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 

Abstract— This paper presents a novel approach for creating 

and training of an ensemble classifier. The approach is based 

on creating atomic and non-atomic clusters at different levels, 

training of weak classifiers on overlapping clusters and fusion 

of their decisions. The subsets of data are obtained by 

clustering of original training data sets into multiple partitions. 

As each partition represents highly correlated patterns from 

different classes, the proposed approach trains weak classifiers 

on difficult–to–classify patterns and combines the decision at 

various levels. The approach is tested on six benchmark 

datasets from UCI machine learning repository. The results 

show that the proposed approach achieves better classification 

accuracy than the existing approaches. 

I. INTRODUCTION 

N ensemble classifier refers to a group of weak or base 

classifiers that separately learn the class boundaries 

from a data set and their decisions on a test pattern are 

combined to predict the class.  Ensemble classifier is also 

known as multiple classifier systems, mixture of experts and 

committee of classifiers. The goal of ensemble classifier is 

to perform better than its weak counterparts. The 

achievement of this objective depends on ensemble classifier 

creation and efficient fusion of the weak classifier decisions. 

The ensemble creation step is constrained by diversity [1] 

that forces the weak classifier errors to be uncorrelated. The 

fusion step is guided by rules to combine the decisions of the 

weak classifiers. 

A number of research efforts are observed towards 

creation of ensemble classifiers in order to achieve diversity. 

Bootstrap aggregating or bagging [2] is one of the earliest 

ensemble classifier creation methods. The weak classifiers in 

bagging are trained on different subsets of the training data. 

The subsets are randomly drawn (with replacement) from 

the training set and their errors are uncorrelated. The weak 

classifiers are homogeneous in nature. There are a number of 

variants of bagging including random forests [3], pasting 

small votes [4], adaptive generation and aggregation 

approach [5], and fuzzy bagging [6]. 

Another commonly used ensemble creation method is 

called boosting [7]. Boosting creates an ensemble of 

classifiers by re-sampling the training data, however, by 

providing most informative training data for each 

consecutive classifier [7][8]. AdaBoost [9] is a more 

 
Ashfaqur Rahman is with the CQUniversity, Australia (phone: 

+61749306508; e-mail: a.rahman@cqu.edu.au).  

Brijesh Verma is with the CQUniversity, Australia (phone: 

+61749309058; e-mail: b.verma@cqu.edu.au). 
 

generalized version of boosting. It trains a classifier on 

instances that previous classifiers fail to classify. A number 

of variants of boosting can be observed in the literature 

including weighted instance selection [10], boosting 

recombined weak classifiers [11], Learn++ [12] and its 

variant Learn++.NC [13]. 

The other important aspect of ensemble classifiers is the 

decision fusion methods.  Decisions provided by the weak 

classifiers are combined by the fusion methods to provide a 

final verdict. Majority voting is the most commonly used 

fusion method [1][14] where the ensemble choose the class 

that receives the highest number of votes. The aim of this 

paper is to present an ensemble classifier creation approach 

and we thus refrain from elaborating the fusion methods. 

A careful scrutiny of the ensemble classifier creation 

approaches reveals that the weak classifiers are trained on 

subsets of the training data and the subset selection 

algorithm varies among the approaches. In this paper we 

present a novel approach to create the training subsets by 

using clustering. Given the clustering parameters the 

clustering algorithm partitions the data set into a set of non–

overlapping segments. Each partition contains highly 

correlated data points from multiple classes that are difficult-

–to–classify. We propose to learn the decision boundaries in 

each cluster using a neural network. 

The final outcome of some clustering algorithms (e.g. k–

means) however depends on the initialization of the 

clustering parameters. In this regard we bring in the concept 

of level. Clustering at n levels implies that the data set is 

partitioned n times using n different sets of clustering 

parameters (e.g. cluster centres in k–means clustering). As 

the data is partitioned, identical data points belong to 

different clusters at different levels and are involved in the 

learning process of the different weak classifiers. The weak 

classifiers are thus trained on subsets of training data 

containing difficult–to–classify overlapping patterns and 

their errors are uncorrelated. 

The aim of the research presented in this paper is to (i) 

develop an ensemble classifier based on the overlapping 

clustering philosophy mentioned above; (ii) explore the 

influence of level wise clustering on the ensemble classifier 

learning and prediction; and (iii) obtain a comparative 

performance analysis of the proposed and commonly used 

ensemble classifier creation methods. 
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II. THE PROPOSED ENSEMBLE CLASSIFIER 

A. Overlapping Clusters and Ensemble Classifier 

The proposed ensemble classifier creation approach is based 

on the notion of clustering. The objective is to partition the 

data set into multiple clusters and deploy a set of weak 

classifiers to learn the decision boundaries within each 

cluster. The clustering process partitions a data set into 

segments of highly correlated data points. The correlated 

data points are very close geometrically and are difficult to 

classify especially when patterns from multiple classes 

overlap. When clustering is used to partition labelled data 

sets (i.e. data where each pattern is associated with a class) 

the resultant segments can be of two types – atomic and 

non–atomic. An atomic cluster contains patterns that belong 

to the same class whereas a non–atomic cluster is composed 

of patterns from multiple classes. Fig 1 demonstrates an 

example of a data set partitioned into three clusters. Out of 

the three clusters at level one      is an atomic cluster 

whereas      and      are non–atomic clusters. 

