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PREFACE

This book is not intended to replace standard texts on the subjects
of Matrix Algebra and Matrix Methods of Structural Analysis but rather to
supplement them. The book has been prepared in an endeavour to present
clearly and concisely the basic concept of the Stiffness Method without
cloaking it within a haze of mathematical mystique. Further, it is hoped
that by using simple examples and generalisations the full power of the
method is realised. The chapter dealing with matrix algebra has been

included under one cover primarily for the convenience of the student.

In a quest for simplicity of presentation much of the elegance of
the matrix formulation is lost by not using a rigorous matrix approach.
However, it is felt in the first instance it is the concepts that are
important, and in order to present these clearly some loss of rigor is
warranted. Having digested the fundamentals the task of further reading

and wider appreciation can then be pursued at leisure,

In this age of the computer revolution it is essential that engineers
avail themselves of this "number crunching" phenomena. In terms of
Structural Engineering this means that the Designer has been liberated and
can now devote his full attention to the basic problem of selection of
structural form and no longer be constrained to a "plane frame mentality"
attitude which was, unfortunately, the product of having to fumble with

tiresome hand solutions.

Finally,it could be said that the Structure Stiffness Matrix is the
heart and soul of any structural system and if any so called "feel" is to
be developed for structural response it must be attained through the
familiarity the Engineer has for the Structure Stiffness Matrix and not his
knowledge of individual member response. This matrix is so fundamental to
the structure it is envisaged that in the future certain parameters will be
fed into a computer program and the optimum Structure Stiffness Matrix will

be generated together with a visual display of the associated structural form.



CHAPTER 1.

MATRIX ALGEBRA,

1.1 INTRODUCTION

Matrix algebra has a number of decided advantages over other
methods of formulation particularly when applied to problems in Engineering,
Physics and the Social Sciences. Its beauty of exposition when portraying
the physical problem is certainly one such advantage. This is born out in
the clearness and brevity of presentation. Matrix formulation, once fully

- grasped, also allows a conceptual understanding of important principles to
a depth not attainable using supposedly simpler but less spatially

descriptive techniques.

1.2 DEFINITION AND EXAMPLES OF MATRICES

Different people, all of whom.are aware of what a matrix is in the
mathematical context of the word, could well conceive different pictures in
their mind of the physical representation of such a matrix. Although the
mind picture would be basically the same for each person, the model the
matrix represented in each case could be entirely different. The part of
the visualisation that would be the same for each person would be that
immediately the word matrix was mentioned each would visualise in general
"a rectangular array of numbers." The difference in thought patterns
would arise in the association of the array with a physical model. For
instance, to some people the matrix may represent a table of results whilst
some may see it simply as a rectamgular array of numbers. Since a matrix

is such a general quantity it is best to think of it in the last way.

1.3 DEFINITION

A matrix can be defined as an array of terms such as those shown

in Equation 1.1

1 %2 %13 - - %1
8.21 8.22 . . . azn

A = m |ag; . . . . . L———-(1.1)
341 . . . . .

13
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Each of-a11 through a. is termed an ELEMENT of the matrix A. An element
can represent a pure number, a constant, a variable or a combination of all
three., The matrix A of Equation 1.1 contains m rows and n columns. The

ORDER OF A MATRIX is defined by the number of rows times the number of

columns it contains. In this case A is an m x n matrix.

The double subscript associated with each element of a matrix
defines the position of the element in the array. For example the element

aij is situated in the i th row and j th columm of A, The first subscript

always defines the row and the second the column with which the element is

associated.

The part of A containing elements of the type a (where i = j)

11
is called the diagonal of A and asy is called a diagonal element.

1.4 EXAMPLES OF MATRICES

A specific case of A could be given by Equation 1.2,

—

a b - 6.8
A
A = 224 5 0 bo—-—1.2)
0 800 2 0.754

A in this case is of order (3x4) and the particular element
aij = a8y, = 0. If A reduces to a matrix consisting of one row and one
colum only i.e. to ajj a SCALAR results.

If on the other hand A reduces to a single row or a single column

a VECTOR results.

2
4
A = 6 = a column vector of order (5x1)
8
10
A = 2 468 lé] = a row vector of order (1x5)

Current practice is to disregard the row vector and refer to a

vector simply as a column vector.

Ré-examination of the row and column vector A shows that the colum
vector is the row vector turned through 90° or vice versa. In the jargon
of matrix algebra one is said to be thé TRANSPONSE (written AT) of the other.
Extending the above idea to the matrix of Equation 1.1 simply means that

rows and columns are interchanged and that the transpose of A is given by




A = . . . 3 . .
. . . . aij L]
alm azn . . . amn

1.5 TYPES OF MATRICES

There are a number of matrices which appear consistently when
applying matrix algebra to problems. The more important of these will now
be briefly discussed.

NULL MATRIX.

All the elements of this matrix are zero.
— —
0 0 0 071
B = 0 0 0 0

0 0 0 0

2

0

SQUARE MATRIX.

When the number of rows, m, is equal to the number of columns, n,

of a matrix it is said to be square and of order n.

1 2 3
C = 4 5 6
7 8 9

It should be noted that only square matrices have determinants.

SYMMETRIC MATRIX.

When a square matrix exists such that aij = aji then it is said

to be symmetric.




SKEW-SYMMETRIC MATRIX.

= a and a,, = Q0 is a skew or

A matrix A in which a 11 1i

ij

antisymmetric matrix,

TRIANGULAR MATRIZX.

A square matrix for which all the elements above or below the

leading diagonal zero is said to be either a lower or an upper triangular

matrix respectively.

1 0 0 1 3 4
A = 0 3 0 c = 0 6 5
2 0 4 0 0 0

Lower Triangular Upper Triangular

DIAGONAL MATRIX.

This is a square matrix in which all the off diagonal elements

are zero.
1 o o
D = 0 4 0
0 0 6
L —

SCALAR MATRIX.

This is a diagonal matrix for which all of the diagonal elements

are the same.

o 0 0
A = 0 o 0
0 0 o

UNIT MATRIX.

A scalar matrix in which all of the diagonal elements are unity is

called a unit or identity matrix.

r1 0 0 0

I = o 1 o0 0
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1.6 MATRIX OPERATIONS

In this section the basic mathematical operations which can be
performed in matrix algebra will be briefly discussed. It will be seen
that the same operations used in scalar algebra still apply. However their

application to matrices is completely general.

‘EQUALITY OF MATRICES

The concept of equality is the most fundamental relationship of

any algebra and it is also probably the most difficult to define.

Two matrices are said to be equal IFF they are of the same order

and if every element of one equals the corresponding element of the other.

a b c d 1 5 X -10
A = = (1'3)

=

Equation 1.3 states that a=1, b=5, ¢ = x3 etc.
The equality of matrices of different order is not defined.

The basic blasphemy of matrix algebra is to equate two matrices
of different order.

1.7 ADDITION AND SUBTRACTION

Two matrices of the same order may be added together and their
sum is defined as a matrix of the same order every element of which is the

sum of the corresponding elements of the original matrices.

— — — —
1 2 3 0 -1 3 2 0 0 5 5 0
5 8 9 1 + 2 1 0 0 =17 9 9 1
11 7 b 2 2 4 3 1 13 11 b+3 3
L — - .

1 2 -1 3 0 1 -2 2 -2
3 3 -1 1 1 0 2 2 -1
2x3 2x3 2x3

1.8 SCALAR MULTIPLICATION

The product of a scalar and a matrix is defined as a matrix of
the same order in which every element is equal to the product of each

element and the scalar.



e — — —
5 7 0 10 14 0
2 x 0 2 -3 = 0 4 -6
3 0 4 6 0 8

L — - —

1.9 MATRIX MULTIPLICATION

The product of an (mxn) matrix A and an (nxq) matrix B is defined
as an (mxq) matrix C in which a typical element Cij is obtained from the sum

of the products of the elements of the ith row of A and the respective

elements of the jth columm of B.

ke—-*Z —> L‘———-‘L —
—_ —_ . —_
Tr L
D
£ 3
E
m S . .
I T N M
£ th. row . Qg L1h, row
$ .
- | K - .4._£‘v
L‘——”_’i' i
A X B = C
1 2 3 2 0 1 0 1 6 9 0
4 5 6 1 0 1 0 = 7 12 21 0

-1 2 2 0

To obtain the element C21 requires multiplying the elements of
the second row of ‘A by the elements of the first column of B and adding, thus
(4x2) + (5x1) + (6x-1) = §&+5-6 = 7,

When matrices satisfy the requirements for multiplication they
are said to be conformable for multiplication. It should be noted that

although matrices may be conformable in one order they may not be taken in

the reverse order,

1.10 MATRIX DIFFERENTIATION

Matrix differentiation simply involves the differentiation of

each element of the matrix.



— —_
X 2 x2 5x
A = 6 x 3 8 x
3
_?x X 2 2 ]
'
r—l 4x 5
_d[A] - 0 x? 8
dx 3
12x 2x 0
S —

1.11 MATRIX INTEGRATION

Integration of matrix is also done by integrating each element

of the matrix.

5? 2 X3 §_x2
2 2
I [A] dx =
© 6x 56 4z
12
35 ©
5 3 _
The need may arise for the integration of more complex expressions such as
[T
,fé‘ g |3 D B:l dx dy

To perform such an integration requires that the matrix multiplication first

be performed then the integration performed as described in section 4.6.

1.12 MATRIX INVERSION

Matrix inversion is analogous to division in scalar algebra.

Consider the scalar equation
a., b =1

a =

i.e. the reciprocal of b is equal to a.
Consider now the matrix equation
A. B = I,
Since the above equality does exist although it is not permissable to write
A =1
B

it is acceptable to write A = B
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Hence although division and inversion are analogous they are certainly not
synonymous .

It should be noted that only square matrices possess an inverse

and that the inverse is itself square. Also only’nOnésingular matrices

can be inverted i.e. matrices whose determinant is non-zero.

By definition the inverse of a matrix is obtained by the
application of equation

A -1

L]

1 ADJ. A |——-— —(1.4)

DET. A

EXAMPLE 1. TFind the inverse of the matrix

~ —
1 2 3
A = |1 3 4

"SOLUTION
A =113 4 -9 |! 4 +3 1 3
4 3 1 3 1 4
= 1(3x3 - 4x4) -2(1x3 - 1x4) + 3(lx4 - 1x3)
= -7 + 2 + 3
A = -2 = Det. A,

To obtain the adjoint of A requires that the cofactors of A be
first determined. However, before finding the cofactors it is necessary to
‘define another term used in determinant theory i.e. the minor of a

determinant.

Returning to matrix A, its determinant can be written as

1 2
A = 1 3 4
1 4 3

The minors of A are obtained by suppressing all the elements of
the ith row and jth column of the determinant, thus Mij remains. Hence for A,

the minors become

3 4
4 3

etc.

