STRUCTURE AND DYNAMICS OF GRAZED WOODLANDS IN NORTH-EASTERN AUSTRALIA

L. J. TAIT

M. APP. SC.

2010

Structure and Dynamics of Grazed Woodlands in North-eastern

Australia

Laurence James Tait

Master of Applied Science
Central Queensland University
Faculty of Science Engineering and Health
March 2010

Abstract

Data from 75 permanent belt transect sites were utilised for an analysis of the floristics and temporal dynamics of the woody vegetation of the grazed woodlands of Queensland, Australia. Woody species abundance, composition and structure were described based on over 42, 000 individual recorded plants and.Detrended Correspondence Analysis was used to divide the transects into seven community types based on floristic similarity. The time between first and last recording varied between sites, with 17 years between initial and final recording for the oldest site and three years or less for the 39 remaining sites were recorded. Between first and last recording events mortality was 2.6% of initial woody plant density per year while recruitment was 6.7%, resulting in an overall increase in woody plant numbers of 17% of initial density. The woodlands experienced a decrease in basal area of 0.7% of initial basal area per year despite the increase in density, reflecting that many the majority of recruits were small plants with minimal basal area.

Despite fluctuation in basal area and density, species composition remained largely unchanged over time. Size class distributions remained unchanged over time and followed a reverse-J pattern for most woodland types. Ordination analysis revealed that a range of environmental factors including temperature, geographic location, soil type and topography were important in influencing the distribution of community types. Linear models revealed that that dynamics patterns within the woodlands were poorly correlated with those environmental factors utilised.

Table of Contents
ABSTRACT II
TABLE OF CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VII
ACKNOWLEDGEMENTS IX
DECLARATION X
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW
1.1 Introduction 1
1.2 Grazed Woodlands 4
1.3 Distribution and Climate 5
1.4 Community structure 6
1.5 Ecological Changes 11
1.6 Long-term monitoring 12
1.7 Dynamics, Structure and Composition 16
1.7.1 Composition 16
1.7.2 Structure 17
1.7.3 Dynamics 18
1.8 Classification and Ordination 19
CHAPTER 2: MATERIALS AND METHODS
2.1 Site selection, construction and recording 23
2.2 Data analysis 28
2.2.1 Floristic analysis 39
2.2.2 Analysis of Structure and Structural Change 44
2.2.3 Diameter distributions 46
2.2.4 Influence of Environmental Factors 48
CHAPTER 3: RESULTS
3.1 Ordination and community classification 51
3.2 Density 54
3.3 Basal Area 59
3.4 Mortality 67
3.5 Recruitment 69
3.6 Height 74
3.9 Size Class Distributions 77
3.10 Floristic composition 94
3.10.1 Importance values 109
3.11 Relationships between environmental factors 126
3.12 Relationship between woodland structure and dynamics and environment. 133
CHAPTER 4 : DISCUSSION
4.1 Species diversity and community similarity 139
4.2 Family importance values 144
4.3 Density 146
4.4 Basal Area 149
4.5 Size Class Distributions 156
4.6 Mortality and recruitment 161
4.7 Height 163
4.8 Environmental factors 164
4.9 Dynamics models 169
4.10 Canonical Correspondence Analysis 175
CHAPTER 5: CONCLUSIONS 179
BIBLIOGRAPHY 182
APPENDIX 203
Table 1. Topography categories used to describe transect sites. 27
Table 2. General site details. 29-31
Table 3. Species contributing 75\% of basal area for each site. 32-34
Table 4. Mean tree density (plants/ha) by circumference class and Total in the woodland types under study. 57-58
Table 5. Mean tree Basal area ($\mathrm{m}^{2} / \mathrm{ha}$) by circumference class and Total in the woodland types under study. 62-63
Table $6 \quad$ Upper asymptote values for sigmoidal functions fitted to Basal area accumulation curves for individual sites. 64
Table 7 Upper asymptote values for sigmoidal functions fitted to Basal area accumulation curves for woodland types. 67
Table 8. Tukey's honestly significant difference test results for a comparison of basal area rates between woodland types. 82
Table 9. Mortality rates (plants/ha/yr) by circumference class and Total in the woodland types under study. "Mort. \%" is the Annual mortality rate as a percentage of the initial site density. 84
Table 10. Tukey's honestly significant difference test results for a comparison of mortality rates between woodland types. 86
Table 11 . Recruitment rates for individual sites. 87-89
Table 12. Mean tree height (m) by circumference class and total in the woodland types under study. 91-92
Table 13. Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for individual sites. 94
Table 14. Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for woodland Types and an amalgamation of all sites. 95
Table 15. Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for selected species. 95
Table 16. r^{2} values for negative exponential functions fitted to size Class distributions from initial recordings for each site. 107
Table 17. r^{2} values for negative exponential functions fitted to size Class distributions from initial recordings for each woodland type and for all sites amalgamated. 109
Table 18. $\quad r^{2}$ values for negative exponential function fitted to size class distributions from initial recordings for selected species. 113
Table 19. List of species recorded in the study area at initial recording by family. 114-116
Table 20. Species and family richness for sites and woodland types at initial recording. 117-119
Table 21. Species number recorded in the study area at initial recording, by family. 120
Table 22. Species number recorded in the study area at initial recording, by genus. 121
Table 23. Species diversity and distribution by woodland type. 123
Table 24. Comparisons of species richness and evenness for the DCA determined woodland types. 124
Table 25. Changes in total species richness and composition by woodland type. 125
Table 26. Species colonisations and losses by woodland type. 125
Table 27. Number of $200 \mathrm{~m}^{2}$ subplots required to obtain 90% of Species for each DCA defined woodland type. 128
Table 28. Number of $200 \mathrm{~m}^{2}$ subplots required to obtain 90% of species for each site. 139
Table 29. Relative density (rel. den.), relative diversity (rel. div), Relative dominance (rel. dom.) and resulting family importance values (FIV) for families present in the study area by DCA determined woodland type. 140-141
Table 30. Species number recorded in the study area at initial recording, by genus. 143
Table 31. Species Importance values (SIV) at first and last recording For the 10 highest ranked species at first recording. 146-147
Table 32. Structural/environmental and growth characteristics and their abbreviations. 156
Table 33. Spearman's coefficient of correlation among environmental characteristics. 157
Table 34. Spearman's coefficient of correlation for environmental Characteristics and final stand structure. 159
Table 35 Mean values of environmental and final structural variables For DCA defined woodland types. 161
Table 36. Linear models of relationship of dynamics factors to environmental variables selected by stepwise regression. 162
Table 37. The 21 transects with the greatest basal area decrease. 179
Table 38. Rainfall figures for sites highlighting the rainfall deficit experienced 1991-2000. 180-181

List of Figures

Figure 1. Distribution of grazed woodlands in Queensland. 2
Figure 2. Position of transect study sites in Queensland with reference to rainfall isohyets (mm). 24
Figure 3. Photographs of transect sites. 35-38Figure $4 \quad$ Ordination plot produced by DetrendedCorrespondence Analysis of woodland site sites, withMULGA sites forming an outlier group.54
Figure $5 \quad$ Ordination plot produced by DetrendedCorrespondence Analysis ordination of sites withMULGA sites excluded.54
Figure 6. Change in density by site illustrating the relative contributions of recruitment and mortality to density Changes. 59
Figure 7. Basal area range curves for individual sites 64-73
Figure 8. Basal area range curves for DCA defined woodland types. 66
Figure 9. Change in basal area by site illustrating the relative contributions of recruitment and mortality to basal area changes. 78
Figure 10. Cumulative percentage of basal area as a function of The cumulative percentage of species for each of the woodland types. 81
Figure 11. Cumulative percentage of individuals as a function of the cumulative percentage of species for each of the woodland types. 81
Figure 12. Basal area distribution diagrams for sites. 96-105
Figure 13. Basal area distribution diagrams for DCA defined woodland types. 108
Figure 14. Basal area distribution diagrams for selected species. 111-112
Figure 15. Species accumulation curves for DCA defined woodland types. 127
Figure 16. Species accumulation curves for individual sites 129-138
Figure 17. Number of species per family, as a function of number of families, at initial and final recordings for each DCA Defined woodland type. 151-152
Figure 18 Regression of species relative density at first and last recordings. 153-154

Figure 19. Community ordination Canonical Correspondence Analysis of all sites and the selected environmental and structural factors by woodland type as defined by Detrended Correspondence Analysis analysis.164

Figure 20. Basal area contributions from large and small plants at
Final recording for all sites. 177

Figure 21. Relationship between density and proportion of small
plants. 194

Figure 22. Regression of relative annual rainfall and latitude for the
period 1991-2000 demonstrating the increasing influence
Of drought with decreasing latitude. 200

Figure 23. Regressions depicting the relationships of relative annual mortality with relative minimum temperature and relative annual rainfall.

Acknowledgements

I would like to thank all the landholders, far too many to name individually, who allowed us to establish and record sites on their land. I am indebted to the Queensland Department of Primary Industries for the provision of their older monitoring sites This project could not have been completed without the local knowledge provided by Department of Primary Industries extension officers, council stock routes officers, Environmental Protection Authority staff and many others who pointed me in the right direction. The following people have were of great assistance in this project: Paul Back, Madonna Hoffman Len Mickelsen, Michael Kooistra, Scott Mackie and Tim White. Very special thanks to my supervisors, Kerry Walsh and Bill Burrows.

Declaration

[^0]Signed

Laurence James Tait
"The thing the ecologically illiterate don't realize about an ecosystem is that it's a system. A system maintains a certain fluid stability that can be destroyed by a misstep in just one niche. A system has order, a flowing from point to point. If something dams the flow, order collapses. The untrained miss the collapse until too late. That's why the highest function of ecology is the understanding of consequences."

Frank Herbert, in "Dune"

Chapter 1: Introduction and Literature Review

1.1 Introduction

The state of Queensland covers an area of 173 million ha, approximately 151 million ha (87%) of which is occupied by land devoted exclusively or partially to the grazing of sheep and cattle (Scanlan and Chilcott 2000). Of this grazing land over one third, 60 million hectares (Figure 1), has some type of tree cover (Burrows 1995). These grazed woodland areas of Queensland are the primary focus of this thesis.

It is now generally accepted that all the grazed woodlands of Queensland have been disturbed to a greater or lesser degree by human induced impacts such as grazing, fire, weed invasion, timber harvesting and climate change (Boulter 2000), and the changes induced by these disturbances are ongoing. Many changes have been undesirable, from either an economic or environmental viewpoint, and attempts to minimise or reverse these changes requires an understanding of what is occurring within the woodland ecosystems. Thus management of grazed woodlands for sustainable and efficient agricultural production, as well as for environmental purposes, will require a more comprehensive knowledge of both the current structure of these woodlands and the processes occurring within them.

This interest in understanding the functioning of the grazed woodlands of

Figure 1.
Distribution of grazed woodlands in Queensland.

Queensland is driven by a broad range of goals incorporating both economic management and ecological sustainability (Fensham et al. 2000, Moore et al. 2001, Sharp and Bowman 2004, Fensham et al. 2005). There is a general acceptance that effective and sustainable management of woodland ecosystems depends on an ability to adapt management strategies to natural dynamics or to manipulate natural processes to meet necessary goals (Shiel 1995, Bengtsson 1998, Diaz et al. 2000, Fuhrer 2000, Werner 2005, Wiegand et al. 2006).

This thesis deals with structure and stand dynamics in 75 transect plots in grazed woodlands in Queensland and investigates both the structure of the woodlands and the factors underpinning the changes occurring therein.

First, it addresses the following questions about woodland structure and composition: (i) What are the floristic characteristics of the grazed woodlands and what is the degree of floristic similarity between disparate stands? (ii) Can the transects be grouped in a meaningful manner using ordination techniques? (iii) What is the structure of the stands in terms of height, diameter, density and size class distribution?

Second it attempts to describe changes occurring within the woodlands through measures of mortality, recruitment, growth, and population dynamics. Specifically the following three questions are addressed: (i) Are stand structural components
(number of individuals, number of stems and basal area) changing with time? (ii) Is species richness balanced by immigration and extinction? (iii) Does mortality match recruitment? (iv) How are changes in populations distributed across size classes?

Finally, the relationship between environment and species distribution and dynamics is considered: (i) Do species or communities correlate to environmental factors? (ii) Is it possible to determine which environmental factors influence dynamic processes such as plant mortality, seedling recruitment and plant growth rate?

1.2 Grazed Woodlands

The majority of forest and woodland communities in Queensland are grazed, the major exception being the closed forest types. Closed forests, primarily wet sclerophyll and rainforests on the east coast, are not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing (Lodge and Whalley 1984, White 1986). In contrast the woodlands in Queensland typically form an open structure, with widely spaced trees and an open canopy, allowing the growth of a herbaceous layer essential for grazing by domestic livestock (Harrington et al. 1984c et al. 1984, Mott and Tothill 1984, Burrows et al. 1990). This type of woodland structure is defined by (Werner et al. 1991) as a
savanna: "tropical and subtropical ecosystems characterised by a continuous herbaceous cover of C 4 grasses that show seasonality related to water, and in which woody species are significant but do not form a closed canopy or continuous cover".

1.3 Distribution and Climate

Grazed woodlands span the entire length and breadth of Queensland from $10^{\circ} \mathrm{S}$ to $29^{\circ} \mathrm{S}$, and from 138° East to 153° West. Given this large geographical spread it is not surprising that the climate is equally diverse. Rainfall can range from as little as 150 mm per annum on average to in excess of 1000 mm (Harrington et al. 1984a, Mott and Tothill 1984, Pressland et al. 1990). A majority of rainfall occurs in summer throughout the state, however southern areas tend to experience somewhat more winter rainfall with northern, central and southern Queensland receiving approximately $90 \% 75 \%$ and 70% of annual rainfall in summer respectively (Weston 1988b). Total rainfall tends to decrease with distance from the coast and that part of Queensland which receives greater than 700 mm of rainfall annually is usually found within 180 km of the coast (Mott and Tothill 1984, Weston 1988b). Rainfall in Queensland, and Australia generally, is more variable than other areas of the world. This is due largely to the long-term influence of the El nino -southern oscillation (ENSO) pattern. ENSO is an irregular interchange of atmospheric pressure between the South Pacific and Indian Oceans with a period of around 2-10 years resulting in changes in ocean
temperatures off the East Coast of Australia that affects rainfall. The unreliability of rainfall increases as mean annual rainfall decreases, leading to the greatest relative fluctuations in the most arid regions (Harrington et al. 1984b). The majority of the state experiences mean daily maxima above $32^{\circ} \mathrm{C}$ in January, while only a small area in the central and southeast receive a mean daily minimum below $4.4^{\circ} \mathrm{C}$ in July (Weston 1988b). Temperature generally increases with distance form the coast and with decreasing latitude.

1.4 Community structure

Woodlands dominated by the eucalypts (Genera Corymbia and Eucalyptus, Family Myrtaceae) are by far the most common in Queensland and dominate the more humid eastern and northern parts of the state, above the 500 mm annual average rainfall isohyet (Mott and Tothill 1984). Eucalypt woodlands occupy a range of environments and the overstorey may be dominated by a range of species, including E. populnea, E. crebra, E. melanophloia, E. tereticornis, E, coolibah, Corymbia citriodora and C. clarksoniana. The size and structure of eucalypts tends to vary across their range, with plants of the eastern regions tending to be represented by taller species than in western and northern regions. Eucalypt sizes range from trees in excess of 25 m in eastern districts to trees rarely exceeding 15 m in the northern areas (Mott 1994, Florence 1996). In eastern and northern areas in swampy localities of low fertility another genus of the Myrtaceae, Melaleuca, can form woodlands, usually less than 15 m tall (Weston 1988a, Anderson 1993,

Gillison and Walker 1994). Melaleuca frequently forms mixed stands with Corymbia or Eucalyptus (Sharp and Bowman 2004). The leguminous wattles (Acacia species) form an important component of both melaleuca and eucalypt dominated woodlands, primarily as an understorey/sub-canopy genus (White 1986, Burrows et al. 1988).

Acacia species are also capable of forming the dominant overstorey component of woodlands in their own right, although all species frequently co-occur with eucalypts. Mulga (Acacia aneura) forms the dominant overstorey component over 19.1 m ha in the arid and semi-arid south-west of the state within the 250 mm to 500 mm annual average rainfall (Harrington et al. 1984b, Burrows et al. 1990, Sullivan et al. 1990). Mulga woodlands vary in structure, and may take the form of medium sized trees forming a continuous canopy, open forests of small to medium sized trees or sparse open shrublands. A number of Acacia species dominate communities on coarse textured and infertile soils across the state, commonly on sloping and hilly terrain or tablelands. A. catenulata and A. petraea are commonly found in the drier regions, between the 150 and 750 mm isohyets, while A. shirleyii is commonly found between 500 and 750 mm . A. rhodoxylon occurs in higher rainfall regions in the $600-800 \mathrm{~mm}$ isohyet (Johnson and Burrows 1994). Two Acacia species, brigalow (A. harpophylla) and gidgee (A. cambagei) form open woodlands on flat and gently undulating terrain on heavy and relatively fertile clay and clay-loam soils primarily in the $300-700 \mathrm{~mm}$ annual rainfall region.

These brigalow and gidgee woodlands extend from a northern extreme of $20^{\circ} \mathrm{S}$ into northern New South Wales. Brigalow and gidgee occur as mixed communities in some regions and are commonly associated with several other woody species, including overstorey species such as Eucalyptus coolabah, E cambageana, Casuarina cristata, and a range of understorey species (Scanlan 1988, Anderson and Back 1990). In the north-western regions Black gidgee (A. argyrodendron) replaces brigalow in many areas, while in Central-Western districts Boree (A tephrina) forms woodlands and shrublands, frequently on cracking clay soils, often in association with A. cambagei. Georgina gidgee (A. georginae) woodlands are found in more arid regions in the $200-250 \mathrm{~mm}$ rainfall belt (Johnson and Burrows 1994)

Another major species in Queensland's woodlands is the conifer white cypress pine (Callitris glaucophylla). Callitris glaucophylla forms stands on sandy soils throughout much of the state, although extensive woodland stands are found only in the south (Boland et al. 1984, Weston 1988a). The species usually grows to around 20 metres in height, though occasional plants may reach 30 m and may be found in near pure stands, or in conjunction with hardwood species, including several Eucalyptus species, Angophora species and Allocasuarina leuhmanii (Weston 1988a, Taylor 1990).

The woodlands of Queensland hold several key features in common despite their
wide geographic, environmental and botanical range. Rainfall is strongly seasonal, with a skew towards summer rainfall, and tends to be unreliable, particularly in the south-western areas, and is the primary limiting factor to plant growth and the distribution of vegetation (Harrington et al. 1984a, Mott and Tothill 1984, Flannery 1994, Wilson et al. 2000). It is this variability in rainfall that dominates the management of these woodlands (Harrington et al. 1984a, Wilson et al. 2000). Soils are commonly infertile or shallow and soil nutrition, particularly low phosphorus levels, is also a major limiting factor in plant growth, although there are exceptions in the brigalow soils (Harrington et al. 1984a, Mott and Tothill 1984, Burrows et al. 1990). Nutrient turnover within these woodlands is also typically low (White 1986, Flannery 1994). The grazed woodlands in Queensland also tend to adopt an open structure, with widely spaced trees and an open canopy, allowing the growth of an associated herbaceous layer essential for grazing (Harrington et al. 1984a, Mott and Tothill 1984). Grasses in these woodlands are mainly tall to mid-height tussock or bunch grasses, although within the Acacia and Callitris woodlands pasture is often sparse (Harrington et al. 1984b, Weston 1988a).

In common with the rest of Australia the woodlands of Queensland were adapted to an existence without large herbivores prior to European colonisation (Freeland 1991, Flannery 1994). A widespread feature of these woodlands is the tendency amongst the trees and shrubs towards scleromorphy, the evolution of leathery,
hard, spiny or reduced leaves with short internodes (Mott and Tothill 1984, White 1986, Burrows et al. 1990, Flannery 1994). Many woody plants also produce leaves unpalatable to herbivores by the inclusion of toxic and indigestible compounds in an attempt to maintain these long-lived leaves. These traits this make the majority of woody plants in these woodlands largely unpalatable to domestic livestock (Mott and Tothill 1984). It is therefore important from a grazing perspective that these woodlands support a more or less continuous layer of herbaceous ground cover dominated by grasses (Mott and Tothill 1984, Burrows et al. 1990).

All Queensland's grazed woodlands are liable to be burnt with varying frequencies and most of the woody plants of these woodlands have developed adaptations to survive and minimise the effects of fire (Harrington et al. 1984a). In general plants in the higher rainfall woodlands are well adapted to surviving frequent, low intensity fire by resprouting and tree mortality is normally very low as a result of fire (Mott and Tothill 1984, Dyer et al. 1997). Plants in the more arid regions, where fire is less frequent due to lower fuel loads, tend to have varying abilities to survive fire, and many rely on mechanisms that ensure recovery following fire by germination from a soil seed bank (Dyer et al. 1997) Species associated with the A. harpohylla communities also generally have a good capacity for re-sprouting following fire, and A. harpohylla itself sprouts freely from the butt or living stems in response to fire damage. A notable exception to the fire tolerance of A.
harpohylla communities occurs in what are referred to as softwood scrubs, which are dense communities of A. harpohylla and a range of particularly fire-sensitive species. Both A. cambagei and A. argyrodendron, in contrast, have a limited capacity to resprout following fire damage (Anderson and Back 1990, Johnson and Burrows 1994). Mulga woodlands are also not well adapted to regular fire and species in mulga communities vary in their ability to survive fires (Hodgkinson et al. 1984, Dyer et al. 1997). Cypress pine itself is fire sensitive, especially while small, and has limited capacity to regenerate after fire damage (Taylor 1990)

1.5 Ecological Changes

Grazed woodlands are very poorly represented in reserve systems in Queensland's (Sattler and Williams 1999) and as such management for conservation needs to be conducted in large part simultaneously with commercial grazing management. Utilisation of these woodlands for grazing of sheep and cattle has been implicated in producing substantial change and degradation of these woodlands (Pressland et al. 1988, Winter 1991), ranging from changes in species composition to woody weed encroachment and severe soil erosion. Grazing has been implicated in changes in woody vegetation structure in many woodlands throughout Queensland, including communities dominated by eucalypts and mulga (Pressland et al. 1988), Melaleuca (Crowley and Garnett 1998) and Cypress pine (Lunt et al. 2006). In all cases the changes associated with grazing have been attributed at least partially to a change in fire regime, and the effects of fire and grazing are often confounded
(Wilson et al. 2000). Large areas have also been cleared of woody vegetation. Over the period 2002-2003 the average annual state-wide clearing rate was 554000 ha/yr with 95% of this being clearing to pasture (DNRM 2005). However recent legislation has resulted in a cessation of all broad scale land clearing in Queensland from the end of 2006 (Anon. 2004).

A number of exotic plants species have been introduced to the woodlands of Queensland. These introductions have the potential to significantly alter the structure and composition of woodlands across the state (Grice and Brown 1999, Butler and Fairfax 2003, Grice 2006), and have already done so in many areas through a numbers of processes including altering the fire regime, increasing grazing pressure, competing with native vegetation and occupying previously vacant ecological niches (Scanlan 1988, Tothill and Gillies 1992, Smith et al. 2000).

The woodlands are also expected to be effected by increases in atmospheric CO_{2} and alteration of rainfall regimes woodlands in the near future, with unpredictable consequences (Hoffmann et al. 2002).

1.6 Long-term monitoring

Trees, and most woody species, are long lived, and forests and woodlands are longlived systems in a state of continuous change and require long-term observation and monitoring to obtain insights into the causes of such change (Noss 1999). Many changes, including human induced changes and ecological phenomena such as succession, occur on a cycle of many decades and given that the some woody plants in the grazed woodlands have an potential lifespan of over a century (Florence 1996) it is evident that long term monitoring programs may be required to gain an understanding of the dynamics of the woodlands. Rare events, such as droughts or disease outbreaks, and subtle processes where the year to year variation may be larger than the long-term trend, can also be observed by long term monitoring in a way that monitoring within a short time frame does not allow. Long term monitoring also has the potential for providing baseline data for comparisons when other changes may occur. Many authors (e.g. Archer1991; Ayyappan 1999; Fensham and Holman 1999) have noted the need for such data to differentiate between anthropogenic and non-anthropogenic induced changes in woodland structure.

The monitoring of long term trends in woodlands can be achieved using repeated sampling at different points within the area of interest, however it is generally more useful to utilise permanent plots where measurements are made at the same specific
site. The primary advantage of permanent plots is that they comprise a time series with a well known stand history (Ranneby and Rovainen 1995) allowing for a determination of whether short term patterns are trends or fluctuations (Shiel 1995). The use of permanent plots also increases the possibility that woodland response to infrequent events can be studied (Burslem et al. 2000).

Two types of permanent plots are common in the study of forest and woodland dynamics: horizontal point sample plots and permanent sample plots. Horizontal point samples rely on angle-count sampling from a fixed point. Each tree is included based on the apparent diameter of the tree from the observation point, hence larger tress have a greater effective sampling area than small trees. Hradetzky (1995) discusses permanent horizontal point samples and notes the problem that, because trees are selected with a probability relative to their basal area, the composition of samples changes simply due to growth and therefore variance tends to be high.

Permanent sample plots rely on each tree being individually identified and permanently located and marked, either with an identifying numbered tag or by a grid reference. Shiel (1995) notes that despite the high cost and requirement for high levels of expertise, time, commitment and resources permanent sample plots can still be justified by the quality of information and level of understanding they are capable of generating. The greatest advantage of the permanent sample system
is that it allows individual plants to be followed throughout their life cycle. (Ehrlen) 2000 notes the importance of measuring individuals due to the effect of the individual's history on larger scale composition and population dynamics. Each tree is unique and its growth and survival are primarily affected by its immediate neighbourhood and this is likely to have consequences on the overall behaviour of the stand. Monitoring individual trees provides an opportunity for integrating diverse pieces of knowledge. Gourlet-Fleury and Houllier (2000) and Jones and Sharitz (1998) note the importance of tracking individual plants in understanding the establishment and early survival of woody species. These early life stages are among the least understood processes in woodland dynamics, yet may be of particular importance in understanding the effects of human induced change, particularly since it appears that it is during these stages that plants are most susceptible to grazing and fire-induced mortality (Florence 1996, Jones and Sharitz 1998).

Monitoring of woody plants using permanent plots has been undertaken in numerous tropical forests around the world (Condit 1995, Shiel 1995, Vanclay et al. 1995, Philippi et al. 1998, Ayyappan 1999, Soehartono and Newton 2000), however far fewer studies have focussed on the more open savanna and woodland communities. Archer (1991) notes that the ecosystem processes of savannas have not been well researched and that long-term ecological research could well provide basic ecological knowledge. Fensham et al. (2000) suggest that there is little data
available on the long term changes of regrowth savanna vegetation over time. Permanent plots have been utilised in Australian grazed woodlands to gauge the effect of fire regime on woody plants (Bowman and Panton 1995, Back 1998, Guinto et al. 1999), and to assess the impact of weed control techniques (Burrows et al. 1999, Lindsay et al. 1999).

1.7 Dynamics, Structure and Composition

Composition, Structure and Dynamics are the three basic characteristics of woodland ecosystems. Composition refers to the variety of ecosystem components and is commonly expressed in terms of species richness and abundance. Structure refers to the pattern and distribution of plants within the woodlands, both vertically and horizontally. Dynamics refers to how processes and changes occur within the system and the consequences of interaction between components of the system (Florence 1996, Fuhrer 2000, Peng 2000). Structural, dynamic and compositional attributes of a stand are often interdependent, so that attributes from one group may also be surrogates for attributes from another group (Phillips et al. 1994, Noss 1999).

1.7.1 Composition

Biodiversity, the variety of living organisms within a system, is an important concept in the management of grazing lands in Australia (Williams et al. 2001). The importance of biodiversity stems from the connection between biodiversity
and ecosystem services, conservation value and land-use sustainability (Smyth and James 2004). Floristic data are a basic tool for evaluating and monitoring biodiversity and, with few exceptions, diversity inventories in tropical savannas incorporate woody species as a principle element. Woody species are seen as an important aspect of overall woodland diversity (Smyth and James 2004), dictate resources and habitat structure for many other species (Sharp and Bowman 2004) have a major impact on the composition of the herbaceous layer (Scanlan and Chilcott 2000, Bortolussi et al. 2005) and affect human management and utilisation of the land (Harrington et al. 1984b, Harrington et al. 1984c et al. 1984, Lunt et al. 2006). Analysis of floristic data is also commonly combined with environmental and historical variables to provide information on the how those variables influence species distribution, dynamics, structure and composition. Woody species floristics have therefore received some attention in northern Australian savannas (Bowman 1992, Williams et al. 1997, O'Grady et al. 2000, Williams et al. 2003, Vigilante and Bowman 2004).

1.7.2 Structure

Structure may be defined by the size and species distributions of living and dead vegetation, usually with a focus on the tree component, including features such as spacing and density, height, diameter and shape (Spies 1998). Tree diameter is a ubiquitous measure of tree size in the literature concerning forest structure. It is
typically quantified in terms of diameter at breast height (dbh) and stand basal area. Stand basal area is an attribute directly related to mean dbh and stand biomass. Density (number of trees or basal area per unit area), reflects the arrangement of trees within the stand and the distribution of species in relation to one another (Ayyappan 1999, Catterall et al. 2001).

Mixed uneven-aged communities typically have diameter distributions in an approximately reversed-J shaped or negative expomnential curve (Rubin et al. 2005). However the shape of the diameter distribution is influenced by factors such as competition, regeneration patterns and differences in environment or climate. Structural analysis based on size structure has often been used to reconstruct the history of forest development and provide information on stability over time and predict successional trends (Arista 1995, Felfili 1997, Nascimento and Proctor 1997, Diaz et al. 2000, Sherman et al. 2000, Sharp and Bowman 2004, Rubin et al. 2005). Such analyses have been for the evaluation of management practices on long-term species survival (Teketay 1997, Pinard et al. 1999, McCarthy et al. 2001). It has also been utilised to define niche requirements for fauna, investigate regeneration and explain climatic variation (Zenner and Hibbs 2000).

1.7.3 Dynamics

The change in a woodland over time can be described in terms of tree mortality and recruitment, diameter growth and species turnover. These population parameters
are essential to the study and prediction of responses of vegetation to perturbation (Phillips et al. 1994, Condit et al. 1995, Poorter et al. 1996).

Savanna woodlands are inherently unstable ecosystems, with disturbance in the form of fire or variable rainfall allowing the co-existence of grasses and woody vegetation (Scholes and Archer 1997, Wiegand et al. 2006). Because of this instability, the grazed woodlands of Queensland are prone to both rapid and longterm change as a result of both anthropogenic and natural processes. However, the factors influencing change within the grazed woodlands of Northern Australia remain unclear despite evaluation using long-term monitoring plots (Burrows et al. 2002), aerial photography (Fensham and Fairfax 2003, Brook and Bowman 2006) and landscape scale experiments (Vigilante and Bowman 2004, Andersen et al. 2005).

It is apparent however that the grazed woodlands are highly dynamic, for example an increase in woody plant biomass, commonly referred to as thickening or woody plant encroachment has been recorded in grazed woodlands across northern Australia (Archer 1991, Flannery 1994, Florence 1996, Jones and Sharitz 1998, Smith et al. 2000, Gifford and Howden 2001, Lunt et al. 2006). This increase is usually attributed to some extent to grazing effects and the subsequent reduction in fire, however some authors have suggested that observed increases may be primarily a consequence of natural climatic variation (Fensham and Fairfax 2003,

Fensham et al. 2005, Wiegand et al. 2006), increases in atmospheric CO_{2} concentrations (Brook and Bowman 2006) or changes in landscape morphology and catchment function (Pringle and Tinley 2003).

1.8 Classification and Ordination

A major challenge in managing and conserving the grazed woodlands of Queensland is their size and heterogeneity, containing as they do a wide variety of soil types, vegetation communities and topography (Harrington et al. 1984, Lodge and Whalley 1984, Boulter 2000). Resources do not exist to conserve every unique combination of environmental vegetation type at the finest scales, and management may be less effective if not carried out on a landscape scale (Vigilante and Bowman 2004). To overcome this problem plant communities are commonly partitioned into collections of similar sites. By utilizing such community subdivisions in management it is possible to target conservation and management strategies to broad and sustainable community types rather than attempting to represent numerous viable samples of tiny areas. Muller and Ellenberg (1984) state that there are three major categories of community classification: those based on the vegetation itself, those based on properties distinct from the vegetation and those that combine vegetation and environment.

Cluster analysis is the most common method for producing classifications based solely on vegetation. Cluster analysis is a family of analytic procedures designed to
produce natural groupings of sites, with strong associations between members of the same cluster and weak associations between members of different clusters (Kent and Coker 1992). Cluster analyses have been used to produce vegetation classifications in grazed woodlands in Northern Australia to assess conservation value (Fensham 1999) and to assess susceptibility to thickening (Sharp and Bowman 2004).

Combined vegetation-environmental classification has the advantage over strictly botanical classification in that it allows inferences about environmental factors from floristic data or alternatively explains floristic patterns through correlation with environmental variables (Kent and Coker 1992, Austin and Meyers 1996, Austin 1999). Classification based on a combination of environmental and vegetation data has been frequently applied to savanna woodlands (Zeilhofer and Schessl 1999, Catterall et al. 2001, Vigilante and Bowman 2004, HejcmanovaNezerkova and Hejcman 2006). The use of such combined vegetationenvironmental subdivisions in managing woodlands, particularly for conservation purposes, has a basis in law in Queensland, with the Vegetation Management Act 1999 (Anon. 2004) being based on regional ecosystems defined by the dominant woody vegetation types and geology.

The vegetation in the grazed woodlands is known to differ as a function of precipitation (Bowman 1993, Fensham et al. 2005), temperature (Bowman 1993,

Bowman and Connors 1996), fire regime (Anderson et al. 1988, Anderson and Back 1997, Bastin et al. 2003, Andersen et al. 2005, Werner 2005), grazing pressure (Bastin et al. 2003, Werner 2005) and edaphic factors (Tracey 1969, Sharp and Bowman 2004). Nevertheless it is still not clear how the distribution of plant species and variation in community structure respond to environmental variability. Such uncertainty is reflected by the fact that research on plant community structure and plant species distribution and dynamics across environmental gradients continues to be a central focus in both temperate and tropical forest ecology (Gosz 1992, Bowman 1996, Ter Steege et al. 2003, Hunter 2005).

Chapter 2: Material and Methods

2.1 Site selection, construction and recording

This study utilised a series of seventy-five transect sites established by the Queensland Department of Primary Industries in grazed woodlands in Queensland south of $18^{\circ} \mathrm{S}$ and east 0 f $143^{\circ} \mathrm{E}$ (Figure 2). Sites were established in between 1982 and 1998. Twenty-eight of the oldest sites were established by other Department of Primary Industries staff and the remainder established by the author. Sites were not randomly located, instead they were purposely located in target communities deemed to be representative of the major woodland types in different regions. A previous study, using a subset of these sites dominated by Eucalyptus and Corymbia species found that the sites incorporated the full range of both mean rainfall and temperature of the wettest quarter experienced by Eucalypt woodlands in Queensland (Burrows et al. 2002). Thus we can be reasonably certain that the sites used in this study are representative of the climatic conditions of eucalypt dominated woodlands within the study area. While the sites utilised in this study were expected to be less representative of non-eucalypt communities due to the small number of sites that are not eucalypt dominated, they are expected to be broadly representative of the environment of the study area.

Figure 2.
Position of transect study sites in Queensland with reference to rainfall isohyets (mm). Map constructed utilising Bureau of Meteorology 30 year climatology data 1961-1991.

Sites were located so as to have a minimum 100 m buffer of the same community and soil type extending on all sides beyond the transects. Sites were located at least 100 m from permanent water and artefacts such as fences and roads that may affect stock movement and hence influence vegetation dynamics. All sites were located in woodlands that were being commercially grazed by introduced livestock and established in co-operation with primary producers and local government stockroutes officers. Sites were purposely established in vegetation types representing the dominant communities within their region. The sites under consideration were established in what appeared to be undisturbed communities (i.e. on sites with no evidence of clearing), with the exception of those sites established in vegetation dominated by white cypress pine (Callitris glaucophylla). Sites in cypress communities are all known to have been established in stands subject to periodic commercial logging. This was made necessary by the unavailability of unlogged, grazed cypress pine stands. However, it is reasonable to assume that all sites have suffered some human induced disturbance in the past 50 years in the form of timber harvesting or tree thinning. Since exact knowledge of site histories is scarce, for the purposes of this thesis these sites are considered to be undisturbed woodlands except for the effect of introduced grazing animals.

Sites were constructed and recorded according to the TRAPS (Transect Recording and Processing System) method of Back et al. (1997). A standard site consisted of 5 parallel transects on a North-South orientation established 25 m apart and marked
using steel pickets. Each transect was 100 m in length and comprised two 50 metre segments. A fibreglass tape measure was laid out between the pickets and all woody plants within 2 m either side of the transect were recorded with their position along the transect line and position out from the line noted. Each plant was measured for height using a measuring stick for plants $<3 \mathrm{~m}$ in height and a clinometer for taller plants. Each plant was also measured for circumference or diameter at 30 cm above ground level using vernier callipers for plants $<10 \mathrm{~cm}$ diameter and a flexible tape measure for larger plants. All plant were identified to species level wherever possible. Any individuals that could not be positively identified were and given a unique descriptor to identify them as distinct and unidentified species where this was not possible. When identification was not possible in the field a specimen was collected for later identification in the laboratory or by Queensland herbarium staff.

Soil texture was assessed in the vegetation plot using the bolus technique (Tongway and Hindley 1995) and assigned to one of four classes: silty to heavy clay (Class 4), sandy clay loam to sandy clay (Class 3), sandy loam to silty loam (Class 2) and sand to clayey sand (Class 1). Topography for each site was classified into five categories following a modification of Back et al. (1997) with high values indicating sites on steep slopes and low values indicating sites on flat terrain (Table 1).

		Av. Slope	Max
Code	Topography	$\%$	Slope(\%)
1	Plains, Flat	0.5	1
2	Plains with low relief	<3	3
3	Plains, undulating with low rises	<9	12
4	Hills, low	<18	24
5	Hilly to mountainous	24	no limit

Table 1.
Topography categories used to describe transect sites.

Climate data was obtained for each site from the Queensland Department of Natural Resources DataDrill package, which generates climate figures for given coordinates on a daily timescale from an algorithm based on recorded data at nearby weather stations and known weather patterns (DNR, 2003).

The following deviations from the method of Back et al. (1997) were found to be necessary: In some open communities it was not possible to record sufficient mature trees using the standard 5 mx 100 mx 4 m belt transect and in these circumstances either the length of the transect or the width of the belt was increased until such time as sufficient mature trees (nominally 30 trees $>25 \%$ mature height) were recorded. Increasing the length of the transect consisted of adding an additional 50 m to the northern ends of each of the initial 5 lines until
such time as sufficient plants were recorded. Increasing the width of the transects involved recording all plants within 4 m or 8 m of the transect line. Several sites were smaller in area than the standard 0.2 ha plot. Such sites consisted of either the standard layout, but with plants measured in a 2 m belt, or were comprised of 5 x 50 m lines, $4 \times 100 \mathrm{~m}$ lines or $3 \times 100 \mathrm{~m}$ lines. As a result of this variation in site layout transect size ranged from 0.1 to 0.8 ha , with an average size of 0.27 ha (Table 2). The combined area of all plots was 20.1 ha.

A total of 75 sites were considered for analysis in this study. The number of recordings and length of time between first and last recordings varied considerably between sites (Table 2). The sites were established from1982 as part of the woodland management project of the Queensland Department of Primary Industries (QDPI). Since were established opportunistically up to 1998. The longest period over which a site was recorded was 17 years, while the shortest period is slightly more than 12 months. Sites were established in a wide range of communities (Table 2) and vegetation characteristics show considerable variability (Table 3 and Figure 3).

2.2 Data analysis

Initial data analysis was carried out using Wintraps (Kennedy 1997) software designed specifically for analysis of TRAPS data. This application produced a

Table 2.
General site details.

	$\stackrel{\rightharpoonup}{\infty}$

Table 2 (cont).
General site details

Table 2 (cont).

