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Robust H Filter Design of Uncertain Descriptor
Systems with Discrete and Distributed Delays

Dong Yue and Qing-Long Han, Member, IEEE

Abstract—The robust filtering problem for a class of contin-
uous-time uncertain linear descriptor systems with time-varying
discrete and distributed delays is investigated. The time delays
are assumed to be constant and known. The uncertainties under
consideration are norm-bounded, and possible time-varying, un-
certainties. Sufficient condition for the existence of an filter
is expressed in terms of strict linear matrix inequalities (LMIs).
Instead of using decomposition technique, a unified form of LMIs
is proposed to show the exponential stability of the augmented
systems. The condition for assuring the stability of the “fast” sub-
system is implied from the unified form of LMIs, which is shown
to be less conservative than the characteristic equation based
conditions or matrix norm-based conditions. The suitable filter
is derived through a convex optimization problem. A numerical
example is given to show the effectiveness of the method.

Index Terms—Descriptor systems, discrete delay, distributed
delay, linear matrix inequality (LMI), robust filter, stability.

I. INTRODUCTION

S IGNAL estimation has received significant attention in the
past decades [1], [18]. Current efforts on this topic can be

divided into two classes: the Kalman filtering approach and the
filtering approach.

In the Kalman filtering approach, the systems disturbances
are assumed to be Gaussian noises with known statistics; see,
for example, for linear systems [23], [26], and [29] and for linear
descriptor systems [4], [6], and [7]. When the systems noise
sources are assumed to be arbitrary signals with bounded en-
ergy (or average power), the filtering approach provides a
guaranteed noise attention level. One of its main advantages is
the fact that it is insensitive to the exact knowledge of the statis-
tics of the noise signals. Several methods are proposed to solve
the filtering problem [2], [20], [32].

Manuscript received February 26, 2003; revised October 27, 2003. This work
of D. Hue and Q.-L. Han was supported in part Central Queensland Univer-
sity for the 2004 Research Advancement Awards Scheme Project “Analysis
and Synthesis of Networked Control Systems” and the Natioanl Natural Sci-
ence Foundation of China. The work of D. Yue was also supported in part by
the Teaching and Research Award Program for Outstanding Young Teachers at
Nanjing Normal University and the Key Scientific Research Foundation by the
Ministry of Education of China (03045). The associate editor coordinating the
review of this paper and approving it for publication was Dr. Zhi-Quan (Tom)
Luo.

D. Yue is with the Department of Control Science and Engineering, Nanjing
Normal University, Nanjing, Jiangsu, 210042, China, and also with the Fac-
ulty of Informatics and Communication, Central Queensland University, Rock-
hampton, QLD 4702, Australia (e-mail: medongy@pine.njnu.edu.cn).

Q.-L. Han is with the Faculty of Informatics and Communication, Cen-
tral Queensland University, Rockhampton QLD 4702, Australia (e-mail:
q.han@cqu.edu.au).

Digital Object Identifier 10.1109/TSP.2004.836535

When there exist parameter uncertainties in the systems
model, robust filtering can provide a powerful signal
estimation. It designs an asymptotically stable filter, based on
an uncertain signal model, which ensures that the filtering error
dynamics is asymptotically stable and that the -induced gain
from the noise signals to the filtering error remains bounded by
a prescribed level for all allowed uncertainties. Many results
regarding robust filtering are obtained; see, e.g., [16], [23],
and [26].

Time-delays are frequently encountered in practical systems
such as engineering and biological systems [13]. Their existence
may induce instability, oscillation, and poor performance [34].
Time delays also arise in several signal processing such as multi-
path propagation [14], telemanipulation systems [25], data com-
munication in high-speed internet [27], and network control sys-
tems [15]. When one designs an filter, the time-delay must
be taken into account in order to make the system work in the ex-
pected performance. Otherwise, the system may collapse in the
presence of time delays. Recently, there have been increasing
interests in designing an filter for time-delay systems. For
example, in [24], an filter design for precisely known sys-
tems with a single time-delayed measurement was proposed. In
[28], based on an algebraic Riccati matrix inequality approach,
the robust filtering was investigated for uncertain linear
systems with delayed states and outputs. In [8], robust fil-
tering for uncertain linear systems with multiple time-varying
state delays was considered, and a delay-independent sufficient
condition was given in the form of linear matrix inequalities
(LMIs). In [10], based on a descriptor model transformation,
a delay-dependent filtering design was proposed for linear
systems with constant time delay. The filter obtained was of the
Luenberger observer type. The results in [10] were extended to
a system with time-varying delay and improved by employing
the Parks [22] inequality for the bounding of cross terms [12].