My =

13
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To obtain the cofactor of any element aij requires assigning the correct

sign to the associated minor, thus

= ( - i+]
C TH (-1) Mﬁj
for this example
Cll = ("1)2 Mll = 3 4 = _7
4 3
c,, = (D3m. = -[1 4 = 1
12 12
1
C = 4 = =
13 = (-1) M13 = 1 = 1 etec.
1

the adjoint of A then becomes the transpose of the matrix made up of the

cofactors of A hence

[ c11 c12 c13]
cij = |c21 22 c23
| c31 c32 ¢33
resulting in
c11 c21 c31]
Adj. A = |c12 c22 32
| c13 c23 ¢33

Evaluating each of the cofactors of A results in

-7 1 1
cij = 6 0 -2
-1 -1 1

taking the transpose of Cij gives

-7 6 -1
Adj. A = 1 0 -1
1 -2 1

by definition, the inverse of A is determined by dividing each of the elements
of Adj. A by A
3.5 -3 0.5

A = —0.5 0 0.5
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1.13 THEOREMS OF MATRIX ALGEBRA

When learning any new mathematical process one always has to
become familiar with the basic rules associated with the successful
application of that process. Matrix algebra is no exception to this rule
and a knowledge of the following theorems is considered essential if it is

hoped to apply matrix algebra to real problems.
THEOREM 1.
Addition of matrices is both commutative and associative.
AtB = B + A (commutative)

(A+B)+C

A + (B+C) (associative)
THEOREM 2,

Scalar Multiplication of matrices has the following basic

properties
(I) (a+B)A=0aA+BA
(TI) o« (A+ B) =0 A+ o B
(III) o (BA) = (oB) A
THEOREM 3.

Matrix multiplication is distributive over additionm.

A (B+C) = AB + AC
(A+B) C + AC + BC

THEOREM 4.

Matrix multiplication is associative.

ABCD = E
(AB) (CD) = E
(A(BC)D) = E

THEOREM 5.

Matrix multiplication is not commutative.

AB # AB
[
the ways in which the above can occur is shown symbolically below

n 9 . q [ n ET Z
A ] C
m /\ :n’ C ! =
n B 3 B
hn

CASE 1 CASE 2
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5; n n
i B |
m | A =m C
L]
CASE 3
if AB = BA

then it is commutative e.g.
AxA=AZxA
=A2
also
Al = A=TA (I = A unit matrix of same order as the square matrix A)

and AO = O
OA = O
the above behaviour is once again analogous to that observed in scalar
algebra.
THEOREM 6.

The vanishing of the Erdduct of two matrices does NOT imply that

either of the matrices is a null matrix.
AB = O

in the above relationship neither A nor B has to be zero which is quite

different from the analogous situation in scalar algebra.

2 0 3 6 3 0 0
-1 1 o 6 3| =10 o
-4 -2

THEOREM 7.

AB = AC does NOT imply that B = C,.
It can be shown that for A chosen ARBITRARILY then B = C.

1.14 PRODUCT OF TRIANGULAR MATRICES

Before continuing with the statement of any further theorems of

matrix algebra it is as well to mention the above topic.

0 0 0

‘Lower Triangular.
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0 0 0

Upper Triangular

In the case of a diagonal matrix

0 0 0

1.15 SOME PROPERTIES OF TRANSPOSED MATRICES

The most significant of these properties can be started thus

T
65) [AT]

(II) o AT = oA

A
T

(III) If A is symmetric then

AT = A

If A~ = A then A is symmetric.
THEOREM 8.

The transpose of the sum of two matrices is equal to the sum of
their transposes

A+ B)T = AT + 8T
THEOREM 9.

The transpose of the product of two matrices is equal to the
product of the transposed matrices in the REVERSE ORDER,

(AB)T - BT A?

This is the FIRST REVERSAL LAW of matrix algebra.

THEOREM 10.

The product of a square non-singular matrix and its inverse

taken in either order is equal to a unit matrix.
Ata = mt -1
THEOREM 11,
The inverse of a matrix is UNIQUE.

This states that for a square matrix A there exists only one inverse
A-l.
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THEOREM 11. (Contd.) :

PROOF:
assume that there are two inverses Al—l and .Az-1 therefore
-1
A1 A =1
-1 _
A2 A =1
-1 -1
hence A1 A = A2 A
post multiply the system by Al_l
1 -1 _ ,-1 -1
A1 A A1 = A2 A A1
but
AATY = 1
1
-1 _ a1
thus A1 I = A2 I
-1 -1
hence A1 = A2

THEQOREM 12.
The inverse of the inverse of a matrix is equal to itself.

-1

alh -t

) = A,
THEOREM 13.

The inverse of the product of two matrices is equal to the product
of the inverses taken in the reverse order.

this is the second reversal law of matrix algebra.

THEOREM 14,

For any non-singular matrix A
] - ] e

The inverse of a symmetric matrix is itself symmetriec,

THEOREM 15.

1.16 RANK OF MATRIX

The concept of rank is of fundamental importance in matrix algebra.
Two areas in which the rank of a matrix is of particular importance for a

complete understanding of the concept involved are as follows:

(1) In the solution of systems simultaneous equations

(2) 1In explaining determinancy as applied to structural systems.
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DEFINITION:

If all the determinants of order greater than r contained in the

array of a matrix are zero while at least ONE DETERMINANT of order r is

different from zero, the matrix is said to be of rank r.

Example 2,

Find the rank of the matrix

1 2 -1 3
A = 2 4 -4 7
-1 -2 -1 -2

SOLUTION.

Since only square matrices have a determinant the rank in this

case cannot be greater than 3.

1 2 -l 1 -1 3

2 4 -4 =0 ; 2 -4 7 =0
-1 =2 -1 -1 -1 -2

1 2 3 2 -1 3

2 4 7 =0; 4 ~b 7 = 0
-1 =2 -2 -2 -1 -2

All of the above determinants are zero. Therefore, the rank of the matrix

must be less than 3.

Considering now the determinants of order 2

-1 3

# 0
~4 7
r, = 2.

NOTE:

The evaluation of the determinants of the given array must be

done in an orderly manner.

1.17 LINEAR SIMULTANEOUS EQUATIONS

There are many instances in engineering and science in particular,

where the response of the physical system can be represented by a system of

simultaneous equations.
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1.17 LINEAR SIMULTANEOUS EQUATIONS (Contd.) _

Consider as an example of such a system the following set of

linear equations

-
a ¥ tap ¥ tagxgt - --mmmmmmm e % % = P1
aX) Fay Kt —-- oo mm s T T "2 % P2 - - s
: |
5 IR
; |
: R
1 - =
a X ta,X+t —---- - - a X =b, )

If all the elements of the R.H.S. of the set is equal to zero

then the system is said to be homogeneous. If on the other hand at least
ONE element of the R.H.S.is different from zero the system is non-homogeneous.

A set of values X5 Xgy ~7" X, that satisfies the system

simultaneously is said to be A SOLUTION to the system.

A solution consisting of all zeros is referred to as the TRIVIAL
solution.

A system is said to be CONSISTENT if their exists at least one
solution (including the trivial solution) for the system and is said to be
INCONSISTENT otherwise.

For a linear system there exists either a UNIQUE solution or
INFINITELY many solutions.

Representing the equations of 1.5 in matrix form results in

I 1 ] [o
21 b I/ J 81n X 1
1 4y T T T T T n ) by

| | l —

I ! i = |

| ' | I I

I [ I I I

1 | | | bI
_?ml am2 -------- amEJ _éhj i nJ

or in general

x = blm———————

Coefficient matrix of the system.

= Solution vector.
= No particular name in general although in a certain field it

R T
]

may have a name associated with its fumction.
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18.
The matrix formed thus

_ -y
a1 810 e e e e oo - 31n by
31 3y "T T T %1 by

I | l
| | |
|

[ | l
i | |
I ! |

an 8y ——— —— — - 4 by
| ]

is called the AUGMENTED MATRIX.

THE FUNDAMENTAL THEOREM.

A system of m linear simultaneous equations in n unknowns is

consistent IF the co-efficient matrix and the augmented matrix have the

same RANK r. Furthermore, if r = n then the system has a unique solution

and if r is less than n the system has infinitely many solutions.

In order to explain '"the fundamental theorem'" in physical terms

consider first of all the system of simultaneous equations of Equations 1.6.

x, + x = 1
1 2 _______ (106)
le + X, = 1

In matrix form Equations 1.6 can be written

1 1 X, ) 1
_2 1 X, 1

hence

ER

co—efficient matrix

2 1
1 1 1

= augmented matrix
Lg 1 1

The rank of the co-efficient matrix is 2 which is also the ranmk

of the augmented matrix. Since the number of unknowns is 2 then r = n.,

Hence a unique solution to the system of equations must exist. This can

be illustrated graphically as follows
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1.17 LINEAR SIMULTANEOUS EQUATIONS (Contd.)

GEOMETRICAL REPRESENTATION OF EQUATIONS (1.6)

Consider now the system of equations given in Equations 1.7

i
—

X + X
1 N G (1.7)
ZXI + 2x2 = 2
in matrix notation
1 1 x, 1
2 2 X, 2
from which
r coeff = 1, raug = 1
r € n

« o Iinfinitely many solutions exist.

Eye system given in Equation 1.7 can be represented graphically as follows

X
%\IZA
&

1

._>.-
1N( x’
Sz

GEOMETRICAL REPRESENTATION OF EQUATIONS 1.7
SYSTEMS WITH MORE THAN ONE R.H.S.

There are cases when the R.H.S. of the system of simultaneous
equations can consist of more than one vector. Such is the case in
Structural Analysis when the structure is subjected to a number of different
load cases e.g. dead, live, crane, and wind loads.

For such a case the matrix relationship would appear as
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1.17 LINEAR SIMULTANEOUS EQUATIONS (Contd.)

xl xl b1 b1
1 ' 1
*2 %2 b, b
i | | |
| |
C by by
L — L L
| 1
X X
n n
or
A X = Ble—e—e=m====--(1.8)

Theoretically, at least, the R.H.S. can be as large as you like.

SOLUTION OF SYSTEMS OF SIMULTANEOUS EQUATIONS.

Consider the system of simultaneous equations given by the

matrix relationship
A p3 = b - - =-==-==-- (1.9)

If the system has a unique solution then A is non-singular.,
Therefore, pre-multiplication of Equation 1.9 by A-1 results in

X = A b
where A_1 is the inverse of A.

In obtaining the solution to a system of simultaneous equations
the inverse of the matrix is NEVER determined because of the excessive

amount of work involved.

The usual procedure is to resort to a NUMERICAL METHOD to obtain

a solution. Three such numerical methods successfully applied to the field
of Structural Analysis are Gauss Elimination, Gauss - Seidel Interation and
the Cholesky Square-Root method. In this chapter only one method, that is,

the Gauss Elimination will be considered.
EXAMPLE 3.

Solve the following syétem of simultaneous equations using Gauss

Elimination.

2 d2x - d3x = 1
2 d2y , + d3X = -1
-d + d +3d, = 0

2x 2y 3x
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SOLUTION.
Writing the system of equations in matrix form
- -
2 0 -1 d2X 1
0 2 1 d2y = |-1
-1 1 3 d 0
3x
el
Step 1.
Set up the augmented matrix
First \ 0 -1 ﬂ
Pivot
0 2 1 -1
L:l 1 3 0
Step 2.

Divide the first row of the augmented matrix by the pivot i.e.
by ajg to reduce the pivot element to unity.

1 0 -0.5 0.5

0 2 1 -1
-1 1 3 0
L —

Step 3.

Add scalar multiples of the elements of each row to the elements

of the first row to reduce all of the elements in the first column to zero.

1 0 —'0.5 0.;

0 2 1 -1

0 1 2.5 0.5
a _

NOTE:

a5 is zero hence no operation is carried out on the second row.
a31 and all other elements of the third row are multiplied by (+1) and
added to the corresponding elements of the first row to form the elements
of the third row.

