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Abstract 

A purpose designed hand-held spectroscope ('Nirvana', Integrated 
Spectronics) was used to assess mango fruit pigmentation (flesh and skin) and 
flesh dry matter content.    Fruit dry matter content and flesh colour was 
assessed of fruit on the tree, and used as indices of fruit maturity.  Dry matter of 
fruit at harvest was also closely related to total soluble solids of fully ripe fruit, 
and thus eating quality.  The calibration model was robust across growing 
regions for dry matter (R > 0.96 with RMSECV < 0.6 % DM), but regional 
models were required for flesh colour. The units were used to: (i) non-invasively 
monitor fruit on tree at weekly intervals from stone hardening stage, allowing a 
gauge of time to harvest; (ii) describe variation in fruit maturity in relation to 
canopy architecture, and thus inform selective picking procedures; (iii) assess 
average fruit maturity across blocks, allowing maturity zoning across the 
production area; (iv) relate dry matter content of hard green fruit to later 
ripening behaviour and eating quality (Brix and flavour).   
 

INTRODUCTION 
Like other fruit, eating quality in mango (Mangifera indica) is determined by a 

number of factors, including volatiles content.  However, a base attribute is a 
minimum carbohydrate content. The mango fruit accumulates starch during 
maturation. Fruit dry matter (DM) content is an index of the total of soluble sugars 
and starch content of the fruit. The Australian domestic market generally requires a 
minimum 14% dry matter content at harvest (Meurant et al. 1999), a specification 
which sets a lower limit to the Brix of the ripened mango fruit.   

During ripening, starch converts to soluble sugars.  Thus fruit dry matter (DM) 
content (sum of starch and sugars) is constant during ripening, while sugar content 
increases and acid content decreases. Juice ºBrix is a measure of the total soluble 
sugars content (%TSS), with the %TSS of ripe fruit correlated to the DM content of 
fruit at harvest. Retailers may set specifications on either DM or TSS.  For example, 
Coles (www.coles.com.au) stipulate a quality standard of 14 %TSS for fruit received 
to store.  

  

Fruit must be physiologically mature at harvest in order to ripen properly.  
Fruit maturity in mango can be recognized by changes in external appearance (e.g. 

http://www.coles.com.au/


‘rounding’ of fruit shoulders).  However, it is difficult to recognise maturity on this 
basis in some cultivars (e.g. Calypso).  Destructive assessment of fruit maturity can be 
based on flesh colour or flesh DM.   Visible - short wavelength near infrared 
spectroscopy (vis-SWNIRS) is a candidate technology for assessment of these 
parameters in intact fruit.  

Near infrared spectroscopy (NIRS) is used successfully for rapid, non-
destructive assessment of a number of plant constituents (Clark et al. 2003; 
Lammertyn et al. 2001).  In Kensington Pride, it can be used to predict DM in just-
harvested fruit (Guthrie and Walsh 1997), %TSS in  ripe fruit, and %TSS of ripe fruit 
can be predicted in its green stages using spectra collected at harvest stage (Subedi et 
al., 2007).  Thus this technology offers potential for assessment of harvested fruit 
maturity and final eating quality, with potential application for in-field maturity 
assessment of fruit on the tree, and in-line assessment of final eating quality. 

In this exercise, we aim to utilise handheld Vis-SWNIRS equipment to 
monitor mango fruit maturity while on the tree. 

 

MATERIALS AND METHODS 
 ‘Nirvana’ hand held Vis-SWNIR spectrometers (Integrated Spectronics, 

Sydney, Australia) were used.   Units were benchmarked in terms of repeatability (on 
a white tile reference) and predictive performance of an apple Brix model, and were 
were used throughout the 2009/10 mango season in various mango production 
districts in Northern Territory and Queensland, Australia.  

The performance of the units was compared in a range of ambient conditions 
(constant fruit temp, varying ambient light and gun temperature).  Fruit were selected 
from inside and outside the canopy, and from both sides of the tree (population 1). Of 
these fruit, some were in full sun on the tree, and some were fully shaded fruit.  Both 
cheeks of the fruit were scanned.  Spectra were acquired while fruit were still on the 
tree (condition 1; during the mid/late morning).  The fruit was then harvested, de-
sapped and washed in a detergent solution (standard pack-house procedure).  The de-
sapped fruit were taken into the pack-house, with both fruit and handgun left on the 
bench for about 2 h to equilibrate in temperature (tested with IR thermometer).  
Spectra of the fruit were then acquired of the same positions on the fruit as before, but 
in pack-house shade (condition 2).  Spectra were then collected of the fruit in ambient 
sunlight (with fruit at pack-house temperature) (condition 3).  The unit was then 
allowed to heat for 2 h (to 38oC) under full sunlight before spectra were again 
acquired in ambient sunlight (condition 4).   