As is well known, one can use the time-delay model to
describe the so-called “lossless propagation phenomena” [13].
These models can be further transformed to descriptor systems
with time delay; see, e.g., [21]. The descriptor systems with
time delay are systems of a more general type. It is of signifi-
cance to consider the filtering problem for these kinds of
systems. To the best of authors’ knowledge, the problem was
only investigated in [11], where the approach was based on the
decomposition technique, and the filter was of the Luenberger
observer type. In [11], the uncertainties under consideration
were polytopic ones. It is difficult to extend the results in [11]
to other types of uncertainties such as norm-bounded ones. The
distributed delay was not considered in [11].
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This paper will be concerned with the robust filtering
for a class of uncertain linear descriptor systems with discrete
and distributed delays. The uncertainties are norm-bounded
ones. The sufficient condition for the existence of an filter
will be expressed in terms of strict LMIs. Instead of using
the decomposition technique, a unified form of LMIs will be
proposed to show the exponential stability of the augmented
systems. The condition for assuring the exponential stability
of the “fast” subsystem will be implied from the unified form
of LMIs, which is shown to be less conservative than the
characteristic equation-based conditions or matrix norm-based
conditions. The suitable filter will be derived through a convex
optimization problem. A numerical example will be finally
given to show the effectiveness of the method.

Notation: denotes the -dimensional Euclidean space,
is the set of real matrices, is the identity matrix of

appropriate dimensions, and stands for either the Euclidean
vector norm or its induced matrix 2-norm. The notation
(respectively, for means that the matrix

is a real symmetric positive definite (respectively, positive
semi-definite). denotes the set of all continuous functions
from to . denotes the max-
imum (minimum) eigenvalue of the real symmetric matrix .

denotes the trace of a matrix . Re denotes the real
part of a complex numbers. “ ” denotes the entries implied by
symmetry of a matrix. For a vector function ,
its norm is defined as

II. PRELIMINARIES

Consider the following uncertain descriptor system with dis-
crete and distributed delays:

(1)

(2)

(3)

(4)

where is the system state, is the ex-
ternal disturbance signal that belongs to , is
the measurement, and is the signal to be estimated.

and are constants describing the magnitude of
delay time. denotes the initial function. , , ,

, , , , , , and are known constant matrices
of appropriate dimensions. , , , ,

, and denote the parameter uncertainties that
satisfy

(5)

where , , , , and are known matrices of appro-
priate dimensions, and is an unknown, piecewise contin-
uous time-varying matrix that satisfies . Throughout
this paper, we assume that rank .

Similar to [31], we introduce a definition on regularity and
nonimpulsiveness of the system (1).

Definition 1: The descriptor system (1) [with ] is
said to be regular and impulse free if ( , ) is regular
and impulse free.

Consider a linear filter with full order as

(6)

(7)

(8)

where is the state estimate, and the constant matrices and
are filter parameters to be determined.

To begin with the study of the state estimation problem, we
define the state error variable as

(9)

Then, from (1), (2), and (6), satisfies the following
dynamics:

(10)

From (1), (3), and (10), we have the following augmented
system:

(11)

(12)

(13)

where is the estimation error, and
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(14)

From (5), , , and can be expressed
as

(15)
where

(16)

The filtering design problem to be addressed is stated as follows.
Robust Filtering Problem: For a given , design

a full-order linear filter of the form (6)–(8) such that the aug-
mented system (11)–(13) is regular, impulse-free, and internally
exponentially stable, namely, there exist and such
that the solution of (11) and (13) with satisfies

under zero initial con-
dition, and for any nonzero , satisfies

.

