high order algebraic surfaces

and produces worse results, compare Figure 4.14 (a) with Figure 4.14 (b). Ray-casting

does not render non-manifold features as sharply as our approach. Compare Figure 4.15

(a) and Figure 4.15 (b).

4.5 Rendering shadows on surfaces

As we store the geometry dataset from the subdivided implicit surface, we can render

the geometry into shadow buffers and use GPU hardware shadow mapping, as shown in

the following examples.

95

(a) (b)

Figure 4.14: The T14 Chmutov surface f [10] . (a) Point subdivided to depth 9. (b) Interval

ray-cast with e−14.

(a) (b)

Figure 4.15: The bohemian star surface f [13] . (a) Point subdivided to depth 9. (b)

Interval ray-cast with e−14.

96

(a) (b)

Figure 4.16: (a) Steiner’s relative surface. (b) Steiner’s roman surface.

(a) (b)

Figure 4.17: (a) Umbrella surface. (b) Cayley surface.

97

Figure 4.18: Scene composed of multiple objects.

98

Table 4.4: GPU timing (seconds) for various surfaces using interval pruning vs. ray-

casting.

Surface Interval Pruning Depth Ray-casting eps

Mitre 0.64 10 0.19 e−9

Cyclide 1.20 9 0.76 e−9

Super toroid 1.57 10 0.6 e−10

Barth sextic 3.91 9 1.78 e−12

Boy’s 1.87 10 4.60 e−16

Bohemian star 101. 10 74. e−16

8th Order Chmutov 76. 9 28.49 e−14

14th Order Chmutov 104. 9 473. e−16

99

4.6 Rendering Contours on Surfaces

In Balsys and Suffern [5] contours of user-defined thickness (slabs) were drawn on

surfaces to aid their visualisation. While the surfaces in [5] were ray-traced, the algorithm

can also be used with point rendering. The surface is coloured with the slab colour if the

point is inside the slab, otherwise the surface is coloured using Phong shading. In [5] it is

assumed the slab is approximately planar in the neighbourhood of the point. In regions of

very high or very low curvature this assumption can break down. For slabs parallel to the

coordinate planes it’s simple to determine if a point is in one of the slabs since the slabs

are not curved. We only need to check if the x, y, or z coordinate of the point is within

±d/2 of one of the specified x, y, or z centers. This will work assuming the slab thickness

is greater than d/2.

When the slabs lie on low or high curvature regions of a surface it’s more complex to

determine if a point is in one of the slabs. The algorithm discussed in Balsys and Suffern

[5] produces contours of approximately constant width provided the slab width w is small

compared to the curvature at that point on the surface. Sometimes, this approximation

breaks down as the radius of curvature can be arbitrarily small or large. This occurred

when rendering lines of constant Gaussian curvature K(x,y,z) = c of the super-toroid

surface. See Figure 4.24 (b), particularly around the edges of the cusps. The problem

was even more pronounced for Boy’s surface when rendering constant curvature slabs

across the flattest parts of the blades where the algorithm suffered an almost complete

100

breakdown. We have therefore developed a number of alternate approaches to rendering

curved contours on surfaces. Although we discuss these in terms of Gaussian curvature

contours, they are applicable to any curved contours.

j-1

j+1

j

i-1 i i+1

K(x, y, z) = c

K = ci,j

K = ci+1, j-1

1

2

Figure 4.19: Determining whether a pixel has Gaussian curvature contour, K(x,y,z) = c,

passing through it in image space.

V1 V2

V3

V4

K(x,y,z)=c

Figure 4.20: Determining whether a pixel has Gaussian curvature contour, K(x,y,z) = c,

passing through it in object space.

The first of these algorithms works in image space. Along with the OpenGL surface

colour buffer we use an additional buffer to store the (x,y,z) values of the depth buffer

pixel on the GPU as floating point numbers. This allows us to look up the (x,y,z) coor-

101

dinate for depth buffer pixel (i, j) in the additional buffer. For visible surface pixels we

compute the contour value, K(x,y,z) = ci, j, of the (i, j)th pixel and all its neighbours (see

Figure 4.19) using the positions in the GPU buffer. We compute the Gaussian curvature

at the center of every pixel on the visible part of the surface to obtain a value ci, j for each

pixel. The Gaussian curvature contour value K(x,y,z) = c to be rendered is passed as an

input parameter to our pixel shader. For the center pixel in Figure 4.19 we then make a

series of comparisons to determine whether the pixel should be shaded with the contour

colour. For example, we compute the Gaussian curvature at pixel (i, j) and (i+1, j−1)

as Ki, j = c1 and Ki+1, j−1 = c2. We then evaluate if c1 ≤ c≤ c2 and, if this equality is true,

the contour passes near the pixel and we render the (i, j)th pixel with the contour colour

rather than the surface colour. The (i, j)th pixel value is set to the contour colour if this

condition occurs for any of the immediate neighbour pixels.

Our second approach works in object space. The plotting node is polygonised to find

the roots f (x,y,z) = 0 on the plotting node edges. The polygon will have from three

to six sides (Balsys et al. [4]). In Figure 4.20 we show the case where four roots have

been found (labelled V1,V2,V3 and V4). The Gaussian curvatures, K(x,y,z), at these four

vertices are evaluated and their minimum (min) and maximum (max) values are found.

We test if min ≤ K(x,y,z) = c ≤ max. If this is satisfied the contour passes through the

polygon in the node and the pixel is rendered with the contour colour.

The advantage of the image space algorithm is that it is implemented on the GPU,

is faster as it only renders contours for pixels that pass the depth test, and can be used

102

(a) (b)

Figure 4.21: (a) Super Toroid surface coloured with Gaussian gradient magnitude. (b)

Barth sextic surface f [6] with t = (1+
√

5)/2 and w = 1.

for rendering contours in real-time. The disadvantage is that only the parts of the surface

visible from the viewing vector~v, can be rendered. Therefore, the algorithm would only

render the parts of the curves of self-intersection and zero Gaussian curvature in Figure

4.26 that pass the depth test. For these images we used the object space contouring method

just described. As this is essentially a point sampling approach this can result in aliasing

problems. The method discussed in chapter two is then used to produce anti-aliased

contours.

Figure 4.24 (a) shows an implicit form for the bohemian dome surface f [11] ren-

dered with contours parallel to the (x,y,z) axes using a GPU algorithm. Contours can be

rendered on any surface visible from the view point. Figure 4.24 (b) shows contours of

103

(a) (b)

Figure 4.22: (a) The intersection of the planes zi = −3.5,−3,−2.5, · · · ,3,3.5, with the

Klein bottle surface f [3] . (b) 14th Order Chmutov split apart by planes across the z axis.

constant Gaussian curvature on the super-toroid surface [75] f [12] , rendered with the

GPU algorithm.

To plot values of Gaussian curvature we first render the surface at the plot depth to

find a range for the plotted points. We can also use a lower plot depth sample for finding

the range. From the range we can step from a minimum to a maximum value using a

computed step value to obtain various contours of Gaussian curvature on the surface.

104

(a) (b)

Figure 4.23: (a) The curve of zero Gaussian curvature and the curve of self intersection

of Boy’s surface f [1] showing six points of intersection of the two curves (red dots). (b)

The bohemian star surface f [13] .

(a) (b)

Figure 4.24: (a) The bohemian dome surface f [11] with contour slabs parallel to the x,

y, and z, principal axes. (b) The super-toroid surface f [12] with a = b = c = 4, ε1 = 3,

and ε2 = 3, and contours of constant Gaussian curvature rendered on the surface using the

image space algorithm.

105

Figure 4.25: Curvature map for Gaussian curvature of Boy’s surface f [1] , left image

viewed from “front” camera position, middle image viewed rotated by 180◦ around the

surface center. The right-most image is the curve of self-intersection of Boy’s surface

viewed from “front” position.

Figure 4.26: Right - left stereo pair for transverse viewing of the curve of zero Gaussian

curvature on Boy’s surface f [1] .

106

4.7 Curvature Maps and Curves of Self Intersection

Figure 4.25 show Boy’s surface [78] f [1] rendered with a Gaussian curvature colour

map. The colour gradient represents the range of Gaussian curvature. Figure 4.25, left

and middle, show the front and rear views of the surface. Figure 4.25 right shows the

curve of self intersection.

Curves of self intersection are easily rendered by Algorithm 1 as the surface is singular

along the curve (the gradient is not uniquely defined). We therefore need only plot points

that are found in the PointSamplingFails() section of the algorithm.