	 ज. ∞ 升

Table 3.
Species contributing 75\% of basal area for each site.

Site Name	Primary Dominant Species	Basal Area Contribution (\%)	Secondary Dominant Species	Basal area contribution (\%)	Tertiary Dominant species	Basal area contribution (\%)
Anchor	Eucalyptus crebra	66	Eucalyptus melanophloia	13		
Aqua Downs	Eucalyptus populnea	41	Eremophila mitchellii	41		
Archer	Eucalyptus crebra	98				
Balmoral	Eucalyptus fibrosa	100				
Bowie	Eucalyptus melanophloia	98				
Bungobine	Eucalyptus brownii	88				
Burtle	Eucalyptus melanophloia	88				
Canal Creek	Melaleuca viridiflora	56	Eucalyptus exserta	31		
Carfax Control	Eualyptus populnea	58	Corymbia dallachyana	21		
Carfax Stylo	Eualyptus populnea	84				
Centauri	Acacia shirleyii	91				
Clifton	Acacia excelsa	45	Acacia aneura	45		
Coalstoun Lakes	Eucalyptus tereticornis	97				
Cooper Downs	Eucalyptus melanophloia	96				
Croxdale	Acacia aneura	89				
Dykehead	Eucalyptus melanophloia	100				
Eumina	Callitris glaucophylla	90				
Exevale	Eucalyptus crebra	89				
Forest Hills	Eucalyptus crebra	20	Corymbia tessellaris	20	Petalostigma pubescens	13.6
Glenrock	Corymbia citriodora	20	Eucalyptus crebra	20		
Goldsborough	Eucalyptus quadricostata	97				
Granite Vale	Eucalyptus crebra	82				
Hedlow Creek	Eucalyptus populnea	89				
Heidelberg	Eucalyptus platyphylla	21	Corymbia dallachyana	21		
Huntly	Eucalyptus orgadophila	21	Corymbia erythrophloia	21		
Hyde Park	Eucalyptus melanophloia	94				

Table 3. (cont.)
Species contributing 75\% of basal area for each site.

Site Name	Primary Dominant Species	Basal Area Contribution (\%)	Secondary Dominant Species	Basal area contribution (\%)	Tertiary Dominant Species	Basal area contribution (\%)
Inveresk	Eucalyptus whiteii	94				
Julia Park	Eucalyptus similis	57	Eucalyptus terminalis	26		
Kerry	Eucalyptus melanophloia	85				
Kiauroo	Eucalyptus crebra	71				
Kirk River Exclosure	Eucalyptus xanthoclada	85				
Kirk River Grazed	Corymbia erythrophloia	80				
Kooralbyn Eucre	Eucalyptus crebra	92				
Leyshon View Exclosure	Dolichandrone heterophyllum	34	Grevellia striata	19	Dolichandrone heterophyllum	16
Leyshon View Grazed	Eucalyptus crebra	98				
Longton	Eucalyptus melanophloia	79				
Lundsville	Eucalyptus crebra	48	Corymbia intermedia	25	Corymbia citriodora	
Magazine	Eucalyptus populnea	80				
Meadowvale exclosure	Corymbia erythrophloia	83				
Meadowvale grazed	Corymbia erythrophloia	87				
Medway	Eucalyptus tereticornis	47	Corymbia tessellaris	30		
Mistletoe	Eucalyptus microneura	88				
Monavale	Eucalyptus crebra	76				
Mt. Panorama	Eucalyptus coolabah	83				
Mt. Pleasant	Eucalyptus melanophloia	84				
Mt. Pleasant Bowen	Eucalyptus crebra	77				
Myrrlumbing	Eucalyptus brownii	77				
Namuel	Eucalyptus microneura	78				
Netherleigh	Corymbia citriodora	52	Eucalyptus crebra	21	Eucalyptus exserta	13
New Gildale	Eucalyptus crebra	96				
Nyanda	Eucalyptus melanophloia	98				
Old Rawbelle	Eucalyptus melanophloia	100				

Table 3. (cont.)
Species contributing 75\% of basal area for each site.

Site Name	Primary Dominant Species	Basal area contribution (\%)	Secondary Dominant Species	Basal area contribution (\%)	Tertiary Dominant Species	Basal area contribution (\%)
Pajingo	Acacia argyrodendron	27.1	Eucalyptus cambageana	27.1		
Rosebank	Corymbia citriodora	25.4	Eucalyptus crebra	25.4		
Rosebank	Corymbia citriodora	25.4	Eucalyptus crebra	25.4		
Rostock	Callitris glaucophylla	41.2	Eucalyptus populnea	41.2		
Rundle	Eucalyptus moluccana					
Scotston	Eucalyptus crebra					
Springsure Reserve	Eucalyptus orgadophila	33.3	Macrozamia moorei	33.3		
St. Pauls Exclosure	Corymbia erythrophloia					
St. Pauls Grazed	Corymbia erythrophloia	17.7	Eucalyptus crebra	17.7		
Summerdel	Eucalyptus melanophloia	86.8				
Sunrise East	Callitris glaucophylla					
Sunrise West	Eucalyptus melanophloia					
Swanlea	Eucalyptus similis					
Texas	Eucalyptus populnea					
The Patrick	Corymbia plena	23.8	Corymbia dallachyana	23.8		
Tinnenburra	Acacia aneura					
Tryphinia Eucre	Eucalyptus crebra					
Tryphinia Eumel	Eucalyptus melanophloia					
Tryphinia Eumol	Eucalyptus moluccana	28.8	Eucalyptus crebra	28.8		
Walthum	Eucalyptus brownii					
Wandobah T6 R1	Eucalyptus populnea					
Wandobah T6 R2	Eucalyptus populnea					
Wandobah T6 R3	Eucalyptus populnea					
Yanna	Acacia aneura					

Glenrock

Forest Hills

Exevale

Figure 3
Photographs of transect sites.

Meadowvalw Grazed

Meadowvale Exclosure

Magazine

Lundsville

Longton
Figure 3 (cont).
Photographs of
Photographs of transect sites.

Sunrise East
Summerdel
St. Pauls Grazed

St, Pauls Exclosure
Springsure Reserve
Figure 3 (cont).
Photographs of transect sites.

Wandobah T6R1

graphical representation of site structure and also provided basic information on density and basal area. This allowed a rapid preliminary examination of the data to be carried out, and was used primarily for identifying and correcting errors such as misidentification of species or gross changes in size between successive recordings. More detailed analysis was carried out using Microsoft Access databases.

All plants at each site were assigned a unique identification number, which allowed each plant to be readily followed through each successive recording and for the accurate identification of recruits. For multi-stemmed plants, which required multiple entries to accommodate all stems, the plant retained the same identification number for all stems. This permitted an analysis of absolute plant numbers rather than stems. Plants that were not identified to species level were removed from any analysis of species diversity or similarity, although retained for analyses of plant density and number. This was necessary due to the difficulty of correctly identifying some seedlings to species level, particularly within the genera Eucalyptus and Corymbia. An exception to this occurred where plants were able to be designated as an unidentified species, i.e. clearly not the same as any listed species, but could not be positively identified due to an absence of fertile material. In these cases the species was retained in the analysis.

2.2.1 Floristic analysis

Family importance values (FIV) and species importance values (SIV) were calculated for individual sites and for all sites combined. FIV and SIV were defined and calculated as follows according to the method of Nebel et al. (2001).

FIV $=$ relative diversity + relative density + relative dominance where
Relative diversity $=\frac{\text { number of species of a family }}{\text { total number of species of the sample }} \quad \mathrm{X} 100$
Relative density $=\frac{\text { number of individuals/ha of a family }}{\text { total number of individuals/ha of the sample }} \quad$ X 100
Relative dominance $=\frac{\text { basal area/ha of a family }}{\text { total basal area/ha of the sample }} \quad$ X 100

SIV $=$ relative frequency + relative density + relative dominance
where

Relative frequency $=\frac{\text { number of sample units containing a species }}{\text { sample units for all species of the sample }} \quad \mathrm{X} 100$

Relative density $=\frac{\text { number of individuals/ha of a species }}{\text { number of individuals } / \text { ha of the sample }} \quad$ X 100
Relative dominance $=\frac{\text { basal area/ha of a species }}{\text { total basal area/ha of the sample }} \times 100$

Values aside from species and family numbers were converted to a per hectare basis in order to equalise potential differences arising from different transect sizes. The number of sample units in which individuals of a species occur was used to calculate relative frequency. These sample units were the two sides of 50 m segments of transect lines, giving 20 sample units for a standard 500 m transect. These sample units were then corrected for area.

Species importance values were compiled into a species-by-site matrix for analysis using Detrended Correspondence Analysis (DCA) (Kent and Coker 1992) performed using the DECORANA computer program (Minchin 1997) in order to better compare the floristic makeup of the sites. Rare species were downweighted for this analysis using the option included within DECORANA. Forty-six species occurred at a single site only. Such unicates and taxa without determinations to specific level were excluded from the correspondence analysis since they provide no basis for comparison. Based on the results of this ordination the sites were divided into seven woodland types. Species importance values were calculated for each woodland type in order to describe the vegetation types they represented.

The similarity of species makeup between the woodland types was assessed using the Sorensen coefficient (S) (Kent and Coker 1992):
$S=\frac{(2 \times \text { number of shared species) }}{(\text { number of species of community } 1+\text { number of species of community } 2)}$

The Shannon-Wiener index of species diversity (H) was calculated for each woodland type following the method of Kent and Coker (1992):
$H^{\prime}=\Sigma \mathrm{p}_{\mathrm{i}} \log \mathrm{p}_{\mathrm{i}}$

Where $p_{i}=$ decimal fraction of individuals belonging to the $i^{\text {th }}$ species

Evenness of distribution of species within woodland types was calculated from the Shannon-Wiener index following Kent and Coker (1992) as:

Evenness $=H^{\prime} / H_{\text {max }}$
where $H_{\text {max }}=\ln$ (number of species).

Evenness provides information on the proportion of each species present in a
community, with high Evenness indicating that all species are equally abundant.

Species-area curves were generated for each woodland type and for each site. For species accumulation curves each transect was split into sub-plots to equalise differences in area between transects and to produce sufficient points for curve generation. For analysis of woodland types $200 \mathrm{~m}^{2}$ plots were used, while $100 \mathrm{~m}^{2}$ plots were utilised for individual sites. Exponential functions were fitted to the species area curves using Microcal Origin 6.1 (Microcal Software 1991) software and following the formula derived from Soberon and Llorente(1993):
$S=1 / z \ln (1+z a t)$
Where:
$z=1-\exp (-b)$
$S=$ the number of species
$t=$ the number of subplots
and
a and b are coefficients

Exponential functions are commonly thought to provide a reasonable reflection of fit for species area relationships for large sample areas (Soberon and Llorente1993).

The sampling effort required to obtain 90% of species based on the asymptote was calculated from the formula of Soberon and Llorente (1993):

Effort $=1 / b \ln [(1 / 1-q)]$

Where q is the proportion of asymptotic species richness desired.

Species losses and colonisations were compiled for the woodlands as a whole, woodland types and individual sites. Species composition change was quantified following Collins (2000) as:

Composition change $=((\mathrm{E}+\mathrm{C}) / \mathrm{N}) * 100$
where $\mathrm{E}=$ number of local extinctions, $\mathrm{C}=$ number of colonisations and $\mathrm{N}=$ the number of species present at initial recording. The change period was the interval between initial and last recording for each parameter examined.

In order to investigate the relationship between species change and density change, relative density of species at the first and last recording were regressed against one another for each site as well as for an amalgamation of all sites.

2.2.2 Analysis of Structure and Structural Change

Stem density and basal area per hectare were calculated for each site in order to quantify the abundance of woody plants. Annual rate of change in stem density and in basal area was calculated for each site and woodland type. Differences in density between first and last recordings were compared using a Kruskall-Wallis test to test whether changes in density or basal area varied between woodland types. Change in density and basal area between first and last recordings for diameter classes were tested with Wilcoxon's matched pairs test using individual sites as pairs. Similarly mean plant height and annual rate of change in mean height was calculated for each site and woodland type and changes in height between woodland types was tested using a Kruskall-Wallis test. Change in mean height between first and last recordings for diameter class increments were tested with Wilcoxon's matched pairs test using using individual sites as pairs.

In order to evaluate the adequacy of the sampling procedure, the variation in range of basal area values with increasing sampling effort was investigated. This was achieved by a method similar to that used for generation of species area curves. Each transect was split into $100 \mathrm{~m}^{2}$ sub-plots to equalise differences in area between transects and to produce sufficient points for curve generation. Sub-plots were randomly ordered and the range of basal area (difference between maximum value and minimum value) encountered with each plot was calculated. In order to allow comparison between sites the basal area ranges were converted to percentage
of the maximum range. These percentages were then plotted against the number of sub-plots. Sigmoidal relationships were fitted to these plots using SPSS for Windows v10.1 (SPSS, 2000). A sigmoidal function was chosen because the location of the upper asymptote provides a convenient objective measure of the adequacy of sampling. Where the range of basal area values has ceased to increase significantly with range the asymptote will be close to 100% and the greater the difference from 100% the greater the variation in basal area range at the end of sampling.

The mortality rate for each site was extracted from the data sets according to the formula:
$\mathrm{m}=\mathrm{N}_{\mathrm{o}}-\mathrm{St} / \mathrm{t}$
where N_{O} is the initial number of individuals measured at time 0 , St is the number of original plants surviving at the last recording and t is time measured in years.

The recruitment rate was similarly calculated as:
$\mathrm{r}=\mathrm{N}_{\mathrm{t}}-\mathrm{S}_{\mathrm{t}} / \mathrm{t}$
where N_{t} is the number of individuals measured at the last recording and S_{t} is the
number of original plants surviving at the last recording and t is time measured in years. To allow comparison between transects of differing areas and different measurement periods all figures for mortality and recruitment were converted into a rate per hectare per year.

Difference in mortality and recruitment rates between woodland types and between circumference classes within woodland types were analysed using a KruskallWallis test.

2.2.3 Diameter distributions

Size class distributions (graphs of the density of trees in 300 mm circumference classes) for both first and final recordings were generated for woodland types in order to understand the patterns of growth within the transect sites. Basal area class distributions for first and final recordings were compared using a KolmogorovSmirnov two-sample test to evaluate whether any significant changes in size distribution had occurred over time. Mature stands of trees are expected to have a diameter distribution pattern with numerous plants in the smallest size class with a constant decrease in density between subsequent size classes. Such a distribution pattern produces a steeply descending reverse-J shape with a negative exponential function (Rubin et al. 2005). To quantify how well the size distribution patterns of sites and woodland types fit the theoretical reverse-J shape typical of mature
communities a negative exponential function was fitted to diameter distributions using SPSS for Windows v10.1 (SPSS 2000).

The diameter distribution of multi-species stands may produce a reverse-J shape because of differences in mortality, growth rates and maximum size of different species, regardless of stand history (O'Hara 1986, Goodburn et al. 1999). To evaluate whether diameter distributions were affected by interspecific variation, 12 tree species were selected for size class analysis for the amalgamated site data. If the multi species diameter distributions were the result of the multiple species involved then it would be expected that the distributions of the individual species would produce a different distribution pattern. The following species were selected for individual diameter distribution anlysis: Acacia aneura, Acacia shirleyii, Callitris glaucophylla, Corymbia citriodora, Corymbia erythrophloia, Eremophila mitchellii, Eucalyptus brownii, Eucalyptus crebra, Eucalyptus melanophloia, Eucalyptus populnea, Melalueca viridiflora and Petalostigma pubescens. These species were selected because they were judged to be important structural components of the woodlands and represented a range of genera and growth habits. Each of the selected species met the following criteria:

- The species has a maximum potential height of greater than 8 metres, and is thus potentially able to reach the upper levels of the woodlands.
- The species is one of those that contributes to the first 75% of basal in at least one site, demonstrating that it is capable of being dominant.
- The species is represented by more than 100 stems with $>300 \mathrm{~mm}$ circumference, totalled across all sites at either the initial or final recording.

2.2.4 Influence of Environmental Factors

A range of factors were considered in order to evaluate the effect of environment. These factors were mostly biotic or abiotic environmental factors considered likely to influence plant growth, establishment and survival (e.g.initial plant density, soil type, topography and rainfall), with Latitude and Longitude also included as potential surrogates for environmental factors such as solar radiation for which data was not available. The range of factors considered will be referred to throughout as "environmental factors" despite Latitude and Longitude not being strictly environmental factors.

All environmental factors were analysed by Pearson's correlation coefficient. This analysis was also used to enable the omission of tightly correlated variables from subsequent models and ordinations. Associations between stand structural characteristics at the time of final recording and environmental factors were also analysed by Pearson's correlation coefficient.

Forward stepwise linear models generated using SPSS for Windows 10.1 (SPSS 2000) were used to explore the influence of environmental factors on dynamics. Potential predictor variables selected were: Longterm mean annual rainfall, Longterm mean maximum daily temperature, Longterm mean minimum daily temperature, Mean annual rainfall over the recording period as a percentage of the longterm mean, Mean maximum daily temperature over the recording period as a percentage of the longterm mean, Mean minimum daily temperature over the recording period as a percentage of the longterm mean, Latitude, Longitude, Topography, Soil, Plant density, Density of plants with $>300 \mathrm{~mm}$ circumference, α diversity, Basal area, Mean plant height and Mean height of plants with $>300 \mathrm{~mm}$ circumference. Longterm mean annual rainfall, Longterm mean maximum temperature and Longterm mean minimum temperature were extracted from DataDrill (DNR 2003) and calculated as the annual means for the period 18892003.

The probability for predictor variables to enter into or be removed from linear models was 0.05 . The following variables were selected as response variables: Recruitment as a percentage of initial density, Mortality as a percentage of initial density, Change in density as a $\%$ of initial density, Change in density of plants with $>300 \mathrm{~mm}$ circumference as a $\%$ of initial density and Change in basal area as a \% of initial basal area. Changes in basal area of plants with $>300 \mathrm{~mm}$ circumference was not considered as a response variable due to basal area of plants
with $>300 \mathrm{~mm}$ circumference being closely correlated with total basal area. A Kolmogorov-Smirnov One-Sample Test revealed that annual mean rainfall, annual mean rainfall over the recording period as a percentage of the longterm mean, topography, soil and density variables deviated significantly from normal distributions and these were subject to logarithmic transformations (ln $[x+1])$ prior to model fitting.

Relationships of the environmental factors with the DCA derived plant associations were analysed by the Kruskall-Wallis test (Zar 1984).

The relationship between environmental factors and species importance at the time of final recording was analysed using Canonical Correspondence Analysis (CCA) ordination using the program MVSP v. 3.12 (Anon, 2001) in order to investigate the role played by environment in determining floristic pattern. CCA is a multivariate direct gradient analysis technique that allows the identification of floristic patterns directly related to the incorporated environmental variables (Ter Braak 1986). Canonical Correspondence Analysis also allows simultaneous plotting of species and site in an ordination diagram where the length of an arrow within the diagram indicates the importance of a variable while the direction indicates whether the correlation is positive or negative.

Chapter 3: Results

3.1 Ordination and Community Classification

An initial DECORANA analysis produced an ordination plot in which four sites dominated by mulga (Acacia aneura) formed an outlier group (Figure 4). It was decided that the four mulga sites formed a distinct vegetation type. These sites were therefore removed and the remaining data reanalysed to display the similarity between them more clearly. Based on field knowledge and visual inspection of the results of the second DECORANA analysis the sites were divided into 6 woodland types in addition to the MULGA woodland type subdivided at the initial analysis (Figure 5). The communities delineated were:

MULGA. Comprising 4 sites (5% of total). Total sample area 0.8 ha. Located in the south west of the state with an overstorey dominated by A. aneura.

CYPRESS. Comprising 3 sites (4% of total). Total sample area 0.7 ha. Located in Southern central Queensland. Overstorey dominated by white cypress pine (Callitris glaucophylla).

MICRONEURA. Two sites (3% of total). Total sample area 0.4 ha. Located in the northwest in the Georgetown area. Dominated by Gilbert River box

Figure 5
Ordination plot produced by detrended correspondence analysis ordination of sites with MULGA sites excluded. Sites within one of the six community types delimited on the basis of this ordination are bounded by ellipses.

Figure 4
Ordination plot produced by detrended correspondence analysis of woodland site sites, with MULGA sites forming an outlier group.
(Eucalyptus microneura) and with an important contribution by dry season deciduous species such as Terminalia aridicola and Gardenia vilhelmii.

DESERT UPLANDS. Four Sites (5% of total). Total sample area 1.2 ha. Located in the central west of the state with dominant overstorey species Eucalyptus similis, Eucalyptus whitei, Corymbia plena and Corymbia terminalis.

BOX. Seventeen sites (23% of total). Total sample area 5.38 ha. Most sites are dominated by the E. populnea/E. brownii complex. Also included are sites dominated by forest blue gum (E. tereticornis),Coolibah (E. coolabah) and Blackwood (Acacia cambagei) growing on heavy soils. One site dominated by lancewood (A. shirleyii) is also included in this community.

MELANOPHLOIA. Thirteen sites (17% of total). Total sample area 3.02 ha. All dominated by silver leafed ironbark (E. melanophloia).

CREBRA. Thirty two sites (43% of total). Total sample area 8.9 ha. Largely dominated by various species of ironbarks (Eucalyptus crebra, E. quadricostata, E. xanthoclada, E. fibrosa) sometimes in association with lemon scented gum (Corymbia citriodora). Most sites are located on slopes and ranges. This community type also incorporates those sites dominated by
mountain coolibah (Eucalyptus orgadophila) and gum topped box (Eucalyptus mollucana) in addition to two seasonally waterlogged sites dominated by poplar gum (Eucalyptus platyphylla) and broad leafed tea tree (Melaleuca viridiflora).

3.2 Density

In total 1659 plants/ha were recorded at the final recording, which was 17% more than at the initial recording (Table 4). This corresponds to a mean annual net increase of 60 plants per hectare. The increase in density was significant (Wilcoxon's matched pairs, $\mathrm{p}<0.01$). The positive balance was due to 34 dead or missing plants/ha/yr and 94 newly recruited plants/ha/yr, corresponding to a mortality and recruitment rate of 2.6% and 6.7% per year, respectively, yielding a net annual increase of 4.1%. The density of plants $>300 \mathrm{~mm}$ circumference at 30 cm decreased from 218 plants/ha to 208 plants/ha (-0.17%), an average decline of 1.15 plants/ha/yr. Both the highest (6045 plants/ha) and lowest (168 plants/ha) individual site densities were recorded in CREBRA woodland sites (Appendix 1 Table 1).

There was considerable variation in changes in density between sites (Figure 6), with the majority of the change in all sites due to plants smaller than 10 cm diameter at 30 cm . The majority of sites (59 of the 75) experienced an increase in plant density between first and last recordings, with 13 sites experiencing a

Table 4.
Mean tree density (plants/ha) by circumference class and total in the woodland types under study. "Change" is the annual change in plant density. "Change $\%$ " is the change as a percentage of the initial density. "Sig" is the Wilcoxon's matched pairs significance for comparison of initial and final values.

	Box Woodland					Crebra Woodland				
Circumference class (mm)	Initial	Final	Change	$(\%)$	Sig	Initial	Final	Change	$(\%)$	Sig
$0-300$	1489.2	1803.6	314.40	21.11	<0.01	1264.1	1562.0	297.86	23.56	<0.01
$300-600$	91.2	59.6	-31.62	-34.67	0.19	65.2	62.6	-2.64	-4.05	0.66
$600-900$	36.2	32.0	-4.14	-11.44	0.14	42.7	34.4	-8.25	-19.33	0.07
$900-1200$	24.5	20.9	-3.60	-14.71	0.40	24.2	23.0	-1.21	-5.00	0.52
$1200-1500$	11.3	10.8	-0.54	-4.76	0.81	10.6	12.2	1.65	15.63	0.43
$1500-1800$	4.9	6.1	1.26	25.93	0.04	6.1	5.4	-0.66	-10.91	0.50
$1800-2100$	4.1	3.8	-0.36	-8.70	0.29	2.8	4.2	1.43	52.00	0.24
$2100-2400$	2.3	2.9	0.54	23.08	1.00	0.3	0.2	-0.11	-33.33	0.79
$2400-2700$	1.1	1.1	0.00	0.00	1.00	0.4	0.3	-0.11	-25.00	0.79
$2700-3000$	0.9	0.7	-0.18	-20.00	0.32	-	0.2	0.20	100.00	0.18
$3000-3300$	0.2	0.4	0.18	100.00	0.32	-	-	-	-	-
<3300	0.9	0.7	-0.18	-20.00	0.32	-	-	-	-	-
Total	1666.2	1942.2	276.00	16.56	0.35	1415.6	1701.7	286.08	20.21	0.11

-	Cypress Woodland					Desert Upland Woodland				
Circumference				Change					Change	
class (mm)	Initial	Final	Change	(\%)	Sig	Initial	Final	Change	(\%)	Sig
0-300	1762.7	2142.6	379.89	21.55	0.11	1176.1	1180.3	4.18	0.36	0.07
300-600	224.2	229.3	5.14	2.29	0.29	91.3	90.5	-0.83	-0.91	0.65
600-900	129.9	121.4	-8.57	-6.59	0.65	53.1	47.3	-5.81	-10.94	0.27
900-1200	27.1	37.1	10.00	36.84	0.11	12.5	14.1	1.66	13.33	0.59
1200-1500	1.4	2.8	1.41	98.88	0.32	8.3	10.0	1.66	20.00	0.18
1500-1800	-	-	-	0.00	1.00	0.8	0.8	0	0	1.00
1800-2100	2.9	2.9	0.00	0.00	1.00	-	0.8	0.80	100.00	1.00
2100-2400	-	-	-	0.00	-	-	-	-	-	-
2400-2700	1.4	2.9	1.43	100.00	1.00	-	-	-	-	-
2700-3000	1.4	0	-1.42	100.00	1.00	-	-	-	-	-
3000-3300	-	-	-	-	-	-	-	-	-	-
<3300	-	-	-	-	-	-	-	-	-	-
Total	2151.1	2539.0	168.38	8.58	0.02	1355.3	1514.2	158.88	11.72	0.18

Table 4 (cont).
Mean plant density (plants/ha) by circumference class and total in the woodland types under study. "Change" is the annual change in plant density. "Change \%" is the annual change as a percentage of the initial density. "Sig" is the Wilcoxon's matched pairs significance for comparison of initial and final values.

	Melanophloia Woodland					Microneura Woodland				
Circumference class (mm)	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	947.2	1087.4	140.19	14.80	0.02	157.0	192.5	35.50	22.61	0.32
300-600	74.6	84.2	9.57	12.83	0.24	57.0	52.0	-5.00	-8.77	0.32
600-900	56.1	52.1	-3.96	-7.06	0.86	52.5	59.0	6.50	12.38	0.32
900-1200	34.7	36.0	1.32	3.81	0.96	33.0	35.0	2.00	6.06	0.32
1200-1500	11.6	14.2	2.64	22.86	0.24	9.0	9.0	0.00	0.00	1.00
1500-1800	5.9	7.6	1.65	27.78	0.30	5.0	6.0	1.00	20.00	0.32
1800-2100	2.0	1.3	-0.66	-33.33	0.32	7.5	7.5	0.00	0.00	1.00
2100-2400	0.7	0.7	0.00	0.00	1.00	-	-	-	-	-
2400-2700	0.3	0.3	0.00	0.00	1.00	-	-	-	-	-
2700-3000	-	-	-	-	-	-	-	-	-	-
3000-3300	-	-	-	-	-	-	-	-	-	-
<3300	-	-	-	-	-	-	-	-	-	-
Total	1116.92	1292.31	175.38	15.70	0.01	320.0	361.3	41.25	12.89	0.23

	Mulga Woodland					Total				
Circumference				Change					Change	
class (mm)	Initial	Final	Change	(\%)	Sig	Initial	Final	Change	(\%)	Sig
0-300	1225.0	1238.8	13.75	1.12	0.72	1208.2	1411.3	-26.73	-2.21	<0.01
300-600	140.0	158.8	18.75	13.39	0.27	102.3	124.1	1.78	1.74	0.90
600-900	21.3	21.3	0.00	0.00	1.00	57.5	60.4	-0.61	-1.06	0.02
900-1200	6.3	8.8	2.50	40.00	0.65	28.6	34.1	0.21	0.72	0.87
1200-1500	6.3	7.5	1.25	20.00	0.32	11.5	15.6	0.33	2.88	0.20
1500-1800	2.5	1.3	-1.50	-60.00	0.32	5.1	6.8	0.16	3.17	0.22
1800-2100	-	-	-	-	-	2.7	3.7	-0.03	-1.20	0.96
2100-2400	-	-	-	-	-	0.7	0.8	0.00	0.56	0.89
2400-2700	-	-	-	-	-	0.6	0.8	0.02	3.86	0.59
2700-3000	-	-	-	-	-	0.3	0.2	-0.01	-3.09	0.58
3000-3300	-	-	-	-	-	0.0	0.1	<0.01	17.72	0.32
<3300	-	-	-	-	-	0.2	0.2	-0.01	-4.01	0.32
Total	1401.3	1436.3	35.00	2.50	0.39	1416.8	1658.8	242.00	17.08	<0.01

Figure 6.
Change in density by site illustrating the relative contributions of recruitment and mortality to
decrease and three remaining stable. The mean change for those sites experiencing an increase in density was 82.4 plants/ha/yr or 5.45% of the initial density/ha/yr. The mean change for those sites experiencing a decrease was -25.8 plants/ha/yr or a loss of 1.8% of the initial density $/ \mathrm{ha} / \mathrm{yr}$. The greatest relative decrease was 5.2% of the initial population/ yr (75 plants/ha/yr) while the greatest absolute decrease was $134.5 \mathrm{plants} / \mathrm{ha} / \mathrm{yr}(2.2 \% / \mathrm{yr})$. The greatest relative increase was $27.0 \% / \mathrm{yr}$ (18.5 plants/ha/yr) while 373 plants/ha or 10.8% of the initial population accrued annually at the site with the greatest increase.

There was no significant difference in plant density between the different woodland types at either first or last recording (Kruskall-Wallis test, $p=0.40$ and $p=0.46$ for initial and final recordings respectively). . The density change rate (plants/ha/yr) did not differ significantly between woodland types (Kruskall-Wallis test, $p=$ $0.18)$.

Within the recording period woody plant density increased significantly for woodlands overall. All woodland types experienced an increase in density, however the change was significant only for the CYPRESS and MELANOPHLOIA woodland types (Table 4). A significant change in density occurred within the $0-300 \mathrm{~mm}$ circumference class for the BOX, CREBRA and MELANOPHLOIA woodland types and a marginally significant difference was detected in the DESERT UPLANDS woodland type. There was a corresponding
significant change in the smallest size class for an amalgamation of all sites. These were the only significant changes within any size class although the CREBRA woodlands showed a marginally significant change in the $600-900 \mathrm{~mm}$ circumference class ($\mathrm{p}=0.07$).

3.3 Basal Area

At the final recording a basal area of $12.15 \mathrm{~m}^{2} / \mathrm{ha}$ was recorded which was $0.14 \mathrm{~m}^{2} /$ ha less than at initial recording. Taking into account differing transect sizes and periods of measurement this equates to an average decrease of $0.04 \mathrm{~m}^{2} / \mathrm{ha} /$ year or 0.7% of the initial basal area annually (Table 5). This change in basal area was not significant (Wilcoxon's matched pairs test, $p=0.67$). CYPRESS woodlands recorded the highest mean basal area ($23.1 \mathrm{~m}^{2} / \mathrm{ha}$) while the DESERT UPLANDS woodlands recorded the lowest basal area, with an average value of $6.8 \mathrm{~m}^{2} / \mathrm{ha}$. The highest site basal area of $35.8 \mathrm{~m}^{2} /$ ha was recorded at a CYPRESS woodland site (Appendix 1, Table 2). The lowest basal area of $0.3 \mathrm{~m}^{2} /$ ha was recorded in a site in the CREBRA woodland type that had experienced severe drought death.

Basal area variation was asymptotic for most sites (Figure 7). The use of the upper asymptote of a fitted sigmoidal function appeared to provide a good surrogate for the degree of stability at the end of sampling. Upper asymptote values between 90 and 105 indicate sites at which the sampled area appears to have captured most of the variation in basal area (Table 6, Figure 7), while values outside that range

Table 5.
Mean tree Basal area ($\mathrm{m}^{2} / \mathrm{ha}$) by circumference class and total in the woodland types under study. "Change" is the annual change in basal area. "Change \%" is the annual change as a percentage of the initial density. "Sig" is the significance value measured using a Wilcoxon's matched pairs test.

	Box Woodland						Crebra Woodland				
Circumference class (mm)	Initial	Final	Change	(\%)	Sig	Initial	Final	Change	$(\%)$	Sig	
$0-300$	0.59	0.65	<0.01	0.23	0.05	0.38	0.42	<0.01	0.43	1.00	
$300-600$	1.42	1.35	0.03	1.76	0.38	1.31	1.25	0.01	0.95	0.76	
$600-900$	2.46	2.15	-0.06	-2.58	0.12	2.57	2.05	-0.04	-1.69	0.02	
$900-1200$	2.64	2.29	-0.12	-4.51	0.18	2.64	2.49	0.01	0.43	0.49	
$1200-1500$	2.14	2.04	-0.005	-0.23	0.88	1.87	2.18	0.03	1.71	0.57	
$1500-1800$	0.99	1.52	0.13	13.59	0.07	1.36	1.25	-0.02	-1.57	0.57	
$1800-2100$	1.13	0.91	-0.10	-8.40	0.40	0.86	1.30	0.06	6.46	0.22	
$2100-2400$	0.68	0.73	0.07	9.71	1.00	0.15	0.12	-0.03	-20.76	0.72	
$2400-2700$	0.43	0.42	-0.02	-3.47	0.47	0.29	0.24	-0.04	-14.67	0.72	
$2700-3000$	0.57	0.37	-0.01	-2.08	0.59	0.00	0.14	0.08	100.00	0.18	
$3000-3300$	0.07	0.30	0.01	18.85	0.32	-	-	-	-	-	
<3300	1.06	0.79	-0.03	-309.81	0.65	-	-	-	-	-	
Total	14.20	13.53	-0.21	-1.08	0.49	11.64	11.44	-0.018	-1.40	0.51	

	Cypress Woodland					Desert Upland Woodland				
Circumference class (mm)	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	1.65	1.45	-0.09	-5.11	0.29	0.42	0.47	0.02	4.54	0.14
300-600	6.17	6.53	0.15	2.43	0.11	1.82	1.86	0.02	1.16	0.07
600-900	6.55	6.35	-0.10	-1.51	1.00	2.53	2.21	-0.14	-5.44	0.27
900-1200	2.13	3.04	0.39	17.81	0.11	1.11	1.23	0.06	5.29	0.47
1200-1500	0.72	0.85	0.06	7.52	0.65	0.75	0.87	0.05	5.93	0.59
1500-1800	-	-	-	-	-	0.08	0.06	-0.02	-28.29	1.00
1800-2100	1.31	1.41	0.04	3.32	0.18	0.00	0.09	0.08	100.00	1.00
2100-2400	-	-	-	-	-	-	-	-	-	-
2400-2700	1.55	3.44	0.86	53.25	1.00	-	-	-	-	-
2700-3000	2.08	0.00	-0.95	-44.43	1.00	-	-	-	-	-
3000-3300	-	-	-	-	-	-	-	-	-	-
<3300	-	-	-	-	-	-	-	-	-	-
Total	22.48	23.06	0.24	1.30	0.11	6.97	6.79	-0.06	-0.49	0.29

Table 5. (cont)
Mean tree Basal area ($\mathrm{m}^{2} / \mathrm{ha}$) by circumference class and total in the woodland types under study. "Change" is the annual change in basal area. "Change $\%$ " is the annual change as a percentage of the initial density. "Sig" is the significance value measured using a Wilcoxon's matched pairs test.

							Melanophloia Woodland							Microneura Woodland			
Circumference class (mm)	Initial	Final	Change	Change													
$0-300$	0.48	0.57	0.02	4.70	0.02	0.14	0.12	-0.01	-6.92	0.18							
$300-600$	1.41	1.46	0.001	0.10	0.42	1.19	1.05	-0.02	-1.91	0.65							
$600-900$	3.11	2.65	0.02	0.82	0.38	2.70	2.60	0.08	3.30	0.65							
$900-1200$	3.39	3.43	0.02	0.50	0.97	3.02	3.26	0.14	4.49	0.65							
$1200-1500$	1.88	2.25	0.08	4.46	0.07	1.16	1.12	-0.02	-2.03	0.18							
$1500-1800$	1.35	1.88	0.11	8.10	0.24	1.18	1.42	0.13	11.38	0.65							
$1800-2100$	0.66	0.44	-0.09	-12.98	0.35	1.04	1.15	0.06	5.83	1.00							
$2100-2400$	0.28	0.31	0.003	1.05	0.65	-	-	-	-	-							
$2400-2700$	0.19	0.19	<0.01	0.00	1.00	-	-	-	-	-							
$2700-3000$	-	-	-	-	-	-	-	-	-	-							
$3000-3300$	-	-	-	-	-	-	-	-	-	-							
<3300	-	-	-	-	-	-	-	-	-	-							
Total	12.75	13.16	0.03	0.14	0.15	10.39	10.72	0.19	1.75	0.81							

	Mulga Woodland					Total				
$\begin{gathered} \hline \text { Circumference } \\ \text { class (mm) } \end{gathered}$	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	1.62	1.46	0.03	1.98	0.72	0.57	0.58	<0.01	0.69	0.17
300-600	2.53	2.54	0.15	5.89	0.07	1.64	1.60	0.03	1.63	0.28
600-900	0.98	1.16	0.03	3.11	0.59	2.69	2.31	-0.04	-1.39	0.15
900-1200	0.53	0.69	0.07	12.45	0.59	2.57	2.49	0.01	0.27	0.68
1200-1500	0.99	1.36	0.09	8.57	0.47	1.76	1.95	0.04	2.06	0.26
1500-1800	0.57	0.32	-0.09	-15.19	0.32	1.10	1.26	0.04	3.46	0.29
1800-2100	-	-	-	-	-	0.82	0.93	-0.01	-0.65	0.65
2100-2400	-	-	-	-	-	0.29	0.27	<0.01	0.71	0.92
2400-2700	-	-	-	-	-	0.32	0.37	0.01	4.02	0.95
2700-3000	-	-	-	-	-	0.21	0.14	-0.01	-3.81	0.75
3000-3300			-	-		0.03	0.07	<0.01	19.15	0.32
<3300	-	-	-	-	-	0.24	0.18	-0.01	-3.30	0.65
Total	7.20	7.61	0.15	2.04	0.28	12.29	12.15	-0.04	-0.74	0.67

Table 6
Upper asymptote values for sigmoidal functions fitted to basal area accumulation curves for individual sites.

Transect Name	Upper Asymptote
Anchor	95
Aqua Downs	100
Archer	1308
Balmoral	101
Bowie	101
Bungobine	99
Burtle	82
Canal creek	100
Carfax control	97
Carfaxstylo	100
Centauri	98
Clifton	111
Coalstoun Lakes	100
Cooper Downs	739
Croxdale	202
Dykehead	101
Eumina	101
Exevale	100
Forest Hills	90
Glenrock	100
Goldsborough	101
Granitevale	1849
Hedlow Creek	103
Heidelberg	102
Huntly	100
Hyde Park	109
Inveresk	100
Julia park	81
Kerry	96
Kiauroo	100
Kirk River exclosure	100
Kirk River grazed	100
Kooralbyn eucre	100
Leyshon View exclosure	1581
Leyshon View grazed	100
Longton	97
Lundsville	100
Magazine	100
Meadowvale exclosure	100
Meadowvale grazed	100
Medway	
Mistletoe	
	100

Transect Name	Upper Asymptote
Mistletoe	504
Monavale	100
Mt. Panorama	100
Mt. Pleasant	449
Mt. Pleasant Bowen	99
Myrrlumbing	95
Namuel	99
Netherleigh	99
New Gildale	102
Nyanda	100
Old Rawbelle	126
Pajingo	101
Rosebank	91
Rostock	698
Rundle	93
Scotston	100
Springsure reserve	86
St. Pauls exclosure	109
St. Pauls grazed	121
Summerdel	100
Sunrise east	92
Sunrise west	100
Swanlea	98
Texas	101
The Patrick	99
Tinnenburra	100
Tryphinia eucre	121
Tryphinia eumel	100
Tryphinia eumol	120
Walthum	1495
Wandobah T6 R1	97
Wandobah T6 R2	101
Wandobah T6 R3	143
Yanna	100

${ }^{5}$ Number of sub plots

Figure 7. (cont). Basal area range curves for
individual sites
The graphs represent the percentage of the
total range of basal area at all $100 \mathrm{~m}^{2}$
subplots at each site. Curve and r^{2} value are
for a fitted sigmoid function.
indicate sites at which the curve is still rising at the end of sampling. Fifty-five of the 75 sites fell within this range, indicating that additional sampling is required to capture the full variation in basal area at the remaining sites.

