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Abstract

This paper is concerned with master-slave synchronization for two identical

non-autonomous horizontal platform systems by using time-delay feedback

control. Compared with some existing results on synchronization for horizon-

tal platform systems, the effect of the time-delay in the feedback control on

master-slave synchronization is investigated. Applying a delay decomposi-

tion approach, some delay-dependent synchronization criteria are established

and formulated in the form of linear matrix inequalities (LMIs). Sufficient

conditions about the existence of a time delay feedback controller are derived

by employing these newly-obtained synchronization criteria. The controller

gains can be achieved by solving a set of LMIs. One simulation example is

given to illustrate the effectiveness of synchronization criteria and the design
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1. Introduction

Chaos synchronization has received much attention due to its theoreti-

cal importance and practical applications, see for example, [1], [2], [3] and

references therein. As is well known, horizontal platform systems are widely

used in offshore engineering and earthquake engineering (see examples, [4]

and [5]). Observing this point, Ge et al. (2003) [4] numerically investigated

the synchronization problem for two horizontal platform systems. Cai et al.

(2007) [6] used a sinusoidal state error feedback control and applied the Lya-

punov direct method to derive some synchronization criteria for horizontal

platform systems. Wu et al. (2006) [7] studied the master-slave synchroniza-

tion problem for two horizontal platform systems by using linear feedback

control. Wu et al. (2007) [8] considered the synchronization problem for two

horizontal platform systems with phase difference. The idea in [6, 7, 8] is to

transform the nonlinear error system into a linear time-varying system, and

then to discuss the asymptotic stability of the linear time-varying system.

The sufficient criteria derived by this method seem simple and are easily

checked. However, noticing that the horizontal platform systems are essen-

tially a class of nonlinear systems, the synchronization criteria in [6, 7, 8]
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may be conservative. How to make good use of the property of the nonlinear

term of the error system to derive some less conservative synchronization

criteria is the first motivation of the current study.

Due to the propagation delay frequently encountered in the master-slave

synchronization scheme, recently, some researchers have made efforts to in-

vestigate the effect of a time-delay on master-slave synchronization. For

example, Yalcin et al. (2001) [3] derived some delay-independent and delay-

dependent synchronization criteria. Han (2007) [2] studied how to design

time-varying delay feedback controllers for master-slave synchronization of

a class of nonlinear systems. In a master-slave synchronization scheme for

horizontal platform systems, there inevitably exist time-delays during the

signal transferring from the master system to the controller and from the

slave system to the controller. However, linear or sinusoidal state error feed-

back controllers were chosen to achieve the synchronization for horizontal

platform systems in [4, 6, 7, 8], which did not consider the effect of the

time-delay on the synchronization. If a time-delay occurs in the master-slave

scheme, the method in [6, 7, 8] will transform the corresponding error sys-

tem into a linear time-vary system with a time-delay. However, the derived

synchronization criteria and feedback gains are not as simple as those corre-

sponding results in [6, 7, 8]. To sum up, we are in a position to study the

effect of the time-delay on the master-slave synchronization for horizontal

platform systems and to design an effective time-delayed feedback controller,

which is the second motivation of the current study.
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In this paper, we will deal with the problem of master-slave synchroniza-

tion of two identical horizontal platform systems by using time delay feedback

control. Compered with some existing results, we will investigate the effect

of the time-delay on the master-slave synchronization for horizontal platform

systems. We will employ a delay decomposition approach recently proposed

in [9], [10], [11], [12] and fully use information from the nonlinear term of the

error system to derive the synchronization criteria. Based on the synchro-

nization criteria, we will give some sufficient conditions on the existence of a

state error feedback controller. These sufficient conditions will be formulated

in the form of linear matrix inequalities (LMIs). Moreover, we will design the

controller by solving a set of LMIs. We will use one simulation example to

illustrate the effectiveness of synchronization criteria and the design method.

Notation: In this paper, all matrices are real matrices. Rn denotes the

n-dimensional Euclidean space. Rm×n is the set of all m × n real matri-

ces. For symmetric matrices P and Q, the notation P > Q (respectively,

P ≥ Q) means that matrix P − Q is positive definite (respectively, posi-

tive semi-definite). IN is an identity matrix of N × N dimensions. tr(W)

denotes the trace of matrix W . diag(a1, a2, · · · , an) denotes the diago-

nal matrix. For an arbitrary matrix W and two symmetric matrices P

and Q, the symmetric term in a symmetric matrix is denoted by *, i.e.


P W

∗ Q


 =




P W

WT Q


.
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2. Problem Statement

Consider a horizontal platform system which is depicted in Fig. 1 [4, 5].

The mathematical model of the system can be described by

Aẍ + Dẋ + rg sin x −
3g

R0

(B − C) cos x sin x = F cos ωt, (1)

where x is the rotation of the platform relative to the earth; A, B and

C are the inertia moment of the platform for axis 1, axis 2 and axis 3,

respectively; D is the damping coefficient; r is the proportional constant of

the accelerometer; g is the acceleration constant of gravity; R0 is the radius

of the earth; and F cos ωt is the harmonic torque.

Let y1(t) = x(t) and y2(t) = ẏ1(t) = ẋ(t). The horizontal platform system

(1) can be rewritten as





ẏ1(t) = y2(t),

ẏ2(t) = −ay2(t) − b sin y1(t) + l sin y1(t) cos y1(t) + d cosωt,
(2)

where a = D
A

, b = rg
A

, d = F
A

are positive constants, and l = 3g(B−C)
R0A

is a

constant.

Let y(t) =




y1(t)

y2(t)


 ∈ R2. Rewrite the system (2) as

ẏ(t) = My(t) + f(y(t)) + m(t) (3)
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with

M =




0 1

0 −a


 , m(t) =




0

d cosωt


 ,

f(y(t)) =




f1(y(t))

f2(y(t))


 =




0

−b sin y1(t) + l cos y1(t) sin y1(t)


 .