Step 4.
A new pivot Y is now selected and step 2 performed.
1 0 -0.5 0.;_
o 1 0.5 -0.5
! |
0 1 2,5 0.5
Lo 2o = =]
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Step 5;

Step 3 is now carried out on the matrix

1 0 -0.5 0.5
0 1 0.5 -0.5
0 0 -2 -1

The steps 2 through 5 are those steps associated with the forward
elimination and result in reducing the original coefficient matrix to an

upper triangular matrix.

Step 6.

Add a proportion of the last row to the one before last in order

to make the last but one element of the last c¢olumn of the CO-EFFICIENT

matrix zero. Proceed to make the last column of the co-efficient matrix

Zero.
r; 0 0 0.7;1
0 1 0 -0.75
0 0 -2 -1
Step 7. - -

By taking appropriate scalar multiples of the last but one row
reduce the elements of the second last columm of the co-efficient matrix
to zero.

Continue the process until the matrix takes the form

FI 0 0 0 *]

0 1 0 0 *
0 0 1 0 *
0 0 0 1 *

0 0 0 0 EJ

Steps 6 and 7 are those steps associated with the backward substitution.

In the example just attempted the solution to the system of

simultaneous equations is given by

d2x F0.75
d2y = |-0.75
d3x 0.5

e — S —
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The eigen-problem is one of tremendous importance in many
branches of engineering as well as in a number of other quantitative type

disciplines,

The classical eigen-problem of engineering probably occurs in
the field of dynamics. In this context it entails a study of frequencies
(eigenvalues) and associated modes (eigenvectors). This topic will be

pursued further in Chapter 2 of this book.

Consider the relationship

AX = §J == == == === (1.10)
in which A is a square matrix and x and y are vectors of the same dimension.

The following question is now posed concerning Equation 10.
Is it possible for x to be transformed to a scalar multiple of itself., If

this is so then we require a scalar (A) such that
Ax = Ax
The above relationship can be rewritten thus
A - MDx = 0-===+==- (1.11)

A non-trivial solution of Equation 1.1l exists IFF the coefficient matrix

is singular for a homogeneous system of equations. Hence

|A - ;\I| = Of === === (1.12)
or in expanded form
i} B P St 21n
31 Y 3n
! ! =0 - - - =(1.13)
| |
I
al ------------- J - A
nl nn

which is the characteristic equation of A and is a polynomial solution in A,

Expansion of Equation 1.13 results in the following set of roots
(eigenvalues) for which the system of simultaneous equations possess non-

zero solutions
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1.18 EIGENVALUES AND EIGENVECTORS (Contd.)

Where 1X, etc. is a vector thus

1X1 2X1
1X2 ; 2X2 ; etc.
1Xn 2Xn

and are the eigenvectors of the matrix.

SOME PROPERTIES OF EIGENVALUES AND EIGENVECTORS

(a) EIGENVALUE ZERO

This means the matrix is singular. That is, at least one of

the equations is linearly dependent and can be removed from the set.

(b) REPEATED ROOTS

In this case one value of X is repeated n times. For a well
behaved system two eigenvalues results in a two dimensional space as a

solution, three in a three dimensional space, etc.

(c) SIMPLE EIGENVALUE

A single eigenvalue is repeated only once in the set of eigen-

values of the matrix.

(d) r - FOLD EIGENVALUES

These are eigenvalues which are repeated r times.

(e) DISTINCT EIGENVALUES

Consider the following set of eigenvalues

-1.2 -1.2 o 0 oO 2 2 3.2 4,5
[\ ~ ) J (& ) \ v 7 \ —~— 7
2 Fold 3 Fold 2 Fold Simple

which result in
-1.2 0 2 3.2 4.5
where repeated roots are used only once.

(f) EIGENVECTORS

The eigenvectors associated with a particular eigenvalue are

usually normalised i.e. they are converted into a unit vector.
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(f) EIGENVECTORS (Contd.)

Exgggle

Figure 1 shows an element subjected to a state of plane stress.

It is required to determine the principal stresses and the associated

3

planes on which they act.

T 9
=2
- b o

'
FIGURE 1

The stress tensor for the above state of stress can be written as

which on expanding becomes

(6 -0) (3-0) -4
18 - 90 + 02 -4 =

062 - 90 + 14

il

The solution of the above quadratic equation gives

o, = 7 0, = 2

which are the eigenvalues,

The associated eigenvectors are determined by substituting each

root separately into the characteristic equation thus

6 -7 2 b4
| o I
2 3-7 x2
- X + 2x2 = 0
X, = 2x2
Hence
R
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1.18 EIGENVALUES AND EIGENVECTORS (Contd.)

(f) EIGENVECTORS (Contd.)

Also
6 -2 2 Xl
=0
Xl = -XZ
2
oX = _1-5
1

Hence the element is orientated as shown in Figure 2.

Y
o }

14

oKL,
7
=1 1 ’Ti_
2
‘FIGURE 2

From the example it can be seen that the determination 6f
principal stresses is in fact an eigen-problem. Further, it is evident
that the magnitude of the principal stresses are the eigenvalues and their
direction the eigenvectors. Problems dealing with principal strains and

second moments of areas can be solved in a similar manner.

1.19 CONCLUSION

In the foregoing many important aspects of matrix algebra have
had to be omitted. However, it is felt that if the student gains a sound
understanding of the contents of this chapter at least the burden of

further reading on the subject should be considerably lightened.
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TUTORIAL PROBLEMS

MATRIX ALGEBRA

QUESTION 1,

Evaluate the following determinant.

QUESTION 2,

Show that the following relationship exists without expanding.

5 4 0 2 0 -1 1 2 -2 2 2 3
4 4 3| =|l4 4 -3|+|4s & 3| +|& & -3
11 4 0 11 4 ol [11 & 0 11 4 0

QUESTION 3.

5 2 -1 3 8 1 -1
A=y 1 8| ; B =lo 2 -3
71 6 9 5 0 5
2 6 3
S —
c = [} 37 -%] s D= |1 2 3
6 5 4
7 8 9
FIND :
A" + 8 ; BY-aA ; T+

AxB ; BxA ; AxC 3 DxD ;
DxA ; cTxcxB ; Ccxc¢l ; 5xB

QUESTION 4.
Show that :
’(ABC)T - CTBTAT

accepting the first reversal law.
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QUESTION 5. |

For any matrix A show that ATA and AAT are symmetric.

QUESTION 6.

Find the inverses of

>
il
1
N - £~
{
— - [e ]
|
| N £ oo '
we
o<}
[}
o o —
o w N
N ~ w

_
2 0 0_1 1 0 o o]
C = 1 3 ol; p=1|o 4 0 0
4 2 -1 1o 0o -3 0
|0 o 0o 2]

=

[
w N -
(¥} — o~
~ [\ 19,1

QUESTION 7.

Find the ranks of the following matrices.

1 2 4) 3 2 5 1
A= 2 -2 5/ ; B=|0 1 L0
4 3 0
| 1 0 3
2 1 3| E o o 0]
C= 0 4 2| ; p=|o0 4 0 0
o 0 1 0 0 1 o0
o o o 2]

QUESTION 8.

Given the following system of linear simultaneous equations



QUESTION 8 (Contd.)

-x; + 5x2 + 2x3 = 3.
X, - 6x2 - X, = 1
2x1 - 8x2 + 9x3 = -14

X - 3x2 - 4x3 = -b

(2b - 7)

--x1 + 2x2 + 5x3

Find the numerical values for (a) and (b) such that

(i) the system is inconsistent

(ii) the system is consistent
with infinitely many solutions.

(iii) the system is consistent with a umnique
solution.
QUESTION 9.

Find the roots of
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CHAPTER 2.

THE STIFFNESS METHOD.

2.1 INTRODUCTION

The Stiffness Method is an exact method of Structural Analysis,
within the scope of the assumptions made, which uses the generality and
elegance of matrix algebra in its formulation. The use of matrix notation

has two decided advantages in the treatment of structural problems
(a) brevity of presentation
(b) ease of automating the steps involved.

There are varying ideas as to what constitutes a structure., It
could be argued that any material configuration which occupies space and
can carry the loads to which it is subjected is a structure. This no doubt
would be a very broad definition and would embrace all material objects.
For the present we will confine our interests to a very special class of

structure which conforms to the following requirements:

(i) it consists of discrete skeletal elements of
constant cross-section, i.e. the members are

connected at their two ends only.
(ii) all elements consist of a perfect Hookean material.
(iii) all joints act as perfect hinges.

(iv) any external loading is applied as a point load at

a joint.

(v) under the influence of the externally applied loads
all the active joints of the structure mowve through
small displacements i.e. a linear analysis only will

be considered.

2,2 FUNDAMENTALS

In common with any other type of Structural Analysis, the

following three considerations must be utilised and constantly kept in mind.

(1) The need for IDENTIFYING the JOINTS of the structure
in order to define the topology and geometry of the

system to be analysed.

(2) The allocation of a COORDINATE SYSTEM to which we can

relate forces, displacements, and reactions.

It should be noted that in general, for structural problems,

there are two types of co-ordinate systems
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2.2 FUNDAMENTALS (Contd.)

(a) member or local co-ordinates,
(b) frame or global co-ordinates.

N.B. Initially we will only consider the application of the method in
terms of member co-ordinates. This will reduce the conceptual difficulty

of the problem but will not cause any real loss of generality.

(3) The mutual satisfaction of conditions of EQUILIBRIUM
AND COMPATIBILITY at all levels of the structure

i.e. for pieces, members, and the structure as a

whole.

2.3 STAGE 1

At this point it is desirable to develop the fundamental force -

displacement relationship for a linear elastic spring such as is shown in

Figure 1(a). A
X k
1
T4 >
- d
FIGURE 1(a) FIGURE 1(b)

This can be thought of as the first stage of the formulation
process where both equilibrium and compatibility are satisfied at the ELEMENT
LEVEL. This is done in fact by developing the constitutive relationships

for the material of the elements of the structure.

A plot of w v d results in the response curve shown in Figure 1(b).

From this the following well known fundamental stiffness relationship evolves

kd = Whe= = = = = = = = = = (2.1)

The basic form of Equation 2.1 will be continually referred to

throughout this chapter.

2.4 APPLICATIONS - SIMPLE LINEAR SPRING SYSTEM

To facilitate a method of attack considered best suited for
demonstrating the Stiffness Method, a very simple example will be treated.
It should be born in mind that the simplicity of the problem does not greatly

detract from its generality of application to skeletal structures.
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2.4 APPLICATIONS - SIMPLE LINEAR SPRING SYSTEM (Contd.) V

EXAMPLE 1, The simple structure shown in Figure 2 is assumed to
consist of a number of Hookean springs pin-connected together at their ends.
It is required to determine in general terms the joint displacements,

member forces, and reactionms.

k, ke ® ks
A g A

FIGURE 2
SOLUTION: Consider a member (b) isolated from the structure which

is assumed to be in equilibrium under the action of the external load

system. In general such a member could be represented as shown in Figure 3.

l Fig,qhb F}b’ch_
o
3 VWV

FIGURE 3

2.5 STAGE 2

It is now required that equilibrium and compatibility be
satisfied at the MEMBER LEVEL. The most general situation for such a
member (b) would be the case where both the (i) and the (j) ends can be

displaced. In such a case Equation 2.1 could be written thus

p = kA b - == == ==~ 2.2)
Where:
p = a vector of the member end forces
k = member stiffness matrix for which as yet the
force is unknown
A = the change in length of member (b).