Basal area variation was asymptotic and the upper asymptote within the 90-105 range for all woodland types excepting Desert Uplands (Figure 8, Table 7) indicating that sampling effort was sufficient for all save one woodland type. Within the desert uplands no asymptote as apparent, suggesting that a much greater sample area may be required to capture the full diversity of basal area variation.

Basal area changes were primarily due to plant death and changes within the initial plant population, with new plants making only minor contributions to basal area at all sites (Figure 9). As a consequence very similar basal area changes were seen for both large and small trees. Several sites experienced an overall decrease in the basal area of surviving plants due to the widespread death of original stems followed by re-shooting from roots or coppicing below the 30 cm level of measurement. The basal area of plants $>300 \mathrm{~mm}$ circumference decreased by the same order of magnitude, declining from 11.7 to $11.5 \mathrm{~m}^{2} / \mathrm{ha}$, an average of $0.03 \mathrm{~m}^{2} /$ ha/year (0.8%), (Appendix 1, Table 2).

The majority of sites (42 of the 75) experienced an increase in total basal area between first and last recordings with the remaining 33 sites experiencing a

Table 7.
Upper asymptote values for sigmoidal functions fitted to basal area accumulation curves for woodland types.

Woodland type	Upper Asymptote
Box	100
Crebra	101
Cypress	98
Desert Uplands	170
Melanophloia	100
Microneura	98
Mulga	102
All	93

Figure 9.
Change in basal area by site illustrating the relative contributions of recruitment and mortality to basal area changes.
decrease. The mean change for those sites experiencing a decrease was $-0.29 \mathrm{~m}^{2 /}$ ha/year or an annual decrease of 3.68% of the initial area. The mean change for those sites experiencing an increase was $0.16 \mathrm{~m}^{2} / \mathrm{ha} /$ year or an annual increase of 1.57% of the initial density.

Within individual sites the largest absolute basal area decrease for all plants was $1.64 \mathrm{~m}^{2} / \mathrm{ha} /$ year or a loss of 3.68% of the initial basal area/year. The site with the largest absolute increase in basal area experienced a positive change of $0.72 \mathrm{~m}^{2} / \mathrm{ha} /$ year or 3.29% of the initial basal area. The largest relative basal area increase was 10.97% of the initial basal area/year or $0.04 \mathrm{~m}^{2} / \mathrm{ha} / \mathrm{year}$. The site experiencing the largest relative basal area decrease for all plants showed a decrease of 33.84% of initial basal area annually, or $0.31 \mathrm{~m}^{2} / \mathrm{ha} /$ year.

BOX, CREBRA and DESERT UPLANDS woodlands experienced a decrease in total basal area, although the loss was minor and insignificant at $0.01 \mathrm{~m}^{2} / \mathrm{ha} /$ year (0.74% of the initial basal area/yr). CREBRA, DESERT UPLANDS and MELANOPHLOIA woodlands also showed an approximately stable basal area while the remaining woodlands demonstrated slight though still insignificant increases (Table 5).

There was a significant difference in basal area between the different woodland types at both first and last recording (Kruskall-Wallis test, significance 0.04 for
both initial and final recordings respectively). A post-hoc nonparametric equivalent of Tukey's Honestly Significant Difference test (Zar 1984) indicated that the difference lay primarily between CYPRESS and DESERT UPLANDS woodlands and between CYPRESS and MULGA woodlands for both initial and final recordings (Table 8). The basal area change rate ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$) did not differ significantly between woodland types (Kruskall-Wallis test, $p=0.23$).

No obvious pattern emerged from the relative annual basal area change across size classes within woodland types. The only significant changes in basal area within size classes occurred within the $0-300 \mathrm{~mm}$ circumference class for BOX and MELANOPHLOIA woodland types.

A plot of cumulative basal area with increasing species count revealed a much greater dominance by a few species than a similar plot of cumulative plant numbers for all woodland types (Figure 10, Figure 11). Species have been ordered based on their contribution to basal area in Figure 10 and their contribution of plant numbers in Figure 11, so that species with the highest number of individuals or basal area were counted first. The plot of the DESERT UPLANDS type woodland showed a slower rate of increase in the number of species with increasing plant numbers than the other woodland types, with the most abundant 10% of species comprising approximately 55% of individuals compared to $65-80 \%$ of individuals in other woodland types.

Figure 10.
Cumulative percentage of basal area as a function of the cumulative percentage of species for each of the woodland types. Data are ordered by basal area per species.

Figure 11.
Cumulative percentage of individuals as a function of the cumulative percentage of species for each of the woodland types. Data are ordered by number of individuals per species.

Table 8.
Tukey's honestly significant difference test results for a comparison of basal area between woodland types at initial and final recordings.

Initial Recording						
Woodland type	Box	Crebra	Cypress	Desert uplands	Melanophloia	Microneura
Crebra	0.89					
Cypress	0.46	0.14				
Desert uplands	0.46	0.82	0.05			
Melanophloia	1.00	1.00	0.28	0.75	1.00	0.99
Microneura	0.99	1.00	0.46	1.00	0.65	0.9
Mulga	0.36	0.73	0.04	1.00		

Final Recording						
Woodland type	Box	Crebra	Cypress	Desert uplands	Melanophloia	Microneura
Crebra	0.95					
Cypress	0.30	0.09				
Desert uplands	0.62	0.89	0.05			
Melanophloia	1.00	0.99	0.29	0.70		
Microneura	1.00	1.00	0.51	0.99	1.00	
Mulga	0.55	0.83	0.04	1.00	0.63	0.99

3.4 Mortality

The annual mortality rate for an amalgamation of all sites for all plants was 80 plants/ha/yr, or 6% of the initial density per year (Table 9). For plants $>300 \mathrm{~mm}$ circumference the annual mortality rate was 2.91 plants/ha/yr or a loss 1.60% of the initial density annually (Appendix 1, Table 3). Absolute mortality within sites ranged from 0 plants/ha/yr to 371 plants/ha/yr while relative mortality ranged from 0% to 34% of the initial plant density per year. Mortality for plants $>300 \mathrm{~mm}$ circumference varied between 0 plants/ha/yr and 16 plants/ha/yr. Relative mortality for plants $>300 \mathrm{~mm}$ circumference varied between 0% and 15% of the initial density annually. For individual woodland types absolute mortality varied from 123 plants/ha/yr to 19 plants/ha/yr for all plants, while relative mortality varied between 2% per year and 6\% per year . One site, "Exevale", recorded very high levels of relative total mortality and relative mortality for plants $>300 \mathrm{~mm}$ circumference This was attributed to the site being affected by severe drought induced dieback prior to establishment. As a result woody plant densities were low and residual effects of the drought caused further mortalities in surviving but weakened plants.

There was no significant difference in percentage mortality between the different woodland types for pooled data or for size classes (Table 9). Differing size classes did vary significantly in percentage mortality within the BOX and CREBRA woodlands and for the pooled site data. There were insufficient cases of mortality
Table 9.
Mortality rates (plants/ha/yr) by circumference class and total in the woodland types under study. "Mort. \%" is the annual mortality rate as a percentage of the initial site density.
Sig is significance calculated using Kruskall-Wallis test. $\dagger=$ insufficient cases for anlysis.

Circumference Class (mm)	Box Woodland		CrebraWoodland		Cypress Woodland		Desert Upland Woodland		Melanophloia Woodland		Microneura Woodland		Mulga Woodland		Total	
	$\begin{array}{ll} \begin{array}{ll} \text { Mort/ } & \text { Mort } \\ \text { ha/year (\%) } \end{array} \\ \hline \end{array}$		$\begin{array}{\|ll} \hline \begin{array}{ll} \text { Mort/ } & \text { Mort } \\ \text { ha/year } & \text { \%) } \end{array} \\ \hline \end{array}$		$\begin{array}{\|ll} \begin{array}{ll} \text { Mort/ } & \text { Mort } \\ \text { ha/year (\%) } \end{array} \\ \hline \end{array}$		$\begin{array}{\|ll} \begin{array}{ll} \text { Mort/ } & \text { Mort } \\ \text { ha/year (\%) } \\ \hline \end{array} \\ \hline \end{array}$		Mort/ Mort ha/year (\%)		$\begin{array}{\|ll} \text { Mort/ Mort } \\ \text { ha/year (\%) } \end{array}$		$\begin{aligned} & \text { Mort/ Mort } \\ & \text { ha/year (\%) }\end{aligned}$		Mort/ Mort ha/year (\%)	
0-300	118.85	6.7	68.17	5.35	105.34	5.1	95.44	8.07	43.5	4.46	24.49	13.06	70.18	5.9	75.14	6.95
600	2.34	2.4	1.33	1.81	0.98	0.64	1.97	1.85	0.53	1.02	0		0	0	0.75	1.55
600-900	1.28	4.43	0.87	2.22	1.0	. 32	0.6	2.99	0.3	1.34	0	0	46	4.56	4.58	2.8
900-1200	0.99	6.6	0.39	2.32	0		0		0.21	1.58	0		0.46	12.17	0.51	5.67
1200-1500	0.1	5.57	0.29	3.35	0		0		0.05	1.3	0		0	,	0.15	3.41
1500-1800	0.06	3.33	0.07	. 34			0		0.0	4.56	0				06	4.7
1800-2100	0.18	30.25	0.12	8.53		0	0		0.16		0			0	0.15	27.17
2100-2400	02	. 5	0						0		0				0.02	10.5
2400-2700	0.04	14.71	0								0		0	0	0.04	14.71
2700-3000	0		0		0						0		0	0	0	0
3000-3300	0															
<3300	0.04								-						0.04	4.9
Total	123.89	6.6	71.22	6.33	107.33	3.77	98.01	6.5	44.81		24.49		71.09	6.61	80.21	6.43

within individual size classes to conduct post hoc tests to investigate these differences for the individual woodlands, however for the amalgamated data a nonparametric Tukey's honestly significant difference test was conducted. This clearly indicated that the difference exists primarily between the smallest size class and all larger sizes (Table 10). Despite this, no clear pattern was evident in mortality linked to diameter classes and the variation was large among the four largest classes.

3.5 Recruitment

The annual recruitment rate for all sites for all species was 94 plants/ha/yr, or 7\% of the initial density. Absolute recruitment within sites ranged from 0 plants/ha/yr to 464 plants/ha/yr while relative recruitment ranged from 0% to 25% of the initial plant density annually (Table 11). Within woodland types absolute recruitment ranged from 27 plants/ha/yr to 217 plants/ha/yr while relative recruitment ranged from 1% to 13% of the initial plant density (Table 11). The recruitment rate (plants/ha/yr) did not differ significantly between woodland types (Kruskall-Wallis test, significance 0.63). Three sites recorded recruitment rates $>20 \%$. In the case of one of these sites, "Inveresk" this was apparently due to a fire just prior to site establishment. Numerous smaller plants had been razed by the fire and had not resprouted by the time of the initial recording. The other two sites, "Mistletoe" and "Coalstoun Lakes" showed large relative density increases because total density

Table 10.
Tukey's honestly significant difference test results for a comparison of mortality rates between woodland types.

	$300-$	$600-$	$900-$	$1200-$	$1500-$	$1800-$	$2100-$	$2400-$	$2700-$		
	$0-300$	600	900	1200	1500	1800	2100	2400	2700	3000	
$300-600$	<0.01										

Table 11.
Recruitment rates for individual sites grouped by DCA determined woodland types.

Woodland Type	Transect	Recruitment (plants/ha/yr)	Annual recruitment as \% of initial density
Box	Aqua Downs	80.18	5.94
	Bungobine	180.43	4.77
	Carfax control	105.04	5.28
	Carfax stylo	67.97	3.29
	Centauri	355.83	8.20
	Coalstoun Lakes	18.53	26.96
	Hedlow Creek	15.40	1.31
	Magazine	124.14	6.88
	Medway	13.96	3.36
	Mt. Panorama	13.63	2.27
	Myrrlumbing	81.46	11.47
	Pajingo	132.78	11.60
	Texas	20.00	2.72
	Walthum	145.84	16.62
	Wandobah T6 R1	160.93	10.91
	Wandobah T6 R2	145.66	4.33
	Wandobah T6 R3	69.29	2.86
n		17	17
Mean		101.83	7.57
Std. Error of Mean		20.93	1.58
Cypress	Eumina	197.08	12.34
	Rostock	255.58	11.94
	Sunrise east	199.16	7.33
n		3.00	3.00
Mean		217.27	10.54
Std. Error of Mean		19.16	1.61
Desert uplands	Inveresk	463.73	24.67
	Julia Park	99.57	7.66
	Swanlea	144.75	8.25
	The Patrick	56.72	11.66
n		4	4
Mean		191.19	13.06
Std. Error of Mean		92.61	3.97

Table 11 (cont).
Recruitment rates for individual sites grouped by DCA determined woodland types.

Woodland Type	Transect	Recruitment (plants/ha/yr)	Annual recruitment as $\%$ of initial density
Melanophloia	Bowie	166.61	16.83
	Burtle	253.08	18.14
	Cooper Downs	8.83	2.29
	Dykehead	42.06	4.04
	Hyde Park	29.70	2.98
	Kerry	142.31	6.06
	Longton	34.11	3.50
	Mt. Pleasant	46.18	4.59
	Nyanda	31.70	4.59
	Old Rawbelle	51.96	9.12
	Summerdel	85.17	4.00
	Sunrise west	226.70	17.24
	Tryphinia eumel	26.52	3.90
n		13	13
Mean		88.07	7.48
Std. Error of Mean		22.69	1.64
Microneura	Mistletoe	79.58	22.74
	Namuel	5.62	1.94
n		2	2
Mean		42.60	12.34
Std. Error of Mean		36.98	10.40
Mulga	Clifton	0.00	0.00
	Croxdale	1.82	0.21
	Tinnenburra	92.36	2.74
	Yanna	12.77	1.60
n		4	4
Mean		26.74	1.14
Std. Error of Mean		22.06	0.64
Total			
n		75	75
Mean		93.97	6.70

Table 11 (cont).
Recruitment rates for individual sites grouped by DCA determined woodland types.

Woodland Type	Transect	Recruitment (plants/ha/yr)	Annual recruitment as \% of initial density
Crebra	Anchor	51.70	3.26
	Archer	29.57	3.25
	Balmoral	11.92	0.85
	Canal Creek	173.93	5.13
	Exevale	2.03	1.21
	Forest Hills	386.04	8.98
	Glenrock	373.09	10.83
	Goldsborough	26.24	2.65
	Granitevale	5.20	0.56
	Heidelberg	19.02	7.25
	Huntly	21.95	5.05
	Kiauroo	29.12	3.57
	Kirk River exclosure	16.44	1.93
	Kirk River grazed	10.96	0.76
	Kooralbyn eucre	158.57	2.62
	Leyshon view exclosure	30.39	7.37
	Leyshon view grazed	32.48	5.99
	Lundsville	128.26	4.66
	Meadowvale exclosure	84.58	9.14
	Meadowvale grazed	39.55	6.88
	Monavale	304.77	8.20
	Mt. Pleasant Bowen	140.38	16.17
	Netherleigh	31.39	2.43
	New gildale	35.95	5.47
	Rosebank	250.17	11.53
	Rundle	41.45	4.43
	Scotston	48.28	6.57
	Springsure reserve	8.02	1.83
	St. pauls exclosure	8.36	3.93
	St. pauls grazed	12.62	6.16
	Tryphinia eucre	37.61	3.07
	Tryphinia eumol	12.86	1.93
N		32	32
Mean		80.09	5.11
Std. Error of Mean		18.93	0.63

was low. Absolute numbers of new plants at each site were no higher than for a majority of sites.

3.6 Height

The mean height of all plants for amalgamated site data decreased from 2.54 to 2.33 m between first and last recordings (Table 12). Taking into account differing transect sizes and periods of measurement this equates to a loss of $0.06 \mathrm{~m} /$ year or 2.4% of the initial mean height. The mean height of plants $>300 \mathrm{~mm}$ circumference remained stable at 11.4 m (Appendix 1, Table 4). The majority of sites (45 of the 75) experienced a decrease in mean height between first and last recordings, with 30 sites experiencing an increase and two remaining stable. A total of was $0.5 \mathrm{~m} /$ year was gained at the site with greatest increase in mean height, while 1.5 m was lost annually at the site with the greatest decrease.

There was no significant difference in mean tree height between the different woodland types at either first or last recording (Kruskall-Wallis test, significance 0.48 for both initial and final recordings). Within the recording period plant height decreased for woodlands overall and for BOX, CREBRA, CYPRESS, MELANOPHLOIA, and MICRONEURA woodland types, while the MULGA and DESERT UPLANDS woodlands experienced an increase in height. The height change rate (m / yr) did not differ significantly between woodland types (KruskallWallis test, $p=0.37$).

Table 12.
Mean tree height (m) by circumference class and total in the woodland types under study. "Change" is the annual change in plant height. "Change $\%$ " is the annual change as a percentage of the initial hieght. "Sig" is the Wilcoxon's matched pairs significance for comparison of initial and final values.

	Box Woodland					Crebra Woodland				
Circumference class (mm)	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	0.97	1.04	0.01	0.90	0.36	0.77	0.83	0.01	0.82	0.18
300-600	8.73	8.67	-0.01	-0.09	0.87	8.74	8.18	-0.05	-0.62	0.49
600-900	12.01	12.10	0.01	0.09	0.92	12.28	11.78	-0.05	-0.40	0.21
900-1200	14.41	14.99	0.07	0.52	0.41	15.03	14.91	-0.01	-0.08	0.69
1200-1500	15.84	16.76	0.12	0.75	0.18	16.48	16.50	0.00	0.01	0.69
1500-1800	18.22	17.93	-0.04	-0.21	0.95	16.98	18.47	0.14	0.84	0.29
1800-2100	18.25	20.03	0.23	1.27	0.26	18.65	17.15	-0.14	-0.78	0.36
2100-2400	16.57	17.38	0.11	0.64	0.61	19.95	25.75	0.56	2.81	0.07
2400-2700	21.09	19.18	-0.25	-1.17	0.72	19.68	19.20	-0.05	-0.23	0.66
2700-3000	20.43	18.18	-0.29	-1.43	0.29	0.00	18.23	18.23	-	1.00
3000-3300	13.70	18.40	0.61	4.45	1.00	-	-	-	-	-
>3300	20.25	19.75	-0.06	-0.32	0.66	-	-	-	-	-
Total	2.27	2.23	-0.01	-0.25	0.33	2.45	2.05	-0.04	-1.61	0.87

	Cypress Woodland					Desert Upland Woodland				
Circumference class (mm)	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	2.29	1.82	-0.19	-8.36	0.59	0.90	1.02	0.06	7.14	0.47
300-600	10.12	10.55	0.18	1.78	0.29	5.98	6.21	0.12	2.04	0.47
600-900	13.58	13.37	-0.09	-0.66	1.00	7.92	7.98	0.03	0.38	0.47
900-1200	14.58	15.00	0.17	1.19	1.00	9.00	9.64	0.35	3.83	0.47
1200-1500	22.00	16.08	-2.46	-11.17	1.00	12.25	10.29	-1.06	-8.65	0.18
1500-1800	-	-	-	-	-	15.60	12.70	-1.56	-10.03	0.73
1800-2100	11.20	11.00	-0.08	-0.74	0.66	0.00	15.90	15.90	100.00	1.00
2100-2400	-	-	-	-	-	-	-	-	-	-
2400-2700	30.00	24.70	-2.20	-7.32	0.45	-	-	-	-	-
2700-3000	19.50	0.00	-19.50	-	1.00	-	-	-	-	-
3000-3300	-	-	-	-	-	-	-	-	-	-
>3300	-	-	-	-	-	-	-	-	-	-
Total	4.46	3.98	-0.20	-4.44	0.44	1.82	1.87	0.03	1.46	0.90

Table 12 (cont).
Mean tree height (m) by circumference class and total in the woodland types under study. "Change" is the annual change in plant height. "Change \%" is the annual change as a percentage of the initial height. "Sig" is the Wilcoxon's matched pairs significance for comparison of initial and final values.

| | Melanophloia Woodland | | | | | | Microneura Woodland | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Circumference
 class (mm) | Initial | Final | Change | (\%) | Sig | Initial | Final | Change | $(\%)$ | Sig |
| $0-300$ | 1.07 | 1.12 | 0.01 | 0.59 | 0.65 | 1.40 | 1.25 | -0.08 | -5.90 | 0.66 |
| $300-600$ | 8.46 | 8.06 | -0.05 | -0.58 | 0.51 | 6.44 | 6.74 | 0.16 | 2.55 | 0.18 |
| $600-900$ | 12.31 | 11.55 | -0.09 | -0.76 | 0.04 | 8.27 | 8.68 | 0.23 | 2.75 | 0.18 |
| $900-1200$ | 13.48 | 13.69 | 0.03 | 0.19 | 0.75 | 8.24 | 9.42 | 0.66 | 8.02 | 0.18 |
| $1200-1500$ | 14.12 | 14.24 | 0.01 | 0.10 | 0.88 | 9.37 | 10.64 | 0.71 | 7.59 | 0.18 |
| $1500-1800$ | 15.87 | 16.24 | 0.05 | 0.29 | 0.59 | 5.15 | 7.32 | 1.21 | 23.57 | 0.18 |
| $1800-2100$ | 15.93 | 16.97 | 0.13 | 0.80 | 0.80 | 10.33 | 8.27 | -1.16 | -11.20 | 0.45 |
| $2100-2400$ | 12.10 | 10.10 | -0.25 | -2.03 | 0.35 | - | - | - | - | - |
| $2400-2700$ | 17.90 | 17.90 | >0.01 | >0.01 | 1.00 | - | - | - | - | - |
| $2700-3000$ | - | - | - | - | - | - | - | - | - | - |
| $3000-3300$ | - | - | - | - | - | - | - | - | - | - |
| >3300 | - | - | - | - | - | - | - | - | - | - |
| Total | 3.04 | 2.86 | -0.02 | -0.70 | 0.75 | 3.98 | 3.81 | -0.10 | -2.41 | 0.08 |

	Mulga Woodland					Total				
Circumference class (mm)	Initial	Final	Change	Change (\%)	Sig	Initial	Final	Change	Change (\%)	Sig
0-300	2.09	2.10	>0.01	0.06	0.72	1.02	1.06	>0.01	0.45	0.08
300-600	6.74	7.08	0.15	2.25	0.72	8.42	8.16	-0.03	-0.39	0.44
600-900	8.60	8.97	0.17	1.93	0.11	11.78	11.47	-0.04	-0.34	0.11
900-1200	8.18	8.40	0.10	1.23	0.66	13.83	14.05	0.03	0.20	0.59
1200-1500	10.28	11.09	0.36	3.55	0.27	15.20	15.40	0.03	0.17	0.35
1500-1800	11.15	9.50	-0.74	-6.61	0.66	16.19	16.89	0.09	0.54	0.43
1800-2100	-	-		-	-	17.27	17.18	-0.01	-0.07	0.88
2100-2400	-	-		-	-	17.32	19.56	0.28	1.63	0.14
2400-2700	-	-		-	-	21.45	19.72	-0.22	-1.02	0.40
2700-3000	-	-		-	-	20.20	18.18	-0.26	-1.26	0.29
3000-3300	-					13.70	18.40	0.59	4.32	1.00
>3300	-	-		-		20.25	19.75	-0.06	-0.31	0.66
Total	2.53	2.84	0.13	5.30	0.36	2.54	2.33	-0.06	-2.36	0.17

Mean height did not change significantly overall or within woodland types (Table 12). A marginally significant change (Wilcoxon's matched pairs, $p=0.07$) in height did occur in the $2100-2400 \mathrm{~mm}$ circumference class for the CREBRA woodland type and the $600-900 \mathrm{~mm}$ circumference class for the MELANOPHLOIA woodland. The smaller size classes ($<900 \mathrm{~mm}$ circumference) showed less fluctuation in mean height in absolute terms, though the relative changes were comparable to the larger size classes in many cases. This suggests that, although large changes in height aren't occurring within the smaller size classes, plant heights are still dynamic within that class.

3.9 Size Class Distributions

The frequency distributions of stem circumference classes did not differ significantly between first and last recordings for any site or woodland type or for any of the selected species for amalgamated site data (Tables 13-15).

The greatest density of plants occurred in the smallest circumference class at both initial and final recordings for all but one site (Figure 12). The exception was the "Namuel" site where there was a slightly lower density of trees in $0-300 \mathrm{~mm}$ circumference class than in the next largest.

Table 13.
Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for individual sites.
Sig. dom = Significance for species contributing the greatest amount of basal area at each site. Sig total = Significance for all species.

Transect name	sig. dom	sig.
Anchor	0.54	0.94
Aqua Downs	0.82	1.00
Archer	0.89	0.82
Balmoral	0.89	0.89
Bowie	1.00	1.00
Bungobine	1.00	1.00
Burtle	0.94	0.94
Canal Creek	1.00	1.00
Carfax Control	1.00	1.00
Carfax Stylo	0.99	1.00
Centauri	1.00	1.00
Clifton	0.96	1.00
Coalstoun Lakes	0.99	1.00
Cooper Downs	1.00	1.00
Croxdale	1.00	1.00
Dykehead	1.00	1.00
Eumina	1.00	1.00
Exevale	0.89	0.89
Forest Hills	1.00	1.00
Glenrock	1.00	1.00
Goldsborough	1.00	1.00
Granite Vale	1.00	1.00
Hedlow Creek	0.94	0.94
Heidelberg	0.94	1.00
Huntly	0.94	0.94
Hyde Park	0.96	1.00
Inveresk	1.00	1.00
Julia Park	1.00	1.00
Kerry	1.00	1.00
Kiauroo	1.00	0.94
Kirk River Exclosure	1.00	1.00
Kirk River Grazed	1.00	0.33
Kooralbyn Eucre	1.00	1.00
Leyshon View Exclosure	1.00	0.52
Leyshon View Grazed	0.94	1.00
Longton	1.00	1.00
Lundsville	0.94	0.94

	sig.	sig.					
Tom	total		$	$	Transect name	0.99	0.94
:---	:---	:---					
Magazine	1.00	0.82					
Meadowvale exclosure	1.00	1.00					
Meadowvale grazed	1.00	0.89					
Medway	1.00	1.00					
Mistletoe	1.00	1.00					
Monavale	1.00	0.94					
Mt. Panorama	0.98	1.00					
Mt. Pleasant	1.00	1.00					
Mt. Pleasant Bowen	1.00	1.00					
Myrrlumbing	1.00	1.00					
Namuel	0.89	1.00					
Netherleigh	1.00	1.00					
New Gildale	0.96	1.00					
Nyanda	1.00	1.00					
Old Rawbelle	1.00	1.00					
Pajingo	1.00	1.00					
Rosebank	1.00	0.89					
Rostock	0.94	1.00					
Rundle	1.00	1.00					
Scotston	1.00	1.00					
Springsure Reserve	0.94	1.00					
St. Pauls Exclosure	0.94	0.94					
St. Pauls Grazed	0.89	1.00					
Summerdel	1.00	0.94					
Sunrise East	1.00	1.00					
Sunrise West	1.00	1.00					
Swanlea	1.00	1.00					
Texas	1.00	1.00					
The Patrick	1.00	0.94					
Tinnenburra	0.94	1.00					
Tryphinia Eucre	1.00	0.33					
Tryphinia Eumel	1.00	1.00					
Tryphinia Eumol	0.98	0.52					
Walthum	0.70	1.00					
Wandobah T6 R1	0.89	1.00					
Wandobah T6 R2	1.00	0.94					
Wandobah T6 R3	0.89	1.00					
Yanna							

Table 14.
Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for woodland types and an amalgamation of all sites.

Woodland type	sig.
Box	1.00
Crebra	1.00
Cypress	1.00
Desert uplands	1.00
Melanophloia	1.00
Microneura	1.00
Mulga	1.00
Total	1.00

Table 15.
Probabilities for Kolmogorov-Smirnov test comparing initial and final circumference class distributions for selected species.

Species	sig.
Acacia aneura	1.00
Acacia shirleyii	1.00
Callitris glaucophylla	1.00
Corymbia citriodora	1.00
Corymbia erythrophloia	0.89
Eremophila mitchellii	1.00
Eucalyptus brownii	0.98
Eucalyptus crebra	1.00
Eucalyptus melanophloia	1.00
Eucalyptus populnea	1.00
Melalueca viridiflora	1.00
Petalostigma pubescens	1.00

Figure 12 (cont).
Basal area distribution diagrams for sites. Stem size classes are indicated by the maximum value for each.

 Figure 12 (cont).
Basal area distribution diagrams for sites.
Stem size classes are indicated by the
maximum value for each.

$$
\begin{array}{l}\text { Initial recording } \\ \text { Final recording }\end{array}
$$

(2) Initial recording
Final recording

Figure 12 (cont).
Basal area distribution diagrams for sites
Stem size classes are indicated by the
maximum value for each.

 Figure 12 (cont).
Basal area distribution diagrams for sites.
Stem size classes are indicated by the
maximum value for each.
Initial recording
Final recording

Wandobah 6 r3

[^1]

The size distribution in many sites has an approximately constant decrease with increasing size class, producing a negative exponential curve. However some sites showed a bimodal distribution with a large decrease in density in the smallest size classes followed by a rise to a secondary peak in the mid size classes and a further decline in the largest trees. Negative exponential functions appear to accurately reflect the degree to which size distribution patterns meet the reverse-J shape. Approximately half (37 of 75) sites have clearly defined reverse-J/negative exponential size class distributions and these sites all have r^{2} values >0.78 for the fitted function (Table 16). As r^{2} values decrease the size class distributions become increasingly bimodal.

The size class distributions for all woodland types in the present study also approximated a reverse J-curve (Figure 13) and all have r^{2} values >0.84 for the fitted negative exponential functions (Table 17). However the size class distribution patterns differed significantly between woodland types (KolmogorovSmirnov test, $p<0.02$). The size distributions for MICRONEURA and CYPRESS woodlands were less monotonously decreasing than the other woodland types. This was due to disjunct size distributions in the upper size classes for CYPRESS while for MICRONEURA woodlands the distribution pattern plateaus in both the upper an lower ranges producing a rotated sigmoid shape.

The basal area distribution for each species was a reverse $\mathrm{J} /$ negative exponential

Table 16.
r^{2} values for negative exponential functions fitted to size class distributions from initial recordings for each site.

	Total	
Transect name	r^{2}	Sig.
Anchor	0.62	0.001
Aqua Downs	0.97	0.000
Archer	0.57	0.011
Balmoral	0.38	0.033
Bowie	0.52	0.004
Bungobine	0.40	0.009
Burtle	0.57	0.002
Canal creek	0.56	0.000
Carfaxcontrol	0.54	0.006
Carfaxstylo	0.44	0.001
Centauri	0.94	0.000
Clifton	0.27	0.124
Coalstoun Lakes	0.00	0.800
Cooper Downs	0.33	0.049
Croxdale	0.99	0.000
Dykehead	0.65	0.002
Eumina	0.51	0.004
Exevale	0.49	0.011
Forest Hills	0.72	0.000
Glenrock	0.59	0.000
Goldsborough	0.91	0.000
Granitevale	0.53	0.001
Hedlow Creek	0.63	0.001
Heidelberg	0.65	0.000
Huntly	0.60	0.001
Hyde Park	0.68	0.000
Inveresk	0.64	0.006
Julia park	0.91	0.000
Kerry	0.85	0.000
Kiauroo	0.74	0.000
Kirk River exclosure	0.81	0.002
Kirk River grazed	0.45	0.034
Kooralbyn eucre	0.86	0.000
Leyshon View exclosure	0.20	0.380
Leyshon View grazed	0.32	0.035
Longton	0.94	0.000
Lundsville	0.47	0.007

	Total
Transect name	$\mathrm{r}^{2} \quad \mathrm{Sig}$.
Meadowvale exclosure	0.890 .000
Meadowvale grazed	0.530 .041
Medway	0.780 .000
Mistletoe	0.780 .000
Monavale	0.530 .003
Mt. Panorama	0.470 .000
Mt. Pleasant	0.610 .001
Mt. Pleasant Bowen	0.470 .002
Myrrlumbing	0.510 .004
Namuel	0.750 .000
Netherleigh	0.620 .001
New Gildale	0.360 .005
Nyanda	0.500 .002
Old Rawbelle	0.360 .023
Pajingo	0.930 .000
Rosebank	0.590 .001
Rostock	0.410 .002
Rundle	0.740 .000
Scotston	0.450 .004
Springsure reserve	0.470 .003
St. Pauls exclosure	0.430 .011
St. Pauls grazed	0.520 .004
Summerdel	0.920 .000
Sunrise east	0.980 .000
Sunrise west	0.900 .000
Swanlea	0.970 .000
Texas	0.300 .006
The Patrick	0.660 .000
Tinnenburra	0.710 .001
Tryphinia eucre	0.600 .001
Tryphinia eumel	0.480 .028
Tryphinia eumol	0.540 .001
Walthum	0.840 .000
Wandobah T6 R1	0.850 .001
Wandobah T6 R2	0.890 .000
Wandobah T6 R3	0.580 .004
Yanna	0.440 .019

Table 17.
r^{2} values for negative exponential functions fitted to size class distributions from initial recordings for each woodland type and for all sites amalgamated.

Woodland type	r^{2}
Box	0.93
Crebra	0.97
Cypress	0.89
Desert	0.92
Melanophloia	0.94
Microneura	0.84
Mulga	0.98
All	0.95

shape (Figure 14) and all have r^{2} values >0.80 for the fitted negative exponential functions (Table 18). However the size class distribution patterns differed significantly between species (Kolmogorov-Smirnov test, $p<0.02$). The size distributions for A. aneura, A. shirleyii, E. mitchellii, P. pubescens and M. viridiflora showed a concentration of plants entirely within the smaller size classes, attributable to the smaller mature sizes of these species. Both E. populnea and E. brownii exhibited plateaux or a very weak bimodal tendency in the mid size ranges.

3.10 Floristic Composition

A total of 153 woody species belonging to 66 genera and 34 families were identified in the initial recordings of 20.1 ha covered by the 75 sites (Table 19). Species richness for each site ranged from 3 to 24 species/site with a mean of 11.2 (Table 20). Table 5 in Appendix 1 presents the raw data of species at each site at initial recording. The most species rich family was Myrtaceae with 35 species, followed by Mimosaceae with 27 species (Table 21). Acacia was the most speciose genus with 27 species (Table 22). The most abundant species over all sites were Eucalyptus crebra (91 plants/ha), Eucalyptus melanophloia (91plants/ha) and Alphitonia excelsa (83 plants/ha) (Table 20).

The MULGA woodlands exhibited the lowest species richness, with 9 species recorded, while the CREBRA woodlands were the most species rich with 91 species. Family richness at each site ranged from 2 to 17 . Overall sites shared an

(

Table 18.
r^{2} values for negative exponential function fitted to size class distributions from initial recordings for selected species.

Species	r^{2}
Acacia aneura	0.91
Acacia shirleyii	0.93
Callitris glaucophylla	0.80
Eremophila mitchellii	1.00
Eucalyptus brownii	0.95
Corymbia citriodora	0.95
Eucalyptus crebra	0.98
Corymbia erythrophloia	0.92
Eucalyptus melanophloia	0.98
Eucalyptus populnea	0.93
Melalueca viridiflora	0.98
Petalostigma pubescens	0.99

Table 19.
List of species recorded in the study area at initial recording by family.

Family	Species	Density (plants/ha)	Family	Species	Density (plants/ha)
Apocynaceae	Alstonia constricta	0.05	Casuarinaceae	Allocasuarina luehmannii	0.7
	Carissa lanceolata	61			
	Carissa ovata	23.73			
	Parsonsia eucalyptophylla	0.45	Celastraceae	Denhamia umbellata	1
	Parsonsia lanceolata	0.1		Maytenus cunninghamii	28.06
Asclepiadaceae	Cryptostegia grandiflora	1.24	Combretaceae	Terminalia aridicola	7.26
	Sarcostemma viminale	0.15		Terminalia oblongata	0.35
Asteraceae	Cassinia leavis	2.99	Cupressaceae	Callitris glaucophylla	62.09
Bignoniaceae	Dolichandrone heterophyllum	1.24	Ebanaceae	Diospyrus ferrea	0.05
	Pandorea pandorana	0.1			
			Epacridaceae	Melichrus sp.	0.35
Boraginaceae	Ehretia membranifolia	3.78			
			Erythroxylaceae	Erythroxylum australe	6.22
Cactaceae	Eriocerius martinii	0.3			
	Opuntia stricta	2.09	Euphorbiaceae	Breynia oblongifolia	10.8
	Opuntia tomentosa	6.22		Gardenia ochreata	0.4
				Petalostigma pubescens	27.31
Caesalpiniaceae	Cassia brewsteri	2.59			
	Lysiphyllum carronii	0.3	Fabaceae	Erythrina vespertilio	0.9
	Lysiphyllum gilvum	0.9		Jacksonia scoparia	3.03
	Lysiphyllum hookeri	0.05			
	Senna artemisoides	9.65	Lecythidaceae	Planchonia careya	0.95
	Senna coronilloides	4.38			
			Meliaceae	Melia azedarach	0.15
Capparaceae	Apophyllum anomalum	2.69		Owenia acidula	0.8
	Capparis canescens	1.34			
	Capparis lassiantha	2.09	Verbenaceae	Lantana camara	0.85
	Capparis loranthifolia	0.1		Lantana montevidensis	0.2
	Capparis mitchellii	1.64		Clerodendrumfloribundum	7.21

Table 19 (cont).
List of species recorded in the study area at initial recording by family.

Family	Species	Density (plants/ha)	Family	Species	Density (plants/ha)
Mimosaceae	Acacia aneura	48.96	Myoporaceae	Eremophila gilesii	2.39
	Acacia argyrodendron	4.53		Eremophila latrobei	8.21
	Acacia aulacocarpa	11.69		Eremophila longifolia	9.55
	Acacia bidwillii	4.78		Eremophila mitchellii	24.83
	Acacia carolaea	0.25		Myoporum acuminatum	6.07
	Acacia coriacaea	12.24		Myoporum desertii	5.92
	Acacia cowleana	4.43			
	Acacia crassa	1.39	Myrtaceae	Angophora costata	0.05
	Acacia decora	3.33		Corymbia citriodora	12.99
	Acacia excelsa	16.02		Corymbia clarksoniana	8.11
	Acacia farnesiana	9.00		Corymbia dallachyana	25.07
	Acacia fasciculifera	0.40		Corymbia erythrophloia	34.38
	Acacia grandifolia	1.69		Corymbia intermedia	7.76
	Acacia holosericea	0.05		Corymbia plena	1.49
	Acacia laccata	2.29		Corymbia setosa	0.05
	Acacia leiocalyx	26.67		Corymbia terminalis	2.14
	Acacia leptostachya	0.95		Corymbia tessellaris	7.81
	Acacia longispicata	0.20		Eucalyptus brownii	13.08
	Acacia macradenia	0.10		Eucalyptus cambageana	0.30
	Acacia melleodora	0.95		Eucalyptus chloroclada	0.55
	Acacia olignophleba	0.05		Eucalyptus coolabah	3.13
	Acacia rhodoxylon	0.05		Eucalyptus crebra	91.19
	Acacia salicina	10.80		Eucalyptus exserta	6.72
	Acacia shirleyii	48.11		Eucalyptus fibrosa	14.23
	Acacia stipuligra	2.04		Eucalyptus hybrid	0.80
	Acacia tenuissima	8.66		Eucalyptus melanophloia	91.00
	Archidendropsis basaltica	0.10		Eucalyptus microneura	3.83
				Eucalyptus moluccana	11.00
Moraceae	Ficus opposita	0.05		Eucalyptus orgadophila	4.38
				Eucalyptus platyphylla	1.04
				Eucalyptus populnea	31.19
Xanthoroeaceae Xanthorrhoea johnsonii		0.30		Eucalyptus quadricostata	5.12

Table 19 (cont).
List of species recorded in the study area at initial recording by family.