Let ϕ(ξ) = sin ξ − l
2b

sin 2ξ ∈ R, ∀ξ ∈ R, and H =




0

−b


 ,U =

(
1 0

)
.

One can construct a general master-slave synchronization scheme for system

(3)

M : ẏ(t) = My(t) + Hϕ(Uy(t)) + m(t) (4)

S : ż(t) = Mz(t) + Hϕ(Uz(t)) + m(t) + u(t) (5)

with master system M and slave system S, where u(t) is the controller,

z(t) =




z1(t)

z2(t)


 ∈ R2. In [7], Wu et al. (2006) used a linear feedback con-

troller C : u(t) = K(y(t) − z(t)) to study the master-slave synchronization.

Due to finite speeds of transmission and spreading, a signal, which travels

through the master system, the slave system and a controller, is often asso-

ciated with a time delay, which means that a time delay occurs during the

signal transferring from the master system to the controller as well as during
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the signal transferring from the slave system to the controller. Observing

this fact, we choose the following controller C

C : u(t) = K(y(t − τ) − z(t − τ)) (6)

where the time-delay τ > 0. Fig. 2 illustrates the feedback control process

for the master-slave synchronization scheme described by (4), (5) and (6).

Defining a signal e(t) = y(t) − z(t) =




e1(t)

e2(t)


 ∈ R2, where e1(t) =

y1(t) − z1(t), e2(t) = y2(t) − z2(t), we have the error system

ė(t) = Me(t) − Ke(t − τ) + Hϕ(Ue(t), z(t)) (7)

where

ϕ(Ue(t), z(t)) = ϕ(Uy(t)) − ϕ(Uz(t))

= (sin y1(t)−sin z1(t))−
l

2b
(sin 2y1(t)−sin 2z1(t)).

From the differential mean value theorem, one can obtain

(sin y1(t)−sin z1(t))−
l

2b
(sin 2y1(t)−sin 2z1(t))

= cos ξe1(t) −
l

b
cos ξ̃e1(t) (8)
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where

ξ ∈ (min{y1(t), z1(t)}, max{y1(t), z1(t)}),

ξ̃ ∈ (min{2y1(t), 2z1(t)}, max{2y1(t), 2z1(t)}).

Let L = −1− | l
b
|, L = 1 + | l

b
|. It follows from (8) that ϕ(Ue(t), z(t)) belongs

to a sector [L, L], i.e., ∀t ≥ 0, e(t), z(t),

(ϕ(Ue(t), z(t))−LUe(t))T (ϕ(Ue(t), z(t))−LUe(t)) ≤ 0. (9)

The initial condition of system (7) is defined as

e(θ) = φ(θ), θ ∈ [−τ, 0], φ ∈ W (10)

where W is the Banach space of absolutely continuous functions [−τ, 0] → Rn

with square-integrable derivative and with the norm

‖φ‖W =

[
‖φ(0)‖2 +

∫ 0

−τ

‖φ(s)‖2ds +

∫ 0

−τ

‖φ̇(θ)‖2dθ

]1/2

where the vector norm ‖ · ‖ represents the Euclidean norm.

Remark 1. It should be pointed out that the time delay occurred in the

feedback control process between the master system and the controller may

be different from the one between the slave system and the controller, which
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means that the controller (6) should be modified as

C : u(t) = K(y(t − τ1) − z(t − τ2)) (11)

where τ1 > 0 and τ2 > 0. If τ1 = τ2, synchronization is complete. If τ2 > τ1,

it is clear that anticipatory synchronization manifold z(t) = y(t + (τ2 − τ1))

is a solution of systems (4), (5) and (11). Let ĕ(t) = y(t + (τ2 − τ1)) − z(t),

we have






ẏ(t + (τ2 − τ1)) = My(t + (τ2 − τ1)) + Hϕ(Uy(t + (τ2 − τ1)),

ż(t) = Mz(t) + Hϕ(Uz(t)) + u(t),

u(t) = K(y(t − τ1) − z(t − τ2)).

The error system is

˙̆e(t) = Mĕ(t) −Kĕ(t − τ2) + Hϕ̆(Uĕ(t)), (12)

where ϕ̆(Uĕ(t)) = ϕ(Uy(t + τ2 − τ1)) − ϕ(Uz(t)), and the initial condition

is ĕ(θ) = φ̆(θ), θ ∈ [−max{τ1, τ2}, 0]. It follows from the sector condition (9)

that

(ϕ̆(Uĕ(t) − LUĕ(t))T (ϕ̆(Uĕ(t)) − LUĕ(t)) ≤ 0. (13)

If τ2 < τ1, one can see that lag synchronization manifold z(t) = y(t−(τ1−τ2))

is a solution of systems (4), (5) and (11). Let ê(t) = y(t − (τ1 − τ2)) − z(t),
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we have






ẏ(t − (τ1 − τ2)) = My(t − (τ1 − τ2)) + Hϕ(Uy(t − (τ1 − τ2)),

ż(t) = Mz(t) + Hϕ(Uz(t)) + u(t),

u(t) = K(y(t − τ1) − z(t − τ2)).

The error system is

˙̂e(t) = Mê(t) −Kê(t − τ2) + Hϕ̂(Uê(t)), (14)

where ϕ̂(Uê(t)) = ϕ(Uy(t− (τ1 − τ2)))−ϕ(Uz(t)), and the initial condition

is ê(θ) = φ̂(θ), θ ∈ [−max{τ1, τ2}, 0]. It follows from the sector condition (9)

that

(ϕ̂(Uê(t) − LUê(t))T (ϕ̂(Uẽ(t)) − LUê(t)) ≤ 0. (15)

The method to analyze the stability for (12)-(13) and (14)-(15) is similar

to that for (7) and (9). In this paper, we focus on the complete synchroniza-

tion of horizontal platform systems.