The formula for the Gaussian curvature of Boy’s surface was too complex to calculate

by hand. We used Mathematica to find all the partial derivatives of the surface and the

implicit formulae. We then rendered only that part of Boy’s surface whose Gaussian

curvature is zero. The resulting curve is shown in Figure 4.26. A composite image, see

Figure 4.23, shows that the zero Gaussian curvature line and the curve of self-intersection

intersect in six points.

4.8 Curvature Surfaces

We conclude this section by rendering the curvature surfaces of a number of implicit

surfaces that are the curvature surfaces of other non-manifold implicit surfaces. We also

render the curvature surface intersected against its original surface. This helps visualise

107

the curvature of the original surface [54]. The Gaussian curvature can be used to classify

points on a surface as follows. A point is elliptic if K > 0, hyperbolic if K < 0, and

planar if K = 0. The curvatures of an implicit surface are defined from the 3D scalar field

f (x,y,z), and are themselves 3D scalar fields. Their values on the surface f (x,y,z) = 0

are the curvatures of the surface, while their values at points in space that are not on the

surface are the curvatures of other surfaces f (x,y,z) = c, with c ∈ℜ.

Below we give some examples of the Gaussian curvature surfaces. We do not give

the expressions for these surfaces as each of them is many pages long. To shade the

surface we also needed to find the first derivatives of the curvature surface, the method

of approximating the normal from the scalar field’s direction failed to produce acceptable

results and so the calculation of the exact form for ∇ f was a necessity. For a parent

function like Boy’s surface these steps were too tedious and error prone to do by hand and

so we used Mathematica to implement these steps. As we were interested in curvature

surfaces we needed to choose a value for c for the curvature, K, we are interested in

rendering.

In Figure 4.27 we chose values of K= -1, 0, and 1 to render, as these represent the three

classifications (elliptic, planar, hyperbolic) of curvature that occur on Boy’s surface. The

cyclide surface f [7] has three forms depending on the value of the parameter r relative to

the parameters a and f . In the ring form, r is between the values of parameters a and f ,

in the spindle form r is less than a and f and in the horn form r is greater than a or f .

Figures 4.28 (a)-(c) shows these three forms of the cyclide surface and their corresponding

108

K = 0 Gaussian curvature surfaces in one figure. The figures are cut by the plane y = 0

and translated apart to reveal internal details.

The final example, Figure 4.29 (a), shows the Klein bottle surface and its K = 0 cur-

vature surface again clipped against the plane y = 0, to show the internal structure. Figure

4.29 (b) shows the K = 1 curvature surface of the Klein bottle surface.

We believe this is the first time that curvature surfaces of these non-manifold surfaces

have been rendered.

109

(a) (b)

(c)

Figure 4.27: The curvature surfaces for Boy’s surface f [1] showing, (a) Kboys = −1, (b)

Kboys = 0, and (c) Kboys = 1.

110

(a) (b)

(c)

Figure 4.28: The three forms for the cyclide surface [3] surface f [7] and their K = 0

curvature surfaces. Top row, (a) a = 2.95,r = 3 and f = 10, (b) a = 5,r = 0.25 and

f = 10 and (c) a = 7.5,r = 10 and f = 2.5. Cyclide surface shown in Pink and Lime,

Curvature surface in Blue and Gold. Surfaces cut and translated vertically to show internal

structure.
111

(a)

(b)

Figure 4.29: (a) The Klein bottle surface f [3] and its K = 0 curvature surfaces shown cut

against the plane y = 0 to reveal internal structure, and (b) the K = 1 curvature surface of

the Klein bottle surface.
112

(a) (b)

(c) (d)

Figure 4.30: (a) Cyclide curvature surface for k=0, (b) Combo split of k=0 and cyclide,

(c) Clipped cyclide curvature surface for k=0.05, and (d) Clipped combo of k=0.05 and

cyclide.

113

(a) (b)

Figure 4.31: (a) Klein bottle combo for k=1. (b) Klein bottle combo.

114

Chapter 5

Visualisation using Polygons

We are interested in producing high quality animations of manifold and non-manifold

implicit surfaces. We are particularly interested in animations of surfaces whose 3D shape

is hard to conceptualise from static images. We are also interested in animations of pa-

rameterised implicit surfaces as we change the parameter. We compare three approaches

to these visualisations and compare their relative advantages and disadvantages. The ap-

proaches we compare are the use of mixed dual-grid polygons / points, point splatting and

ray-casting.

Our polygons/points method is octree based, uses interval and point sampling of the

surface curvature to drive the subdivision, and uses a pruning algorithm to generate points

that are rendered where the surface curvature is very high, or around non-manifold fea-

tures. This allows us to visualise both manifold and non-manifold implicit surfaces of high

complexity. The polygons are generated through the use of a dual-grid [31]. We discuss

necessary modifications of the dual-grid method to polygonise the surfaces. The main ad-

vantage of the dual-grid is that cracks do not form between shared plotting node faces that

115

are at different depths. Polygons are formed as a mixture of triangles and quadrilaterals

and the rendering can be hardware accelerated. We also discuss improvements to the grid

so that slither triangle do not form.

We also discuss the implementation on the GPU. In the GPU approach rather than

adaptively subdividing using interval and curvature information, only intervals are used

to subdivide the surface to a fixed polygon plotting depth. This reduces divergence in the

code path executing on the GPU for improved performance. As all leaf nodes are divided

to the same depth, no cracks can form, and so neighbour information is not required. At

the plot depth we then use the approach given in Bloomenthal [24] to try to polygonise

the node. If the node fails to polygonise we then use a point-based approach to render the

surface in the node.

Our point splatting approach uses the vertices and points obtained from the poly-

gon/points algorithm and uses a Gaussian elliptical weighted average filter to render

shaded discs (surface splatting) at these points. We also implement this algorithm on

the GPU. Finally we compare GPU ray-casting with these approaches.

Our objective is to be able to render implicit surfaces at high frame rates so that ex-

ploration of families of surfaces is possible in real-time. We achieve high frame rates for

low order implicit surfaces with the polygons/points algorithm and with point splatting.

Even for high order surfaces we achieve high frame rates, in many cases approaching that

of ray-casting for single images. We compare timing for rendering a set of surfaces using

116

our mixed polygon/point methods, using surfel splatting, and for ray-casting.

When animating images our method has advantages over ray-casting. We store the

triangle and point geometry on the GPU so we can rotate surfaces in real-time. Our ap-

proach also allows us to modify the parameters of various interesting families of functions

in real-time, and see the effects on the shape of the surface. We illustrate the techniques

with a number of example surfaces.

The major contribution of this chapter is a new hybrid algorithm that improves the

rendering of non-manifold implicit surfaces by using mixed polygon/point sampling. The

algorithm uses the dual-grid method to avoid the “crack” problem that occurs when using

polygons derived from leaf node that share faces at different plot depths, see Bloomenthal

[24] and Balsys and Suffern [4] for a discussion of this problem. The algorithm is fast

enough that high quality images of surfaces can be obtained at interactive frame rates on

PCs. We demonstrate the use of our algorithm by modifying the parameters of functions

defining implicit surfaces and rendering the effect on the surface in real-time.

In this chapter we show how polygons and points can be combined in a single render-

ing of complex visualisation problems, including visualising discontinuous or singular re-

gions such as ridges, cusps, self-intersections, singular-lines and thin-sections of surfaces.

We also compare our hybrid algorithm with the use of point splatting and ray-casting ap-

proaches.

We propose a visualisation model that uses a combination of triangles, quadrilaterals

117

and point primitives to represent surfaces. These primitives are all rendered to the same

colour buffers for seamless visualisation between manifold and non-manifold sections.

While quadrilaterals can be converted to triangles, we choose to preserve the quadrilateral

sections that are inherit in the dual-grid meshing. Mesh output is comprised mostly of

quadrilaterals, and keeping the data as quadrilaterals reduces the memory footprint of the

model. Memory use is a concern for more complex surfaces where triangles/quadrilaterals

must be smaller to accurately bound the surface.

5.1 Dual-grid meshing

We initially investigated an algorithm that could generate crack-free meshes, rather

than algorithms that generate meshes with cracks, and later attempt to fill the cracks.

At the heart of our algorithm lies the dual-grid octree structure from [31]. Rather than

use marching cubes to generate polygons we generate polygons from the dual-grid lines.

The vertices of the dual-grid are positioned at the centroid of the surface intersections in

the node. This method forms the crack-free mesh of an implicitly defined surface. The

mesh is supplemented by the point-based rendering process used in the previous chapters.