Family Myrtaceae	Species Eucalyptus similis	Density (plants/ha) 6.52	Family Xanthoroeaceae	Species Xanthorrhoea iohnsonii	Density (plants/ha) 0.30
Myrtaceae (cont).	Eucalyptus tereticornis	4.13			
	Eucalyptus whiteii	5.67	Rubiaceae	Caelospermum reticulatum	5.22
	Eucalyptus xanthoclada	9.05		Canthium attenuatum	3.33
	Lophostomen confertus	2.34		Canthium buxifolium	0.10
	Lophostomon suaveolens	0.65		Canthium coprosmoides	1.94
	Melaleuca bracteata	0.30		Canthium oleifolium	5.92
	Melaleuca nervosa	6.47		Canthium vacciniifolium	5.17
	Melalueca viridiflora	32.09		Gardenia vilhelmii	0.15
	Micromyrtus sp.	5.33			
			Rutaceae	Flindersia dissosperma	6.02
Pittosporaceae	Bursaria incana	0.50		Flindersia maculosa	0.35
	Bursaria spinosa	0.30		Geijera parviflora	0.85
	Citriobatus lineare	0.05		Geijera salicifolia	0.10
	Citriobatus spinescens	0.20			
	Pittosporum phylliraeoides	0.10	Santalaceae	Santalum lanceolatum	0.30
Proteaceae	Grevillea parrallela	4.78	Sapindaceae	Dodonaea species	0.15
	Grevillea prteridifolia	0.30		Alectryon diversifolium	0.20
	Grevillea striata	2.84		Dodonaea physicarpus	0.05
	Hakea fraserii	0.35		Cupaniopsis anacardioides	0.10
	Hakea lorea	0.15		Alectryon oleifolius	0.85
	Hakea species	0.60		Dodonaea viscosa	0.75
	Persoonia falcata	0.10		Atalaya hemiglauca	54.58
Rhamnaceae	Alphitonia excelsa	82.84	Sterculiaceae	Brachychiton australe	0.05
	Ventilago viminalis	8.41		Brachychiton populneus	1.59
	Zizyphus mauritiana	3.83			
			Zamiaceae	Macrozamia moorei	2.59

Table 20.
Species and family richness for sites and woodland types at initial recording.
"Trees" are those plants $>300 \mathrm{~mm}$ circumference at 30 cm .

Woodland type	Site	Families	Species	
				Total
Cypress				
	Eumina	6	7	3
	Rostoc	11	17	9
	Sunrise East	8	11	3
	Total	14	23	14

Microneura

Mistletoe	7	8	3
Namuel	5	5	3
Total	8	10	5

Desert uplands

	Inveresk	10	15	2
	Julia Park	7	11	5
	The Patrick	15	19	8
	Swanlea	10	15	2
Melanophloia	Total	17	34	17
	Bowie	22	53	28
	Burtle	11	2	
	Cooper Downs	14	20	5
	Dykehead	6	7	3
	Hyde Park	6	10	1
	Kerry	9	14	4
	Longton	7	11	4
	Mt. Pleasant	7	9	5
	Nyanda	4	7	2
	Old Rawbelle	9	11	2
	Summerdell	3	4	1
	Sunrise West	7	9	4
	Tryphinia Eumel	4	6	2
	Total	5	7	3
		22	53	28

Table 20 (cont).
Species and family richness for sites and woodland types at initial recording.
"Trees" are those plants $>300 \mathrm{~mm}$ circumference at 30 cm .

Woodland type	Site	Families	Species	
			Total	Trees
Crebra				
	Anchor	10	16	5
	Archer	9	13	1
	Balmoral	6	7	1
	Canal Creek	3	6	3
	Exevale	5	7	3
	Forest hills	15	23	7
	New Gildale	4	6	3
	Glenrock	9	13	6
	Goldsborough	7	10	2
	Granitevale	3	8	2
	Heidelberg	6	9	5
	Huntly	8	10	5
	Kiauroo	11	15	4
	Kirk River exclosure	4	6	4
	Kirk River grazed	2	3	1
	Kooralbyn eucre	7	11	3
	Leyshon view exclosure	8	12	3
	Leyshon view grazed	11	15	5
	Lundsville	8	15	8
	Meadowvale exclosure	4	5	2
	Meadowvale grazed	2	3	2
	Monavale	9	16	5
	Mt Pleasant Bowen	8	11	4
	Netherleigh	7	15	8
	Rosebank	8	12	3
	Rundle	8	11	2
	Scotston	6	9	2
	Springsure	7	8	4
	St. Pauls exclosure	7	9	4
	St. Pauls grazed	6	9	3
	Tryphinia eucre	5	7	4
	Tryphinia eumol	10	16	6
	Total	25	91	63

Table 20 (cont).
Species and family richness for sites and woodland types at initial recording.
"Trees" are those plants $>300 \mathrm{~mm}$ circumference at 30 cm .

Woodland type	Site	Families	Species	
				Total
Box		Trees		
	Aqua Downs	6	9	3
	Bungobine	15	21	4
	Carfax control	13	19	7
	Carfax stylo	13	19	5
	Centauri	11	16	3
	Coalstoun Lakes	6	10	2
	Hedlow Creek	7	11	4
	Magazine	8	12	2
	Medway	7	9	3
	Mt. Panorama	6	7	1
	Myrrlumbing	8	12	4
	Pajingo	7	7	2
	Texas	10	15	6
	Walthum	12	16	3
	Wandobah T6R1	14	19	6
	Wandobah T6R2	17	24	6
	Wandobah T6R3	16	24	4

Table 21.
Species number recorded in the study area at initial recording, by family.

Family	Number of species	Percentage of total species
Apocynaceae	5	3.25
Asclepiadaceae	2	1.3
Asteraceae	1	0.65
Bignoniaceae	2	1.3
Boraginaceae	1	0.65
Cactaceae	3	1.95
Caesalpiniaceae	6	3.9
Capparaceae	5	3.25
Casuarinaceae	2	1.3
Celastraceae	2	1.3
Combretaceae	2	1.3
Cupressaceae	1	0.65
Epacridaceae	1	0.65
Erythroxylaceae	1	0.65
Euphorbiaceae	3	1.95
Fabaceae	2	1.3
Lecythidaceae	1	0.65
Meliaceae	1	0.65
Mimosaceae	27	17.53
Moraceae	2	1.3
Myoporaceae	6	3.9
Myrtaceae	35	22.73
Pittosporaceae	5	3.25
Proteaceae	7	4.55
Rhamnaceae	3	1.95
Rubiaceae	7	4.55
Rutaceae	4	2.6
Santalaceae	1	0.65
Sapindaceae	7	5.19
Sterculiaceae	2	1.3
Verbeaceae	2	1.3
Verbenaceae	1	0.65
Xanthoroeaceae	1	0.65
	2	

Table 22.
Species number recorded in the study area at initial recording, by genus.

Genus	Number of species	Percentage of total species
Acacia	27	17.53
Alectryon	2	1.30
Allocasurina	1	0.65
Alphitonia	1	0.65
Alstonia	1	0.65
Angophora	1	0.65
Apophyllum	1	0.65
Archidendropsis	1	0.65
Atalaya	1	0.65
Brachychiton	2	1.30
Breynia	1	0.65
Bursaria	2	1.30
Caelospermum	1	0.65
Callitris	1	0.65
Canthium	5	3.25
Capparis	4	2.60
Carissa	2	1.30
Cassia	1	0.65
Cassinia	1	0.65
Casuarina	1	0.65
Citriobatus	2	1.30
Clerodendrum	1	0.65
Corymbia	9	5.84
Cryptostegia	1	0.65
Cupaniopsis	1	0.65
Denhamia	1	0.65
Dodonaea	3	1.95
Dolichandrone	1	0.65
Ehretia	1	0.65
Eremophila	4	2.60
Eriocerius	1	0.65
Erythrina	1	0.65
Erythroxylum	1	0.65

Genus	Number of species	Percentage of total species
Eucalyptus	18	11.69
Ficus	2	1.30
Flindersia	2	1.30
Gardenia	2	1.30
Geijera	2	1.30
Grevillea	3	1.95
Hakea	3	1.95
Jacksonia	1	0.65
Lantana	2	1.30
Lophostemon	2	1.30
Lysiphyllum	3	1.95
Macrozamia	2	1.30
Maytenus	1	0.65
Melaleuca	3	1.95
Melia	1	0.65
Melichrus	1	0.65
Micromyrtus	1	0.65
Myoporum	2	1.30
Opuntia	2	1.30
Owenia	1	0.65
Pandorea	1	0.65
Parsonsia	2	1.30
Persoonia	1	0.65
Petalostigma	1	0.65
Pittosporum	1	0.65
Planchonia	1	0.65
Santalum	1	0.65
Sarcostemma	1	0.65
Senna	2	1.30
Terminalia	2	1.30
Ventilago	1	0.65
Xanthorrhoea	1	0.65
Zizyphus		0.65

average of 32% of species and sites in the same community type shared only 43% of their species in common (Table 23).

Shannon-Wiener diversity indices varied between 1 in the MULGA woodlands and 3.3 in the BOX woodlands, with a value of 4 for an aggregate of all sites (Table 23). Species evenness was equally variable between woodland types, with a maximum evenness value of 0.8 for DESERT UPLANDS and a minimum of 0.5 for MULGA, CYPRESS and MELANOPHLOIA types. The Sorensen coefficient for the woodland types showed varying degrees of similarity between woodland types ranging from 0.52 for CREBRA/BOX to complete dissimilarity between MICRONEURA and MULGA communities (Table 24). Forty-three species were found at only one site and no species was common to all sites.

Total species richness (alpha-diversity) fluctuated slightly over time, with 153 and 156 species identified in the initial and final tree surveys, respectively. This constitutes an increase of 1.9%. Within woodland types diversity changes ranged from a 11.1% increase in MULGA type woodlands to a stable diversity in DESERT UPLANDS and MICRONEURA woodlands (Table 25). Two species were lost from the transect sites and 5 species colonised the sites over the study period (Table 26). Colonisations and losses were more variable for individual woodland types, with colonisations ranging from nine in CREBRA woodlands to zero in DESERT UPLANDS and MICRONEURA and species losses ranging

Table 23.
Species diversity and distribution by woodland type.

Woodland type	$\frac{\text { 品 }}{5}$	$\begin{aligned} & \text { ig } \\ & \text { ì } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { N2. } \\ & 0.3 \\ & \hline \end{aligned}$			$\stackrel{\text { ® }}{\text { ¢ }}$		\%
Number of sites	4	32	3	2	4	17	13	75
Species richness	9	91	23	10	34	83	53	153
Mean species richness/site	4.8	9.4	11.3	7.5	15.0	14.4	8.7	10.5
Percentage of total species present in woodland type	5.7	57.6	14.6	6.3	21.5	52.5	33.5	96.8
Number of species unique to woodland type.	2	35	3	4	10	23	1	155
Percentage of total species represented by species unique to type	1.3	22.2	1.9	2.5	6.3	14.6	0.6	98.1
Percentage of species in type represented by species unique to type	22.2	38.5	13.0	40.0	29.4	27.7	1.9	101.3
Number of species shared by all sites within type.	1.0	0.0	4.0	3.0	3.0	0.0	1.0	2.0
\% species shared by all sites within type.	11.1	0.0	17.4	30.0	8.8	0.0	1.9	0.0
$\%$ of species shared by 2 or more sites within type	75.3	23.5	52.0	55.6	50.0	27.0	31.5	31.8
Shannon-Weiner diversity index	1.0	3.2	1.7	1.3	2.8	3.3	2.0	4.0
Species evenness	0.5	0.7	0.5	0.6	0.8	0.7	0.5	0.8

Comparisons of species richness and evenness for the DCA determined woodland types.

Woodland type				Mulga \& Desert uplands		Mulga \& Melanophloia		Crebra \& Microneura			Crebra \& Melanophloia	Cypress \& Microneura		$$		Microneura \& Desert uplands				
Number of sites	36	7	6	8	21	17	35	34	36	49	45	35	5	20	16	6	19	15	21	17
Number of species recorded in combined woodland types	96	29	17	37	86	52	96	98	109	127	109	32	50	92	59	41	89	58	99	64
Percentage of total species present in combined woodland type	61	18	11	23	54	33	61	62	69	80	69	20	32	58	37	26	56	37	63	41
Number of species shared by both types	1	2	0	3	4	5	18	3	15	47	2	2	6	14	14	2	4	2	17	19
Number of species unique to woodland types	41	6	8	14	28	5	45	46	52	77	43	10	16	31	8	18	32	9	39	12
Total number of species	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
Percentage of total species represented by species unique to type	26	4	5	9	18	3	29	29	33	49	27	6	10	20	5	11	20	6	25	8
Percentage of species in type represented by species unique to type	43	21	47	38	33	10	47	47	48	61	39	31	32	34	14	44	36	16	39	19
Sorensen coefficient	0	0.1	0	0.1	0.1	0.2	0.3	0.1	0.2	0.5	0	0.1	0.2	0.3	0.4	0.1	0.1	0.1	0.3	0.3
Number of species shared by all sites within type.	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
\% species shared by all sites within type.	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0

Table 25.
Changes in total species richness and composition by woodland type.
Composition change $=((\mathrm{E}+\mathrm{C}) / \mathrm{N}) * 100$ where $\mathrm{E}=$ number of local extinctions, $\mathrm{C}=$ number of colonisations and $\mathrm{N}=$ the number of species present at initial recording.

Woodland type		B.	C.	$(\mathrm{C} / \mathrm{A}) * 100$	
	Number of species present at initial recording	Number of species present at final recording	Diversity change	Diversity change as a percentage of initial species richness.	Composition change
Box	83	88	5	6.02	13.58
Crebra	91	99	8	8.79	11.90
Cypress	23	24	1	4.35	4.55
Desert uplands	34	34	0	0.00	0
Melanophloia	53	56	3	5.66	10.20
Microneura	10	10	0	0.00	0
Mulga	9	10	1	11.11	12.50
Total	153	156	3	1.96	4.58

Table 26.
Species colonisations and losses by woodland type.

Total	Crebra	
Colonisations \quad Losses	Colonisations	Losses
Acacia cretata Alyxia ruscifolia	Acacia cretata Acacia longispicata Alstonia constricta Casuarina cristata Ficus obliqua Flindersia dissosperma Lysiphyllum carronii Pandorea pandorana Parsonsia lanceolata	Alyxia ruscifolia
Casuarina cristata Diospyrus ferrea		
Denhamia oleaster		
Ficus obliqua		
Lysiphyllum carronii		
Box		
Colonisations \quad Losses		
Acacia holosericea Acacia leiocalyx		
Brachychiton australe Diospyrus ferrea		
Brachychiton populneus Eremophila longifolia	Mulga	
Denhamia oleaster	Colonisations	Losses
Dodonaea viscosa	Geijera parviflora	
Eriocerius martinii	Melanophloia	
Hakea fraserii	Colonisations	Losses
Macrozamia miquellii	Acacia stipuligra	Acacia crassa
Cypress	Breynia oblongifolia	
Colonisations \quad Losses	Carissa ovata	
Alectryon oleifolius	Pittosporum phylliraeoides	

from three in BOX woodlands to zero for CYPRESS, MULGA DESERT UPLANDS and MICRONEURA. The total change in species composition was determined to be 4.58% with an annual rate of 0.44% (Table 25). Annual composition change within the different woodland types ranged from 0% to 5.58%.

Species accumulation curves were uneven across all woodland types (Figure 15) and no asymptotic tendency was apparent for any of the communities. As a result estimates of sampling effort required to sample 90% of species diversity based on the fitted exponential curve was high for all woodlands types, ranging from 106 sub-plots for MICRONEURA woodlands to 9208 for MELANOPHLOIA woodlands (Table 27). Accumulation curves were more even for the majority of individual sites (Figure 16). Estimates of sampling effort required to sample 90\% of species were also much closer to the actual sampling sizes (Table 28), with a majority of sites (38) exceeding the area required to sample 95% of species.

3.10.1 Importance Values

The Families Mimosaceae and Myrtaceae ranked first and second in importance in all woodland types except MULGA, where Myrtaceae was absent completely, and CYPRESS where Mimosaceae ranked fourth (Table 29). These two families accounted for 95% of basal area, 62% of woody plant density and 43% of all species recorded. Myrtaceae, with a FIV of 171 accounted for 25% of species diversity, 94% of the basal area and 51% of density. With 77% of the species, the

Figure 15. Species accumulation curves
for DCA defined woodland types.
The graphs represent cumulative number
of $200 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are
for a fitted exponential function.

Table 27.

Number of $200 \mathrm{~m}^{2}$ subplots required to obtain 90% of species for each DCA defined woodland type using extrapolation of fitted negative exponential function.
"\% of required subplots" is the number of subplots actually sampled as percentage of the number required for 90% species sampling.

	Number of subplots required	$\%$ of required subplots sampled
Woodland type	2019	13
Box woodlands	1006	44
Crebra woodlands	4604	1
Cypress woodlands	418	14
Desert uplands woodlands	9208	2
Melanophloia woodlands	106	19
Microneura woodlands	3836	1
Mulga woodlands	1535	66

Figure 16. Species accumulation curves for
individual sites
The graphs represent cumulative number of $100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a fitted exponential function.

Figure 16 (cont). Species accumulation
curves for individual sites
The graphs represent cumulative number of
$100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a
fitted exponential function.

Figure 16 (cont). Species accumulation
curves for individual sites
The graphs represent cumulative number of
$100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a
fitted exponential function.

Figure 16 (cont). Species accumulation

 fitted exponential function.

The graphs represent cumulative number of $100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a fitted exponential function.

Figure 16 (cont). Species accumulation
curves for individual sites
The graphs represent cumulative number of
$100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a
fitted exponential function.

Figure 16 (cont). Species accumulation

The graphs represent cumulative number of
$100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a
fitted exponential function.

 $100 \mathrm{~m}^{2}$ subplots. Curve and r^{2} value are for a fitted exponential function.

Figure 16 (cont). Species accumulation
curves for individual sites
The graphs represent cumulative number of

${ }^{5}$

Table 28.
Number of $100 \mathrm{~m}^{2}$ subplots required to obtain 90% of species for each site using extrapolation of fitted negative exponential function.
"\% of required subplots" is the number of subplots actually sampled as percentage of the number required for 90% species sampling.

Transect name	Number of subplots required	$\%$ of required subplots sampled
Anchor	23	87
Aqua Downs	48	42
Archer	24	82
Balmoral	29	68
Bowie	15	130
Bungobine	99	30
Burtle	39	52
Canal creek	16	127
Carfax control	29	69
Carfax stylo	22	92
Centauri	14	141
Clifton	22	91
Coalstoun Lakes	36	224
Cooper Downs	31	98
Croxdale	3	400
Dykehead	37	108
Eumina	14	213
Exevale	19	257
Forest Hills	21	95
Glenrock	35	57
Goldsborough	34	59
Granitevale	65	31
Hedlow Creek	31	130
Heidelberg	49	163
Huntly	19	104
Hyde Park	34	58
Inveresk	19	106
Julia park	14	141
Kerry	87	35
Kiauroo	52	19
Kirk River exclosure	3	288
Kirk River grazed	18	56
Kooralbyn eucre	21	195
Leyshon View exclosure	17	240
Leyshon View grazed	20	98
Longton	19	106
Lundsville	36	55
Magazine	16	121

Transect name	Number of subplots required	$\%$ of required subplots sampled
Meadowvale exclosure	30	66
Meadowvale grazed	15	391
Medway	33	121
Mistletoe	42	48
Monavale	42	48
Mt. Panorama	16	249
Mt. Pleasant	24	127
Mt. Pleasant Bowen	28	72
Myrrlumbing	9	220
Namuel	19	106
Netherleigh	25	161
New Gildale	28	72
Nyanda	22	92
Old Rawbelle	18	110
Pajingo	21	95
Rosebank	25	121
Rostock	34	29
Rundle	32	32
Scotston	12	332
Springsure reserve	20	204
St. Pauls exclosure	37	54
St. Pauls grazed	18	109
Summerdel	16	126
Sunrise east	44	45
Sunrise west	18	114
Swanlea	31	192
Texas	15	542
The Patrick	31	65
Tinnenburra	13	158
Tryphinia eucre	17	115
Tryphinia eumel	16	128
Tryphinia eumol	25	78
Walthum	22	186
Wandobah T6R1	19	83
Wandobah T6R2	35	46
Wandobah T6 R3	22	72
Yanna	19	105

Table 29.
Relative density (rel. den.), relative diversity (rel. div), relative dominance (rel. dom.) and resulting family importance values (FIV) for families present in the study area by Detrended Correspondence Analysis determined woodland type. See text for explanation of terms

Table 29 (cont).
Relative density (rel. den.), relative diversity (rel. div), relative dominance (rel. dom.) and resulting family importance values (FIV) for families present in the study area by Detrended Correspondence Analysis determined woodland type.

	rel. div.	rel. den.	rel. dom.	FIV	rel. div.	rel. den.	rel. dom.	FIV	rel. div.	rel. den.	rel. dom.	FIV	rel. div.	rel. den.	rel. dom.	FIV
Apocynaceae	4.40	0.69	< 001	5.09		-	-	-	-	-	-	-	3.03	1.22	0.00	4.25
Asclepiadaceae	1.10	0.07	0.01	1.19	-	-	-									
Asteraceae													3.03	1.22	0.00	4.25
Bignoniaceae	2.20	0.16	0.04	2.40		-	-		10.00	2.78	0.00	12.78	-	-	-	_
Boraginaceae									-	-	-	-	-	-	-	-
Cactaceae	2.20	0.61	<. 001	2.81	12.50	10.25	<. 001	22.75								
Caesalpiniaceae	2.20	0.02	0.00	2.22	-	-	-	-	10.00	2.78	0.47	13.24	6.06	2.65	0.00	8.72
Capparaceae	3.30	0.59	0.03	3.91					-	-	-	-	3.03	0.22	0.00	3.25
Casuarinaceae	2.20	0.08	0.33	2.61	4.17	0.44	0.18	4.79								
Celastraceae	1.10	1.78	0.08	2.96	4.17	1.90	0.01	6.08					3.03	7.83	0.15	11.02
Combretaceae	-	-	-						10.00	$\overline{3} 7.70$	16.29	$\overline{6} 3.99$	-	-	-	-
Cupressaceae	-	-	-	-	4.17	67.90	$\overline{6} 4.76$	136.83						-	-	-
Epacridaceae	-	-	-		4.17	0.37	0.00	4.53	10.00	0.79	0.57	11.36	3.03	0.44	0.07	3.54
Erythroxylaceae					_	-	-	-	-	-	-	-				
Euphorbiaceae	2.20	5.40	1.06	8.66					_	_	_	_	3.03	8.05	1.42	12.50
Fabaceae	2.20	0.22	0.06	2.48	4.17	6.22	0.54	10.93	-	-	-	_	-	-	-	-
Lecythidaceae	1.10	0.16	0.00	1.26	-	-	-	-	-	-	-	-				
Meliaceae													3.03	0.04	0.00	3.07
Mimosaceae	17.58	10.87	1.32	29.77	16.67	2.73	0.77	20.17	20.00	1.98	0.03	22.01	24.24	47.47	6.58	78.28
Moraceae	2.20	0.02	0.00	2.22					-	-	-	-				
Myoporaceae	1.10	0.14	0.00	1.24	4.17	0.15	0.04	4.35					3.03	0.02	0.01	3.06
Myrtaceae	25.27	51.47	94.27	171.02	25.00	7.66	30.53	63.19	10.00	39.29	82.63	131.92	21.21	24.76	90.84	136.81
Pittosporaceae	4.40	0.23	0.05	4.67	-	-	-	-	-	-	-	-				
Proteaceae	4.40	0.40	0.11	4.90						-	_	-	3.03	0.17	0.75	3.95
Rhamnaceae	3.30	22.19	1.45	26.94	4.17	0.15	1.10	5.41					6.06	4.29	0.01	10.36
Rubiaceae	4.40	2.59	0.06	7.04	4.17	0.59	1.32	6.07	10.00	2.78	0.01	12.78	3.03	0.15	0.12	3.30
Rutaceae	2.20	0.06	0.00	2.26	4.17	1.02	0.74	5.94	-	-	-	-				
Santalaceae													3.03	0.28	0.04	3.36
Sapindaceae	3.30	1.32	0.06	4.67	4.17	0.15	0.00	4.31	20.00	11.90	0.01	31.91	6.06	0.28	0.00	6.34
Sterculiaceae	2.20	0.62	0.09	2.92	4.17	0.49	0.00	4.65	-	-	-	-				
Verbenaceae	2.20	0.10	0.00	2.30	_	_	-	_	-	_	_	_	3.03	0.91	0.00	3.95
Xanthoroeaceae	1.10	0.01	0.00	1.11	-	-	-	-	-	-	-	-	-	-	-	-
Zamiaceae	2.20	0.19	0.91	3.30	-	-	-	-	_	_	_	_	-	_	-	_

eucalypts (genera Eucalyptus and Corymbia) accounted for the majority of plants within the Myrtaceae. Eucalyptus and Corymbia were the second and third most species rich genera, comprising 18 and 9 species respectively (Table 30). Combined, the eucalypts accounted for 81% of the basal area and 31% of the plant density over all the sites studied.

With individuals of the family Myrtaceae contributing only 8% of plant density in CYPRESS woodlands, the family's basal area contribution was disproportionate to the number of individuals. Within the woodland types MICRONEURA, DESERT UPLANDS, BOX and MELANOPHLOIA the family Myrtaceae accounted for 80$95 \%$ of the basal area. The relative density of Myrtaceae varied more than the basal area within these woodland types, with the family producing 47% of individuals in MELANOPHLOIA woodlands, 39% in MICRONEURA, 25% in DESERT UPLANDS and 17% in BOX. The low relative density of myrtaceous plants in the BOX woodland type was attributable in large part to the presence of two sites dominated by Acacia species, particularly the Acacia shirleyii dominated site "Centauri" which, at 5010 plants/ha at the final recording, represented the highest density of any site.

Mimosaceae accounted for 19% of the total number of species recorded and contributed 17% of plant density. However this family accounts for only 7% of the basal area, giving a FIV of 41 (Table 29). The contribution of Mimosaceae to

Table 30.
Species number recorded in the study area at initial recording, by genus.

	Number of species	Percentage of total species
Genus	27	17.53
Acacia	2	1.3
Alectryon	1	0.65
Allocasurina	1	0.65
Alphitonia	1	0.65
Alstonia	1	0.65
Angophora	1	0.65
Apophyllum	1	0.65
Archidendropsis	1	0.65
Atalaya	1	1.3
Brachychiton	2	0.65
Breynia	1	1.3
Bursaria	2	0.65
Caelospermum	1	0.65
Callitris	1	3.25
Canthium	5	2.6
Capparis	4	1.3
Carissa	2	0.65
Cassia	1	0.65
Cassinia	1	0.65
Casuarina	1	1.3
Citriobatus	2	0.65
Clerodendrum	1	5.84
Corymbia	9	0.65
Cryptostegia	1	0.65
Cupaniopsis	1	0.65
Denhamia	1	0.65
Dodonaea	3	1.95
Dolichandrone	1	0.65
Ehretia	1	0.65
Eremophila	4	2.6
Eriocerius	1	0.65
Erythrina	1	0.65

Genus	Number of spercentage of species						
total species			$	$	Ficus	2	1.3
:---	:---:	:---:					
Flindersia	2	1.3					
Gardenia	2	1.3					
Geijera	2	1.3					
Grevillea	3	1.95					
Hakea	3	1.95					
Jacksonia	1	0.65					
Lantana	2	1.3					
Lophostomen	2	1.3					
Lysiphyllum	3	1.95					
Macrozamia	2	1.3					
Maytenus	1	0.65					
Melalueca	3	1.95					
Melia	1	0.65					
Melichrus	1	0.65					
Micromyrtus	1	0.65					
Myoporum	2	1.3					
Opuntia	2	1.3					
Owenia	1	0.65					
Pandorea	1	0.65					
Parsonsia	2	1.3					
Persoonia	1	0.65					
Petalostigma	1	0.65					
Pittosporum	1	0.65					
Planchonia	1	0.65					
Santalum	1	0.65					
Sarcostemma	1	0.65					
Senna	2	1.3					
Terminalia	2	1.3					
Ventilago	1	0.65					
Xanthorrhoea	1	0.65					
Zizyphus	1	0.65					

diversity and density was disproportionate to the approximately 7% of sites that are Acacia dominated. In contrast to the Myrtaceae, Mimosaceae was only important in terms of basal area contribution in the MULGA woodlands and the two northern Acacia woodland sites where this family dominated the overstorey. In MULGA woodlands Mimosaceae contributed 95% of the basal area and 65% of the woody plant density and in the northern acacia woodlands contributed 83% of the basal area and 66% of plant density. The family Mimosaceae accounted for less than 10% of basal area in all woodland types other than MULGA. The importance of the family Mimosaceae in those woodlands not dominated by Acacia species was in its contribution to plant numbers and species diversity. Within the CREBRA and MELANOPHLOIA woodlands Mimosaceae contributed approximately 11% of the total woody plant density and 17% of the species. In the CYPRESS and MICRONEURA woodlands Mimosaceae contributed approximately 3\% of the density and 20% of the species. In the BOX woodlands the family accounted for 21% of density and 11% of species, assisted by the two Acacia dominated sites. In the DESERT UPLANDS woodland type, Mimosaceae accounted for 47\% of plant density and 24% of all species. Within the MULGA woodlands the Mimosaceae also made a large contribution to species diversity, accounting for 29% of the species. The genus Acacia accounted for 96% of the genera within the family Mimosaceae. The genus Acacia was also the most speciose genus in the study area, comprising 26 species, 15% of plant density and 7% of basal area.

Mimosaceae was the only family to rank in the top five most important families for all woodland types. Excluding MULGA woodlands all other types showed a further degree of similarity in terms of FIVs with Myrtaceae ranking first or second. Although no other families were found in the top 10 FIVs for all woodland types Rubiaceae, Rhamnaceae, Sapindaceae and Caesalpinaceae ranked highly in the majority of types.

Cupressaceae, the family to which white cypress pine (Callitris glaucophylla) belongs, ranked fourth in family importance with a FIV of 12 despite being represented by only one species at 4 sites. This reflects the high densities and basal areas recorded at those sites dominated by C. glaucophylla. The third and fifth ranked families were Rhamnaceae, with a FIV of 15 , and Sapindaceae, with a value of 10 . Both these families are represented almost exclusively by understorey individuals and have achieved a high FIV despite contributing less than 1% of the total basal area. Rhamnaceae gains its high FIV largely due to the exceptionally high density of Alphitonia excelsa. The high FIV of Sapindaceae was largely attributable to the density and wide distribution of Atalaya hemiglauca.

The three most important species for the amalgamated sites at initial recording were all eucalypts: E. crebra, E. melanophloia and E. populnea with SIVs of 30, 27 and 17 respectively (Table 31). These values were the result of high basal area, frequency and density of these species and largely reflect the number of sites

Table 31.
Species Importance values (SIV) at first and last recording for the 10 highest ranked species at first recording.

All woodland types					Cypress woodlands					
Species	Initial SIV	Final SIV	$\begin{gathered} \text { SIV } \\ \text { rank } \\ \text { initial } \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { SIV } \\ \text { rank } \\ \text { final } \\ \hline \end{array}$	Species	Initial SIV	Final SIV	$\begin{gathered} \text { SIV } \\ \text { rank } \\ \text { initial } \end{gathered}$	$\begin{gathered} \hline \text { SIV } \\ \text { rank } \\ \text { final } \end{gathered}$	
Eucalyptus crebra	30.2031 .36		1	1	Callitris glaucophylla	169.96	174.27	1	1	
			Eucalyptus populnea		24.88	26.08	2	2		
Eucalyptus melanophloia	26.71	29.97		2	2	Opuntia tomentosa	22.14	17.62	3	3
Eucalyptus populnea	17.51	15.06	3	4	Jacksonia scoparia	11.75	12.13	4	4	
Alphitonia excelsa	14.81	17.12	4	3	Eucalyptus chloroclada	11.73	12.03	5	5	
Callitris glaucophylla	12.35	12.08	5	5	Eucalyptus melanophloia	10.64	9.38	6	6	
Atalaya hemiglauca	7.47	10.88	6	6	Angophora costata	9.34	8.25	7	7	
Acacia aneura	6.42	8.99	7	7	Eriocerius martinii	7.88	2.48	8	14	
Corymbia erythrophloia	5.87	6.03	8	11	Corymbia tessellaris	5.50	4.77	9	9	
Corymbia citriodora	5.63		9	8	Maytenus cunninghamii	5.18	5.07	10	8	
Petalostigma pubescens	5.44	6.25	10	10						
					Desert Uplands woodlands					
Box woodlands					Species	Initial SIV	FinalSIV	SIV	SIV	
Species	Initial SIV	Final SIV	$\begin{gathered} \text { SIV } \\ \text { rank } \\ \text { initial } \end{gathered}$	$\begin{gathered} \hline \text { SIV } \\ \text { rank } \\ \text { final } \\ \hline \end{gathered}$				rank initial	rank final	
					Eucalyptus similis Eucalyptus whiteii	60.43	63.29	1	1	
Eucalyptus populnea	61.81	57.12	1	1		39.44	40.92	2	2	
Atalaya hemiglauca	23.67	18.44	2	4	Acacia tenuissima	28.54	24.69	3	3	
Acacia shirleyii	16.84	15.59	3	6	Petalostigm a pubescens	21.35	20.66	4	4	
Eucalyptus coolabah	16.63	21.07	4	2	Acacia coriaceae	18.03	16.26	5	6	
Eucalyptus brownii	16.53	18.56	5	3	Corymbia terminalis	15.71	16.60	6	5	
Carissa ovata	12.85	9.25	6	10	Acacia cowleana	14.74	13.18	7	8	
Eucalyptus tereticornis	12.06	10.96	7	9	Corym bia plena	14.26	14.43	8	7	
Corymbia dallachyana	11.41	13.54	8	7	Maytenus cunninghamii	13.43	10.74	9	9	
Eremophila mitchellii	11.18	11.19	9	8	Acacia laccata	9.49	7.45	10	12	
Acacia salicina	10.04	7.18	10	11						
					Melanophloia woodlands					
Crebra woodlands					Species	Initial SIV	Final SIV	$\begin{gathered} \hline \text { SIV } \\ \text { rank } \\ \text { initial } \end{gathered}$	$\begin{gathered} \hline \text { SIV } \\ \text { rank } \\ \text { final } \\ \hline \end{gathered}$	
Species	Initial SIV	Final SIV	$\begin{gathered} \text { SIV } \\ \text { rank } \\ \text { initial } \end{gathered}$	$\begin{gathered} \text { SIV } \\ \text { rank } \\ \text { final } \end{gathered}$						
					Eucalyptus melanophloia	$\begin{gathered} 172.22 \\ 15.59 \end{gathered}$	$\begin{gathered} 178.43 \\ 14.97 \end{gathered}$	1	1	
Eucalyptus crebra	77.26	76.58	1	1				2	2	
Alphitonia excelsa	31.82	25.53	2	2	Callitris glaucophylla	12.94	10.08	3	3	
Corymbia erythrophloia	16.63	17.51	3	3	Alphitonia excelsa	8.04	5.82	4	9	
Corym bia citriodora	14.43	13.54	4	4	Carissa lanceolata	7.66	7.01	5	5	
Eucalyptus moluccana	12.85	12.87	5	5	Maytenus cunninghamii	6.77	3.71	6	13	
Melalueca viridiflora	11.22	11.53	6	6	Myoporum desertii	6.63	6.89	7	6	
Eucalyptus fibrosa	10.01	9.91	7	8	Senna artem isoides	6.36	6.14	8	7	
Eucalyptus exserta	9.83	8.84	8	9	Canthium oleifolium	6.16	2.70	9	16	
Petalostigma pubescens	8.56	6.76	9	12	Eremophila longifolia	5.86	2.68	10	17	
Corymbia clarksoniana	7.07	8.21	10	10						

Table 31. (Cont)
Species Importance values at first and last recording for the 10 highest ranked species at first recording.

Microneura woodlands				
			SIV	SIV
Species	Initial	Final	rank	rank
Eucalyptus microneura	SIV	SIV	initial	final
Terminalia aridicola	82.54	163.46	1	1
Atalaya hem iglauca	17.20	80.87	2	2
Denham ia umbellata	12.83	13.64	3	3
Dolichandrone heterophyllum	12.09	3.67	5	4
Gardenia vilhelmii	11.43	4.97	6	6
Lysiphyllum gilvum	7.96	8.09	7	5
Acacia bidwillii	3.96	4.05	8	7
Melichrus species	2.49	2.58	9	9
Acacia holosericea	1.63	1.66	10	11

Mulga woodlands								
			SIV	SIV				
Species	Initial	Final	rank	rank				
SIV	SIV	initial	final					
Acacia aneura	228.37	228.49	1	1				
Acacia excelsa	27.43	27.31	2	2				
Eremophila longifolia	12.05	12.11	3	3				
Eremophila gilesii	10.97	10.12	4	4				
Hakea species	10.27	9.77	5	5				
Eucalyptus populnea	6.21	6.43	6	6				
Senna artemisoides	5.90	5.00	7	7				
Eremophila mitchellii	0.77	0.76	8	8				
Geijera parviflora	0.76	0.00	9	9				
Acacia holosericea	1.63	1.66	10	11				

dominated by these species (Appendix 1, Table 2). These three species also form the dominant species in terms of basal area in the CREBRA, MELANOPHLOIA and BOX woodlands.

Alphitonia excelsa ranked fourth in SIV at the initial recording and third at the final. This species can grow into a small tree, but in these sites it was predominantly found as an understorey shrub with an average height of 1.2 m . This growth habit was reflected in the low relative dominance for this species. Alphitonia excelsa was one of the few species that occurs in five of the seven woodland types. C. glaucophylla ranked fifth in SIV due to the high basal area and density of this species in the sites where it dominates. Mulga (A. aneura) ranked seventh in SIV while E. microneura, the species that dominates the MICRONEURA woodlands, ranked twenty-eighth. Eucalyptus similis, the most important species in the DESERT UPLANDS woodland type, ranked thirty-third in importance across all sites.

None of the woodland types shared the same top ten species in terms of SIV, although E. populnea ranked in the top two for both CYPRESS and BOX woodland types while C. glaucophylla ranked in the top two for both CYPRESS and MELANOPHLOIA woodlands. The highest SIVs for each woodland type were produced by species that constituted the dominant overstorey of the majority of sites within that type: Eucalyptus crebra for the CREBRA woodlands, E.
microneura for MICRONEURA, E. similis for DESERT UPLANDS, Acacia aneura for MULGA, E. melanophloia for MELANOPHLOIA, E. populnea for BOX and C. glauophylla for CYPRESS. The high density and ubiquity within type of Alphitonia excelsa and Atalaya hemiglauca resulted in these primarily understorey species rating second in SIV for CREBRA woodlands and BOX woodlands respectively despite a low basal area.

Seven of the recorded species were non-native; two lantana species (Lantana montevidensis and L. camara), Chinee apple (Zizyphus mauritiana), Rubbervine (Cryptostegia grandiflora) and three cactus species comprising two prickly pears (Opuntia tomentosa and O. stricta) and the prostrate harrisia cactus (Eriocerius martinii). The contribution of introduced species was only significant in CYPRESS woodlands where the densities of O. tomentosa and E. martinii were sufficient for them to rank in the top 10 SIVs and make Cactaceae the third most important family.