The purpose of this paper is to study the master-slave synchronization

for horizontal platform systems and to design the controller (6), i.e., to find

the controller gain K, such that the system described by (7), (9) and (10)

is globally asymptotically stable, which means that the system described by

(4)-(6) synchronizes.
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To end this section, we introduce some lemmas that will be used in the

proofs of synchronization criteria.

Lemma 1. (Schur Complement) For matrices Q = QT , S and R = RT

of appropriate dimensions, the inequality

(
Q S

ST R

)
> 0

holds if and only if

R > 0, Q− SR−1ST > 0.

An S-procedure [13] plays an important role in absolute stability and

robust stability theory. There are a number of variations, one of which is

used in this paper can be expressed as follows.

Lemma 2. [14] Let Fi = FT
i ∈ Rn×n, i = 0, 1, 2, · · ·p. Then the following

statement is true

ǫTF0ǫ > 0, for all ǫ 6= 0 satisfying ǫTFiǫ ≥ 0

if there exist real scalars εi ≥ 0, i = 1, 2, · · · , p such that

F0 −

p∑

i=1

ǫiFi > 0.

For p = 1, these two statements are equivalent.
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Lemma 3. [15] For any constant matrix R > 0, R = RT ∈ Rn×n, scalar

τ > 0, and vector functions e and ė : [−τ, 0] → Rn such that the following

integration is well defined, then

−

∫ t

t−τ

ėT (s)(τR)ė(s)ds≤

(
e(t)

e(t − τ)

)T(
−R R

R −R

)(
e(t)

e(t − τ)

)
.

Lemma 4. [2] For any matrix W > 0, W = WT ∈ Rn×n, a nonsingular

matrix U ∈ Rn×n and a scalar µ > 0, then

−U−1W(U−1)T ≤ µ2W−1 − µU−1 − µ(U−1)T .

3. Synchronization criteria

In this section, we will derive master-salve synchronization criteria for

horizontal platform systems. It follows from the loop transformation [16]

that the global asymptotic stability of the system (7) in the sector [L, L] is

equivalent to that of the system described by

ė(t)=(M + LHUe(t)−Ke(t − τ)+ Hϕ̃(Ue(t), z(t)) (16)

in the sector [0, L − L], where ϕ̃(Ue(t), z(t)) satisfies

ϕ̃T (Ue(t), z(t))(ϕ̃(Ue(t), z(t)) − (L − L)Ue(t)) ≤ 0, ∀t > 0, ∀e(t), z(t). (17)

We employ a delay decomposition approach [9, 10] to choose the following
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Lyapunov-Krasovskii functional

V (t, et, ėt) = eT (t)Pe(t) +
N∑

i=1

∫ t−(i−1)h

t−ih

eT (ξ)Qie(ξ)dξ

+

N∑

i=1

∫
−(i−1)h

−ih

∫ t

t+θ

ėT (ξ)(hRi)ė(ξ)dξdθ (18)

where et is defined as et = e(t + θ), θ ∈ [−τ, 0], and P ∈ R2×2,P = PT > 0,

Qi ∈ R2×2,Qi = QT
i > 0, Ri ∈ R2×2,Ri = RT

i > 0 (i = 1, 2, · · · , N); h = τ
N

,

N is the positive integer of division on the interval [−τ, 0] and h is the length

of each division.

Notice that V (t, et, ėt) is a quadratic Lyapunov-Krasovskii functional de-

pending on derivatives. A sufficient condition for asymptotic stability of the

error system described by (16) and (17) is that there exist εi > 0 (i = 1, 2, 3)

such that

ε1‖e(t)‖2 ≤ V (t, et, ėt) ≤ ε2‖et‖
2
W ,

V̇ (t, et, ėt) ≤ −ε3‖e(t)‖2.

We now state and establish the following synchronization criterion.

Proposition 1. For a given scale τ > 0, the error system described by (16)

and (17) is globally asymptotically stable if there exist matrices P = PT > 0,
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Qi = QT
i > 0, Ri = RT

i > 0 (i = 1, 2, · · · , N), and a scale Λ > 0 such that

(
∆(1) ∆(2)

∗ ∆(3)

)
< 0 (19)

where

∆(1)=




∆11 R1 0 · · · 0 −PK ∆1 N+2

∗ ∆22 R2 · · · 0 0 0
∗ ∗ ∆33 · · · 0 0 0
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · ·∆NN RN 0
∗ ∗ ∗ · · · ∗ ∆N+1 N+1 0
∗ ∗ ∗ · · · ∗ ∗ −2ΛI2




with

∆11 = P(M + LHU) + (M + LHU)T
P + Q1 −R1,

∆ii = −Ri−1−Ri+Qi−Qi−1 (i = 2, 3, · · · , N),

∆N+1 N+1 = −QN −RN , ∆1 N+2 = PH + (L − L)UT Λ,

and

∆(2) =




h(M + LHU)TR1 h(M + LHU)TR2 · · · h(M + LHU)TRN

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−hKTR1 −hKTR2 · · · −hKTRN

hHTR1 hHTR2 · · · hHTRN




,

∆(3) = −diag(R1 R2 · · · RN).