Points are used to visualise nodes after the octree depth is above a user defined limit. The

method proceeds in a number of stages.

(i) We first subdivide using octree spatial subdivision and, if the planarity and divergence

criteria used in Bloomenthal [24] are passed, the subdivision process terminates;

118

(ii) If we reach the maximum plot depth and the surface is still not flat enough we pro-

ceed using the point-based method described in chapter four;

(iii) The mesh is then created from the dual-grid nodes that are flat enough to polygonise;

(iv) The resulting quadrilaterals, triangles and points are loaded onto the graphics card

into geometry buffers for efficient rendering;

(v) Points are found in dual-grid nodes that are not flat enough to polygonise.

We now discuss how the polygon mesh is created. In Bloomenthal [24] and Balsys

et al. [79] they stitch together polygons using the intersection points, however this results

in cracks that form between node that share faces at different polygonisation depths, for

example see Figure 5.1. The cracks must then be identified with additional triangles added

to create a closed mesh. Our solution is to avoid this problem altogether, by using a dual

octree approach as in Schaefer and Warren [31]. The use of an octree in our algorithm

allows us to find nodes that share a face. As a result we avoid the problem of sliver

triangles as discussed in Ju [32], and Schaefer and Warren [31].

Instead of applying marching cubes to the dual octree as in Ohtake et al. [30], and

Paiva et al. [33], we stitch our mesh together based upon shared face intersections between

octree nodes. In f indNodeIntersects() the roots of the surface function are found along

the node edges using the method of regula falsi and these define a polygon whose centroid

is calculated by averaging the node intersection points (we do not construct the polygon

to do this). We use the center of the polygon rather than the center of the plot node as this

119

More subdivded
 nodes

Less subdivided
 node

Polygons

Crack in
shared faces

Figure 5.1: Polygonising plot nodes using polygon outlines in adaptively subdivided oc-

tree results in cracks occurring that are aligned with the shared faces between nodes sub-

divided to different plot depths (from Balsys and Suffern [4]).

has the benefit of producing a more optimised surface mesh, particularly when only small

polygons are contained in the plotting node. These centroids along with other node data

are pushed into a list of plot nodes for later use in the rendering pass.

In the rendering algorithm the centroid is used to define the dual-grid vertices. This

makes our dual-grid vertices lie on, or very close to the surface, unlike the work in Ohtake

[30]. Their dual-grid vertices begin at arbitrary locations, and are iteratively repositioned

through an equation. This equation attempts to find prominent surface features. Alter-

natively Schaefer et al. [31] solves a quadratic error function (QEF) to find the most

prominent feature in the node, by minimising quadratic energy.

In Schaefer and Warren [31] the dual-grid lines define the marching cube edges. This

can be visualised in Figure 5.2 by tracing cubes from the red outlines. The dual-grid is not

120

Figure 5.2: Quadtree adaptive subdivision of a 2D curve. The dual-grid is the lines con-

necting adjacent nodes in the octree. Octree outlines in black, dual-grid outlines in red,

and surface in blue.

rectangular and axis-aligned but can be treated as such for the purposes of the “marching

cubes” algorithm of Lorensen and Cline [23]. They use a marching cube algorithm in their

work for various purposes. We do not use a marching cube algorithm to render surfaces.

We proceed to stitch our polygons together using the centroids of polygons in the polygon

plotting nodes to form a dual-grid.

According to Ohtake and Schaefer [28] the edges in the dual-grid are guaranteed

to form a mesh composed of a mixture of quadrilaterals and triangles (see Figure 5.2

where this is demonstrated for a quadtree). To create the dual-grid mesh of our surface

we proceed as follows. We start by looping through all the plotting nodes found in the

121

CreatePlotNode() method in our algorithm. We store a pointer to the current node and

assign the plot node centroid as the dual-grid vertex for the current node. Each time a plot

node is found in CreatePlotNode() we add to the node data, a list of pointers to faces that

also contain plot nodes, and we then update the adjacent node lists with the new plot node

pointer. We use these lists to form the dual-grid.

1

2

3

4

Figure 5.3: Forming triangles using a dual-grid. Plotting node centroids labelled one,

two, three, and f our. Dual mesh edges in red.

Either quadrilaterals or triangles will form using the dual-grid. We start by considering

our plot node polygon centroid (centroid one) and a neighbour with another vertex in it

on a shared face (centroid two). We then compare face neighbours for centroid one and

centroid two to see if they share a face neighbour (centroid three in Figure 5.3). If there

is a shared neighbour then a triangle is formed as in Figure 5.3 between centroid one,

two and three. An edge can have no more than two connected primitives. Three or more

connected primitives is the result of a non-manifold section (these are the cause of sliver

122

triangles), which will never occur in our dual-grid as we reject these nodes from being

polygonised. Rejected nodes are subdivided using the point method from chapter four,

with the resultant points stored into a list. The point list is rendered in conjunction with

the triangle mesh.

1 2

34

Figure 5.4: Forming quadrilaterals using a dual-grid. Plotting node centroids labelled

one, two, three, and f our. Dual mesh edges in red.

Forming quadrilaterals is illustrated in Figure 5.4. Consider the case where we are

starting with centroid one and have found centroid two in its face neighbour list. We

find that centroid three is a face neighbour of centroid two but does not share a face with

centroid one. However centroid three has a face neighbour (centroid f our) which is also a

face neighbour of centroid one. This means that a quadrilateral should be used to connect

the four centroids in the dual-grid.

However finding triangles and quadrilaterals is problematic as loops form when cy-

cling through the neighbour nodes neighbour lists. To avoid cycling through the same

edges we use a hashing scheme. Each unique key is a structure formed from the three or

123

four node indices sorted in ascending order. From this structure we generate a hash value

to represent the edges of the triangles and quadrilaterals, and no edges are inserted in the

dual-grid when a duplicate hash is found. Thus we guarantee not to produce duplicate

primitives in our mesh.

Figure 5.5: Surface rendered using the described dual-grid based meshing.

The mesh algorithm was unsuitable for implementing on the GPU so we devised al-

gorithms for rendering polygon/point and point splatting on the GPU.

5.2 GPU subdivision algorithm

In this work we show how polygons and points can be combined in a single rendering

of complex visualisation problems on the GPU, including visualising discontinuous or

singular regions such as ridges, cusps, self-intersections, singular-lines and thin-sections

124

of surfaces. At the heart of our algorithm lies the octree node subdivision process as in

[25]. The resultant mesh is supplemented by the point-based rendering process used in

the previous chapters.

Initially we tried to modify the adaptive subdivision approach of Bloomenthal [24],

Schmidt [27] and Balsys and Suffern [4] for use on the GPU. These approaches have in

common the idea of using curvature to drive the subdivision process, stopping subdivision

in regions of relatively low curvature. This results in cracks in the surface mesh that then

have to be fixed, as shown in Figure 5.1. When implemented on the GPU this results

in thread stalls as threads wait for neighbour nodes to be polygonised so that the cracks

can be fixed. The timings from initial trials were not promising, and this approach was

dropped in favour of those now described.

In our approach rather than adaptively subdividing using interval and curvature infor-

mation, only intervals are used to subdivide the surface to a fixed polygon plotting depth.

As all leaf nodes are divided to the same depth, no cracks can form, and so neighbour

information is not required. At the plot depth we then use the approach given in Bloo-

menthal [24] to try to polygonise the node. If the node fails to polygonise we then use a

point-based approach to render the surface in the node.

The algorithm proceeds in three distinct phases. The first phase is shown in Figure

5.6. The subdivision process begins with the view volume (defined as an axis aligned

cube of 3D space). This root node is pushed into a vector of nodes to be subdivided. The

125

(F, x, y, z, w)
surface_present

depth ==polygon_plot_depth

true
false

true
false

return

write_child_nodes(x, y, z, w, depth+1)

CUDA_subdivide(x, y, z, w, depth)

?

?

return

returnwrite_plot_node(x, y, z, w, depth)

Figure 5.6: Phase 1: CUDA subdivide().

centre coordinate (x,y,z) and width, w are defined by the user for the view volume. The

initial depth is one. The first NVIDIA CUDA thread takes these values and tests if the

natural interval extension of the surface, F(x,y,z), in the node contains 0.0. To do this

the intervals X = (x− w
2 ,x+

w
2),Y = (y− w

2 ,y+
w
2),Z = (z− w

2 ,z+
w
2) are calculated to

evaluate F(X ,Y,Z) in sur f ace present().

sur f ace present() does not guarantee that the surface exists in any plotting node, it

does, however, guarantee that any node of the octree that is discarded does not contain

the surface. If the surface is present the node is subdivided into 8 child nodes using the

write child nodes() function. This calculates the new centres and width of the child nodes

and atomically gets an index used to write to a global node vector. Incrementing the index

is an atomic operation to ensure no race condition occurs between the hundreds of threads

that may be running.