From equilibrium considerations of the member shown in Figure 3.

Pip

-« Py “Pip

+pjb=0

from compatibility considerations
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2.5 STAGE 2 (Contd.)

A= dy - dyy
hence
Pip = Bl = Ky T Ky

P

[
of
o+

= dip * B

written in matrix notation
- - - r -

Pib k% Y dip
PjB‘ ‘kb Ky } djb

u L -

jb

i
~
[\
L]
(7S]
~

— r. l - — —
Pib kllb : kle dib v
- = —— _.-! ————— ———] =TT (204)
ij k21b : k22b djb

- e — L. J

Generalising Equation 2.4 to include any two legged

member gives

p.b = kb d-b ---------- (205)
where:
Pb = a vector of the member end forces whose dimension

is dependent on the number of degress of freedom

activated.

kb = a square matrix consisting of the member stiffness
sub-matrices kll, kl2, etc. Its order is as

found for Pb.

a vector of member end displacements again of

db

the same order as Py.

POINTS ABOUT EQUATIONS (2.3)

(1) A pin-jointed member of a linearly elastic structural system can be
represented in exactly the same way as the spring member of Figure 3 except
that in this case

ko= EA
L

Hence Equations 2.4 become, for a pin-jointed member in member coordinates,

ib '—L ib
. -EA
Pib X djb
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(2) The stiffness matrix is symmetric and in general the following
relationships exist between the member stiffness sub-matrices for a pin-
jointed member '

‘ kll = k22

k21 = kl2t

3 The matrix containing the member stiffness sub-matrices is singular
i.e. given a system of forces we cannot obtain a unique solution to the

problem. Hence forces and displacements cannot be independent of each other,

(4) Equation (2.3) satisfies both equilibrium and compatibility conditions

for the single member.

2,6 STAGE 3

This, the final stage in the generalised formulation, requires
the mutual satisfaction of equilibrium and compatibility at the STRUCTURE
LEVEL,

Consider now the isolated member 3,4 of the structure shown in
Figure 2. The free body diagram of this member and its associated pins is

shown in Figure 4.

Riz3 ® k @ I35
~Fi3s
=% To——WWWw O «—O0—» —
FIGURE 4.

From equilibrium consideration of joint 3

Fx = 0 = “Pi35 " Pj-§ + P

<. Py3 * Pyp;3 <R
from Equation (2.4)

ki1l

3 di§Z + k12§z dj§z + k215§ di§3 + k22—§ dji— = P
However compatibility conditions of joint (2.3) dictates that
53 = d4i;m = 4
kllgz d3 + klziz d4 + k21§§ d2 + k22§§ d3 = P == (a)

Considering joint 2 and satisfying equilibrium and compatibility

Ps12 T Py33 S 0
k21— 3, + k22— d, + klle— d. + kl12—=d, = 0 - - - - - (b)

12 71 12 2 23 "2 23 73
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from joint 2

—pi—-z' + I‘l = 0; o« o

Pi12 1
kllIi d1 + klzii d2 =r === (c)
and finally for joint 2
k21§z d3 + k22§2 d4 =t === (d)

Writing equations a, b, c, d in matrix notation results in

1 2 3 4
1 kllii klzii 0 0 d1 r
k21f§ k22I§ 0 d2 0
2) +
kllz§ k12§3 =
0 k21£3 k22§§ ‘ d3 P
3 +
— k12 =
kllsg, 122
41 0 0 k21§Z k22§z d4 T,
| 0 I I R I
which can be written
Kd = W pF--------- (2.6)
where K = Primary stiffness matrix of the structure.
d = Displacement vector.
W = Appended load vector

POINTS CONCERNING K

(1) Each row (or colum) of K satisfies both equilibrium and compatibility

at that particular joint of the structure.

(2) K is in general a sparse, symmetrix matrix

3)

bl

is singular

(4) The elements of K associated with the (i) and (j) joint of the
structure represent the stiffness matrix for the member (i, j) of

a two-legged member.
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2.7 CONSTRAINT CONDITIONS

To implement the support conditions of a structure is best done
by considering a general case and then applying the results to the structure

of our example.

Consider the stiffness matrix

Multiplying out the

Kttdt

KS tdt

Kut dt

+

+

+

above matrix relationship results in

KtSS

K

K

SS

us

s

]

s

+

+

+

K

tudu

suu

K

d
uu u

—_ _ A - 9 -
Kee | Res | %t d, Ve
K K K s _lr

st 8Ss su S - S
Kut us Kuu L_du wu

but for no movement of the supports

§ =0
s

Hence the boxed set of relationships go to zero and in matrix notation we get

[ - ] B T -
Ret Kiu de w
K K § =0l=]r
st su s
K K d W
| ut uu_ Lu J L u_J

Or in other words
This

Therefore there are (n+l) equations in (n) unknowns.
there is one superfluous equation which can be removed from the set.

then results in the following reduced set of equations
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Ktt l Ktu t t

ut uu u u

Thus removing the constrained degress of freedom we get

Kd = w f====== ==~ (2.7)
where K = Structures stiffness matrix which is non-singular
d = Vector of the active joint displacements
w = External load.

2.8 JOINT DISPLACEMENTS

Returning to our problem, and applying the concepts just discussed
to invoke the constraint conditions, it can be seen that this simply requires
striking out the row and colum associated with the constraint. This is

done as follows

1 2 3 4
_k 12 0 0 1 | T |
1 }Qéz\\_u"jL\;ézz”F\,/f—-L_7Z/ ~47 N
k2 k22 _ 0 0 d 0
2 2 2
2
k1l k12
73 L 23 =
0 k21 __ k22 d, P
5 23 23
k1ll__ | k2
55 35
4 o‘/@« 0 h,ka&\gz_ ~Al |y
[ 3L 34
(K), the structure stiffness matrix now becomes
— —_ - -
k22 __. d T F 0
12 2
+ kll__ k12
23 23 —
k21 k22__ d P
73 73 3
+ kl11__
3%
| — L S

Solving the above system of simultaneous equations for the displacements

results in
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= active joint displacements.

d;

We now have a unique set of joint displacements satisfying the conditions

of our simple problem.

2.9 MEMBER FORCES

Returning to equations (2.4) and restating them we have

Pib klly ‘ k12, dip

P k21, ‘ k22, dg

If the second of the above equations is used the member force at the (&)

end of the bar can be found. The force found in this way is prefixed by

the correct sign. Hence

Py, = K2 dy + K22y

can now be solved for each of the members 1,2; 2,3; & 3,4. If the solution
results in having a negative sign then the member force is compressive,

if positive it is temsile. The force at the (i) end is then given by
Pib T Pip

2.10 REACTIONS

To find the reactions is simply a matter of applying conditions
of local equilibrium to each of the members framing into the reactive

joint. For our example
1 T TPiD2
4 = P33

2,11 CLOSURE TO EXAMPLE 1

To summarise the procedures adopted in the solution of Example 1

we have the following.
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(1) TForm up the member stiffness sub-matrices of each member of the

structure,

(2) Set-up the primary stiffness matrix K as a null matrix. The dimensions
of K for the one degree of freedom joints of our simple structure is (1 x

number of joints) x (1 x number of joints).

(3) Place the member stiffness sub-matrices in their correct positions in K.
(4) Set up the appended load vector w.

(5) Adjust K by implimenting the required consfraint conditions.

(6) Step (5) results in K being reduced to K to give the relationship

(7) Solve the system of simultaneous equations of step (6) for the joint

displacements.

(8) Determine the member forces from

k21adib + k22

b

djb

ij
and
Pib = "Pip
(9) Obtain the reactions from local equilibrium considerations.

(10) Statical indeterminacy has not been mentioned.

2,12 APPLICATIONS - SIMPLE TRIANGULATED PIN-JOINTED TRUSS

To generalise the approach formulated in Example 1 and thus
enable pin-jointed structures to be analysed we will consider a second

example,
EXAMPLE 2

Determine the joint displacements, member forces, and reactions

for the pin-jointed plane frame shown in Figure 3,




2.12 APPLICATIONS - SIMPLE TRIANGULATED PIN-JOINTED TRUSS (Contd.)

SOLUTION

Observations of Figure 3 immediately indicates that a problem
confronts us, In the previous example all the members were co-linear,
i.e. they were all in member co-ordinates. In this case we have members
of varying orientation and yet to obtain a meaningful solution we require
that all members be referred to a common co-ordinate system which in
general is referred to as a frame co-ordinate system. A solution to this
problem could be obtained in a number of ways. To keep the analysis
compatible with that of the previous example we will proceed in the following

manner. Consider the isolated member shown in Figure 4.

FIGURE 4

From equil. considerations

+ p.

z;Fx = _0 = P:i.bx jbx

) * Pipx T _ijx

™

o
]

o
[l

Piby * Piby
© 0 Piby T Piby

Compatibility conditions dictate member deformations such that :

Member deformation = AL = §, cos6 + 8, sind
jbx jby
—(Gibxcose + 6iby sin®)
Force in the bar = p, = %£fE'A‘
Also
pjbx = pbcose; pjby = pb sin®
Hence
pjbx = é%_ .E.A. cos®
P = AL .E.A, sin®

b
Jby A
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Hence to satisfy both equilibrium and compatibility the following relation-

ships must exist

— [ 2 . 2 . j
Pibx E%_ (845 COS 6 + aiby sin6cos0) (Gjbx cos“0 + Gjby sin6cos6)
— o
IR in? ~ )
Piby = E% (sibx sinfcosb + 6iby sin e)_(sjbx sin6cosf + Gjby sin“0)
. — 2 . 2 .
Pibx E% =(8,4 COS 0+ siby c05951n9)+(5jbx cos“0 + Gjby 51n6cose)l
— ) 9 ' 3
= - $ +(6 +
ijy E%_ (6ibx sinbcosb + iby sin“0)+( jbx sinbcosb Gjby sin e)l

Hence in matrix form the equilibrium and compatibility relationships

become — —
] EA cosze EA sinbcosod | fEé-cosze _Eé-sinecose r;
Pibx J3 Ja £ £ ibx
EA . EA . 2 -EA . -EA . 2
piby —2-51n6cose = Sin 0 7 sin6cos® — sin 6 diby
-EA 2 -EA _, EA 2 EA __
ijx —J cos 6 —1-51n6cose —f ¢os 0 7 sinbcos6 dibx
-EA . -EA . 2 EA . EA . 2
ijy —2-81n6cos6 7 sin 0 7 sinfcosb 7 Sin 8 djby
L J —— b wemd
which relating to the previous example can be written once again as
Pap| = [*Mlp | K2 | 4gp| - (2.8)
1 1 1 1
P ib k21 b k22 b L? ib

The dashes being used to distinguish between member and frame co-~ordinates.
From the expanded form of the force - displacement relationships
for a member we can make the following observations.

(1) Comparison with the equivalent expression of Example 1 shows that the
only real difference is that the dimension of the sub-matrices have increased

to 2 x 2 to account for the newly acquired degree of freedom at each end.

(2) It can also be seen that for a pin-jointed member

kll = k22
k12 = k21 = -kll.

Continuing again with our example in a step by step procedure.
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necessary in this case to determine kll.

From the condition (2) above it can be seen that it is only

42,

This is best done for purpose

of demonstration using a table as shown below.

