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Abstract. This article presents a support vector machine (SVM) learn-
ing approach that adapts class information within the kernel computa-
tion. Experiments on fifteen publicly available datasets are conducted
and the impact of proposed approach for varied settings are observed. It
is noted that the new approach generally improves minority class predic-
tion, depicting it as a well-suited scheme for imbalanced data. However,
a SVM based customization is also developed that significantly improves
prediction performance in terms of different measures. Overall, the pro-
posed method holds promise with potential for future extensions.
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1 Introduction

Support Vector Machine (SVM) [1, 2] has positioned itself as a state-of-the-art
pattern classification technique in many contemporary research areas including
brain informatics (e.g. [3,4]). Given a set of inputs with known class labels (i.e.,
supervised learning), SVM maps the input space to a high-dimensional feature
space such that the training data become linearly separable. The outcome of
training SVM is a decision hyperplane that maximizes margin from the class
boundaries and, thereby, produces a classifier with high generalization capacity.
The explicit mapping from input space to feature space is unknown and is con-
trolled by a function, termed as kernel function, that computes the dot product
between the mapped input vectors in the feature space (and dot product is the
only processing step, in the unknown feature space, required for SVM training
and prediction). While several kernel functions have been proposed and employed
in literature, radial basis kernel are often used due to robust performance. These
kernel functions can also be viewed as measuring similarity between the feature
vectors [5]. The optimization process involved in the SVM training [6,7] also
considers the similarity between feature vectors in its underlying philosophy.
However, the similarity (i.e., kernel) is computed based on the input vectors’ at-
tributes only and class information of the corresponding vectors are not involved.
Viewing kernel value as a similarity measure, this article presents a kernel that
takes into consideration the class information of the corresponding vectors. The
aim is to conceptualize the impact of including class information during kernel
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computation on the classifier’s performance. The study reveals that the proposed
approach improves the performance of SVM in terms of different measures.

The rest of this article is organized as follows. In Section 2, we present a
brief survey on Support Vector Machine classification technique. Section 3 then
details our proposed learning approach. A set of experiments, outlining the dif-
ferent characteristics of the proposed approach, and corresponding discussions on
outcomes are then highlighted in Section 4. Lastly Section 5 provides a summary
of the findings and indicates future potential research.

2 Support Vector Machine

Support Vector Machine is a robust classifier that derives the maximal margin
decision hyperplane during training and use it to discriminate test data to one of
the two classes (i.e., SVM is a binary classifier working with two class labels only)
during prediction [8]. Let the training dataset comprises of tuple (x;,y;) fori=
1...N where, N is the total number of data, x; the i-th attribute vector and
y; (where y;e{—1,1}) the corresponding class label. Then SVM training can be
expressed as the following optimization problem (dual form):

. 1
mingJp(a) = §ZaiajyiyjK(xi.xj) — Zai (1)

subject o,y a;y; = 0; 0 < a; < C for Vay;

The function K : RzR — R is known as the kernel function, that computes
the dot product between the data vectors in high dimensional feature space.
Several kernel functions have been proposed in literature. Two of these most
commonly used kernels are:

— Linear: (x1.x2)
— RBF: (e~7Ixi—x2l” for 4 > 0).

The parameter C' in the optimization problem (Eq. 1) is a user-defined penalty
assignment on training errors. Together, the parameters to kernel (ex., v for
RBF) and C are referred to as the hyper-parameters. SVM training, basically,
computes a weight («;) associated to each of the data points. In the final so-
lution, data points with a; > 0 are the only important points for classification
and are termed as support vectors. SVM training also computes an intercept
b for the decision hyperplane. The prediction on a test data x is given by:
sign (317 afy; K (x;.x) +b), where nsv is the number of support vectors (i.e.,
data points with non-zero «).

3 Class Informed Kernel

Noting that dot product relates to cosine similarity, the kernel values (that de-
notes dot product between vectors in feature space), can be viewed as indicating
similarity between the data vectors. But, the calculation of this similarity is
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based on the attribute vectors only and does not take into account the respec-
tive class labels. Although literature exists that have attempted different kernel
modifications to improve prediction performance (e.g. [9]), a kernel that adapts
class information in the computation and also addresses the issue that arises
during prediction from the use of such kernels (explained in a subsequent para-
graph), to the best of our knowledge, is still lacking. Viewing the kernel values
as similarity measures, a class informed kernel is as proposed below:

K((Xl, yl) 5 (X27y2)) = e_"/(|\x1—x2”2 + (yl_y2)2 fOT ~ > 0; (2)

Here, x1,x2 are the input vectors’ attributes and yi,y2e{—1, +1} are the
respective class labels.

