# TWP Timber and Wood Products Research Centre

# CSR I-BEAMS



R.W.CLINCH, AIWSc., MIEAust. M.STEEDMAN, Dip.CE. TWP REPORT NO. 166 APRIL 1991

620.124

. 24

ROCKHAMPTON, AUSTRALIA 4700. TELEPHONE (079) 361177 TELEX AA49176

#### SUMMARY

I-Beams made from Slash Pine flanges and either hardboard or particleboard webs were fabricated and evaluated for flexural stiffness. Prior to fabrication the web and flange materials were evaluated for flexural stiffness. In addition the rupture strength in tension of the web materials was determined.

From these data a mathematical model was developed for the stiffness of a composite I-Beam. It varied from the classical rigidity model which is based on the product of stiffness and second moment of area (EI).

The effect of holes in the web was evaluated. The essential ingredient is the magnitude of shear force at the point at which a hole can be made. Assuming a uniformly distributed load on the beam, a large circular hole can be drilled where the shear force is zero. Smaller holes can be drilled in proportion to the increase in shear force.

### TABLE OF CONTENTS

| Section | Title |                                        | Page |
|---------|-------|----------------------------------------|------|
| 1.0     | INTI  | RODUCTION                              | 1    |
| 2.0     | СНА   | 1                                      |      |
|         | 2.1   | Flexure Stiffness of Particleboard     | 1    |
|         | 2.2   | Rupture Strength of Particleboard      | 1    |
|         | 2.3   | Flexural Stiffness of Hardboard        | 1    |
|         | 2.4   | Rupture Strength of Hardboard          | 1    |
| 3.0     | СНА   | RACTERISATION OF FLANGE MATERIAL       | 2    |
|         | 3.1   | Flexural Stiffness of Flanges (Flat)   | 2    |
|         | 3.2   | Flexural Stiffness of Flanges (High)   | 2    |
| 4.0     | FLEX  | XURAL PROPERTIES OF I-BEAMS            | 2    |
|         | 4.1   | Particleboard Webbed Beams             | 2    |
|         | 4.2   | Hardboard Webbed Beams                 | 2    |
|         | 4.3   | Hardboard Webbed Beam No. 1 with Holes | 3    |
| 5.0     | МАЛ   | THEMATICAL MODEL OF I-BEAMS            | 3    |
| 6.0     | CON   | ICLUSION                               | 3    |
| 7.0     | ACK   | NOWLEDGEMENTS                          | 4    |
| 8.0     | REF   | ERENCES                                | 4    |
| 9.0     | TAB   | BLES                                   | 5    |
| 10.0    | PLA   | TES                                    | 28   |
| 11.0    | APP   | ENDICES                                | 29   |

#### 1.0 INTRODUCTION

This study on wood composite I-Beams is an advancement on work previously conducted by Clinch (1987) and Clinch and Steedman (1989).

In this study, I-Beams were to be fabricated from Slash Pine flanges and either hardboard or particleboard webs. The I-Beams were to be evaluated for flexural stiffness. This work is somewhat parallel to that carried out by Tang (1990), however, the I-Beams in the Tang studies were fabricated by Truss-Joist Inc., (USA).

Prior to fabrication, both the web and flange materials were to be evaluated for flexural stiffness. In addition, the rupture strength in tension of the web materials was to be determined. This property is assumed to be the best indicator of strength of the web material in determining Modulus of Rupture of the composite I-Beam (Leichti et al, 1990).

From these data a mathematical model was to be developed for the stiffness of a composite I-Beam. The classical rigidity model for composite beams is based on the sums of products of stiffness and second moment of area (EI), of each component.

In addition the effect of holes in the web was to be evaluated. The major factor in the placement of holes in a web is the shear carried by the web. In I-Beams, the webs are designed to carry all the shear force, while the flanges are designed to provide all the moment resistance. (McLain, 1990).

#### 2.0 CHARACTERISATION OF WEB MATERIAL

Prior to fabrication of the beams, the web materials, that is, particleboard and hardboard (Weatherflex), were evaluated for stiffness and rupture strength.

#### 2.1 Flexural Stiffness of Particleboard

The particleboard selected for the web material was ordinary grade and 12 mm thick. Specimens 330 mm long by 100 mm wide were selected from strips taken along the lengthwise edges (E) of boards and along the centre (C).

Specimens were tested for flexure in an Instron Universal Testing Machine in the 0.5 kN range, using a 300 mm span. Results are shown in Table I. The mean value of MOE was 4,246 MPa with a c.v. of 9.4%. Moisture content was 10%.

#### 2.2 Rupture Strength of Particleboard

Dog-bone specimens of a standard profile were cut from the specimens used in the flexural test. Specimens were tested in tension to failure in the Instron Machine in the 5.0 kN range. Results are shown in Table II. The mean stress at failure was 13 MPa with a c.v. of 14%. A t-test was made of results, which showed the strength of the "centre" specimens were not different from that of the "edge" specimens.

#### 2.3 Flexural Stiffness of Hardboard

In a manner similar to the testing of particleboard, the flexural stiffness of hardboard specimens was determined. Results are shown in Table III. The mean MoE was 4,440 MPa with a c.v. of 12.4%.

#### 2.4 Rupture Strength of Hardboard

As with the particleboard, "dog-bone" specimens were cut from the specimens on completion of flexural testing, and tested in tension to failure. Results are shown in Table IV.

#### 3.0 CHARACTERISATION OF FLANGE MATERIAL

The flange material was specially selected F11 Slash Pine which had been machine stress graded. Its visual appearance was consistent with Structural Grade 1.

#### 3.1 Flexural Stiffness of Flanges (Flat)

The flange material, which was to be utilised in beams in the flat direction, was evaluated in flexure using an in-grade procedure where the span in the 4-point loading system was 18h, i.e.,  $18 \times 45 \text{ mm}$  or 810 mm. Results for the 70 mm x 45 mm specimens are shown in Table V. The mean MoE was 16,908 MPa with a c.v. of 9.4%.

