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2. 

PREFACE 

This book is  not  intended t o  replace standard t e x t s  on the  subjects  

of Matrix Algebra and Matrix Methods of S t r u c t u r a l  Analysis but  r a t h e r  t o  

supplement them. The book has been prepared i n  an endeavour t o  present  

c l ea r ly  and concisely the b a s i c  concept of the  S t i f f n e s s  Method without 

cloaking i t  wi th in  a haze of mathematical mystique. Further,  i t  i s  hoped 

t h a t  by using simple examples and genera l isa t ions  t h e  f u l l  power of the  

method is  rea l ised .  The chapter dealing with matrix a lgebra  has been 

included under one cover primari ly f o r  the  convenience of the  student .  

I n  a quest  f o r  s impl ic i ty  of presenta t ion much of the  elegance of 

the matrix formulation i s  l o s t  by not  using a rigorous matrix approach. 

However, i t  i s  f e l t  i n  the  f i r s t  ins tance  i t  i s  the  concepts t h a t  are 

important, and i n  order t o  present  these c l e a r l y  some l o s s  of r i g o r  i s  

warranted. Having digested the  fundamentals the  task  of f u r t h e r  reading 

and wider appreciat ion can then be pursued a t  l e i su re .  

I n  t h i s  age of the computer revolution i t  i s  e s s e n t i a l  t h a t  engineers 

a v a i l  themselves of t h i s  "number crunching" phenomena. I n  terms of 

S t r u c t u r a l  Engineering t h i s  means t h a t  the Designer has been l i b e r a t e d  and 

can now devote h i s  f u l l  a t t e n t i o n  t o  t h e  b a s i c  problem of s e l e c t i o n  of 

s t r u c t u r a l  form and no longer be constrained t o  a "plane frame mentality" 

a t t i t u d e  which was, unfortunately,  t h e  product of having t o  fumble with 

tiresome hand solut ions .  

F i n a l l y , i t  could be s a i d  t h a t  t h e  S t ruc tu re  S t i f f n e s s  Matrix is  the  

h e a r t  and sou l  of any s t r u c t u r a l  system and i f  any s o  ca l l ed  "feel" is t o  

be developed f o r  s t r u c t u r a l  response i t  must be a t t a ined  through the  

f a m i l i a r i t y  the  Engineer has f o r  the  St ructure  S t i f f n e s s  Matrix and not  h i s  

knowledge of individual  member response. This matrix i s  s o  fundamental t o  

t h e  s t r u c t u r e  it is envisaged t h a t  i n  the  fu tu re  c e r t a i n  parameters w i l l  be 

fed  i n t o  a computer program and the optirmun S t ruc tu re  S t i f f n e s s  Matrix w i l l  

be generated together with a v i s u a l  d isplay  of the  associated s t r u c t u r a l  form. 



CHAPTER 1. 

MATRIX ALGEBRA. 

1.1 INTRODUCTION 

Matrix algebra has a number of decided advantages over o the r  

methods of formulation p a r t i c u l a r l y  when applied t o  problems i n  Engineering, 

Physics and the  Socia l  Sciences. Its beauty of exposit ion when portraying 

the  physical  problem i s  c e r t a i n l y  one such advantage. This is  born out  i n  

t h e  clearness and b rev i ty  of presenta t ion.  Matrix formulation, once f u l l y  

grasped, a l s o  allows a conceptual understanding of important p r inc ip les  t o  

a depth no t  a t t a i n a b l e  using supposedly simpler  bu t  less s p a t i a l l y  

desc r ip t ive  techniques. 

1.2 DEFINITION AND EXAMPLES OF MATRICES 

Different  people, a l l  of whom a r e  aware of what a matr ix  is  i n  t h e  

mathematical context of the  word, could w e l l  conceive d i f f e r e n t  p ic tu res  i n  

t h e i r  mind of the  physical  representa t ion of such a matrix. Although t h e  

mind p i c t u r e  would be b a s i c a l l y  t h e  same f o r  each person, the  model the  

matr ix  represented i n  each case could be e n t i r e l y  d i f f e r e n t .  The p a r t  of 

the v i s u a l i s a t i o n  t h a t  would be the  same f o r  each person would b e  t h a t  

immediately the  word matrix was mentioned each would v i s u a l i s e  i n  general  

"a rectangular  ar ray  of numbers." The di f ference  i n  thought p a t t e r n s  

would a r i s e  i n  the  associa t ion of the  a r ray  with a physica l  model. For 

ins tance ,  t o  some people t h e  matrix may represent  a t a b l e  of r e s u l t s  whi l s t  

some may see i t  simply a s  a rec tangular  a r ray  of numbers. Since a matrix 

is such a general  quant i ty  it is b e s t  t o  think of i t  i n  t h e  last way. 

1.3 DEFINITION 

A matrix can be defined as an a r ray  of terms such a s  those shown 

i n  Equation 1.1 



Each of all through am i s  termed an ELEMENT of the  matrix A.  An element 

can represent  a pure number, a constant ,  a va r iab le  o r  a combination of a l l  

three .  The matrix A  of Equation 1.1 contains m rows and n columns. The 

ORDER OF A  MATRIX i s  defined by the  number of rows times the  number of 

columns i t  contains. I n  t h i s  case A  i s  an m x n matrix. 

The double subsc r ip t  associated with each element of a matrix 

defines the  pos i t ion  of the  element i n  the  array.  For example, the  element 

a i s  s i t u a t e d  i n  the  1 t h  row and j t h  column of A. The f i r s t  subsc r ip t  
i j 

always defines the  - row and the  second the  column with which the  element is  

associated.  

The p a r t  of A  containing elements of the  type a l l  (where i = j) 

is c a l l e d  the  diagonal of A  and ail is  c a l l e d  a diagonal element. 

1.4 EXAMPLES OF MATRICES 

A s p e c i f i c  case of A could be given by Equation 1.2. 

A  i n  t h i s  case i s  of order (3x4) and t h e  p a r t i c u l a r  element 

"is = a24 
= 0. I f  A reduces t o  a matrix consis t ing  of one row and one 

column only i.e. t o  a l l  a SCALAR r e s u l t s .  

I f  on the  o t h e r  hand A reduces t o  a s i n g l e  row o r  a s i n g l e  column 

a VECTOR r e s u l t s .  

" =  l : l  = a column vector  of order (5x1) 

A = 4 6 8 lg = a row vector  of order (1x5) 

Current p r a c t i c e  is t o  disregard t h e  row vector  and r e f e r  t o  a 

vector  simply as a column vector.  

Re-examination of t h e  row and column vector  A  shows t h a t  the  column 
0 

vector is the  row vector  turned through 90 o r  vice versa.  I n  the  jargon 
T 

of matrix algebra one is s a i d  t o  be t h e  TRANSPONSE (wri t ten  A ) of t h e  other.  

Extending the  above idea  t o  t h e  matrix of Equation 1.1 simply means t h a t  

rows and columns a r e  interchanged and t h a t  the  transpose of A  is  given by 



1.5 TYPES OF MATRICES 

There a r e  a number of matrices which appear cons i s t en t ly  when 

applying matrix algebra t o  problems. The more important of these  w i l l  now 

be b r i e f l y  discussed. 

NULL MATRIX. 

A l l  the  elements of t h i s  matrix are zero. 

SQUARE MATRIX. 

When t h e  number of rows, m, is equal  t o  t h e  number of columns, n,  

of a matrix i t  is s a i d  t o  be square and of order n. 

It should be noted t h a t  only square matrices have determinants. 

SYMMETRIC MATRIX. 

When a 

symmetric. 

square matrix exists such t h a t  = a . .  
J 1  

then it i s  s a i d  



SKEW-SYMM3TRI.C MATRIX. 

A matrix A i n  which aij = aji and aii = 0 is  a skew o r  

antisymmetric matrix. 

TRIANGULAR MATRIX. 

A square matrix f o r  which a l l  the  elements above o r  below the  

leading diagonal zero is  sa id  t o  be e i t h e r  a lower o r  an upper t r i angula r  

matrix respectively.  

Lower Triangular Upper Triangular 

DIAGONAL MATRIX. 

This is  a square matrix i n  which a l l  the  off  diagonal elements 

a re  zero. 

SCALAR MATRIX. 

This is a diagonal matrix f o r  which a l l  of the diagonal elements 

a re  the  same. 

A = 

UNIT MATRIX. 

A s c a l a r  matrix i n  which a l l  of t he  diagonal elements are unity is 

ca l led  a un i t  or i den t i t y  matrix. 



7. 
1.6 MATRIX OPERATIONS 

I n  t h i s  s e c t i o n  the  bas ic  mathematical operat ions which can be 

performed i n  matrix a lgebra  w i l l  be b r i e f l y  discussed. It w i l l  be seen 

t h a t  t h e  same operations used i n  s c a l a r  a lgebra  s t i l l  apply. However t h e i r  

appl ica t ion t o  matrices i s  completely general.  

EQUALITY OF MATRICES 

The concept of equa l i ty  is  the  most fundamental r e la t ionsh ip  of 

any algebra and it i s  a l s o  probably the  most d i f f i c u l t  t o  define.  

Two matrices a r e  s a i d  t o  be equal  = t h e y  a r e  of the  same order 

and i f  every element of one equals the  corresponding element of t h e  other.  

3 Equation 1.3 s t a t e s  t h a t  a = 1, b = 5, c = x e t c .  

The equa l i ty  of matrices of d i f f e r e n t  order is  not  defined. 

The bas ic  blasphemy of matrix a lgebra  is  t o  equate two matrices 

of d i f f e r e n t  order. 

1.7 ADDITION AND SUBTRACTION 

Two matrices of the  same order may be added together  and t h e i r  

sum is defined as a matrix of t h e  same order every element of which is  the  

sum of the  corresponding elements of t h e  o r i g i n a l  matrices. 

Subtaction i s  defined i n  a s i m i l a r  manner. 

1.8 SCALAR MULTIPLICATION 

The product of a scalar and a matrix is defined as a matrix of 

the  same order i n  which every element i s  equal  t o  t h e  product of each 

element and the  s c a l a r .  



7 

2 x [ ; -1 = -1 
1.9 MATRIX MULTIPLICATION 

The product of an (mxn) matrix A and an (nxq) matrix B is defined 

as an (mxq) matrix C i n  which a typical  element C i j  i s  obtained from the sum 

of the products of the elements of the -- i t h  row of - A and the respective 

elements of the j t h  column of B. 

A X B  = C 

To obtain the element C21 requires multiplying the elements of 

the second row of A by the elements of the f i r s t  coluum of B and adding,thus 

(4x2) + (5x1) f (6x-1) = 8i-5-6 7. 

When matrices s a t i s f y  the requirements fo r  multiplication they 

a re  sa id  t o  be conformable f o r  multiplication.  It should be noted tha t  

although matrices may be conformable i n  one order they may not be taken i n  

the reverse order. 

1.10 MATRIX DIFFERENTIATION 

Matrix d i f fe ren t ia t ion  simply involves the d i f fe ren t ia t ion  of 

each element of the matrix. 



1.11 MATRIX INTEGRATION 

Integration of matrix is  also done by integrat ing each element 

of the matrix. 

The need may a r i s e  fo r  the integrat ion of more complex expressions such as 

To perform such an integrat ion requires tha t  the matrix multiplication f i r s t  

be performed then the integrat ion performed as described i n  sect ion 4.6. 

1.12 MATRIX INVERSION 

Matrix inversion is analogous t o  division i n  s ca l a r  algebra. 

Consider the s ca l a r  equation 

i .e .  the  reciprocal of b is equal t o  a. 

Consider now the matrix equation 

Since the above equali ty does e x i s t  although i t  is not permissable t o  write 

i t  is acceptable t o  wri te  A = B-l 



I 10. 