III. ROBUST PERFORMANCE ANALYSIS

In this section, we will concentrate our attention on the ro-
bust performance analysis for system (11)–(13). The following
lemmas are useful in the proof of Theorem 1.

Lemma 1: Suppose that piecewise continuous real square
matrices , , and satisfy

(17)

for all . Then, the following hold.

1) and are invertible.
2) for some .
Lemma 2: Suppose that a positive continuous function

satisfies

(18)

where , , , and . Then, satisfies

(19)

where , and .
The proofs of Lemmas 1 and 2 are given in the Appendix.
Based on Lemmas 1 and 2, we are now in a position to state

and establish the following theorem that gives sufficient condi-
tions assuring a guaranteed level of noise attenuation to the
filtering error systems of (11)–(13).

Theorem 1: Given scalars and . Suppose
that matrices , , and are such that

(20)

and we also have (21), shown at the bottom of the page, where
. Then, the augmented system (11)–(13) is reg-

ular, impulse-free, and internally exponentially stable and sat-
isfies a prescribed norm upper bound constraint, that is,

for any nonzero .
The proof of Theorem 1 can be found in the Appendix.
For the cases when and

, by Theorem 1, the following corollaries are easily obtained,
respectively.

Corollary 1: Consider system (11)–(13), where
. For a given scalar , if there exist matrices ,

, and such that

(22)

we also have (23), shown at the bottom of the page. Then, the
augmented system (11)–(13) is regular, impulse-free, and inter-
nally exponentially stable and satisfies a prescribed norm
upper bound constraint, that is, for any
nonzero .

(21)

(23)
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Corollary 2: Consider system (11)–(13), where
. For a given scalar , if there exist matrices ,

, and such that

(24)

we then have (25), shown at the bottom of the page. Then, the
augmented system (11)–(13) is regular, impulse-free, and inter-
nally exponentially stable and satisfies a prescribed norm
upper bound constraint, that is, for any
nonzero .

Remark 1: It is worth pointing out that for the time-invariant
parameter uncertainty case, in Corollary 1 can be set as a
zero matrix. Therefore, in the case of and where the
parameter uncertainties are time invariant, Corollary 1 is an
LMI form of [28, Lemma 4]. Moreover, if one only considers
the stability of nominal systems, [31, Th. 1] is easily covered
by Corollary 1. Therefore, Theorem 1 can be viewed as an
extension of the existing results to the descriptor systems with
time-varying uncertainties and discrete and distributed delays.
However, our analysis procedure is different from that in [31],
and the derived stability in our paper is exponential stability.

Remark 2: From the proof of Theorem 1, it can be found that
LMI-based condition (71) is a sufficient condition for guaran-
teeing stability of the “fast” subsystem (75). In the existing lit-
erature [11], [17], to show stability of the “fast” subsystem, the
following norm upper bound based condition was extensively
used

(26)
where is a sufficiently small real number. Since (21) im-
plies (71), no decomposition of the system matrices is needed
to apply our method. However, to determine (26), it is neces-
sary to decompose the system matrices first, which may lead to
the complexity and fallibility of the method. In addition, the fol-
lowing simple example shows that (71) may also lead to much
less conservative results than that by using (26). Consider a
simple (75) with parameter matrices

Obviously, no conclusion on the stability of the “fast” system
can be made by (26), whereas it is guaranteed by (71) through
choosing .

Remark 3: For a special descriptor system with distributed
delay terms, which is an equivalent system of the state-space

system (1) in [30], stability analysis was given based on
a generalized Lyapunov functional. From the view point of
descriptor system theory, it can be seen from [30, proof of Th.
2.1] that only the stability of the state of the slow subsystem
was studied, although it is enough for the paper [30]. For a
general class of descriptor systems with delays, the stability
of the two subsystems, namely, the “slow” subsystem and
the “fast” subsystem, must be addressed in order to show the
stability of the whole system. Instead of using decomposition
technique, based on both a generalized Lyapunov functional
(54) and an algebraic function (78), a unified form of LMIs
was proposed in our paper to show the exponential stability of
the augmented system (11)–(13). The condition for assuring
the stability of the “fast” subsystem was implied from the
unified form of LMIs, which has been shown in Remark 2
to be less conservative than the characteristic equation-based
conditions or matrix norm-based conditions. It should be noted
that for [30, (5)] in the case of and or the
case of , Corollary 2 in our paper has the equivalent
condition as the one in [30, (8) in Th. 2.1], whereas Corollary
2 can determine not only the stability of but also the
stability of directly from the information of parameter
matrices of [30, (5)].

