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Abstract— This paper introduces a novel concept for creating 

an ensemble of classifiers. The concept is based on generating 

ensemble of classifiers through clustering of data at multiple 

layers. The ensemble classifier model generates a set of 

alternative clustering of a data set at different layers by 

randomly initializing the clustering parameters and trains a set 

of base classifiers on the patterns at different clusters in different 

layers. A test pattern is classified by first finding the appropriate 

cluster at each layer and then using the corresponding base 

classifier. The decisions obtained at different layers are fused into 

a final verdict using majority voting. As the base classifiers are 

trained on overlapping patterns at different layers, the proposed 

approach achieves diversity among the individual classifiers. 

Identification of difficult–to–classify patterns through clustering 

and achievement of diversity through layering leads to better 

classification results as evidenced from the experimental results. 

 
Index Terms—ensemble classifiers, committee of experts, 

multiple classifier systems, cluster oriented ensemble classifier 

 

I. INTRODUCTION 

N an ensemble classifier approach, multiple base classifiers 

learn decision boundaries on the training patterns and their 

decisions on a test pattern are fused to reach the final 

classification verdict. Ensemble classifiers are also known as 

committee of classifiers, mixture of experts and multiple 

classifier systems. Many ensemble classifier generation 

methods are presented in the literature. The generation 

methods aim to produce the base classifiers in a way that they 

differ from each other in terms of the errors they make on 

identical patterns. This phenomenon is also known as diversity 

[1]–[5]. The fusion methods on the other hand explore ways to 

merge the decisions from the base classifiers into a final 

verdict. 

Ensemble of classifiers can be generated using clustering. 

The data can be partitioned into multiple non–overlapping 

segments using clustering. The segments may contain 

overlapping patterns from multiple classes and these patterns 

are difficult to classify otherwise. A classifier like a neural 

network can be trained on the patterns within a cluster at this 

stage to learn boundaries among the patterns. A number of 
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research efforts are observed in this direction in the literature 

[19]–[26] and we use the term clustered ensemble to refer to 

them. Disjoint segments of difficult–to–classify patterns are 

identified in this process and different base classifiers are well 

trained on different segments. Each pattern in this process, 

however, is involved in the training of only one classifier and 

the decision on a test pattern is dictated by only one base 

classifier. The objective of obtaining multiple decisions on a 

test pattern does not happen with clustered ensembles. In order 

to achieve diversity it is required that the training sets for the 

different classifiers are different and at the same time there is 

overlapping between the training sets so that identical patterns 

can be learned by multiple classifiers. 

In this regard we make use of the fact that the final content 

of the segments in some clustering algorithms depends on the 

initialization of clustering parameters (e.g. seeds in k–means 

clustering algorithm). In order to achieve diversity the data set 

can be independently partitioned n times using different initial 

clustering parameters and identical patterns will belong to n 

alternate clusters. We use the terminology n layers to refer to 

n alternative clusterings of the data set in this paper. The 

decision provided by the base classifiers trained on the n 

alternate clusters at n layers can be fused to obtain the final 

verdict on the pattern. With clustering we can generate the 

base classifiers and with layers we can achieve the diversity. 

Based on the above philosophy, in this paper we present a 

novel approach towards generating ensemble of classifiers 

using layered clustering. 

The research presented in this paper aims to: (i) develop a 

novel method for generating ensemble of classifiers using 

cluster layers, (ii) investigate the impact of number of layers 

on classification accuracy, (iii) investigate the impact of 

number of clusters at different number of layers on 

classification accuracy, and (iv) obtain a comparative analysis 

on how well the proposed approach performs compared to the 

commonly used approaches for ensemble classifier generation. 

The paper is organized as follows. Section II reviews 

existing approaches for ensemble classifier generation and 

decision fusion. Section III presents the proposed approach for 

generating ensemble classifiers. The experimental platform is 

presented in Section IV. Section V presents the experimental 

results and discussion. Finally, Section VI concludes the 

paper. 

II. RELATED WORKS 

Two major streams of works are observed in the literature 
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towards ensemble classifiers: construction of base classifiers 

and fusion methods for combining the decisions of the base 

classifiers. The fusion methods map the base classifier outputs 

into class decisions. The mapping can be done on discrete 

class decisions or continuous class confidence values 

produced by the base classifiers. The commonly used fusion 

methods [3] for combining class labels are majority voting, 

weighted majority voting, behaviour knowledge space, and 

Borda count. The fusion methods for combining continuous 

outputs include algebraic combiners including mean rule, 

weighted average, trimmed mean, min/max/median rule, 

product rule, and generalized mean. The base classifiers in the 

proposed approach produce discrete valued class decisions and 

we use majority voting based fusion method. As this paper 

presents an ensemble classifier construction method, we 

refrain from discussing the fusion methods further. Some 

recent papers on fusion methods are available in [6]–[9]. 