Proof. Taking the derivative of V (t, et, ėt) with respect to t along the tra-
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jectory of (16) yields

V̇ (t, et, ėt) = eT (t)((M + LHU)TP + P(M + LHU))e(t)

+ 2eT (t)PHϕ̃(Ue(t), z(t))

− 2eT (t)PKe(t − τ)

+
N∑

i=1

eT (t − (i − 1)h)Qie(t − (i − 1)h)

−

N∑

i=1

eT (t − ih)Qie(t − ih)

+
N∑

i=1

ėT (t)(h2Ri)ė(t)

−
N∑

i=1

∫ t−(i−1)h

t−ih

ėT (s)(hRi)ė(s)ds. (20)

In view of Lemma 3 and the error system (16), we have

−

∫ t−(i−1)h

t−ih

ėT (s)(hRi)ė(s)ds≤ρT (t)



−Ri Ri

Ri −Ri


ρ(t) (21)

and

ėT (t)(h2Ri)ė(t) = ̺T (t)̥T (h2Ri)̥̺(t), (22)

where

ρT (t) = (eT (t−(i−1)h) eT (t−ih)),
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̥ = (M + LHU 0 · · ·0 − K H),

and

̺T (t) = (̺T
1 (t) · · ·̺T

2 (t))

with

̺T
1 (t) = (eT (t) eT (t − h) eT (t − 2h)),

̺T
2 (t)) = (eT (t − (N − 1)h) eT (t − Nh) ϕ̃T (Ue(t), z(t))).

It follows from (20)-(22) that

V̇ (t, et, ėt) ≤ ̺T (t)Θ̺(t)

where

Θ =




Θ11 R1 0 · · · 0 Θ1 N+1 Θ1 N+2

∗ Θ22 R2 · · · 0 0 0

∗ ∗ Θ33 · · · 0 0 0

...
...

...
. . .

...
...

...

∗ ∗ ∗ · · ·ΘNN RN 0

∗ ∗ ∗ · · · ∗ ΘN+1 N+1 ΘN+1N+2

∗ ∗ ∗ · · · ∗ ∗ ΘN+2 N+2



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with

Θ11 = (M + LHU)TP + P(M + LHU) + Q1 − R1

+ (M + LHU)T (h2
N∑

i=1

Ri)(M + LHU),

Θ1 N+1 = −PK − (M + LHU)T (h2
N∑

i=1

Ri)K,

Θ1 N+2 = PH + (M + LHU)T (h2

N∑

i=1

Ri)H,

Θii = −Ri−1−Ri+Qi−Qi−1 (i = 2, 3, · · · , N),

ΘN+1 N+1 = −QN − RN + KT (h2
N∑

i=1

Ri)K,

ΘN+1 N+2 = −KT (h2

N∑

i=1

Ri)H,

ΘN+2 N+2 = HT (h2
N∑

i=1

Ri)H.

A sufficient condition for the global asymptotic stability of (16) is that there

exist matrices P > 0 and Qi > 0, Ri > 0 (i = 1, 2 · · · , N) such that

V̇ (t, et, ėt) ≤ ̺T (t)Θ̺(t) < 0 (23)

for all ̺(t) 6= 0. From (17), for Λ > 0, one can obtain that

−2Λϕ̃T (Ue(t), z(t))[ϕ̃(Ue(t), z(t)) − (L − L)Ue(t)] ≥ 0. (24)
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Then utilizing S-Procedure and (24), one can see that (23) is implied by the

existence of a scale Λ such that

̺T (t)Θ̺(t) − 2ϕ̃T (Ue(t), z(t))Λϕ̃(Ue(t), z(t))

+ 2ϕ̃T (Ue(t), z(t))Λ(L − L)Ue(t) < 0, (25)

for all ̺(t) 6= 0. Rewrite inequality (25) as

̺T (t)∆̺(t) < 0, (26)

where

∆ =




∆11 R1 0 · · · 0 ∆1 N+1 ∆1 N+2

∗ ∆22 R2 · · · 0 0 0

∗ ∗ ∆33 · · · 0 0 0

...
...

...
. . .

...
...

...

∗ ∗ ∗ · · · ∆NN RN 0

∗ ∗ ∗ · · · ∗ ∆N+1 N+1 ∆N+1 N+2

∗ ∗ ∗ · · · ∗ ∗ ∆N+2 N+2



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with

∆11 =Θ11, ∆1 N+1 =Θ1 N+1, ∆1N+2 =Θ1 N+2+(L − L)UT Λ,

∆ii = Θii (i = 2, 3, · · · , N), ∆N+1 N+1 = ΘN+1 N+1,

∆N+1 N+2 =ΘN+1 N+2, ∆N+2 N+2 =ΘN+2 N+2−2ΛI2.

It follows from Schur complement that ∆ < 0 if there exist matrices P > 0,

Qi > 0, Ri > 0 (i = 1, 2, · · ·N), and a scale Λ such that (19). This completes

the proof. Q.E.D.

If N = 1, then we have the following Lyapunov-Krasovskii functional

V1(t, et, ėt) = eT (t)Pe(t) +

∫ t

t−τ

eT (ξ)Q1e(ξ)dξ

+

∫ 0

−τ

∫ t

t+θ

ėT (ξ)(τR1)ė(ξ)dξdθ. (27)

Then Proposition 1 implies the following result.

Corollary 1. For a given scale τ > 0, the error system described by (16)

and (17) is globally asymptotically stable if there exist matrices P = PT > 0,

Q1 = QT
1 > 0, R1 = RT

1 > 0, and a scale Λ > 0 such that




(1, 1) −PK PH + (L − L)UT Λ τ(M + LHU)TR1

∗ −Q1 −R1 0 −τKTR1

∗ ∗ −2ΛI2 τHTR1

∗ ∗ ∗ −R1



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with

(1, 1) = P(M + LHU) + (M + LHU)T
P + Q1 −R1.

If we do not consider the third term in (18) and set N = 1, the Lyapunov-

Krasovskii functional (18) becomes

V2(t, et) = eT (t)Pe(t) +

∫ t

t−τ

eT (ξ)Q1e(ξ)dξ. (28)

Then we can conclude the following delay-independent synchronization cri-

terion.