Hence although d iv i s ion  and invers ion are analogous they are c e r t a i n l y  not  

I synonymous. 

It should be noted t h a t  only square matrices possess an inverse  

I and t h a t  the  inverse  is  l t s e l f  square. Also only non-s-ingular matrices 

can be inver ted  i.e. matrices whose determinant is  non-zero. 

By d e f i n i t i o n  the  inverse  of a matrix is  obtained by the  

appl ica t ion of equation 

A -1 - - 1 (1.4) 

DET. A 

EXAMPLE 1. Find t h e  inverse  of t h e  matrix 

A = -2 = D e t .  A. 

To obta in  the  ad jo in t  of A requires  t h a t  the  cofactors  of A be 

f i r s t  determined. However, before  f inding t h e  cofactors it is necessary t o  

.define another term used i n  determinant theory i.e. the  minor of a 

determinant. 

Returning t o  matrix A, its determinant can be w r i t t e n  as 

The minors of A a r e  obtained by suppressing a l l  the  elements of 

the  i t h  row and j t h  column of the  determinant, thus Mij remains. Hence f o r  A, 

t he  minors become 



11. 

I TO obtain the  cofactor of any element a . .  requires assigning the  correct  
1J - 

s ign t o  t h e  associated minor, thus 

I 
I 

f o r  t h i s  example 

the  adjoint  of A then becomes t h e  transpose of t he  matrix made up of the  

cofactors of A hence 

resu l t ing  i n  

r,ll C2 1 c 3 q  

Evaluating each of t he  cofactors of A r e s u l t s  i n  

Adj. A = 

1 

C i j  = 

-1 -1 

C12 C22 
C32 I 

taking the  transpose of C i j  gives 

by def in i t ion ,  the  inverse of A is determined by dividing each of t he  elements 

of Adj. A by A 



1.13 THEOREMS OF MATRIX ALGEBRA 

When learning any new mathematical process one always has  t o  

become fami l i a r  with the  b a s i c  r u l e s  associa ted  with t h e  successful  

appl ica t ion of t h a t  process. Matrix a lgebra  is no exception t o  t h i s  r u l e  

and a knowledge of t h e  following theorems is  considered e s s e n t i a l  i f  i t  i s  

hoped t o  apply matrix a lgebra  t o  r e a l  problems. 

THEOREM 1. 

Addition of matrices is  both commutative and assoc ia t ive .  

A+B = B + A (commutative) 

(A+B)+C = A + (B+C) (associa t ive)  

THEOREM 2. 

Sca la r  Mul t ip l ica t ion of matrices has the  following bas ic  

proper t ies  

( I )  (a + B) A = a A +  B A 

THEOREM 3. 

Matrix mul t ip l i ca t ion  is  d i s t r i b u t i v e  over addit ion.  

A (B+C) = AB + AC 

(A+B) C + AC + BC 

THEOREM 4. 

Matrix mul t ip l i ca t ion  is  assoc ia t ive .  

ABCD = E 

(AB) (CD) = E 

(A(BC)D) = E 

THEOREM 5. 

Matrix mul t ip l i ca t ion  i s  no t  - commutative. 

A B  # AB 
L; 2, 

the  ways i n  which the  above can occur i s  shown symbolically below 

CASE 2 



CASE 3 

i f  AB = BA 

then it is commutative e.g. 

a lso 

A I  = A = I A  (I = A uni t  matrix of same order as the square matrix A) 

and A 0  = 0 

the above behaviour is once again analogous t o  t ha t  observed i n  s c a l a r  

algebra. 

THEOREM 6. 

The vanishing of the product of two matrices does - NOT imply tha t  

e i t h e r  of the matrices is a - n u l l  matrix. 

AB = 0 

i n  the above relationship nei ther  - A nor - B has t o  be zero which is  qui te  

d i f fe ren t  from the analogous s i t ua t ion  i n  s ca l a r  algebra. 

0 

-4 -2 

THEOREM 7. 

AB = AC does NOT imply tha t  B = C. - 
It can be shown t h a t  f o r  A chosen ARBITRARILY then B = C. 

1.14 PRODUCT O F  TRIANGULAR MATRICES 

Before continuing with the statement of any fur ther  theorems of 

matrix algebra i t  is as  wel l  t o  mention the above topic. 

Lower Triangular. 



Upper Triangular 

In  the  case of a diagonal matrix 

1.15 SOME PROPERTIES OF TRANSPOSED MATRICES 

The most s ign i f ican t  of these properties can be s t a r t ed  thus 

(111) - I f  A is  symmetric then 

AT = A 

I f  AT = A then A i s  symmetric. - 

THEOREM 8. 

The transpose of the sum of two matrices is equal t o  the  sum of 

t h e i r  transposes 

( A + B ) ~  = A T + B T  

THEOREM 9. 

The transpose of the  product of two matrices is  equal t o  the  

product of the transposed matrices i n  the REVERSE ORDER. 

This is the FIRST REVERSAL LAW of matrix algebra. - 

THEOREM 10. 

The product of a square non-singular matrix and its inverse 

taken i n  e i t h e r  order is  equal t o  a un i t  matrix. 

P' A = AA-l = 1. 

THEOREM 11. 

The inverse of a matrix is UNIQUE. 

This s t a t e s  tha t  f o r  a square matrix A there  e x i s t s  only = inverse  
A-1. 



THEOREM 11. (Contd.) 

PROOF: 

- 1 - 1 
assume tha t  there a re  two inverses A 1 "d A2 therefore 

-1 
A1 A = I  

- 1 A;! A = I  

- 1 - 1 
hence A1 A =  A2 A 

- 1 
post multiply the system by A1 

but 

thus I = A i l 1  

hence A;' 
- 1 = A2 

THEOREM 12. 

The inverse of the inverse of a matrix i s  equal t o  i t s e l f .  

(Am1) -l = A. 

THEOREM 13. 

The inverse of the  product of two matrices is equal t o  the product 

of the inverses taken i n  the reverse order. 

(AB)-l = B-l A-1 

t h i s  is  the second reversal  of matrix algebra. 

THEOREM 14. 

For any non-singular matrix A 

- 

THEOREM 15. 

The inverse of a symmetric matrix is i t s e l f  symmetric. 

1.16 RANK OF MATRIX 

The concept of rank i s  of fundamental importance i n  matrix algebra. 

Two areas i n  which th6rank of a matrix is of par t icu la r  importance f o r  a 

complete understanding of the  concept involved are  as follows : 

(1) I n  the solut ion of systems simultaneous equations 

(2) I n  explaining determinancy as  applied t o  s t r u c t u r a l  systems. 



DEFINITION : 

I f  - a l l  the determinants of order grea te r  than r contained i n  the 

array of a matrix a re  zero while a t  l e a s t  ONE DETERMINANT of order r is 

d i f fe ren t  from zero, the matrix is sa id  t o  be of - rank r. 

Example 2. 

Find the rank of the matrix 

SOLUTION. 

Since only square matrices have a determinant the rank i n  t h i s  

case cannot be greater  than 3. 

A l l  of the above determinants are  zero. Therefore, the  rank of the matrix 

must be less than 3. -- 
Considering now the determinants of order 2 

NOTE : 

The evaluation of the  determinants of the given array must be 

done i n  an orderly manner. 

1.17 LINEAR SIMULTANEOUS EQUATIONS 

There a re  many instances i n  engineering and science i n  par t icu la r ,  

where the response of the  physical system can be represented by a system of 

simultaneous equations. 



1.17 LINEAR SIMULTANEOUS EQUATIONS (Contd.) 

Consider as an example of such a system the following s e t  of 

l i nea r  equations 

I f  a l l  the elements of the R.H.S. of the s e t  is equal t o  zero 

then the system is sa id  t o  be homogeneous. I f  on the other hand a t  l e a s t  

ONE element of the R.H.S.is d i f fe ren t  from zero the system is non-homogeneous. - 
A set of values xl, x2, --- x n tha t  s a t i s f i e s  the system 

simultaneously is sa id  t o  be - A SOLUTION t o  the system. 

A solution consist ing of a l l  zeros is referred t o  as the TRIVIAL 

solution.  

A system is sa id  t o  be CONSISTENT i f  t h e i r  exists a t  least one - 
solution (including the t r i v i a l  solution) fo r  the system and is  sa id  t o  be 

INCONSISTENT otherwise. 

For a l i nea r  system there ex i s t s  e i t h e r  a UNIQUE solut ion o r  

INFINITELY many solutions.  

Representing the equations of 1.5 i n  matrix form re su l t s  i n  

or  i n  general 

----c---- 

A = Coefficient matrix of the  system. 

x = Solution vector. 

b = NO par t icu la r  name i n  general although i n  a cer ta in  f i e l d  i t  

may have a name associated with i ts  function. 



1.17 LINEAR SIMULTANEOUS EQUATIONS (Contd.) 

The matrix formed thus 

is  cal led the AUGMENTED MATRIX. 

THE FUNDAMENTAL THEOREM. 

A system of m l i nea r  simultaneous equations i n  n unknowns is 

consistent - IF  the co-ef f i c i e n t  matrix and the augmented matrix have the 

same RANK r. Furthermore, i f  r = n then the system has a unique solut ion - 
and i f  r is  l e s s  than n the system has i n f i n i t e l y  many solutions.  -- 

I n  order t o  explain "the fundamental theorem" i n  physical terms 

consider f i r s t  of a l l  the system of simultaneous equations of Equations 1.6. 

I n  matrix form Equations 1.6 can be wri t ten 

hence 

= co-ef f i c i e n t  matrix 
12  11 

= augmented matrix 

The rank of the co-efficient matrix is 2 which is a l so  the rank 

of the augmented matrix. Since the number of unknowns is  2 then r = n. 

Hence a unique solution to  the system of equations must exist. This can 

be i l l u s t r a t e d  graphically as follows 
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GEOWTRICAL REPRESENTATION OF EQUATIONS (1.6) 

Consider now the  system of equations given i n  Equations 1.7 

i n  matrix no ta t ion  

from which 

r coeff = 1, r aug = 1 

. i n f i n i t e l y  many so lu t ions  e x i s t .  

The system given i n  Equation 1 .7  can be represented graphical ly  as follows 

GEOMETRICAL REPRESENTATION OF EQUATIONS 1.7 

SYSTEMS WITH MORE THAN ONE R.H.S. 

There a r e  cases when t h e  R.H.S. of t h e  system of simultaneous 

equations can cons i s t  of more than one vector .  Such is t h e  case i n  

S t r u c t u r a l  Analysis when the  s t r u c t u r e  i s  subjected t o  a number of d i f f e r e n t  

load cases e . g. dead, l i v e ,  crane, and wind loads.  

For such a case the  matrix re la t ionsh ip  would appear as 
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Theoretically,  a t  l e a s t ,  the R.H.S. can be a s  l a rge  a s  you l ike .  

SOLUTION OF SYSTEMS OF SIMULTANEOUS EQUATIONS. 

Consider the  system of simultaneous equations given by the  

matrix re la t ionship  

A x - - b - - - - - - - - ( l eg )  

I f  the  system has a unique solut ion then A is non-singular, 

Therefore, pre-multiplication of Equation 1.9 by A-' r e s u l t s  i n  

where A-' is  the  inverse  of A. 

In obtaining the so lu t ion  t o  a system of simultaneous equations 

the  inverse of the  matrix is  NEVER determined because of t he  excessive 

amount of work involved. 

The usual procedure is t o  r e so r t  t o  a NUMERICAL METHOD t o  obtain 

a solution.  Three such numerical methods successfully applied t o  the  f i e l d  

of S t ruc tura l  Analysis a re  Gauss Elimination, Gauss - Seide l  I n t e r a t i on  and 

the  Cholesky Square-Root method. I n  t h i s  chapter only one method, t h a t  is, 

the  Gauss Elimination w i l l  be considered. 