Results for evaluation of the 90 mm x 45 mm specimens are shown in Table VI. The mean MoE was 16,531 MPa with a c.v. of 8.7%.

Analyses were made of the in-grade stiffness of both sets of specimens in the flat direction as shown in Appendix 1 and Appendix 2. The 70 mm x 45 mm specimens were consistent with an F-grade of F22, while the 90 mm x 45 mm specimens were consistent with an F-grade of F22 or better.

#### 3.2 Flexural Stiffness of Flanges (High)

Although the flange specimens were to be used in the flat direction, flexural evaluations were conducted in the "high" direction for both the 70 mm x 45 mm and 90 mm x 45 mm sticks.

Results are shown in Table VII and Table VIII. Specimens were consistent with an F-grade far in excess of F11, and more likely F17 to F22.

#### 4.0 FLEXURAL PROPERTIES OF I-BEAMS

#### 4.1 Particleboard Webbed Beams

Three particleboard webbed I-beams were made up from the 70 mm x 45 mm flanges "flat", with the 12 mm particleboard web embedded 12 mm deep into each flange.

A resorcinol formaldehyde adhesive was used to effect the bond. The overall height of each beam was 170 mm, with the distance between flanges being 80 mm. These beams were made up in ascending order of stiffness and strength of their components.

They were tested in flexure with 4-point loading and gave results shown in Tables IX, X and XI. The MoE of the beams were (1P) 16,600 MPa, (2P) 16,100 MPa and (3P) 16,400 MPa respectively.

#### 4.2 Hardboard Webbed Beams

In a manner similar to that for the particleboard beams, 3 beams with 9.5 mm hardboard webs were made up and tested in flexure. Results are shown in Tables XII, XIII and XIV.

The MoE of the beams were (1H) 15,800 MPa, (2H) 16,000 MPa, and (3H) 17,400 MPa.

#### 4.3 Hardboard Webbed Beam No. 1 With Holes

The Hardboard webbed beam (H1) was progressively drilled with holes and loaded. Tables XV through XXII show the change in MoE as holes were added, and finally a slot was cut out of the centre of the web. Without holes the value of MoE was 15,800 MPa as in Plate 1, with the central zone slotted out and 2-80 mm holes plus 2-60 mm holes as in Plate 2, the MoE had reduced to 14,500 MPa.

#### 5.0 MATHEMATICAL MODEL OF I–BEAMS

Using the data from the six beams, the average values of MoE for the beams, MoE for the flange material and MoE for the web material, as well as average second moment of area, as shown in Table XXIII, a mathematical model was developed.

The classical rigidity model that:

 $(EI)_{beam} = (EI)_{flanges} + (EI)_{web}$ 

was tested using the data in Table XXIV.

| i.e. | $(16,400 \ge 2.58 \ge 10^7)$ | $= (16,100 \text{ x } 2.46 \text{ x } 10^7) + (4,150 \text{ x } 0.04 \text{ x } 10^7)$ |
|------|------------------------------|----------------------------------------------------------------------------------------|
|      | 42,312 x 10 <sup>7</sup>     | $= 39,606 \ge 10^7 + 166 \ge 10^7$                                                     |
|      | 42,300                       | $\neq 40,000 + 200$                                                                    |

A better relationship for the data was:

$$E_{\text{beam}} = E_{\text{flanges}} + E_{\text{web}} * 17.5 \left[ \left( \frac{t \text{ w}}{B} \right) \left( \frac{E \text{ w}}{E f} \right) \left( \frac{h}{H} \right)^3 \right]$$
  
i.e. 16,400 = 16,100 + 4,150 \* 17.5  $\left[ \frac{2.78}{70} \left( \frac{80}{170} \right)^3 \right]$ 

16,400 = 16,100 + 300

Note that 
$$\frac{\text{tw x Ew}}{\text{E}_{f}}$$
 transforms the web thickness to 2.78 mm

The relationship holds reasonably well for extrapolated beam depths, however this needs to be tested further.

#### 6.0 CONCLUSION

The combined stiffnesses of the composite I-beams investigated in this study do not follow the classical rigidity model. However, a relationship was developed which is essentially that:

 $E_{beam} = E_{flanges} + E_{web} * I_{factor}$ 

This needs to be investigated further.

The placement of holes in webs is governed by the shear force pattern of a beam loaded with a uniformly distributed load. Where the shear force is zero, in the centre of a beam, large holes can be drilled, or even slotted, with no drastic effect on the stiffness of a beam. In a graduated way, smaller holes can be drilled as the shear force increases towards the end of a beam.

#### 7.0 ACKNOWLEDGEMENTS

The authors wish to acknowledge the support for this project by Dr Alan Halligan, Technology Controller, CSR Wood Panels Groups, under TWP contract T74-564. Also advice from Mr Roger Thomas and technical help from Mr Paul Furber, both active in TWP, is appreciated.

#### 8.0 **REFERENCES**

Clinch, R.W., (1987), Bending Tests on Particleboard and Plywood Webbed I-Beams for APRI, TWP Report No. 144, Capricornia Institute, Rockhampton.

Clinch, R.W., and Steedman, M. (1989), Tests on Prototype Particleboard Webbed I-Beams, TWP Report No. 156, Capricornia Institute, Rockhampton.

Leichti, R.J., Falk, R.H., and Laufenberg, T.L., (1989) Prefabricated Wood Composite I-Beams: A Literature Review, Wood and Fiber Science, Vol.22, No.1, pages 62-79.

McLain, T.E., (1990) How I-Joists Work, Wood Design Focus, Vol.1, No.1., pages 18-19.