Corollary 2. For a given scale τ > 0, the error system described by (16)

and (17) is globally asymptotically stable if there exist matrices P = PT > 0,

Q1 = QT
1 > 0, and a scale Λ > 0 such that




(1, 1) −PK PH + (L − L)UT Λ
∗ −Q1 0
∗ ∗ −2ΛI2




with

(1, 1) = P(M + LHU) + (M + LHU)T
P + Q1.

Remark 2. Proposition 1, Corollary 1 and Corollary 2 are derived by using

information of nonlinear term ϕ(Ue(t), z(t)). Notice that if τ = 0, then the

control (6) reduces to

C : u(t) = K(y(t) − z(t)). (29)
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We now consider the master-slave synchronization scheme [7] described by

(4), (5) and (29). The corresponding error system is

ė(t) = (M −K)e(t) + Hϕ(Ue(t), z(t)) (30)

where ϕ(Ue(t), z(t)) is the same as that in (7). It follows from the loop

transformation [16] that the global asymptotic stability of the system (30)

in the sector [L, L] is equivalent to that of the system described by

ė(t)=(M + LHU− K)e(t)+ Hϕ̃(Ue(t), z(t)) (31)

in the sector [0, L − L] where ϕ̃(Ue(t), z(t)) is the same as that in (17).

Choosing the quadratic Lyapunov function

V3(t, e(t)) =
1

2
eT (t)Pe(t) (32)

where P ∈ R2×2 and P = PT > 0, we can derive a stability criterion for

system (31), which can be stated as that the error system described by (31)

and (17) is globally asymptotically stable if there exist a matrix P = PT > 0

and a scale Λ > 0 such that




P(M+LHU−K)+(M+LHU−K)TP PH+(L−L)UT Λ

∗ −2ΛI2


 < 0.

(33)
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Notice that the error system (7) can be rewritten as

ė(t) = (M + W(t))e(t) −Ke(t − τ) (34)

where

W(t)=




0 0

w(t) 0




with

w(t)=
−b(sin y1(t) − sin z1(t)) + l

2
(sin 2y1(t) − sin 2z1(t))

y1(t) − z1(t)

from which one can see that −b− |l| ≤ w(t) ≤ b + |l|. Therefore, the system

(34) can be modeled as a polytopic system. Let

W1 =




0 0

−b − |l| 0


 ,W2 =




0 0

b + |l| 0


 .

It is clear that W1 and W2 are the vertices of W(t).

Choosing Lyapunov-Krasovskii functional (18) and using the similar proof

to Proposition 1, we can derive the following synchronization criterion.

Proposition 2. For a given scale τ > 0, the error system described by (34)

and (10) is globally asymptotically stable if there exist matrices P = PT > 0,

Qi = Qi
T > 0, Ri = Ri

T > 0 (i = 1, 2, · · · , N) such that

(
Ω(1) Ω(2)

∗ Ω(3)

)
< 0 (35)
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where

Ω(1)=




Ω11 R1 0 · · · 0 −PK

∗ Ω22 R2 · · · 0 0
∗ ∗ Ω33 · · · 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · ·ΩNN RN

∗ ∗ ∗ · · · ∗ ΩN+1 N+1




with

Ω11 = P(M + Wj) + (M + Wj)
TP + Q1 −R1 (j = 1, 2),

Ωii = −Ri−1−Ri+Qi−Qi−1 (i = 2, 3, · · · , N),

ΩN+1 N+1 = −QN −RN ,

and

Ω(2)=




h(M + Wj)
TR1 h(M + Wj)

T R2 · · · h(M + Wj)
TRN

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−hKTR1 −hKTR2 · · · −hKTRN




(j=1, 2),

Ω(3) = diag(−R1 −R2 · · · −RN ).

Remark 3. Applying Proposition 1 and Proposition 2 to check the stability

of the system (7) can be formulated as the LMI feasibility problem, which can

be solved by the interior-point algorithm. The algorithm has a polynomial-

time complexity. The total number of scalar decision variables of Proposition

1 is M1 = 1
2
[(2N + 1)n2 + (2N + 1)n] + 1, and the total row size of the
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LMIs is L1 = (4N + 3)n + 1, the numerical complexity of Proposition 1 is

proportional to L1M
3
1 . For Proposition 2, the total number of scalar decision

variables is M2 = 1
2
[(2N +1)n2 +(2N +1)n], the total row size of the LMIs is

L2 = (6N +3)n, the numerical complexity of Proposition 2 is proportional to

L2M
3
2 . If N ≥ 2, it is easy to see that the numerical complexity of Proposition

1 is “smaller” than that of Proposition 2. One can also see that the larger

N , the larger numerical complexity for both Proposition 1 and Proposition

2.

Remark 4. If τ = 0, then the control (6) reduces to the control (29). If we

rewrite the error system (7) as

ė(t) = (M + W(t) −K)e(t), (36)

where W(t) is the same as that in (34), and choose Lyapunov function (32),

we can obtain a synchronization criterion which is Theorem 2 in [7].

4. Controller design

In this section, based on the analysis results in Section 3, we are in a

position to address the problem of controller design. Applying Proposition

1, we first establish the following result for (16) and (17).