Ensemble classifiers can be constructed by using identical 

(e.g. using neural network only) as well as different base 

classifiers (e.g. using neural network, SVM and k–NN 

classifier) although the former is found more in practice.  

Ensemble classifier generation methods using identical 

classifiers can be broadly classified into four groups that are 

based on (i) manipulation of the training parameters, (ii) 

manipulation of the feature space, (iii) manipulation of the 

training data labels, and (iv) manipulation of the training 

examples. 

Ensemble classifiers can be created by manipulating the 

training parameters of the base classifiers. The authors in [11] 

propose a neural ensemble classifier where different network 

weights are used to initialise the base neural network learning 

process in order to diversify the base classifiers. The paper 

presented an approach to initialise neural networks that uses 

competitive learning to intelligently create networks that are 

originally located far from the origin of weight space. In [12] a 

set of neural networks with different initial weights were 

trained to classify land surface images obtained from the 

sensors housed in satellites setup by NASA. These methods 

are shown to achieve better generalisation. 

The second group of ensemble classifier generation 

methods that we discuss here generates base classifiers by 

manipulating the input feature space [10]. Thirty two neural 

networks were trained in [13] based on eight different subsets 

of 119 available input features to identify volcanoes. The 

resulting ensemble classifier was able to match the 

performance of human experts. Multiple decision trees were 

constructed systematically in [14] by pseudorandomly 

selecting subsets of components of the feature vector. Random 

subspace ensembles of SVMs were used in [15] for Bio–

molecular cancer classification and in [16] for classification of 

brain images obtained through functional magnetic resonance 

imaging (FMRI). As shown in [7] these random subspace 

ensemble classifiers perform relatively inferior to other 

ensemble classifiers. 

The third group of ensemble classifiers is constructed by 

manipulation of the output targets. In class switching 

ensemble [17] each base classifier is generated by switching 

the class labels of a fraction of training examples that are 

selected at random from the original training set. In Error 

Correcting Output Coding (ECOC) method [18] the learning 

problem is constructed by randomly partitioning the   classes 

into two subsets    and    and the input data is then relabeled 

such that the original classes in    and    are given new labels 

0 and 1 respectively. A classifier    learns the relabeled data 

and this process is repeated   times to obtain the classifiers 

  ,…,   . Given a new pattern   each classifier    predicts 

either 0 or 1. If   ( )   , then each class in    receives a 

vote. Otherwise each class in    receives a vote. On reception 

of votes from all the classifiers, the class with highest number 

of votes is selected as the prediction of the ensemble classifier.  

The fourth group of methods generates ensemble classifiers 

by manipulating the training examples. The base classifiers 

are trained on different subsets of the training examples. The 

methods differ in generation of the subsets and can be broadly 

classified into three subgroups: 

 Clustered Ensembles [19]–[24][47][48] where the subsets 

are generated by partitioning the training examples into 

non–overlapping clusters. The method identifies the 

difficult–to–classify patterns that tend to stay close in 

Euclidean space in a cluster and aims to build specialized 

base classifiers on each cluster. A pattern can belong to 

one cluster only and decision on a test pattern is governed 

by only one base classifier. A selection rather than fusion 

approach is followed for obtaining the ensemble classifier 

decision. The concept of diversity thus does not apply to 

these ensembles and clustered ensembles rely on the 

performance of each base classifier. These methods were 

actually designed to reduce the complexity of learning 

large data sets [19]. Some ensemble classifiers use soft 

clustering. The hierarchical mixture of experts method [27] 

divides the input space into nested regions and fits simple 

surfaces to the data that fall into these regions. The regions 

have soft boundaries, meaning that data points may lie 

simultaneously in multiple regions. The boundaries 

between regions are themselves simple parameterized 

surfaces that are adjusted by the learning algorithm. A tree 

with expert networks at the leaves and gating networks at 

the non–terminals forms the architecture of the hierarchical 

mixture of experts method. The gating networks provide 

the soft partitioning and the expert networks provide local 

regression surfaces within the partition. 

 Bootstrap aggregating or bagging [28] is one of the earliest 

ensemble classifier generation methods. Diversity in 

bagging is achieved by training the base classifiers on 

different subsets of the training data. The subsets are 

randomly drawn (with replacement) from the training set. 

The base classifiers are homogeneous in nature. The 

decisions of the individual classifiers are fused using 

majority voting i.e. the class chosen by most base 

classifiers is the final verdict of the ensemble classifier. 