Member " Cross-— Length cos® sinb kll
section

1,2 A {2’L 1 17 |[EA  EA

A Zo| ot

EA EA

4L 4L

A 1 -1 EA EA

2,3 A 7L 1 L ||Ea _Ea

JT J‘z‘l J_Z‘\ 4L 4L

EA  EA

4L 4L

1,3 A 2 L 1 0 EA 0
2L

0 0

2.14 SETTING UP K

This is done in exactly the same manner as for Example 1.

In

this case however, the member stiffness sub-matrices are 2 x 2 because

of the extra degree of freedom introduced at each joint.

Hence the

dimensions of K is 6 x 6, again obtained from the product of the number

of degrees of freedom multiplied by the number of joints.

Kd = w then becomes

(

T —e AN

Ea | EA | A | A | -Ea | o0
4L 4L 4L 4L 2L
EA 0
2L
EA | EA | -EA | EA 0 0
4L 4L 4L 4L

0 0

The relationship

ix

ix

d,
1y

iy
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2.14 SETTING UP K (Contd.)

1 2 3
— A A
-EA -EA EA EA -EA EA
4L 4L 4L 4L 4L 4L
EA -EA d Q
4L 4L 2x
-EA -EA EA EA EA -EA
4L 4L 4L 4L 4L 4L
-EA EA d,. -Q
4L 4L 2y
(EX o | -EA EA EA | -EA
2L 4L 4L 4L 4L
EA 0 dy 0
2L
0 0 EA -EA -EA EA
4L 4L 4L 4L
\ 0 0 d3y Ty

2,15 IMPLEMENTING CONSTRAINT CONDITIONS

This is done as before by suppressing the rows and columns of K
associated with the restrained degree of freedom. Thus K is reduced to

K and becomes

w0 [, [
2L 4L 2x
0 EA EA
i AN dZy = |-Q
-EA Eé ' §Eé d 0
4L 41 4L 3x
L ] T L

which can be rewritten as

2 0 —i—l d 1
2x
0 2 1 d = 4QL -1
2y EA |
L—l 1 3 d3x 0
—j e —— e,

2.16 JOINT DISPLACEMENTS

The joint displacements are obtained by solving the system of

equations given in the matrix relationship of 2.15. This results in
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2X
d = QL -3
2y AR
d3x 2
s -—-J b anal

2,17 MEMBER FORCES

In this example the member forces cannot be determined directly
from the second of Equations 2.8. The reason for this being that Equation

2.8 is written in terms of frame co-ordinates and to obtain the member

forces it must be in terms of member co-ordinates. However, member end

displacements should be left in frame co-ordinates for convenience of
handling. In terms of Matrix Algebra this is a hybrid transformation
in which the second of Equations 2.8 is pre-multiplied by the transpose

of the transformation matrix.

In physical terms this simply amounts to resolving pjbx and

pjby into the direction of the member being considered. Thus
_ |-EA 3, EA 2 -EA 2. . -EA __ 3 [ ]
pjb T Ccos 0 - I cosfsin™ 0 I cos 0sino® I sin~0 dibx
Jdiby
— - r -
+ EA c0336 + EA cosesinze EA coszesine EA sin39 djbx
L L L L d
jby
Applying the above relationship to member 23 as an example
_|-EA EA 3QL. EA -EA 2QL
P323 7| T o AE - — TAE
2 {71 2 J7'L + (21271 27 21
-3QL
AE 0

]
1
|8
+
i
<
SN——

. =’_2_Q

° Pj23 J??

By successive application of the member force equation to the

(compression).

other members of the frame gives

rpi-ﬂ 0]

g
ol
w

o
ol
w
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2.18 REACTIONS :

Once again the simplest way to determine the constraint reactions
is by considering conditions of local equilibrium. It should be noted
that reactions are always required in frame co-~ordinates and whilst in
Example 1 frame and member co-ordinates were synomous this is not the case
now as we saw when determining member forces. Hence to apply the concept
of summation of the negative of the member forces meeting at the constrained
joint requires some little refinement. This refinement is simply a trans-

formation back to frame co-ordinates. The reactive forces then become

] ]
Rlx -Q
Rly = 0
R Q

| 3% |

2.19 CLOSURE TO EXAMPLE 2

The steps followed will not be restated since they are the same

as for Example 1. However, there are a number of points worth noting.
These are as follow :-

(1) Both K and K are symmetric. Further, if the elements of rows and
colums of K are summed the result is zero.

(2) Both K and K are independent of the external loading applied to the
structure. This is always the case when a linear analysis is being
performed.

(3) The determinate of K is a positive number. This is very significant

and will be discussed in more detail in the next section.

(4) Care must be taken to ensure that the correct co-ordinate system is

being used when determining member forces and reactions.

(5) As the number of active degrees of freedom increase it becomes evident
that the number of simultaneous equations to be solved also increases. Thus

the efficient application of the method requires access to a computer.

(6) The number of simultaneous equations to be solved is equal to the

number of active joints multiplied by their degrees of freedom.

2,20 SINGULARITY OF K

The significance of the determinant of K, mentioned in 2.19.3
will now be discussed in more detail., To simplify the discussion consider

again the simple pin-jointed frame of Example 1 loaded and constrained

as shown in Figure 4.



2.20 SINGULARITY OF K (Contd.)

same as for Example 1 then K remains unchanged.

ol |

46.

e

FIGURE 4

Since the topology and geometry of the above structure are the

However, because the

method of constraining the structure is different, then K is changed and

becomes

ﬂr —
3 -1 -1 -2
-1 2 0 -1
-1 0 2 1
-2 -1 1 3

L —

Magnitude of the determinant, found as follows results in

+ 2

-1 1 3 -2 1 3 -2 -1 3
-1 2 0
-1 0 2
-2 -1 1

]
N
~

=
]
o

E%(S) - 1(25] +1 [}1(5) ; 1(35] -J.[}l(l) -2(-1)
+ 2 |-1(2) -2(32'

_1(1_—)_|
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2,20 SINGULARITY OF K (Contd.)

The above result could have been obtained much more easily using
a simple row operation, which constitutes a theorem of determinant analysis.

This row operation is carried out in the following manner :

Multiply the elements of Row 2 of K by unity and add these values

to the corresponding elements of Row 1.

2 1 -1 -3
-1 2 0 -1
-1 0 2 1
-2 -1 1 3

Doing similarly to the elements of Row 4 and adding to the elements of Row 1.

0 0 0 0
-1 2 0 -3
-1 0 2 1
-2 -1 1 3

Since all the elements of Row 1 are zero then it follows that the magnitude

of the determinate must be zero.

The concept of whether or not the determinant of K is positive, negative,

or zero is of fundamental importance in structural analysis.

Returning to the case in point, i.e. when K = o, we have a
situation in which it is impossible to get a set of displacements to
satisfy conditions of equilibrium. This then means, in the jargon of Matrix

Algebra, that the system is inconsistent, a condition characterised by the

singularity ( K = 0) of K. Singularity implies that one of two
situations are in existance thus

(a2) no solution exists

(b) there are infinitely many solutions.

In our case (b) applies because the structure can move to any position

under a general load system.
N.B.

The fact that K is independent of the external loading is made very clear
in this simple example. From observation it can be seen that for this

example the structure is in equilibrium under the specified loading conditionm.
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2.20 SINGULARITY OF K (Contd.) :

However, we also observe that the equilibrium is not stable because any
slight horizontal force will set the structure in motion. Evidently, and
fortunately, K does not recognise what we observe and is only concerned
with having a sufficient number of suitable degrees of freedom restrained
to render the structure stable externally. Further, and equally
fortunately, K is oblivious to how many extra degrees of freedom are con-

strained beyond those required for statical determinacy.

The concept of singularity of K is also very conveniently used
in determining the critical loads on structures together with their
accompanying buckling modes. The subject of stability, being so complex
and important in its own right, will not be discussed further here. The
topic was only mentioned in an endeavour to stress the importance and

significance of the structure stiffness matrix.

2.21 ILL-CONDITIONING

The topic of ill-conditioned systems of equations will not be
pursued to any great depth at this point. However, it is felt to be of

sufficient importance to at least warrant some discussion.

In physical terms ill-conditioning can be thought of in the

following manner. Consider the relationship

If the system is ill-conditioned then small changes in K will cause large
changes in d, illustrating the non-dependence of conditioning on loading.
Hence ill-conditioning is a function of the structure and if the equations
of K are poorly conditioned then it can be assured that a floopy structure
will result. Further, a well designed structure will always result in a
structure stiffness matrix for which the system of equations are well
conditioned. The problem of ill-conditioning is aptly described in the
words of Dr. R.K. Livesley who said "ill-conditioning is not a disease but

a symptom",

2,22 APPLICATIONS -~ SIMPLE RIGID JOINTED PLANE FRAME

Thus far only pin-jointed structures have been analysed. Since
many structures transfer load by bending action as well as by axial forces
a further example illustrating this class of structure will now be

considered.

EXAMPLE 3

Determine the joint displacements, member forces, and reactions

for the rigid jointed plane frame shown in Figure 5.
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2.22 APPLICATIONS - SIMPLE RIGID JOINTED PLANE FRAME (Contd.)

A

Q
Q
A
L
EA, EA,
ET Er
! -
he—t ——t—1. >|
FIGURE 5

SOLUTION
It is evident that the member stiffness sub-matrices for a
~ planar, rigid-jointed member will be different from those of a plane pin-
jointed member. The member stiffness sub-matrices kll, kl2, etc. can be
found by using the following procedure.
A beam element, such as is being discussed in this example, will

have three degrees of freedom at each of its ends as shown in Figure 6.

)

£ -4 o |
L L

FIGURE 6,
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2.22 APPLICATIONS - SIMPLE RIGID JOINTED PLANE FRAME (Contd.)

Since an "influence coefficient" for stiffnesses can be defined
as the '"forces developed at the joints due to a consistent set of unit
displacements at a particular point'", then, for an elastic analysis, com-

bining the cases of Figure 6 gives

EA 0 o -z 0 o |
L I
=l o 12§1 6E§ , BT -12§1 6E1
L L L “
6EI  4EI ~6EI  2EI
0 = B 0 = 2
- L L _ - L L_|
— [ ]
k21 = k12T = | EA 0 0 | w22 -|EA 0 0
L L
o -12EL  -6EI o 12EI  —-6EIL
3 2|3 3 2
L
o 6EL  2EI o —6EI  4EI
2 T 2 T
B L L | L L |

The elements of kll, kl2, etc. being the forces associated with unit
linear displacements in the X and y directions and a unit rotation about

the z axis. Hence the vectors of member end displacements become

D, = [s.] D, = [s. ]

i ix j ix
§ §.

iy ; iy

ein ejz

- b -

The above stiffness sub-matrices are associated with a system of member
co-ordinates and since the members of the example are sloping then kll, kl2
etc., must be transformed to a frame co-ordinate system. This can be done
most simply by using matrix algebra. Because the process involved is simple
and of fundamental importance to the application of the Stiffness Method

the matrix manipultions used will be performed.
Consider again the relationship

k d = w
This can be written as
kId = w

where I is the identity Matrix.
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2.22 APPLICATIONS - SIMPLE RIGID JOINTED PLANE FRAME (Contd.)

Premultiply the second of the above equations by a transformation matrix T

and replacing I by TTT gives

TKTTd = Tw |--====m==~-- (2.9)

It should be noted that Equation 2.9 applies only to an orthogonal
transformation or in other words TT = Tm1 only for an orthogonal

transformation.