CUDA subdivide() is run in parallel threads that atomically get indexes of nodes from

126

()

true
false

()

true
false

()

true false

()

?

?

?

return

()

()

()

CUDA_polygonize(x, y, z, w, depth)

Figure 5.7: Phase 2: CUDA polygonise().

a global node vector, and uses the node data to evaluate CUDA subdivide(). When a node

is reached that is at the polygonisation depth, polygon plot depth, the thread terminates

by atomically getting an index to a global polygon plot node vector and uses this to write

the polygon plot node data used in phase 2 of the algorithm. Phase 1 produces a list of

polygon plot nodes at the polygon plot depth.

The nodes in the polygon node vector are popped by parallel threads running the

CUDA polygonize() algorithm in Figure 5.7. We estimate the curvature of the function

in the node by evaluating the function divergence at node vertices. In the past there has

been some exploration of using estimates of curvature to drive the subdivision process.

Bloomenthal [24] used planarity, divergence and chord-distance estimates for the curva-

ture of the surface. In Balsys and Suffern [4] it was found that divergence by itself can

be used as a curvature estimate, and so we use this approach in this work. Estimating

127

CUDA_subdivide_points(x, y, z, w, depth)
(F, x, y, z, w)

surface_present

depth ==point_plot_depth

true
false

true
false

return

write_point_child_nodes(x, y, z, w, depth+1)

?

?

return

returnwrite_point_plot_node(x, y, z, w, depth)

Figure 5.8: Phase 3: CUDA subdivide points().

curvature at the node edges means we do not have to find the surface intersections with

the node edges, computationally expensive, unless the function passes the divergence test.

If the function fails the node divergence test the node information is atomically added to

a vector of nodes to be used in the point subdivision phase.

In phase 2 the subdivision proceeds using an interval test until the fixed polygon plot

depth is reached. We then evaluate the dot product between all surface normals calculated

at node vertices. If these dot products indicates that the maximum deviation between any

pair of node vertices is greater than the user-settable divergence criteria (30◦) then the

surface is not flat enough to polygonise. The depth, width of the node, and the centre

of the node, are written to a global vector variable using an atomically accessed index.

This information is used in the point subdivision phase to uniquely define the node to be

subdivided using points.

The polygonisation algorithm considers all 12 plot node edges in turn, and uses a

128

function sign test to detect an edge that contains surface intersections. To locate the root

along the edge in f ind intersects(), we use the method of regula falsi. If three to six

intersects are found along plot node edges we do a curvature test using the divergence

between the surface normals at the roots on the edges (divergence < 30◦). If this passes

then we have found a (relatively flat) polygon in the node. We then atomically get the

value of an index to use to write the required data into a global vector for use in rendering

the polygon. Only if the plot node has three to six intersects, and meets or exceeds the

divergence criteria, do we generate a polygon in the node. Otherwise we write the node

data into a vector to use in the point subdivision stage.

The CUDA subdivide points() algorithm is very similar in action to the CUDA sub–

divide() algorithm. Multiple CUDA threads are launched running this code. The data

comes from the point node vector created in phase 2. The initial data in this vector are

all the nodes at the polygon plotting depth that failed to polygonise. Each of these will

add global point nodes, if the surface is present, until the point plotting depth is reached.

At this depth the thread will get an atomic index to add the node data into a global point

plotting vector for use in the pruning stage.

Details of pruning algorithm we use are given in chapter four as point sampling f ails().

This algorithm is applied to each of the nodes found at the point plot depth of CUDA sub–

divide points() to prune the excess points found using interval subdivision as described

in chapter four. At the final stage we have a set of nodes to be rendered using polygons

and a set of nodes to be rendered using points.

129

The polygons / points algorithm renders the polygons/points using OpenGL with a

depth buffer and Phong [7] shading. The normal for Phong shading is calculated using

the surface’s gradient function.

5.3 Rendering Non-Manifold Surface Sections

The following figures illustrate the results obtained when this approach is used to

render a non-manifold surface. Figure 5.9 shows the case for a surface with singular

points, such as the Cassini-Singh surface f [17] ;

f (x,y,z) = ((x+a)2 + y2)((x−a)2 + y2)− z2 (5.1)

with a = 1. The surface gradient function ∇ f is calculated for each vertex or point

on the surface. By interpolating the per-vertex normals over our triangle using Phong

shading, we produce per-pixel surface lighting with quality that approaches point-based

and ray-casted methods. We then make use of the Phong lighting model to render all

sampled points. This allows us to produce images whose quality is similar to ray-cast

images.

In Figure 5.10 we show how rays are rendered by the method described in this work.

Figure 5.10 (a) shows the cross cap surface f [18] ;

f (x,y,z) = 4x2(x2 + y2 + z3)+ y2(y2 + z2−1) (5.2)

rendered using polygons only. Polygonal methods are not well suited to rendering non-

130

manifold surfaces such as the cross cap surface, particularly where the distance between

the front and back of the surface approaches zero. In Figure 5.10 (b) we show the result

when polygons and points are used to render the surface. The image is of much improved

quality, producing results similar to that produced when the image is ray-cast.

5.4 Comparison of Animations using; Points/Polygons, Surface Splat-

ting, and Ray-casting

In recent years there has been much development of rendering based on a technique

called surface splatting. Generally this uses a Gaussian elliptical weighted average (EWA)

rendering technique for rendering point sampled geometry, see for example [44], [45, 48],

[47], [80]. The splat is an extension of the point primitive which faces a direction defined

by a normal vector and can be represented by various shapes. The texture applied to the

shape is generally a Gaussian EWA function that blends multiple splats more effectively

than a simple linear blend.

The output from algorithm 1 is either triangles and quadrilaterals, with associated

normals, or points with their associated surface normal. As a result we can use each of

the vertices of the polygons as the origin of a splat. The radius of a splat can be controlled

so that all the splats overlap to create a surface without holes. This approach has the

advantage that we do not have to stitch the polygons together, we only need to find the

polygon vertexes, and this saves time. Also the use of the EWA filter helps to preserve the

131

surface shading. Due to the blending, silhouette edges can appear softer than if rendered

with points or polygons.

We used splat sizes based on the area occupied by the triangle or quadrilateral in

the leaf node. This results in an adaptive splatting scheme that can handle non-manifold

sections, the splat can be positioned on the original intersection polygon, or on the dual

octree nodes. We find the dual octree provides better splatting due to the crack free mesh

topology.

An alternate to our use of polygons/points or the use of point splatting is to use interval

ray-casting, as first described in Mitchell [58], and developed on the GPU by Loop and

Blinn [81], Knoll et al. [53], and Singh and Narayanan [52]. The advantages of the ray-

cast GPU algorithms are that they can render many surfaces in real-time.

Given the diversity of approaches we decided to do a comparison of the methods

so that we could determine the relative advantages/disadvantages of the methods. We

implemented our polygons/points algorithm on the GPU. The scheme to balance the use

of threads in implementing the polygons/points algorithm was similar to that used in

chapter four.

Our ultimate goal is to be able to interact with the surfaces in real-time. For this reason

the following points are important to the comparisons;

• the images should be as accurate as possible a representation of the surface shape,

• the frames should be produced at interactive frame rates,

132

• there should be little or no rendering artifacts between successive frames of the

images.

The first two of these points have been discussed in the previous section. To test

frame rates of the approaches we rendered a number of implicit test surfaces of varying

complexity and type, and measured the time to render a high quality image of a single

frame. By a high quality image we mean that the surface boundaries and features are well

defined, and the Phong shading is smooth across the surface.

To compare the timings we had to adjust the parameters for the various methods so

that images of comparable quality were produced by each method. For the polygon/point

method and the splatting approach the only control is the plot depth. For interval ray-

casting the final width of the intervals are specified as an ε value, as defined in Singh et

al. [52]. The resulting timing comparisons are given in Table 5.1.

From these timings we see that the polygon/points algorithm can be slower (15%) or

faster (250%) than the timing for ray-casting with intervals. Point splatting is faster for

the Mitre surface but otherwise is slower that using mixed polygons / points. As discussed

before, the resultant geometry from the point/polygon approach is preferred. Hence these

timings are very encouraging, indicating we are achieving frames rates at comparable

speed to ray-casting for rendering single high quality images.