The kernel expression in Eq. 2 is similar to the expression of RBF kernel. The
difference is the additional term (y; —y2)?. Assuming that class labels are either
+1 or —1, the value of this additional term results in 0 when both x1, x5 belong
to the same class and 4 when x1,x2 belong to the different class. Thus based
on the class labels of the vectors for which kernel is computed, an additional
weight is added to the expression of RBF. Further, it is to be noted that, the
term || x; — x5 ||? denotes the distance between the two vectors in input space.
For same class input vectors and the proposed kernel K, this distance remains
the same as that for RBF kernel. However, for different class input vectors, the
addition of the positive weight in effect increases the distance between the vectors
(i.e., artificially increases pairwise margin and thus reduces overlap between the
different class data).

An issue with use of this class informed kernel lies in the application of it
during prediction. While class labels of the support vectors, derived from training
SVM, are known, that of the prediction vectors are unknown. To address this
issue, we employ a learning framework outlined in Fig. 1. During training, a
SVM model is learnt using the proposed class informed kernel. In addition, a
second classifier is trained on the training data. This second classifier (termed as
support classifier) is used to provide an estimate of class label during test phase.
The estimated class label coupled with the prediction input vector is then given
as input to the trained SVM model and the outcome from the model is the final
prediction.

4 Experiment Setups and Results

4.1 Datasets and Software

We perform experiments on five publicly available datasets [10]: diabetes, glass,
iris, liver and vehicle. For running SVM, we employ the LibSVM classification
technique as implemented in R (through the package kernlab) [11]. Other than
the diabetes and liver datasets, the rest of the datasets have originated from
multi-class domain. Since SVM is primarily a binary classification technique,
we convert the multi-class datasets to binary by considering one of the class as
positive class and the rest as negative class. Doing this conversion for each of the
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Fig. 1. Framework for learning with class-informed kernel

multiclass data results in total the 15 datasets outlined in Table 1. Table 1 also
indicates the total number of data, number of positive and negative class samples
and the percentage of the class representation in the datasets. It is noteworthy
that some of the datasets are imbalanced (i.e., skewed) in terms of representation
of the classes. Imbalanced dataset often arises in many practical applications and
it is well known that many classifiers make more prediction errors on minority
class samples than that belonging to majority class [12]. Accuracy (ratio of the
total number of correctly classified data and the total number of data) is not
an appropriate performance measure when datasets is imbalanced. Sensitivity
(accuracy for the positive class data) and gmean (geometric mean of the accuracy
for positive class data and the accuracy of negative class data) are often employed
as performance metric for imbalanced datasets [13,14]. In our experiments, we
focus on all three of these prediction performance measures.

Table 1. Datasets used in the experiments.

[Datasets[Total Data[# Positive[# Negative[% (+)[% ()]

diabetes 768 268 500 34.90 [65.10
glass_1 214 70 144 32.71 [67.29
glass_2 214 76 138 35.51 [64.49
glass_3 214 17 197 7.94 [92.06
glass_5 214 13 201 6.07 |93.93
glass_6 214 9 205 4.21 [95.79
glass_7 214 29 185 13.55 | 86.45

iris_1 150 50 100 33.33 [66.67

iris_2 150 50 100 33.33 [66.67

iris_3 150 50 100 33.33 [66.67

liver 345 145 200 42.03 [ 57.97
vehicle_1 846 212 634 25.06 [74.94
vehicle_2 846 217 629 25.65 |74.35
vehicle_3 846 218 628 25.77 |74.23
vehicle_4 846 199 647 23.52 [76.48
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Fig. 2. Performance measures for RBF kernel and CIK (Class informed kernel).

4.2 Experiment with Class Informed Kernel

For our experiments, we randomly split each of the datasets into a train and a
test data file. 90% of the total data is used for training and the rest for prediction.
Stratified sampling is used to preserve the ratio of positive and negative class
data in the train and test files. We analyse the impact of class informed kernel
by comparing its performance against a SVM trained on the dataset using RBF
kernel. Focus is made on RBF kernel due to its wide popularity and well known
robust performance, and also due to the similarity of class informed kernel to the
RBF kernel. For RBF kernel, a 10-fold cross validation technique is employed to
determine the best parameters (v and C) for SVM training on the training data
file, and the trained model is employed to note prediction performance on test
data file. For class informed kernel (CIK), v and C are set to the best parameter
values identified for the RBF kernel. For this initial experiment, we use Naive
Bayes classifier (due to its simplicity and high training speed) as the support
classifier. Fig. 2 denotes comparison of RBF and CIK. We note that while the
CIK (with Naive Bayes as support classifier) based learning does not perform
well against the RBF learning in terms of accuracy, in terms of sensitivity the
CIK emerges as a clear winner (performs better than or comparable to RBF
for 12 datasets out of 15). In terms of gmean, however, there is no clear winner
(CIK performs better than or comparable to RBF for 8 datasets out of 15).
Thus, we observe that CIK has a positive impact on prediction performance,
especially when the dataset is imbalanced (i.e., CIK results in higher prediction
of minority class).