Bagging is suitable for small data sets. For large data sets 

however the sampling scheme based on the bootstrap with 

replicates of the training set is infeasible. Bagging provides 

a mechanism to achieve diversity but does not mention any 
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mechanism to identify difficult–to–classify patterns that 

leaves space for improvement. There are a number of 

variants of bagging and aggregation approaches including 

random forests [29],large scale bagging [30], ordered 

aggregation [31], adaptive generation and aggregation 

approach [32], and fuzzy bagging [32][34]. 

 Boosting [35][36] creates data subsets for base classifier 

training by re-sampling the training examples and  

providing the most informative training example for each 

consecutive base classifier. Each of the training examples 

is assigned a weight that determines how well the instance 

was classified in the previous iteration. The patterns in the 

current subset of the training data that are badly classified 

are included in the training subset for the next iteration. 

This way the different base classifier errors are made 

uncorrelated. The subsets in boosting not necessarily 

contain examples that are difficult to classify when 

combined together. AdaBoost [37] is a more generalized 

version of boosting. A number of variants of boosting can 

be observed in the literature including weighted instance 

selection method [38], boosting recombined weak 

classifiers [39], Learn++ [40] and its variant Learn++.NC 

[41]. 

The proposed ensemble classifier generation method 

belongs to the last group and a careful scrutiny of these 

existing works reveals that (i) cluster ensembles identify 

overlapping patterns that are difficult to classify but do not 

provide any mechanism to incorporate diversity and (ii) 

bagging and boosting provide a mechanism to achieve 

diversity but do not set a direction for identifying clusters of 

patterns that deserve more attention than others. We are 

motivated to develop a layered cluster oriented approach for 

generating ensemble of classifiers that can identify clusters of 

difficult–to–classify patterns for improving accuracy and train 

base classifiers at different layers on overlapping clusters to 

improve diversity. The following sections detail the proposed 

ensemble classifier. 

III. PROPOSED APPROACH 

A. Philosophy 

The proposed approach for generating ensemble of classifiers 

is based on the concept of clustering. The primary task is to 

cluster the data set into multiple segments and engage a set of 

base classifiers to learn the decision boundaries among the 

patterns within each cluster. The process of clustering 

partitions a data set into segments that contains highly 

correlated data points. These correlated data points tend to 

stay very close geometrically. They are difficult to classify 

especially when patterns from multiple classes overlap within 

a cluster. When clustering is applied on labelled data sets (i.e. 

data where each pattern is associated with a class), the 

produced segments can be of two types – atomic and non–

atomic. An atomic cluster contains patterns that belong to the 

same class whereas a non–atomic cluster is composed of 

patterns from multiple classes. 

At the end of the clustering process, classifiers can be 

trained on the patterns of non–atomic clusters whereas the 

class label can be memorized for the atomic clusters. The class 

of a test pattern can be predicted by first finding the 

appropriate cluster based on its distance from the cluster 

centres and then using the corresponding classifier (for a non–

atomic cluster) or the class label (for an atomic cluster). A 

pattern can belong to one cluster only and the decision on a 

test example is based on the prediction of a single classifier. 

Clustering identifies difficult–to–classify patterns but the 

decision making process based on a single classifier prediction 

leaves space for improvement. 

The final composition of the partitions in some clustering 

algorithms depends on the initialization of clustering 

parameters. For example, the final contents of clusters in k–

means clustering algorithm depend on the initialization of the 

seeds (i.e. the initial state of the cluster centres) when k is not 

equal to the actual number of clusters. We can clarify this with 

an example. Consider two artificial data sets with two 

attributes as shown in Fig 1. Data set D1 is well clustered into 

three partitions whereas the number of actual clusters in D2 is 

more than three. Now let’s consider applying k–means 

clustering algorithm on these data sets with     with the 

cluster centres initialized randomly. The three independent 

outcomes of the clustering algorithm on these data sets are 

presented in Table I. Note that the patterns always belong to 

the same cluster for the data set D1. Patterns in D2 belong to 

different clusters as the k–means clustering algorithm is 

applied for a number of times. Identical situation will occur 

for data set D1 if k–means clustering algorithm is applied with 

   . Note that the change is at its minimum when k is equal 

to the actual number of clusters. 

 

 

 
(a) Data set D1 

 
(b) Data set D2 

 

Fig 1: Two artificial data sets. D1 is well clustered into three clusters whereas D2 is not. 
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Table I: Application of k–means clustering algorithms on artificial data sets D1 and D2 with k=3 