EXAMPLE 3. 

Solve the  following system of simultaneous equations using Gauss 

Elimination. 
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SOLUTION. 

Writing t h e  system of equations i n  matrix form 
I 

L _1 
Step 1. 

Se t  up the  augmented matrix 

F i r s t  
P ivot  

Step 2. 

Divide the  f i r s t  row of the  augmented matr ix  by t h e  p ivo t  i.e. 

by al l  t o  reduce the  p ivot  element t o  unity.  

Step 3. 

Add s c a l a r  mul t ip les  of t h e  elements of each row t o  the  elements 

of the  f i r s t  row t o  reduce a l l  of the  elements i n  t h e  f i r s t  column t o  zero. 

NOTE : 

a21 is zero hence no operat ion is c a r r i e d  out  on t h e  second row. 

a31 and a l l  o the r  elements of the  t h i r d  row a r e  mul t ip l ied  by (+I) and 

added t o  t h e  corresponding elements of the  f i r s t  row t o  form t h e  elements 

of t h e  t h i r d  row. 

Step 4. 

A new pivot  a22 i s  now se lec ted  and s t e p  2 performed. 

-0. 0.4 
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Step 5. 

Step 3 is  now c a r r i e d  out  on t h e  matrix 

0 -0.5 ; y; -!;j 
The s t e p s  2 through 5 are those s t eps  associa ted  with t h e  forward 

el imination and r e s u l t  i n  reducing the  o r i g i n a l  c o e f f i c i e n t  matrix t o  an 

upper t r i a n g u l a r  matrix. 

Step 6. 

Add a proport ion of the  l a s t  row t o  the  one before  last i n  order 

t o  make the l a s t  bu t  one element of the  last column of t h e  CO-EFFICIENT - 
matrix zero. Proceed t o  make t h e  l a s t  column of the  co-eff ic ient  matr ix  

zero. 

Step 7. 

By taking appropriate scalar mul t ip les  of t h e  l a s t  b u t  one row 

reduce t h e  elements of t h e  second last column of the  co-eff ic ient  matr ix  

t o  zero. 

Continue t h e  process u n t i l  t h e  matrix takes the  form 

0 Q 

0 

Steps 6 and 7 are those s t e p s  associa ted  with t h e  backward subs t i tu t ion .  

I n  the example j u s t  attempted t h e  so lu t ion  t o  the  system of 

simultaneous equations is given by 



23. 

1.18 EIGENVAEUES AND EIGENVECTORS 

The eigen-problem is one of tremendous importance i n  many 

branches of engineering as w e l l  a s  i n  a number of o the r  q u a n t i t a t i v e  type 

d i s  c i p l f  nes . 
The c l a s s i c a l  eigen-problem of engineering probably occurs i n  

the  f i e l d  of dynamics. I n  t h i s  context  it e n t a i l s  a s tudy of frequencies 

(eigenvalues) and associa ted  modes (eigenvectors) .  This t o p i c  w i l l  be 

pursued f u r t h e r  i n  Chapter 2 of t h i s  book. 

Consider the  re la t ionsh ip  

i n  which A is a square matr ix  and x and y a r e  vectors  of t h e  same dimension. 

The following quest ion is now posed concerning Equation 10. 

Is it poss ib le  f o r  x t o  be transformed t o  a s c a l a r  mul t ip le  of i t s e l f .  If 

t h i s  is  s o  then w e  r equ i re  a s c a l a r  ( A )  such t h a t  

The above re la t ionsh ip  can be rewri t ten  thus 

A non- t r iv ia l  s o l u t i o n  of Equation 1.11 exists - IFF the  coef f i c ien t  matrix 

is s i n g u l a r  f o r  a homogeneous system of equations. Hence 
I I 

-(I .  12) 

o r  i n  expanded form 

which is the  c h a r a c t e r i s t i c  equation of A and is  a polynomial so lu t ion  i n  A.  

Expansion of Equation 1.13 r e s u l t s  i n  t h e  following set of roots  

(eigenvalues) f o r  which t h e  system of simultaneous equations possess non- 

zero so lu t ions  

X 
h2, . A3 - - - - - - X i - - - - - .  A 1, n. 

Associated with each X w i l l  be a so lu t ion  of the  form 

1X, 2X, gX, - - - - - - i X  - - - - - n 
X 
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Where lX, etc. is a vector  thus 

and a r e  the  eigenvectors of the  matrix. 

SOME PROPERTIES OF EIGENVALUES AND EIGENVECTORS 

(a) EIGENVALUE ZERO 

This means t h e  matrix is  s ingular .  That is, a t  least one of 

the  equations i s  l i n e a r l y  dependent and can be removed from t h e  set. 

(b) REPEATED ROOTS 

I n  t h i s  case one value of X is  repeated n times. For a w e l l  

behaved system two eigenvalues r e s u l t s  i n  a two dimensional space a s  a 

so lu t ion ,  th ree  i n  a th ree  dimensional space, etc. 

(c)  SIMPLE EIGENVALUE 

A s i n g l e  eigenvalue is repeated only once i n  t h e  set of eigen- 

values of t h e  matrix. 

(d) r - FOLD EIGENVALUES 

These a r e  eigenvalues which a r e  repeated r t i m e s .  

(e) DISTINCT EIGENVALUES 

Consider t h e  following set of eigenvalues 

2 Fold 3 Fold 2 Fold Simple 

which result i n  

where repeated roots  a r e  used only once. 

( f )  EIGENVECTORS - 
The eigenvectors associa ted  wi th  a p a r t i c u l a r  eigenvalue a r e  

usual ly  normalised i.e. they a r e  converted i n t o  a u n i t  vector .  
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(f)  EIGENVECTORS (Contd. ) 

Exam le 

Figure 1 shows an element subjected t o  a s t a t e  of plane stress. 

It is required t o  determine the  p r i n c i p a l  stresses and the  associa ted  

planes on which they a c t .  2 

t 
FIGURE 1 

The stress tensor  f o r  the  above state of stress can be w r i t t e n  a s  

The c h a r a c t e r i s t i c  equation is  given by 

which on expanding becomes 

The so lu t ion  of t h e  above quadrat ic  equation gives 

which a r e  the  eigenvalues. 

The associa ted  eigenvectors a r e  determined by s u b s t i t u t i n g  each 

root  separa te ly  i n t o  t h e  c h a r a c t e r i s t i c  equation thus 



1.18 EIGENVALUES AND EIGENVECTORS ( ~ o n t d . )  

(f)  EIGENVECTORS (Contd. ) 

Also 

Hence the element is or ien ta ted  a s  shown i n  Figure 2. 

FIGURE 2 \ 

From t h e  example i t  can be seen t h a t  the determination of 

p r inc ipa l  stresses is i n  f a c t  an eigen-problem. Fur ther ,  i t  is  evident  

t h a t  t h e  magnitude of t h e  p r i n c i p a l  stresses a r e  the  eigenvalues and t h e i r  

d i rec t ion  the  eigenvectors . Problems deal ing with p r i n c i p a l  s t r a i n s  and 

second moments of areas  can be solved i n  a similar manner. 

1.19 CONCLUSION 

I n  the  foregoing many important aspects  of matrix algebra have 

had t o  be omitted. However, i t  is  f e l t  t h a t  i f  the  s tudent  gains a sound 

understanding of the  contents  of t h i s  chapter  at  least the  burden of 

f u r t h e r  reading on t h e  sub jec t  should be  considerably l ightened.  



TUTORIAL PROBLEMS 

MATRIX ALGEBRA 

OUESTION 1- 

Evaluate the following determinant. 

QUESTION 2. 

Show tha t  the following relationship ex i s t s  without expanding. 

QUESTION 3. 

Given the matrices 

FIND : 

+ B ; B ~ - A  ; 

A x B  ; B x A  ; A x c T  ; D x D  ; 

D x A  ; c T x C x B  ; C % c T  ; 5 x B  

QUESTION 4. 

Show tha t  : 
T T T  

( A B c ) ~  = C B A 

accepting the f i r s t  reversal  law. 



QUESTION 5. - 
T 

For any matrix A show tha t  A A and AAT a re  symmetric. 

QUESTION 6 .  

Find the inverses of 

QUESTION 7. 

Find the  ranks of the  following matrices. 

QUESTION 8. 

Given the following system of l i nea r  sintultaneous equations 



QUESTION 8 (Contd.) 

Find the  numerical values f o r  (a) and (b) such t h a t  

(i) t h e  sys  t e m  is inconsis  t e n t  

( i i )  the  system is consis tent  

with i n f i n i t e l y  many solut ions .  

( i i i )  the  system i s  consis tent  with a unique 

solut ion.  

QUESTION 9. 

Find the  roots  of 



CHAPTER 2. 

THE STIFFNESS METHOD. 

2.1 INTRODUCTION 

The S t i f f n e s s  Method is an exact  method of S t r u c t u r a l  Analysis, 

within the  scope of t h e  assumptions made, which uses the  genera l i ty  and 

elegance of matrix algebra i n  i ts  formulation. The use of matrix no ta t ion  

has two decided advantages i n  the  treatment of s t r u c t u r a l  problems 

(a) b rev i ty  of presenta t ion 

(b) ease  of automating the  s t e p s  involved. 

There a r e  varying ideas  as  t o  what c o n s t i t u t e s  a s t r u c t u r e .  It 

could be argued t h a t  any mate r i a l  configurat ion which occupies space and 

can carry the  loads t o  which i t  is subjected is a s t r u c t u r e .  This no doubt 

would be a very broad d e f i n i t i o n  and would embrace a l l  ma te r i a l  objec ts .  

For the present  w e  w i l l  confine our i n t e r e s t s  t o  a very s p e c i a l  class of 

s t r u c t u r e  which conforms t o  the  following requirements: 

( i )  i t  cons i s t s  of d i s c r e t e  s k e l e t a l  elements of 

constant cross-section , i . e . the  members a r e  

connected at  t h e i r  two ends only. 

( i i )  a l l  elements cons i s t  of a pe r fec t  Hookean mater ia l .  

( i i i )  a l l  j o i n t s  a c t  as  pe r fec t  hinges. 

( iv)  any ex te rna l  loading is applied as a po in t  load at 

a j o i n t  . 
(v) under the  inf luence  of the  ex te rna l ly  applied loads 

a l l  the  a c t i v e  j o i n t s  of t h e  s t r u c t u r e  move through 

smal l  displacements i.e. a l i n e a r  ana lys i s  only w i l l  

be considered. 

2.2 FUNDAMENTALS 

I n  common wi th  any o the r  type of S t r u c t u r a l  Analysis,  t h e  

following th ree  considerat ions must be u t i l i s e d  and constant ly  kept  i n  mind. 

(1) The need f o r  IDENTIFYING t h e  JOINTS of the  s t r u c t u r e  

i n  order t o  def ine  the  topology and geometry of the  

system t o  be analysed. 

(2) The a l loca t ion  of a COORDINATE SYSTEM t o  which w e  can 

r e l a t e  forces ,  displacements, and react ions .  

It should be noted t h a t  i n  general ,  f o r  s t r u c t u r a l  problems, 

there  a r e  two types of co-ordinate systems 
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(a)  member o r  l o c a l  co-ordinates, 

(b) frame o r  g lobal  co-ordinates. 

N . B .  I n i t i a l l y  w e  w i l l  only consider t h e  appl ica t ion of the  method i n  - 
terms of member co-ordinates. This w i l l  reduce t h e  conceptual d i f f i c u l t y  

of the  problem but  w i l l  not  cause any real l o s s  of genera l i ty .  