Tang, R.C., (1990), Composite Wood I-Joist Research at Auburn University, Wood Design Focus, Vol.1, No.1., pages 7-8.

|      |       | TABLE I      |       | P'BOARD      | DATA  |
|------|-------|--------------|-------|--------------|-------|
|      |       |              |       | Flexure Test |       |
| SPEC | Δ     | <b>P</b> / Δ | 1     | Density p    | E     |
|      | chart | N/mm         | mm4   | kg/m3        | Mpa   |
| C1   | 4.2   | 89.29        | 14328 | 728          | 3505  |
| C2   | 3.5   | 107.14       | 14328 | 765          | 4206  |
| C3   | 3.2   | 117.19       | 14400 | 774          | 4578  |
| C4   | 3.2   | 117.19       | 14400 | 790          | 4578  |
| C5   | 3.0   | 125.00       | 14400 | 785          | 4883  |
| C6   | 3.5   | 107.14       | 14400 | 778          | 4185  |
| C7   | 3.8   | 98.68        | 14328 | 745          | 3874  |
| E1   | 3.8   | 98.68        | 14328 | 752          | 3874  |
| E2   | 3.5   | 107.14       | 14400 | 777          | 4185  |
| E3   | 3.5   | 107.14       | 14472 | 766          | 4164  |
| E4   | 3.0   | 125.00       | 14544 | 802          | 4834  |
| E5   | 3.2   | 117.19       | 14472 | 781          | 4555  |
| E6   | 3.5   | 107.14       | 14472 | 790          | 4164  |
| E7   | 3.8   | 98.68        | 14400 | 756          | 3855  |
|      |       |              | MEAN  | 771          | 4246  |
|      |       |              | StDev | 20           | 399   |
|      |       |              | c.v.  | 0.026        | 0.094 |
|      |       |              | 5%ile | 738          | 3588  |

|      |       | TABLE II  |           | PART'BOARD   | D |
|------|-------|-----------|-----------|--------------|---|
|      |       |           |           | Tensile Test |   |
| SPEC | Width | Thickness | Fail Load | Fail Stress  |   |
|      | mm    | mm        | kN        | MPa          |   |
| C1   | 20.6  | 12        | 2.60      | 10.52        |   |
| C2   | 20.2  | 12        | 3.25      | 13.41        |   |
| C3   | 20.8  | 12        | 3.25      | 13.02        |   |
| C4   | 20.5  | 12        | 3.33      | 13.54        |   |
| C5   | 20.8  | 12        | 3.58      | 14.34        |   |
| C6   | 20.6  | 12        | 3.25      | 13.15        |   |
| C7   | 21.1  | 12        | 2.93      | 11.57        |   |
| E1   | 24.6  | 12        | 2.53      | 8.57         |   |
| E2   | 20.1  | 12        | 3.46      | 14.34        |   |
| E3   | 20.6  | 12        | 3.15      | 12.74        |   |
| E4   | 20.8  | 12        | 3.92      | 15.71        |   |
| E5   | 21.0  | 12        | 3.53      | 14.01        |   |
| E6   | 20.2  | 12        | 3.54      | 14.60        |   |
| E7   | 20.5  | 12        | 3.03      | 12.32        |   |

| MEAN  | 12.99 |
|-------|-------|
| StDev | 1.83  |
| c.v.  | 0.141 |
| 5%ile | 9.98  |

.

ΑΤΑ

|      |       | TABLE III |       | HARDBOARD    | DATA  |
|------|-------|-----------|-------|--------------|-------|
|      |       |           |       | Flexure Test |       |
| SPEC | Δ     | Ρ/ Δ      | 1     | Density p    | Е     |
|      | chart | N/mm      | mm4   | kg/m3        | Mpa   |
| 1A   | 8.9   | 42.13     | 6859  | 986          | 3455  |
| 1B   | 8.3   | 45.18     | 6859  | 997          | 3705  |
| 1C   | 9.0   | 41.67     | 6895  | 996          | 3399  |
| 1D   | 8.1   | 46.30     | 6895  | 999          | 3777  |
| 2A   | 6.5   | 57.69     | 6859  | 1003         | 4731  |
| 2B   | 7.0   | 53.57     | 6859  | 994          | 4393  |
| 2C   | 6.7   | 55.97     | 6895  | 1009         | 4566  |
| 2D   | 7.0   | 53.57     | 6930  | 1003         | 4348  |
| ЗA   | 6.3   | 59.52     | 6930  | 1050         | 4831  |
| 3B   | 6.2   | 60.48     | 6930  | 1048         | 4909  |
| 3C   | 5.7   | 65.79     | 6859  | 1045         | 5395  |
| 3D   | 6.0   | 62.50     | 6823  | 1050         | 5152  |
| 4A   | 6.3   | 59.52     | 6930  | 1031         | 4831  |
| 4B   | 5.8   | 64.66     | 6930  | 1031         | 5248  |
| 4C   | 6.0   | 62.50     | 6859  | 1034         | 5126  |
| 4D   | 6.5   | 57.69     | 6859  | 1031         | 4731  |
| 5A   | 7.6   | 49.34     | 6895  | 974          | 4026  |
| 5B   | 7.5   | 50.00     | 6895  | 962          | 4079  |
| 5C   | 7.4   | 50.68     | 6859  | 981          | 4156  |
| 5D   | 7.8   | 48.08     | 6859  | 992          | 3943  |
| 6A   | 6.8   | 55.15     | 6930  | 1021         | 4476  |
| 6B   | 7.0   | 53.57     | 6930  | 1024         | 4348  |
| 6C   | 6.8   | 55.15     | 6859  | 1033         | 4523  |
| 6D   | 6.7   | 55.97     | 6788  | 1042         | 4638  |
|      |       |           | MEAN  | 1014         | 4449  |
|      |       |           | StDev | 26           | 551   |
|      |       |           | c.v.  | 0.026        | 0.124 |
|      |       |           | 5%ile | 971          | 3541  |