There were no major changes in community composition over the recording period. Of the 10 most important species, in terms of SIV, in the initial recordings only one species had moved more than one ranking position at the final recording. That species, Corymbia erythophloia, had moved from number eight at the initial recording to number eleven at the final. The eleventh ranked species at the initial recordings had moved to ninth rank at the final. Only one species moved out of the
top ten SIV rankings within BOX, CREBRA, CYPRESS and DESERT UPLANDS woodlands, with those species moving into eleventh, twelfth, fourteenth and twelfth rankings for BOX, CREBRA, CYPRESS and DESERT UPLANDS woodlands respectively. Within MELANOPHLOIA woodlands three species dropped out of the top ten positions, though they remained within the top 20. MICRONEURA and MULGA woodlands experienced no change in the rankings of the top 10 species.

The number of plant families did not change over the monitoring period, with 34 families present at both initial and final recordings. (BOX 25/25, CREBRA 25/25, CYPRESS 14/14, DESERT UPLANDS 18/18, MELANOPHLOIA 22/22, MICRONEURA 9/9, MULGA 5/6) Additionally, the taxonomic rankings did not change. The most species-rich families in the initial recordings were Myrtaceae (66), Mimosaceae (48). Sapindaceae (16), Myoporaceae (16) and Apocynaceae (16). At the final recording, Myrtaceae (66). Mimosaceae (49). Sapindaceae (16). Myoporaceae (16) and Apocynaceae (16) were again the most species-rich. Furthermore, the functional form of the relationship between number of families and number of species per family remained similar between initial and final recordings for all woodland types (Figure 17).

A regression of species relative density at first and last recordings for an amalgamation of all sites produced a highly significant relationship between the ranked data sets (Figure 18). Regressions for specific woodland types produced

Figure 17.
Number of species per family, as a function of number of families, at initial and final recordings for each DCA defined woodland type.

Figure 17 (continued)
Number of species per family, as a function of number of families, at initial and final recordings.

Figure 18
Regression of species relative density at first and last recordings. See text for explanation of relative density.

Figure 18 (cont)
Regression of species relative density at first and last recordings.
See text for explanation of relative density.
even stronger correlations, suggesting that variation in density for some species was relatively more important within differing woodland types. BOX woodlands initially showed a weaker correlation due to the presence of a large number of new Carrissa ovata shrubs formed by the fracturing of larger plants by fire, primarily located in one site. When plants of this species at this site were removed, the new regression produced an r^{2} value of 0.95 .

3.11 Relationships Between Environmental Factors

Structural and environmental variables in this section have been referred to in tables by abbreviations in order to simplify the layout of tables. Table 32 provides an explanation of abbreviations used.

There was considerable interrelationship between environmental variables with the exception of soil (Table 33). Generally the interrelationship between abiotic factors appeared to reflect a combination of the change from winter to summer dominated rainfall patterns with decreasing latitude and an increasingly warm and arid climate with distance from the east coast. Longitude was strongly positively correlated with annual rainfall and negatively correlated with maximum temperatures, reflecting the increasingly arid conditions encountered with distance from the coast. Similarly latitude was negatively correlated with summer rainfall and positively correlated with winter rainfall reflecting the increasingly monsoonal rainfall pattern in more tropical regions. Longterm rainfall (mean annual rainfall from 1936 to 2001) was

Table 32.
Structural/environmental and growth characteristics and their abbreviations.

Table 33.
Spearman's coefficient of correlation among environmental characteristics. Abbreviations used are explained in Table 32. $*=\mathrm{p}<0.05$
$* *=p<0.01$

	Rain	Max	Min	Sum max	Sum min	Win max	Win min	Sum rain	Win rain	Rain rec	Rainrec\%	MaxRec	MaxRec\%
Max	-0.47**												
Min	0.24*	0.58**											
Sum max	-0.82**	0.80**	0.09										
Sum min	-0.1	0.74**	0.88**	0.46**									
Win max	-0.04	0.86**	0.85**	0.39**	0.78**								
Win min	0.44**	0.39**	0.95**	-0.18	0.71**	0.76**							
Sum rain	0.86**	-0.04	0.62**	-0.57**	0.26*	0.41**	0.76**						
Win rain	0.68**	-0.86**	-0.38**	-0.77**	-0.53**	-0.66**	-0.22	0.23					
Rain rec	0.76**	-0.51**	-0.02	-0.69**	-0.29*	-0.22	0.17	0.63**	0.54**				
Rainrec\%	-0.45**	-0.02	-0.39**	0.31**	-0.2	-0.30**	-0.44**	-0.45**	-0.23*	0.21			
MaxRecPe	-0.43**	0.97**	0.57**	0.75**	0.70**	.859**	. $39 * *$	-0.02	-0.82**	-0.48**	-0.05		
MaxRec\%	0.33**	-0.44**	-0.24*	-0.46**	-0.38**	-0.29*	-0.12	0.127	0.44**	0.29*	-0.11	-0.2	
MinRecPe	0.23*	0.60**	0.98**	0.1	0.862**	0.85**	0.94**	0.61**	-0.40**	0.01	-0.33**	0.61**	-0.14
MinRec\%	-0.09	0.01	-0.19	0.04	-0.19	-0.04	-0.16	-0.07	-0.1	0.14	0.30**	0.15	0.53**
Lat	-0.12	-0.54**	-0.74**	-0.04	-0.53**	-0.78**	-0.77**	-0.52**	0.51**	-0.022	0.24*	-0.52**	0.24*
Lon	0.63**	-0.67**	-0.25*	-0.71**	-0.41**	-0.41**	-0.08	0.27**	0.83**	0.43**	-0.36**	-0.58**	.054**
Topo	-0.09	0.01	-0.14	0.03	-0.18	-0.03	-0.09	-0.07	-0.13	0.11	0.27*	-0.02	-0.09
Soil	0.003	-0.11	-0.13	-0.03	-0.09	-0.13	-0.12	-0.02	0.06	0.09	0.13	-0.05	. 23 *

[^2]positively correlated with absolute rainfall during the recording period, yet negatively correlated with relative rainfall over the same period. This indicates that the moister regions were experiencing a drying influence that was not seen to the same degree in more arid regions. A similar pattern was seen with maximum temperature. Mean daily maximum temperature was strongly positively correlated with mean daily maximum during the recording period, yet significantly negatively correlated with relative daily maximum over the same period. This indicates that during the recording period warmer regions were experiencing abnormally cool conditions not experienced in cooler locales.

Stand structure was generally poorly correlated with environmental factors as indicated by the results from the results of Spearman correlations (Table 34). Mean height of plants $>300 \mathrm{~mm}$ circumference showed the greatest correlation with individual environmental factors, with strong correlation with longitude $(\mathrm{r}=0.70)$ and correlation with maximum summer temperature, winter rainfall and basal area ($\mathrm{r}>0.50$). Alpha diversity showed correlation with both density and density of plants $>300 \mathrm{~mm}$ circumference $(\mathrm{r}>0.50$). Other single environmental variables were less well correlated with density, but important variables included density of plants $>300 \mathrm{~mm}$ circumference height and size class distributions $(\mathrm{r}=0.40)$. Density of plants >300 mm circumference was best correlated with diversity, latitude $(\mathrm{r}=0.38)$ and basal area ($\mathrm{r}=-0.66$). Basal area was also significantly correlated with several other environmental factors, including longitude ($\mathrm{r}=0.46$)
Table 34.
Spearman's coefficient of correlation for environmental characteristics and final stand structure. Abbreviations used are explained in Table 32. * $=p<0.05$

	RAIN	MAX	MIN	SUMMAX	SUMMIN	WINMAX	WINMIN	SUMRAIN	WINRAIN	LAT	LON	TOPO
DIVER	0.02	0.04	0.05	0.02	0.06	0.05	0.02	-0.03	0.12	0.15	0.249	-0.216
DENS	0.07	0	0.05	0.01	0.07	0.01	0.05	0.03	0.09	0.17	0.182	0.03
DEN300	0.19	-0.29*	-0.22	-0.18	-0.19	-0.30**	-0.2	. 02	$0.34 * *$	0.38*	$0.33^{* *}$	-0.06
BA	0.31**	-0.30 **	-0.21	-0.24*	-0.22	-0.25*	-0.18	0.11	0.45 **	$0.38{ }^{* *}$	$0.47 * *$	-0.07
HT	0.16	-0.28*	-0.26*	-0.22	-0.31**	-0.25*	-0.2	0.02	0.29	$0.28{ }^{\text {* }}$	$0.30 * *$	0.1
НТЗ00	0.49**	$-0.44^{* *}$	-0.15	-0.53**	-0.33**	-0.23	-0.016	.254*	0.59**	0.25*	0.70 *	0.05
SCD	-0.17	0.06	-0.09	0.18	0.01	-0.06	-0.15	-0.17	-0.08	0.15	-0.13	-0.12

[^3]and mean height $(r=0.49)$. Size class distributions were poorly correlated with the measured environmental variables with diversity, density, density of plants >300 mm circumference and mean height of plants $>300 \mathrm{~mm}$ circumference showing low correlation ($\mathrm{r}<0.40$) when analysed singly.

The woodland types defined by DCA differed significantly in several environmental and structural variables (Table 35), including basal area, mean height of plants $>300 \mathrm{~mm}$ circumference, annual mean rainfall and mean maximum temperature and mean minimum temperature.
3.12 Relationship between woodland structure and dynamics and environment. Changes in stand structure were poorly explained by environmental factors through linear model fitting (Table 36). The models best explained mortality (28% of variance explained), which was positively related to relative minimum temperature over the recording period and negatively correlated to latitude and relative rainfall over the recording period. Recruitment rate was explained by relative minimum temperature over the recording period (14% of total variance). Density change rate was positively associated with latitude and negatively associated with relative annual rainfall annual (19% of total variance). Basal area change rate was influenced by latitude and topography, with the model explaining 17% of total variance.
Table 35. Mean values of environmental structural variables for DCA defined woodland types at final reco

Table 36.
Linear models of relationship of dynamics factors to environmental variables selected by stepwise regression.
Abbreviations used are explained in Table 32.

Variable	Model				Variance explained (\%)
Recruitment as a percentage of initial density p	$\begin{aligned} & 0.77 \mathrm{~min} / \mathrm{rec} \% \\ & 0.001 \\ & \hline \end{aligned}$			-73.53	14.43
Mortality as a percentage of initial density p	$\begin{aligned} & 0.71 \mathrm{~min} / \mathrm{rec} \% \\ & 0.008 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.79 \mathrm{Lat} \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.8 \ln (\text { Rain } / \mathrm{rec}+1) \\ & 0.011 \end{aligned}$	-94.37	27.98
Change in density as a \% of initial density p	$\begin{array}{\|l\|} 1.26 \text { lat } \\ 0.002 \end{array}$	$\begin{aligned} & -39 \ln \text { Rain/rec } \\ & 0.003 \\ & \hline \end{aligned}$		48.73	18.68
Change in basal area as a \% of initial basal area p	$\begin{array}{\|l\|} 0.43 \text { lat } \\ 0.001 \end{array}$	$\begin{aligned} & -6.3 \ln (\text { Rain } / \mathrm{rec}+1) \\ & 0.029 \end{aligned}$		-21.76	17.28

While the clustering of plots on the CCA ordination were not as definitive as in the DCA ordination, the two ordinations provide complimentary results (Figure 19). MULGA woodland sites formed a cluster in the lower right quadrant, clearly separated from the remaining sites due to their location in the southwest of the study area and the associated low winter temperatures. CYPRESS woodlands form a relatively isolated cluster in the upper left hand quadrant due to their location in dry southerly regions on steeply sloping terrain with sandy soils.

MELANOPHLOIA woodlands formed a relatively isolated cluster defined by generally low rainfall and coarse textured soils on flat to moderately sloping terrain. CREBRA sites formed a relatively distinct cluster defined by high rainfall, steeply sloping topography and soils low in clay content.

The eigenvalues of 0.28 and 0.20 for axes 1 and 2 respectively indicated a moderate degree of separation along the measured gradients. The strength of correlations of environmental variables with the first two axes were similarly moderate. This result indicates that species are responding to the measured environmental factors but that these factors are by no means the sole contributors to species distributions. Species composition along axis 1 was correlated most strongly with mean minimum temperature ($\mathrm{r}=0.42$), and topography $(\mathrm{r}=-0.40)$ and less strongly with mean annual rainfall $(\mathrm{r}=0.21)$, latitude $(\mathrm{r}=-0.18)$ and mean maximum temperature ($\mathrm{r}=0.18$). Species patterns along axis 2 was correlated most strongly with latitude ($\mathrm{r}=-0.57$), with approximately equal correlations with

Figure 19.
Community ordination Canonical Correspondence Analysis of all sites and the selected environmental and structural factors by woodland type as defined by Detrended Correspondence Analysis analysis.
longitude, mean maximum temperature and mean minimum temperature (all $r=0.38$).

Chapter 4 : Discussion

4.1 Species Diversity and Community Similarity

Detrended Correspondence Analysis based on species composition suggested that the vegetation communities observed across the 75 sites could be classified into seven community types

- MULGA
- CYPRESS
- MICRONEURA
- DESERT UPLANDS
- BOX
- MELANOPHLOIA
- CREBRA

A majority of species (51\%) were found in only one woodland type. A further 28% of species were restricted to two woodland types, while the remaining 21% of species could be found in three or more types (Table 23). However the woodland types were noted to share some common species. This result is expected as many of the species are recorded as being widely distributed in woodlands across Queensland (Anderson 1993, Milson 1994). Forty-three species were found at only
one site and no species was common to all sites. The fact that over half the species are restricted to a single woodland type suggests that the woodland types derived from the ordination results are realistic.

However the floristic delineation is far from perfect, and this seems to be related at least in part to geographic overlap. BOX and CREBRA woodlands overlapped considerably geographically (Figure 2) and were the least precisely defined woodland types floristically despite the large numbers of species unique to each community. DESERT UPLANDS and MELANOPHLOIA woodlands also overlap considerably and showed a high degree of floristic similarity, with a Sorenson coefficient of 0.31 and 19 shared species. CYPRESS/ CREBRA, CYPRESS/BOX, CYPRESS/MELANOPHLOIA and DESERT UPLANDS/BOX community pairs also showed a relatively high degree of similarity and exhibit some degree of geographic overlap. The more geographically distinct woodland types, MULGA and MICRONEURA, show much less overlap with other woodland types and form floristic extremes. Slik et al. (2003) note that many studies of tropical forests and woodlands show a close relationship between floristic similarity and geographic distance between sites and attribute this to the fact that environmental variables change with geographic distance. This suggests that climate, and possibly other environmental factors such as soil and management effects, play a significant role in defining community composition within Queensland's grazed woodlands, producing a continuum of species in woodlands across the state with distinct
community types only at extremes.

Sites established in the same woodland type shared on average less than 50% of their species with other sites in that type. The mean number of shared species between any two sites within the entire study, irrespective of woodland type, was over 30%, suggesting that species importance values are more useful in classifying these woodlands than the presence or absence of any potential indicator species.

The 156 woody plant species (6 genera, 34 families) recorded in this study reflect only a part of the overall tree diversity of the area, as demonstrated by the species area curves (Figure 15), which continue to increase at the end of sampling for all woodland types. There was also a high degree of variation between sites within the woodlands, with 43 of the 156 species occurring at only one site. This also indicates an increasing species count with area and produced species area curves with a very uneven increase in species number. A very similar pattern was found in a study of savannas in Brazil conducted by Ratter et al. (1996). In that study none of the 534 woody plant species recorded occurred at all sites and approximately one third of the species occurred at only one site. The lack of asymptotic tendency in the species accumulation curves combined with the high level of heterogeneity resulted in species richness being largely related to the size of the sample area. The MULGA woodlands were the only community type not to fit this trend, with a slightly lower richness than the MICRONEURA woodlands despite a larger area
sampled. The predicted sampling effort required to obtain 90% of species for the woodlands as a whole was considerably lower than that predicted for the MELANOPHLOIA, CYPRESS and MULGA woodland types (Table 27). This was due to an uneven increase and lack of asymptote of the curves for the MELANOPHLOIA, CYPRESS and MULGA woodland types woodland types producing essentially linear relationships, which in turn made any meaningful extrapolation beyond the fitted exponential curves difficult. All of these factors suggest that far greater sampling effort is required to produce a reliable picture of the floristic structure of these woodlands. Indeed the total sample area for all woodlands was only 66% of the predicted sampling effort required for 90% species inclusion. Any increased sampling effort should be focussed primarily on the MULGA, MELANOPHLOIA and CYPRESS woodland types which show limited curvature in the species area curve.

Species richness was related to sample area, with the BOX and CREBRA and MELANOPHLOIA woodlands containing the largest number of species (Table 20). However the relationship with area did not extend to measures of diversity and evenness, with the DESERT UPLANDS woodlands exhibited high diversity and high evenness despite a relatively small sample area and low species richness. This is indicative of multiple species with overlapping niches within this community type. In contrast MELANOPHLOIA woodlands exhibited a relatively low diversity and evenness despite a relatively high species richness due to a dominance by large
numbers of individuals of relatively few species. These results are confirmed by the plots of cumulative plant numbers (Figure 9). The fact that species richness does not follow the same trend as species diversity and evenness demonstrates that neither richness nor diversity alone are suitable for studying diversity within these woodlands.

A plot of cumulative plant numbers showed a much slower increase with increasing species count than a similar plot of cumulative basal area for all woodland types (Figures 8 and 9). This result indicates that there were relatively few overstorey species, with much of the diversity contributed by understorey species. In all woodland types a small number of species contributed a disproportionate amount of basal area. In MELANOPHLOIA woodlands, E. melanophloia accounted for a majority of basal area producing a situation where 5% of species accounted for approximately 95% of basal area. In other woodland types a similar though less pronounced trend was recorded with 5% of species accounting for approximately 80% of basal area.

Direct comparison of species richness with other studies reported in the literature is complicated by differences in methodology, particularly which species were recorded and differences in sample area. Nonetheless the 3-24 woody species per site recorded in this study appears in general agreement with the ~ 7.0 species $/ 0.02$ ha site recorded in savanna in Northern Australia by Bowman (1992) and 29
species at a 0.24 ha site recorded in a eucalypt savanna in Northern Australia by O'Grady et al. (2000). None of the sites in the present study approached the 49 species recorded at a single 2 ha site in northern Australia by Williams et al. (1997). O'Grady et al. (2000) attributed the high species richness reported by Williams et al. (1997) to the absence of fire, with the observations made in an area from which fire had been excluded for some 20 years.

4.2 Family Importance Values

The woodlands in this study were dominated by the families Myrtaceae and Mimosaceae. The Myrtaceae consisted mainly of upper canopy tree species with significant basal area contributions while the Mimosaceae largely consisted of understorey and low canopy tree species with three species forming a dominant part of the canopy and basal area contribution at six sites. This is a pattern typical for Australian woodlands (Gillison et al. 1994). The floristic composition of these woodlands shows some similarities with tropical African and South American savannas where Mimosaceae is also a significant component (Furley 1999; Scholes et al. 1999; Batalha et al. 2001; Hejcmanova-Nezerkova 2006;) with Myrtaceae also forming a significant component of the South American savanna flora (Furley 1999).

The dominance of Myrtaceae may be partially accounted for by the large number of sites established in eucalypt woodlands, although Myrtaceae also contributed
30% of the basal area in CYPRESS woodlands. The basal area contribution of the family Myrtaceae in CYPRESS woodlands was disproportionate to the number of individuals of that family (Table 29). This reflects the fact that the eucalypts within these woodlands consisted almost exclusively of large trees with few seedlings and saplings. This may indicate that the conditions necessary for recruitment of eucalypts in the CYPRESS woodlands are no longer being met, with few young trees being produced. Lunt et al. (2006) have previously presented evidence that cypress woodlands are changing both in species composition and tree density, from open eucalypt co-dominant woodlands to toward closed cypress dominated woodlands. This change was ascribed to a reduction in fire frequency and intensity.

In the MULGA woodlands the family Myrtaceae was not recorded at all, although eucalypts are considered to be common associates in MULGA woodlands (Harrington et al. 1984). This result suggests a need for additional sites targeting mixed mulga/eucalypt communities.

The Family Mimosaceae made a large contribution to both species diversity and plant numbers despite being overstorey dominants/codominants at only six sites. This situation reflects the status of Acacia species as understorey plants within open woodlands, with numerous wattle species that rarely, if ever, reach a size that contributes significantly to the basal area of the stand (Gillison et al. 1994; White 1986).

Floristically the woodlands remained essentially unchanged over the recording period with an approximately constant richness at the species and family levels and losses and colonisations confined to species represented by small numbers of individuals that appear only in single sites.

Species composition for the woodlands changed by less than 2% over the recording period, with more colonisations than losses (5 and 2 species respectively). This constancy may indicate that the woodlands have reached a plateau in terms of local richness or may be indicative of the short recording period for many sites. Those species which vanished locally were both represented by fewer than five individuals at the initial recording. Both species which vanished from the sites (Alyxia ruscifolia and Diospyrus ferrea) are species associated with "dry rainforest" thickets (Williams 1984) which suggests a sensitivity to fire and a possible reason for their loss. However one of the colonizing species (Ficus obliqua) is also a fire sensitive species, so one needs to be cautious about drawing conclusions about the role of fire in species turnover in the absence of data on fire frequency within these sites. Those species which colonised were all represented by a single individual at the final recording.

4.3 Density

Tree densities (where a tree is a plant $>300 \mathrm{~mm}$ circumference) for the majority of
sites recorded in this study were comparable to other woodlands in Eastern Australia, which range from the 64-127 plants/ha recorded in semi-arid eucalypt woodlands in northern Queensland by McIvor (2001) to the mean of 1,474 trees/ha with variation from 256 to 7,433 trees/ha for cypress woodlands in Eastern Australia reported by Lunt et al. (2006). Eight sites recorded densities lower than the 64 plants/ha recorded by McIvor (2001) and of these five had experienced drought associated mortality prior to site establishment which reduced the tree density considerably. The remaining three low density sites were apparently undisturbed and represented naturally open communities.

Smaller plants make an important contribution to plant numbers in all of the woodland types. Approximately 90% of all plants in CREBRA, DESERT UPLANDS, BOX, MULGA and MELANOPHLOIA communities were less than 10 cm in diameter, while in CYPRESS and MICRONEURA communities such small plants contributed 75% and 54% of plant numbers respectively. An analysis of all sites also shows that on average 60% of plants are $<1 \mathrm{~m}$ in height. The number of plants $<1 \mathrm{~m}$ in height by community type ranges from 30% in MICRONEURA communities to 71% in CREBRA woodlands. This compares to the findings of Scanlan (1988) who presented figures suggesting 50% of individuals in eucalypt woodlands existing as suppressed seedlings. These suppressed plants establish from seed and are then kept in a stunted form through interactions of grazing and trampling, fire and competition with grasses (Andersen
et al. 2005; Clarke, 2002).

Annual density increase in the woodlands averaged 60 plants/ha/yr ($4 \% / \mathrm{ha} / \mathrm{yr}$) for all plants.. When only plants $>300 \mathrm{~mm}$ circumference are analysed from this study these woodlands show a decline in plant density, averaging 1.15 plants/ha/yr ($0.17 \% / \mathrm{yr})$.

These relative rates of change for plants $>300 \mathrm{~mm}$ circumference are comparable to figures reported for other savanna types, which generally showed a decrease. For example van de Vijver et al.(1999) reported annual density losses of 9 and 13 plants/ha ($-1.4 \% / \mathrm{yr}$ and $-1.0 \% / \mathrm{yr}$ respectively) for east African savannas, Bowman et al. (2004) reported annual density declines of 1.2% for a tropical savanna in Northern Australia and Fensham et al. (2003) reported an annual decline of 8.2 plants/ha/yr (-2.1\%/yr) in Northern Australia

The influence of small plants on density dynamics is also seen in the distribution of density change across size classes where the greatest absolute change in density occurred primarily in the small size classes. Despite this large absolute change the higher density of plants in the smallest size class meant that the relative change was smaller than that seen in many of the larger size classes. No significant change in density was seen in any other size class.

It should be noted that individual plants in some instances regressed into smaller size classes due to several factors. All diameters were measured over bark and large sections of bark falling off occasionally produced situations where a tree regressed into a smaller size class. Where an irregularity such as a scar or gall occurred at the 30 cm height at which circumference was measured, operator variability could have contributed to errors in assessing stem circumferences. In addition, many trees were observed to regress into smaller size classes due to death of primary trunks followed by coppicing or re-sprouting. The effects of this are highly noticeable in the 2400-2700 mm circumference class for the CYPRESS woodland type (Table 4) where a single plant regressing from the $2700-3000 \mathrm{~mm}$ size class has doubled the population of that class. The effects may also be seen in Figure 9, with the surviving plants at several sites showing an overall decrease in basal area.

4.4 Basal Area

Basal area at the majority of sites falls within the range of published figures for savanna woodlands in northern Australia which range from $\sim 5 \mathrm{~m}^{2} / \mathrm{ha}$ (Fensham et al. 2003; McIvor 2001) to $26 \mathrm{~m}^{2} / \mathrm{ha}$ (Williams et al. 2003). A small number of sites had markedly smaller basal area than those recorded in earlier studies. Visual assessment and communication with the landholders revealed that all of these had experienced drought associated mortality prior to transect establishment with a resultant decrease in basal area. The highest basal areas in this study ($36 \mathrm{~m}^{2} / \mathrm{ha}$)
were recorded in communities that Gillison et al. (1994) classify as "tall woodland" or "woodlands of medium height" and the basal areas are more typical of communities described elsewhere as open eucalypt forest or cypress forest (McElhinny, 2005; Woldendorp et al. 2002).

Despite the overall increase in stem abundance over the monitoring period, the woodlands experienced a decrease in basal area. Once again this reflects the fact that much of the dynamics was occurring amongst the smallest plants that contributed little to basal area. Trees $>300 \mathrm{~mm}$ circumference basal area contributed the majority basal at all sites, despite making relatively minor contributions to density at the majority of sites (Figure 20, Appendix 1 Table 1, Appendix 1, Table 2). As a result the loss in basal area due to death of large trees was not compensated by the growth of either surviving plants or new recruits in sufficient size or numbers. That relatively little basal area change resulted from the addition of new plants is not surprising given that new plants will be, almost by definition, individuals that were small enough to escape detection at the initial recording. Such newly recruited individuals may be either new seedlings, new stems from the roots of established plants or plants that had been razed by grazing, fire or other disturbance. Even in large numbers and with high growth rates it would be improbable for such small stems to make a significant contribution to an established woodland in the time periods for which these sites were recorded.

Basal area contributions from large and small plants at final recording for all sites.

The magnitude of the average basal area change at those sites experiencing a decrease was approximately twice that of the average change at those sites experiencing an increase. As a result the woodlands experienced a slight decrease in basal area overall, despite a majority of sites experiencing an increase in basal area. The greater magnitude of basal area decline in those sites where decline did occur suggests that decreases may be the result of infrequent catastrophic events rather than smaller ongoing process. Large areas of Northern Queensland are known to have suffered from drought induced plant deaths during the study period (Fensham et al. 1999; Rice et al. 2004), and observation and personal communication with landholders revealed that drought attributable deaths had occurred at several sites during the study period or just prior to site establishment. These drought affected sites included the 17 of the 21 sites which exhibited the greatest relative decline in basal area (Table 37). Drought related dieback was not contingent solely on rainfall deficit and factors such as soil type, slope, tree species and initial stocking density also seem to have played a role in determining whether rainfall deficit resulted in tree deaths. As a result several sites which experienced significantly below average rainfall (e.g.Balmoral, Monavale) did not experience tree death (Table 38).

With known drought affected sites removed from the analysis the mean basal area change was an increase of $0.05 \mathrm{~m}^{2} / \mathrm{ha} / \mathrm{yr}(0.76 \% / \mathrm{yr})$. The figures for this study are very close to the figures of $0.07 \mathrm{~m}^{2} / \mathrm{ha} / \mathrm{yr}$ and $0.7 \% / \mathrm{yr}$ reported by Williams et al.

Table 37.
The 21 transects with the greatest basal area decrease. Those transects marked with an asterisk were affected by drought induced dieback based upon observation and communication with landholders.

Transect		Annual change in basal area ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$)	Annual change in basal area as \% of initial basal area
Exevale	*	-0.31	-33.84
Heidelberg	*	-0.38	-6.80
Kirk River grazed	*	-0.43	-6.63
Bowie	*	-0.72	-6.62
Pajingo	*	-0.54	-6.23
Centauri	*	-0.60	-5.22
Meadowvale grazed	*	-0.30	-4.91
Walthum	*	-0.62	-4.55
Myrrlumbing	*	-0.44	-4.08
Inveresk	*	-0.30	-4.06
Archer		-0.47	-3.76
Mt. Panorama		-1.64	-3.68
Mt. Pleasant Bowen	*	-0.26	-3.16
Meadowvale exclosure	*	-0.19	-2.80
St. Pauls exclosure	*	-0.16	-2.69
Burtle	*	-0.28	-2.38
Springsure reserve		-0.20	-2.18
Anchor	*	-0.25	-2.10
Kirk River exclosure	*	-0.12	-2.10
Aqua Downs		-0.30	-1.98
St. Pauls grazed	*	-0.05	-1.90

Table 38.
Rainfall figures for sites highlighting the rainfall deficit or surplus experienced during 1991-2000 relative to the longterm mean from 1889-2003.

Site Name	Mean annual rainfall (mm)	Mean annual rainfall 1991-2000 (mm)	1991-2000 rainfal as a percentage of longterm mean
Anchor	675	603	89
Aqua Downs	463	467	101
Archer	832	672	81
Balmoral	912	689	76
Bowie	502	419	84
Bungobine	574	478	83
Burtle	533	476	89
Canal Creek	1317	1005	76
Carfax Control	626	521	83
Carfax Stylo	626	521	83
Centauri	599	483	81
Clifton	406	397	98
Coalstoun Lakes	805	745	93
Cooper Downs	683	590	86
Croxdale	483	469	97
Dykehead	687	580	84
Eumina	565	566	100
Exevale	871	703	81
Forest Hills	721	733	102
Glenrock	716	676	94
Goldsborough	615	581	94
Granite Vale	849	669	79
Hedlow Creek	1101	853	77
Heidelberg	660	552	84
Huntly	672	554	82
Hyde Park	506	474	94
Inveresk	456	388	85
Julia Park	542	492	91
Kerry	487	535	110
Kiauroo	630	441	70
Kirk River Exclosure	678	598	88
Kirk River Grazed	678	598	88
Kooralbyn Eucre	731	640	88
Leyshon View Exclosure	616	516	84
Leyshon View Grazed	610	514	84
Longton	569	482	85
Lundsville	984	774	79
Magazine	833	684	82
Meadowvale exclosure	666	595	89
Meadowvale grazed	666	595	89
Medway	645	547	85

Table 38 (cont).
Rainfall figures for sites highlighting the rainfall deficit or surplus experienced during 1991-2000 relative to the longterm mean from 1889-2003.

Site Name	Mean annual rainfall (mm)	Mean annual rainfall 1991-2000 (mm)	$\begin{gathered} \text { 1991-2000 rainfall } \\ \text { as a percentage } \\ \text { of longterm mean } \end{gathered}$
Monavale	890	694	78
Mt. Panorama	646	572	89
Mt. Pleasant	667	596	89
Mt. Pleasant Bowen	869	703	81
Myrrlumbing	597	480	80
Namuel	715	660	92
Netherleigh	1129	953	84
New Gildale	668	654	98
Nyanda	808	764	95
Old Rawbelle	665	581	87
Pajingo	598	484	81
Rosebank	860	705	82
Rostock	563	554	98
Rundle	935	782	84
Scotston	689	595	86
Springsure Reserve	699	625	89
St. Pauls Exclosure	624	552	88
St. Pauls Grazed	624	552	88
Summerdel	517	492	95
Sunrise East	623	591	95
Sunrise West	632	596	94
Swanlea	465	383	82
Texas	488	416	85
The Patrick	472	453	96
Tinnenburra	330	362	110
Tryphinia Eucre	708	580	82
Tryphinia Eumel	700	574	82
Tryphinia Eumol	708	580	82
Walthum	515	400	78
Wandobah T6 R1	685	576	83
Wandobah T6R2	682	556	81
Wandobah T6 R3	678	542	80
Yanna	483	469	97

(1999) for unburned eucalypt savanna in Northern Australia which strongly indicates that the basal area decline observed for these woodlands is primarily the result of drought effects. Bray et al. (2007) also attributed a loss of basal area in Queensland woodlands to the effects of prolonged drought. These figures also accord with an earlier analysis by Burrows et al. (2002) utilising a subset of these sites which found a basal area increase of $0.07 \mathrm{~m}^{2} / \mathrm{ha} /$ year $(0.63 \% / \mathrm{yr})$ for the longer established sites and an increase of $0.10 \mathrm{~m}^{2} / \mathrm{ha} /$ year $(0.95 \% / \mathrm{yr})$ for sites recorded for <3 years.

Frequency distributions of stem diameter remained statistically unchanged over time, reflecting the evenness of relative density changes across size classes resulted. The diameter distribution of woodland types and for individual sites were stable over time, with no statistically significant changes in size class distributions. This stability of size class distributions is indicative that the woodlands remained on the same trajectory over the recording period. The combination of increasing density of understorey plants along with increased basal area at a majority of sites is in agreement with the thickening reported in Queensland woodlands (Winter 1991, Burrows et al. 1998, Burrows et al. 1999, Fensham and Holman 1999). That total basal area has declined seems to be due to the superimposition of an unusual drought influence (Table 38).

4.5 Size Class Distributions

Age estimation is problematic for trees in the tropics due to variable rainfall and lack of a distinct annual temperature regime which inhibits the formation of unambiguous annual tree rings (Baker, 2003, Brookhouse, 2006, Martin et al. 1997). To overcome this problem tree size is routinely used as a surrogate for tree age (Goodburn et al. 1999, O'Grady et al. 2000, Sharp et al. 2004).

The use of size class as a surrogate for age is based on an assumption that trees grow at a constant or age-determined rate and hence the largest trees are also the oldest. It must be noted that within this study such an assumption may not be entirely warranted. A significant number of plants exist as suppressed seedlings and may be capable of existing in this form for decades (Scanlan 1988). As a consequence size may not be directly related to age although it may still relate to the time since a plant was released from a suppressed form. In addition many older plants were observed to regress into smaller size classes due to death of primary trunks followed by coppicing or re-sprouting (Figure 9). The utility of size class distributions is further complicated in mixed species stands of the type investigated in this study because different species have differing growth rates and differing maximum sizes.

However if the premise that size is, at least broadly, a surrogate for age is accepted, then diameter distributions can reveal past population processes such as
recruitment and indicate whether current population trends are sustainable. Many authors (Masaki et al. 1999, Nebel et al. 2001, Rubin et al. 2006) have stated that a natural, mature woodlands can be expected to have steeply descending 'reverse-J' or negative exponential distributions. Such distributions are indicative of the equivalent mortality and growth across size classes required of self-replacing populations. Deviations from the reverse $\mathrm{J} /$ negative exponential-shape distribution probably indicate major disturbance sometime in the past, with peaks indicating past episodes of recruitment and troughs past periods without recruitment or periods of high mortality (Goodburn et al. 1999).

The size class distributions for all except one woodland types in the present study approximated a reversed J -curve indicative of stable mature woodlands with continuous establishment, growth, and death (Figure 13). However MICRONEURA woodlands showed plateaux in both the mid (300-600 and 600$900 \mathrm{~mm})$ and large $(>1500 \mathrm{~mm})$ size ranges, producing a rotated sigmoid distribution. This may reflect the limited number of samples, with only two sites for this woodland type, or it may indicate that the MICRONEURA woodlands have experienced a series of recruitment events in the past. This could reflect rainfall patterns favourable to seedling survival, which is known to influence recruitment in semi-arid woodlands (Moore et al. 2001, Brown et al. 2005) or periods of low or nil fire intensity which have allowed fire sensitive seedlings to survive (Williams et al. 1999, Sharp et al. 2003).

CYPRESS woodlands also showed a deviation from a regularly decreasing size distribution, with several gaps in distribution in the larger size classes (Figure 13, Table 4). Plants in size classes $>1800 \mathrm{~mm}$ were all Euclayptus species. This further reinforces the hypothesis of Lunt et al. (2006) that the Cypress woodlands are in a state of transition from open Eucalypt co-dominant woodlands to Cypress dominated closed woodlands and forests.

It is worth noting that while the pooled size class distribution of all woodland types are reverse $\mathrm{J} /$ negative exponential curves, less than half the individual sites have clear reverse J-curve distributions (Figure 11, Table 16). This may indicate that the sampling area of individual sites is too small to produce negative exponential distributions. Given that the mean site area in this study was only 0.27 ha it should be expected that the reverse J distribution would be apparent for data pooled over a large area, yet not apparent in all sub-samples. If this is the case then the pooling of data for different sites should be viewed with some caution since maximum plant size will naturally vary depending on climatic and environmental conditions even within the same species.

A reverse J-curve for pooled data despite individual sites showing less uniform patterns may be indicative of the sporadic and patchy nature of disturbance in these woodlands. Weigand et al. (2006) suggest that the conditions of precipitation and
competition required for woody plant recruitment in savannas may occur in patches of just a few hectares. Fensham et al. (2005) suggest that rainfall deficit is the primary driver of mortality in savannas. Such deficits are unlikely to occur across the whole study area simultaneously and the magnitude of their effects are related to other factors such as soil type and topography (Tracey 1969, Adams 1996) that vary between sites. Consequently the conditions required for these mortality and recruitment events are not synchronised across the whole of the study area and it would thus be expected that many individual sites would show size distribution patterns indicative of past population fluctuations. Nonetheless the size distribution pattern for pooled sites would be expected to be a reverse J-curve provided the woodlands overall are in the process of returning to an approximately uniform state through recruitment and self thinning, with some sites in the 'climax' state and contributing the majority of large trees and others representing varying phases of the recovery/succession phase.

With a single exception the size class distributions for selected species (Table 18) fit the negative exponential distribution pattern as well as the distributions for woodland types (Table 17). This result largely mitigates the concern that the effect of multi-species stands may be producing reverse J-curves regardless of site history. The one exception to this was C. glaucophylla which, with an r^{2} of 0.80 , produced a poorer fit to the negative exponential distribution than any woodland
type. The poor fit of C. glaucophylla to the negative exponential function appears to be due to the utilisation of the single species removing the extremely large eucalypts that occupy the largest size classes in the C. glaucophylla dominated woodlands. This indicates that the discrepancy between the community wide size class distribution and the dominant species distribution for the C. glaucophylla stands is not due to differences in mortality, growth rates and maximum size of differing species as proposed by some authors (Goodburn et al. 1999, O'Hara 1986). Rather it is the result of a shift from eucalypt co-dominance to purely Callitris dominance within these woodlands.

4.6 Mortality and Recruitment

Caution should be used when interpreting mortality and recruitment figures from the present study. It may be that the transects were not recorded for long enough to capture what are relatively rare events. Recruitment events in Northern Australian savannas are often assumed to be related to favourable rainfall patterns (Crowley et al. 1998, Brown et al. 2005, Moore et al. 2001). Precipitation in these regions is highly variable, and successive favourable events which may be needed for successful recruitment can be extremely rare. Factors linked to tree mortality such as periods of below average rainfall, fire and changes in grazing regime (Brown and Wu 2005, Sharp and Bowman 2004, Sharp and Whittaker 2003, Hodgkinson 1991) can also be very rare events. Less dramatic ongoing mortality, particularly of larger plants decades old, must also be an inherently rare event to produce
appreciable numbers of such plants in populations with stable age structure. The study period, which ranged from 1-17 years for different sites, is therefore probably too short to give a meaningful recruitment or mortality estimate for any of the sites studied. These transects are designed as long term permanent plots and future recordings carried out at 10 year intervals for several decades should be undertaken to provide more meaningful information.

Data from the 75 woodland sites indicated that the woodlands as a whole and the different woodland types were relatively stable over the recording period. However the apparent large scale stability masks to an extent the high degree of variability both between sites and between different plant size classes. Changes that were observed were confined primarily to the smallest plants.

The relative rate of recruitment (6.7% of initial density $/ \mathrm{yr}$) was slightly higher than mortality (6.4% of initial density $/ \mathrm{yr}$), resulting in an increase in population overall. Annual mortality for the woodlands under study (6.4% of initial density $/ \mathrm{yr}$) was higher than the $1-3 \%$ community-wide mortality rates in tropical forest (Swaine et al. 1987, Condit et al. 1995) and higher then the 3\% reported by Williams et al. (1999) for unburned savanna in Northern Australia. However the figure was lower than the $13-18 \%$ mortality reported by Williams et al. (1999) for burned savanna, suggesting that the woodlands in this study may have been experiencing some stress leading to increased mortality, but not to the extent that radical change in fire
regime can induce.