(3) The mutual s a t i s f a c t i o n  of condit ions of EQUILIBRIUM 

AND COMPATIBILITY a t  a l l  l e v e l s  of the  s t r u c t u r e  

i.e. f o r  p ieces ,  members, and the  s t r u c t u r e  as a 

whole. 

2 . 3  STAGE 1 

A t  t h i s  point  i t  i s  des i rab le  t o  develop the  fundamental fo rce  - 
displacement r e la t ionsh ip  f o r  a  l i n e a r  e l a s t i c  sp r ing  such as is  shown i n  

Figure 1 (a) . "4 

FIGURE 1 (a)  FIGURE 1Cb) 

This can be thought of a s  t h e  f i r s t  s t a g e  of t h e  formulation 

process where both equil ibrium and compatibi l i ty a r e  s a t i s f i e d  a t  t h e  ELEMENT 

LEVRL. This is  done i n  f a c t  by developing t h e  c o n s t i t u t i v e  re la t ionsh ips  

f o r  the  mater ia l  of t h e  elements of t h e  s t ruc tu re .  

A p l o t  of w v d r e s u l t s  i n  t h e  response curve shown i n  Figure l(b) .  

From t h i s  t h e  following w e l l  known fundamental s t i f f n e s s  r e l a t i o n s h i p  evolves 

-(2.1) 

The b a s i c  form of Equation 2.1 w i l l  be cont inual ly  r e f e r r e d  t o  

throughout t h i s  chapter  . 
2.4 APPLICATIONS - SIMPLE LINEAR SPFCCNG SYSTEM 

To f a c i l i t a t e  a  method of a t t a c k  considered b e s t  s u i t e d  f o r  

demonstrating the  S t i f f n e s s  Method, a very simple example w i l l  be t r ea ted .  

It should be born i n  mind t h a t  the  s impl ic i ty  of the  problem does not  g rea t ly  

det rac t  from i ts  genera l i ty  of appl ica t ion t o  s k e l e t a l  s t r u c t u r e s .  
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EXAMPLE 1. The simple s t r u c t u r e  shown i n  Figure 2 is assumed t o  

consis t  of a number of Hookean spr ings  pin-connected together  a t  t h e i r  ends. 

It is required t o  determine i n  general  terms the  j o i n t  displacements, 

member forces , and react ions .  

FIGURE 2 

SOLUTION : Consider a member (b) i s o l a t e d  from the  s t r u c t u r e  which 

is assumed t o  be  i n  equil ibrium under t h e  ac t ion of t h e  e x t e r n a l  load 

system. I n  general  such a member could be represented as shown i n  Figure 3. 

FIGURE 3 

2.5 STAGE 2 

It is now required t h a t  equil ibrium and compatibi l i ty be 

s a t i s f i e d  a t  the MEMBER LEVEL. The most general  s i t u a t i o n  f o r  such a 

member (b) would be the  case where both t h e  ( i )  and t h e  ( j )  ends can be 

displaced. I n  such a case Equation 2.1 could be w r i t t e n  thus 

Where : 

p = a vector  of t h e  member end forces  

k = member s t i f f n e s s  matrix f o r  which a s  y e t  the  

fo rce  is  unknowri 

A = the  change i n '  length of member (b). 

From equil ibrium considerat ions of t h e  member shown i n  Figure 3.  

'ib + 'jb = 0 

. - - - 
'ib jb 

from compat ib i l i ty  considerat ions 



2.5 STAGE 2 (Contd.) 

hence 

w r i t t e n  i n  matrix no ta t ion  

o r  p a r t i t i o n i n g  and genera l is ing 

Generalising Equation 2.4 t o  include any two legged 

member gives 

I 
where : 

Pb = 
a vector  of t h e  member end forces  whose dimension 

is  dependent on t h e  number of degress of freedom 

act ivated .  

\ = a square matrix consis t ing  of the  member s t i f f n e s s  

sub-matrices k l l ,  k12, etc. Its order is as 

found f o r  Pb. 

d,, = a vector  of member end displacements again of 

t h e  same order as Pb. 

POINTS ABOUT EOUATIONS (2.3) 

(1) A pin-jointed member of a l i n e a r l y  e l a s t i c  s t r u c t u r a l  system can be 

represented i n  exact ly  t h e  same way a s  t h e  sp r ing  member of Figure 3 except 

t h a t  i n  t h i s  case 

k = EA - 
L 

Hence Equations 2.4 become, f o r  a pin-jointed member i n  member coordinates,  

I-? 
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(2) The s t i f f n e s s  matrix is symmetric and i n  genera l  t h e  following 

re la t ionsh ips  e x i s t  between t h e  member s t i f f n e s s  sub-matrices f o r  a pin- 

jo in ted  member 

k l l  = k22 

(3) The matrix containing the  member s t i f f n e s s  sub-matrices i s  s ingu la r  

i.e. given a system of forces  w e  cannot obtain a unique so lu t ion  t o  the  

problem. Hence forces  and displacements cannot be independent of each other .  

(4) Equation (2.3) s a t i s f i e s  both equil ibrium and compatibi l i ty condit ions 

f o r  the s i n g l e  member. 

2.6 STAGE 3 

This, t h e  f i n a l  s t a g e  i n  the  general ised formulation, requires  

the  mutual s a t i s f a c t i o n  of equil ibrium and compatibi l i ty a t  the  STRUCTURE 

LEVEL. 

Consider now the  i s o l a t e d  member 3,4 of t h e  s t r u c t u r e  shown i n  

Figure 2. The f r e e  body diagram of t h i s  member and i ts associa ted  pins is 

shown i n  Figure 4. 

FIGURE 4 -- 

From equil ibrium considerat ion of j o i n t  3 

CFx = 0 = 
-Pi% - 'jfi + P 

* *  Pi% + P j Z  = P 

from Equation (2.4) 

However compatibi l i ty condit ions of j o i n t  (2.3) d i c t a t e s  t h a t  

- 
d j ~  - di% = d3 

k l l g d 3  + k1Z3d4 + k2153d2 + k2Z2?d3 = P - - - -  -(a) 

Considering j o i n t  2 and s a t i s f y i n g  equil ibrium and compatibi l i ty 



2.6 STAGE 3 (Contd.) 

from j o i n t  2 

+ r  = O ;  - -'iE 1 'i12 - rl 

k l l n  dl + k12i3 d2 = 
1 

- - - -  - (c) 

and f i n a l l y  f o r  j o i n t  2 

k 2 1 3  d3 + k 2 2 3  d4 
= r4 

- - - -  -(dl 

Writing equations a ,  b ,  c,  d i n  matrix nota t ion r e s u l t s  

which can be w r i t t e n  

where K = Primary s t i f f n e s s  matrix of the  s t r u c t u r e .  

d = Displacement vector .  

= Appended load vector  

POINTS CONCERNING 

(1) Each row (or  column) of s a t i s f i e s  both equil ibrium and compatibi l i ty 

a t  t h a t  p a r t i c u l a r  j o i n t  of t h e  s t r u c t u r e .  

(2) is i n  general  a sparse ,  symrnetrix matrix 

(3) E is s ingu la r  

(4) The elements of associa ted  with t h e  ( i )  and ( j )  j o i n t  of t h e  

s t r u c t u r e  represent  the  s t i f f n e s s  matrix f o r  t h e  member (i, j )  of 

a two-legged member. 



2.7 CONSTRAINT CONDITIONS 

To implement the  support conditions of a s t r u c t u r e  is  bes t  done 

by considering a general  case and then applying the  r e s u l t s  t o  the  s t r u c t u r e  

of our example. 

Consider the  s t i f f n e s s  matrix 

Multiplying out the  above matrix re la t ionsh ip  r e s u l t s  i n  

but  f o r  no movement of the  supports  

6 = O  
S 

Hence the  boxed set of r e la t ionsh ips  go t o  zero and i n  matrix nota t ion we ge t  

Therefore there  a r e  (n+l) equations i n  (n) unknowns. O r  i n  o ther  words 

there  is  one superfluous equation which can be removed from the  set. This 

then r e s u l t s  i n  the  following reduced set of equations 
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Thus removing t h e  constrained degress of freedom we ge t  

where K = Structures  s t i f f n e s s  matrix which i s  non-singular 

d = Vector of the  ac t ive  j o i n t  displacements 

w = External  load. 

2.8 JOINT DISPLACEMENTS 

Returning t o  our problem, and applying t h e  concepts j u s t  discussed 

t o  invoke the  cons t ra in t  condit ions,  i t  can be seen t h a t  t h i s  simply requires  

s t r i k i n g  out  the  row and column associa ted  with t h e  cons t ra in t .  This is 

done as follows 
1 2 3 4 

(K) , the  s t r u c t u r e  s t i £  fness  matrix now becomes 

k22, 

+ k l l ,  

Solving the  above system of simultaneous equations f o r  the  displacements 

results i n  
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= ac t ive  j o i n t  displacements. 

We now have a unique set of j o i n t  displacements s a t i s f y i n g  t h e  conditions 

of our simple problem. 

2.9 MEMBER FORCES 

Returning t o  equations (2.4) and r e s t a t i n g  them we have 

I f  t h e  second of the  above equations is used the  member force  a t  t h e  ( j)  

end of t h e  b a r  can be  found. The force  found i n  t h i s  way is prefixed by 

the  correc t  s ign.  Hence 

-- - 
can now be solved f o r  each of the  members 1,2; 2,3; & 3 , 4 .  I f  t h e  so lu t ion  

r e s u l t s  i n  having a negative s ign  then t h e  member fo rce  is  compressive, 

i f  p o s i t i v e  it is t e n s i l e .  The fo rce  a t  the  ( i )  end is  then given by 

2.10 FCEACTIONS 

To f i n d  t h e  react ions  is  simply a matter of applying condit ions 

of l o c a l  equil ibrium t o  each of the  members framing i n t o  t h e  reac t ive  

jo in t .  For our example 

2.11 CLOSURE TO EXAMPLE 1 

To summarise the  procedures adopted i n  the  s o l u t i o n  of Example 1 

w e  have t h e  following. 
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(1) Form up the  member s t i f f n e s s  sub-matrices of each member of the  

s t r u c t u r e  . 
(2) Set-up the  primary s t i f f n e s s  matrix as a n u l l  matrix. The dimensions 

of f o r  the  one degree of freedom j o i n t s  of our simple s t r u c t u r e  i s  (1  x 

number of j o i n t s )  x (1 x number of j o i n t s ) .  

(3) Place the member s t i f f n e s s  sub-matrices i n  t h e i r  co r rec t  pos i t ions  i n  E. 

( 4 )  Set  up the appended load vector  w. 
(5) Adjust by implimenting the required const ra in t  conditions. 

(6) Step (5) r e s u l t s  i n  being reduced t o  K t o  give the  re la t ionsh ip  

Kd = w. 

(7) Solve the  system of simultaneous equations of s t e p  (6) f o r  the  j o i n t  

displacements. 

(8) Determine the member forces  from 

and 

(9) Obtain t h e  react ions  from l o c a l  equil ibrium considerat ions.  

(10) S t a t i c a l  indeterminacy has not  been mentioned. 

2.12 APPLICATIONS - SIMPLE TRIANGULATED PIN-JOINTED TRUSS 

To genera l ise  the  approach formulated i n  Example 1 and thus 

enable pin-jointed s t r u c t u r e s  t o  be analysed w e  w i l l  consider a second 

example. 

EXAMPLE 2 

f o r  the  

Determine the  j o i n t  displacements, member forces  , and react ions  

pin-jointed plane frame shown - i n  Figure 3. 