IV. ROBUST FILTER DESIGN

After finishing some necessary preparations in the last section,
we can now devote ourselves to the design of filter parameters

and . The expected filter parameters will be expressed
in terms of the solutions of a set of LMIs, which can be
realized in the following theorem.

Theorem 2: Given scalars and . If there
exist matrices , , , , , and and scalars

, such that

(27)

(28)

(29)

we then have (30), shown at the bottom of the next page. Then,
the robust filtering problem for system (1)–(4) is solvable.
Moreover, the parameters of the designed filter are given by

(31)

In order to prove Theorem 2, the following lemma is needed.
Lemma 3 [3]:

1) For any real vectors , , and a real matrix of
appropriate dimensions

(25)
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2) Let , , , and be real matrices of appropriate
dimensions with . Then, for any scalar , the
following inequality holds:

Proof of Theorem 2: Define (32), shown at the bottom of
the page.

By (15), can be expressed as the last equation shown at the
bottom of the page. Using Lemma 3, we obtain (33), shown at
the bottom of the next page, where . By Schur
complements, it can be shown that is equivalent to (34),
shown at the bottom of the next page. Let

(35)

where , , , , and is a scalar.
Obviously, (20) holds if and only if (27), (28), and (29) hold.
Substituting the above and into (34) yields (36), shown at
the bottom of the page after the next page. Note that (36) implies
that

By Lemma 1, it is easy to see that is invertible.
Define and . Since , one can see

that (36) is equivalent to (30). Therefore, if (30) holds, then
. Noting that is a block 4 4 matrix, it is obvious to get (37),

shown at the bottom of the page after the next page. Defining
, from (33), (37), and by Theorem 1, we

can complete our proof.
In light of Lemma 3 and Corollary 1 or Corollary 2, we reach

the following conclusions.

(30)

(32)
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Corollary 3: Consider system (1)–(4) without the distributed
delay term. For a given scalar , if there exist matrices ,

, , , , and and scalars , such that

(38)

(39)

(40)

we get (41), shown at the bottom of the next page. Then, the ro-
bust filtering problem for system (1)–(4) is solvable. More-
over, the parameters of the designed filter are given by

(42)

Corollary 4: Consider system (1)–(4) without the discrete
delay term. For a given scalar , if there exist matrices

, , , , , and and scalars ,
such that

(43)

(44)

(45)

we get (46), shown at the bottom of the page after the next
page. Then, the robust filtering problem for system (1)–(4)

is solvable. Moreover, the parameters of the designed filter are
given by

(47)

Remark 4: In Theorem 2 and the resulting corollaries,
equality constraints are included, which will lead to numer-
ical problems when checking such nonstrict LMI conditions
since equality constraints are often fragile and usually not
met perfectly [31]. For the case that rank , there
exists a matrix with rank such
that . Define
and , where is posi-
tive definite, and . Obviously,

and hold. De-
note (30) as the inequality for Theorem 2 after substituting

and into
(30)’. Then, the solution of satisfying
(27), (28), and (30) can be transformed into the solution
of and satisfying the strict
LMI (30)’. From (31), we can finally obtain the parameters
of the designed filter as and

. For Corollaries 1 and 2, we
can use the same procedure to transform the corresponding
nonstrict LMIs into strict LMIs.

Remark 5: If and are fixed, the upper bound of that
guarantees the solution of the problem (30)’ is feasible can be

(33)

(34)
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solved. Generally, can be chosen as 0.5. In addition, when
and are fixed, the smallest describing the disturbance at-
tenuation level can be solved from the following optimization
problem:

Minimize

Subject to

and (30)' (48)

and , is the optimal value of problem (48). Further-
more, it is shown by the following example that appropriately
adjusting the parameter may lead to less conservative results.