Proposition 3. For a given scale τ > 0, the error system described by (16)

and (17) is globally asymptotically stable if there exist scalars µi > 0 (i =
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1, 2, · · · , N), Λ̃ > 0, and matrices P̃ = P̃
T

> 0, Q̃i = Q̃
T

i > 0, R̃i = R̃
T

i >

0 (i = 1, 2, · · · , N), and a matrix Y of appropriate dimensions such that




∆̃(1) ∆̃(2) 0

∗ ∆̃(3) ∆̃(4)

∗ ∗ ∆̃(5)


 < 0 (37)

where

∆̃(1)=




∆̃11 R̃1 0 · · · 0 −Y ∆̃1 N+2

∗ ∆̃22 R̃2 · · · 0 0 0

∗ ∗ ∆̃33 · · · 0 0 0
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · ∆̃NN R̃N 0

∗ ∗ ∗ · · · ∗ ∆̃N+1 N+1 0

∗ ∗ ∗ · · · ∗ ∗ −2Λ̃I2




with

∆̃11 = (M + LHU)P̃ + P̃(M + LHU)
T

+ Q̃1 − R̃1,

∆̃ii = −R̃i−1−R̃i+Q̃i−Q̃i−1 (i = 2, 3, · · · , N),

∆̃N+1 N+1 = −Q̃N − R̃N , ∆̃1 N+2 = HΛ̃ + (L − L)P̃UT ,

and

∆̃(2)=




hP̃(M + LHU)T hP̃(M + LHU)T · · · hP̃(M + LHU)T

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−hYT −hYT · · · −hYT

hΛ̃HT hΛ̃HT · · · hΛ̃HT




,
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∆̃(3) = diag(−2µ1P̃ − 2µ2P̃ · · · − 2µNP̃).

∆̃(4) = diag(µ1R̃1 µ2R̃2 · · · µNR̃N ).

∆̃(5) = diag(−R̃1 − R̃2 · · · − R̃N).

Moreover, the feedback controller gain matrix is given by K = YP̃
−1

.

Proof. Pre- and post-multiplying both sides of (19) with

diag(P−1, P−1, · · · P−1

︸ ︷︷ ︸
N+1

, Λ−1I2, R−1
1 , R−1

2 , · · · R−1
N ),

yield 


∆̂(1) ∆̂(2)

∗ ∆̂(3)


 < 0 (38)

where

∆̂(1)=




∆̂11 P−1R1P
−1 0 · · · 0 −KP−1 ∆̂1 N+2

∗ ∆̂22 P−1R2P
−1 · · · 0 0 0

∗ ∗ ∆̂33 · · · 0 0 0

...
...

...
. . .

...
...

...

∗ ∗ ∗ · · · ∆̂NN P−1RNP−1 0

∗ ∗ ∗ · · · ∗ ∆̂N+1 N+1 0

∗ ∗ ∗ · · · ∗ ∗ −2Λ−1I2



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with

∆̂11 = (M+LHU)P−1+P−1(M+LHU)T +P−1Q1P
−1 −P−1R1P

−1,

∆̂ii = −P−1(Ri−1+Ri−Qi+Qi−1)P
−1 (i = 2, 3, · · · , N),

∆̂N+1 N+1 = −P−1QNP−1 − P−1RNP−1,

∆̂1 N+2 = HΛ−1 + P−1(L − L)UT ,

and

∆̂(2) =




hP−1(M+LHU)T hP−1(M+LHU)T · · · hP−1(M+LHU)T

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

−hP−1KT −hP−1KT · · · −hP−1KT

hΛ−1HT hΛ−1HT · · · hΛ−1HT




,

∆̂(3) = −diag(R−1
1 R−1

2 · · · R−1
N ).

Then applying Lemma 4, and setting P̃ = P−1, Q̃i = P−1QiP
−1, R̃i =

P−1RiP
−1, i = 1, 2, · · · , N , Λ̃ = Λ−1, yield (37). This completes the proof.

Q.E.D.

Remark 5. In Remark 2 we give a synchronization criterion for horizontal

platform systems with state feedback control (29). Pre- and post-multiplying
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both sides of (33) with diag(P−1, Λ−1I2) and setting P̃ = P−1, Λ̃ = Λ−1 yield




(M+LHU)P̃+P̃(M+LHU)T −Y−YT HΛ̃+P̃(L−L)UT

∗ −2Λ̃I2


 < 0.

(39)

By the LMI (39), we can obtain the controller (29) for (4) and (5). It can

be stated as that the error system described by (31) and (17) is globally

asymptotically stable if there exist a matrix P̃ = P̃
T

> 0, a matrix Y of

appropriate dimensions, and a scale Λ̃ > 0 such that (39). Moreover, the

feedback controller gain matrix is given by K = YP̃
−1

.

As pointed out in the Section 3, the error system (7) can be rewritten as

(34) which is modeled as a polytopic system. We are in a position to design

the controller for system (34). Similar to the proof of Proposition 3, one can

derive the following result.

Proposition 4. For a given scale τ > 0, the error system described by (34)

and (10) is globally asymptotically stable if there exist scales µ̌i > 0 (i =

1, 2, · · · , N), and matrices P̌ = P̌
T

> 0, Q̌i = (Q̌i)
T > 0, Ři = Ř

T

i > 0 (i =

1, 2, · · · , N), and a matrix Y̌ of appropriate dimensions such that




Ω̌(1) Ω̌(2) 0
∗ Ω̌(3) Ω̌(4)

∗ ∗ Ω̌(5)


 < 0, (40)
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where

Ω̌(1) =




Ω̌11 Ř1 0 · · · 0 −Y̌

∗ Ω̌22 Ř2 · · · 0 0
∗ ∗ Ω̌33 · · · 0 0
...

...
...

. . .
...

...