1 

Q --.+r;r 

t - L 7 - L 1  
FIGURE 3 
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SOLUTION 

Observations of Figure 3 immediately ind ica tes  t h a t  a problem 

confronts us. I n  t h e  previous example a l l  t h e  members w e r e  co-l inear,  

i.e. they w e r e  a l l  i n  member co-ordinates. I n  t h i s  case we have members 

of varying o r ien ta t ion  and y e t  t o  obta in  a meaningful s o l u t i o n  we require  

t h a t  a l l  members be re fe r red  t o  a common co-ordinate system which i n  

general is  re fe r red  t o  a s  a frame co-ordinate system. A s o l u t i o n  t o  this 

problem could be obtained i n  a number of ways. To keep the  ana lys i s  

compatible wi th  t h a t  of the  previous example w e  w i l l  proceed i n  t h e  following 

manner. Consider the i s o l a t e d  member shown i n  Figure 4. 

FIGURE 4 

From equ i l .  considerat ions 

Compatibility condit ions d i c t a t e  member deformations such t h a t  : 

Member deformation = AR = 6 cose + 6 s i n 0  
jbx jby 

-(SibXcosB + dibY s ine )  

Force i n  the  b a r  = pb = -.E AL .A. 
R 

Also 

jbx = pbc0se; 
'jby 

= p s in0  b 

Hence 

= AR .E.A. s i n e  P j b ~  
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- 

Hence t o  s a t i s f y  both equil ibrium and compatibi l i ty the  following re la t ion-  

ships  must exist 

2 2 
'ibx 

= - EA pibx cos 9 + s~~~ S ~ ~ B C O S O ) - ( S  cos 9 + 6 
R jbx jby 

= Pibx 2 
'iby jby 

sin9cos9 + siby s i n  9)-(Gjbx sin9cos9 + 6 s i n 2 y  
R 

2 2 
'jbx = - EA R pibx cos 9 + 6iby c o ~ 9 s i n 9 ) + ( 6 ~ ~ ~  cos 9 + 6 jby 

= EA pibx 2 
'jby 

sin0cos9 + Siby s i n  O)+(Sjbx sin9cos9 + S s i n 3  
7 jby 

Hence i n  matrix form the  equil ibrium and compatibi l i ty r e la t ionsh ips  

be come 

iby 
- - 

' jbx 

E A - sin9cos9 
-EA 2 

R - cos 9 e sinecose L 1 
EA 2 -EA 2 7 sinecos9 7 s i n  9 I -2 sinecose 7 s i n  0 I 

7 cos 0 I-EA -EA 7 sin9cos9 EA 2 - cos 9 E A 7 sin0cos9 I 
-E A -EA 2 7 sin0cos0 7 s i n  0 

EA 2 7 sin0cos9 - s i n  0 R I 
which r e l a t i n g  t o  the  previous example can be w r i t t e n  once again as 

The dashes being used t o  d i s t ingu i sh  between member and frame co-ordinates. 

From t h e  expanded form of t h e  fo rce  - displacement r e la t ionsh ips  

f o r  a member w e  can make t h e  following observations. 

(1) Comparison with the  equivalent  expression of Example 1 shows t h a t  the  

only r e a l  d i f ference  i s  t h a t  the  dimension of t h e  sub-matrices have increased 

t o  2 x 2 t o  account f o r  the  newly acquired degree of freedom a t  each end. 

(2) It can a l s o  be seen t h a t  f o r  a pin-jointed member 

k l l  - k22 

k12 = k21 = -k l l .  

Continuing again wi th  our example i n  a s t e p  by s t e p  procedure. 



2 .13  MEMBER STIFFNESS SUB-MATRICES 

From t h e  condition (2) above i t  can be seen t h a t  i t  is only 

necessary i n  t h i s  case t o  determine k l l .  This i s  bes t  done f o r  purpose 

of demonstration using a t a b l e  a s  shown below. 

2.14 SETTING UP 

This is  done i n  exact ly  the same manner as f o r  Example 1. I n  

Member 

- 
1,2  

- 
293 

- 
1,3  

t h i s  case however, t h e  member s t i f f n e s s  sub-matrices a r e  2 x 2 because 

of the e x t r a  degree of freedom introduced at  each j o i n t .  Hence t h e  

dimensions of is 6 x 6, again obtained from t h e  product of the number 

of degrees of freedom mul t ip l ied  by the  number of j o i n t s .  The re la t ionsh ip  

Ed = w then becomes 

Cross- 
sec t ion  

- A 

r 

A 

P 

A 

Length 

J 2 ' L  

FL 

2 L 

cos 0 

1 

@ 

1 

@ 

1 

s in0  

1 .r 
-1 

J? 

0 

k l l  

- 1 
E A E A - -- 
4L 4L 1% 



2.14 SETTING UP z (Contd.) 

2.15 IMPLEMENTING CONSTRAINT CONDITIONS 

This is  done as  before by suppressing t h e  rows and columns of 

associated with the  res t ra ined  degree of freedom. Thus is  reduced t o  

K and becomes 

which can be rewri t ten  as 

r: 
2.16 JOINT DISPLACEMENTS 

The j o i n t  displacements a r e  obtained by solving t h e  system of 

equations given i n  t h e  matrix re la t ionsh ip  of 2-15, This r e s u l t s  i n  



2.16 JOINT DISPLACEMENTS (Contd.) 

2.17 MEMBER FORCES 

I n  t h i s  example the  member forces cannot be determined d i r e c t l y  

from t h e  second of Equations 2.8. The reason f o r  t h i s  being t h a t  Equation 

2.8 is  w r i t t e n  i n  terms of frame co-ordinates and t o  obta in  t h e  member 

forces  i t  must be i n  terms of member co-ordinates . However, member end 

displacements should be l e f t  i n  frame co-ordinates f o r  convenience of 

handling. I n  terms of Matrix Algebra t h i s  is a hybrid transformation 

i n  which the  second of Equations 2.8 is pre-multiplied by the  transpose 

of the  transformation matrix. 

I n  physica l  terms t h i s  simply amounts t o  resolving p and 
jbx 

'jby 
i n t o  the  d i r e c t i o n  of t h e  member being considered. Thus 

.jb = E 2 
EA cosesin 0 

-EA - 2 -EA cos 8 - - L L cos Bsin6 

2 
EA cosesin 8 

E A - 2 
L L cos $sin6 

sin3.] k.] L 
jby 

Applying the  above re la t ionsh ip  t o  member 23 as an example 

. 
PjT3 = -2Q - (compression). 

$21 

By successive app l i ca t ion  of the  member fo rce  equation t o  the  

o the r  members of t h e  frame gives 



Once again the  s imples t  way t o  determine the  cons t ra in t  react ions  

is by considering conditions of l o c a l  equilibrium. It should be noted 

t h a t  react ions  a r e  always required i n  frame co-ordinates and whi l s t  i n  

Example 1 frame and member co-ordinates were synomous t h i s  i s  not the  case 

now as we  saw when determining member forces.  Hence t o  apply the  concept 

of summation of t h e  negative of the member forces meeting a t  the  constrained 
- j o i n t  requires  some l i t t l e  refinement. This refinement is  simply a trans-  

formation back t o  frame co-ordinates. The reac t ive  forces  then become 

2.19 CLOSURE TO EXAMPLE 2 

The s t e p s  followed w i l l  not  be r e s t a t e d  s i n c e  they are t h e  same 

as  f o r  Example 1. However, the re  a r e  a number of po in t s  worth noting. 

These are as  follow :- 

(1) Both and K are symmetric. Further,  i f  the  elements of rows and 

columns of c a r e  summed the  r e s u l t  i s  zero. 

(2) Both and K are independent of t h e  ex te rna l  loading applied t o  the  

s t r u c t u r e .  This is always the  case when a l i n e a r  ana lys i s  is  being 

performed. 

(3) The determinate of K is a p o s i t i v e  number. This i s  very s i g n i f i c a n t  

and w i l l  be discussed i n  more d e t a i l  i n  the  next  sec t ion .  

( 4 )  Care must be taken t o  ensure t h a t  the  cor rec t  co-ordinate system is 

being used when determining member forces  and react ions .  

(5) A s  the  number of a c t i v e  degrees of freedom inc rease  i t  becomes evident  

t h a t  the  number of simultaneous equations t o  be solved a l s o  increases.  Thus 

the  e f f i c i e n t  app l i ca t ion  of t h e  method requires  access t o  a computer. 

(6) The number of simultaneous equations t o  be solved i s  equal  t o  t h e  

number of a c t i v e  j o i n t s  mul t ip l ied  by t h e i r  degrees of freedom. 

2.20 SINGULARITY OF K 

The s ign i f i cance  of the  determinant of K, mentioned i n  2.19.3 

w i l l  now be discussed i n  more d e t a i l .  To s impl i fy  the  discussion consider 

again the  simple pin-jointed frame of Example 1 loaded and constrained 

a s  shown i n  Figure 4. 
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FIGURE 4 

Since the topology and geometry of the above structure are the 

same as for Example 1 then remains unchanged. However, because the 

method of constraining the structure i s  different,  then K is changed and 

becomes 

Magnitude of the determinant,found as follows results in  
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The above r e s u l t  could have been obtained much more e a s i l y  using 

a simple row operat ion,  which c o n s t i t u t e s  a theorem of determinant analys is .  

This row operat ion is ca r r i ed  out i n  the  following manner : 

Multiply the  elements of Row 2 of K by un i ty  and add these  values 

t o  the  corresponding elements of Row 1. 

Doing s i m i l a r l y  t o  the  elements of Row 4 and adding t o  the  elements of Row 1. 

Since a l l  the  elements of Row 1 a r e  zero then i t  follows t h a t  t h e  magnitude 

of the  determinate must be zero. 

The concept of whether o r  no t  the  determinant of K is  pos i t ive ,  negative,  

o r  zero is of fundamental importance i n  s t r u c t u r a l  analys is .  

Returning t o  t h e  case i n  point ,  i.e. when K = o, we have a 

s i t u a t i o n  i n  which i t  i s  impossible t o  ge t  a set of displacements t o  

s a t i s f y  conditions of equilibrium. This then means, i n  t h e  jargon of Matrix 

Algebra, t h a t  the  system is inconsis  t e n t ,  a condit ion character ised  by t h e  

s i n g u l a r i t y  ( K = 0) of K. S ingu la r i ty  implies t h a t  one of two 

s i t u a t i o n s  a r e  i n  exis tance  thus 

(a) no so lu t ion  e x i s t s  

(b) there a r e  i n f i n i t e l y  many solut ions .  

I n  our case (b) app l i es  because t h e  s t r u c t u r e  can move t o  any pos i t ion  

I under a general load system. 

I 
N.B. - 

1 The f a c t  t h a t  K is  independent of t h e  e x t e r n a l  loading is made very c l e a r  

i n  t h i s  simple example. From observation i t  can be seen t h a t  f o r  t h i s  

1 example the  s t r u c t u r e  is  i n  equil ibrium under the  s p e c i f i e d  loading condition. 



2.20 SINGULARITY OF K (Contd.) 

However, we a l s o  observe t h a t  the  equil ibrium is not  s t a b l e  because any 

s l i g h t  hor izon ta l  force  w i l l  s e t  the  s t r u c t u r e  i n  motion. Evidently, and 

fo r tuna te ly ,  K does not  recognise what we observe and is only concerned 

with having a s u f f i c i e n t  number of s u i t a b l e  degrees of freedom res t ra ined  

t o  render the  s t r u c t u r e  s t a b l e  external ly .  Further,  and equal ly  

for tunate ly ,  K i s  oblivious t o  how many e x t r a  degrees of freedom a r e  con- 

s t r a ined  beyond those required f o r  s t a t i c a l  determinacy. 