Spectra were also acquired of another five populations of fruit from different 
orchards and fruit maturation stages.  Fruit were selected from trees across the orchard 
to maximise variation in fruit DM.  A calibration model based on all data was used in 
prediction of DM of fruit remaining on tree and of harvested fruit following selective 
picking operations. 

The dry matter content of fruit was determined by taking a 27 mm diameter, 
10 mm deep core of fruit flesh from the equatorial part of each cheek of each fruit, 
after removing skin (1-2 mm thickness) using a potato peeler. Dry matter was 
determined by weight loss following 48 h drying in a forced air oven at 65 0C.  Flesh 
colour was assessed of the cut flesh surface using a Minolta Chromameter CR- 400 
(Hunter b). 



The Unscrambler v 9.1 (Camo, Oslo, Norway) was used for partial least 
squares regression (PLSR) calibration model development (prediction of a given 
attribute from spectral data).  Model performance was evaluated in terms of 
RMSECV and Rcv, and in terms of prediction of samples not included in the 
calibration set (RMSEP and Rp).  Cross-validation was performed using 20 segments 
with random selection of samples. 

 

RESULTS AND DISCUSSION 
Spectral Window Selection for DM and Flesh Colour 

The interactance geometry of the Nirvana spectrometer produced spectra with 
strong visible wavelength features, likely to be related to flesh carotenoid content and 
skin chlorophyll content, while the most notable feature in the SWNIR was the 970 
nm O-H (water) related peak (Fig. 1).  A ‘moving windows’ repetitive PLS approach 
(Guthrie et al., 2005) was used to define the optimum wavelength region for PLSR 
modelling.  For flesh DM the optimal wavelength region was 735-975 nm, while for 
flesh colour the optimal wavelength region was 501-1029 nm (data not shown). 

 
Calibration and Prediction Models 
   To test the performance of the unit under field conditions, spectra were 
collected of the same fruit under a range of environmental conditions. PLSR model 
performance on DM was always better than for internal flesh colour. However, model 
performance of flesh colour was also acceptable (RCV = 0.9).   

It was expected that model statistics would be similar for runs 2 and 4 (i.e. 
fruit at constant temperature, and packhouse shade), and that results from these runs 
would be superior to that of other runs (i.e. high and varying ambient light and 
temperature).  However, PLS regression statistics were not markedly different for 
spectra acquired under the various environmental conditions (Table 1).  

A model developed on populations 2 to 6 was used in prediction of population 
1 (all data and separate conditions).  Prediction results for population 1 spectra 
collected under different environmental conditions were similar in terms of R and bias 
(except for flesh colour for condition 4, for which bias was increased) (Table 2).  
Prediction of flesh colour was not as accurate as that for DM (e.g. lower R), but 
predictions were equally unaffected by the condition under which spectra were 
acquired. 

 
Modelling Ripe-stage TSS Using Green Stage Spectra  

Calibration model statistics for TSS of ripe stage fruit based on spectra 
recorded from hard green stage fruit were generally acceptable (RMSECV <0.76 
%TSS) (Table 3).   However, prediction of ripe stage TSS from hard green stage 
spectra was poor across independent populations (e.g. SDR<1) (Table 4).  This result 
is partly attributable to the low SD in these populations.   

 
Technology Application 



 Several modes of application of this technology are proposed: 

(i) using the technology to follow fruit maturation on tree  

In this application fruit from across an orchard was assessed using a systemic 
sampling method, with GPS derived location data saved along with predicted DM and 
FC.  An interpolated graphical display of DM or FC across the orchard was then 
generated using the ‘GeoMap’ feature of the Nirvana software to assist in the 
identification of areas of trees that have fruit of similar maturity (Fig. 2).  Subsequent 
management can then be targeted at these maturity zones. 

Such an exercise can assist in identifying the order in which different areas 
should be harvested.  Repeated measures over time can provide information on the 
rate of fruit maturation, and therefore guide a prediction of the time remaining to 
harvest 

 
(ii) using the technology to map fruit ‘maturity’ within tree 

Fruit maturity will vary within a given tree in relation to the age, canopy light 
conditions and aspect of the tree.  Flowering events on a given tree can be quite 
uniform for small canopy trees, and quite variable in trees with large, untrained 
canopies.  Assessment of this variation is essential to (a) provide information to 
picking crews, and (b) guide the design of sampling and harvesting strategies (e.g. 
strip picking versus selective picking).  

 
(iii) using the technology to check/train pickers 

In the orchards where selective picking is employed, the handheld 
spectroscopic systems can effectively be used to train harvesting crews (Fig. 4).  
Training given to pickers on the recognition of mature fruit is often temporary in 
effect, with percentage falling within a single day from a morning training event.  As 
an objective assessment system, use of the handheld units can assist in reinforcing the 
training message.   

 

(iv) using the technology to target selective markets 
Lot analysis of DM content in (hard green) fruit at harvest can be used to 

differentiate fruit with higher eating quality (higher TSS) when fully ripened, 
allowing for differential marketing. 