For conformability T must be of the same order as k and is found

as follows. Consider the isolated member (b) of Figure 7.

9) <

FIGURE 7

Resolving a unit vector in member co-ordinates i.e. in the x1

direction, into frame co-ordinates gives the first column of T thus

cos O
sin ©
0

Following a similar procedure for the unit vector in the y1 and

z direction gives the second and third columms as

-sin 6 0
cos 0 0
0 : 1

Combining the above gives the complete transformation matrix T

as
— . -

cos 6 -sin 6 0

T = sin © cos 6 0

0 0 1

L ]
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2.23 MEMBER STIFFNESS SUB-MATRICES

In this case both kll and kl2 will have to be evaluated and then
the fact that k21 = k12° and k22 = k1l with the off-diagonal elements

negated will be utilised. Table 1 sets out the relevant information
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2.23 MEMBER STIFFNESS SUB-MATRICES (Contd.)

The sub-matrices k21 and k22 are given by

k21

k21—~ =

2.24 SETTING UP K

previous examples.

24

i—2=

[-EA _ 6EI | -EA | 6EI| 6EI |
w3 | 73 2
2L L 2 17 | {2'L

-FA , 6EI | -EA  6EI | -6EI
T3 T3 2
2L L 2. L7 |{2'L

-6EI 6ET 2EI
712 712 L

[CEA _ 6EI | EA _ 6EI | -6EI |
on, 13 o 13 J21?
EA _6EI | -EA _ 6EI | -6EI

L 13 o 13 |72
6EI 6EI 2EI
{712 »12 g |
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[EA _6EL | -EA _ 6EI, 6ET ]
T3 | Y3 =
2L L 2L 1L | J2'L

3 k2275= -EA , 6EL | EA , 6EI | -6EI
on 13 o 13 JTL2
6EI -6EI 4EI
7' 1.2 J2'1? L
[EA , 6EI | EA _ 6EI |-6EI
PO R S W e
2L L 2. L |J2'L
; k2255 4 EA _ 6EL | EA _ 6EI |-6EI
e 23 | T3 | &m2
2L L 2 1> 2L
~6E1L -6EL 4EI
ELZ JTLZ L .J
I

This is done by following the same procedure as for the two

/

2 3
1 A
—~ TN —A——
dlx rlx
kllys k1255 dly Tiy
elz rlz
EA _ 6§I -EA 6§I 6E12 4y, Q
2L L 2L L 2L
EA , 6EI | -EA . 6EI | 6EI
Tt Tt T
2L L 2L L 7L
-EA , 6EI EA , 6EI |-6EI
—t3 | ot 712
2L L”. 2L L 7' L '
k2153 k125 d2y —-Q
-EA _ 6EI EA , 6EI | 6EI
P S e aal Rt
2L L 2. L 2L
6EI -6EI 4EI
IE‘LZ JE‘LZ L
: 0, 0
6EI 6EL 4ET
7 12 212 L
d T
k215§ ﬁk22-2-§ 3x _3x
d3y r3y
%32 I3,
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2,25 TIMPLEMENTING CONSTRAINT CONDITIONS ,5

Suppressing the restrained degrees of freedom reduces K to K thus
— -] [ =] r -
A -A + 121 121 d 1
2 ; ' 2x
L 2’1
-A 1§I A+ 1%1 0 d2 - % -1
L L y B
121 0 81 0y, 0
| 7t _ L L

To simplify the solution of the above system of equations it will be assumed
that 121 can be neglected.

L2

The above relationship then becomes

— - o
[ A -A 62 1 4 !
L 2x
-A A 0 4 | = g%_ »
6d2° 1 0 81 8,1, 0
L L o L. — L -1

2.26 JOINT DISPLACEMENTS

Solving the above system of equations for the joint displacements

d2x §£? _W
21
d _ 2
2y = QL ﬁéé_. -1
E I A
62z -L
| 6 ]2 I

2,27 MEMBER FORCES

In this example the member forces will not be determined implicitly,

however a brief discussion concerning their evaluation is considered necessary.

As always the member forces are determined in member co-ordinates., In a
frame consisting of beam elements however, it is not simply a matter of
determining pjb and then negating this force to find Pipe Using Equation 2.9
and performing a hybrid transformation to determine the member forces in

member co-ordinates results in

T ' T
p. k11T Td,, + k12T Td,
ib ib L (2.10)

T T
k21T Tdib + k22T deb

ij
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2.27 MEMBER FORCES (Contd.)

It should be noted that compatibility relative to the frame co-ordinate
system is satisfied by Equation 2.10 because Tdib and deb are joint dis-

placements in frame co-ordinates.

To obtain a relationship between member end forces consider the

beam element (b) of Figure 8.

7\

Mibz
Pibe 1@ b o 5 BiL
—J x —

L b
% | by L J/
wbz ijg

‘'FIGURE 8

from equilibrium considerations

Pibx + Pibx = 0
Piby + Pjby = 0
Mipz + Pipyl T ¥z = 0.

or writing the above in matrix form

- - _ - - -
Pibx 1 0 0 Pibx
Pipy | * |0 1 0 Piby -0
M, 0 L 1 M,

__1sz | B ~—Jb%J

or more simply

pib 4+ H pjb = 0 —————————— (2 . 11)

where H is defined as the equilibrium matrix.

Hence if the member forces are known at one end of a member then by applying
Equation 2.11 the forces at the other end can be determined, i.e.
Pip, = “H Py
OR
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where -

2.28 REACTIONS

The frame reactions can be determined again from considerations of

local equilibrium.

2.29 CLOSURE TO EXAMPLE 2

In this example the similarity of formulation with the two previous
examples is very evident. Through the examples considered it should also
be clear at this point that any structure consisting of discrete structural
elements can be analysed provided the system of éimultaneous equations can be
solved. Clearly, if a space structure with 6 degrees of freedom per joint is
to be analysed, not very many joints are required before the number of
simultaneous equations to be handled becomes a major problem. Hence, it can
be concluded that structural analysis, at least of discrete element structures,

is no real problem, provided a computer of sufficient capacity is available.

2.30 OFF-JOINT LOADING

Thus far only the loading case associated with on-joint point
loads has been considered. The usual situation in practice however, is that
the loading is distributed along a structural member in some way or is
applied as a concentrated load. Hence a need exists for considering the ways

in which such loading types may be idealised.

In order to pursue the subject further consider the generalised
skeletal structure shown in Figure 9. Also shown in the same figure is

typical member (i, j) subjected to a generalised loading system. PJb

Y /;,/djb.

iy, ’/’/f

Fis
NOOSHIN STRUCTURE TYPICAL MEMBER

FIGURE 9



2.30 OFF-JOINT LOADING (Contd.) >8.

The typical member of Figure 9 is free to displace at each of its
ends i and j. Suppose now that the member is fully fixed at each end as

shown in Figure 10. _ B

7 //{' EN

x
Z
= /} @
Pib
FIGURE 10
The fixed end reactive forces for the fixed ended member b are then
given by
Fkibx ‘ ijx
Riby RJ'by
o o | vz _ n = | Vb
ib ? ib
Mibx Mipx
Miby Mjby
Mibz Mibz
_— — - p—

Considering now the two cases of Figures 9 and 10, then

(1) For joints loaded and displacing

The familiar force - displacement relationships

k11, d + k12

Pib b%b b44b

pjb k21bdib + k22bdjb

must still hold.

(2) For off-joint loads with no joint displacement

This is the equally familiar case which is usually associated with
the Method of Moment-Distribution and results in the reactive forces

vectors Rib and ij associated with Figure 10.

The generalised force-displacement relationships for any member such as (b)

of Figure 10 can be found by superposition thus
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2.30 OFF-JOINT LOADING (Contd.) :

Py = klly dyp + k12 dy o+ Ry
--------- (2.12)
Py = K12 dy K22 dg 4 Ry

Equations 2.12 will be immediately recognised as the Slope - Deflection

relationships.

Compatibility conditions are satisfied simply by replacing member end

displacements by joint displacements.

To satisfy equilibrium conditions consider first of all the case where the
loads are applied at the joints of the structure. Equilibrium of the i th
joint is satisfied by

Py, T Wy
Where off-joint loads exist then the equilibrium relationship for the i th
joint is given by

IPyp = W3 T IRy
The above relationship merely states that the external loading at the i th
joint consists of any external applied joint loads together with the negative

of the reactive forces at that particular joint.

2.30 SELF~STRAINING SYSTEMS

In certain circumstances complex elastic structures become strained
without the application of external loads. The three most common causes of
such straining are

(1) Temperature effects.
| (2) Lack of fit.
(3) Displacement effects.

which are usually associated with support settlement. Each of the above

will now be considered in turn.

2,31 TEMPERATURE EFFECTS

Consider again the typical member b of Figure 11 isolated from

a generalised structure.

g | @
kﬂ/
)

FIGURE 11
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2.31 TEMPERATURE EFFECTS (Contd.) :

For simplicity assume the member to be subjected to a uniform
temperature tg. The resulting change in temperature causes a set of reactive

and R,

ib to be set-up in the member similar to those due to off-

forces Rib

joint loading.

When the member is uneffected by temperature change but the ends

i and j are moving then

Py klldy, + kl2dg

Psp k2l dy, o+ k22 dg

Conditions of equilibrium at each joint not effected by the

temperature change is given by
Zpib = 0.

Equilibrium conditions for joints associated with members subjected

to a temperature variation dictates that
IPip = IRy,

Hence the fundamental force-displacement relationship for the structure

becomes

Kd = w = —ZRib

The above relationship is the same as the one which would be
obtained for a normal structural analysis considering on-joint loading

except that in this case the load vector consists entirely of the negative

of member end reactive forces.

2.32 LACK OF FIT

Figure 12 shows the same member b. However this time it is

assumed to suffer a fabrication imperfection A.

7 @

%X
© B\ ¢

FIGURE 12

Because of the imperfection A the member has to be deformed to
allow it to fit., The resulting straining causes a set of reactive forces

R and R,

1b 3b to be induced into the member.
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2.32 LACK OF FIT (Contd.)

This is a similar problem to the one just considered and evidently the member

force-displacement relationship will be given by

Py klld, + kl2dg + Ry

k1l d,, + k22d,, + R
bi j

Psp b b4b ib

The remainder of the analysis is the same as for 2.34.

2.33 DISPLACEMENT EFFECTS

In this case there is something of a variation of the theme. It
is assumed that the structure is subjected to no external loading, however
there has been a known measurable joint displacement. Suppose this

movement is represented by
§ = g

where: Gs = a vector of the joint displacement,
its order depending on the number of
degrees of freedom of the joint.

g = known values of the displacements.

Setting up the primary stiffness matrix gives

Kd = w |---------- (2.13)

where: w = a vector containing the reactions.

Equation 2,13 can now be partitioned in the following manner

. - _ -
tt L Riw | d, Ve
K k K = | w
st SSs KSU 6 S WS
ut kus Kuu ua Wu
S —— I ! S p—

Carrying out the matrix multiplication gives

K + + =
tt%t ts%s tu®u Ve
K + k + K = w
st't kes% Rsudu Vs
K + k + K d = w
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Substituting the measured values of g for 68

dt +

(Contd.)

k

k

k

ts

ss

us

g

g

g

62.

in the above

Transferring the known values contained

of the equation results in

Kipde F Kppdy = W = K8
Ksede Keudy = Wg — kg8
Kutdt + Kuudu = wu - kusg.