Figure 5.12 shows the Mitre surface f [5]

f (x,y,z) = 4x2(x2 + y2 + z3)+ y2(y2 + z2−1) (5.3)

133

Table 5.1: Timings (sec) for rendering high resolution images of implicit surfaces using

ray-casting, points/polygons and point splatting. Image size 1000x1000 pixels.

Surface Ray-casting Polys./Points. Splatting

Boys 1.697 1.302 (76%) 1.198 (71%)

Cyclide 0.198 0.299 (151%) 0.949 (479%)

Steiners surface 0.179 0.245 (73%) 0.193 (108%)

Mitre 0.112 0.280 (250%) 0.133 (119%)

Bohemian Star 8.837 1.339 (15%) 4.948 (56%)

Barth Sextic 0.851 2.164 (250%) 2.163 (254%)

Chumtov 8 10.913 5.569 (51%) 5.635 (52%)

Chumtov 14 17.5 7.212 (41%) 7.031 (40%)

134

The polygon/points method fills these gaps with points and will render singular lines as

lines, and is anti-aliased around silhouette edges. We anti-alias the edges in the poly-

gons/points method using the process described in chapter two. The point splatting ap-

proach renders the singular lines as thin tubes. Also there are aliasing problems around

silhouette edges. The ray-casting methods still has aliasing problems along the singular

line and suffers aliasing along silhouette edges. Edge anti-aliasing of the ray-cast surface

is not discussed in the work of Loop and Blinn [81], Singh and Narayanan [52] and Knoll

et al. [53]. Anti-aliasing complicates the GPU ray-casting algorithm as many more rays

are fired at silhouette pixels so a colour average for the silhouette pixel can be found. This

further slows the ray-cast algorithm.

Boy’s surface f [1] ,

f (x,y,z) = 64(1− z)3z3−48(1− z2)z2(3x2 +3y2 +2z2)

+12(1− z)z(27(x2 + y2)2−24z2(x2 + y2)

+36
√

2yz(y2−3x2)+4z2)

+(9x2 +9y2−2z2)(−81(x2 + y2)2

−72z2(x2 + y2)+108
√

2xz(x2−3y2)+4z2), (5.4)

is a hard surface to visualise from static images. With our algorithm we can rotate the

surface in real-time so the nature of the surface becomes more apparent. In Figure 5.13

we show individual frames from an animation that flies the camera around Boy’s surface

looking at the origin of Boy’s surface. Figure 5.13 (a) shows the image obtained from the

135

points / polygon approach, Figure 5.13 (b) using point splatting using the vertex, point and

normal information from the points/polygons method and Figure 5.13 (c) shows Boy’s

surface rendered using the GPU approach of Knoll et al. [53]. Boy’s surface consists of

three blade like structure that intersect one another. The point polygon algorithm does

a good job of rendering the non-manifold portions of this image. Animations of Boy’s

surface using these three methods can be viewed on DVD Chapter 4.

It can be hard for people to see 3D shapes from 2D images. For this reason stereo-

scopic viewing systems are used when appreciation of visual depth is important to the

problem. Stereoscopic viewing systems use two camera positions, usually separated by

2◦-4◦ at the point of interest, to produce left and right eye views of the scene. As one of

our interests is in visualisation of 3D shape we also produced stereo pairs using the three

approaches and compared the timings. Our points polygons approach is well suited to

producing such stereo pairs.

Figure 5.14 uses points/polygons to produce stereo pairs of Steiner’s Roman surface

f [2]

f (x,y,z) = x2y2 + y2z2 + x2z2− xyz = 0 (5.5)

Table 5.2 gives timings for creating a one second animation of flying a camera in a circle

around Steiner’s Roman surface and producing sequences of stereo pairs using the three

approaches. Example animations can be viewed at DVD Chapter 1. The polygon/points

model is faster, as ray-casting has to recalculate the geometry for each frame. We have

136

also showed the effect on timing of anti-aliasing using the polygons/points method. With

up to sixteen extra samples per pixel rendering time is still less than no anti-aliasing using

interval ray-casting.

Table 5.2: Timing for rendering stereo pairs for 25 frames of Steiner’s Roman surface

f [2] using points/polygons and ray-casting. Image size 1200x600 pixels.

Method Time (sec) Depth/ε

Points/Polygons (no AA) 1.4 11

Points/Polygons (4xAA) 2.6 11

Points/Polygons (16xAA) 5.3 11

Interval ray-casting 7.8 10

Finally we show frames from an animation produced by flying a camera along the z

axis of the Klein bottle surface f [3]

f (x,y,z) = (x2 + y2 + z2 +2y−1)[(x2 + y2 + z2−2y−1)2−8z2]

+ 16xz(x2 + y2 + z2−2y−1) = 0, (5.6)

in Figure 5.15. The full animation can be viewed at DVD Chapter 2. Such animations

help in visualising the internal structure of self intersecting surfaces, such as the Klein

bottle surface.

137

5.5 Visualisation of families of surfaces

The previous visualisations are of single implicit surfaces. Another kind of anima-

tion involves holding the camera in a fixed position, but varying the surface geometry of

parameterised surfaces. The first example is of the cyclide surface

f (x,y,z) = (x2 + y2 + z2)2−2(x2 + r2)(f 2 +a2)

−2(y2− z2)(a2− f 2)+8a f rx+(a2− f 2)2 (5.7)

where a, r and f are the parameters. Three forms of the cyclide surface occur depending

on the scale of the parameters. When r <= a < f the cyclide has two horns as shown

in Figure 5.16 (a), (b) and (c). When a < r < f the cyclide has one horn that meets at

the centre, as in Figure 5.16 (d), and when a < f <= r the cyclide has an interior surface

as in Figure 5.16 (e) and (f). The Figures are cut by the root octree to show the interior

sections. We have produced an animation of this, at DVD Chapter 3, where the value of

the parameter r is initially less than a and f and then is incremented so a < r < f , and

eventually r is greater than a and f .

Barr [75] first illustrated the super-quadratic surfaces. The families of the super-

quadratics include the super-ellipsoids, super-toroids, and the super-hyperboloids. For

each family two parameters, ε1 and ε2 control the squareness and roundness of the result-

ing surfaces. The super-ellipsoid surfaces f [22] are given by

f (x,y,z) =
(
(

x
a
)

2
ε1 +(

y
b
)

2
ε1

) ε2
ε1
+(

z
c
)

2
ε1 (5.8)

138

Figure 5.17 illustrates the surfaces resulting for values of the parameters ε1 fixed at

1.0 and the value of ε2 varies from 0.04 to 3.6 in steps of 0.4. The parameters a, b

and c control the height, width and length of the surface. These are fixed in the figure.

Animations showing the result of varying ε1 and ε2 for the super-quadratic surfaces may

be viewed at DVD Chapter 5.

We conclude this section by illustrating an interesting family of surfaces that are dif-

ficult to render, especially in real-time. The Gaussian and mean curvatures are intrinsic

properties of implicit surfaces [8]. The Gaussian curvature K(x,y,z) of an implicit surface

f (x,y,z) = 0 is a 3D scalar field. A specific value of this scalar field K(x,y,z) = k, with

k ∈ ℜ is another implicit surface. We call this the curvature surface of f (x,y,z) = 0. If

k ∈ [kmin,kmax] for f (x,y,z) = c, these two surfaces will intersect.

To illustrate this we show a sequence of Gaussian curvature surfaces of a surface.

The surface we choose is Steiner’s surface. We first illustrate this in Figure 5.18 which

shows three Gaussian curvature surfaces superimposed on the original surface. To aid the

visualisation we colour Steiner’s surface differently from its curvature surfaces.

While we cannot render an animation of families of curvature surfaces, such as this,

in real-time, our polygon/point method is fast enough that the frames can be created off-

line and assembled into an animation in a matter of hours. The result for the curvature

surfaces of Steiner’s surface can be found at DVD Chapter 6.

139

Figure 5.9: The Cassini-Singh surface f [17] showing GPU rendering. Polygon sections

are outlined in blue while the middle section is filled with points.

140

(a) (b)

Figure 5.10: Crosscap surface f [18] rendered with GPU algorithm. (a) Polygons only,

and (b) Polygons and points.

(a) (b)

Figure 5.11: Spiky surface f [8] rendered with GPU algorithm. (a) Polygons only, and (b)

Polygons and points.