(36)

diag

diag (37)

(41)
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V. EXAMPLE

Consider system (1)–(4) with parameters

Choose and . For applying
Theorem 2 and Remark 5, we can solve ,

, , and as

Then, from (31), we can compute and as

In fact, when is chosen to be 0.5, one can find an upper bound
of that guarantees that the feasibility of problem (30)’ is 2.72.
However, if one chooses as 0.4, the upper bound of can
be 2.76. By optimization algorithm (48), we can find that the
smallest is 0.6397 for and and the corre-
sponding and are

VI. CONCLUSION

The robust filtering problem has been addressed for con-
tinuous-time uncertain descriptor systems with discrete and dis-
tributed delays. The designed filter can guarantee that the fil-
tering error system is regular, impulse-free, and exponentially
stable and satisfies a prescribed norm bound constraint.
The decomposition-free method has been used to derive the
LMI-based sufficient conditions, which can be efficiently solved
by using an interior-point optimization algorithm.

(46)
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APPENDIX

Proof of Lemma 1

Since , there exists a scalar such that .
Therefore, it follows from (17) that

(49)

Recalling the fact [9] that

Re

where is a real square matrix, we obtain from (49) that

Re

Hence, is invertible for all . Consequently, and
are invertible for all . Similar to the proof of [33, Lemma

2.2], it is easy to prove that holds for some .
Therefore, the proof is omitted.

Proof of Lemma 2

From (18), we know that

(50)

Next, we first prove that for any

(51)

Note that

If (51) is not true, then exists such that

(52)

and

(53)

In fact, for we have

Therefore, (53) holds for any . However, from (50),
(52), and (53), we can see that

which contradicts (52). By letting in (51), we obtain
(19).

Proof of Theorem 1

For , where
, , we define a generalized Lyapunov functional

as

(54)

Taking the time derivative of along the trajectory of
system (11) yields

(55)

where

(56)
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By Schur complements, it is easy to see from (21) and (56) that

Therefore, it follows from (55) that

(57)

Integrating both sides of above inequality from 0 to yields

(58)

which deduces, under zero initial condition, i.e., , that

that is, .
If the external disturbance is zero, i.e., , then it

follows from (55) that

(59)
where

By Schur complements and from (21), we can show that

diag (60)

Therefore, it follows from (59) and (60) that

(61)

where .
Define a new function as

(62)

and taking its time derivative yields

(63)

Integrating both sides of (63) from 0 to obtains

(64)

By using the similar analysis method of [19], it can be seen from
(54), (62), and (64) that, if is chosen small enough, a constant

can be found such that

(65)

Since rank , there exist two nonsingular
matrices and such that

By Schur complements, it is easy to see that (21) implies (66),
shown at the bottom of the page. Define

(67)

Combining (20), (66), and (67), we can show that , ,
, , , and satisfy

(68)

(66)
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and

(69)

where . Obviously, is of

the form and . Substituting

into (69) yields (70), shown at the bottom of the page, where

which implies

(71)

where . By Lemma 1,
(71) implies that and are invertible, and a constant

exists such that . Therefore, it follows
from [5] and Definition 1 that system (11) is regular and impulse
free.

Under a state transformation

(72)

and noting the structure of , we can obtain from (65) that

(73)

Furthermore, the state transformation can
also lead to the following decomposition of system (11):

(74)

(75)

Define

(76)

From the definition of , , and , a scalar
exists such that

Then, from (73) and (76), we have

(77)

To study the exponential stability of , we construct a
function as

(78)

From (75), we obtain, by premultiplying , that

(79)

(70)
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(83)

Substituting (79) into (78) and using Lemma 3, we have

(80)

where

(81)

and is any positive scalar.
From (71) and (81) and using Schur complements, we can

show that

diag (82)

Combining (77), (80), and (82), we obtain (83), shown at the top
of the page. Since can be chosen arbitrarily, can be thus
chosen small enough such that

(84)

If is fixed such that (84) holds, then another constant
can be found such that

(85)

Define the second equation at the top of the page. Then, com-
bining (78), (83), and (85), we obtain

(86)

Let . From (86), we have

(87)

Using Lemma 2, one obtains

where , and . Therefore

which implies by combining (73) and that
is exponentially stable.
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