The concept of s i n g u l a r i t y  of K is  a l s o  very conveniently used 

i n  determining t h e  c r i t i c a l  loads on s t r u c t u r e s  together with t h e i r  

accompanying buckling modes. The sub jec t  of s t a b i l i t y  , being s o  complex 

and important i n  i ts  own r i g h t ,  w i l l  no t  be discussed f u r t h e r  here .  The 

t o p i c  was only mentioned i n  an endeavour t o  stress the  importance and 

s ign i f i cance  of the  s t r u c t u r e  s t i f f n e s s  matrix. 

2.2 1 ILL-CONDITIONING 

The top ic  of i l l -condi t ioned systems of equations w i l l  no t  be 

pursued t o  any g rea t  depth a t  t h i s  point .  However, i t  is  f e l t  t o  be of 

s u f f i c i e n t  importance t o  a t  l e a s t  warrant some discussion.  

I n  physica l  terms i l l -condi t ioning can be thought of i n  the  

following manner. Consider the  re la t ionsh ip  

I f  the system i s  i l l -condi t ioned then small changes i n  K w i l l  cause l a r g e  

changes i n  d, i l l u s t r a t i n g  t h e  non-dependence of condit ioning on loading. 

Hence i l l - cond i t ion ing  is a function of the  s t r u c t u r e  and i f  t h e  equations 

of K a r e  poorly conditioned then i t  can be assured t h a t  a floopy s t r u c t u r e  

w i l l  r e s u l t .  Fur ther ,  a w e l l  designed s t r u c t u r e  w i l l  always r e s u l t  i n  a 

s t r u c t u r e  s t i f f n e s s  matr ix  f o r  which t h e  system of equations a r e  w e l l  

conditioned. The problem of i l l -condi t ioning is  a p t l y  described i n  t h e  

words of D r .  R.K. Livesley who s a i d  " i l l -condi t ioning i s  not  a disease  but  

a symptom". 

2.22 APPLICATIONS - SIMPLE R I G I D  JOINTED PLANE FRAME 

Thus f a r  only pin-jointed s t r u c t u r e s  have been analysed. Since 

many s t r u c t u r e s  t r a n s f e r  load by bending ac t ion  a s  w e l l  as by a x i a l  forces  

a f u r t h e r  example i l l u s t r a t i n g  t h i s  c l a s s  of s t r u c t u r e  w i l l  now be 

considered. 

EXAMPLE 3 

Determine t h e  j o i n t  displacements, member fo rces ,  and react ions  

f o r  the  r i g i d  jo in ted  plane frame shown i n  Figure 5. 
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I 
FIGURE 5 

SOLUTION 

It is  evident  t h a t  the  member s t i f f n e s s  sub-matrices fo r  a 

planar,  r ig id- jo in ted  member w i l l  be d i f f e r e n t  from those of a plane pin- 

jo in ted  member. The member s t i f f n e s s  sub-matrices k l l ,  k12, e t c .  can be 

found by using the  following procedure. 

A beam element, such a s  i s  being discussed i n  t h i s  example, w i l l  

have th ree  degrees of freedom a t  each of i t s  ends a s  shown i n  Figure 6. 

FIGURE 6 - 
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Since an "influence coeff ic ient"  f o r  s t i f f n e s s e s  can be defined 

a s  the  "forces developed a t  the  j o i n t s  due t o  a consis tent  set of u n i t  

displacements a t  a p a r t i c u l a r  point", then, f o r  an e l a s t i c  analys is ,  com- 

bining the  cases of Figure 6 gives 

The elements of k l l ,  k12, e t c .  being the  forces associa ted  with u n i t  

l i n e a r  displacements i n  the  x and y d i rec t ions  and a u n i t  r o t a t i o n  about 

the  z axis. Hence the  vectors  of member end displacements become 

The above s t i f f n e s s  sub-matrices a r e  associated wi th  a system of member 

co-ordinates and s ince  the  members of the  example a r e  s loping then k l l ,  k12 

etc. must be transformed t o  a frame co-ordinate system. This can be done 

most simply by using matrix algebra. Because t h e  process involved is simple 

and of fundamental importance t o  t h e  appl ica t ion of the  S t i f f n e s s  Method 

the  matrix manipultions used w i l l  be  performed. 

Consider again the  re la t ionsh ip  

k d = w  

This can be w r i t t e n  as 

k I : d  = w 

where1 is the  i d e n t i t y  Matrix. 
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Premultiply the  second of t h e  above equations by a transformation matrix T 
T 

and replacing I by T T gives 

It should be noted t h a t  Equation 2.9 appl ies  only t o  an orthogonal 

transformation o r  i n  o ther  words T~ = T-l only f o r  an orthogonal 

transformation. 

For conformability T must be of the  same order as k and is found 

as follows . Consider t h e  i s o l a t e d  member (b) of Figure 7. 

FIGURE 7 

Resolving a u n i t  vector  i n  member co-ordinates i.e. i n  t h e  x 1 

d i rec t ion ,  i n t o  frame co-ordinates gives t h e  f i r s t  column of T thus 

Following a similar procedure f o r  the u n i t  vector  i n  the  y1 and 

z di rec t ion  gives the  second and t h i r d  columns as 

Combining t h e  above gives the  complete transformation matrix T 

T = I s i n  e cos e 
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I n  t h i s  case  both  k l l  and k12 w i l l  have t o  be eva lua ted  and then 
T 

t he  f a c t  t h a t  k21 = k12 and k22 = k l l  with  t h e  off-diagonal  elements 

negated w i l l  be  u t i l i s e d .  Table 1 s e t s  out  t he  r e l e v a n t  information 







2.25 IMPLEMENTING CONSTRAINT CONDITIONS 

Suppressing the res t ra ined  degrees of freedom reduces K t o  K thus 

To simplify t h e  so lu t ion  of the  above system of equations i t  w i l l  be assumed 

t h a t  - 121 can be neglected. 
'3 

The above re la t ionsh ip  then becomes 

2.26 JOINT DISPLACEMENTS 

Solving t h e  above system of equations f o r  the  j o i n t  displacements 

2.2 7 MEMBER FORCES 

I n  t h i s  example the member forces  w i l l  no t  be determined impl ic i t ly ,  

however a b r i e f  discussion concerning t h e i r  evaluation is  considered necessary. 

A s  always the  member forces  a r e  determined i n  member co-ordinates. I n  

frame consis t ing  of beam elements however, i t  i s  not  simply a matter of 

determining p and then negating t h i s  force  t o  f ind  pib. 
j b 

Using Equation 2.9 

and performing a hybrid transformation t o  determine the  member forces  i n  

member co-ordinates r e s u l t s  i n  
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It should be noted t h a t  compatibi l i ty r e l a t i v e  t o  t h e  frame co-ordinate 

system i s  s a t i s f i e d  by Equation 2.10 because T d  and Td a r e  j o i n t  d is -  i b  jb 
placements i n  frame co-ordinates . 

To obtain a r e la t ionsh ip  between member end forces  consider the  

beam element (b) of Figure 8. 

FIGURE 8 

from equil ibrium considerat ions 

o r  w r i t i n g  the  above i n  matr ix  form 

o r  more simply 
I 

I I 

where H is defined a s  the  equil ibrium matrix. 

Hence i f  the  member forces  a r e  known a t  one end of a member then by applying 

Equation 2.11 the  forces  a t  the  o ther  end can be determined, i . e .  



where 

2.28 REACTIONS 

The frame react ions  can be determined again from considerat ions of 

l o c a l  equ i l ib  rim. 

2.29 CLOSURE TO EXAMPLE 2 

I n  t h i s  example the  s i m i l a r i t y  of formulation with the  two previous 

examples is very evident .  Through the  examples considered i t  should a l s o  

be c l e a r  a t  t h i s  point  t h a t  any s t r u c t u r e  consis t ing  of d i s c r e t e  s t r u c t u r a l  

elements can be analysed provided the  system of simultaneous equations can be 

solved. Clearly,  i f  a space s t r u c t u r e  with 6 degrees of freedom per  j o i n t  is 

t o  be analysed, not  very many j o i n t s  a r e  required before t h e  number of 

simultaneous equations t o  be handled becomes a major problem. Hence, i t  can 

be concluded t h a t  s t r u c t u r a l  ana lys i s ,  a t  l e a s t  of d i s c r e t e  element s t r u c t u r e s ,  

is  no r e a l  problem, provided a computer of s u f f i c i e n t  capacity i s  avai lable .  

2.30 OFF-JOINT LOADING 

Thus f a r  only t h e  loading case associated with on-joint point  

loads has been considered. The usual  s i t u a t i o n  i n  p r a c t i c e  however, is  t h a t  

the  loading is  d i s t r i b u t e d  along a s t r u c t u r a l  member i n  some way o r  is  

applied as  a concentrated load. Hence a need e x i s t s  f o r  considering the  ways 

i n  which such loading types may be idea l i sed .  

I n  order t o  pursue t h e  sub jec t  f u r t h e r  consider the  general ised 

s k e l e t a l  s t r u c t u r e  shown i n  Figure 9. Also shown i n  the  same f igure  i s  

t y p i c a l  member ( i ,  j )  subjected 

NOOSHIN STRUCTURE TYPICAL MEMBER 
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The t y p i c a l  member of Figure 9 i s  f r e e  t o  d isplace  a t  each of i t s  

ends i and j. Suppose now t h a t  the  member i s  f u l l y  f ixed a t  each end as  

shown i n  Figure 10. 

t 

P& 
FIGURE 10 

The f ixed end reac t ive  forces f o r  the  f ixed ended member b a r e  then 

given by 

Considering now the  two cases of Figures 9 and 10, then 

(1) For j o i n t s  loaded and d i sp lac ing  

The fami l i a r  force  - displacement r e la t ionsh ips  

must s t i l l  hold. 

(2) For off - jo in t  loads with no j o i n t  displacement 

This i s  t h e  equal ly  f a m i l i a r  case which is  usual ly  associated with 

the  Method of Moment-Distribution and r e s u l t s  i n  t h e  reac t ive  forces  

vectors R and R associated with Figure 10. i b  j b 

The general ised force-displacement r e la t ionsh ips  f o r  any member such as (b) 

of Figure 10 be found by superposi t ion  thus 



2.30 OFF-JOINT LOADING (Contd.) 

Equations 2.12 w i l l  be  immediately recognised as the  Slope - Deflect ion 

re la t ionships .  

Compatibility conditions a r e  s a t i s f i e d  simply by replacing member end 

displacements by j o i n t  displacements. 

To s a t i s f y  equil ibrium conditions consider f i r s t  of a l l  the  case where the  

loads a r e  applied a t  the  j o i n t s  of the  s t r u c t u r e .  Equilibrium of the  i t h  

j o i n t  is s a t i s f i e d  by 

Where off - jo in t  loads e x i s t  then the  equil ibrium re la t ionsh ip  f o r  the  i t h  

j o i n t  is given by 

Cpib = w - CRib 
i 

The above re la t ionsh ip  merely s t a t e s  t h a t  the  ex te rna l  loading a t  t h e  i t h  

j o i n t  consis ts  of any ex te rna l  applied j o i n t  loads together with the  negative 

of the  reac t ive  forces  a t  t h a t  p a r t i c u l a r  j o i n t .  

2.30 SELF-STRAINING SYSTEMS 

In  c e r t a i n  circumstances complex e l a s t i c  s t r u c t u r e s  become s t r a i n e d  

without the  appl ica t ion of ex te rna l  loads. The th ree  most common causes of 

such s t r a i n i n g  a r e  

(1) Temperature e f f e c t s .  

(2) Lack of f i t .  

(3) Displacement e f f e c t s .  

which a r e  usually associa ted  with support se t t lement .  Each of the  above 

w i l l  now be considered i n  turn. 