141

(a) (b)

(c)

Figure 5.12: The Mitre surface f [5] rendered with, (a) Polygons / points with point depth

of 12, (b) Point splatting with a maximum point depth of 12, and (c) Using interval ray-

casting with an ε value of 2−11.

142

(a) (b)

(c)

Figure 5.13: Boy’s surface f [1] rendered with GPU algorithm. (a) Polygons / points with

point depth of 12, (b) Point splatting with a maximum point depth of 12, and (c) Using

interval ray-casting with an ε value of 2−16.

143

(a)

(b)

Figure 5.14: Steiner’s Roman surface f [2] rendered using, (a) Polygons / points with

point depth of 12, and (b) Interval ray-casting with an ε value of 2−12.

144

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: Frames from an animation moving down the z axis, where za = 10 and zi = 4

with steps in z of -2
3 between each of the frames of the Klein bottle surface f [3] .

145

(a) (b) (c)

(d) (e) (f)

Figure 5.16: Forms of the cyclide surface f [7] . (a) r << a < f , (b) r < a < f , (c)

r = a < f , (d) a < r < f , (e) a < r = f , and (f) a < f < r.

146

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: Various forms of the super-ellipsoid surface f [22] with a = 12, b = 8 and

c = 5. ε1 = 1.0, and ε2 varies from 0.4 to 3.6 in steps of 0.4 from left to right, top to

bottom of the figure.
147

(a) (b)

(c)

Figure 5.18: Steiner’s surface in gold and the (a) K = −0.03, (b) K = 0, and (c) K =

+0.03 curvature surfaces in green/blue, superimposed in a single figure with the curvature

surfaces clipped to the xz plane.

148

Chapter 6

Conclusion

In our initial work on rendering non-manifold surfaces we presented a point-based

technique that improves the rendering of non-manifold implicit surfaces by using point

and gradient information to prune plotting nodes. The use of interval techniques also

guarantees that no parts of the surfaces are missed in the view volume and the combina-

tion of point and gradient sampling preserves this feature greatly enhancing the quality

of point-based rendering of implicit surfaces. This algorithm can successfully render

many non-manifold surfaces, and is much simpler than scan-line (i.e. polygon-based)

techniques. It can also render surfaces that can’t be rendered with traditional ray-casting

techniques due to difficulties in solving the ray-surface intersection equation.

We have explored a number of methods for anti-aliasing edges and contours of im-

plicitly defined surfaces. We give two new algorithms for anti-aliasing silhouette edges

and contour edges, one using the GPU to analyse edge regions, and the other using the

GPU to render multiple buffers which are combined into an anti-aliased image. We did

not find that an object space method based on counting the number of nodes projecting

149

onto a single pixel produced satisfactory results. We then turned our attention to image

space methods.

Originally we experimented with an edge blur method that anti-aliased pixels around

silhouette edges based on edge coverage in a 3× 3 kernel. Whilst this produced better

results than the object based approach it still suffered when the slope of the silhouette

edge was either steep or shallow. Next we looked at super-sample anti-aliasing, which

does provide good results, but suffers in that it takes up to four times longer to produce

the final result.

We then considered a more in-depth analysis of pixel runs in the image in an attempt

to improve anti-aliasing of the point-based images. The anti-aliasing resulting from the

adaptive pixel-tracing approach was superior to the edge blur method, in that it did not

suffer from systematic problems related to the slope of the surface edge.

Finally we developed an approach based on the functionality of current GPU’s. Our

jitter based method’s anti-aliasing performance was as good as the previous pixel-tracing

method but was simpler to implement and faster, as it runs completely on the GPU.

We then discussed contour anti-aliasing. We compared two methods for contour anti-

aliasing. The first method used a weighted average of the distance from the point,
−→
P ,

over the slab half-width to weight pixel’s colour. This worked well for the non-curved

contours we used. However adapting this method for use with curved contours, such as

occur when rendering lines of constant Gaussian curvature, was non-trivial and was not

150

implemented. For these surfaces we used the jitter based anti-aliasing methods described

previously for silhouette edges, to anti-alias the surface, as this method is simple and

provides good results.

Finally, (see Figure 2.19), we presented a number of anti-aliased images of non-

manifold implicit surfaces to demonstrate the improvements we achieved in rendering

these surfaces. The interested reader should compare this figure to the results shown in

Figure 12 of the work by Singh and Narayanan [52] on real-time ray-tracing of implicit

surfaces on the GPU. We have significantly improved the rendering of many of these im-

ages compared to this work. Our point-based method produces images comparable in

quality to ray-traced algorithms.

We then developed a point-based algorithm that reduces point overestimation when

using interval methods to drive octree spatial subdivision for implicit surface visualisa-

tion. We have also developed two new algorithms for rendering pixel contours on sur-

faces. One works in image space, the other in object space. Our previous algorithm for

anti-aliasing silhouette edges and contours in point-based surface images works well with

the new algorithms including with textures. We have illustrated the robustness of these

techniques by efficiently rendering a number of implicit surfaces with non-manifold fea-

tures such as rays, cusps, thin sections, ridges, points, and arbitrarily thin tubes. These

non-manifold features can be rendered whether they are aligned with the octree node

edges or not, see Figure 6.1 where two planes intersect along an arbitrary placed line in

3D. The methods are able to reduce the overestimation with any interval based spatial

151

subdivision algorithm without affecting its robustness. This is a major contribution of the

work.

Figure 6.1: Visualisation of two intersecting planes.

We have also rendered the intersection curves of an implicit surface with a series of

planes, and in principle this can be extended to rendering the intersection curves of arbi-

trary implicit surfaces. We are able to render the curve of self intersection of a surface by

exploiting the fact that surfaces are singular where they self intersect. As an application of

the object space contouring algorithm, we rendered the curve of zero Gaussian curvature

on Boy’s surface. We also illustrated procedural texturing on point-based surfaces, and

rendered Boy’s surface with a Gaussian curvature map. Finally we use our algorithm to

render the curvature surfaces of a number of non-manifold implicit surfaces.

A major advantage of our algorithms is that they are much simpler than scan-line

152

techniques and can successfully render many non-manifold surfaces. Their simplicity

lies in the fact that they only require surface interval function evaluations to generate

the points, and gradient expressions to shade them. Other advantages include their effi-

ciency in reducing overestimation, their ability to produce accurate high quality images

of non-manifold and singular surfaces, and the ease of performing texturing, including

contouring.

One problem with our algorithm still remains. The bohemian star surface in Figure

4.23 (b) shows some aliasing along the eight rays that emanate from the two surface parts

that intersect along the fold. The aliasing is more visible in low resolution images. It is

encouraging that these rays emerge and bend as clearly the algorithm can track 3D space

curves.

Advantages of our approach over ray-casting include that the surface geometry is uni-

formly sampled in function space, as opposed to screen-space. This allows us to capture

the surface once and then use the surface points (stored in a geometry buffer on the GPU)

to view the surface from any camera position without recalculating the surface points.

Our algorithm will be faster than ray-casting once the geometry has been calculated as

the pre-calculated points are simply rendered using a depth buffer approach. However, if

we zoom in on the surface, then the spacing between points will increase, and holes will

form on the image. This requires the surface to be re-sampled at a higher plot depth for

the holes to be filled.

153

Another advantage is that the hybrid points and polygon approach is not difficult to

implement. We avoid complexity by not attempting to polygonise non-manifold regions,

where many rare cases must be handled for successful polygonisation. Regions which

cannot be polygonsied are subdivided using points. By using points, non-manifold fea-

tures such as singular lines, thin tubes, cusps, thin sections, and lines of self intersection

are accurately rendered. This allows us to produce high quality images while reducing

the total geometry.

A limitation of using polygons is the reliability of the criteria for deciding if a node

should be polygonised. When “flat” cusps occur, such as in the super-ellipsoid surface,

our algorithm fails to correctly detect the non-manifold sections due to a failure of the

gradient test. As a result some polygons form across the cusps that are rendered with

incorrect shading. This causes the anomalous shading in Figure 5.17 (e) to (h) along the

cusp lines toward the centre where the cusps join.

Another issue is when there are too many non-manifold regions on a surface. Time

will be wasted subdividing space only to determine that it cannot be polygonised. This

detracts from the performance gains of rendering using polygons, a situation where using

the point-based algorithm on all nodes would result in a faster render.

In Table 6.1 we summarise the findings in this work. The robustness indicates how

well surface features are rendered for the range of implicit surfaces examined for the three

methods. Next we compare the time it takes to determine the surface geometry. Quality is

154

a measure of the combination of accuracy of the rendering, aliasing, and shading issues.