Once the clustering is finished the weak classifiers can be 

trained on non–atomic clusters whereas the class label can 

be memorized for the atomic clusters for later classification. 

The class of a test example can be predicted by first finding 

the appropriate cluster based on its distance from the cluster 

centres and then using the corresponding classifier (for a 

non–atomic cluster) or the class label (for an atomic cluster). 

As a pattern can belong to one cluster the decision on a test 

example is based on the prediction of only one classifier. 

Although clustering identifies difficult–to–classify patterns 

the decision based on only one classifier prediction leaves 

space for improvement. 

The final content of the segments in clustering algorithms 

depends on the initial clustering parameter settings. For 

example, in k–means clustering algorithm the final clusters 

depend on the initialization of the seeds (i.e. the initial state 

of the cluster centres). We aim to incorporate this 

phenomenon to improve the abovementioned decision 

making process in the proposed ensemble classifier. The 

idea is to train multiple weak classifiers on similar patterns. 

At this point let’s introduce the concept of levels. A level 

indicates the partitioning of the data set based on one set of 

seed parameters. For example, level one clustering of the 

data set into three clusters is presented in Fig 1 based on the 

initial values of the clustering parameters   . The clusters 

are indexed by the level number followed by the cluster 

number. For example, the second cluster at level one is 

represented by     . An alternate clustering of the same data 

set at level two into three segments is also parented in Fig 1 

based on another set of initial clustering parameters   . Note 

that clusters at different level overlap and identical patterns 

belong to different clusters at different levels. 

Classifiers are now trained independently on the non–

atomic clusters at different levels. As the clusters at different 

levels overlap, the same patterns are included in the training 

process of multiple classifiers. Moreover different training 

subsets are used in the training of these weak classifiers and 

thus diversity is achieved. A test pattern also belongs to 

different clusters at different levels and thus gets decisions 

from different weak classifiers that can be fused to obtain 

the final verdict on its class. We use this idea for creating the 

ensemble of classifiers and fusing their decisions. The 

novelty of the proposed approach lies in the introduction of 

level–wise clustering to partition data set into alternative 

clusters for weak classifier learning to achieve diversity. 

B. Theoretical Modelling 

Let the training patterns in the data set are represented by 

     ⃗        ⃗          ⃗| |  | |   where each pattern is 

described by a vector of n continuous valued features 

 ⃗                  and a class label    with    

                            
 .  A level is denoted by   and 

the K clusters at level   are denoted by                  

where            . 

A pattern in the training set can be considered as a point 

in the Euclidian space of dimension n. The objective of the 

clustering algorithm is to group data points that are 

geometrically close. Given two patterns   ⃗      and    ⃗      

in the training set a distance function d between them is 

defined in terms of their Euclidian distance as – 
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Fig 1: Clustering of data set containing patterns from two classes at 

different levels. At level one the data set is partitioned into three clusters 

with C1,2 being an atomic cluster. At level two the data set is partitioned 

into three different clusters with C2,3 being the atomic cluster. When 

overlapped it can be seen that identical data patterns belong to different 

clusters at different levels. 
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where  ⃗                  and   ⃗                 . 

Assuming a set of K clusters                    at level  , 

the associated cluster centres      ⃗⃗     ⃗⃗       ⃗⃗     are 

initialized randomly and the clustering algorithm aims to 

minimize an objective function 
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for all the data points in the training set  . 

At the end of the clustering process at level   each pattern 

  ⃗      belongs to a cluster      where      . At this 

point the clusters are separated into atomic and non–atomic 

clusters. A class label is memorized for an atomic cluster 

    . A neural network      is set up at this stage for each 

non–atomic cluster      to learn the decision boundaries on 

its patterns. Given a training pattern   ⃗      that belongs to a 

non–atomic cluster     ,  ⃗  acts as an input to the neural 

network whereas    acts as the target. Considering one 

hidden layer with    units there are a total of      links 

between the input layer and the hidden layer where n is the 

number of features. The weights of the links are represented 

by a weight matrix     . Similarly there are a total of 

          links between the hidden layer and the output 

layer and the corresponding weight matrix is represented by 

    . The weight matrices are initialized randomly and 

updated using back–propagation method for finding an 

appropriate mapping between the data points and the 

corresponding class as supervised by all the patterns that 

belong to     . 

