## RESEARCH STATEMENT

## Original Creative Work

Citation: Noel Patson 2009, Recorded or Rendered Work, Web Exhibition, Number of Repeating Digits in Base b Expansion of Fractions Wolfram Mathematica.

## http://demonstrations.wolfram.com/NumberOfRepeatingDigitsInBaseBExpansionOfFr actions/

## Research Background

In base 10 the fraction $1 / 3$ has 1 repeating digit, 3 , while $1 / 7$ has 6 repeating digits: $\{1,4,2,8,5,7\}$. This demonstration shows the number of repeating digits in the base $b$ representation of a fraction with a specified numerator and with denominators from 1 up to a specified size for bases $b=2$ to a specified size.

## Research Contribution

- Innovation - This presentation is the first time the repeating digits of fractions have been represented in this way. It is a fresh revelation of complex fractal patterns arising from the application of simple rules on simple objects.


## Research Significance

The demonstration has been through a rigorous review process $\dagger$.
$\dagger$ http://demonstrations.wolfram.com/FAQ.html
It is expected that the fractal patterns that arise from this visualization will reveal underlying properties of numbers and provide answers to long standing mathematical problems.

A link to this demonstration can be found here:
http://mathworld.wolfram.com/DecimalExpansion.html

## Author: Noel Patson <br> Date: October 2009

ACQUIRE - Central Queensland University Institutional Repository http://acquire.cqu.edu.au