|      |       | TABLE IV  |           | HARDBOARD   | DATA |
|------|-------|-----------|-----------|-------------|------|
| SPEC | Width | Thickness | Fail Load | Fail Stress |      |
|      | mm    | mm        | kN        | MPa         |      |
| 1A   | 19.9  | 9.5       | 3.52      | 18.62       |      |
| 1B   | 20.0  | 9.5       | 3.72      | 19.58       |      |
| 1C   | 20.1  | 9.5       | 3.65      | 19.11       |      |
| 1D   | 20.4  | 9.5       | 3.83      | 19.76       |      |
| 2A   | 20.2  | 9.5       | 4.20      | 21.89       |      |
| 2B   | 20.4  | 9.5       | 4.16      | 21.47       |      |
| 2C   | 19.7  | 9.5       | 4.26      | 22.76       |      |
| 2D   | 19.8  | 9.5       | 4.17      | 22.17       |      |
| ЗА   | 20.3  | 9.5       | 4.63      | 24.01       |      |
| 3B   | 20.2  | 9.5       | 4.70      | 24.49       |      |
| ЗC   | 21.0  | 9.5       | 4.97      | 24.91       |      |
| 3D   | 20.2  | 9.5       | 4.60      | 23.97       |      |
| 4A   | 20.4  | 9.5       | 4.92      | 25.39       |      |
| 4B   | 20.2  | 9.5       | 5.10      | 26.58       |      |
| 4C   | 20.2  | 9.5       | 4.88      | 25.43       |      |
| 4D   | 20.5  | 9.5       | 4.78      | 24.54       |      |
| 5A   | 20.4  | 9.5       | 3.88      | 20.02       |      |
| 5B   | 20.7  | 9.5       | 4.05      | 20.59       |      |
| 5C   | 20.2  | 9.5       | 4.01      | 20.90       |      |
| 5D   | 20.6  | 9.5       | 4.02      | 20.54       |      |
| 6A   | 20.8  | 9.5       | 4.43      | 22.42       |      |
| 6B   | 20.4  | 9.5       | 4.48      | 23.12       |      |
| 6C   | 19.8  | 9.5       | 4.35      | 23.13       |      |
| 6D   | 19.1  | 9.5       | 4.00      | 22.04       |      |
|      |       |           | MEAN      | 22.39       |      |
|      |       |           | StDev     | 2.22        |      |
|      |       |           | c.v.      | 0.099       |      |
|      |       |           | 5%ile     | 18.74       |      |

|      | •     | TABLE V     | 7045         | DATA |
|------|-------|-------------|--------------|------|
|      | :     | 2P=0.6 kN   | Flexure Test | Flat |
| SPEC | Δ     | <b>P</b> /∆ | Е            |      |
|      | chart | N/mm        | Мра          |      |
| 15   | 0.76  | 394.74      | 14008        |      |
| 10   | 0.72  | 416.67      | 14786        |      |
| 4    | 0.69  | 434.78      | 15429        |      |
| 20   | 0.69  | 434.78      | 15429        |      |
| 8    | 0.69  | 434.78      | 15429        |      |
| 22   | 0.68  | 441.18      | 15656        |      |
| 17   | 0.67  | 447.76      | 15890        |      |
| 5    | 0.67  | 447.76      | 15890        |      |
| 12   | 0.66  | 454.55      | 16130        |      |
| 21   | 0.66  | 454.55      | 16130        |      |
| 19   | 0.65  | 461.54      | 16379        |      |
| 1    | 0.63  | 476.19      | 16899        |      |
| 11   | 0.63  | 476.19      | 16899        |      |
| 14   | 0.60  | 500.00      | 17743        |      |
| 16   | 0.59  | 508.47      | 18044        |      |
| 18   | 0.59  | 508.47      | 18044        |      |
| 3    | 0.59  | 508.47      | 18044        |      |
| 7    | 0.58  | 517.24      | 18355        |      |
| 6    | 0.58  | 517.24      | 18355        |      |
| 2    | 0.55  | 545.45      | 19356        |      |
| 9    | 0.55  | 545.45      | 19356        |      |
| 13   | 0.54  | 555.56      | 19715        |      |
|      |       |             |              |      |
|      |       |             |              |      |
|      | MEAN  | 476         | 16908        |      |
|      | StDev | 45          | 1592         |      |
|      | c.v.  | 0.094       | 0.094        |      |
|      | 5%ile | 402         | 14281        |      |

|      | -     | TABLE VI    | 9045 DATA         |
|------|-------|-------------|-------------------|
|      | :     | 2P=0.6 kN   | Flexure Test Flat |
| SPEC | Δ     | <b>P</b> /∆ | E                 |
|      | chart | N/mm        | Mpa               |
| 1    | 0.62  | 483.87      | 13355             |
| 6    | 0.55  | 545.45      | 15055             |
| 11   | 0.54  | 555.56      | 15334             |
| 2    | 0.53  | 566.04      | 15623             |
| 10   | 0.53  | 566.04      | 15623             |
| 4    | 0.52  | 576.92      | 15924             |
| 8    | 0.52  | 576.92      | 15924             |
| 7    | 0.50  | 600.00      | 16561             |
| 13   | 0.49  | 612.24      | 16899             |
| 3    | 0.48  | 625.00      | 17251             |
| 14   | 0.47  | 638.30      | 17618             |
| 12   | 0.46  | 652.17      | 18001             |
| 15   | 0.46  | 652.17      | 18001             |
| 5    | 0.45  | 666.67      | 18401             |
| 9    | 0.45  | 666.67      | 18401             |
|      |       |             |                   |
|      |       |             |                   |
|      | MEAN  | 599         | 16531             |
|      | StDev | 52          | 1445              |

| MEAN  | 599   | 16531 |
|-------|-------|-------|
| StDev | 52    | 1445  |
| c.v.  | 0.087 | 0.087 |
| 5%ile | 513   | 14147 |