A test pattern  ⃗ is classified by first finding the 

appropriate cluster at each level. For this the distance 

between  ⃗ and the centre of each cluster  ⃗⃗    is computed 

using (1) and the appropriate cluster at level   is selected as – 
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If  ̂    is an atomic cluster the memorized class label    is 

predicted at level  . If  ̂    is a non–atomic cluster the 

corresponding neural network      trained on  ̂    is used to 

predict the class label    at level  . Upon receiving the 

predictions      from all the         levels, the decisions are 

fused into a final verdict using the majority voting fusion 

rule. 

C. Learning and Prediction 

Based on the above philosophy the learning and prediction 

phase of the proposed approach are presented in Fig 2 and 

Fig 3 respectively. The training data set is clustered at L 

separate levels. At each level the data is segmented into K 

clusters based on clustering parameters (e.g. initial state of 

the cluster centres). A cluster analyser then identifies atomic 

and non–atomic clusters. The class label is recorded for 

atomic clusters. A neural network is trained on the patterns 

of a non–atomic cluster. 

 

During prediction (Fig 3) the appropriate cluster for the 

test pattern is identified at each level. If the selected cluster 

is atomic the pre–recorded class is predicted as   . If the 

cluster is non–atomic the corresponding neural network 

predicts the class   . Once the prediction is received from all 

the L levels the final verdict is obtained from      using the 

majority voting rule implemented using statistical mode 

function. 

III. EXPERIMENTAL SETUP 

We have conducted a number of experiments on benchmark 

data sets to verify the strength of the proposed ensemble 

classifier. We have compiled the datasets as used in 

contemporary research works [11][14] from the UCI 

Machine Learning Repository [15]. A summary of the data 

sets is presented in Table I. We used 10–fold cross 

 

 
 

Fig 2: Learning in the proposed ensemble classifier. 

 



 

 

 

validation approach for all the data sets for reporting the 

results. For clustering we used the k–means clustering 

algorithm.  
 

A neural network with a single hidden layer was used in 

the experiments. Training of the weights was achieved using 

a backpropagation learning algorithm. The following 

parameter settings were used during the training process for 

all data sets: (a) No. of hidden units =5, (b) Learning rate = 

0.01, (c) Momentum = 0.4, (d) Epochs i.e. No. of iterations 

= 25 and (e) RMS goal = 0.00001. Note that the main 

objective of the experiment was to find the influence of 

overlapping clustering on ensemble classifier learning and 

we thus restrict ourselves to parameter settings that perform 

best on all the data sets found by trial–and–error basis. 

As we are using majority voting rule, odd number of 

levels were used. Experiments were conducted with 1, 3, 5, 

7, and 9 levels. At each level, data was partitioned into ten 

clusters. To reduce the variability of the classification 

accuracies, all the experiments were conducted ten times on 

each data set and their average performance is reported in 

this paper. All the experiments were conducted on 

MATLAB 7.5.0. 
 

IV. RESULTS AND DISCUSSION 

In this section we present some experimental results to 

demonstrate the effectiveness and superiority of the 

proposed approach. The concept of overlapping clustering is 

based on the changes in cluster content at different 

initialization of clustering parameters and we present some 

results to demonstrate the changes w.r.t. changes in 

initialization of cluster centres using k–means clustering. We 

also demonstrate some results to show how the change in 

number of layers influence the classification accuracy of the 

proposed ensemble classifier. The classification results on 

benchmark data sets obtained with the proposed ensemble 

classifier are compared against single as well as classical 

ensemble classifiers like bagging and boosting at the end of 

this section. Neural network was used as the weak classifier 

with bagging and boosting and the experiments were 

conducted using WEKA [16].  

A. Impact of Levels on Ensemble Classifier Learning 

Fig 4 represents the class–cluster co–occurrence matrices 

obtained at different levels for some data sets namely Breast 

Cancer, Ionosphere, and Sonar. Note that the content of the 

clusters changes in all cases as the clustering parameters are 

initialized randomly at different levels. Identical patterns 

belonging to different clusters indicate dissimilar learning of 

the weak classifiers making their errors uncorrelated thus 

achieving diversity. 