TEMPERATURE EFFECTS 

Consider again the  t y p i c a l  member b of Figure 11 i s o l a t e d  from 

a general ised s t r u c t u r e .  

FIGURE 11 
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2.31 TEME'ERATURE EFFECTS (Contd. ) 

For s impl ic i ty  assume the  member t o  be subjected t o  a uniform 

temperature to. The r e s u l t i n g  change i n  temperature causes a set of r eac t ive  

forces Rib and R t o  be set-up i n  the  member s i m i l a r  t o  those due t o  off-  
j b 

j o i n t  loading. 

When the  member i s  uneffected by temperature change but  t h e  ends 

i and j a r e  moving then 

Conditions of equil ibrium a t  each j o i n t  not e f fec ted  by the  

temperature change is  given by 

Equilibrium condit ions f o r  j o i n t s  associated with members subjected 

t o  a temperature v a r i a t i o n  d i c t a t e s  t h a t  

Hence the  fundamental force-displacement r e la t ionsh ip  f o r  t h e  s t r u c t u r e  

becomes 

The above re la t ionsh ip  is the  same as  the  one which would be 

obtained f o r  a normal s t r u c t u r a l  analys is  considering on-joint loading 

except t h a t  i n  t h i s  case the  load vector  cons i s t s  e n t i r e l y  of the  negative 

of member end reac t ive  forces.  

2.32 LACK OF FIT 

Figure 12 shows the  same member b. However t h i s  t i m e  i t  i s  

assumed t o  s u f f e r  a f abr ica t ion  imperfection A. 

FIGURE 12 

Because of the  imperfection X the  member has t o  be deformed t o  

allow i t  t o  f i t .  The r e s u l t i n g  s t r a i n i n g  causes a set  of r eac t ive  forces  

Rib 
and R t o  be induced i n t o  the  member. 

j b 



2.32 LACK OF FIT (Contd.) 

This is a s i m i l a r  problem t o  the  one j u s t  considered and evident ly  the  member 

force-displacement r e la t ionsh ip  w i l l  be given bp 

The remainder of the  ana lys i s  i s  the  same as  f o r  2.34 .  

2 .33 DISPLACEMENT EFFECTS 

I n  t h i s  case there  is something of a v a r i a t i o n  of t h e  theme. It 

i s  assumed tha t  t h e  s t r u c t u r e  i s  subjected t o  no e x t e r n a l  loading, however 

there  has been a known measurable j o i n t  d i sp lacemat .  Suppose t h i s  

movement is represented by 

where: 6 = a vector  of the  j o i n t  displacement, 
S 

i t s  order depending on the  number of 

degrees of freedom of t h e  j o i n t .  

g = known values of the  displacements. 

Se t t ing  up the primary s t i f f n e s s  matrix gives 

- 
where: w = a vector  containing the  react ions .  

Equation 2.13  can now be pa r t i t ioned  i n  the  following manner 

Carrying out  the  matrix mul t ip l i ca t ion  gives 

I;:] - - - 

u 
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Subs t i tu t ing  the  measured values of g f o r  6s i n  the  above 

Transferr ing the  known values contained i n  t h e  box t o  the  r i g h t  hand s i d e  

of the  equation r e s u l t s  i n  

I n  the  above system of equations there  is  one more equation than 

there  i s  unknowns. Therefore, one of the equations i s  l i n e a r l y  dependent 

and the problem is  t o  decide which one. The second equation is  required t o  

s a t i s f y  the  equil ibrium and j o i n t  compatibi l i ty.  However, t h i s  has already 

been s a t i s f i e d  by the  known re la t ionsh ip  t r ans fe r red  t c  t h e  r i g h t  hand s i d e .  

Therefore the  second equation can be removed from t h e  system giving 

If the re  a r e  a number of such displacements a s i m i l a r  procedure is followed 

f o r  each one. 

2 .34  SEMI-SKELETAL STRUCTURES 

The arguments developed s o  f a r  have been concemied only with 

two-legged d i s c r e t e  elements. 

Consider now the  s t r u c t u r e  of Figure 13 i n  which the  members 

cons i s t  of a continuum connected a t  d i s c r e t e  j o i n t s .  The f i g u r e  a l s o  shows 

a t y p i c a l  element (b) of the  s t r u c t u r e .  



2.34 SEMI-SKELETAL STRUCTURES (Contd.) 

FIGURE 13 

Equilibrium and compatibi l i ty must again be s a t i s f i e d  a t  a l l  l e v e l s  of the  

s t r u c t u r e .  Also forces  and displacements cannot be independent and a r e  given 
. 

by 

pib = kllbdib + k12bdjb + k,, + R,,) 

P jb  
= k21bdib + k22bdjb + k23b& + R - - - - -  

j b 
-(2.14) 

A l l  t h e  arguments developed previously a r e  s t i l l  v a l i d  and can 

be set-up i n  a similar manner t o  t h a t  used f o r  the  previous th ree  examples. 

Constraint  conditions can then be  implemented as before thus reducing t o  K 

and t h e  system of equations solved f o r  the  unknown displacements. Member 

forces can be determined from t h e  Equations 2.14 i f  s e l f - s t r a i n i n g  of t h e  

system is  a l s o  present .  Local equil ibrium conditions a r e  then used t o  

determine react ions .  

2.35 STIFFNESS MATRICES 

Only a very l imi ted  range of member s t i f f n e s s  matrices have been 

considered. Both the  pin- j o inted  planar  element and the  r ig id-  jo in ted  beam 

element can e a s i l y  be general ised t o  t h e i r  equivalent  s p a t i a l  members. It 

should be rea l i sed  t h a t  by using these simple members many complex s t r u c t u r a l  

problems can be solved. Appendix A of t h i s  book contains a d e t a i l e d  treat- 

ment of the  development of the  s t i f f n e s s  matrix f o r  a coplanar beam element. 

The d i f f i c u l t y  a r i s e s  when a d i s c r e t e  element i s  used which devia tes  from 

the norm. I f  i t  i s  necessary t h a t  such an element be  incorporated i n  a 

s t r u c t u r e  then i t  is suggested t h a t  a thorough l i t e r a t u r e  search be ca r r i ed  

ou t  i n  a hope t h a t  i t s  s t i f f n e s s  matrix has already been developed. 
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2.35 STIFFNESS MATRICES (Contd . ) 
Should it not  be ava i l ab le  i n  the  l i t e r a t u r e  the  problem would b e s t  be 

handled by passing i t  on t o  t h e  Academic Fra te rn i ty .  

2.37 CONCLUSION 

By choice many areas  have not  been considered i n  t h i s  chapter.  

Some of the  more important topics  not  t r ea ted  a r e  

(a) Implementing the  imposition of displacements. 

(b) Super-member and super-j o i n t  concepts. 

(c) Non-conformable const ra in ts .  

(d) Computational techniques . 
(e)  Symmetry. 

( f )  Optimisation. 

Obviously a knowledge of a l l  of the  above is important i f  f u l l  

use is t o  be made i n  the  appl ica t ion of the  S t i f f n e s s  Method. However, i t  

is unnecessary t o  be fami l i a r  with the  above top ics  f o r  a complete conceptual 

understanding of the  method . 
I n  conclusion, i t  Is f e l t  necessary t o  point  out t h a t  although 

the  S t i f f n e s s  Method is  admirably s u i t e d  t o  automatic computational 

techniques i t  i s  absolute ly  e s s e n t i a l  t h a t  some simple problems be attempted 

manually t o  become completely conversant with the  mechanics 05 the  s t e p s  

involved . 



TUTORIAL PROBLEMS 

THE STIFFNESS METHOD 

QUESTION 1 

For the  pin-ended member (b) shown i n  Figure 1 develop a re la t ion-  

ship  between member end forces  and displacements i n  global  coordinates,  

which s a t i s f i e s  both j o i n t  equil ibrium and compatibi l i ty.  

QUESTION 2 

(a) S t a t e  the  levels a t  which equil ibrium and compatibi l i ty 

must be s a t i s f i e d  wi th in  a s t ruc tu re .  

(b) Explain b r i e f l y  how t h i s  is done a t  any one level of the  

s t r u c t u r e  . 
(c) Given the  re la t ionsh ip  gd = w show how cons t ra in t  condit ions 

a re  implemented t o  reduce the  above re la t ionsh ip  t o  Kd = w. 

QUESTION 3 

For the  simple Hookean Spring system loaded as  shown i n  Figure 2, 

determine 

(a )  the  j o i n t  displacements 

(b) the  spr ing forces  

(c)  t h e  react ions .  

FIGURE 2 



QUESTION 4 

Determine the  j o i n t  displacements, member fo rces ,  and react ions  

f o r  the  plane pin-jointed frame shown i n  Figure 3.  

QUESTION 5 

Develop the  primary s t i f f n e s s  matr ix  f o r t h e  s t r u c t u r e  shown i n  

Figure 4. A l l  members a r e  made of the  same material .  

FIGURE 4 

QUESTION 6 

Determine the  j o i n t  displacements and member forces  f o r  t h e  

s t r u c t u r a l  sp r ing  system shown i n  Figure 5. No e x t e r n a l  loads have been 

applied t o  t h e  system, however, j o i n t  2 has been displaced 5 u n i t s  t o  t h e  r i g h t .  

FIGURE 5 

QUESTION 7 

Find the  j o i n t  displacements and member forces  f o r  t h e  s t r u c t u r e s  

shown i n  Figures 6 (a)  and 6 (b) . 



QUESTION 7 ( ~ o n t d . )  

FIGURE 6 (a)  FIGURE 6 (b) 

QUESTION 8 

I n  the  s t r u c t u r a l  system shown i n  Figure 7 member 2-3 i s  s h o r t  

by one (1) u n i t ,  determine 

(a)  t h e  j o i n t  displacements 

(b) the  member forces .  

Assume the  lack of f i t  t o  be i n  member 3-4.  What d i f ference  would 

i t  make t o  your answer i f  the  lack of f i t  had been assumed i n  member 2-3. 

FIGURE 7 

QUESTION 9 

Member 2-3 of the  s t r u c t u r a l  system shown i n  Figure 8 is  subjected 
0 

t o  a contract ing temperature d i f f e r e n t i a l  of 30 . The length of the  member 

is 50 u n i t s  and t h e  coef f i c ien t  of expansion a = 0.001. Determine 

(a) the  j o i n t  displacements 

(b) the  member forces  . 

QUESTION 10 

A member b of a pin-jointed s k e l e t a l  s t r u c t u r e  i s  u n i f o d l y  

heated t o  cause an increase  i n  the  length of (b) by zm amount a$. I n  

general  t h i s  w i l l  r e s u l t  i n  a11 of t h e  degrees of freedom of t h e  s t r u c t u r e  

being ac t ivated .  I f  (d) is the  known displacement vector  r e s u l t i n g  a t  one of 

the  j o i n t s  of the  s t r u c t u r e  show how the  displacements a t  a l l  of t h e  o the r  

j o i n t s  may be found ana ly t i ca l ly .  



QUESTION 11 

(a) Develop the s t i f f n e s s  sub-matrices k l l ,  k12, k21, and k22 

i n  member coordinates f o r  the  beam element shown i n  Figure 9 (a ) .  

FIGURE 9(a) 

(b) For the frame coordinate system x - y shown i n  Figure 9(b) 

evaluate the  member s t i f f n e s s  sub-matrices f o r  the beam element of (a) 

above, or ienta ted  a s  shown i n  Figure 9(b) .  

QUESTION 12 

Figure 10 shows a r i g i d  jo in ted  rectangular  P o r t a l  Frame subjected 

t o  a hor izonta l  point  load applied t o  j o i n t  2 and a u.d.1. applied t o  member 

2-3. 

(1) Determine, using the  S t i f f n e s s  Method 

(a) J o i n t  displacements 

(b) Member forces  

(c) Reactions. 