Data Set D1  k–means clustering 

x y  Run 1 Run  2 Run 3 

0.91667 0.91489  1 1 1 
0.875 0.89362  1 1 1 

1 0.81915  1 1 1 

0.96875 0.94681  1 1 1 
0.96875 1  1 1 1 

0.40625 0.57447  2 2 2 
0.54167 0.55319  2 2 2 

0.40625 0.51064  2 2 2 

0.45833 0.55319  2 2 2 
0.47917 0.39362  2 2 2 

0 0.021277  3 3 3 

0.15625 0  3 3 3 
0.083333 0.095745  3 3 3 

0 0.010638  3 3 3 

0.052083 0.12766  3 3 3 
 

Data Set D2  k–means clustering 

x y  Run 1 Run  2 Run 3 

0.73413 0.44099  3 2 1 
0 0.38846  1 3 2 

0.26687 0.6272  1 3 3 

0.015612 0.70219  1 3 3 
0.071102 0.75611  1 3 3 

0.86198 0.18678  2 2 1 
0.72191 0.66691  3 1 1 

0.31062 0.63765  1 3 3 

1 0.051871  2 2 1 
0.002845 0  1 3 2 

0.44307 0.45122  3 3 3 

0.38081 1  3 1 3 
0.79889 0.26333  2 2 1 

0.8312 0.55459  3 2 1 

0.16881 0.12466  1 3 2 
 

  

We aim to incorporate the above observation to improve the 

decision making process in ensemble of classifiers. The idea is 

to train multiple classifiers on similar patterns. At this point 

let’s introduce the concept of layers. A layer indicates the 

partitioning of the data set based on one set of seed 

parameters. Fig 2 demonstrates an example of a data set (Fig 

2(a)) divided into three clusters. Fig 2(b) presents layer one 

clustering where the data set in Fig 2(a) is divided into three 

clusters based on the initial values of the clustering parameters 

  . The clusters are indexed by the layer number followed by 

the cluster number. For example the second cluster at layer 

one is represented by     . An alternate clustering of the same 

data set into three segments is presented in Fig 2(c) based on 

another set of initial clustering parameters   . Note that 

patterns belong to different clusters at different layers (Fig 

2(d)). 

Base classifiers are now trained on the non–atomic clusters 

at different layers. The clusters at different layers overlap and 

the same pattern is included in the training of multiple 

classifiers at different layers. Different subsets of the data are 

used in the training of the base classifiers and thus diversity is 

achieved. A test pattern belongs to different clusters at 

different layers and thus gets decisions from different base 

classifiers that can be combined to obtain the ensemble 

classification verdict. We use this idea for generating the 

ensemble of classifiers. The novelty of the proposed approach 

lies in the use of a layered clustering approach towards 

achieving diversity among the base classifiers. Note that the 

proposed approach is significantly different from the clustered 

ensemble that fails to achieve diversity as a single base 

classifier always provides the decision on a pattern. 

 

Class 1

Class 2

 
(a) 

Class 1

Class 2

1,1 2,1

3,1
 

(b) 

Class 1

Class 2

1,2

2,2

3,2

 
(c) 

Class 1

Class 2

1,2

2,2

3,2

1,1

2,1

3,1
 

(d) 

Fig 2: Clustering labelled data: (a) Data set with patterns from two classes, (b) Layer one partitioning – Data set partitioned into three 

clusters where      is an atomic cluster whereas the other two are non–atomic clusters, (c) Layer two partitioning – Data set partitioned into 

three clusters where      is an atomic cluster whereas the other two are non–atomic clusters, (d) Layer one and layer two clusters 

superimposed indicating patterns belonging to alternate clusters. 
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B. Ensemble Classifier Model 

 

Let the training patterns in the data set be represented by 

  *(     ) (     )   ( | |  | |)+ where each pattern is 

described by a vector of n continuous valued features     

               and a class label    with 

   *                           +.  A layer is denoted by   

and the K clusters at layer   are denoted by                  

where            . 

A pattern in the training set can be considered as a point in 

the Euclidean space of dimension n. The objective of the 

clustering algorithm is to group data points that are 

geometrically close. Given two patterns (     ) and  (     ) in 

the training set a distance function d between them is defined 

in terms of their Euclidean distance as 

  (     )  √∑ (       )
  

   , (1) 

where                    and                    . 

Assuming a set of K clusters *                + at layer  , the 

associated cluster centres    *                + are 

initialized randomly and the clustering algorithm aims to 

minimize an objective function 

     ∑ ∑  (       )        
 
   , (2) 

for all the data points in the training set  . 

At the end of the clustering process at layer   each pattern 

(     ) belongs to a cluster      where      . At this 

point the clusters are separated into atomic and non–atomic 

clusters. A class distribution vector is defined for each cluster 

     in this regard as – 

      (  )  ∑  (     ) (     )     
, where (3) 

  (     )  {

         

          

  and (4) 

    *                           +. A cluster      is defined 

atomic if  

 
    (     )

∑      (  )   

  . (5) 

A cluster not satisfying (5) indicates the presence of 

patterns from multiple classes and is declared non–atomic. A 

class label is memorized for an atomic cluster      as 

                   (  )  (6) 

where    *                           +. 