Comparison of annual mortality between size classes showed that the absolute mortality rate was highest in the smallest size class. Werner (2005) similarly found the highest mortality rate amongst the smallest size classes in unburned savanna in Northern Australia. In this study, the higher mortality rate for small plants reflected the large numbers of plants in the smaller size classes and the relative change (7% of initial density $/ \mathrm{yr}$) was smaller than that seen in many of the larger size classes. The annual mortality rates were irregular for the six largest diameter classes, and was probably due to the low numbers of plants in these classes. In the other diameter classes the mortality rate remained approximately stable across classes. In contrast Williams et al. (1999) and Werner (2005) reported that mortality rates were highest amongst the smallest and largest plants in Northern Australian savannas under changes in fire and grazing regimes. Williams et al. (1999) also reported that mortality decreased with size in unburned savanna, Moustakas et al. (2006) noted that mortality was highest in the mid size classes for an Acacia species in an undisturbed African savanna. Fensham et al. (1999) report that drought related mortality for multiple species was largely independent of stem size in savannas in North East Queensland. The fact that the mortality pattern in the current study is approximately independent of size indicates that drought may have been a more significant agent in population change within the woodlands than fire or grazing.

4.7 Height

Mean height declined for the woodlands and, as with density and basal area, changes in height were strongly influenced by the smallest plants. The total population had a much lower mean height than the population comprised solely of plants $>300 \mathrm{~mm}$ circumference ($\sim 2.5 \mathrm{~m}$ vs. $\sim 11.5 \mathrm{~m}$). Yet despite a taller average stature plants $>300 \mathrm{~mm}$ circumference decreased in mean height by just $0.2 \% / \mathrm{yr}$ $(0.02 \mathrm{~m} / \mathrm{yr})$ compared to an annual decrease of $2.4 \% / \mathrm{yr}(0.06 \mathrm{~m} / \mathrm{yr})$ for the total population. Since mortality was not significantly higher for plants $>300 \mathrm{~mm}$ circumference, the greater height decrease for the population incorporating these smaller plants can be attributed primarily to an increased abundance of small plants lowering the mean height of the woodlands.

4.8 Environmental Factors

The observed significant correlations of total species richness with total plant density, density of plants $>300 \mathrm{~mm}$ circumference, basal area and size class distributions appear to simply reflect that diversity tends to be highest under conditions of low environmental stress and where conditions necessary for plant establishment are most frequent. Those same conditions that permit greater plant densities to establish and persist should also be expected to permit a greater number of species to persist simply because the number of potential ecological niches is higher and the ability of chance colonists to establish is higher. Denslow (1995)
expressed the same principle in generalised form as "habitats with greater total available energy will support larger populations and therefore more species than habitats with less total available energy". This correlation between diversity and woody plant density has been observed in tropical forests (Denslow 1995, Wright 1992), African savanna communities (Lwanga et al. 2000) and tropical Australian savannas (Bowman and Connors 1996).

Diversity was also positively correlated with longitude. Longitude is a distal variable with no direct potential to exert a physiological effect on woodland structure and the observed effects are necessarily dependent upon linked environmental factors. Hunter (2005) suggested that insular radiation may play a role in the interrelationship between diversity and longitude in Eastern Australia. Ter Steege et al. (2003) found that in tropical forests diversity is usually correlated with rainfall. Annual rainfall in Queensland generally decreases from east to west (Weston 1990) and rainfall was significantly correlated with longitude (Table 33). However diversity is not closely correlated to the rainfall variables themselves, which suggests that if rainfall is playing a role in the effect of longitude on diversity it is doing so via an interplay with numerous other factors such as edaphic factors or grazing management.

Total plant density appears to be correlated mostly to competition related factors, with other environmental factors considered in this study playing relatively little
role. Increasing mean plant height was associated with decreased plant density within the model. This appears to reflect an absolute constraint placed upon the density of large plants by competition. Smith and Goodman (1986) suggest that competition between plants in savannas will result in the stunting or death of one or more of the plants affected, primarily as a result of water stress, and that this results in the distance between any plant and its nearest neighbour being correlated with plant size. According to this principle a savanna can exist, at least in theory, entirely as widely spaced mature trees of maximum size with little or no competition between individuals. Such a savanna will have a large average height despite a low plant density. However competition between individuals means that there is an absolute limit to the number of individuals of maximum size that can exist within a given area. As a result any savanna with a large woody plant density must be comprised primarily of smaller individuals, whether stunted overstorey plants or understorey shrubs, resulting in a low average height. This appears to be the reason for the negative relationship between density and mean height seen in the model. When the relationship between density and relative proportion of large plants is plotted there appears to be a distinct upper bound (dashed line in Figure 21), suggesting the upper density allowable due to competition for prevailing environmental conditions. The same relationship would also explain the significant positive relationship between density and size class distribution.

Density also showed a significant positive relationship with density of plants >300
mm circumference. This is most likely attributable to the density of plants >300 mm circumference being a subset of total density. The correlation could be due to those sites with conditions able to support high total densities of plants being able to support high densities of larger plants as well. However such an explanation is unlikely since density of plants of plants $>300 \mathrm{~mm}$ circumference was positively correlated with mean plant height, while overall density was negatively correlated. This indicates that many sites with numerous large trees do not have equivalent densities of smaller plants bringing the average height down.

Density of plants >300 mm circumference and basal area were significantly correlated. This result is unsurprising since high densities of plants with large basal area measurements in a site would be expected to increase the basal area of the site. Density of plants $>300 \mathrm{~mm}$ circumference and basal area also showed similar correlations with other factors. Both showed significant negative correlation with maximum temperature and maximum winter temperature and a positive correlation with winter rainfall, latitude and longitude.

Basal area showed significant correlation with mean annual rainfall, maximum temperature, maximum summer and winter temperatures, winter rainfall, latitude and longitude. These environmental factors are difficult to isolate from one another, with considerable correlation between these factors. The general pattern would seem to indicate that the density of larger plants, and hence basal area,

Figure 21.
Relationship between density and proportion of small plants.
Dashed line represents an apparent upper bound to density allowed by competition.
declines with increasing water stress. Such water stress results from lower rainfall in the drier winter months or from increased evaporative demand at elevated temperatures. A negative relationship between savanna plant density and available water has been noted in Africa by Smith and Goodman (1986) and Scholes et al. (1999) and decline in rainfall has been suggested as a mechanism for decline in density in Northern Australian savannas by Bowman and Connors (1996). The positive correlation of both density of plants $>300 \mathrm{~mm}$ circumference and basal area with mean plant height most probably reflects the relationship between plant height and diameter. Burrows et al. (2000) found that plant height was relatively closely correlated to basal area for eucalypts in the woodlands of Eastern Australia.

Both mean height and mean height of plants $>300 \mathrm{~mm}$ circumference appeared to be strongly determined by water availability Both factors showed significant positive correlations to winter rainfall and longitude and an equivalent negative correlation to maximum temperature. Scholes et al. (1999) previously noted a correlation between mean height of large trees and rainfall in African savannas.

4.9 Dynamics Models

No more than 28% of the changes within these woodlands was explained by the incorporated environmental variables, despite the variables included in this analysis being acknowledged as having strong influences on woody vegetation dynamics (Wright 1992, Denslow 1995, Bowman and Connors 1996, Lwanga et al. 2000,

Fensham et al. 2005). This result raises the question of why these factors are so unimportant in this study. A strong possibility is simply that the overriding effect of climatic factors linked to a prolonged and severe drought in the study area in the mid 1990s (Fensham and Holman 1999) masked many 'typical' though less dramatic interactions between these woodlands and environmental factors.

An additional reason why changes were not well predicted by any combination of measured environmental variables may be that the transects were not recorded for long enough to capture relatively rare events. Population dynamics of arid and semi -arid woody plants are generally slow (Cody 2000) with infrequent and relatively rapid periods of significant mortality (Allen et al. 1998. Fensham and Holman 1999. Williams et al. 1999) or recruitment (Brown and Wu 2005, Sharp and Bowman 2004, Sharp and Whittaker 2003, Hodgkinson 1991) in response to factors such as fire, rainfall, drought or grazing.

A third possibility for the low explanatory power is that other unmeasured environmental variables were more important. The literature suggests that, while rainfall is important in savanna dynamics, it exerts an effect through complex interaction with grass growth, grazing pressure and fire (Moore et al. 2001, Fensham et al. 2005). The three latter factors were not considered in this study. Margules et al. (1987) found that the growth of Eucalyptus species in south-eastern Australia was related to solar radiation while Tracey (1969) and Adams (1996)
both note the importance of edaphic factors in determining woodland dynamics in Eastern Australia. Additional research is required to evaluate the relative importance of these factors in explaining variation in the woodland structure.

Linear models were used in this analysis, however the relationship between environmental factors and dynamics may not be linear, and this may explain the poor fit produced by the models. There may also have been an interaction between some of the variables, and the models produced did not incorporate interactions. While strong interactions between environmental variables were screened for using a Pearson correlation analysis, this may not have removed weaker interactions. More importantly interactions between the biotic response variables were not considered at all.

Rainfall, latitude and minimum temperature over the recording period emerged as important explanatory variables in those models with more than 10% explanatory power. The responsiveness to these three factors could to be largely attributed to drought effects. Within the study area the 1990s drought became increasingly severe with latitude (Figure 22) and several transects in Northern and Central regions experienced significant drought related mortality during the recording period. As a result, mortality increased with decreasing latitude while plant density and basal area decreased. The models produced the opposite relationships for relative rainfall, with higher rainfall levels being positively related to mortality and

Figure 22.
Regression of relative annual rainfall and latitude for each site for the period 1991-2000 demonstrating the increasing influence of the drought with decreasing latitude.

negatively related to plant density and basal area. This appeared paradoxical given that the relationships between latitude and dynamics appear so closely tied to a rainfall deficit. However an examination of the data revealed that a number of transects established after the drought had abated to some degree had nonetheless experienced high mortality as a residual effect of the drought. As a result several of the transects with the highest mortality rates had experienced relatively normal rainfall over the period in which they were recorded, producing a positive relationship between mortality and relative rainfall.

Biotic factors such as initial plant density or initial basal area proved to have little or no correlation with changes in woodland structure. Such biotic factors commonly have been used as predictor variables in other studies (Fensham et al. 2005, Umeki 1999). A weak relationship was observed between change in density of plants $>300 \mathrm{~mm}$ circumference and diversity. This relationship probably reflects the underlying relationship between diversity and density of plants $>300 \mathrm{~mm}$ circumference, however the relationship is scarcely strong enough to draw any meaningful conclusions.

In summary, dynamic processes were not adequately predicted by any of the measured environmental variables and it is suggested that the relatively brief recording period of many sites has allowed only gross and dramatic influences such as that associated with an unusual dry period to be detected. Subtle dynamics at the
time scale of this study may be largely a function of alternative factors, such as fire, grazing or soil properties.

4.10 Canonical Correspondence Analysis

Canonical correspondence analysis based on Species Importance Values indicated that, while vegetation was responding to several environmental factors (geographic location, temperature, topography, soil and rainfall), the measured environmental factors were almost certainly not the only significant factors at play.

Acacia aneura dominated transects were the most distinct grouping produced by canonical correspondence analysis, isolated along both axes by their occurrence on flat terrain in the cool, dry southwest of the study area. This is consistent both with the suggestion of Johnson and Burrows (1994) that A. aneura communities occur in a zone receiving between 500 mm and 200 mm mean annual rainfall with some rainfall occuring in all seasons. This result is also consistent with the hypothesis of Bowman and Connors (1996) that A. aneura dominates colder regions in Northern Australia due to better adaptation to low minimum temperatures than eucalypts, rather than factors directly associated with water regimes. Within this study either or both factors could be playing a role, with the observed clarity of the grouping due in large part to the restriction of A. aneura transects to the southwestern region of the study area, which in turn corresponded with both low rainfall and low temperatures.

The relationship of A. aneura communities with flat terrain is consistent with mulga communities occurring most extensively on sand plains and similar flat terrain (Johnson and Burrows 1994).

Callitris glaucophylla dominated transects formed a distinct cluster defined primarily by rainfall, temperature, topography and soil. These results are in agreement with Johnston (1975) and Thompson and Eldridge (2005) who note that C. glaucophylla dominated communities are usually restricted to sandy soils and are highly drought tolerant and commonly found in regions experiencing minimum temperatures below $0^{\circ} \mathrm{C}$.

The MELANOPHLOIA type transects formed a surprisingly well defined cluster despite the wide geographic distribution and the degree of overlap with other woodland type. Demarcation within the CCA ordination was due in large part to topography, rainfall and soil, and in general the MELANOPHLOIA type woodlands seem to correspond to situations of high water stress such as arid zones or, in more humid locales, sites with light soils with poor water holding capacity and sloping terrain with high drainage rates.

The remaining woodland types formed less clear groupings within the ordination. Most CREBRA type transects formed a relatively distinct grouping delineated
largely by topography, with a majority of sites located on hill slopes or uneven terrain. Eucalyptus crebra is usually found on ridges and higher slopes, especially in higher rainfall regions (Craze and Salmon 2004). Those CREBRA type transects that are found within the bottom half of the ordination diagram (Figure 19) are dominated by species other than E. crebra (e.g. E. fibrosa, E. molucanna and Corymbia plena) that are known to occur either on lower slopes or flat terrain (Brooker and Kleinig 1990, Gillison and Walker 1994, Craze and Salmon 2004). CYPRESS type woodlands are also defined in large part by topography and within the ordination CREBRA type transects are kept distinct from CYPRESS transects by the effect of latitude and the associated higher temperatures, with all except one CYPRESS transect located further south than any CREBRA transect. However, the clarity of this distinction should be viewed with some suspicion since E. crebra dominated woodlands have a latitudinal distribution extending well south of the study area (Brooker and Kleinig 1990). The apparent latitudinal demarcation between CREBRA and CYPRESS type woodlands may well be primarily the result of a failure to place any sites in CREBRA type communities in southern Queensland.

It is clear from the analysis that the measured variables did not explain all the variation in species composition. Some of the remaining variation in species composition may be due to a factors being more complex than the parameters used. For example, soil fertility and chemistry are known to have important effects on
plant community structure and composition (Compton et al. 1998) and both topography and soil type are likely exerting at least part of their influence through a relationship to the soils' nutrient and water availability (Tracey 1969, Adams 1996). Topography is also potentially exerting an effect via controlling fire (Adams 1996) or radiation (Margules et al. 1987, Hunter 2003, Hunter 2005). It is plausible that the variation is due to factors which were not incorporated in the study at all, especially management or chance events such as such as burning or grazing that are known to have important consequences for the structure and composition of savanna communities (Moore et al. 2001). Unfortunately adequate records of these factors were not available to enable examination their effects on woodland composition in the present case.

Chapter 5: Conclusions

The short recording period of many sites (three years or less for 39 of the 75 sites) must be borne in mind when interpreting findings relating to changes in woodland structure and composition. Taking this into account however the study showed an approximately stable woodland system with community distribution defined largely, though not entirely, by environment despite no obvious environmental effect on dynamics.

The study showed that the grazed woodlands of Queensland remained floristically largely unchanged over time. Approximately 150 species in 34 families were identified in the sites, but analysis of species-area curves suggests that more sampling is required to capture the true floristic diversity of the woodlands. The woodlands were dominated by the families Myrtaceae and Mimosaceae in terms of both basal area and woody plant numbers. A small number of species also dominated the woodlands, contributing the vast majority of basal area and plant numbers. A small number of species also dominated the woodlands, contributing the vast majority of basal area and plant numbers.

Despite the high level of diversity and a high degree of floristic heterogeneity between sites, the woodlands could be divided into sevan floristically distinct community types with a majority of species confined to just one woodland group. The mulga communities of the South-West of the study area were the most floristically distinct, with the other community types showing a greater degree of
floristic overlap. Significant differences were found to exist between the woodland types based on structural and environmental variables.

The woodlands experienced an increase in woody plant density over the study period, however because most of the increase was confined to the smallest plants this did not translate into an increase in basal area. Basal area declined for the woodlands, in contrast with a large body of published work suggesting that grazed woodlands both in Queensland and worldwide have been experiencing a prolonged increase in basal area (Archer 1991, Flannery 1994, Florence 1996, Jones and Sharitz 1998, Smith et al. 2000, Gifford and Howden 2001, Lunt et al. 2006). Evidence suggested that the basal area decrease observed in the current study was largely the result of period of rainfall deficit during the study period. When obviously drought affected sites were excluded basal area was found to have increased.

Size class distributions remained unchanged over time and followed the reverse $\mathrm{J} /$ negative exponential pattern typical of natural, mature stands for most woodland types. However, most individual sites did not display a reverse J pattern. Further study is required to determine whether this indicates patchy disturbance across the woodlands, with different sites at different stages of recovery, or whether it is a reflection of the small sample areas of individual sites.

The study has revealed a number of patterns in the distribution of woodland communities, in environmental characteristics and between these ecological and physical systems. Woodland groups were created through cluster analysis that reflect differences in species composition between sites depending on environmental factors. This was seen in the similarity of site clustering between DCA analysis based solely on floristic composition and CCA analysis incorporating environmental characteristics. Ordination analysis revealed that a range of environmental factors including temperature, geographic location, soil type and topography were important in influencing the distribution of woodland associations. The results reveal the complexity of the study area, but highlight some trends and patterns that link environmental and vegetation systems. The study also revealed a need for the establishment of more sites to gain an accurate understanding of the influences of environment on the distribution of woodland associations.

Stand structure within the woodlands was found to have some correlation with environmental factors. The density and diversity of woody plants were found to be correlated to competition related factors, with environments that supported a greater density of woody plants also supporting a greater diversity. Basal area appeared to be highest in areas of highest water availability.

Linear models revealed that that dynamics patterns within the woodlands were poorly correlated with environmental factors. This lack of correlation may have been due to three factors. An overwhelming effect of a severe drought during the study period may have been masking more subtle correlations, the models may not have incorporated the environmental parameters that are truly influencing structure and dynamics or the recording period may have been too short to capture relatively rare recruitment or mortality events. Further research is required to determine which of these is correct or whether a combination of these factors is at play.

The information contained within this thesis could be of value in land management. Vegetation structure is currently monitored on a broad scale via remote sensing technologies providing information on canopy and projected foliage cover and a basal area estimate derived from that information (Kuhnell et al.1998). However this methodology does not provide accurate information on understorey structure or species diversity, which may vary widely within regions of similar foliage cover. Results obtained form the sites described in this study provide an effective starting point for a description of understorey structure for land management directed at habitat, biodiversity or landscape function. The results also form a basis for addressing questions and validating models requiring long term data, such as the impact of management practices on biodiversity and vegetation structure. This study provides information on the interaction between climate and growth parameters. Such information can assist in understanding the impacts of climate
change on these woodlands and potentially identify means of mitigating such impacts. By quantifying the changes in basal area, and hence biomass, the results may enable a quantification of the contribution of woodland thickening to carbon sequestration and hence mitigation of anthropogenic climate change.

Bibliography

Adams MA (1996) Distribution of eucalypts in Australian landscapes: landforms, soils, fire, and nutrition. In 'In Nutrition of Eucalypts'. (CSIRO Publishing: Collingwood). (Eds APM. and MA Adams).

Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proceedings of The National Academy of Sciences 95, 14839-14842.

Andersen AN, Cook GD, Corbett LK, Douglas MM, Eager RW, Russell-Smith J, Setterfield SA, Williams RJ, Woinarski JD (2005) Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecology 30, 155-167.

Anderson E, Back P (1990) Fire in brigalow lands. In 'Fire in the management of northern Australian pastoral lands'. (Eds TC Grice and SM Slatter). (Tropical Grassland Society of Australia: St. Lucia, Australia).

Anderson ER (1993) 'Plants of Central Queensland.' (Queensland Government Press: Brisbane).

Anderson ER, Pressland AJ, McLennan SR, Clem RL, Rickert KG (1988) The role of fire in native pasture management. In 'Native pastures in Queensland their resources and management'. pp. 112-124. (Queensland Government Press: Queensland). (Eds WH Burrows, JC Scanlan and MT Rutherford).

Archer S (1991) Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA. In 'Savanna Ecology and Management Australian Perspectives and International Comparisons' pp 453-462 (Blackwell Scientific Publications: Oxford). (Ed. PA Werner).

Arista M (1995) The structure and dynamics of an Abies pinaspo forest in southern Spain. Forest Ecology and Management 74, 81-89.

Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22, 465-483.

Austin MP, Meyers JA (1996) Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecology and Management 85, 95-106.

Ayyappan N, Parthasarathy, N. (1999) Biodiversity inventory of trees in a largescale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Westerns Ghats, India. Biodiversity and Conservation 23 1533-1554.

Back PV (1998) Control of currant bush (Carrissa ovata) in developed brigalow (Acacia harpophylla) country. Tropical Grasslands 32, 259-263.

Back PV, Anderson ER, Burrows WH, Kennedy MJ, Carter JO (1997) 'TRAPS Transect Recording and Processing System.' (Queensland Department of Primary Industries: Rockhampton).

Baker PJ (2003) Tree age estimation for the tropics: A test from the southern Appalachians. Ecological Applications 13, 1718-1732.

Bastin GN, Ludwig JA, Eager RW, Leidloff AC, Andison RT, Cobiac MD (2003) Vegetation changes in a semiarid tropical savanna, Northern Australia, 1972-2002. Rangeland Journal 25, 3-19.

Batalha MB, Mantovani W (2001) Floristic composition of the Cerrado in the Pe-De-Gigante reserve (Santa Rita Do Passa Quatro, Southeastern Brazil). Acta Botanica Brasilica.

Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Applied Soil Ecology 10, 191-199.

Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, Turner JD (1984) 'Forest trees of Australia.' (Thomas Nelson: Melbourne).

Bortolussi G, MicIvor JG, Hodgkinson JC, Coffey SG, Holmes CR (2005) The Northern Australian beef industry, a snapshot 5. Land and pasture development practices. Australian Journal of Experimental Agriculture 45, 1121-1129.

Boulter S (2000) Ecologically sustainable development. In 'Native Vegetation Management in Queensland'. (Eds SL Boulter, BA Wilson, J Westrup, ER Anderson, EJ Turner and JC Scanlan). (Department of Natural Resources: Brisbane).

Bowman DMJ, Panton WJ (1995) Munmalary revisited: Response of a north Australian Eucalyptus tetrodonta savanna protected from fire for 20 yr . Australian Journal of Ecology 20, 526-531.

Bowman DMJS (1992) Monsoon forests in North-western Australia. II. Forest
savanna transitions. Australian Journal of Botany 40, 89-102.
Bowman DMJS (1993) Environmental Correlates of Tree Species Diversity in Stage I11 of Kakadu National Park, Northern Australia. Australian Journal of Botany 41, 649-660.

Bowman DMJS (1996) Diversity Patterns of Woody Species on a Latitudinal Transect from the Monsoon Tropics to Desert in the Northern Territory, Australia. Australian Journal of Botany 44, 571-580.

Bowman DMJS, Connors GT (1996) Does low temperature cause the dominance of Acacia on the Central Australian mountains. Evidence from a latitudinal gradient from 11° to 26° South in the Northern Territory, Australia. Journal of Bogeography 23, 245-256.

Bowman DMJS, Prior LD (2004) Impact of Aboriginal landscape burning on woody vegetation in Eucalyptus tetrodonta savanna in Arnhem Land, northern Australia. Journal of Biogeography 31, 807-817.

Bray SG, Liedloff AC, Kim AK, Back PV, Cook GD, Hoffman MB (2007) Comparison of woody vegetation change datasets from the grazed woodlands of Central Queensalnd. 'Northern Beef Research Update Conference' pp. 70-77.

Brook BW, Bowman DJMS (2006) Postcard form the past: charting the landscape scale converison of tropical Australian savanna to closed forest during the 20th century. Landscape Ecology 21, 1253-1266.

Brooker MIH, Kleinig DA (1990) 'Field Guide to Eucalypts Volume 3.' (Inkata Press: Melbourne).

Brookhouse M (2006) Eucalypt dendrochronology: past, present and potential. Australian Journal of Botany 54, 435-449.

Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86, 3030-3038.

Burrows WH., Anderson ER, Back PV (1999) Woody vegetation responses to clearing treatments in a eucalypt woodland in central Queensland. In 'People and Rangelands Building the Future'. Townsville pp. 217-218

Burrows WH., Henry BK, Back PV, Hoffman MB, Tait LJ, Anderson ER, Menke N, Danaher T, Carter J and McKeon G. (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology 8, 769-784.

Burrows WH (1995) Greenhouse revisited - an alternative viewpoint on land use change and forestry from a Queensland perspective. Climate Change Newsletter 7, 6-7.

Burrows WH, Carter JO, Scanlan JC, Anderson ER (1990) Management of savannas for livestock production in north-east Australia: contrasts across the treegrass continuum. Journal of biogeography 17, 503-512.

Burrows WH, Hoffman MB, Compton JF, Back PV, Tait LJ (2000) Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. Australian Journal of Botany 48, 707-714.

Burrows WH, Scanlan JC, Anderson ER (1988) Plant ecological relations in open forests, woodlands and shrublands. In 'Native pastures in Queensland their resources and management'. (Eds WH Burrows, JC Scanlan and MT Rutherford). (Department of Primary Industries: Brisbane).

Burslem DFRP, Whitmore TC, Brown GC (2000) Short-term effects of cyclone impact and long-term recovery of tropical rain forest on Kolombangara, Solomon Islands. Journal of Ecology 86, 574-588.

Butler DW, Fairfax RJ (2003) Buffel Grass and fire in a Gidgee and Brigalow woodland: A case study from central Queensland. Ecological Management \& Restoration 4. 120-125

Catterall, CP, Piper SD, Bunn SE, Arthur JM (2001) Flora and fauna assemblages vary with local topography in a subtropical eucalypt forest. Austral Ecology 26, 5669.

Clarke PJ (2002) Experiments on tree and shrub establishment grassy woodlands: Seedling survival. Austral Ecology 27, 606-615.

Cody ML (2000) Slow motion population dynamics in Mojave desert perennial plants. Journal of Vegetation Science 11, 351-358.

Collins SL (2000) Disturbance frequency and community stability in native tallgrass prairie. The American Naturalist 155, 311-325.

Compton JE, Boone RD, Motzkin G, Foster DR (1998) Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116, 536-542.

Condit R (1995) Research in large, long-term tropical forest plots. Tree 10, 18-22.

Condit R, Hubbel SP, Foster RB (1995) Mortality rates of 205 tropical tree and shrub species and the impact of severe drought. Ecological monographs 65, 419439.

Craze B, Salmon J (2004) 'A review of literature on ironbark ridges and associated lands.' (Department of Infrastructure, Planning \& Natural Resources: Temora).

Crowley GM, Garnett ST (1998) Vegetation change in the grasslands and grassy woodlands of east-central Cape York Peninsula, Australia. Pacific Conservation Biology 4, 132-148.

Denslow JD (1995) Disturbance and diversity in tropical Rainforests: the density effect. Ecological Applications 5, 962-968.

Diaz S, Mercado C, Alvarez-Cardenas S (2000) Structure and population dynamics of Pinus lagunae M.-F. Passini. Forest Ecology and Management 134, 249-256.

DNR (2003) DataDrill continuous daily meteorological dataset. (Queensland Department of Natural Resources, Brisbane.) url: www.nrm.qld.gov.au/silo/ datadrill/index.html.

DNRM (2005) 'Land cover change in Queensland 2001-2003, incorporating 20012002 and 2002-2003 change periods: a Statewide Landcover and Trees Study (SLATS) report, Feb, 2005.' Department of Natural Resources and Mines, Brisbane.

Dyer R, Craig A, Grice AC (1997) Fire in northern pastoral lands. In 'Fire in the management of northern Australian pastoral lands'. (Eds TC Grice and SM Slatter). (Tropical Grassland Society of Australia: St. Lucia, Australia)

Ehrlen J (2000) The dynamics of plant populations: does the history of individual matter? Ecology 81, 1675-1685.

Felfili JM (1997) Dynamics of the natural regeneration in the Gamma gallery forest in central Brazil. Forest Ecology and Management 91, 235-245.

Fensham R (1999) Native grasslands of the Central Highlands, Queensland, Australia, Floristics, regional context and conservation. Rangelands Journal 21, 82 -103.

Fensham RJ, Fairfax RJ (2003) Assessing woody vegetation cover change in northwest Australian savanna using aerial photography. International Journal of Wildland Fire 12, 359-367.

Fensham RJ, Fairfax RJ, Archer SR (2005) Rainfall, land use and woody vegetation in a semi-arid Australian savanna. Journal of Ecology 93, 596-606.

Fensham RJ, Fairfax RJ, Butler DW, Bowman DMJS (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. Journal of Biogeography 30, 1405-1414.

Fensham RJ, Holman JE (1999) Temporal and spatial patterns in drought-related tree dieback in Australian savanna. Journal of Applied Ecology 36, 1035-1050.

Fensham RJ, Smith GT, Wilson B (2000) Conservation of biological diversity. In 'Native Vegetation Management in Queensland,'. (Eds SL Boulter, BA Wilson, J Westrup, ER Anderson, EJ Turner and JC Scanlan). (Department of Natural Resources: Brisbane).

Flannery T (1994) 'The Future Eaters.' (Reed New Holland: Frenchs Forest, Australia).

Florence RG (1996) 'Ecology and silviculture of eucalypt forests.' (CSIRO Publishing: Collingwood).

Freeland WJ (1991) Large herbivorous mammals: an exotic species in northern Australia. In 'Savanna Ecology and Management Australian Perspectives and International Comparisons'. (Ed. PA Werner). (Blackwell Scientific Publications: Oxford).

Fuhrer E (2000) Forest functions, ecosystem stability and management. Forest Ecology and Managment 132, 29-38.

Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecology and Biogeography, 8.

Gifford RM, Howden M (2001) Vegetation thickening in an ecological perspective: significance to national greenhouse gas inventories. Environmental Science \& Policy 4, 59-72.

Gillison AN, Walker J (1994) Woodlands. In 'Australian Vegetation'. (Ed. RH Groves). (Cambridge University Press: Cambridge).

Goodburn JM, Lorimer CG (1999) Population structure in old-growth and managed northern hardwoods: an examination of the balanced diameter distribution concept. Forest Ecology and Management 118, 11-29.

Gosz JR (1992) Gradient analysis of ecological change in time and space. Ecological Applications 2, 248-261.

Gourlet-Fleury S, Houllier F (2000) Modelling diameter increment in a lowland evergreen rainforest in French Guiana. Forest Ecology and Management 131, 269289.

Grice AC (2006) The impacts of invasive plant species on the biodiversity of Australian rangelands. The Rangfeland Journal 28, 27-35.

Grice AC, Brown JR (1999) Invasive shrubs in Australian tropical rangelands: past, present and future research. In 'People and Rangelands Building the Future'. Townsville. Pp. 601-604. (International Rangeland Congress).

Guinto DF, House AP, Xu ZH, Saffigna PG (1999) Impacts of repeated fuel reduction burning on tree growth, mortality and recruitment in mixed species eucalypt forests of southeast Queensland, Australia. Forest Ecology and Management 115, 13-27.

Harrington GN, Friedel MH, Hodgkinson KC, Noble JC (1984a) Vegetation ecology and management. In 'Management of Australia's Rangelands'. (Eds GN Harrington and AD Wilson). Pp 1041-1061 (CSIRO Publishing: Melbourne).

Harrington GN, Mills DMD, Pressland AJ, Hodgkinson KC (1984b) Semi-arid woodlands. In 'Management of Australia's Rangelands'. (Eds GN Harrington and AD Wilson). (CSIRO Publishing: Melbourne).

Harrington GN, Wilson AD, Young MD (1984c) Management of Rangeland Ecosystems. In 'Management of Australia's Rangelands'. (Eds GN Harrington and AD Wilson). Pp3-13 (CSIRO Publishing: Melbourne).

Hejcmanova-Nezerkova P, Hejcman M (2006) A canonical correspondence analysis (CCA) of the vegetation-environment relationships in Sudanese savannah, Senegal. South African Journal of Botany 72, 256-262.

Hodgkinson KC (1991) Shrub recruitment response to intensity and season of fire in a semi-arid woodland. Journal of Applied Ecology 28, 60-70.

Hodgkinson KC, Harrington GN, Griffin JC, Noble JC, Young MD (1984)
Management of vegetation with fire. In 'Management of Australia's Rangelands.' (Eds GN Harrington and AD Wilson). (CSIRO Publishing.: Melbourne).

Hoffmann W, Schroeder W, Jackson R (2002) Positive feedbacks of fire, climate and vegetation and the conversion of tropical savanna. Geophysical Research Letters 29, 2052.

Holdridge LR, Grenke WC, Hatheway WH, Liang T, Pergamon Press Ltd. NY (1971) ' Forest Environments in Tropical Life Zones.' (Pergamon Press: New York) .

Hradetzky J (1995) Concerning the precision of growth estimation using permanent horizontal point samples. Forest Ecology and Management 71, 203-210.

Hunter JT (2005) Geographic variation in plant species richness patterns temperate eucalypt woodlands of eastern Australia. Ecography 28, 505-514.

Johnson RW, Burrows WH (1994) Acacia open forest, woodlands and shrublands. In 'Australian Vegetation'. (Ed. RH Groves). (Cambridge University Press: Cambridge).

Johnston TN (1975) 'Thinning studies in Cypress Pine in Queensland. Research Paper No. 7.' (Department of Forestry: Brisbane).

Jones RH, Sharitz RR (1998) Survival of woody plant seedlings in the understorey of floodplain forests in South Carolina. Journal of Ecology 88, 1063-1078.

Kennedy MJ (1997) Wintraps. (Queensland Department of Primary Industries: Rockhampton).

Kent M, Coker P (1992) 'Vegetation Description and Analysis - a Practical Approach.' (Bellhaven Press: London).

Kershaw KA (1964) 'Quanatitaive and Dynamic Ecology.' (Clowes and Sons: London).

Kovach Computing Services (2001) MVSP v. 3.12. (Kovach Computing Services: Anglesey).

Kuhnell, C, Goulevitch, B, Danaher, T \& Harris, D (1998) Mapping woody vegetation cover over the State of Queensland using Landsat TM imagery, Proceedings of the 9th Australasian Remote Sensing and Photogrammetry Conference, Sydney, Australia.
Lindsay A, Dorney W, Gray E, Setter C (1999) The use of long term transects to assess the impacts of weed control. In 'People and Rangelands Building the Future'. (International Rangeland Congress: Townsville) pp. 217-218.

Lodge GM, Whalley RDB (1984) Temperate rangelands. In 'Management of Australia's Rangelands.' (Eds GN Harrington and AD Wilson). (CSIRO Publishing.: Melbourne).

Lunt ID, Jones N, Spooner PG, Petrow M (2006) Effects of European colonisation on indigenous ecosystems: post-settlement changes in tree stand structures in Eucalyptus-Callitris woodlands in central New South Wales, Australia. Journal of Biogeography 33, 1102-1115.

Lwanga SJ, Butynski TM, Struhsaker TT (2000) Tree population dynamics in Kibale National Park, Uganda 1975-1998. African Journal of Ecology 38, 238-247.

Margules CR, Nicholls AO, Austin MP (1987) Diversity of Eucalyptus species predicted by a multi-variable environmental gradient. Oecologia 71, 229-232.

Martin DM, Moss JMS (1997) Age determination of Acacia tortilis (Forsk.) Hayne from northern Kenya. African Journal of Ecology 35, 266-277.

Masaki T, Tanaka H, Tanouchi H, Sakai T, Nakashizuka T (1999) Structure and disturbance regime of temperate broad-leaved forests in Japan. Journal of Vegetation Science 10, 805-814.

McCarthy BC, Small CJ, Rubino DL (2001) Composition, structure and dynamics of Dysart Woods, an old-growth mixed mesophytic forest in southeastern Ohio. Forest Ecology and Management 140, 193-213.

McElhinny C (2005) Quantifying stand structural complexity in woodland and dry sclerophyll forest, South-Eastern Australia. Doctor of Philosophy thesis, Australian National University, Canberra.

McIvor JG (2001) Litterfall from trees in semiarid woodlands of north-east Queensland. Austral Ecology 12, 150-155.

Microcal Software (1999) Microcal Origin. (Microcal Sofware Inc) Northampton, Massachusetts.

Milson J (1994) 'Plant identification in the arid zone.' (Queensland Department of Primary Industries: Queensland).

Minchin PR (1997) Decorana: DCA and RA ordination program. (Dr. P. R. Minchin).

Moore JL, Howden SM, McKeon GM, Carter JO, Scanlan JC (2001) The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions. Environment International 27, 147-153.

Mott JJ, Groves, R.H. (1994) Natural and derived grasslands. In 'Australian Vegetation'. (Ed. RH Groves). Pp 369-392. (Cambridge University Press: Cambridge).

Mott JJ, Tothill JC (1984) Tropical and subtropical woodlands. In 'Management of Australia's Rangelands'. (Eds GN Harrington and AD Wilson). Pp 255-269 (CSIRO Publishing: Melbourne).

Moustakas A, Guenther M, Wiegand K, Mueller K, Ward D, Meyer K, Jeltsch F (2006) Long-term mortality patterns of the deep-rooted Acacia erioloba: The middle class shall die! Journal of Vegetation Science 17, 473-480.

Muller DD, Ellenberg H (1984) 'Aims and Method of Vegetatin Ecology.' (Wiley and Sons: New York).

Nascimento MC, Proctor J (1997) Population dynamics of five tree species in a monodominant Peltogyne forest and two other forest types on Maraca Island, Roraima, Brazil. Forest Ecology and Management 94, 1215-1278.

Nebel G, Kvist LP, Vanclay JK, Christensen H, Freitas L, Ruiz J (2001) Structure and composition of floodplain forests in the Peruvian Amazon I. Overstorey. Forest Ecology and Management 150, 27-57.

Noss RF (1999) Assessing and monitoring forest biodiversity: A suggested framework of indicators. Forest Ecology and Management 77, 11-34.

O'Grady AP, Chen X, Eamus D, Hutley LB (2000) Composition, leaf area index and standing biomass of eucalypt open forests near Darwin in the Northern Territory, Australia. Australian Journal of Botany 48, 629-638.

O'Hara KL (1986) Development patterns of residual oaks and yellow poplar in upland hardwood forests. Journal of Applied Forestry 10, 244-248.

Peng C (2000) Growth and yield models for uneven aged stands: past, present and future. Forest Ecology and Management 132, 259-279.

Philippi TE, Dixon PM, Taylor BE (1998) Detecting trends in species composition. Ecological Applications 8, 300-308.

Phillips OL, Gentry AH, Sawyer SA, Vásquez R (1994) Dynamics and species
richness of tropical rain forest. Proceedings of The National Academy of Sciences 9, 2805-2809.

Pinard MA, Putz FE, Rumiz D, Guzman R, Jardim A (1999) Ecological characterization of tree species for guiding forest management decisions in seasonally dry forests in Lomerio, Bolivia. Forest Ecology and Management 113, 201-213.

Poorter L, Bongers F, van Rompaey RSAR, de Klerk M (1996) Regeneration of canopy tree species at five sites in West African moist forest. Forest Ecology and Management 84, 61-69.

Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Inter-decadal modulation of the impact of ENSO on Australia 15, 319-324.

Pressland AJ, Mills JR, Cummins VG (1988) Landscape degradation in native pasture. In 'Native pastures in Queensland their resources and management'. (Eds WH Burrows, JC Scanlan and MT Rutherford). Pp 174-197 (Queensland Government Press: Queensland).

Pressland AJ, Scanlan JC, McLannan S (1990) The role of fire in the grazing lands of Queensland. In 'Fire Research in Rural Queensland'. (Ed. B Roberts). Pp 45-59 (Queensland Government Publishers: Brisbane).

Pringle H, Tinley K (2003) Are we overlooking critical geomorphic determinants of landscape change in Australian rangelands? Ecological Management and Restoration 4, 180-186.