|      |       | TABLE               | VII | 7045         | DATA |
|------|-------|---------------------|-----|--------------|------|
|      |       | 2P=0.4 kN           |     | Flexure Test | High |
| SPEC | Δ     | $\mathbf{P}/\Delta$ |     | Е            |      |
|      | chart | N/mm                |     | Mpa          |      |
| 15   | 0.76  | 263.16              |     | 14527        |      |
| 4    | 0.70  | 285.71              |     | 15772        |      |
| 10   | 0.70  | 285.71              |     | 15772        |      |
| 20   | 0.70  | 285.71              |     | 15772        |      |
| 8    | 0.66  | 303.03              |     | 16728        |      |
| 12   | 0.66  | 303.03              |     | 16728        |      |
| 17   | 0.66  | 303.03              |     | 16728        |      |
| 1    | 0.66  | 303.03              |     | 16728        |      |
| 11   | 0.65  | 307.69              |     | 16985        |      |
| 22   | 0.65  | 307.69              |     | 16985        |      |
| 7    | 0.63  | 317.46              |     | 17524        |      |
| 16   | 0.63  | 317.46              |     | 17524        |      |
| 6    | 0.62  | 322.58              |     | 17807        |      |
| 19   | 0.62  | 322.58              |     | 17807        |      |
| 5    | 0.61  | 327.87              |     | 18099        |      |
| 18   | 0.61  | 327.87              |     | 18099        |      |
| 3    | 0.60  | 333.33              |     | 18401        |      |
| 21   | 0.60  | 333.33              |     | 18401        |      |
| 2    | 0.57  | 350.88              |     | 19369        |      |
| 13   | 0.56  | 357.14              |     | 19715        |      |
| 14   | 0.56  | 357.14              |     | 19715        |      |
| 9    | 0.54  | 370.37              |     | 20445        |      |
|      |       |                     |     |              |      |
|      | MEAN  | 318                 |     | 17529        |      |
|      | StDev | 27                  |     | 1467         |      |
|      | c.v.  | 0.084               |     | 0.084        |      |
|      | 5%ile | 274                 |     | 15108        |      |

|      |       | TABLE       | VIII | 9045         | DATA |
|------|-------|-------------|------|--------------|------|
|      |       | 2P=0.4 kN   |      | Flexure Test | High |
| SPEC | Δ     | <b>P</b> /∆ |      | E            |      |
|      | chart | N/mm        |      | Mpa          |      |
| 1    | 0.82  | 243.90      |      | 13464        |      |
| 2    | 0.73  | 273.97      |      | 15123        |      |
| 6    | 0.72  | 277.78      |      | 15333        |      |
| 11   | 0.71  | 281.69      |      | 15549        |      |
| 10   | 0.69  | 289.86      |      | 16000        |      |
| 4    | 0.68  | 294.12      |      | 16235        |      |
| 8    | 0.66  | 303.03      |      | 16727        |      |
| 13   | 0.62  | 322.58      |      | 17806        |      |
| 14   | 0.61  | 327.87      |      | 18098        |      |
| 3    | 0.60  | 333.33      |      | 18400        |      |
| 7    | 0.60  | 333.33      |      | 18400        |      |
| 12   | 0.60  | 333.33      |      | 18400        |      |
| 15   | 0.59  | 338.98      |      | 18712        |      |
| 5    | 0.58  | 344.83      |      | 19034        |      |
| 9    | 0.55  | 363.64      |      | 20073        |      |
|      |       |             |      |              |      |
|      |       |             |      |              |      |
|      | MEAN  | 311         |      | 17157        |      |
|      | StDev | 33          |      | 1821         |      |
|      | c.v.  | 0.106       |      | 0.106        |      |
|      | 5%ile | 256         |      | 14152        |      |

| TABLE | IX BEAM 1P |              | DATA |
|-------|------------|--------------|------|
|       | ]          | Flexure Test |      |
|       | E top =    | 15429        | MPa  |
|       | E bot =    | 15429        | MPa  |
|       | Eweb =     | 4246         | MPa  |
|       | Web t =    | 12           | mm   |
|       | I tot =    | 2.5813E+07   | mm4  |
|       |            |              |      |
| LOAD  | Δ          |              |      |
| kN    | mm         |              |      |
| 0     | 0.00       |              |      |
| 1     | 1.04       |              |      |
| 2     | 2.18       |              |      |
| 3     | 3.28       |              |      |
| 4     | 4.36       |              |      |
| 5     | 5.44       |              |      |
| 6     | 6.49       |              |      |
| 7     | 7.54       |              |      |
|       |            |              |      |
|       | E eff =    | 16573        | Мра  |

| E top = | 16130      | MPa |
|---------|------------|-----|
| E bot = | 16899      | MPa |
| Eweb =  | 4246       | MPa |
| Web t = | 12         | mm  |
| I tot = | 2.5804E+07 | mm4 |
|         |            |     |

#### LOAD Δ kN mm 0 0.00 1 1.14 2 2.39 3 3.55 4 4.66 5.76 5 6 6.87 7 7.95

TABLE X

E eff = 16052

Mpa

DATA

| TABLE | LE XI BEAM 3P DATA |              | DATA |
|-------|--------------------|--------------|------|
|       |                    | Flexure Test |      |
|       | E top =            | 15656        | MPa  |
|       | E bot =            | 18044        | MPa  |
|       | Eweb =             | 4246         | MPa  |
|       | Web t =            | 12           | mm   |
|       | I tot =            | 2.5802E+07   | mm4  |
|       |                    |              |      |
| LOAD  | Δ                  |              |      |
| kN    | mm                 |              |      |
| 0     | 0.00               |              |      |
| 1     | 1.23               |              |      |
| 2     | 2.41               |              |      |
| 3     | 3.51               |              |      |
| 4     | 4.58               |              |      |
| 5     | 5.65               |              |      |
| 6     | 6.73               |              |      |
| 7     | 7.83               |              |      |
|       |                    |              |      |