A neural network      is trained at this stage on the patterns 

in each non–atomic cluster      to learn the decision 

boundaries. A test pattern   is classified by first finding the 

appropriate cluster at each layer. For this purpose, the distance 

between   and the centre of each cluster      is computed 

using (1) and the appropriate cluster at layer   is selected as  

  ̂               (      ). (7) 

If  ̂    is an atomic cluster the class label      learned using 

(6) is predicted at layer  . If  ̂    is a non–atomic cluster the 

corresponding neural network      trained on  ̂    is used to 

predict the class label      at layer  . Upon receiving the 

prediction set *    + from all the         layers the decisions 

are fused into a final verdict using the majority voting fusion 

rule. 

The learning and prediction phase of the proposed approach 

based on the above philosophy is presented in Fig 3 and Fig 4 

respectively. The training data set is clustered in N separate 

layers. At each layer the data is segmented into K clusters 

based on clustering parameters (e.g. initial state of the cluster 

centres). A cluster analyser then identifies atomic and non–

atomic clusters. The class label is recorded for atomic clusters. 

A neural network is trained on the patterns of a non–atomic 

cluster. During prediction the appropriate cluster for the test 

pattern is identified at each layer. If the selected cluster is 

atomic the pre–recorded class is predicted as     . If the cluster 

is non–atomic the corresponding neural network predicts the 

class     . Once the prediction is received from all the N layers 

the final verdict is obtained from *    + using the majority 

voting. 
 

Training Data

Clustering Layer L1

Data Matrix (L1,1)

Neural Network (L1,1)

Training

Neural Network (L1,M1)

Training
···

Neural Network 

Model (L1,1)

Neural Network 

Model (L1,M1)

Data Matrix (L1 ,K)···

K Cluster Centres 

at layer L1

Atomic/Non–atomic cluster Analyzer

Training Subset   

(L1,1)

Training Subset   

(L1,M1)

Training Subset  

(L1,M1+1)
Training Subset   

(L1,K)

Non–atomic clusters Atomic clusters

···
···

Class Calculator Class Calculator

Class Label 

Cluster (L1,M1+1)

Class Label 

Cluster (L1,K)

···

······

Clustering parameters γ1 Clustering Layer LN

Data Matrix (LN,1)

Neural Network (LN,1)

Training

Neural Network (LN,MN)

Training
···

Neural Network 

Model (LN,1)

Neural Network 

Model (LN,MN)

Data Matrix (LN ,K)···

K Cluster Centres 

at layer LN

Atomic/Non–atomic cluster Analyzer

Training Subset   

(LN,1)

Training Subset   

(LN,MN)

Training Subset  

(LN,MN+1)

Training Subset   

(LN,K)

Non–atomic clusters Atomic clusters

···
···

Class Calculator Class Calculator

Class Label 

Cluster (LN,MN+1)

Class Label 

Cluster (LN,K)

···

······

Clustering parameters γN···

···

··· ···

···

···

···

··· ···

 
Fig 3: Training method of the proposed ensemble classifier with LN cluster layers. 
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Fig 4: Prediction method of the proposed ensemble classifier with LN clusters layers. 

 

IV. EXPERIMENTAL PLATFORM 

We have conducted a number of experiments on benchmark 

data sets to evaluate the strength of the proposed ensemble 

classifier. We have compiled the datasets as used in 

contemporary research works [7][31][39] from the UCI 

Machine Learning Repository [42]. A summary of the data 

sets is presented in Table II. We used 10–fold cross validation 

approach for reporting the results for all the data sets. We used 

the k–means clustering algorithm for partitioning the data sets. 

A neural network (MLP) with two hidden layers and tan 

sigmoid activation function was used in the experiment. In the 

first layer five hidden units were used and in the second layer 

the number of hidden units is set equal to the number of 

classes. Training of the weights was achieved using 

backpropagation learning algorithm. The following parameter 

setting was used during the training process for all data sets – 

(a) Learning rate = 0.01, (b) Momentum = 0.4, (c) Epochs i.e. 

# of iterations = 25, and (d) RMS goal = 0.00001. Note that 

the main objective of the experiment was to find the impact of 

layered clustering and we thus restrict ourselves to best 

parameter settings on data sets found by trial–and–error. 

We used majority voting for decision fusion. Experiments 

are conducted by partitioning data sets in one to ten layers. At 

each layer, data is partitioned into one to ten clusters to 

observe the impact of clustering on classification accuracy. 