Fig 5 represents the best classification accuracies achieved 

as the data sets are partitioned into 1, 3, 5, 7 and 9 levels. All 

the graphs in Fig 5 provide a positive change of 

classification accuracy at higher number of cluster levels. At 

higher number of levels, more experts (i.e. Neural Networks) 

are trained on identical but disjoint patterns and thus achieve 

diversity leading to higher classification accuracy. Table II 

represents the standard deviation of the classification 

accuracy w.r.t the change of number of levels for the data 

sets in Table I. The variation is highest for the Vowel data 

set. Data sets like Sonar and Ionosphere also enjoy relatively 

higher variation than the other data sets. This implies that 

these data sets have adequate overlapping patterns and (i) it 

becomes easier to learn the decision boundaries with 

clustering and (ii) as identical and overlapping patterns are 

learned by multiple classifiers at different levels the final 

verdict becomes accurate. Relatively smaller although 

positive impact is observed for some data sets like Breast 

 

 
 

Fig 3: Prediction in the proposed ensemble classifier. 

 

 
Table I: Data sets used in the experiments. 

Dataset Instances Attributes Classes Test process 

Breast Cancer  699 9 2 10–fold cv 

Ionosphere 351 33 2 10–fold cv  

Vowel 528 13 11 10–fold cv 
Sonar 208 60 2 10–fold cv 

Waveform 5000 21 3 10–fold cv 

Wine 178 13 3 10–fold cv 



 

 

 

Cancer and Waveform. 

Table III depicts the number of clusters and number of 

levels at which the best classification accuracies as presented 

in Fig 5 are achieved on the test cases. In general for all the 

data sets higher number of levels (minimum is 7 in Table III) 

imply better classification accuracy. This can be attributed to 

the fact that the inclusion of more cluster levels implies the 

learning of identical but disjoint patterns by multiple 

classifiers. This phenomenon is called diversity in ensemble 

classifiers and leads to better classification accuracy. Data 

sets like Ionosphere and Waveform where the patterns are 

already well separated the best classification accuracies are 

achieved at no clustering. Breast Cancer, Sonar and Vowel 

For data sets enjoy the best accuracies at relatively large 

number of clusters. 
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Fig 4: Clustering of data sets at different levels with the proposed ensemble classifier as the patterns change clusters at different levels. 
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Fig 5: Best classification accuracies achieved as the data sets are clustered at different levels and their decisions fused using majority voting. 



 

 

 

Table II: Standard deviation of classification accuracy for different data 

sets with respect to the number of levels. 

Data Set std (Accuracy) 

Breast Cancer 0.30 

Ionosphere 1.37 

Vowel 4.75 
Sonar 2.71 

Waveform 0.31 

Wine 0.83 

 
Table III: Number of levels and number of clusters at which the 

classification accuracies presented in Fig 5 are achieved. 

Data Set Level Cluster 

Breast Cancer 7 8 

Ionosphere 7 1 
Vowel 9 10 

Sonar 9 9 

Waveform 9 1 
Wine 7 2 

B. Comparative Analysis 

In order to position the proposed ensemble classifier we 

have compared the performance against single as well as 

ensemble classifiers on the data sets in Table I. Neural 

network was used as a single classifier to learn the data sets 

and the performance is compared against the proposed 

ensemble classifier in Table IV. The ensemble classifier 

significantly outperforms the single classifier and the 

average improvement is 10.84%. As the decisions from a set 

of diverse and accurate base classifiers are fused to the final 

class verdict in the proposed approach, the ensemble 

classifier performs better than the single classifier. 

Table V provides a comparison of classification accuracy 

between the proposed approach and two commonly used 

ensemble classifier creation methods namely bagging and 

boosting. In all six cases the proposed approach performs 

better than the other ensemble classifier creation methods. 

Overall the proposed approach performs 2.83% better than 

bagging and 2.55% better than boosting. Detection of 

overlapping and thus difficult–to–classify patterns by 

clustering and then training of the weak classifiers on 

identical but disjoint training patterns makes the proposed 

ensemble classifier approach more diverse than the other 

approaches leading to better classification accuracy. 

V. CONCLUSION 

In this paper, we have presented and analysed a novel 

approach towards creating and training of an ensemble 

classifier. The proposed approach trains weak classifiers on 

different partitions of the data set obtained by explicit 

clustering. In order to obtain multiple decisions on a pattern, 

overlapping clusters are created at different levels using 

different clustering parameters and weak classifiers are 

trained on them. The decisions obtained on a test pattern at 

different levels are fused using majority voting. The 

proposed approach has been tested on six well known 

benchmark data sets. The results show that the use of 

overlapping clusters at different levels contribute to gain 

accurate decisions from complementary weak classifiers and 

classification accuracy increases at higher number of levels. 

The proposed approach has been compared with existing 

approaches and it has outperformed the commonly used 

ensemble classifier approaches. This is due to the fact that 

patterns belong to different clusters at different levels in the 

proposed approach and thus the weak classifiers are trained 

on complementary and difficult–to–classify subsets of the 

data leading to achievement of better diversity compared to 

other approaches. In future we aim to investigate the 

influence of data imbalance at non–atomic clusters on 

classification accuracy of the ensemble classifier. 
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