Ranneby B, Rovainen E (1995) On the determination of time intervals between remeasurements of permanent plots. Forest Ecology and Management 71. 195-202

Ratter JA, Bridgewater S, Atkinson R, Ribeiro JF (1996) Analysis of the floristic composition of the Brazilian cerrado vegetation II: comparison of the woody vegetation of 98 areas. Edinburgh Journal of Botany 53, 153-180.

Rice KJ, Matzner SL, Byer W, Brown JR (2004) Patterns Of Tree Dieback In Queensland, Australia: The Importance Of Drought Stress and the Role of Resistance to Cavitation. Oecologia 139, 190-198.

Rubin BD, Manion PD, Faber-Langendoen D (2005) Diameter distributions and structural sustainability in forests. Forest Ecology and Management 222. 427-438

Sattler PS, Williams RD (1999) 'The Conservation Status of Queensland's

Bioregional Ecosystems.' (Queensland Environmental Protection Agency,: Brisbane).

Scanlan J, Chilcott C (2000) Management and production aspects. In ' Native Vegetation Management in Queensland'. (Eds SL Boulter, BA Wilson, J Westrup, ER Anderson, EJ Turner and JC Scanlan). Pp 131-145 (Department of Natural Resources: Brisbane).

Scanlan JC (1988) Managing tree and shrub populations. In 'Native pastures in Queensland their resources and management'. (Eds WH Burrows, JC Scanlan and MT Rutherford) Pp 22-29. (Queensland Government Press: Queensland).

Scholes R, J., Dowty PR, Caylor K, Parsons DAB, Frost PGH, Shugart HH (1999) Trends in savanna structure and competition along an aridity gradient in the Kalahari. Journal of Vegetaion Science 13, 419-428.

Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28, 517-544.

Sharp BR, Bowman DMJS (2004) Net woody vegetation increase confined to seasonally inundated lowlands in an Australian tropical savanna, Victoria River District, Northern Territory. Austral Ecology 29, 667-683.

Sharp BR, Whittaker RJ (2003) The irreversible cattle driven transformation of a seasonally-flooded Australian savanna. Journal of Biogeography 30, 783-802.

Sherman RE, Fahey TJ, Battles JJ (2000) Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88, 165-478.

Shiel D (1995) A critique of permanent plot methods and analysis with examples from Bundongo Forest, Uganda. Forest Ecology and Management 115, 135-147.

Slik JWF, Poulsen AD, Ashton PS, Cannon CHK, Eichhorn AO, Kartawinata K, Lanniari I, Nagamasu H, Nakagawa M, van Nieuwstadt MGL, Payne J, Purwaningsih, Saridan A, Sidiyasa K, Verburg RW, Webb CO, Wilkie P (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography 30, 1517-1531.

Smith G, Franks A, Kelly A (2000) Impacts of domestic grazing within remnant vegetation. In 'Native Vegetation Management in Queensland'. (Eds SL Boulter, BA Wilson, J Westrup, ER Anderson, EJ Turner and JC Scanlan). Pp 160-163 (Department of Natural Resources: Brisbane).

Smith TM, Goodman PS (1986) The effect of competition on the structure and
dynamics of Acacia savannah in southern Africa. The Journal of Ecology 74, 10311044.

Smyth AK, James CD (2004) Characteristics of Australia's rangelands and key design issues for monitoring biodiversity. Austral Ecology 29, 3-15.

Soberon JM, Llorente JB (1993) The use of species accumulation functions for the prediction of species richness. Conservation Biology 7, 480-488.

Soehartono T, Newton AC (2000) Conservation and sustainable use of tropical trees in the genus Aquilaria I. Status and distribution in Indonesia. Biological Conservation 96, 83-94.

Spies TA (1998) Forest Structure: A key to the ecosystem. Northwest Science 72. 34-69

SPSS (2000) SPSS for Windows v 10.1.0. (SPSS Inc.).
State of Queensland (2004a) Vegetation Management Act 1999. (State of Queensland: Brisbane).

State of Queensland (2004b) Vegetation Manangement and Other Legislation Amendment Act 2004. (State of Queensland: Brisbane).

Sullivan M, Cowan D, Pressland A (1990) The effects of controlled burns in the mulga lands of south west Queensland. In 'Fire Research in Rural Queensland'. (Ed. B Roberts). Pp 122-131 (Queensland Government Publishers: Brisbane).

Swaine MD, Lieberman D, Putz FE (1987) The dynamics of tree populations in tropical forests: a review. Journal of Tropical Ecology 3, 359-366.

Taylor M (1990) Fire in subtropical forest management. In 'Fire Research in Rural Queensland'. (Ed. B Roberts). (Queensland Government Publishers: Brisbane).

Teketay D (1997) Seedling populations and regeneration of woody species in dry Afromontane forests of Ethiopia. Forest Ecology and Management 98, 149-165.
ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 69, 1167-1179.

Ter Steege H, Pitman N, Sabatier D, Castellanos H, Van Der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, Van Andel T, Duivenvoorden J, De Oliveira AA, Ek R, Lilwah R, Thomas R, Van Essen J, Baider C, Maas P, Mori S, Terborgh J, Vargas PN, Mogollón H, Morawetz W (2003) A spatial model of tree a-diversity
and density for the Amazon. Biodiversity and Conservation 12, 2255-2277.
Thompson A, Eldridge DJ (2005) White cypress pine (Callitris glaucophylla): a review of its roles in landscape and ecological processes in eastern Australia. Australian Journal of Botany 53, 555-570.

Tongway DJ, Hindley N (1995) 'Manual for soil condition assessment of tropical grasslands.' (CSIRO Wildlife and Ecology: Canberra).

Tothill JC, Gillies C (1992) 'The pasture lands of northern Australia.' (Tropical Grassland Society of Australia: Brisbane).

Tracey JG (1969) Edaphic Differentiation of some forest types in eastern Australia: I. Soil physical factors. The Journal of Ecology 57, 805-816.

Van De Vijver CA, Foley CA, Olff H (1999) Changes in woody component of an East African savanna during 25 years. Journal of Tropical Ecology 15, 545-564.

Vanclay JK, Skiovsgaard JP, Pilegaard Hansen C (1995) Assessing the quality of permanent sample plot databases for growth modelling in forest plantations. Forest Ecology and Management. 71, 177-186.

Vigilante T, Bowman DMJ (2004) Effects of fire history on structure and floristic composition of woody vegetation around Kalumburu, North Kimberly, Australia: a landscape scale natural experiment. Australian Journal of Botany 52, 381-404.

Werner PA (2005) Impact of feral water buffalo and fire on growth and survival of mature savanna trees: An experimental field study in Kakadu National Park, northern Australia. Austral Ecology 30, 625-647.

Werner PA, Walker BH, Stott PA (1991) Introduction. In 'Savanna Ecology and Management Australian Perspectives and International Comparisons'. (Ed. PA Werner). (Blackwell Scientific Publications: Oxford).

Weston EJ (1988a) Native Pasture Communities. In 'Native pastures in Queensland their resources and management'. (Eds WH Burrows, JC Scanlan and MT Rutherford). Ppl-13 (Department of Primary Industries: Brisbane).

Weston EJ (1988b) The Queensland Environment. In 'Native pastures in Queensland their resources and management'. (Eds WH Burrows, JC Scanlan and MT Rutherford). Pp 11-33 (Queensland Government Press: Brisbane).

White ME (1986) 'The Greening of Gondwana.' (Reed Books: Frenchs Forest, Australia).

Wiegand K, Saltz D, Ward D (2006) A patch-dynamics approach to savanna dynamics and plant encroachment - Insights from an arid savanna. Perspectives in Plant Ecology, Evolution and Systematics 7, 229-242.

Williams J, Read C, Norton A (2001) Biodiversity. In 'Australia State of Environment Report 2001'. Pp 4-1-4-52 (CSIRO Publishing on behalf of the Department of Environment and Heritage: Canberra)

Williams KAW (1984) 'Native plants of Queensland.' (K.A.W. Williams, Ipswich Queensland).

Williams RJ, Congdon RA, Grice AC, Clarke PJ (2003) Effect of fire regime on plant abundance in a tropical eucalypt savanna of north-eastern Australia. Austral Ecology 28, 327-338.

Williams RJ, Cook GD, Gill AM, Moore PHR (1999) Fire regime, fire intensity and tree survival in tropical savanna in Northern Australia. Australian Journal of Ecology 24, 50-59.

Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D (1997) Leaf Phenology of Woody Species in a North Australian Tropical Savanna. Ecology 78, 2542-2558.

Williams RJ, Woinarski JD, Andersen AN (2003) Fire experiments in Northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas. International Journal of Wildland Fire 12, 391-402.

Wilson B, Boulter S, Barker M, Westrup J (2000) Queensland's resources. In ' Native Vegetation Management in Queensland'. (Eds SL Boulter, BA Wilson, J Westrup, ER Anderson, EJ Turner and JC Scanlan). Pp156-162. (Department of Natural Resources: Brisbane)

Winter WH (1991) Australia's northern savannas: a time for change in management philosophy. In 'Savanna Ecology and Management Australian Perspectives and International Comparisons'. (Ed. PA Werner). (Blackwell Scientific Publications: Oxford)

Woldendorp G, Spencer RD, Keenan RJ, BarryS (2002) 'An Analysis of Sampling Methods for Coarse Woody Debris in Australian Forest Ecosystems. (Commonwealth Department of Agriculture, Fisheries and Forestry: Canberra)

Wright SJ (1992) Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends in Ecology \& Evolution 7, 260-263.

Zar JH (1984) 'Biostatistical Analysis.' (Prentice-Hall: New Jersey).
Zeilhofer P, Schessl M (1999) Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. Journal of Biogeography, 27, 159-168.

Zenner EK, Hibbs DE (2000) A new method for modelling the heterogeneity of forest structure. Forest Ecology and Management 129, 75-87.

APPENDICES

Appendix 1 Table 1.

Woodland Type	Transect			Annual change in woody plant density plant density (plants/ha/yr)	Annual change in woody plant density as \% of initial density	Woody plant density at initial recording, plants $>300 \mathrm{~mm}$ circumference (plants/ha)	Woody plant density at final recording, plants $>300 \mathrm{~mm}$ circumference (plants/ha)	in woody plant density plant density, plants $>300 \mathrm{~mm}$ circumference (plants/ha)	in woody plant density as \% of initial density, plants $>300 \mathrm{~mm}$ circumference (plants/ha)
Box	Aqua Downs	1350	1480	77.2	5.7	375	355	-11.9	-0.9
	Bungobine	3787	4130	180.4	4.8	83	80	-1.8	-0.1
	Carfax control	1990	3240	73.6	3.7	240	230	-0.8	0
	Carfax stylo	2065	2190	7.4	0.4	210	185	-2	-0.1
	Centauri	4340	5010	350.6	8.1	375	345	-15.7	-0.4
	Coalstoun Lakes	69	124	18.5	27	30	30	0	0
	Hedlow Creek	1180	675	-32.4	-2.8	190	170	-1.3	-0.1
	Magazine	1805	2935	71	3.9	180	160	-1.3	-0.1
	Medway	415	438	13	3.1	123	122	-0.9	-0.2
	Mt. Panorama	600	600	0	0	255	180	-11	-1.8
	Myrrlumbing	710	825	60.4	8.5	110	105	-2.6	-0.1
	Pajingo	1145	1245	52	4.5	255	220	-18.2	-1.6
	Texas	735	692	-18.8	-2.6	128	125	-1.5	-0.2
	Walthum	878	820	-6	-0.7	190	110	-8.4	-1
	Wandobah T6R1	1475	1913	39.4	2.7	163	175	1.1	0.1
	Wandobah T6 R2	3363	3694	30.9	0.9	369	406	3.5	0.1
	Wandobah T6R3	2419	3006	52.9	2.2	219	213	-0.6	0
N		17	17	17	17	17	17	17	17
Mean		1666	1942	57.1	4.1	206	189	4.3	-1.8
Std. Error of Mean		295	358	21.9	1.6	24	24	1.5	0.5
Cypress	Eumina	1597	2010	187.99	11.77	397	387	-4.55	-0.28
	Rostock	2140	2650	231.98	10.84	890	930	18.19	0.85
	Sunrise east	2716	2957	85.17	3.14	550	583	11.75	0.43
N		3	3	3	3		3	3	3
Mean		2151	2539	168.38	8.58	612	633	8.46	1.01
Std. Error of Mean		323	279	43.5	2.73	146	159	6.77	1.08

Appendix 1 Table 1 （cont）．
Changes in density for each
Changes in density for each transect．Sites are grouped by DCA determined woodland types．

		＋	응ㅇㅇㅇㅇㅇㅇㅇㅓ̇
			\cdots
			$\underset{\sim}{\sim}$
	勈	＊＊્ત入入	N
		冎	
		N్ఫ寸 ¢	

Appendix 1 Table 1 (cont).

Appendix 1 Table 1 (cont).
Changes in density for each transect. Sites are grouped by DCA determined woodland types.

$\begin{gathered} \text { Woodland } \\ \text { Type } \end{gathered}$	Transect	Woody plant density at initial recording (plants/ha)	Woody plant density at final recording (plants/ha)	Annual change in woody plant density plant density (plants/ha/yr)	Annual change in woody plant density as \% of initial density	Woody plant density at initial recording, plants >300 mm circumference (plants/ha)	Woody plant density at final recording, plants >300 mm circumferenc e (plants/ha)	Annual change in woody plant density plant density, plants $>300 \mathrm{~mm}$ circumference (plants/ha/yr)	Annual change in woody plant density as \% of initial density, $>300 \mathrm{~mm}$ circumference (plants/ha/yr)
Melanophloia	Bowie	990	1255	113.21	11.43	115	110	-2.14	-0.22
	Burtle	1395	2005	247.01	17.71	180	185	2.02	0.14
	Cooper Downs	385	435	3.04	0.79	155	145	-0.61	-0.16
	Dykehead	1040	1135	42.06	4.04	88	85	-1.11	-0.11
	Hyde Park	995	995	0	0	120	120	0	0
	Kerry	2350	2580	136.38	5.8	350	345	-2.96	-0.13
	Longton	975	1040	34.11	3.5	155	155	0	0
	Mt. Pleasant	1005	1010	0.34	0.03	120	110	-0.68	-0.07
	Nyanda	690	865	12.97	1.88	170	210	2.96	0.43
	Old Rawbelle	570	630	29.26	5.13	210	215	2.44	0.43
	Summerdel	2130	1880	-16.18	-0.76	220	340	7.77	0.36
	Sunrise west	1315	1875	199.16	15.15	455	455	\%	0
	Tryphinia eumel	680	1095	26.23	3.86	430	360	-4.42	-0.65
N		13	13	13	13	13	13	13	13
Mean		1117	1292	63.66	5.27	213	218	0.25	0.12
Std. Error of Mean		159	170	23.25	1.64	34	33	0.85	0.4
Total	N	75	75	75	75	75	75	75	75
	Mean	1417	1659	60.04	4.07	218	208	-1.15	-0.45
	Std. Error of Mean	134	176	11.33	0.62	17	18	0.62	0.19

Appendix 1 Table 2.
Changes in basal area for each site. Sites are grouped by DCA determined woodland types.

Appendix 1 Table 2 (cont).
Changes in basal area for each site. Sites are grouped by DCA determined woodland types.

Woodland Type Transect	Woody plant basal area at initial recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Woody plant basal area at final recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Annual change in basal area ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$)	Annual change in basal area as $\%$ of initial basal area	Woody plant basal area at initial recording (m2/ha) plants $>300 \mathrm{~mm}$ circumference	Woody plant basal area at final recording (m2/ha) plants $>300 \mathrm{~mm}$ circumference	Annual change in basal area (m2/ha/yr) plants >300 mm circumference	Annual change in basal area as $\%$ of initial basal area plants >300 mm circumference
Desert uplands InvereskJulia ParkSwanleaThe PatrickNMeanStd. Error of Mean	7.37	6.75	-0.30	-4.06	6.51	5.82	-0.33	-5.05
	8.10	8.16	0.03	0.40	7.53	7.61	0.05	0.60
	7.81	7.47	-0.15	-1.89	7.40	7.15	-0.11	-1.51
	4.58	4.77	0.16	3.60	4.54	4.73	0.17	3.69
	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
	6.97	6.79	-0.07	-0.49	6.50	6.33	-0.06	-0.57
	0.81	0.73	0.10	1.64	0.69	0.65	0.11	1.84
	10.82	9.14	-0.72	-6.62	10.35	8.68	-0.72	-6.91
	11.69	11.00	-0.28	-2.38	10.32	9.77	-0.23	-2.19
	12.63	13.31	0.04	0.33	12.63	13.23	0.04	0.29
	7.56	7.71	0.07	0.87	7.18	7.19	0.00	0.04
	13.00	12.43	-0.04	-0.31	12.94	12.32	-0.04	-0.33
	16.48	16.62	0.08	0.48	16.06	16.21	0.09	0.53
	6.83	7.05	0.12	1.69	6.07	6.31	0.13	2.08
	13.51	11.39	-0.15	-1.07	13.46	11.13	-0.16	-1.19
	16.47	20.21	0.28	1.68	16.43	20.13	0.27	1.67
	10.16	10.74	0.29	2.82	10.05	10.70	0.32	3.20
	9.45	11.28	0.12	1.26	7.54	8.86	0.09	1.13
	16.07	17.19	0.40	2.48	14.74	15.84	0.39	2.64
	21.06	23.05	0.13	0.60	21.03	22.78	0.11	0.53
	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00
	12.75	13.16	0.03	0.14	12.22	12.55	0.02	0.11
	1.11	1.33	0.08	0.69	1.18	1.38	0.08	0.72
Microneura Mistletoe Namuel N Mean Std. Error of Mean	9.32	9.57	0.14	1.46	9.22	9.47	0.14	1.47
	11.46	11.87	0.23	2.05	11.25	11.72	0.26	2.31
	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
	10.39	10.72	0.19	1.76	10.24	10.60	0.20	1.89
	30	61	17.44	4.82	60	64	2.11	1.29

Appendix 1 Table 2 (cont).
Changes in basal area for each site. Sites are grouped by DCA determined woodland types.

Woodl Type	Transect	Woody plant basal area at initial recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Woody plant basal area at final recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Annual change in basal area ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$)	Annual change in basal area as \% of initial basal area	Woody plant basal area at initial recording ($\mathrm{m} 2 / \mathrm{ha}$) plants >300 mm circumferenc e	Woody plant basal area at final recording ($\mathrm{m} 2 / \mathrm{ha}$) plants >300 mm circumferenc e	Annual change in basal area (m2/ha/yr) plants >300 mm circumferenc e	Annual change in basal area as \% of initial basal area plants >300 mm circumferenc e
Crebra	Anchor	12.02	8.39	-0.25	-2.10	11.34	8.16	-0.22	-1.94
	Archer	12.45	4.77	-0.47	-3.76	12.27	4.77	-0.46	-3.73
	Balmoral	21.39	26.98	0.33	1.56	21.39	26.98	0.33	1.56
	Canal Creek	22.00	23.33	0.72	3.29	21.12	22.49	0.74	3.52
	Exevale	0.91	0.30	-0.31	-33.84	0.90	0.29	-0.31	-34.11
	Forest Hills	15.85	16.16	0.03	0.21	13.08	14.10	0.11	0.83
	Glenrock	21.49	21.13	-0.12	-0.57	20.60	20.35	-0.08	-0.41
	Goldsborough	11.16	11.22	0.03	0.28	10.78	10.80	0.01	0.11
	Granitevale	19.19	21.59	0.15	0.76	18.79	21.36	0.16	0.84
	Heidelberg	5.63	4.88	-0.38	-6.80	5.40	4.71	-0.35	-6.45
	Huntly	4.11	4.71	0.05	1.22	4.04	4.60	0.05	1.15
	Kiauroo	12.90	17.31	0.28	2.13	12.90	16.19	0.21	1.59
	Kirk River exclosure	5.74	4.21	-0.12	-2.10	5.60	3.51	-0.16	-2.92
	Kirk River grazed	6.47	0.99	-0.43	-6.63	6.02	0.76	-0.41	-6.84
	Kooralbyn eucre Leyshon view	11.43	12.02	0.04	0.34	10.79	11.66	0.06	0.54
	exclosure Leyshon view	0.34	0.75	0.04	10.97	0.33	0.39	0.01	1.94
	grazed	1.60	1.83	0.02	1.33	1.54	1.70	0.01	0.97
	Lundsville	22.42	22.42	0.00	0.00	22.00	21.83	-0.01	-0.05
	Meadowvale exclosure	6.84	4.39	-0.19	-2.80	6.78	4.29	-0.20	-2.88
	Meadowvale								
	grazed	6.03 18.69	2.25 18.76	-0.30 0.00	-4.91 0.02	6.00 16.91	2.25 17.62	-0.29 0.04	-4.90 0.24
	Monavale Mt. Pleasant	18.69	18.76	0.00	0.02	16.91	17.62	0.04	0.24
	Bowen	8.14	7.61	-0.26	-3.16	8.10	7.58	-0.25	-3.14
	Netherleigh	20.66	20.63	0.00	-0.01	20.17	20.43	0.02	0.08
	New gildale	9.14	9.40	0.14	1.55	8.82	9.16	0.18	2.09
	Rosebank	13.19	13.80	0.27	2.04	11.52	12.22	0.31	2.66
	Rundle	22.25	26.27	0.26	1.15	21.99	26.15	0.27	1.21
	Scotston	17.47	17.80	0.16	0.93	17.37	17.69	0.16	0.90
	Springsure reserve	9.32	8.95	-0.20	-2.18	9.22	8.84	-0.21	-2.31
	St. pauls								
	exclosure	5.88	3.86	-0.16	-2.69	5.88	3.75	-0.17	-2.83
	St. pauls grazed	2.42	1.83	-0.05	-1.90	2.41	1.76	-0.05	-2.10
	Tryphinia eucre	13.40	14.87	0.09	0.64	13.23	13.50	0.02	0.12
	Tryphinia eumol	11.94	12.58	0.04	0.36	11.85	11.97	0.01	0.07
NMean		32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
		11.64	11.44	-0.02	-1.40	11.22	11.00	-0.01	-1.69
Std. Error of Mean		1.22	1.46	0.04	1.19	1.18	1.43	0.04	1.14
Microneur: Mistletoe									
		9.32	9.57	0.14	1.46	9.22	9.47	0.14	1.47

Appendix 1 Table 2 (cont).
Changes in basal area for each site. Sites are grouped by DCA determined woodland types.

Woodland Type Transect	Woody plant basal area at initial recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Woody plant basal area at final recording ($\mathrm{m}^{2} / \mathrm{ha}$)	Annual change in basal area ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$)	Annual change in basal area as $\%$ of initial basal area	Woody plant basal area at initial recording (m2/ha) plants >300 mm circumference	Woody plant basal area at final recording (m2/ha) plants >300 mm circumference	Annual change in basal area (m2/ha/yr) plants >300 mm circumference	Annual change in basal area as \% of initial basal area plants >300 mm circumference
	4.07	4.14	0.04	1.04	2.75	2.87	0.07	2.48
	7.32	6.98	-0.12	-1.70	6.54	6.41	-0.05	-0.73
	7.58	7.40	-0.10	-1.34	4.14	4.20	0.03	0.80
	7.20	7.61	0.15	2.04	7.00	7.40	0.15	2.10
	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
	6.54	6.53	-0.01	0.01	5.11	5.22	0.05	1.16
	0.83	0.81	0.06	0.91	1.01	1.03	0.04	0.73
Total								
N	75	75	75.00	75.00	75	75	75.00	75.00
Mean	12.29	12.15	-0.04	-0.74	11.70	11.53	-0.03	-0.81
Std. Error of Mean	0.82	0.84	0.04	0.55	0.81	0.83	0.04	0.54

Appendix 1 Table 3.
Mortality rates for individual sites

Woodland Type	Transect	Mort (plants/ha/yr)	Mort (plants/ha/yr) plants >300 mm circumference	Annual mortality as $\%$ of initial density	Annual mortality as \% of initial densityplants $>300 \mathrm{~mm}$ circumference
Box	Aqua Downs	59.52	5.94	4.41	1.58
	Bungobine	44.22	3.50	1.17	4.22
	Carfax control	54.64	1.57	2.75	0.65
	Carfax stylo	93.16	3.93	4.51	1.87
	Centauri	371.73	15.70	8.57	4.19
	Coalstoun Lakes	3.38	0.00	4.90	0.00
	Hedlow Creek	48.14	1.60	4.08	0.84
	Magazine	61.64	1.57	3.41	0.87
	Medway	0.93	0.93	0.22	0.76
	Mt. Panorama	13.63	11.03	2.27	4.32
	Myrrlumbing	21.02	2.63	2.96	2.39
	Pajingo	80.82	15.59	7.06	6.11
	Texas	38.81	2.17	5.28	1.70
	Walthum	151.88	11.02	17.31	5.80
	Wandobah T6 R1	121.52	0.56	8.24	0.35
	Wandobah T6 R2	114.76	3.50	3.41	0.95
	Wandobah T6 R3	16.42	2.81	0.68	1.29
		17	17	17	17
		123.90	4.94	7.22	1.51
Std. Error of Mean		46.77	1.24	1.78	0.39
Cypress	Eumina	54.79	3.03	3.43	0.76
	Rostock	23.60	0.00	1.10	0.00
	Sunrise east	114.00	2.94	4.20	0.53
		3.00	3.00	3.00	3.00
		107.33	1.99	3.77	5.43
Std. Error of Mean		28.57	1.00	1.07	4.88
Desert uplands	Inveresk	148.33	4.78	7.89	1.91
	Julia Park	115.79	0.00	8.91	0.00
	Swanlea	24.60	4.37	1.40	1.46
	The Patrick	36.72	1.11	7.55	1.56
N		4	4	4	4
Mean		98.01	2.57	6.54	0.43
Std. Error of Mean		22.54	1.19	1.55	0.43
Mulga	Clifton	0	0	0.00	0.00

Appendix 1 Table 3 (cont).
Mortality rates for individual sites.

Woodland Type	Transect	Mort (plants/ha/yr)	Mort (plants/ha/yr) plants >300 mm circumference	Annual mortality as \% of initial density	Annual mortality as \% of initial densityplants $>300 \mathrm{~mm}$ circumference
Crebra	Anchor	53.47	7.29	3.37	3.31
	Archer	39.63	14.94	4.36	4.67
	Balmoral	43.23	2.09	3.08	0.62
	Canal Creek	259.56	0.00	7.66	0.00
	Exevale	57.87	3.04	34.45	15.20
	Forest Hills	129.51	2.12	3.01	0.55
	Glenrock	213.31	5.11	6.19	1.97
	Goldsborough	65.79	0.00	6.65	0.00
	Granitevale	17.74	0.61	1.91	0.17
	Heidelberg	16.50	2.54	6.27	4.23
	Huntly	19.06	0.41	4.38	0.74
	Kiauroo	12.48	0.62	1.53	0.35
	Kirk River exclosure	23.49	4.70	2.76	3.36
	Kirk River grazed	90.84	4.70	6.31	5.87
	Kooralbyn eucre	311.91	4.68	5.16	1.87
	Leyshon view exclosure	13.93	0.00	3.37	0.00
	Leyshon view grazed	27.39	0.46	5.04	2.32
	Lundsville	69.85	7.39	2.54	1.92
	Meadowvale exclosure	53.25	5.09	5.76	2.75
	Meadowvale grazed	25.45	8.61	4.43	4.31
	Monavale	106.60	3.53	2.87	0.92
	Mt. Pleasant Bowen	0.00	1.61	0.00	1.69
	Netherleigh	33.23	5.81	2.58	1.11
	New gildale	4.55	0.00	0.69	0.00
	Rosebank	117.39	2.18	5.41	0.87
	Rundle	42.41	1.91	4.54	0.71
	Scotston	4.39	0.00	0.60	0.00
	Springsure reserve	6.93	1.10	1.58	1.37
	St. pauls exclosure	7.19	1.96	3.38	3.40
	St. pauls grazed	14.95	0.78	7.30	3.11
	Tryphinia eucre	17.57	0.88	1.43	0.68
	Tryphinia eumol	4.46	3.02	0.67	2.24
N		32.00	32	32	32
Mean		59.50	3.04	1.61	1.61
Std. Error of Mean		13.30	0.57	0.30	0.30
Microneura	Mistletoe	9.32	9.57	0.14	1.46

Appendix 1 Table 3 (cont).
Mortality rates for individual sites.

Woodland Type	Transect	Mort (plants/ha/yr)	Mort (plants/ha/yr) plants >300 mm circumference	Annual mortality as \% of initial density	Annual mortality as \% of initial densityplants $>300 \mathrm{~mm}$ circumference
Melanophloia	Bowie	53.42	2.14	5.40	1.86
	Burtle	67.07	0.00	4.81	0.00
	Cooper Downs	5.79	0.91	1.50	0.59
	Dykehead	44.44	1.11	4.27	1.26
	Hyde Park	29.72	0.35	2.99	0.29
	Kerry	196.43	0.00	8.36	0.00
	Longton	13.16	0.00	1.35	0.00
	Mt. Pleasant	45.84	2.74	4.56	2.28
	Nyanda	18.73	0.37	2.71	0.22
	Old Rawbelle	22.70	0.00	3.98	0.00
	Summerdel	101.35	2.91	4.76	1.32
	Sunrise west	27.54	1.78	2.09	0.39
	Tryphinia eumel	0.29	4.74	0.04	1.10
		13	13	13	13
		44.81	1.31	5.42	1.74
Std. Error of Mean		13.96	0.41	1.90	0.48
Microneura	Mistletoe	39.09	0.00	11.17	0.00
	Namuel	0.00	0.00	0.00	0.00
		2	2	2.00	2.00
		24.49	0.00	11.49	0.00
Std. Error of Mean		16.01	0.00	3.79	0.00
Mulga 	Clifton	0.00	0.00	0.00	0.00
	Croxdale	63.87	3.65	7.38	1.46
	T innenburra	35.65	0.00	1.06	0.00
	Yanna	0.00	0.00	0.00	0.00
		4	4	4.00	4.00
		71.09	0.91	6.61	0.49
Std. Error of Mean		26.22	0.91	3.17	0.30
Total					
		75	75	75.00	75.00
Me		80.20	2.91	6.43	1.60

Appendix 1 Table 4.
Height change for each site.

Transect	Mean plant height at initial recording (m).	Mean plant height at final recording (m).	Annual change in mean height (m).	Annual change in mean height as \% of initial mean height	Mean plant height (m) at initial recording plants >300 mm circumference	Mean plant height (m) at final recording plants >300 mm circumference	Annual change in mean height (m) plants $>300 \mathrm{~mm}$ circumference	Annual change in mean height as \% of initial mean height plants >300 mm circumference
Anchor	2.30	1.81	-0.03	-1.48	10.57	12.28	0.12	1.12
Aqua Downs	3.49	3.27	-0.13	-3.76	6.81	7.24	0.26	3.75
Archer	5.16	1.47	-0.23	-4.36	13.26	16.11	0.17	1.31
Balmoral	3.38	4.84	0.09	2.57	13.68	14.75	0.06	0.47
Bowie	1.94	1.73	-0.09	-4.65	10.62	10.28	-0.15	-1.37
Bungobine	1.05	0.55	-0.26	-24.87	11.29	11.03	-0.14	-1.24
Burtle	3.35	2.05	-0.53	-15.72	10.93	9.99	-0.38	-3.48
Canal Creek	1.65	1.60	-0.03	-1.76	8.52	8.58	0.03	0.35
Carfax Control	1.62	1.58	0.00	-0.16	10.26	15.43	0.30	2.97
Carfax Stylo	1.58	1.82	0.01	0.93	10.08	11.64	0.09	0.91
Centauri	2.88	2.98	0.05	1.82	10.10	10.18	0.04	0.44
Clifton	4.85	4.81	-0.02	-0.44	6.85	6.42	-0.25	-3.65
Coalstoun Lakes	10.36	6.04	-1.46	-14.04	22.81	23.00	0.07	0.29
Cooper Downs	4.36	3.84	-0.03	-0.72	10.39	10.03	-0.02	-0.21
Croxdale	3.85	4.21	0.13	3.41	8.53	9.23	0.26	3.01
Dykehead	1.93	2.31	0.17	8.80	14.24	14.44	0.09	0.63
Eumina	3.84	3.27	-0.26	-6.73	12.66	12.92	0.12	0.93
Exevale	1.20	0.88	-0.16	-13.37	7.08	8.11	0.53	7.42
Forest Hills	2.30	1.22	-0.11	-4.97	10.21	9.80	-0.04	-0.42
Glenrock	1.77	1.53	-0.09	-4.80	16.09	15.74	-0.12	-0.73
Goldsborough	2.71	2.70	-0.01	-0.23	9.77	9.68	-0.05	-0.47
Granite Vale	6.57	7.85	0.08	1.19	14.54	15.36	0.05	0.34
Hedlow Creek	2.99	4.55	0.10	3.35	17.07	16.77	-0.02	-0.11
Heidelberg	3.76	3.28	-0.25	-6.56	11.49	12.10	0.31	2.72
Huntly	1.62	1.71	0.01	0.44	8.88	9.46	0.05	0.54
Hyde Park	1.69	1.65	0.00	-0.17	11.31	10.32	-0.07	-0.61
Inveresk	1.39	1.68	0.13	9.68	4.97	5.46	0.23	4.66
Julia Park	2.18	1.98	-0.10	-4.74	9.02	9.02	0.00	0.02
Kerry	2.64	2.39	-0.15	-5.76	11.02	11.03	0.01	0.06
Kiauroo	3.65	4.40	0.05	1.27	15.00	14.44	-0.04	-0.23
Kirk River Exclosure	2.27	2.48	0.02	0.70	10.65	7.60	-0.24	-2.24
Kirk River Grazed	1.63	1.36	-0.02	-1.28	13.63	7.40	-0.49	-3.58
Kooralbyn Eucre	1.04	1.45	0.03	2.61	13.42	13.66	0.02	0.12
Leyshon View	0.64	1.22	0.05	8.40	6.00	4.76	-0.12	-1.92
Grazed	0.92	0.85	-0.01	-0.65	7.36	9.20	0.17	2.32

Appendix 1 Table 4 (cont).
Height change for each site.

Transect	Mean plant height at initial recording (m).	Mean plant height at final recording (m).	Annual change in mean height (m).	Annual change in mean height as $\%$ of initial mean height	Mean plant height (m) at initial recording plants >300 mm circumference	Mean plant height (m) at final recording plants >300 mm circumference	Annual change in mean height (m) plants $>300 \mathrm{~mm}$ circumference	Annual change in mean height as \% of initial mean height plants >300 mm circumference
Lundsville	2.48	1.54	-0.06	-2.56	14.05	14.64	0.04	0.28
Magazine	2.05	1.27	-0.05	-2.39	14.21	14.86	0.04	0.29
Meadowvale exclosure	2.23	1.01	-0.10	-4.27	9.50	7.70	-0.14	-1.48
Meadowvale grazed	3.49	1.32	-0.17	-4.87	9.83	7.58	-0.18	-1.79
Medway	5.98	5.76	-0.12	-2.08	17.04	16.62	-0.24	-1.38
Mistletoe	3.10	2.80	-0.17	-5.35	8.18	8.82	0.36	4.38
Monavale	2.16	1.33	-0.05	-2.26	10.79	12.00	0.07	0.66
Mt. Panorama	7.16	6.50	-0.10	-1.36	16.50	17.26	0.11	0.68
Mt. Pleasant	2.22	2.10	-0.01	-0.38	15.25	13.81	-0.10	-0.65
Mt. Pleasant Bowen	1.60	1.42	-0.09	-5.55	12.83	13.86	0.50	3.94
Myrrlumbing	0.90	1.79	0.47	51.56	12.28	12.28	0.00	0.02
Namuel	6.09	6.55	0.26	4.30	7.40	7.98	0.32	4.36
Netherleigh	6.33	6.35	0.00	0.02	15.88	16.44	0.03	0.21
New Gildale	2.73	2.47	-0.14	-5.24	10.54	10.99	0.25	2.33
Nyanda	4.20	3.68	-0.04	-0.92	14.76	13.60	-0.09	-0.59
Old Rawbelle	4.61	4.11	-0.24	-5.23	11.32	11.47	0.07	0.64
Pajingo	3.01	2.48	-0.28	-9.14	11.96	11.63	-0.17	-1.45
Rosebank	2.60	2.55	-0.02	-0.88	12.85	12.04	-0.35	-2.76
Rostock	7.11	5.82	-0.59	-8.29	11.65	11.74	0.04	0.36
Rundle	6.30	5.69	-0.04	-0.62	19.39	19.38	0.00	0.00
Scotston	5.12	4.59	-0.26	-5.09	16.04	15.34	-0.34	-2.11
Springsure Reserve	1.98	2.27	0.16	7.91	8.47	8.33	-0.08	-0.92
St. Pauls Exclosure	3.23	2.22	-0.08	-2.45	9.80	8.89	-0.07	-0.72
St. Pauls Grazed	1.59	1.36	-0.02	-1.12	10.82	9.68	-0.09	-0.82
Summerdel	2.76	3.69	0.06	2.18	9.43	9.38	0.00	-0.03
Sunrise East	3.68	3.83	0.05	1.48	10.29	11.04	0.26	2.55
Sunrise West	4.66	3.95	-0.25	-5.40	9.44	10.08	0.23	2.43
Swanlea	1.91	2.04	0.06	3.01	5.95	6.05	0.04	0.75
Texas	1.84	2.61	0.34	18.35	8.86	8.72	-0.06	-0.71
The Patrick	1.95	1.85	-0.09	-4.45	10.06	10.32	0.23	2.27
T innenburra	1.85	2.29	0.25	13.48	6.27	6.11	-0.09	-1.41
Tryphinia Eucre	2.15	3.33	0.07	3.23	15.27	15.80	0.03	0.20
Tryphinia Eumel	7.48	4.98	-0.16	-2.11	11.52	12.36	0.05	0.46
Tryphinia Eumol	4.21	3.60	-0.04	-0.98	18.24	13.51	-0.32	-1.74
Walthum	3.79	3.23	-0.06	-1.54	10.99	10.05	-0.10	-0.90
Wandobah T6 R1	1.56	1.57	0.00	0.07	11.46	11.36	-0.01	-0.08
Wandobah T6 R2	2.37	2.40	0.00	0.14	11.36	12.05	0.06	0.56
Wandobah T6 R3	1.96	2.05	0.01	0.39	11.77	13.27	0.14	1.15
Yanna	2.33	2.33	0.00	0.13	7.85	8.46	0.22	2.82
Total	2.54	2.33	-0.06	-2.36	11.44	11.43	0.02	0.17

Appendix 1 Table 5.
Species distribution by sites. A " 1 " indicates species presence

угәәли ${ }_{\text {I }}$																					
					\square																
крии ${ }^{\text {H }}$																					
ภıәqाәр!ән			-																		
уәәう моןрән																					
әе¢ Λ ә!!иемо																					
¢ธิnoıoqspioy																					
ฯขоиәю																					
әррг! ${ }^{\text {man }}$																					
SII! ${ }^{\text {¢ Sajo }}$			-													-					
әгеләха																					
вu!̣ung																					
регчәука																					
әрерхол																					
sumod radoo																					
sayet unozsjeo																					
иоษ!										-											
!neұuәว							-							-							
OIATS xpjue																					
गนıng					-					-											
วu!qosung										-											
ә!моg					-														-		
[eaoujeg			-																		
دәчэлV			\rightarrow						-												
sumod enby																					
doyouv									-												-
氙	$\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$						Acacia crassa	$\left\|\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	E	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$					$\left.\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$				

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

уsә．ıли］		－						－												
		－			－							－								
K\ıunh					－											－				
уәдゝ моโрәН										－								－		
¢ริnoxoqsplon																	－	\square		－
Yooduə以										－	－						－	－		
ว¢р¢！О MəN																		－		
									－	－		－			－	－		－	－	
ә¢ィәх回																				
ru！ung	－																			
реәчәука										\square										
गృерхо．ว																				
sumod dədoo3					－															
Sayet unolsimo												－					－		－	
บоぬ！																				
						－				－								－		
$0{ }^{\text {［ }} 17 \mathrm{~S}$ xejue〕					－							－			－	－				
［0．1003 xejre］					－							－			－	－				
										－										
ขนang					－					－					－	－		－		－
วu！qoôung									－	－					－	－				
2！MOg		－					－											－		
［巴0upeg										－								－		
गәчว．रV										－										
sumod enby												－								
joyouv				－						－					－			－		
岛			$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\begin{array}{\|c} 0 \\ 00 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ .0 \\ -5 \\ 0.0 \\ \frac{0}{7} \end{array}\right\|$				Angophora costata		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Atalaya hemiglauca		$\begin{gathered} 0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0 . \end{gathered}$		Bursaria incana

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

ysəəлul										－				－						
										－	－			－						
													－	－						
ธ．əәqाәр！əН															－					
уәЈう моІрәН																				
														－						－
¢o̊noloqsplon													－							
צフолиәワ					－									－						
วएер！！${ }^{\text {MəN }}$																				
													－	－	－			－		
әреләх马	－												－	－						
ru！ung								－						－						
реәчәука														－						
วүррхоว																				
sumod dədoo														－						
sayet unolsiboj																	－			
บ๐ษ！1จ																				
！nセұนวว										－				\square		－				
O［K7S Xejue ${ }^{\text {a }}$			－		－						－				\square				－	
［0』u\％）хejue？			－		－						－				－				－	
วpling										－	－			－						
2u！qosung			－								－			－	－					
ว！MOG										－									－	
［ ${ }^{\text {dowieg }}$														－						
IəЧЈл					－									－						－
sumod enbV																				
doчэuV					－						－			－						
岛			Cassia brewsteri		§ 0 0 0 0 0 0 0 0 0 0 0						Capparis lassiantha	Capparis loranthifolia			$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$		Citriobatus lineare		2 0 0 0 0 0 20 0 2 5 0 0 0 0 0 0 0 0 0 0 0	䂞

	уऽәıəлuI																				
															－						
	Кұұunh															－					
			－																		－
	уәәう моІрәН		－																		
	әए¢ Λ ә！！u®ض																				
	पริnoıoqsploŋ																				
	Үगоиә门																			－	－
	วฺер！！ロ MaN																				
															－						－
	әреләх马																				
	عu！ung																		－		
	реәчәуКव							－													
	วгрххоว										\square										
	SUMOG İdoo								－												
	SeYeT unolsjeo八																				
	แ०ษ！										－										
										－											
	O［K7S xefue］			\rightarrow																	－
										－											－
	गpIng									－			－								
ジ	2u！qosfung								－	－							－				
氙	ә！M0G												－								
.																					
0	دәчэлV																				－
	sumod enby				－							－			－						
	10чэuV																				
	$\begin{aligned} & \text { y } \\ & \text { 0 } \\ & \text { M } \\ & \text { in } \end{aligned}$		Cupaniopsis anacardioides					Dodonaea viscosa			1 $: 亏$ 0 0 0 0 0 0 0 0 0 0 0 0		Eremophila longifolia			1 2 0 0 0 0 0 0 0 0 0 0 0	Eucalyptus brownii	Eucalyptus cambageana	Eucalyptus chloroclada	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	［

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

								－													
КұunН			－								－										
												－	－								
уәәう моІрәН		－										－	－		－						
		－	－	－																	
¢ริno．oqsplon																－			－		
үวохиР		－																			
วए¢р！${ }^{\text {MəN }}$		－	－																		
SII！${ }^{\text {TSaOA }}$		－													－						
ә［еләх马		－	－									－									
eu！ung								－													
реәчәука			－					－							－					－	
әүрхооว																					
sumod dədoo3								－				－									
Səyet unotsiroj																				－	
บоฆ！																					
！nełuәว		－										－									
O［KlS xejue？												－			－						
［0ヵu0，xejarว												－			－						
				－			－														
วpung								－							－						
วu！qosung												－									
ә！Mog								－													
［poujeg						－						－									
		－																			
sumod enby															－						
IOYэu＊		－						－				－									
							\approx 0 0 0 0 0 0 0 0 0 0 0 0 0 0			$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$		Corymbia dallachyana		Corymbia plena		$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			Corymbia terminalis		1－2

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

уऽəıəлuI																				
									-											
ภิ.ə१ाәр!əН																				
Үәәう моІрәН																				
पร์no.oqsploŋ														-						
Үролиә																				
әгер!! ${ }^{\text {мәN }}$											-									
SII! ${ }^{\text {152.0] }}$									-					-						
ә[еләх]																				
вu!ung																				
регчәуरа																				
әГерхоว																-				
SuMOG Jodoo																				
səyet unolsjeo																				
บоサ!																				
							-			-										-
O[K7S XEJIED					-						-			-						
[0.пuoว xefreว											-									
วpIng									-											
2u!qosfung																	-			
ว!M0G																				
sumod enby																				
JочэиУ									-											
y U w w								$\begin{array}{\|l\|l\|} \hline \text { Gardenia vilhelmii } \\ \hline \end{array}$	$\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ : 0 \\ : 0 \\ 0 \\ \hline \end{array}$	Geijera salicifolia		Grevillea prteridifolia	$\left.\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$					$\left\lvert\, \begin{gathered} 2 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \widetilde{0} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ .0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	-

Appendix 1 Table 5 (cont).
Species distribution by sites. A " 1 " indicates species presence.