We have computed diversity of the proposed ensemble 

classifier using Kohavi–Wolpert (KW) variance [43]. Given a 

set of | | examples *(     ) (     )   ( | |  | |)+, KW 

variance for each layer   is computed as 

    
 

| |  
∑   (  )  (    (  ))
| |
    (8) 

where   is the number of layers, and     is set as 

   (  )  {

                                 

                                
 (9) 

The classification results of clustered ensemble [19], 

bagging [28], and boosting (AdaBoostM1) are compared with 

the proposed approach. The results of bagging and boosting 

are obtained using WEKA [44] with neural network (Multi 

Layer Perceptron) as the base classifier. A total of ten MLPs 

were used for both bagging and boosting. The results on the 

proposed ensemble classifier and clustered ensemble [19] 

were obtained using MATLAB 7.5.0. The data set is 

partitioned into one to ten clusters and the best performing 

number of clusters on the training set is used in the clustered 

ensemble method. The same implementation of 

backpropagation learning algorithm was used in both 

MATLAB and WEKA. The same partitions (i.e. folds) of the 

data were used in the MATLAB and WEKA executions. 

 

Table II: Data sets used in the experiments. 

Dataset # instances # attributes # classes Test process 

Breast Cancer 699 9 2 10–fold cv 

Diabetes 768 8 2 10–fold cv 

Ecoli 336 7 8 10–fold cv 
German 1000 20 2 10–fold cv 

Glass 214 10 7 10–fold cv 

Ionosphere 351 33 2 10–fold cv 
Iris 150 4 3 10–fold cv 

Liver 345 6 2 10–fold cv 

Parkinsons 197 23 2 10–fold cv 

Pendigits 10992 16 10 10–fold cv 

Satellite 6435 36 6 10–fold cv 

Segment 2310 19 7 10–fold cv 

Sonar 208 60 2 10–fold cv 

Spam 4601 57 2 10–fold cv 

Spect 267 23 2 10–fold cv 

Thyroid 215 5 3 10–fold cv 

Transfusion 748 5 2 10–fold cv 

Vehicle 946 18 4 10–fold cv 
Vowel 528 13 11 10–fold cv 

Wine 178 13 3 10–fold cv 
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V. RESULTS AND DISCUSSION 

The discussions with graphical representations in Section A, 

Section B, and Section C are confined to a subset of data sets 

in Table II. A discussion on accuracies and comparative 

analysis on all the data sets is presented in Section D. 

A. Impact of Clustering on Ensemble Classifier Learning 

Fig 5 represents the content of each cluster as the datasets are 

partitioned into one to ten clusters. No atomic clusters are 

produced for Diabetes and Vowel data set. This indicates the 

presence of strong overlapping clusters in these data sets. 

Relatively higher number of atomic clusters is observed for 

Breast Cancer, Parkinsons and Wine data set. The remaining 

data sets fall in between these two extremes. Only the class 

label needs to be remembered for atomic clusters and a higher 

number of atomic clusters in a dataset imply less learning 

complexity. 

Fig 6 represents the classification accuracy achieved on the 

data sets as they are partitioned into one to ten clusters. We 

considered only one cluster layer (         ) for this 

experiment. The graphs in Fig 6 demonstrate that the 

classification accuracies change significantly with the data set 

being partitioned at different number of clusters. In general it 

is beneficial to have higher number of clusters due to the fact 

that it identifies non–atomic clusters containing highly 

overlapping data points from different clusters. This provides 

the overlapping regions in the data set and the corresponding 

base classifier learns the patterns efficiently leading to higher 

classification accuracy. It can be observed that the 

classification accuracy degrades sometimes at higher number 

of clusters. One of the main reasons for performance 

degradation at some higher number of clusters is data 

imbalance. When the data set is partitioned, some clusters 

contain only one or two examples of a class and significant 

number of patterns from other classes. This sometimes leads 

to poor classification performance at higher number of 

clusters. At extremely high number of clusters there is 

insufficient data in each cluster for efficient classifier learning. 

As the number of clusters equals the number of training 

patterns, all the clusters become atomic. This results in 

memorization leading to poor generalization and classification 

accuracy. 

The impact on the change in accuracy with respect to 

clusters is more significant for some datasets like Vowel (4.93) 

and Ionosphere (1.80) than others. The impact is relatively 

smaller on some data sets including Wine (0.51), Diabetes 

(0.87), and Breast Cancer (0.23). In majority of the data sets 

the best classification accuracies are achieved when data is 

partitioned into more than one cluster. Note that in a clustered 

ensemble a pattern can belong to one cluster only and thus one 

classifier is trained on a pattern. Similarly only one decision is 

available on a test pattern. The objective of obtaining multiple 

decisions on a pattern is not achieved in clustered ensembles 

and thus leaves space for improvement. 
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Fig 5: Atomic and non–atomic clusters as the data sets are partitioned into one to ten clusters achieved using the proposed ensemble classifier 

with one cluster layer. The numbers are averaged over the ten folds for each data set. 
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Fig 6: Classification accuracies at different number of clusters achieved using the proposed ensemble classifier with one cluster layer. 
 