In the above system of equations there is one more equation than
there is unknowns. Therefore, one of the equations is linearly dependent
and the problem is to decide which one. The second equation is required to
satisfy the equilibrium and joint compatibility. However, this has already
been satisfied by the known relationship transferred tc the right hand side.

Therefore the second equation can be removed from the system giving

If there are a number of such displacements a similar procedure is followed

for each one.

2.34 SEMI-SKELETAL STRUCTURES

The arguments developed so far have been concerned only with

two~-legged discrete elements.

Consider now the structure of Figure 13 in which the members
consist of a continuum connected at discrete joints. The figure also shows

a typical element (b) of the structure.
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y

a'

FIGURE 13

Equilibrium and compatibility must again be satisfied at all levels of the

structure. Also forces and displacements cannot be independent and are given
by

Pip, = kllbdib + k12bdjb + k13bdkb + ij

pjb k21bdib + k22bdjb + k23bdkb + ij —————— (2.14)

Pyy, k3Lydy, + k32 dy o+ KA, + Ry

All the arguments developed previously are still valid and K can
be set-up in a similar manner to that used for the previous three examples.
Constraint conditions can then be implemented as before thus reducing K to K
and the system of equations solved for the unknown displacements. Member
forces can be determined from the Equations 2.14 if self-straining of the
system is also present. Local equilibrium conditions are then used to

determine reactions.

2.35 STIFFNESS MATRICES

Only a very limited range of member stiffness matrices have been
considered. Both the pin~jointed planar element and the rigid-jointed beam
element can easily be generalised to their equivalent spatial members. It
should be realised that by using these simple members many complex structural
problems can be solved. Appendix A of this book contains a detailed treat-
ment of the development of the stiffness matrix for a coplanar beam element.
The difficulty arises when a discrete element is used which deviates from
the norm. If it is necessary that such an element be incorporated in a
structure then it is suggested that a thorough literature search be carried

out in a hope that its stiffness matrix has already been developed.
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2.35 STIFFNESS MATRICES (Contd.)

Should it not be available in the literature the problem would best be

handled by passing it on to the Academic Fraternity.

2,37 CONCLUSION

By choice many areas have not been considered in this chapter.

Some of the more important topics not treated are

(a)
(b)
(c)
(d)
(e)
(£)

use is to be made in the application of the Stiffness Method.

is unnecessary to be familiar with the above topics for a complete conceptual

Implementing the imposition of displacements.
Super-member and super-joint concepts.
Non-conformable constraints.

Computational techniques.

Symmetry.

Optimisation.

Obviously a knowledge of all of the above is important if full

understanding of the method.

In conclusion, it is felt necessary to point out that although

the Stiffness Method is admirably suited to automatic computational

techniques it is absolutely essential that some simple problems be attempted

manually to become completely conversant with the mechanices of the steps

involved.

However, it
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TUTORIAL PROBLEMS

THE STIFFNESS METHOD

QUESTION 1

For the pin-ended member (b) shown in Figure 1 develop a relation-
ship between member end forces and displacements in global coordinates,

which satisfies both joint equilibrium and compatibility.
Y\

v/ ©

EA

"FIGURE 1

QUESTION 2

(a) State the levels at which equilibrium and compatibility
must be satisfied within a structure.

(b) Explain briefly how this is done at any one level of the
structure,

(¢) Given the relationship Kd = w show how constraint conditions

are implemented to reduce the above relationship to Kd = w.

QUESTION 3

For the simple Hookean Spring system loaded as shown in Figure 2,
determine
(a) the joint displacements
(b) the spring forces
(c) the reactions.
Pajoo
k= 20 I_—» k=50 k=78 ¥

3 s W—g—W—0st

FIGURE 2
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QUESTION 4

Determine the joint displacements, member forces, and reactions

for the plane pin-jointed frame shown in Figure 3.

QUESTION 5

Develop the primary stiffness matrix forthe structure shown in

Figure 4. All members are made of the same material.

FIGURE 4

'QUESTION 6

Determine the joint displacements and member forces for the
structural spring system shown in Figure 5. No external loads have been

applied to the system, however, joint 2 has been displaced 5 units to the right.

d)=
kq= 200 ) k‘,s =300 - ke =150 }
bW W W —
FIGURE 5

QUESTION 7

Find the joint displacements and member forces for the structures

shown in Figures 6(a) and 6(b).
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QUESTION 7 (Contd.)

10
/ EI = 30x10° A ET=30x0° EI=/5x0¢ L
AD L = 400 ©)] g L =200 L = 200 L
gk =/00 ‘ k= 200
77
FIGURE 6(a) FIGURE 6(b)
QUESTION 8

In the structural system shown in Figure 7 member 2-3 is short

by one (1) unit, determine
(a) the joint displacements

(b) the member forces.

Assume the lack of fit to be in member 3-4. What difference would

it make to your answer if the lack of fit had been assumed in member 2-3.
k=150 k=100 k=250

. MW—mo  —MNA

FIGURE 7

QUESTION 9

Member 2-3 of the structural system shown in Figure 8 is subjected
to a contracting temperature differential of 30°. The length of the member
is 50 units and the coefficient of expansion o = 0.001., Determine

(a) the joint displacements

the member forces.

(b)
k=10 k=/s 4 =20
% s—N—s— N

FIGURE 8

QUESTION 10

A member b of a pin-jointed skeletal structure is uniformily
heated to cause an increase in the length of (b) by an amount uLb. In
general this will result in all of the degrees of freedom of the structure
being activated. If (d) is the known displacement vector resulting at one of
the joints of the structure show how the displacements at all of the other

joints may be found analytically.
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QUESTION 11

(a) Develop the stiffness sub-matrices kll, k12, k21, and k22

in member coordinates for the beam element shown in Figure 9(a).

4 EI,EA = const
K b

- —

'FIGURE 9(a)

(b) For the frame coordinate system x - y shown in Figure 9 (b)
evaluate the member stiffness sub-matrices for the beam element of (a)

above, orientated as shown in Figure 9(b).

A

G,

4

o ({@ x

'FIGURE 9(b)

QUESTION 12

Figure 10 shows a rigid jointed rectangular Portal Frame subjected
to a horizontal point load applied to joint 2 and a u.d.l. applied to member
2-3,

(1) Determine, using the Stiffness Method

(a) Joint displacements
(b) Member forces
(c) Reactions.

Neglect axial force effects as a first approximation.

(2) Using Moment Distribution determine the member forces
for the frame of Figure 10.

(3) Using a plane frame computer package again determine the
joint displacements, member forces, and reactions for the

frame.
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QUESTION 12 (Contd.)

(4) Compare the results obtained using 1, 2, and 3 above.

3 KkN [m
ISkN®|IIl[lll[l@
T Data :
5™ E = 208 x 106 kN/m
I = 222 x 106 mm4
‘L cols
_ 2
@7777‘ 777@ Aco1s = 12,300 mm
~ 2™ Ty ame = 29% % 10% m*
Ay, = 8540 mm’
eams

FIGURE 10
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"APPENDIX A

ELEMENT STIFFNESS MATRICES

When applying the Stiffness Method it is essential that the
element stiffness matrices be known for the particular members which

constitute the structure to be analysed.

A.1 DISPLACEMENT - FORCE (FLEXIBILITY) RELATIONSHIPS

These relationships will be developed for a planar beam

element of uniform cross-section.

Consider the simply supported beam loaded as shown in Figure

A.1l, i.e. with end moments Mi and M, applied.

J
N

Deformed N.A.

M,

‘FIGURE A.1

From Castigliano's Second Theorem

M 3s
o =5, = s LM aMx ax + ftas aMx dx
EI GA
M 3s
A =fLM§aMx ax + flas %ade
aMJ. j 0 X i 0 X i’ %
EI GA

Substituting the relevant values into the above expressions gives
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A.1 DISPLACEMENT - FORCE (FLEXIBILITY) RELATIONSHIPS (Contd.)

. = L (2M.-M)+ o M.+ M)
4 BEI « 3 ;¢
6, = L (2 M, -M.)+ o (M, +M,)
J 6EL J < GAL < J
Putting
ko = 6ElLo
2

GAL

9, = L
L B—ﬁ [ML(Z + kO) - Mj(l - ko)]

6., = L
T I:Mj @+k) - M1 - ko):]

For no shear ko = 0

6. = L

4 gEr @M -MY

6, = L

I owmr M -MY)

OR

[ 7 B 7 -]

6& 2 -1 Mi

=_L_

0. 6EL -1 2 M,

J J
L. L - T

A.2 RIGID BODY DISPLACEMENTS

Taking these effects into account through reference to Figure

A.2 modifies Equations A.l to Equations A.2

| T

Y
®
} S:

Y Jy
b
¢©’ér A ?:S | i}
L

FIGURE A.2 ’I
8, = L [#.(2 +k)-M(1-k)+(._-386:; )/é]
L —6—E—I- A (o) J (o) jy 2> | N (A'Z)
o = 6_Iﬁf [Mj(z + k) =M (1 - k) + (G- ‘S/Ly)/ﬂ
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A.3 FORCE - DISPLACEMENT (STIFFNESS) RELATIONSHIPS

(a) Moments

Eliminating (Mj) from Equations A.2 '

- =7
M, = 2EI (2+k)e.+(1-k)e,—3(6.-ai)/L
4 _(—iIZ-E )L 2 o 4 o J . ay y |
o r - - -(A.3)
R 2+k) 6 3(6 8 )/;j
= — k 6. + .« = - ’
R A e R
o = - J
Writing
61 = 1- ko . B, = 2 + ko ] 83 = 3
—_— —_— +
1+ 2ko 1+ 2ko 1 2ko
, = [ 6, + 0, - §, -6, )/#]
M, gIF:_I_ _62 t By j 83( iy ekl I .4
= , - §. -6.)/L
M, Zil le 6, + B, 8, = B3,y Ly)/]
For no shear 8, = 1, 8, = 2, and B3 =3
M. = 2EI 26, + 0, - 3(8, -6 L
4 I SN (JY &Y)/J
M. = 2EI o, +26,-3(8, -6.)/L
J T < J ( Jy Ly)/]
(b) Reactions
These are given by
5; = P&',y = (M, +M)
L
S; = P, = -(M. + M,
Ve iy M )
L
Substituting for Mi and Mj
P. = 2EI B 0. + - 28, -8, L
Ly — 3 [L Gj (JY &Y)/J
L ——————————— (A.6)
P, = -2EI 8. +6, - 205, -6.)/L
iy -—563 [& J (jy &Y)/]
L
(c) Axial Force Effects
These are given by
Pix = %A‘— (Cix = 85
------------- (A.7)
ix ;E—A Cix = 85



(d) Combined Effects
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Combining the results of Equations A.4, A.6, and A.7 gives

, EA
AX —L'
P. || o
Ly
Mx 0
.
.| [=Ea
[ | [
P, 0
iy
0. 0
j
- . b

-
Pib
Pib
L
NOTE :
(1) ki1
(ii) k11

0 0 8y
4EIB3 2EIB3 5 +
L 3 2 Ly

2EIB 2EIR
< I
. ,
L L _J Rl
o B i
0 0 8y
—4EIB3 —2E133 .
~ ,
L3 <y
2EI§3 2E18, N
L Jd L 4'J

—

and k22 are symmetric
and k22 are identical

except off diagonal terms of k22 are negative.