							-												
$\mathrm{K}_{\text {¢ }}^{\text {unn }} \mathrm{H}$							-												-
													-						
угәј мо!рәН																			
ग8 Λ 2t!ued													-						
¢ ${ }^{\text {®no.oqsplo }}$							-												
צролиә																			
วएр!! ${ }^{\text {məN }}$							-												
							-												-
әгеләха							-												
ru! ${ }^{\text {eng }}$							-												-
рвәчәуरव																		-	
ग¢epxor刀																			
sumodradooj																			-
sayet unolsibo	-									-								-	-
иоษ!!																			
بกпセบขว							-												
olilis xejue																	-		-
[0.1400 xeyrej																			
			-											-					
ग ${ }^{\text {ping }}$							-												-
2u!qo8ung							-												
ग! M0g							-						-						
${ }^{\text {[moumpg }}$																			
เวч0ıV							-												-
sumodenby																			
ग0чगuF				-			-												-
																		$\begin{gathered} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

					\square			－		－					
К\ıйH															
ठıәqІәр！əН					－		－								
уวәл моІрวН															
4oิnoxoqsplon				－	－										
צоохәр					－										
วाерा！口 MəN					－										
					－										
әреләх苴															
eu！ung															
реәчәука					－										
әएрхолว															
sumod dədoo										－					
səyet unotsieo															
บоサ！															
บทセұนวว												－			
O［KıS xejur														－	
［0．7uoj xejrej					－									－	
əping					－									－	
วu！qoธung					－								－	－	
2！MOg											－				
［poujeg							－								
İчアIV						－	－								
sumod enbv	－									－					
Ioपगu＊														－	
0 0 0 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Parsonsia lanceolata	Pandorea pandorana	$\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$							$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{gathered}$		0 0 0 0 0 0 0 0 0 0 0 0		

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence

yoolsoy						-	-									-					-
yurqəsoy																	-	-			
ӘIアqMEY PIO																					
						-					-										
08u! $\mathfrak{l}_{\text {d }}$		-																			
ериека																	-				
			-														-				
²nuen $^{\text {a }}$																					
ұueserdd 7 W				-							-										
ұueseəd 7 W																					
әрелвио			-																		
әо1ə15!															-						
Кемрәј																					
әгелмореәа																					
әекмореәа																					
әu!zesieW																					
गII! ${ }^{\text {spun }}$			-																		
u01ôuo						-					-										
Мə! Λ पочSКว				-							-	-									
Мə! Λ иочSКәТ				-							-	-									
uКq[${ }^{\text {²00才 }}$																	-				
OoIne!									-								\square				
	-										-										
						-	-				-										-
\%		$\begin{array}{\|c\|} \hline 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ \tilde{0} \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ .0 \\ .0 \\ 0 \\ 0 \\ \hline \end{array}$						$\left.\begin{array}{\|c\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ .0 \\ .0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\begin{array}{\|c\|} \substack{0 \\ 0 \\ 0 \\ \tilde{u} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline} \end{array}$	Acacia farnesiana		$\begin{aligned} & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Acacia holosericea			$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ .0 \\ .0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			-

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

Yporsoy					-			-	-										
Yueqzsoy							-									-			
गlipquey plo																-			
									-										
08u! ${ }^{\text {end }}$													-						
${ }_{\text {epues }}$ -							-												
																-			
${ }^{\text {anuren }}$																			
lueseald 7 W								-							-				
${ }^{\text {luesead }}$ '7W																			
									-				-						
әгелеио~							-								-				
วоңว15! W													-						
кемрәа		-																	
गएелмореә,																			
әглмореәа													-						
วu!zro̊rw		-									-	-	-						
गा! ${ }^{\text {sspun] }}$							-			-	-				-				
u07ธิน०7																			
мә! Λ иочSКә]													-						
мә! Λ иочSКә]									-				-						
			-				-								-	-			
دəл! ¢ >																			
गәл!บ >>!																			
oomne!							-						-		-		-		
киәү																			
							-												
狏																	nex		

	Ypolsoy					-						-										
	yueqวsoy										-											
	әाР्वMey PIO																					
							$=$				-	-					-					
	osu! ${ }^{\text {end }}$							-	-													
	ериекл											-										
																		-				
	I ${ }^{\text {nuen }}$																					
								-				-										
																			-			
	7urseold 7 N																					
	curiourd ${ }^{\text {² }} \mathrm{N}$																					
	әј¢лвио		-								-							\square				
	Кемрәл												-				\square					
	әןелмореәб							-														
	әелмореәб							-											-			
	2u!zesfen								-				-						\square			
	ขІ!! ${ }^{\text {spunT }}$		-																			
	บ0ఫ¢์U07							-				-										
			-					-									-		-			
								-														
$\dot{8}$	uरqIए.00才																-					
苞	Iəл!प \!																					
©												-										
.	ooane!										-	-										
$\frac{0}{n}$	КЈวУ																					
$\begin{aligned} & \text { Wix } \\ & \text { U0 } \end{aligned}$								-			-											
	(1)		Capparis canescens		Casuarina cristata	Callitris glaucophylla		$\begin{array}{\|c\|c\|} \hline 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$					Carissa ovata				$\left.\begin{gathered} 5 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$					[

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

Yoołsoy										－				－		\square					
yurqวsoy															－			－	－		
ӘIəqMEy PIO																					
YЈ！${ }^{\text {¢ }}$										－											
${ }^{\text {osut }}$ ¢ $\mathfrak{v}_{\text {d }}$													－								
ерие $\chi_{\text {N }}$			－															－			
															－			\square	－	－	
［ənuen																					
												－						－	－		
ұueserd 7 W																		－			
queserald 7 N								－								－					
				－													－				
әрелеио																		－	－	－	
әодə1，	－	\square																			
Кемрә才																					
әглмореәа																			－		
әглмореәа																			－		
วu！zeธ์eW																					
${ }^{\text {III！}}$ ¢pun7											－				－			－			
				－																	
Мว！Λ 廿очsКәТ	－																	－	－		
Мә！Λ иочSКәТ	－																		－		
UKqI ${ }^{\text {TOOY }}$															－	－		－			
																			－		
																			－		
OoIne！																－		－			
Киәу							－			－											
岛			Dodonaea viscosa		Erythroxylum australe		$\begin{gathered} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \end{gathered}$		Eriocerius martinii							Corymbia clarksoniana	$\begin{array}{\|c} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 7 \\ 7 \\ 0 \\ 0 \\ 1 \end{array}$	Eucalyptus crebra	$\begin{array}{\|c} 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	［

Appendix 1 Table 5（cont）．
Species distribution by sites．A＂ 1 ＂indicates species presence．

yoołsoy									－						－						
yueqวsoy																					
әİPMEy PIO		－													－						
						－		－					－								
																				－	
ерие反N		－																			
														－							
［ənuen			－																		
8u！qun $\mu \mathrm{L}$ N						－															
						－															
ұueseold 7 W		－							－						－						
ә¢¢леио～						－															
			－																		
Кемрәл									－					－	－						
әелмореәа																	－				
әрелмореәа																	－				
วu！zeธ̊eW									－					－							
ข［！！＾spun7	－													－	－				－		
प076\％07		－																			
Mə！Λ U0ЧSКəТ						－															
Mə！Λ иочsКәТ						－															
uКq［ ${ }^{\text {²00才 }}$																					
Јəл！																	－				
						－											－				
ooane！						－															
Kuә才		－							－												
												－	－								
岛						Corymbia dallachyana		Corymbia plena		0 0 0 0 0 0 0 0 5 5 0 0 0 0 10									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & i \\ & \hline \end{aligned}$	Flindersia dissosperma	茳

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

yoolsoy			-																			-
yueqวsoy														-	-							
ग[ІqMey Pio																						
							-															
O¢U! ${ }_{\text {end }}$																						
ерив ${ }^{\text {N }}$			-																			
${ }^{\text {numen }}$																						
ภu!qunjuK人																						
quesead '7W								-														
7ueseəd 7 W																						
eurioued 7 N																					-	
ә¢¢вио~																		-				
		-																		-		
квмрәы																						
әглмореәW																						
әгелореәа																						
วu!zeธึeW												-										
गा!ıspunT															-			-				
uolsuo																						-
								-														-
Мว! Λ पочsКәТ								-														
uКq[prooy																						
OOInE! ${ }^{\text {a }}$					-																	
Киวу			-																			
																						-
\%	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ : 2 \\ \hdashline 0 \\ 0 \\ 0 \end{gathered}$				0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0	0 0 0 5 0 0 0 0 0 0 0 0	$\begin{array}{\|c\|c\|} \hline \pi \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		Hakea species	Alectryon diversifolium							Lysiphyllum carronii			:

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

Yoolsoy												-									
yurqəsoy																-					
วİəqMEY PlO												-									
													-						-		
${ }^{\text {obut }} \mathrm{EP}_{\mathrm{d}}$																					
еривкл												-					-		-		
	-					-															-
[ənuen					-																
ภu! ${ }^{\text {¢ }}$																					
ఫueseədd 7 W						-															
ұueseald 7 W																					
eurıoued ${ }^{\text {², }} \mathrm{N}$																					
ә¢явио~												-							-		-
Kемрәл											-								-		
әгелмореәа																					
ә[елмореәа																					
2u!zesten				-					\cdots			-									
ข[I! ${ }^{\text {spun }}$ T																			-		
u01830 7						-															
Mə! Λ पоч																					
Mə! Λ UочSKəT												-									
uKq[woor												-							-		
																			-		
00.nne!												-							-		
Киәу										-				-	-						
																			-		
0 0 0 W \%	Macrozamia miquellii	Macrozamia moorei			$\begin{array}{\|l\|} \hline \text { Melichrus species } \\ \hline \end{array}$	$\begin{gathered} c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{gathered}$	$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 2 \\ 2 \\ 3 \end{gathered}$							$\begin{array}{\|c} 0 \\ 3 \\ 5 \\ 5 \\ 0 \\ 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	Parsonsia lanceolata	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$		Petalostigma pubescens	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	[

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

yooksoy									
yueqasoy									
әІә¢меу PIO									
	-		-					-	
Oठิu! $\mathrm{E}_{\text {d }}$								-	
ериекл									
									-
[ənuen						-			
su!̣qunı上KW		-							
euriourd ${ }^{\text {a }}$, W									
ә¢елеиow									
						-			
КемрәW	-								
әрелмореәј									
әрлмореәа									
วu!zesx'N									
गा!! ${ }^{\text {spun }}$ T									
						\cdots			
Мว! Λ पочSКว									
Oo.nne!									
Киว ${ }^{\text {¢ }}$	-		-						
n n n E	$\left.\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$		$\begin{array}{\|c\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 & \\ 0 \end{array}$		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$		(2)

Appendix 1 Table 5(cont).
Species distribution by site

euue $^{\text {d }}$												-													
чеqорием				-								-													
чеqорием				-								-													
чеqорием																									-
шпч $\boldsymbol{I}^{\text {P }}$ M																									\square
R!u! ${ }^{\text {d }}$ diL																		-							
ع!																		-							
									-																
exunquauu!																									
sexal																									
عәјUем							-															\cdots			
${ }^{\text {LSO }} \mathrm{M}$ วs!uuns												-						-							
																				-					
I ${ }^{\text {apaumis }}$							-					-													
$\mathrm{s}^{\text {ne }} \mathrm{d}^{\prime} \mathrm{TS}$				-									-												
$\mathrm{slng}^{\text {d }}$ 'S																									
วunsôuبld											-														
u015100S																			-						
गүpuny			-											-						-					
昒						0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$					$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			$\left.\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left.\begin{array}{\|c\|} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	宕

Appendix 1 Table 5(cont).

${ }^{\text {cuup }}$,																									
чеqорием							-						-		-										
чеqорием													-		-										-
чеqорием	-						-						-												
шпч	-												-												
ع!!! d $^{\text {dix }}$		-					\square								-										
							-																		
							-										-								
ع.unquəuu!																									
SExaL													\cdots							-		-			
гәииемS			-	-			-						\rightarrow							-		-			
${ }^{\text {7S2 }}$ M ${ }^{\text {asulun }}$																									
									-							-									
[әрıашйS																-				-					
slned 7 S													\square												
Sjned ${ }^{\text {TS }}$															-		-								
2unsêu!ud																-						-			
uolstos							-																		
әpuny							-								-							-			
氙	$\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ ~ \\ \hline \end{array}$													0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Breynia oblongifolia	$\begin{gathered} 9 \\ 0 \end{gathered}$	Bursaria incana	0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{\|l\|} \hline \end{array}$		$\begin{array}{\|c} 5 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			0 0 0 0 0 0 0 0 0 0 0 0	

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

ruue $^{\text {d }}$																								
чеqорием							-	-	\square															
чеqорием	-					-	-	-	-												-			
чеqорием								-	\square			\sim												
							-	-	-			-										-		
ع!!! ¢ $^{\text {d, }}$								-	-															
R!								-	-															
ع!																								
عunquәuu! $\frac{1}{}$			-																					
Sexal					\checkmark			-																
гәјuems					-							-												
${ }^{75} 2 \mathrm{M}$ asuluns																								
${ }^{\text {2SEG }}$ asuuns			-	-	-																			
I ${ }^{\text {Ppıäun }}$ S					-			-																
$\mathrm{sjne}_{\text {d }} 7 \mathrm{~S}$			-						-															
$\mathrm{Slne}^{\text {d }} 7 \mathrm{~S}$								$=$	-															
2unsôu!̣ds																								
u07stos							-																	
गpuny					-								-											
		Cassinia leavis													$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ \hline \end{array}$				Dodonaea physicarpus			$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{gathered}$		-

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

ruur ${ }^{\text {a }}$		\square		-																				
чеqорием										-		-									-			-
чеяорихм				-						-											-			-
чеяорием										-											-			-
uпч\% ${ }^{\text {¢ }}$ M						-							-											
ह!u! ${ }^{\text {d }}$ ¢									-	-		-							-					
												-					-							-
										-		-									-			
exunquauu!																								
SExal				-		-																		
rejurms																								
${ }^{\text {ISO}} \mathrm{M}$ əs!uuns										-							-							
								-									\cdots							
Iәрıәий										-							-							
$\mathrm{slne}^{\text {d }}$ 'IS												-	-								-			
$\mathrm{SIne}^{\text {d }} 7 \mathrm{~S}$													-								-			
2uns\%u! ${ }^{\text {a }}$													-							-				
u015100s										-		-												
गpuny												-							-					
氠	$\begin{gathered} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	0 0.8 0.0 0 0 0 0 3 0 0 0 0 0													$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 4	$\left\|\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\begin{array}{\|c} 0 \\ 2 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	[

Appendix 1 Table 5(cont).																					
SPECIES	$$					$\begin{gathered} \frac{n}{3} \\ \stackrel{\rightharpoonup}{n} \\ \stackrel{\rightharpoonup}{n} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$						$\begin{aligned} & \mathscr{\Xi} \\ & \underset{\sim}{\bullet} \end{aligned}$			$\begin{aligned} & \text { 采 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	彩	$\begin{array}{\|c} \underline{3} \\ \hdashline \\ \\ 3 \\ 3 \end{array}$	$\begin{aligned} & \frac{\pi}{5} \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & 3 \end{aligned}$	$\begin{gathered} \frac{\pi}{\tilde{n}} \\ \frac{0}{0} \\ \frac{1}{n} \\ 3 \\ 3 \end{gathered}$		$\underset{\sim}{\text { ¢ }}$
Eucalyptus populnea												1			1			1	1	1	
Eucalyptus quadricostata																					
Corymbia setosa											1										
Eucalyptus similis											1										
Corymbia terminalis																					
Eucalyptus tereticornis		1																1			
Corymbia tessellaris		1																1			
Eucalyptus whiteii																					
Eucalyptus xanthoclada					1																
Ficus obliqua	1																				
Ficus opposita																					
Flindersia dissosperma																1		1	1	1	
Flindersia maculosa												1									
Gardenia ochreata																					
Gardenia vilhelmii																					
Geijera parviflora												1					1				
Geijera salicifolia																					
Grevillea parrallela																					
Grevillea prteridifolia											1.										
Grevillea striata												1					1	1		1	
Hakea fraserii																					
Hakea lorea																	1		1		
Hakea species																					1
Alectryon diversifolium																	1				

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

cuuve ${ }^{\text {d }}$																									
чеqорием											-	-					-			-	-		-	-	
чеqорием											-									-		-		-	
чеqорием											-												-	-	
шпч $\Gamma^{\text {P }}$ M	-										-														
ह!!! ¢ ${ }_{\text {dKIL }}$				-																			-		
ह!																									
ع.ınquәuи!																									
SExวL		-									-										-				
erpuems											-														
																							-		
			-								-					-						-	-		
Iəp.əumis																									
											-														
$\mathrm{slne}_{\mathrm{d}} 7 \mathrm{~T}$											-														
ansfu!uds													-										-		
u07stous																							-		
วpuny																						-			
氙	들		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			Lophostomen confertus																	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

ruur $_{\lambda}$											\checkmark						
чеqорием	-													-	-		
чеqорием	-					-								-	-		
чеqорих M	-					-									-		
шпч¹® M						-											
ع!						-											
ع!																	
						-											
eunquəuи!											-						
SExa															-		
عə¢иемS						-			-		-						
${ }^{\text {Ta }}$ M M asuuns																	
${ }^{\text {ISeg }}$ as!uuns																	
[əрıəшuns						-									\square		
$\mathrm{s}_{\text {[ned }}$ TS																	
$\mathrm{slne}_{\text {d }} \mathrm{TS}$																	
2mss®u!̣dS						-											
u015100S				-													
गpuny																	
式	$$		$\begin{array}{\|c\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$								Senna artemisoides	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$			

Appendix 1 Table 5(cont).
Species distribution by sites. A " 1 " indicates species presence.

ruur 1											-						
чеqорием	-													-	-		
чеqорием	-					-									-		
чеqорием	-					-									-		
шпч $\boldsymbol{f}^{\text {e }}$ M						-											
						-											
						-											
eunquəű!											\square						
SExวL															-		
rojurms						-			-		-						
${ }^{15} \mathrm{P}$ M ${ }^{\text {asumun }}$																	
${ }^{\text {²pıoumens }}$						-									-		
slned 7 IS																	
punsôu!̣d						-											
uolsions				-													
गpuny																	
式									$\begin{array}{\|c\|} \hline \end{array}$	2	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			$\begin{gathered} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			

Appendix 1 Table 7 (cont)
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type.

Appendix 1 Table 7 (cont)
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type. See text for explanation of terms.

	Cypress				Microneura				Desert uplands				Mulga			
SPECIES	SIV rel	rel. den	rel. freq.	rel. dom.	SIV	rel. den	rel. freq.	rel. dom.	SIV	rel. den	rel. freq.			rel. den	rel. freq.	
Owenia acidula	-	_	_	-	-				0.61	0.04	0.57	0.00	-			
Petalostigma pubescens	-	-	-	-	-	-	-	-	24.32	8.05	14.86	1.42	-	_	-	
Santalum lanceolatum	-	-	-		-	-	-	-	1.18	0.28	0.86	0.04	-	-	-	
Senna artemisoides	-	-	-	-	-	-	-	-	3.35	1.07	2.29	0.00	2.72	1.30	1.40	0.01
Senna coronilloides	-	-	-		-	-	-		6.45	1.59	4.86	0.00	-	-		
Term inalia aridicola					70.66	37.70	16.67	16.29								

Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type.

	Crebra				Box				Melanophloia				All sites			
SPECIES	SIV	den	freq.	dom.	SIV	den	freq.	dom.	SIV	den	freq.	dom.	SIV	den		dom.
Acacia aneura	-				0.38	0.11	0.27	0.00	0.40		0.08	0.29	6.42	2.09	1.19	3.14
Acacia argyrodendron					4.56	0.92	1.23	2.41	-				1.12	0.25	0.26	0.61
Acacia aulacocarpa	4.80	1.91	2.62	0.27				-					2.01	0.81	1.09	0.11
Acacia bidwillii	1.91	0.47	1.41	0.03	1.19	0.41	0.75	0.03					1.13	0.33	0.79	0.02
Acacia carolaea	-	_			-	-							0.04	0.01	0.03	0.00
Acacia coriaceae	-						-	-	12.86	6.55	5.33	0.98	2.86	1.19	1.36	0.31
Acacia cowleana	-	_	-	-	-	-	_		-				0.76	0.46	0.30	0.01
Acacia crassa	0.30	0.08	0.21	0.01	0.10	0.04	0.07	0.00					0.15	0.04	0.10	0.00
Acacia cretata	0.04	0.01	0.03	0.00	-	-	-	-					0.02	0.00	0.01	0.00
Acacia decora	2.28	1.01	1.14	0.12									0.94	0.42	0.47	0.05
Acacia excelsa	0.32	0.07	0.24	0.00	5.90	2.62	2.13	1.16	4.29	1.52	2.08	0.68	3.53	1.41	1.32	0.81
Acacia farnesiana	1.99	1.17	0.79	0.03	-			-					0.83	0.49	0.33	0.01
Acacia fasciculifera	0.19	0.08	0.10	0.00									0.08	0.03	0.04	0.00
Acacia grandifolia	1.59	0.72	0.66	0.21	-	-	-						0.66	0.30	0.27	0.08
Acacia holosericea					0.48	0.14	0.34	0					0.13	0.04	0.09	0.00
Acacia laccata	- -					-	- -				-		0.54	0.31	0.23	0
Acacia leiocalyx	4.26	2.57	1.59	0.1					4.03	1.59	2.08		2.42	1.3	1.02	0
Acacia leptostachya	0.54	0.22	0.31	0.01	-				-		-		0.22	0.09	0.13	0.11
Acacia longispicata	0.22	0.08	0.14	0	-		- -				-		0.18	0.08	0.1	0
Acacia macradenia						_					-	-	0.1	0.05	0.06	0
Acacia melleodora					-	-				0.17	0.33		0.45	0.16	0.29	0
Acacia olignophleba	- -				-	-	- -		-		-		0	0	0	0
Acacia rhodoxylon	0.4	0.04	0.1		-	-	- -		-		-		0.16	0.01	0.04	0
Acacia salicina	0.04	0	0.03	0	9.1	3.94	5.01	0.15	1.99	0.57	1.42	0	2.51	1.17	1.3	0.11
Acacia shirleyii	1.79	0.91	0.62	0.26	16.84	10.98	1.71				-	-	5.18	3.4	0.62	0.04
Acacia stipuligra							-		0.12	0.03	0.08	0	0.46	0.21	0.24	1.16
Acacia tenuissima Alectryon diversifolium	-				0.24	-0.04	0.21	- 0	-		-	-	1.72 0.05	1.06 0.01	0.66 0.04	0.01

Appendix 1 Table 7 (cont)
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type.
See text for explanation of terms.

	Crebra				Box				Melanophloia					All sites			
SPECIES	SIV redrer	el. den	freq.	dom.	siv	den	freq.	dom	SIV	de	n fre	freq.	dom.	SIV	den		dom
Acacia aneura					0.3	0.11	0.27	0.00	0.4		. 030			6.42	2.09		3.14
Acacia argyrodendron					4.5	0.92	1.23	2.41						1.12	0.25	0.26	0.61
Acacia aulacocarpa	4.80	91	. 62	0.27							-	-		2.01	0.81		0.11
Acacia bidwillii	1.91	0.47	1.41	0.03	1.1	0.41	0.75	0.03			-	-		1.13	0.33	0.79	0.02
Acacia carolaea	-											-		0.04	0.01	0.03	0.00
Acacia coriaceae	-	-	-			- -	-		12.8		. 555	5.33		2.86	1.19	1.36	0.31
Acacia cowleana											-			0.76	0.46	0.30	0.01
Acacia crassa	0.30	0.08	0.21	0.01	0.1	0.04	0.07	0.00			-	-		0.15	0.04	0.10	0.00
Acacia cretata	0.04	0.01	0.03	0.00			-				-	-		0.02	0.00	0.01	0.00
Acacia decora	2.28	1.01	1.14	0.12		-	-	-						0.94	0.42	0.47	0.05
Acacia excelsa	0.32	0.07	0.24	0.00	5.9	2.62	2.13		4.2	1	. 522	2.08		3.5	1.4	1.3	0.81
Acacia farmesiana	1.99	17	0.79	0.03				-			-			0.8	0.4	0.3	0.01
Acacia fasciculifera	0.19	0.08	0.10	0.00										0.08	0.03	0.04	0.00
Acacia grandifolia	1.59	0.72	0.66	0.21		-	-				-	-		0.66	0.30	0.27	0.08
Acacia holosericea					0.4	0.14	0.34	0						0.13	0.04	0.09	0.00
Acacia laccata														0.5	0.31	0.23	
Acacia leiocalyx	4.26	2.57	1.59	0.1		- -	- -		4.0	1	1.59	2.08	0.36	2.42	1.3	1.02	0
Acacia leptostachya	0.54	0.22	0.31	0.01		-	- -			-				0.22	0.09	0.13	1
Acacia long ispicata	22	0.08	0.14	0		- -	- -					-		0.18	0.08	0.1	
Acacia macradenia						- -	- -				-			0.1	0.05	0.06	0
Acacia melleodora						-	- -		0	0	. $17{ }^{-}$	0.33		0.45	0.16	0.29	0
Acacia olignophleba	-	-				-								0	0	0	
Acacia rhodoxylon		0.04	0.1			-	-				-	,		0.16	0.01	0.04	${ }^{0}$
Acacia salicina	0.04	0	0.03			3.94	5.01	0.15		0	. 571	1.42		2.51	1.17	1.3	0.11
Acacia shirleyii	1.79	0.91			16.8	10.98	1.71	4.15						5.18	3.4	0.62	0.0
Acacia stipuligra						- -	- -			0	. 030	0.08		0.46	0.21	0.24	1.16
Acacia tenuissima Alectryon diversifolium	- -				${ }^{-} 0.2$	- 0.04	${ }_{0} 0.21$			-				1.72 0.05	1.06 0.01	0.66 0.04	0.01

Appendix 1 Table 7 (cont) Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting
species importance values (SIV) for species present in the study area by woodland type. See text for explanation of terms

Appendix 1 Table 7 (cont)
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type.
See text for explanation of terms.

	Crebra				Box				Melanophloia				All sites			
SPECIES	SIV	rel. den	rel. freq.	rel. dom.	SIV			rel. dom.	SIV			rel. dom.	SIV			
Erythrina vespertilio	0.75	0.17	0.52	0.06					-				0.31			0.03
Erythroxylum australe	-			-	4.27	1.47	2.54	0.26	0.16	0.07	0.08	0.01	1.02	0.41	0.54	0.07
Eucalyptus brownii					15.80	2.15	3.22	10.43	-		-		3.90	0.59	0.67	2.64
Eucalyptus cambageana	-				1.24	0.07	0.27	0.90	-				0.30	0.02	0.06	0.23
Eucalyptus chloroclada					-								0.67	0.10	0.11	0.46
Eucalyptus coolabah				-	16.31	0.67	1.17	14.47					4.09	0.18	0.24	3.66
Eucalyptus crebra	72.49	19.91	11.62	40.96	2.04	0.17	0.62	1.25	0.38	0.10	0.25	0.03	30.20	8.36	4.99	16.85
Eucalyptus exserta	8.93	2.35	2.00	4.58	-				-		-		3.66	0.98	0.83	1.85
Eucalyptus fibrosa	9.91	1.80	0.76	7.35								-	4.0	0.75		2.97
Eucalyptus melanophloia	0.55	0.07	0.17	0.30					156.15	43.09	21.58	91.47	26.71	6.28	3.89	16.54
Eucalyptus microneura	-	-	-	-	-				-	-	-	-	2.56	0.24	0.41	1.91
Eucalyptus moluccana	12.24	1.58	1.21	9.45	-	-	-	-		-	-		4.97	0.66		3.82
Eucalyptus orgadophila	4.40	0.35	1.79	2.25		-			-		-		1.80	0.15	0.74	0.91
Eucalyptus platyphylla	1.37	0.09	0.48	0.79	0.13	0.02	0.07	0.04				-	0.59	0.04		
Eucalyptus populnea	0.05	0.01	0.03	0.00	62.75	8.58	10.70	43.47	0.82	0.14	0.42	0.27	17.51	2.45		12.68
Eucalyptus quadricostata	4.77	1.13	0.66	2.98	-	-			-	-	-	-	1.95	0.47	0.27	1.20
Eucalyptus similis	-	-	-	-	-	-	-		-	-	-	-	2.41	0.59	0.50	1.32
Eucalyptus tereticornis	1.20	0.20	0.45	0.55	12.08	0.56	2.74	8.77	0.10	0.02	0.08	0.00	3.45	0.24	0.77	2.44
Eucalyptus whiteii	-	-	-		-	-	-		-	-	-	-	1.48	0.49	0.27	0.72
Eucalyptus xanthoclada	3.38	1.17	0.76	1.45	-	-	-	-	-	-	-	-	1.39	0.49	0.31	0.58
Ficus obliqua	0.05	0.01	0.03	0.00		-	-	-	-	-	-	-	0.02	0.00	0.01	0.00
Ficus opposita	0.05	0.01	0.03	0.00				-	-	-	-		0.0	0.00	0.01	0.00
Flindersia dissosperma	0.05	0.01	0.03	0.00	5.40	2.98	2.13	0.30			-		1.36	0.83		0.08
Flindersia maculosa	-	-	-		0.50	0.05	0.41	0.04			-		0.11	0.01	0.09	0.01
Gardenia ochreata	-				0.21	0.07	0.14	0.00	-	-	-		0.05	0.02	0.03	0.00
Gardenia vilhelmii													0.12	0.02	0.10	0.00
Geijera parviflora	0.19	0.05	0.14	0.00	0.39	0.04	0.34	0.01	0.83	0.24	0.50	0.09	0.49	0.13	0.29	0.08

Appendix 1 Table 7 (cont)
Relative density (rel. den.),
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting
species importance values (SIV) for species present in the study area by woodland type.
See text for explanation of terms.

	Crebra				Box				Melanophloia				All sites			
SPECIES	SIV	rel den	rel.	rel.	SIV			rel.	SIV			rel.	SIV			
Geijera parviflora	0. 19	0.05	0.14	0.00	0.39	0.04	0.34	0.01	0.83	0.24	0.50	0.09	0.4	0.13	0.29	. 08
Geijera salicifolia					17	0.04	0.14	0.00					0.04	0.01	0.03	0.00
Grevillea parrallela	53	0.13	0.38	0. 02	0.73	0. 18	0.55	0.00					0.38	0.10	0.27	0.01
Grevillea prieridifolia													0.10	0.01	0.07	0.02
Grevillea striata	0.72	0.17	0.48	0.07	3.21	1.87	1.30	0.04		-	-		1.10	0.58	0.47	0.04
Hakea fraserii	0.31	09	0.21	0.01	0.09	0.02	0.07	0.00					0.15	0.04	0.10	0.00
Hakea lorea	-		-	-	0.18	03	. 14	0.01		-			0.04	0.01	0.03	0.00
Hakea sp.						-							0.37	0.07	0.09	22
Jacksonia scoparia	0.12	0. 05	0.07	0.00									0.6	0.4	0.17	0.04
Lantana camara	0.32	0.08	0.24	0.00	0.53	0.32	0.21	0.00					0.2	0.1	0.1	0.00
Lantana montevidensis					22	0.02	0.21	0.00					0.0	0.0	0.0	0.00
Lophostomen confertus	, 9	0.46	0.24	0.69	-	-	-	-	-	-	-	-	0.5	0.1	0.10	0.28
Lophostomon suaveolens	9	. 19	0.45	. 45		-	-	-	-	-			0.4	0.0	0.19	0.18
Lysiphylum carronii	5	0.01	0.03	0.00	-	-							0.02	0.00	0.01	0.00
Lysiphylum givum	-	-	-	-									0.08	0.02	0.06	0.01
Lysiphylum hookeri					1.13	0.24	0.75	0.13	-	-	-		0.26	0.07	0.16	0.03
Macrozamia miquellii	0.05	0.01	0.03	0.00	0.09	0.02	0.07	0.00	-	-	-		0.04	0.01	0.03	0.00
Macrozamia moorei	1.51	0.18	0.41	0.91									0.61	0.0	0.17	0.3
Maytenus cunninghamii	4.31	1.78	2.45	0.08	4.40	1.72	2.67	0.01	5.85	3.44	2.33	0.07	4.7	2.2	2.39	0.05
Melaleuca bracteata					0.09	. 02	0.07	0.00					0.0	0.0	0.01	0.00
Melaleuca nervosa	0.77	0.30	0.45	0.02	8	0.04	. 14	0.00	1.60	0.8	0.75	0.00	0.8	0.3	0.51	0.01
Melalueca viridiflora	11.48	7.05	0.79	3.64					-	-	-	-	4.7	2.9	0.33	1.47
Melia azedarach	-	-	-	-	0.22	0.01	0.21	0.00	-	-		-	0.05	0.00	0.04	0.0
Melichrus species	-		-		-	-	-	-					0.17	0.05	0.10	0.02
Micromyrtus species	-	-	-	-					4.30	2.63	1.67	0.00	0.67	0.38	0.29	0.00
Myoporum acuminatum	-	-	-	-	4.76	2.82	1.92	0.02	0.35	0.10	0.25	0.00	1.24	0.79	0.44	0.01
Myoporum desertii					0.44	0.09	0.34	0.00	5.72	3.68	1.83	0.20	0.98	0.56	0.39	0.04
Opuntia stricta	0.05	0.01	0.03	0.00	1.04	0.14	0.89	0.00	0.72	0.14	0.58	0.00	0.41	0.08	0.33	0.00
Opuntia tomentosa	2.18	0.60	1.59	0.00	1.35	0.25	1.10	0.00	2.44		1.58	0.00				

Appendix 1 Table 7 (cont)
Relative density (rel. den.), relative frequency (rel. freq), relative dominance (rel. dom.) and resulting species importance values (SIV) for species present in the study area by woodland type.

[^0]: I declare that the main text of this thesis is an original work. Some material has been published in similar format in journal articles. I have not submitted any of the content of this thesis previously for an academic degree.

[^1]: Figure 12 (cont).
 Basal area distribution diagrams for sites. Stem size classes are indicated by the
 maximum value for each.
 Initial recording

[^2]:

[^3]: | | LON | TOPO | SOIL | DIVER | DENS | DEN10 | BA | HT | HT10 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | DIVER | 0.25^{*} | -0.22 | -0.10 | | | | | | |
 | DENS | 0.18 | 0.03 | -0.09 | $0.51^{* *}$ | | | | | |
 | DEN300 | $0.33^{* *}$ | -0.06 | 0.05 | $0.52^{* *}$ | $0.40^{* *}$ | | | | |
 | BA | $0.46^{* *}$ | -0.07 | 0.07 | 0.30^{*} | 0.22 | $0.66^{* *}$ | | | |
 | HT | $0.30^{* *}$ | 0.13 | 0.16 | -0.09 | $-0.34^{* *}$ | $0.37^{* *}$ | $.50^{* *}$ | | |
 | HT300 | $0.70^{* *}$ | 0.05 | 0.04 | 0.13 | 0.02 | 0.13 | $.52^{* *}$ | $.50^{* *}$ | |
 | SCD | -0.13 | -0.12 | 0.05 | 0.24^{*} | $0.30^{* *}$ | $0.40^{* *}$ | 0.05 | -0.04 | -0.26^{*} |