 

B. Impact of Layers on Ensemble Classifier Learning 

Fig 7 represents the class–cluster co-occurrence matrices 

obtained at different layers for some data sets namely Breast 

Cancer and Ionosphere. Note that the content of the clusters 

changes in all cases as the clustering parameters are initialized 

randomly at different layers. Identical patterns belonging to 

different clusters indicate dissimilar learning of the base 

classifiers making their errors non–correlated thus achieving 

diversity and inclusion of higher number of layers achieves 

higher diversity. This is evidenced from Fig 8 where change of 

KW variance is represented with respect to the change of 

number of layers for different data sets. Note that the trend 

lines show that addition of layers increases diversity in 

general. As a pattern belongs to different cluster and thus 

learned by different base classifier at different layer, the errors 

made are uncorrelated. Addition of layers thus produces more 

non–correlated base classifiers leading to higher diversity. 

Fig 9 represents the classification accuracies achieved as the 

data sets are partitioned at one to ten layers. The trend lines in 

majority of the graphs in Fig 9 show increasing classification 

accuracy at higher number of layers. A set of diverse base 

classifiers make dissimilar errors on identical patterns and 

increase the chance of obtaining the correct classification. This 

relationship between diversity and accuracy is evidenced from 

the trend of change of diversity and accuracy in Fig 8 and Fig 

9 respectively. It can be observed that increasing diversity 

implies increasing accuracy for majority of the data sets. The 

proposed ensemble classifier provides the provision to change 

diversity and thus accuracy with the number of layers. 

The variation of accuracy in Fig 9 with respect to the 

number of layers is high for Sonar (1.44), Ionosphere (1.06) 

and Vowel (1.49) data sets. Note that the variation was high 

too with respect to number of clusters for Ionosphere, and 

Vowel data sets. Overlapping clusters at different layers lead 

to better learning for these data sets. The Breast Cancer (0.06) 

and Wine (0.04) data sets are least affected by the change in 

number of layers. 

 
(a) Breast Cancer 

 
(b) Ionosphere 

Fig 7: Impact of layers on clustering with the proposed ensemble classifier. 
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Fig 8: A graph showing change in diversity (KW variance) as the number of layer changes for the different data sets in Table II. 
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Fig 9: Classification accuracies on training sets when clustered at one to ten layers and their decisions fused using majority voting. 
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C. Optimal Parameter Settings 

The performance of the proposed approach is constrained by 

two parameters – (i) number of clusters, and (ii) number of 

layers. The best parameter settings for the data sets are 

obtained based on the best training set accuracy of each fold in 

the data set. The optimal number of clusters and layers for 

each fold in the data sets and corresponding average training 

and test set accuracies are presented in Table III. In majority 

of the folds best training accuracy is obtained at more than one 

layer. This can be attributed to the fact that the inclusion of 

more cluster layers implies the learning of identical patterns 

by multiple classifiers and at the same time training sets for 

the base classifiers are significantly different. This leads to 

diversified base classifiers and better classification accuracy as 

shown in the previous section. In data sets like Satellite, 

Segment, Pendigits, Vehicle, and Vowel, the best accuracies 

are achieved at higher number of layers. Addition of layers do 

not improve the scenario that much for some data sets like 

Wine as majority folds achieve best training accuracy at one 

layer. This is evidenced from the fact that the impact of 

changing clusters and layers on Wine data set is 0.51 and 0.04 

respectively. This implies that the patterns from different 

classes in these data sets are relatively well separated. 

D.  Comparative Performance Analysis 

A comparison of the classification accuracies between the 

proposed approach and three commonly related ensemble 

classifier generation methods namely clustered ensemble [19], 

bagging [28], and boosting (AdaBoostM1) is provided in 

Table IV. The proposed approach performs better than 

clustered ensemble in nineteen out of twenty cases. The 

proposed approach obtains multiple decisions from a set of 

diverse base classifiers whereas the clustered ensemble [19] 

relies on the decision of an individual classifier. This accounts 

for the better performance of the proposed approach. 

The proposed approach outperforms boosting in sixteen out 

of twenty cases and outperforms bagging in thirteen out of 

twenty cases. The proposed approach identifies difficult–to–

classify overlapping patterns by clustering and can improve 

diversity by increasing the number of layers as evidenced in 

Fig 8. This is where the proposed approach takes the lead. 

Overall the proposed approach performs 4.27% better than 

clustered ensemble, 1.08% better than bagging and 1.73% 

better than boosting. The combination of clustering and 

layering leads to better performance and puts the proposed 

approach ahead of others. We justify this claim by conducting 

a two tailed Wilcoxon Signed Rank test [45][46] as presented 

in Table V. Note that the null hypothesis is rejected in all 

cases either at 0.01, 0.20, or 0.05 significance level indicating 

the fact that the proposed approach performs significantly 

better than the related ensemble classifiers. 