∗ ∗ ∗ · · · Ω̌NN ŘN

∗ ∗ ∗ · · · ∗ Ω̌N+1 N+1




with

Ω̌11 = (M + Wj)P̌ + P̌(M + Wj)
T + Q̌1 − Ř1 (j = 1, 2),

Ω̌ii = −Ři−1−Ři+Q̌i−Q̌i−1 (i = 2, 3, · · · , N),

Ω̌N+1 N+1 = −Q̌N − ŘN ,

and

Ω̌(2)=




hP̌(M+Wj)
T hP̌(M+Wj)

T · · · hP̌(M+Wj)
T

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−hY̌
T

−hY̌
T

· · · −hY̌
T




,

Ω̌(3) = diag(−2µ̌1P̌ − 2µ̌2P̌ · · · − 2µ̌NP̌),

Ω̌(4) = diag(µ̌1Ř1 µ̌2Ř2 · · · µ̌NŘN),

Ω̌(5) = diag(−Ř1 − Ř2 · · · − ŘN ).
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Moreover, the feedback controller gain matrix is given by K = Y̌P̌
−1

.

Proof. Pre- and post-multiplying both sides of (35) with

diag(P−1, P−1, · · · P−1

︸ ︷︷ ︸
N+1

, R−1
1 , R−1

2 , · · · R−1
N ),

then applying Lemma 4, and setting P̌ = P−1, Q̌i = P−1QiP
−1, Ři =

P−1RiP
−1, i = 1, 2, · · · , N , yield (40). This completes the proof. Q.E.D.

5. An example

In order to show the effectiveness of the derived results in this paper,

we consider the horizontal platform system (2) in which the parameters

are choosed as A = 0.3 kg mm, B = 0.5 kg mm, C = 0.2 kg mm, D =

0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g = 9.8 ms-2, F =

3.4 N, and ω = 1.8 rad ms-1. The initial conditions of the master and slave

systems are x1 = x2 = 0.1 and y1 = y2 = 0.01, respectively. Fig. 3 is the

simulation result for the state variables of (2), from which one can see that

the horizontal platform system (2) has a double scroll attractor.

First, we consider the synchronization problem. In order to show the

effectiveness of Proposition 1 and Proposition 2, let the controller gain matrix

K =




2 1

3 4


. Applying Proposition 1 and Proposition 2 to this case, we

obtain the maximum allowed time delay bound τmax for different N , which

are listed in Table 1. From this table, we can conclude that Proposition 1 can
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provide better results than Proposition 2 for N = 1, N = 2, N = 3, N = 4

and N = 5, respectively, which also means that keeping the nonlinearity

in the error system can derive a larger delay bound than transforming the

nonlinear error system into a linear time-varying system; one can also see that

the larger N , the better τmax. The cost of growth of maximum allowed time

delay bound is the increase of the computing complexity. From Remark 2, we

can compare the numerical complexity of Proposition 1 and Proposition 2 for

different N . The comparison results are listed in Table 2. From this table,

we can conclude that the numerical complexity of Proposition 1 is “smaller”

than that of Proposition 2 for N = 2, N = 3, N = 4 and N = 5, respectively.

One can also see that the larger N , the larger numerical complexity for both

Proposition 1 and Proposition 2.

Taking the time delay as τ = 0.2318 s, we depict the simulation results for

master, slave and error systems in Fig. 4, Fig. 5, Fig. 6. The initial condition

of master system (4) is (y10
, y20

) = (0.1, 0.1) and the initial condition of slave

system (5) is (z10
, z20

) = (0.01, 0.01). From Fig. 4, Fig. 5, and Fig. 6,

one can clearly see that the system (16) is globally asymptotically stable,

i.e., the master-slave synchronization scheme described by (4), (5), and (6)

indeed achieves synchronization.

For τ = 0.16 s, τ = 0.18 s, τ = 0.20 s, τ = 0.23 s, τ = 0.28 s, applying

Proposition 3 and Proposition 4 with N = 1, respectively, one can derive the

different control gain K, the results are listed in Table 3. From this table,

one can clearly see that for the fixed time delay τ , the feedback gain derived
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by Proposition 4 is smaller than that derived by Proposition 3 in the sense

of Euclidean norm. As τ increases, the gain K derived by Proposition 3 and

Proposition 4 increases in the sense of Euclidean norm, respectively.

Let τ = 0.24, µ = 0.7, using Proposition 3, we have Λ̃ = 3.4996 × 10−11

and

P̃ = 10−9 ×




0.1777 −0.1186

−0.1186 0.2235


 ,

Q̃ = 10−9 ×




0.1643 −0.1807

−0.1807 0.1661


 ,

R̃ = 10−9 ×




0.4995 −0.2534

−0.2534 0.5976


 ,

Y = 10−9 ×




0.4426 −0.0783

−0.1668 0.4595


 ,

K =




3.4929 1.5027

0.6698 2.4109


 .

Let τ = 0.24, µ̌ = 0.7, using Proposition 4, we have

P̌ = 10−9 ×




0.1529 −0.0340

−0.0340 0.0862


 ,
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Q̌ = 10−9 ×




0.0147 −0.4009

−0.4009 0.3185


 ,

Ř = 10−9 ×




0.4796 −0.0808

−0.0808 0.1737


 ,

Y̌ = 10−9 ×




0.3967 −0.0942

0.0565 0.2037


 ,

K =




2.5776 −0.0765

0.9807 2.7501


 .

The simulation results for master, slave and error systems for time delay

τ = 0.24 and the feedback controller gain derived by Proposition 3 and the

gain derived by Proposition 4 are illustrated in Fig. 7-Fig. 12, respectively,

where the initial condition of master system (4) is (x10
, x20

) = (0.1, 0.1) and

the initial condition of slave system (5) is (y10
, y20

) = (0.01, 0.01). Fig. 7-

Fig. 12 clearly illustrates that the master and slave systems are synchronized,

which means that the design method is effective.