 

CONCLUSION 
The results indicate that information obtained from short wavelength spectral 

signature can utilised to monitor fruit maturity on the tree, in the packing shed and 
ripe stage eating quality of a fruit can be predicted in its green stages. Therefore the 
technology has a potential for use as a monitoring tool for a production specific 
harvest management. However, the equipment should be re-calibrated to cope with 
change in fruit composition due to change in production factors (e.g. husbandry and 
climate) and tree physiology. 
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Figure 1. Absorbance (top panel) and second derivative of absorbance spectra of 

intact mango fruit of a range of maturities collected using interactance optics 
(Nirvana unit). 



 

 
 

Figure 2. Example output from the Integrated Spectronics Nirvana ‘Yieldmap’ 
feature, with gray scale coding on sample location representing fruit DM (with darker 
colour representing higher DM).  

 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 3.  Dry matter distribution of fruit on the trees and in the harvest bin – 
useful information for reinforcing training of picking crews. 

 
 
 
 



 
Tables 
 
Table 1.  Calibration model statistics on mango dry matter (DM) and flesh colour 

(FC), assessed under various environmental conditions.  Spectra were acquired 
using a Nirvana spectrometer of a set of fruit (population 1), with spectra 
collected of fruit on the tree (Condition 1); of fruit in packhouse shade 
(Condition 2), of fruit at packhouse temperature but in ambient sunlight 
(Condition 3) and of fruit allowed to heat to 38oC and with spectra collected in 
full sunlight (Condition 4).  The mean and standard deviation of fruit DM and 
FC was 16.2 + 2.78 and 5.33 + 1.74 %, respectively.  

Rcv = correlation coefficient of cross validation, RMSECV = root mean square error 
of cross validation. 

 

    

Attribute  Condition n 
# 

Factors RCV RMSECV 

% DM 1 100 7 0.95 0.89 

 2 100 7 0.95 0.85 

 3 100 7 0.96 0.76 

 4 100 6 0.94 0.83 

  1-4 400 7 0.96 0.78 

FC  1 100 4 0.90 0.81 

 2 100 3 0.90 0.79 

 3 100 4 0.88 0.80 

 4 100 4 0.88 0.78 

  1-4 400 6 0.90 0.76 



Table 2.  Prediction performance on mango fruit dry matter and internal flesh colour 
assessed using models developed on data of populations 2 to 6 (calibration set), in 
prediction of population 1 (subset conditions, and all data) (see Table 1). The 
calibration set possessed a mean and standard deviation (SD) of 15.84 + 1.85 and 5.67 
+ 1.28 for DM and FC, respectively, with a Rcv of 0.92 and RMSECV of 0.75, with n 
= 1319, for DM, and a Rcv of 0.81 and RMSECV of 0.72, with n = 1113, for DM and 
FC, respectively 

 

Attribute  Pred set Population Rp RMSEP SDR Bias 

        

% DM  Con. 1 100 0.95 0.95 2.93 0.84 

  Con. 2 100 0.95 0.86 3.23 0.86 

  Con. 3 100 0.95 0.87 3.20 0.86 

  Con. 4 100 0.94 0.83 3.35 0.90 

    Con. 1-4 400 0.95 0.89 3.12 0.85 

        

FC  Con. 1 100 0.85 1.13 1.54 0.39 

  Con. 2 100 0.84 1.25 1.39 0.30 

  Con. 3 100 0.84 1.11 1.60 0.16 

  Con. 4 100 0.85 1.35 1.29 0.82 

    Con. 1-4 400 0.82 1.22 1.43 0.34 

Rp = Correlation coefficient of prediction, RMSEP = root mean square error of 
prediction, SDR = SD/RMSEP. 

 



 

Table 3.  Partial least squares regression (PLSR)  calibration model statistics, for 
models based on second derivative of absorbance spectra from fruit harvested 
at hard green stage, against the attribute of % total soluble solids content of the 
same fruit when fully ripened.   

 

 

Population Sample 
# Mean SD # Factor Rcv RMSECV 

       

7 188 13.48 0.96 7 0.86 0.49 

8 165 11.67 0.77 7 0.85 0.40 

9 165 12.74 1.17 8 0.90 0.50 



Table 4. PLSR prediction model statistics for Brix of ripe stage fruit using spectra of 
hard green stage fruit using a handheld Nirvana unit.  

 

Population Sample # Mean  SD #Factor R RMSEP SDR  Bias 

7 188 13.48 0.96 5 0.83 1.06 0.72 0.92 

8 165 11.67 0.77 5 0.74 0.63 0.66 0.33 

9 165 12.74 1.17 7 0.73 0.86 0.59 0.68 

 SD = standard deviation, Factors = number of principle components, R = correlation 
coefficient, RMSECV = root mean square error of cross validation, SDR = 
SD/RMSECV. 
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