E eff = 16351 Mpa

| TABLE XII |         | BEAM 1H      | DATA |       |
|-----------|---------|--------------|------|-------|
|           |         | Flexure Test | No   | Holes |
|           | E top = | 14008        |      | MPa   |
|           | E bot = | 14786        |      | MPa   |
|           | Eweb =  | 3584         |      | MPa   |
|           | Web t = | 9.5          |      | mm    |
|           | I tot = | 2.5773E+07   |      | mm4   |
| LOAD      | Δ       |              |      |       |
| kN        | mm      |              |      |       |
| 0.0000    | 0.00    |              |      |       |
| 0.9775    | 0.96    |              |      |       |
| 1.9558    | 2.12    |              |      |       |
| 2.9394    | 3.28    |              |      |       |
| 3.9177    | 4.37    |              |      |       |
| 4.9013    | 5.48    |              |      |       |
| 5.8796    | 6.57    |              |      |       |
| 6.8632    | 7.68    |              |      |       |
|           | E eff = | 15765        |      | Мра   |

| TABLE | XIII BEAM 2H |              | BEAM 2H DATA |  |
|-------|--------------|--------------|--------------|--|
|       | F            | Flexure Test |              |  |
|       | E top =      | 15429        | MPa          |  |
|       | E bot =      | 15890        | MPa          |  |
|       | Eweb =       | 4051         | MPa          |  |
|       | Web t =      | 9.5          | mm           |  |
|       | I tot =      | 2.5777E+07   | mm4          |  |
| LOAD  | Δ            |              |              |  |
| kN    | mm           |              |              |  |
| 0     | 0.00         |              |              |  |
| 1     | 1.27         |              |              |  |
| 2     | 2.45         |              |              |  |
| 3     | 3.56         |              |              |  |
| 4     | 4.69         |              |              |  |
| 5     | 5.79         |              |              |  |
| 6     | 6.89         |              |              |  |
| 7     | 7.97         |              |              |  |
|       | E eff =      | 16032        | Мра          |  |

| TABLE | XIV BEAM 3H |             | DATA |
|-------|-------------|-------------|------|
|       | F           | lexure Test |      |
|       | E top =     | 16899       | MPa  |
|       | E bot =     | 18355       | MPa  |
|       | Eweb =      | 4509        | MPa  |
|       | Web t =     | 9.5         | mm   |
|       | l tot =     | 2.5776E+07  | mm4  |
| LOAD  | Δ           |             |      |
| kN    | mm          |             |      |
| 0     | 0.00        |             |      |
| 1     | 1.10        |             |      |
| 2     | 2.18        |             |      |
| 3     | 3.17        |             |      |
| 4     | 4.18        |             |      |
| 5     | 5.21        |             |      |
| 6     | 6.22        |             |      |
| 7     | 7.23        |             |      |
|       | E eff =     | 17415       | Мра  |

| TABLE | XV      | BEAM 1H      | DATA    |       |
|-------|---------|--------------|---------|-------|
|       |         | Flexure Test | 2-80 mm | Holes |
|       | E top = | 14008        | MPa     |       |
|       | E bot = | 14786        | MPa     |       |
|       | Eweb =  | 3584         | MPa     |       |
|       | Web t = | 9.5          | mm      |       |
|       | I tot = | 2.5773E+07   | mm4     |       |
| LOAD  | Δ       |              |         |       |
| kN    | mm      |              |         |       |
| 0     | 0.00    |              |         |       |
| 1     | 1.09    |              |         |       |
| 2     | 2.31    |              |         |       |
| 3     | 3.46    |              |         |       |
| 4     | 4.59    |              |         |       |
| 5     | 5.72    |              |         |       |
| 6     | 6.84    |              |         |       |
| 7     | 7.95    |              |         |       |
|       | E eff = | 15749        | Mpa     |       |

.

| TABLE | XVI     | BEAM 1H      | DATA    |       |
|-------|---------|--------------|---------|-------|
|       |         | Flexure Test | 4-80 mm | Holes |
|       | E top = | 14008        | MPa     |       |
|       | E bot = | 14786        | MPa     |       |
|       | Eweb =  | 3584         | MPa     |       |
|       | Web t = | 9.5          | mm      |       |
|       | I tot = | 2.5773E+07   | mm4     |       |
| LOAD  | Δ       |              |         |       |
| kN    | mm      |              |         |       |
| 0     | 0.00    |              |         |       |
| 1     | 1.13    |              |         |       |
| 2     | 2.35    |              |         |       |
| 3     | 3.51    |              |         |       |
| 4     | 4.65    |              |         |       |
| 5     | 5.78    |              |         |       |
| 6     | 6.91    |              |         |       |
| 7     | 8.02    |              |         |       |
|       | E eff = | 15679        | Мра     |       |

| TABLE | XVII    | BEAM 1H      | DATA |       |
|-------|---------|--------------|------|-------|
|       |         | Flexure Test | 4-80 | +2-38 |
|       | E top = | 14008        | MPa  |       |
|       | E bot = | 14786        | MPa  |       |
|       | Eweb =  | 3584         | MPa  |       |
|       | Web t = | 9.5          | mm   |       |
|       | I tot = | 2.5773E+07   | mm4  |       |
|       |         |              |      |       |
| LOAD  | Δ       |              |      |       |
| kN    | mm      |              |      |       |
| 0     | 0.00    |              |      |       |
| 1     | 1.09    |              |      |       |
| 2     | 2.28    |              |      |       |
| 3     | 3.45    |              |      |       |
| 4     | 4.57    |              |      |       |
| 5     | 5.70    |              |      |       |
| 6     | 6.84    |              |      |       |
| 7     | 7.97    |              |      |       |
|       | E eff = | 15644        | Мра  |       |

| TABLE | XVIII   | BEAM 1H      | DATA |       |
|-------|---------|--------------|------|-------|
|       |         | Flexure Test | 4-80 | +2-50 |
|       | E top = | 14008        | MPa  |       |
|       | E bot = | 14786        | MPa  |       |
|       | Eweb =  | 3584         | MPa  |       |
|       | Web t = | 9.5          | mm   |       |
|       | I tot = | 2.5773E+07   | mm4  |       |
|       | ٨       |              |      |       |
| LUAD  | Δ       |              |      |       |
| KN    | mm      |              |      |       |
| 0     | 0.00    |              |      |       |
| 1     | 1.12    |              |      |       |
| 2     | 2.36    |              |      |       |
| 3     | 3.49    |              |      |       |
| 4     | 4.62    |              |      |       |
| 5     | 5.76    |              |      |       |
| 6     | 6.88    |              |      |       |
| 7     | 8.01    |              |      |       |
|       | E eff = | 15644        | Мра  |       |