Finally we estimate the respective animation time and quality of the competing methods.

Table 6.1: Comparison of speed, robustness, quality and animation speed using ray-

casting, points/polygons and point splatting.

Robustness Geometry time Quality Animation Speed

Ray-casting high 100% high 100%

Pts/Poly very high 15-250% very high 20%

Splatting medium 10-300% medium 15%

The robustness of ray-tracing depends upon how well the interval function bounds the

surface. We found that even with a low epsilon ray-tracing had trouble producing sharp

intersection lines, such as on Boy’s surface in Figure 5.13. Our points/polygon method

handled this well, producing the sharp intersections. In this case splatting also performed

well. The main limitation to splatting is the size of the splats needed to give a good quality

render. If the splats are too small, we can end up needing just as many sampled points as

if we rendered using polygons/points.

While ray-casting may be faster for single static images it compares poorly when

multiple images are produced. Even for single images the performance comparison drops

when anti-aliasing is required. Multiple rays need to be fired to do this in ray-tracing

which is linear in time. For the points/polygons method, new views only need to be

155

rasterised on the GPU as part of the rendering pipeline. This makes anti-aliasing much

faster in our method. The quality of splatting is not as good, and results in a softer looking

image when compared with ray-casting and points/polygons.

Producing animations of surfaces can be done much faster with our method as we can

reuse the geometry. By using points and polygons we minimised the amount of geometry

needed to produce a frame and also kept the quality in the non-manifold regions as shown

in DVD Chapter 4. We found splatting problematic when the camera moved around and

showed parts of the surface at high inclines. We find the point/polygon method to be an

overall good solution to rendering a wide variety of manifold and non-manifold implicit

surfaces.

156

Chapter 7

Future Work

To improve the visualisation of the surfaces a number of useful techniques can be in-

corporated into the current techniques. For example, the modulation of surface colour by

functions has a number of applications. This can be used to visualise intrinsic properties

of surfaces such as curvature as contour lines or gradient maps. In addition, the contour

lines that result from intersecting a surface with the level surfaces of a scalar field can be

used to help visualise the surface. See Balsys and Suffern [54].

We intend to further study the curvature surfaces of Boy’s surface and the Klein bottle

because these are two families of interesting and complex surfaces. Some questions we

would like to answer are as follows. How do the different forms of the curvature surfaces

in Figure 4.27 metamorphose into each other as K varies? What are the internal structures

of the closed surfaces? The surfaces only intersect Boy’s surface when k ∈ [kmin,kmax].

What do the surfaces look like when k is outside this interval? We can ask similar ques-

tions about the curvature surfaces of the Klein bottle, and also, are these surfaces single

sided?

157

For each implicit surface f (x,y,z) = 0 we can define a double infinite series of curva-

ture surfaces with the following recurrence relation:

K(n+1)(x,y,z) = K[K(n)(x,y,z)] = k,

where n ∈ [0,∞),k ∈ℜ, and K(0)(x,y,z) = K(x,y,z). Similar series can be defined using

the mean curvature. We intend to explore these sequences for Boy’s surface, the Klein

bottle, and other implicit surfaces. Because the geometric and function complexity in-

crease exponentially with n, we may not be able to go very far. These surfaces will,

however, provide useful test surfaces for rendering algorithms by us and other people on

current and future hardware.

In the future devising an algorithm to allow for surface reflection and refraction is

a goal. We will use a standard ray-tracing approach for this with the points / polygons

algorithm being used to find the ray-surface intersection. Using this approach we should

be able, for instance, to generate partially transparent surfaces.

158

Bibliography

[1] D.J. Harbinson, R.J. Balsys, and K.G. Suffern. Point rendering of non-manifold sur-

faces with features. In Proceedings of the 5th international conference on Computer

graphics and interactive techniques in Australia and Southeast Asia, pages 47–53.

ACM New York, NY, USA, 2007.

[2] D.J. Harbinson, R.J. Balsys, and K.G. Suffern. Real-Time Antialiasing of Edges

and Contours of Point Rendered Implicit Surfaces. In Computer Graphics, Imaging

and Visualisation, 2008. CGIV’08. Fifth International Conference on, pages 38–46,

2008.

[3] V. Chandru, D. Dutta, and C.M. Hoffmann. On the geometry of dupin cyclides. The

Visual Computer, 5:277–290, 1989.

[4] R.J. Balsys and K.G. Suffern. Visualisation of implicit surfaces. Computers &

Graphics, 25(1):89–107, 2001.

[5] R.J. Balsys and K.G. Suffern. Ray tracing surfaces with contours. Computer Graph-

ics Forum, 22(4):743–752, 2003.

[6] M. Levoy and T. Whitted. The Use of Points as a Display Primitive. University of

North Carolina at Chapel Hill, 1985.

159

[7] B.T. Phong. Illumination for computer generated pictures. Communications of the

ACM, 18(6):311–317, 1975.

[8] M. Spivak. A comprehensive introduction to differential geometry. Publish or Per-

ish, 3:204, 1979.

[9] H.H. Chen and T.S. Huang. A survey of construction and manipulation of oc-

trees. Computer Vision, Graphics, and Image Processing, 43(3):409–431, Septem-

ber 1988.

[10] J. Beck, R. Farouki, and J. Hinds. Surface analysis methods. IEEE Comput. Graph.

Appl., 6(12):18–36, 1986.

[11] K.G. Suffern and R.J. Balsys. Rendering the intersections of implicit surfaces. IEEE

Computer Graphics And Applications, 23(5):70–77, 2003.

[12] J. Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers,

CA, 1997.

[13] J.D. Foley, A. Van Dam, S.K. Feiner, and J.F. Hughes. Computer graphics: princi-

ples and practice. Addison-Wesley, Reading, MA, (2 ed.) edition, 1990.

[14] H. Fuchs, Z.M. Kedem, and B.F. Naylor. On visible surface generation by a pri-

ori tree structures. In SIGGRAPH ’80: Proceedings of the 7th annual conference

on Computer graphics and interactive techniques, pages 124–133, New York, NY,

USA, 1980. ACM.

160

[15] H. Samet. The design and analysis of spatial data structures. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[16] J.L. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, 1975.

[17] R. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs.

[18] K.G. Suffern and E.D. Fackerell. Interval methods in computer graphics. Computers

& graphics, 15(3):331–340, 1991.

[19] J.M. Snyder. Generative modeling for computer graphics and CAD: symbolic shape

design using interval analysis. Academic Press Professional, Inc. San Diego, CA,

USA, 1992.

[20] N. Stolte and Z. Arie Kaufman. Parallel spatial enumeration of implicit surfaces

using interval arithmetic for octree generation and its direct visualization. In Implicit

Surfaces 98 Seattle, ACM Workshop, pages 81–87, 1998.

[21] R.J. Balsys, K.G. Suffern, and H. Jones. Point based rendering of non-manifold

surfaces. Computer Graphics Forum, 12(2):0–0, 2007.

[22] J. Luiz and J. Stolfi. Affine arithmetic and its applications to computer graphics.

Relation, 10(1.56):9–18, 1993.

[23] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface con-

struction algorithm. Computer Graphics, 21(4):163–169, 1987.

161

[24] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric

Design, 5(4):341–355, 1988.

[25] R.J. Balsys and K.G. Suffern. Adaptive polygonisation of non-manifold implicit

surfaces. In CGIV ’05: Proceedings of the International Conference on Computer

Graphics, Imaging and Visualization, pages 257–263, Washington, DC, USA, 2005.

IEEE Computer Society.

[26] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for Soft Objects. The

Visual Computer, 2(4):227–234, February 1986.

[27] M.F.W. Schmidt. Cutting cubes—visualizing implicit surfaces by adaptive polygo-

nization. The Visual Computer, 10(2):101–115, 1993.

[28] Y. Ohtake and A. Belyaev. Dual-primal mesh optimization for polygonized implicit

surfaces with sharp features. J. Comput. Inf. Sci. Eng., 2(4):277–284, 2002.

[29] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares. Efficient implementation of

marching cubes’ cases with topological guarantees. Journal of graphics tools,

8(2):1–15, 2003.

[30] Y. Ohtake, A. Belyaev, and A. Pasko. A.: Dynamic mesh optimization for polygo-

nized implicit surfaces with sharp features, the visual computer. The Visual Com-

puter, 19:115–126, 2002.

162

[31] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual grids.

In PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific

Conference, pages 70–76, Washington, DC, USA, 2004. IEEE Computer Society.