(iii) k21 = k12T
Neglecting shear
o —
= 0 0
k11l = 12ET 6EI
0 —/]3 2
L L
0 QE% 4ET
L L
L _
Also k21 = k12T,

.
3

k12

0
-4EI8, 2RI,
3
L 12
-2EIB, 2E18
12 L
0 0
4E183 -4EIB3
3 7
L L
-2EIB,  2EIB,
3
L L
-
din
dy
—r —d
o |
6EI | 3 k22 =
2
L
2EI
L

81
S,
iy
0.
L J
Fg,
x
S,
iy
%
[ -
[ EA ]
2 oo o
0 -12EI —6EI
=12E] —6EL
oL
0 -6EI 4EI
2 L

boassnce: —



A.4 PLANE GRILLAGE

The stiffness sub-matrices are as follow

I u e [
< 0 0 I 0 0 I
0 12E§ 6E§ 0 —12E£ 6E£ 0 12E1
L L L L L
0 6E£ 4ET 0 —6E£ 2EI 0
L L L L
_ 1 L - L
T
Also k21 = kio™.

A.5 RIGID-JOINTED SPACE STRUCTURE

In this case the number of degrees of freedom is doubled and

k11l and k12 are given by

K 7]
EA 0 0 0 0 0
L
12ET 6ET
0 - 0 0 0 5
L L
ki1 =
12ET -6E1
0 o — 0 — 0
L L
cJ
0 0 0 = 0 0
-6EI 4EL
0 0 ———735 0 —r 0
L L
6EL 4EI
0 2z 0 0 0 —2
- L L —
-EA
= 0 0 0 0 0
-12E1_ 6EI
0 0 0 0 —2z
L3 L2
kl2z = -12EI -6EIL
0 0 -——731 0 5 0
L L
-GJ
0 0 0 = 0 0
6EI 2EL
0 0 A 0 —J 0
L2 L
0 —_— 0 0 0 z
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A.5 RIGID-JOINTED SPACE STRUCTURE (Contd.)

k22 k11 with the sign of the off diagonal term negated and

k1zl.

it

k21

A.6 CLOSURE TO STIFFNESS MATRICES

It should be noted that although only a limited range of element
stiffness matrices have been considered in this appendix these relationships

are used in practice to solve a wide range of skeletal structure problems.
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APPENDIX B

STRUCTURAL DYNAMICS

The main purpose of this section is to introduce the topic of
Structural Dynamics using a matrix approach. A general theory of free,

undamped vibrations for structures with many degrees of freedom will be
developed.

STIFFNESS FORMULATION OF THE EIGEN-PROBLEM

Consider the mass-spring system shown in Figure B.1

pr=-mis, m, —125

:-ma'c'.
P2 2%e | m, ;x

Ps=-maxy

~N---43

='m£.“ '
Pf'l n " mn Tx

n

FIGURE B.l

The Equation of motion for the system of Figure B.l can be

expressed in matrix form as follows

o ] [ 0 0 0 0 o | 5]
1 1 1
>, 0 m o= - - - - -0 %,
P 0 0 m - - - - -0 X
Clo= - | 3 ! 1°
| | ' |
| | MASS | !
' l MATRIX : |
| ' ' !
P 0 -=-=-=-=-=---- o BZn
L. - L. -J O —
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'STIFFNESS FORMULATION OF THE EIGEN-PROBLEM (Contd.)

OR

where :

p 1is the forces vector
M is the mass matrix
X 1is the acceleration vector.

The general force-displacement relationship can be written as

Kx = p

hence, Equation B.l becomes

KX = -MX f=======- (B.2)

Unfortunately Equation B.2 is not yet in a usable form. To

remove the time dependence associated with X assume

x, = X1 sin wt T
X'Z = X, sin wt - = = = e = = - (B.3)
i ;
X = X sin  wt
n n Py
where
Xl’ Xyy = =-==--~ Xn is the amplitude of

vibration of masses and w is the frequency of the system.

Differentiating Equation B.3 with respect to time twice results
in
.o 2 .
X = -u° sin wt X,

Hence from Equation B.2 we get

KX = o M fo-ocoeoe—- (B.4)

There are two points to be noted concerning Equation B.4. These
are
(i) The equation reduces the Equations of Motion from being

time dependent to being amplitude dependent.
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STIFFNESS FORMULATION OF THE EIGEN-PROBLEM (Contd.)

(ii) Equation B.4 is now obviously an eigenvalue problem in
which there are n eigenvalues i.e. wz or frequencies of vibration.

Each frequency is associated with an eigenvector (mode vector).

To determine the eigenvalues of Equation B.4 we can rewrite it

foa] ] e

Hence, for non-trivial solutions of Equation B.5 to exist

thus

2
K - oM

2
resulting in a set of w which are the eigenvalues of the matrix. The

vibration modes associated with each frequency will then be the eigenvectors.

It should also be noted that Equation B.5 can be written in

the form '
~1 2
Ed K-w I] X = 0

EXAMPLE B.1 - TWO DEGREE OF FREEDOM SYSTEM

Determine the eigenvalues (frequencies) and eigenvectors (modes)

for the two degree of freedom mass-spring system shown in Figure B.2.

k,=20
25| m: *’Ca
FIGURE B.2

SOLUTION

The problem will be solved in a step by step procedure for
clarity.

(a) Stiffness Matrix

The Stiffness Matrix is formed in a similar manner to that
previously described, i.e. the Primary Stiffness Matrix is first formed
and then reduced to the Structure Stiffness Matrix by invoking constraint
conditions. Hence

40 - 20

=20 20
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SOLUTION (Contd.)
OR

I
P, 40 1 =20 X

20 X

|

- = |---7--- -
I
L

P, =20

(b) Mass Matrix

This is simply a diagonal matrix of the masses taken in turn.

(¢) Equations of Motion

The two equations of motion are given by the relationship

KX = o MX
OR
40 =20 X1 _ u)2 5 0 . X1
-20 20 X, 0 2.5| | X,

Taking the right hand side of the above system of equations to

the left hand side and subtracting results in

2
40 - 50 -20 X,

-20 20 - 2.50° X

(d) Eigenvalues
Expanding the determinant of the matrix of Equation B.6 to

obtain the non-trivial solutions gives

2
(40 - 502) (20 - 2.50) - (20.20) = O == = - - = (a)
800 - 2000w+ 12.50" - 400 = O
L 2
12.50 - 2000 + 400 = 0 - - — = — = (b)

Dividing Equation (b) thru by 12.5

2
W' - 160° +32 = 0
2 . .
which is a quadratic equation in w . The roots of this equation, i.e. the

eigenvalues, become

2 42 - J2V)
2 s2+ 42V

€
n
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(Contd.)

(e) Eigenvectors

Hence
1

Expanding the first row of Equation 2.20 thus

2
(40 - 5w ) X1 - 20 X2 = 0

X, = 40 =50 X, = 8-w X = --=------ ()
20 %

, .
Substituting for w in Equation (c¢)

8-8+4 J2 X1

2 A

X, = J2" x

X

1X1

1X2 I

]
=

X

which is the first eigenvector or mode of vibration of the system.

When
Wk o= 4@+ I2)
then
X = 8-8-= 4'~JZ X
2 A 1
X, = - 42 x
hence

2X 1

I

the second eigenvector or mode associated with the higher eigenvalue or

frequency.

ALTERNATIVE FORMULATION OF THE EIGEN-PROBLEM

It has already been shown that

KX = o MK 0 mmmmmm = (B.7)

Premultiplying both sides of Equation B.7 by K™ results in

KMk = 1 X

2
w
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ALTERNATIVE FORMULATION OF THE EIGEN-PROBLEM (Contd.)

but

K} = F = Flexibility Matrix.

Hence the alternative form of the Equations of Motion become

In a number of cases it is not convenient to form the stiffness

matrix and an alternative flexibility approach is favoured.

EXAMPLE B.2 - BEAM VIBRATIONS

Determine the frequencies and vibration modes for the simply
supported concrete beam shown in Figure B.3. E for the material is

y
2.5 x 107 kN/mz, I for the section is 0.06 m and m, =m, = 0.7 Mg.

= ™ @ %
I

FIGURE B.3

SOLUTION

A step by step procedure of solution will once again by used.
A table of influence coefficients has been used to obtain the coefficients
of the flexibility matrix.

(a) TFlexibility Matrix

Figure B.4 shows the beam with its associated displacement
S

coordinates andiloads.

FIGURE B.4
v, 1 3.57 3.14 P,
= EI
v, 3.14 3.57 P,
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SOLUTION (Contd.)

(b) Equations of Motion

In this case the two Equations of motion are given by

3.57 3.14 0.7 0 v, vl
1 = 1
EI | 3.14 3.57 0 0.7 v 2 v
2 w 2
Writing
A = EI
2
w

and expanding the above matrix relationship
2,5 -2 2.2 v
2.2 2.5 - A v

(c) Eigenvalues

Expanding the determinant of the matrix of Equation B.9 gives

2.5 -2 (2.5 -2 - 2.7 = o
6.25 - 50 + A2 — 4,48 = O
A2 5+ 1.41 = 0

which is a quadratic in A. The roots of this equation are

Al = 4,7
Az = 0.3
from which
2
wl = EI
4'7
w22 = EI
0.3
hence
M \
o) = |20 %25 x 107 = 800 rad/sec.
4.7
- =\
w, = 0.06 x 2.5 x 10 = 12,560 rad/sec.
N 0.3
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SOLUTION (Contd.)

(d) Eigenvectors

Taking the first root i.e. >‘1 = 4,7 and expanding the first
row of Equation 2,23

-2.2v1 + 2.21)2 = 0
v =]1
1
For Az = 0.3
2.2v, + 2.Zv2 = 0

v, = -V,
2v =]1
-1

MODES OF VIBRATION

Figure B.,5 illustrates diagrammatically the two modes of vibration

of the beam,
& o
f LJ j -

4.7

m Symmetric
-1
i : Az =0.3
W
Skew Symmetric . l

FIGURE B.5

N.
“.

JEEEE
|—->J
il

CLOSURE TO STRUCTURAL DYNAMICS

The basics of matrix structural dynamics have been presented in
this Appendix in that the single case of free, undamped vibrations has been

considered.

It should be noted that the foregoing presentation produces the
natural frequencies of vibration of the system together with the relative
displacements of the masses. To obtain the actual displacements of the
masses at some time t however, requires further work which is not considered

warranted at this stage.
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CONCLUSION

Only the Direct Stiffness Method has been considered in this book
mainly because it lends itself so amicably to automatic computational
techniques, It should be constantly borne in mind by the student that to
extract the most from the application of the Stiffness Method, access to a
computer with reasonable core store is absolutely essential. The Stiffness
Method, other than for the most trivial problems, is not a recommended
hand method of solution. The method comes into its own for obtaining
solutions to problems with many degrees of freedom. It will no doubt have
been observed that the word indeterminacy did not have to be mentioned during
formulation. This factor in itself is highly significant when one is intent
on understanding the fundamental structural concepts of equilibrium and

compatibility.

The contents of this book are considered by the author to be a
minimum coverage of undergraduate requirements for matrix methods of
structural analysis. The work presented in the book constitutes the basis
of a 2 hour/week, one semester course for all 3rd year Civil Engineering
students at C,L.A,E., It is felt that should the student choose to discontinue
his studies of structures in the 4th year of the Civil Course he should have
at least sufficient basic knowledge of modern methods of structural analysis

to undergo a self educating programme on graduation,
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