| TABLE | XIX     | BEAM 1H      | DATA |       |
|-------|---------|--------------|------|-------|
|       |         | Flexure Test | 4-80 | +2-80 |
|       | E top = | 14008        | MPa  |       |
|       | E bot = | 14786        | MPa  |       |
|       | Eweb =  | 3584         | MPa  |       |
|       | Web t = | 9.5          | mm   |       |
|       | I tot = | 2.5773E+07   | mm4  |       |
|       |         |              |      |       |
| LOAD  | Δ       |              |      |       |
| kN    | mm      |              |      |       |
| 0     | 0.00    |              |      |       |
| 1     | 1.15    |              |      |       |
| 2     | 2.35    |              |      |       |
| 3     | 3.53    |              |      |       |
| 4     | 4.67    |              |      |       |
| 5     | 5.82    |              |      |       |
| 6     | 6.96    |              |      |       |
| 7     | 8.11    |              |      |       |
| 8     | 9.30    |              |      |       |
|       |         |              |      |       |
|       |         |              |      |       |

E eff =

Мра

| TABLE | XX      | BEAM 1H      | DATA |       |
|-------|---------|--------------|------|-------|
|       |         | Flexure Test | 4-80 | +2-80 |
|       | E top = | 14008        | MPa  | +2-38 |
|       | E bot = | 14786        | MPa  |       |
|       | Eweb =  | 3584         | MPa  |       |
|       | Web t = | 9.5          | mm   |       |
|       | I tot = | 2.5773E+07   | mm4  |       |
| LOAD  | Δ       |              |      |       |
| kN    | mm      |              |      |       |
| 0     | 0.00    |              |      |       |
| 1     | 1.22    |              |      |       |
| 2     | 2.48    |              |      |       |
| 3     | 3.70    |              |      |       |
| 4     | 4.91    |              |      |       |
| 5     | 6.07    |              |      |       |
| 6     | 7.24    |              |      |       |
| 7     | 8.37    |              |      |       |
| 8     | 9.55    |              |      |       |
|       |         |              |      |       |

E eff = **15142** Mpa

| TABLE | XXI     | BEAM 1H      | DATA |       |
|-------|---------|--------------|------|-------|
|       |         | Flexure Test | 4-80 | +2-80 |
|       | E top = | 14008        | MPa  | +2-60 |
|       | E bot = | 14786        | MPa  |       |
|       | Eweb =  | 3584         | MPa  |       |
|       | Web t = | 9.5          | mm   |       |
|       | I tot = | 2.5773E+07   | mm4  |       |
| LOAD  | Δ       |              |      |       |
| kN    | mm      |              |      |       |
| 0     | 0.00    |              |      |       |
| 1     | 1.19    |              |      |       |
| 2     | 2.48    |              |      |       |
| 3     | 3.64    |              |      |       |
| 4     | 4.81    |              |      |       |
| 5     | 6.00    |              |      |       |
| 6     | 7.20    |              |      |       |
| 7     | 8.38    |              |      |       |
| 8     | 9.62    |              |      |       |
|       |         |              |      |       |
|       |         |              |      |       |

E eff =

•

Мра

| XXII    | BEAM 1H                                                                                                                                                     | DATA                                                                                                                                                                                                    | DATA                                                                                                                      |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
|         | Flexure Test                                                                                                                                                | SLOT                                                                                                                                                                                                    | +2-80                                                                                                                     |  |  |
| E top = | 14008                                                                                                                                                       | MPa                                                                                                                                                                                                     | +2-60                                                                                                                     |  |  |
| E bot = | 14786                                                                                                                                                       | MPa                                                                                                                                                                                                     |                                                                                                                           |  |  |
| Eweb =  | 3584                                                                                                                                                        | MPa                                                                                                                                                                                                     |                                                                                                                           |  |  |
| Web t = | 9.5                                                                                                                                                         | mm                                                                                                                                                                                                      |                                                                                                                           |  |  |
| I tot = | 2.5773E+07                                                                                                                                                  | mm4                                                                                                                                                                                                     |                                                                                                                           |  |  |
|         |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| Δ       |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| mm      |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 0.00    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 1.24    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 2.51    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 3.74    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 4.99    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 6.20    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 7.44    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 8.61    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
| 9.80    |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
|         |                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                           |  |  |
|         | <b>XXII</b><br>E top =<br>E bot =<br>Eweb =<br>Web t =<br>I tot =<br>$\Delta$<br>mm<br>0.00<br>1.24<br>2.51<br>3.74<br>4.99<br>6.20<br>7.44<br>8.61<br>9.80 | XXII  BEAM 1H    Flexure Test  E    E top =  14008    E bot =  14786    Eweb =  3584    Web t =  9.5    I tot =  2.5773E+07 $\Delta$ mm    0.00  1.24    2.51  3.74    4.99  6.20    7.44  8.61    9.80 | XXIIBEAM 1HDATA<br>Flexure TestE top =14008MPaE bot =14786MPaEweb =3584MPaWeb t =9.5mmI tot =2.5773E+07mm4 $\Delta$<br>mm |  |  |