[32] T. Ju. Intersection-free contouring on an octree grid. In Proc. 14th Pacific Conf.

Computer Graphics and Applications. unknown, 2008.

[33] A. Paiva, H. Lopes, T. Lewiner, and L.H. de Figueiredo. Robust adaptive meshes for

implicit surfaces. Computer Graphics and Image Processing, 0:205–212, 2006.

[34] The stanford 3d scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.

[35] M. Gross. Getting to the point...? IEEE Computer Graphics and Applications,

26(5):96–99, 2006.

[36] A. Rockwood. A generalised scanning technique for display of parametrically de-

fined surfaces. IEEE Computer Graphics and Applications, 7(8):15–26, 1987.

[37] A.P. Witkin and P.S. Heckbert. Using particles to sample and control implicit sur-

faces. In SIGGRAPH ’94: Proceedings of the 21st annual conference on Computer

graphics and interactive techniques, pages 269–277, New York, NY, USA, 1994.

ACM.

[38] J.C. Hart, E. Bachta, W. Jarosz, and T. Fleury. Using particles to sample and con-

trol more complex implicit surfaces. In SIGGRAPH ’05: ACM SIGGRAPH 2005

Courses, page 269, New York, NY, USA, 2005. ACM.

163

[39] L.H. de Figueiredo and J Gomes. Sampling implicit objects with physically-based

particle systems. Computers & Graphics, 20(3):365–375, 1996.

[40] A. Rosch, M. Ruhl, and D. Saupe. Interactive visualization of implicit surfaces with

singularities. Computer Graphics Forum, 16(5):295–306, 1997.

[41] S. Tanaka, A. Morisaki, S. Nakata, Y. Fukuda, and H. Yamamoto. Sampling im-

plicit surfaces based on stochastic differential equations with converging constraint.

Computers And Graphics, 24(3):419–431, 2000.

[42] S. Tanaka, A. Shibata, H. Yamamoto, and H. Kotsuru. Generalized stochastic sam-

pling method for visualization and investigating of implicit surfaces. Computer

Graphics Forum, 20(3):359–367, 2001.

[43] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: surface elements as

rendering primitives. In Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 335–342. ACM Press/Addison-Wesley

Publishing Co. New York, NY, USA, 2000.

[44] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution point rendering system

for large meshes. In SIGGRAPH ’00: Proceedings of the 27th annual conference

on Computer graphics and interactive techniques, pages 343–352, New York, NY,

USA, 2000. ACM Press/Addison-Wesley Publishing Co.

164

[45] M. Zwicker, J. van Baar, and M. Gross. Surface splatting. In Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages

371–378. ACM New York, NY, USA, 2001.

[46] P.S. Heckbert. Fundamentals of texture mapping and image warping. Technical

report, Berkeley, UC, USA, 1989.

[47] M. Botsch, M. Spernat, and L. Kobbelt. Phong splatting. In Eurographics Sympo-

sium on Point- Based Graphics, pages 25–32, 2004.

[48] M. Zwicker, J. Räsänen, M. Botsch, C. Dachsbacher, and M. Pauly. Perspective ac-

curate splatting. In GI ’04: Proceedings of Graphics Interface 2004, pages 247–254,

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,

2004. Canadian Human-Computer Communications Society.

[49] C.S. Co, B. Hamann, and K.I. Joy. Iso-splatting: A point-based alternative to iso-

surface visualization. In In Proceedings of the Eleventh Pacific Conference on Com-

puter Graphics and Applications - Pacific Graphics 2003, pages 325–334, 2003.

[50] R.J. Balsys and K.G. Suffern. Point based rendering of implicit 4-dimensional sur-

faces. In CGIV ’07: Proceedings of the Computer Graphics, Imaging and Visuali-

sation, pages 31–40, Washington, DC, USA, 2007. IEEE Computer Society.

[51] R.J. Balsys, K.G. Suffern, and H. Jones. Point-based rendering of non-manifold

surfaces. Computer Graphics Forum, 27:63–72(10), 2008.

165

[52] J.M. Singh and P.J. Narayanan. Real-time ray-tracing of implicit surfaces

on the gpu. IEEE Transactions on Visualization and Computer Graphics,

99(IIIT/TR/2007/72):261–272, 2009.

[53] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. Fast ray tracing of arbitrary

implicit surfaces with interval and affine arithmetic. Computer Graphics Forum,

28:26–40, 2008.

[54] R.J. Balsys and K.G. Suffern. Point based rendering of non-manifold surfaces with

contours. In GRAPHITE ’04: Proceedings of the 2nd international conference on

Computer graphics and interactive techniques in Australasia and South East Asia,

pages 7–14, New York, NY, USA, 2004. ACM.

[55] T. Whitted. An improved illumination model for shaded display. Commun. ACM,

23(6):343–349, 1980.

[56] N. Stolte. Graphics using implicit surfaces with interval arithmetic based recursive

voxelization. In Proceedings Computer Graphics and Imaging, pages 200–205.

Honolulu, USA, 2003.

[57] J. Bloomenthal. Edge inference with applications to antialiasing. SIGGRAPH Com-

put. Graph., 17(3):157–162, 1983.

[58] D. Mitchell and P. Hanrahan. Illumination from curved reflectors. In SIGGRAPH

’92: Proceedings of the 19th annual conference on Computer graphics and interac-

tive techniques, pages 283–291, New York, NY, USA, 1992. ACM.

166

[59] H. Pottmann and K. Opitz. Curvature analysis and visualization for functions defined

on euclidean spaces or surfaces. Comput. Aided Geom. Des., 11(6):655–674, 1994.

[60] N. Guid, C. Oblonsek, and B. Zalik. Surface interrogation methods. Computers And

Graphics, 19(4):557–574, 1995.

[61] H. Jones, R.J. Balsys, and K.G. Suffern. Point based rendering of surfaces with

singularities. pages 267–268. ACM/GRAPHITE2003, 2003.

[62] Alvy Ray Smith. Digital paint systems: An anecdotal and historical overview. IEEE

Ann. Hist. Comput., 23:4–30, April 2001.

[63] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose Computation (Gpu Gems).

Addison-Wesley Professional, 2005.

[64] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming

Guide: The Official Guide to Learning OpenGL. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[65] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph.,

5:51–72, January 1986.

[66] E.R. Hansen. Global optimisation using interval analysis: the multidimensional

case. Numerische Mathematik, 34, 1980.

167

[67] H. Ratschek and J. Rokne. New computer methods for global optimization. Halsted

Press, New York, NY, USA, 1988.

[68] T.W. Sederberg and A.K. Zundel. Scan line display of algebraic surfaces. SIG-

GRAPH Comput. Graph., 23(3):147–156, 1989.

[69] J. Bloomenthal and K. Ferguson. Polygonization of non-manifold implicit surfaces.

In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graph-

ics and interactive techniques, pages 309–316, New York, NY, USA, 1995. ACM.

[70] J. Steiner. Gesammelte Werke. Prussian Academy of Sciences, 1971.

[71] L.H. de Figueiredo and J. Stolfi. Adaptive enumeration of implicit surfaces with

affine arithmetic. Computer Graphics Forum, 15:287–296, 1996.

[72] F. Klein. Uber Riemann’s Theorie der algebraischen Functionen und ihrer Integrale.

Teubner Leipzig, 1882.

[73] C. Jessop. Quartic surfaces with singular points. Cambridge University Press, jes16.

[74] R. Kusner and N. Schmitt. The spinor representation of minimal surfaces. GANG,

1995.

[75] A.H. Barr. Superquadratics and angle-preserving transformations. IEEE Computer

Graphics and Applications, 1:11–23, 1981.

[76] S.V. Chmutov. Examples of projective surfaces with many singularities. Journal of

Algebraic Geometry, 1:191–196, 1992.

168

[77] W. Barth. Two projective surfaces with many nodes admitting the symmetries of the

icosahedron. Journal of Algebraic Geometry, 5:173–186, 1996.

[78] F. Apéry. The Boy’s surface. Adv. Math., 61:185–266, 1986.

[79] R.J. Balsys and K.G. Suffern. Adaptive polygonisation of non-manifold implicit

surfaces. volume 24, pages 215–233, Washington, DC, USA, 2005.

[80] W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-accelerated adaptive ewa

volume splatting. In Proceedings of the conference on Visualization ’04, pages 67–

74. IEEE Computer Society, 2004.

[81] C. Loop and J. Blinn. Real-time GPU rendering of piecewise algebraic surfaces.

ACM Trans. Graph., 25(3):664–670, 2006.

169