VI. CONCLUSION 

In this paper, we have proposed a novel approach for 

generating ensemble of classifiers and evaluated it on 

benchmark datasets from UCI machine learning repository. 

The proposed approach partitions the data set into multiple 

clusters at different layers and trains a set of base classifiers on 

the patterns within a cluster. The classification decision of a 

test pattern is achieved by finding the decision of the 

corresponding base classifier at each layer and fusing their 

decisions using majority voting. 

The experiments on twenty benchmark datasets have been 

conducted. The proposed approach has significantly improved 

the overall classification accuracy. Based on evidence from 

experiments, we draw the following conclusions (1) the 

classification accuracy has increased with the increase in 

number of layers. The impact of number of layers on 

classification accuracy is substantial; (2) the impact of number 

of clusters is also noteworthy as the best classification 

accuracy is achieved when data sets are segmented into two or 

more clusters in general; and (3) the proposed approach 

 

Table III: Optimal parameters based on the best performance of the training folds for the data sets in Table II. 

Data Set Layer/Cluster  no. Average 

Training 

Accuracy 

Average 

Test 

Accuracy 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Breast Cancer  9/4 4/5 2/2 2/8 1/3 1/5 10/5 1/5 4/6 5/8 98.89±0.21 97.37±1.67 

Diabetes 9/8 7/9 3/10 7/9 3/8 9/10 9/10 10/8 9/9 7/8 85.29±0.99 73.57±3.73 

Ecoli 9/10 10/8 10/9 6/10 9/7 10/9 10/9 7/9 9/10 10/9 96.32±0.63 90.25±4.00 
German 3/7 1/8 5/9 3/7 9/8 9/7 1/9 9/4 7/7 7/8 83.03±1.21 72.90±3.00 

Glass 6/3 4/2 3/4 6/1 1/1 6/1 10/3 4/4 5/3 9/1 100.0±0.00 96.82±2.20 

Ionosphere 10/7 5/6 9/2 6/2 5/1 7/4 7/2 9/1 7/3 7/1 98.92±0.55 90.83±4.73 
Iris 4/9 2/9 2/4 4/7 3/2 4/3 1/1 6/10 8/3 4/5 100.0±0.00 98.00±3.22 

Liver 10/5 3/10 10/10 8/4 8/9 8/6 6/8 6/5 10/7 6/6 86.44±1.35 67.62±6.78 

Parkinsons 7/10 7/10 9/9 7/9 9/8 5/10 10/6 10/5 5/8 9/7 99.60±0.38 96.06±2.72 
Pendigits 10/9 7/10 10/9 10/10 10/10 9/9 9/10 8/10 10/8 10/8 99.82±0.03 99.28±0.20 

Satellite 9/9 9/8 9/10 3/10 8/10 10/9 10/10 9/10 7/10 9/10 94.21±0.26 89.74±0.73 

Segment 9/10 9/9 6/6 10/10 9/10 7/9 9/10 9/10 9/10 9/9 99.60±0.11 97.88±1.20 
Sonar 9/4 9/7 7/8 7/8 10/3 9/10 8/8 9/10 4/6 8/4 99.73±0.68 90.85±4.76 

Spam 9/10 8/8 10/10 5/9 7/9 9/7 9/6 3/10 9/9 7/9 96.29±0.15 93.20±1.42 

Spect 10/6 9/10 9/10 10/9 6/7 6/9 1/6 7/8 6/10 2/9 90.64±0.92 78.98±6.24 
Thyroid 5/4 1/7 3/2 3/1 4/1 9/8 5/3 3/6 3/8 3/2 100.0±0.00 99.55±1.44 

Transfusion 10/10 2/8 8/8 9/8 3/9 8/7 6/8 2/8 3/9 4/8 82.37±0.49 79.70±1.60 

Vehicle 9/6 10/5 10/10 10/9 9/9 10/9 9/9 9/9 8/6 10/9 97.46±0.53 81.88±4.34 
Vowel 7/7 9/8 10/10 10/8 9/6 8/10 8/10 8/10 9/6 7/9 100.0±0.00 97.98±1.51 

Wine 1/7 1/2 2/1 1/4 3/5 1/3 3/2 1/4 1/7 1/2 100.0±0.00 100.0±0.00 
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performs 4.27%, 1.08% and 1.73% better than clustered 

ensemble, bagging and boosting. The improvement is 

significant in terms of classification accuracies as evidenced 

from the two–tailed Wilcoxon Signed Rank test. In our future 

research, we aim to investigate the optimality issues of the 

number of clusters and layers considering a broader range, the 

impact of variable clustering at different layers, and the impact 

of data imbalance at the clusters. 
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