6. Conclusion

We have addressed the problem of master-slave synchronization for hor-

izontal platform systems by using time-delay feedback control. We have

employed a delay decomposition approach to derive the synchronization cri-

teria. Based on the synchronization criteria, we have derived some sufficient
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conditions on the existence of a delayed error feedback controller. Moreover,

we have designed the controller by solving a set of LMIs. We have also il-

lustrated the effectiveness of synchronization criteria and the design method

through one simulation example.
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• Fig. 4. Simulation result for master system with time delay τ =
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gain derived by Proposition 3, τ = 0.24, and A = 0.3 kg mm, B =
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• Fig. 9. Simulation result for error system with the feedback controller

gain derived by Proposition 3, τ = 0.24, and A = 0.3 kg mm, B =
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6378000 m, g = 9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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6378000 m, g = 9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.

• Fig. 11. Simulation result for slave system with the feedback controller

gain derived by Proposition 4, τ = 0.24, and A = 0.3 kg mm, B =

0.5 kg mm, C = 0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 =

6378000 m, g = 9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.

• Fig. 12. Simulation result for error system with the feedback controller

gain derived by Proposition 4, τ = 0.24, and A = 0.3 kg mm, B =
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6378000 m, g = 9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 1. Model of the horizontal platform [4] [5]
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Fig. 2. Synchronization scheme
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Fig. 3. Chaotic attractor of the non-autonomous horizontal platform sys-
tem (1) with A = 0.3 kg mm, B = 0.5 kg mm, C = 0.2 kg mm, D =
0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g = 9.8 ms-2, F =
3.4 N, and ω = 1.8 rad ms-1.

42



−10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6
Master

State variable y
1
(t) [rad]

S
ta

te
 v

ar
ia

bl
e 

y 2(t
) 

[r
ad

]

Fig. 4. Simulation result for master system with time delay τ = 0.2318 and
A = 0.3 kg mm, B = 0.5 kg mm, C = 0.2 kg mm, D = 0.4 kg mms-1, r =
0.11559633 kg m, R0 = 6378000 m, g = 9.8 ms-2, F = 3.4 N, ω =
1.8 rad ms-1.
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Fig. 5. Simulation result for slave system with time delay τ = 0.2318 and
A = 0.3 kg mm, B = 0.5 kg mm, C = 0.2 kg mm, D = 0.4 kg mms-1, r =
0.11559633 kg m, R0 = 6378000 m, g = 9.8 ms-2, F = 3.4 N, ω =
1.8 rad ms-1.
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Fig. 6. Simulation result for error system with time delay τ = 0.2318 and
A = 0.3 kg mm, B = 0.5 kg mm, C = 0.2 kg mm, D = 0.4 kg mms-1, r =
0.11559633 kg m, R0 = 6378000 m, g = 9.8 ms-2, F = 3.4 N, ω =
1.8 rad ms-1.
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Fig. 7. Simulation result for master system with the feedback controller gain
derived by Proposition 3, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 8. Simulation result for slave system with the feedback controller gain
derived by Proposition 3, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 9. Simulation result for error system with the feedback controller gain
derived by Proposition 3, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 10. Simulation result for master system with the feedback controller gain
derived by Proposition 4, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 11. Simulation result for slave system with the feedback controller gain
derived by Proposition 4, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Fig. 12. Simulation result for error system with the feedback controller gain
derived by Proposition 4, τ = 0.24, and A = 0.3 kg mm, B = 0.5 kg mm, C =
0.2 kg mm, D = 0.4 kg mms-1, r = 0.11559633 kg m, R0 = 6378000 m, g =
9.8 ms-2, F = 3.4 N, ω = 1.8 rad ms-1.
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Table 1

The maximum allowed time delay bound for different NN 1 2 3 4 5P r o p o s i t i o n 1 0 . 2 1 6 6 0 . 2 2 7 5 0 . 2 3 0 5 0 . 2 3 1 3 0 . 2 3 1 8P r o p o s i t i o n 2 0 . 2 1 5 6 0 . 2 2 7 0 0 . 2 2 9 8 0 . 2 3 1 1 0 . 2 3 1 2
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Table 2

Comparison of the numerical complexity of Proposition 1 and Proposition 2

Proposition 1 Proposition 2

N=1

The total number of 

scalar decision 

variables

10 9

The total row size of 

the LMIs
15 18

Computing time (s) 1.7813 1.4531

N=2

The total number of 

scalar decision 

variables

16 15

The total row size of 

the LMIs
23 30

Computing time (s) 3.3125 3.7969

N=3

The total number of 

scalar decision 

variables

22 21

The total row size of 

the LMIs
31 42

Computing time (s) 4.5313 9.1094

N=4

The total number of 

scalar decision 

variables

28 27

The total row size of 

the LMIs
39 54

Computing time (s) 6.6250 17.3906

N=5

The total number of 

scalar decision 

variables

34 33

The total row size of 

the LMIs
47 66

Computing time (s) 12.5625 26.5938
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Table 3

The feedback controller gain K for different τ with N = 1T i m e d e l a y K
d e r i v e d b yP r o p o s i t i o n 4 K

d e r i v e d b yP r o p o s i t i o n 4
0.16 !

 3.3376  1.0821

0.6333 2.7966

 !
" #
$ %

 2.4699  -0.0640

0.69176 2.9821

 !
" #
$ %

0.18 !

 3.3700  1.1887

0.6690 2.7164

 !
" #
$ %

 2.5224 -0.0262

0.9045 2.8820

 !
" #
$ %

0.20 !

 3.4383  1.3254

0.6320 2.5878

 !
" #
$ %

 2.5995 0.0210

0.8660 2.8084

 !
" #
$ %

0.22 !

 3.4830  1.4392

0.6229 2.4719

 !
" #
$ %

2.6345 0.0226

0.8706 2.7571

 !
" #
$ %

0.24 !

 3.4929  1.5027

0.6698 2.4109

 !
" #
$ %

 2.5776 -0.0765

0.9807 2.7501

 !
" #
$ %
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