4.3 Varied Support Classifier

In the previous experiment, we have used Naive Bayes as the support classifier.
In this section, we present the impact of other different support classifier on pre-
diction outcomes. In particular, we experiment with recursive partitioning and
regression trees [15] and a single-hidden-layer neural network. For each of these
different support classifiers, prediction performance of CIK is compared against
that for RBF. Fig. 3 illustrates the results. We note that the performance for CIK
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noticeably varies depending on the support classifier. For recursive partitioning
and regression trees (RT), CIK consistently performs better or comparable to
RBF for all the datasets in terms of sensitivity. In terms of accuracy and gmean,
however, CIK (with RT as support classifier) performs worse than RBF. For
single-hidden-layer neural network (NN), CIK performs better than or compara-
ble to RBF for 10 of the 15 datasets in terms of sensitivity. In terms of accuracy,
CIK with NN as support performs better than CIK with Naive Bayes as support.
However, compared to RBF, CIK with NN performs slightly worse than RBF in
terms of accuracy and gmean (CIK with NN is comparable or better than RBF
in terms of both accuracy and gmean for 6 of the 15 datasets). Overall, CIK
with NN performs better than CIK with other support classifiers focused on so
far. In the next subsection, we present CIK with another support classifier that
significantly depicts performance improvement over RBF.
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Fig. 3. Performance measures for RBF kernel and CIK (Class informed kernel) with (a)
recursive regression and partition tree (RT) and (b) single-hidden-layer neural network
(NN) as support classifier.

4.4 SVM as Support Classifier

In the previous sub-sections we have experimented with different support classi-
fiers and noted varied effects on prediction performance. More specifically, CIK
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Fig. 4. Performance measures for RBF kernel and CIK (Class informed kernel) with
SVM as support classifier.

has generally performed better than RBF in terms of sensitivity, but depicted
variations in terms of the other two measures. In this section, we present results
for RBF kernel based SVM being used as the support classifier. Thus, for a
given train data file, SVM is first trained on the input using the class informed
kernel formulation of Eq. 2, and another SVM is trained using RBF kernel. The
hyper-parameters are kept at the same values for both of these trainings. Dur-
ing prediction, the RBF based model first predicts the class and the predicted
labels along with respective attribute vectors are fed to the CIK based model
for prediction. The outcome from CIK is the final prediction. Fig. 4 presents
the performance of CIK with SVM as support against that for RBF. We note
a significant performance improvement in terms of all the measures. In terms
of sensitivity, CIK (with SVM support) performs better or comparable to RBF
for 14 of the 15 datasets. In terms of both accuracy and gmean, CIK performs
better or comparable to RBF for 12 of the 15 datasets. Thus, not only CIK with
SVM improves prediction of minority class (i.e., sensitivity), but also achieves
notable prediction improvement for both the classes (as evidenced by improved
value of gmean and accuracy). From statistical perspective, we note that the
difference in performance for all the three measures are significant using two-
tailed sign test [16] with p < 0.05. To get further insight on the behaviour of the
classifier, we have also recorded the performance of RBF and CIK (with RBF
based SVM as support classifier) on the training data in terms of area under
ROC (AUC). We note that the CIK performs comparable or better than RBF
for 14 of the 15 datasets (with iris-3 being only exception, having slight drop
in AUC). We have also noted the ratio of training data incorrectly classified by
both RBF and CIK (II), incorrectly classified by RBF but correctly classified
by CIK (IC), correctly classified by RBF but incorrectly classified by CIK (CT)
and correctly classified by both RBF and CIK (CC'). We observe that for major-
ity of the datasets, IC is greater than CI. These findings imply that CIK gains
better separability between the class representatives than RBF and which, in
turn, provides an explanation of its better prediction performance on the test
set in terms of the different measures.
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5 Conclusion

This article has presented a new learning approach along with a kernel formula-
tion for SVM incorporating class information. An integral part of this approach
is the training of a second (support) classifier and results have been presented for
varied support classification schemes. Overall, the proposed kernel based learn-
ing (CIK) improves prediction performance in terms of sensitivity and thereby is
well suited for imbalanced data classification. Experiments are also conducted us-
ing SVM as support classifier and statistically significant prediction performance
improvement is noted. The proposed kernel is based on RBF kernel formulation.
Future research possibilities lie in the extension of the formulation in terms of
other kernels and varied added weights.
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