Мра

14520

E eff =

5

| BEAM | FLANGE F | -LANGE E | AVE. E | WEB E | WEB t | TRANS t | BEAM I   | BEAM E |
|------|----------|----------|--------|-------|-------|---------|----------|--------|
|      |          | MPa      | MPa    | MPa   | mm    | mm      | x E7 mm4 | MPa    |
| 1H   | т        | 14008    | 14397  | 3584  | 9.5   | 2.36    | 2.5768   | 15765  |
|      | В        | 14786    |        |       |       |         |          |        |
| 2H   | Т        | 15429    | 15660  | 4051  | 9.5   | 2.46    | 2.5777   | 16032  |
|      | В        | 15890    |        |       |       |         |          |        |
| ЗH   | Т        | 16899    | 17627  | 4509  | 9.5   | 2.43    | 2.5776   | 17415  |
|      | В        | 18355    |        |       |       |         |          |        |
| 1P   | Т        | 15429    | 15429  | 4246  | 12    | 3.30    | 2.5813   | 16573  |
|      | В        | 15429    |        |       |       |         |          |        |
| 2P   | Т        | 16130    | 16515  | 4246  | 12    | 3.09    | 2.5804   | 16052  |
|      | В        | 16899    |        |       |       |         |          |        |
| 3P   | Т        | 15656    | 16850  | 4246  | 12    | 3.02    | 2.5802   | 16351  |
|      | В        | 18044    |        |       |       |         |          |        |
|      | Moon     | 16090    | 16090  | 4147  | 44    | 0.70    | 2 5700   | 16265  |
|      | Mean     | 10000    | 1150   | 4147  | 107   | 2.76    | 2.5790   | 10305  |
|      | Sidev    | 1273     | 1150   | 312   | 1.37  | 0.41    | 0.0019   | 585.63 |
|      | C.V.     | 0.079    | 0.0/1  | 0.075 | 0.12  | 0.146   | 0.0007   | 0.036  |
|      | 5%ile    | 13979    | 14183  | 3632  | 8.74  | 2.11    | 2.5759   | 15398  |

HARD + PART

TABLE XXIII

\_



<u>Plate 1</u> Typical I–Beam Without Holes



<u>Plate 2</u> Beam H–1 With Slots, 2–80mm Holes Plus 2–60mm Holes

#### APPENDIX 1

CALCULATIONS OF IN-GRADE STIFFNESS (E\*) (FLAT) OF SLASH PINE 70  $\ge 45~\mathrm{mm}$  STUDS

(Ref: Draft Australian Standard: Methods For Evaluation of Strength and Stiffness of Graded Timber)

STIFFNESS

From Table V:  $P/\Delta$  (mean) = 476 N/mm coeff. var.  $V_E = 0.094$ Deflection  $\delta = PL^3/28.173 E_m I$ (note: P is half total load) Calculations:  $E_{m} = PL^{3}/28.173 \delta I$  $E_{m} = (476) \times 10^{3} \times 810^{3} \times 12 / 28.173 \times 70 \times 45^{3}$ <u>Em = 16 908</u> MPa Sampling Factor ks =  $1 - (0.7 \text{ x VE}/\text{ n}^{0.5})$  $k_s = 1 - (0.7 \ge 0.094 / 22^{0.5})$ <u>ks</u> = 0.986Material Factor  $\gamma_{\rm E} = 1$ Basic Working Stress  $\mathbf{E}^* = \mathbf{k}_{\mathrm{S}} \mathbf{x} \mathbf{E}_{\mathrm{S}} / \gamma_{\mathrm{E}}$  $E^* = 0.986 \ge 16908 / 1$  $\underline{E^*} = 16\,671\,\text{MPa}$  $E_{0.05} = 16\,908 - 1.65(16\,908 \ge 0.094)$ E0.05 = 14 281 MPa Sampling Factor k<sub>s</sub> =  $1 - (2.7 \times V_E / n^{0.5})$  $k_s = 1 - (2.7 \times 0.094 / 22^{0.5})$ <u>ks</u> = 0.956Material Factor  $\gamma_{\rm E} = 0.7$ Basic Working Stress  $\mathbf{E}^* = \mathbf{k}_{\mathrm{S}} \mathbf{x} \mathbf{E}_{\mathrm{S}} / \gamma_{\mathrm{E}}$  $E^* = 0.946 \ge 14281/0.7$  $\underline{E^*} = 19.305$  MPa Adopt the smallest value of  $E^*$ , i.e.  $\underline{E^*} = \underline{16\ 671}$  MPa

## CENTRAL QUEENSLAND UNIVERSITY - LIBRARY

#### APPENDIX 2

CALCULATIONS OF IN-GRADE STIFFNESS (E\*) (FLAT) OF SLASH PINE 90  $\ge 45~mm$  STUDS

(Ref: Draft Australian Standard: Methods For Evaluation of Strength and Stiffness of Graded Timber)

STIFFNESS

From Table 1:  $P/\Delta$  (mean) = 599 N/mm coeff. var. VE = 0.087Deflection  $\delta = PL^3/28.173 E_m I$  (note: P is half total load) Calculations:  $E_{m} = PL^{3}/28.173 \delta I$  $E_m = (599) \times 10^3 \times 810^3 \times 12 / 28.173 \times 90 \times 45^3$  $E_{m} = 16531$  MPa Sampling Factor ks =  $1 - (0.7 \text{ x VE}/\text{ n}^{0.5})$  $k_s = 1 - (0.7 \ge 0.087 / 15^{0.5})$  $k_s = 0.984$ Material Factor  $\gamma_{\rm E} = 1$ Basic Working Stress  $\mathbf{E}^* = \mathbf{k}_{\mathrm{S}} \mathbf{x} \mathbf{E}_{\mathrm{S}} / \gamma_{\mathrm{E}}$  $E^* = 0.984 \times 16531/1$  $\underline{\mathbf{E}^*} = \underline{\mathbf{16}} \ \underline{\mathbf{271}} \ \underline{\mathbf{MPa}}$  $E_{0.05} = 16\ 531 - 1.65(16\ 531\ x\ 0.087)$  $E_{0.05} = 14.147 \text{ MPa}$ Sampling Factor  $k_s = 1 - (2.7 \text{ x VE}/\text{ n}^{0.5})$  $k_s = 1 - (2.7 \ge 0.087 / 15^{0.5})$ <u>ks</u> = 0.939 $\gamma_{\rm E} = 0.7$ Material Factor Basic Working Stress  $E^* = k_S x E_S / \gamma_E$  $E^* = 0.939 \text{ x } 14 \ 147 / \ 0.7$  $\underline{E^*} = 18.984 \text{ MPa}$ Adopt the smallest value of  $E^*$ , i.e.  $\underline{E^*} = \underline{16\ 271}$  MPa