Neglect a x i a l  force  e f f e c t s  as  a f i r s t  approximation. 

(2) Using Moment Dis t r ibu t ion  determine the member forces 

f o r  the  frame of Figure 10. 

(3) Using a plane frame computer package again determine the  

j o i n t  displacements, member forces ,  and react ions  f o r  the  

frame. 



QUESTION 12 (Contd. ) 

(4)  Compare the results obtained using 1, 2 ,  and 3 above. 

FIGURE 10 

Data : 

E = 208 x lo6 kN/m 
6 4 Icols = 222 x 10 mm 

2 
*cols = 12,300 mm 

6 4 I~eams = 294 x 10 mm 

= 8540 mm 2 



APPENDIX A 

ELEMENT STIFFNESS MATRICES 

When applying the  S t i f f n e s s  Method i t  is e s s e n t i a l  t h a t  the  

element s t i f f n e s s  matrices be known f o r  the  p a r t i c u l a r  members which 

c o n s t i t u t e  the  s t r u c t u r e  t o  be analysed. 

A . l  DISPLACEMENT - FORCE (FLEXIBILITY) RELATIONSHIPS - 
These re la t ionsh ips  w i l l  be developed f o r  a planar  beam 

element of uniform cross-section. 

Consider the  simply supported beam loaded as shown i n  Figure 

A. 1,  i .e . with end moments Mi and M . applied. 
J 

FIGURE A. 1 

From Cast ig l iano 's  Second Theorem 

Subs t i tu t ing  the  re levant  values i n t o  the  above expressions gives 



= L (2  Mi - M.) + a (Mi + M . )  
ei 35 J GAL J 

e = L ( 2 M  - M i ) +  a 
j - 

j 6 E I  GAL 
(Mi + Mj) 

Putting : 

For no shear ko = 0 

A. 2 RIGID BODY DISPLACEMENTS 

Taking these e f fects  into account through reference to  Figure 

A . 2  modifies Equations A . l  to  Equations A . 2  

I 
FIGURE A . 2  

I 



A.3 FORCE - DISPLACEMENT (STIFFNESS) RELATIONSHIPS 

(a) Moments  

E l i m i n a t i n g  (M . ) f r o m  E q u a t i o n s  A. 2 
J 

= 2 E I  

- - -(A.3) 

W r i t i n g  

Mi = - 2 E I  B2 ei + B 0 - B3(ajY - 1 3  6 .  )/q L hY - - -  - - - - - - - (A. 4 )  

- 
C 

M = 2 E I  B1 Bi + 8, O2 - 8 3 ( 6 j y  
j C - 6 ,  

L LY 
F o r  no shear = 1, B 2  = 2 ,  and B 3  = 3 

Mi = - 2 E I  P O i  + e j  - 3(ajY - 6iy)/L] 
L ----  - - - - - - - - - (A.5) 

M = 2 E I  
j - C ei + 2 0  - 3(6 jy  - 6 i y ) l j  

L 3 

(b) R e a c t i o n s  

T h e s e  are given b y  

% = '  = -(M. + M.) 
j Y L 

L 

S u b s t i t u t i n g  f o r  Mi and M 
3 

(c) Axial F o r c e  E f f e c t s  

T h e s e  are given by 



(d) Combined Effects  

Combining the resu l t s  of  Equations A . 4 ,  A . 6 ,  and A . 7  g ives  

which can be wri t ten i n  matrix natation thus 

NOTE : - 
(i) k l l  and k22 are symmetric 

( i i )  k l l  and k22 are ident ica l  

except o f f  diagonal terms of k22 are negative. 

( i i i )  k21 = k12T 

Neglecting shear 

Also k21 = k12T. 



A. 4 PLANE GRILLAGE 

The s t i f f n e s s  sub-matrices a re  as follow 

kll 

T 
Also kel  = k12 . 

A.5 RIGID-JOINTED SPACE STRUCTURE 

I n  t h i s  case t h e  number of degrees of freedom is  doubled and 

kl 1 and k12 a r e  given by 
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A.5 RIGID-JOINTED SPACE STRUCTURE (Contd.) 

k22 = k l l  with the  s ign  of t h e  off  diagonal term negated and 

A.6 CLOSURE TO STIFFNESS MATRICES 

It should be noted t h a t  although only a l imi ted  range of element 

s t i f f n e s s  matrices have been considered i n  t h i s  appendix these  re la t ionsh ips  

a r e  used i n  p r a c t i c e  t o  solve  a wide range of s k e l e t a l  s t r u c t u r e  problems. 



APPENDIX B 

STRUCTURAL DYNAMICS 

The main purpose of t h i s  s e c t i o n  is  t o  in t roduce  t h e  t o p i c  of 

S t r u c t u r a l  Dynamics using a matr ix  approach. A genera l  theory of f r e e ,  

undamped v ib ra t ions  f o r  s t r u c t u r e s  wi th  many degrees of freedom w i l l  be 

developed. 

STIFFNESS FORMULATION OF THE EIGEN-PROBLEM 

Consider the  mass-spring system shown i n  Figure B . l  

FIGURE B. 1 

The Equation of motion f o r  the  system of Figure B . l  can be 

expressed i n  matr ix  form as follows 

MASS 

MATRIX 



STIFFNESS FORMULATION OF THE EIGEN-PROBLEM (Contd.) 

where : 

p is  the  forces  vector  

M is the  mass matrix 

i s  the  accelera t ion vector .  

The general  force-displacement r e la t ionsh ip  can be w r i t t e n  as 

hence, Equation B .1 becomes 

Unfortunately Equation B.2 i s  no t  y e t  i n  a usable form. To 

remove t h e  t i m e  dependence associa ted  wi th  X assume 

X2 = X2 s i n  u t  I- - - - - - - - - -(B*3) 
I I 
i 

'n 
= x' s i n  o t  

n J 
where 

X,, X2, - - - - - - X is the  amplitude of n 

v i b r a t i o n  of m a s s e s  and w is t h e  frequency of t h e  system. 

Di f fe ren t i a t ing  Equation B.3 wi th  respect  t o  t i m e  twice r e s u l t s  

i n  . . 
x = -u2 s i n  u t  X. 

Hence from Equation B.2 w e  g e t  1--.'-- - - - - - - - -(Be.) 

There a r e  two points  t o  be noted concerning Equation B.4. These 

a r e  

(i) The equation reduces t h e  Equations of Motion from being 

t i m e  dependent t o  being amplitude dependent. - 



STIFFNESS FORMULATION OF THE EIGEN-PROBLEM (Contd.) 

( i i )  Equation B.4 is  now obviously an eigenvalue problem i n  
2 

which the re  are n eigenvalues i .e. w o r  frequencies of v ibra t ion.  

Each frequency is  associa ted  with an eigenvector (mode vector) .  

To determine the eigenvalues of Equation B.4 w e  can rewrite it 

thus 

Hence, f o r  non- t r iv ia l  so lu t ions  of Equation B.5 t o  e x i s t  

2 
r e s u l t i n g  i n  a set of w which a r e  the  eigenvalues of t h e  matrix. The 

v ib ra t ion  modes associa ted  wi th  each frequency w i l l  then be the  eigenvectors. 

It should a l s o  be noted t h a t  Equation B.5 can be w r i t t e n  i n  

t h e  form 

E - l K - w 2 1 ]  [ X I  = 0 

EXAMPLE B . l  - TWO DEGREE OF FREEDOM SYSTEM 

Determine t h e  eigenvalues (frequencies) and eigenvectors (modes) 

f o r  the  two degree of freedom mass-spring system shown i n  Figure B.2. 

FIGURE B.2 

SOLUTION 

The problem w i l l  be solved i n  a s t e p  by s t e p  procedure f o r  

c l a r i t y .  

(a) S t i f f n e s s  Matrix 

The S t i f f n e s s  Matrix is formed i n  a s i m i l a r  manner t o  t h a t  

previously described,  i .e . t h e  Primary S t i f f n e s s  Matrix is f i r s t  formed 

and then reduced t o  the  S t ruc tu re  S t i f f n e s s  Matrix by invoking cons t ra in t  

conditions. Hence 
4  - 2 0 1  K - 



SOLUTION (Contd.) 

(b) Mass Matrix 

This is  simply a diagonal  matr ix  of t h e  masses taken i n  turn .  

r5 i 0 1  

(c) Equations of Motion 

The two equations of motion are given by the  re la t ionsh ip  

Taking t h e  r i g h t  hand s i d e  of the  above system of equations t o  

the  l e f t  hand s i d e  and s u b t r a c t i n g  r e s u l t s  i n  

(d) Eigenvalues 

Expanding t h e  determinant of the  matrix of Equation B.6 t o  

obta in  the  non- t r iv ia l  so lu t ions  g ives  

2 
(40-5w2)  ( 2 0 - 2 . 5 ~ )  - (20.20) = 0 - - - - - -  (a) 

2 4 
800 - 200w + 1 2 . 5 ~  - 400 = 0 

4 2 
1 2 . 5 ~  - 2 0 0 0  + 4 0 0  = 0 - - - - - -  (b 

Dividing Equation (b) t h r u  by 12.5 

2 
w4 - 16w + 32 = 0 

Z 
which i s  a quadrat ic  equation i n  w . The roots  of t h i s  equation, i.e. t h e  

eigenvalues , become 



SOLUTION (Contd . ) 
(e) Eigenvectors 

Expanding t h e  f i r s t  row of Equation 2.20 thus 

2 
Subs t i tu t ing  f o r  w i n  Equation (c) 

which i s  t h e  f i r s t  eigenvector o r  mode of vibration of the  system. 

When 
2 

w = 4 ( 2 +  r) 
then 

X2 = 8 - 8 - 4 - f ?  4 X 1 

hence 

2X =['-I 
the  second eigenvector o r  mode associa ted  with the  h igher  eigenvalue o r  

frequency . 
ALTERNATIVE FORMULATION OF THE EIGEN-PROBLEM 

It has already been shown t h a t  

Premultiplying both s i d e s  of Equation B. 7 by K-l r e s u l t s  i n  



ALTERNATIVE FORMULATION OF THE EIGEN-PROBLEM (Contd .) 

but 

K - ~  = F = Flexib i l i ty  Matrix. 

Hence the a l te rna t ive  form of the Equations of Motion become rn 

I n  a number of cases i t  is not convenient t o  form the s t i f f n e s s  

matrix and an a l te rna t ive  f l e x i b i l i t y  approach is  favoured. 

EXAMPLE B.2 - BEAM VIBRATIONS 

Determine the frequencies and vibrat ion modes f o r  the simply 

supported concrete beam shown i n  Figure B.3. E fo r  the material  is 
7 2 4 

2.5 x 10 k ~ / m  , I f o r  the sect ion is  0.06 m and ml = m = 0.7 Mg. 
2 

FIGURE B.3 

SOLUTION 

A s tep  by s tep  procedure of solut ion w i l l  once again by used. 

A t ab le  of influence coeff ic ients  has been used t o  obtain the coeff ic ients  

of the  f l e x i b i l i t y  matrix. 

(a) F lex ib i l i ty  Matrix 

Figure B.4 shows the beam with i ts  associated displacement 

coordinates and loads. 
IF: I 5 

FIGURE B.4 



SOLUTION (Contd.) 

(b) Equations of Motion 

I n  t h i s  case the  two Equations of motion a r e  given by 

which on s u b s t i t u t i o n  y i e l d s  

Writing 

and expanding the  above matrix re la t ionsh ip  

(c)  Eigenvalues 

Expanding the  determinant of t h e  matrix of Equation B.9 gives 

which i s  a quadrat ic  i n  A. The roots  of t h i s  equation a re  

from which 

hence 



SOLUTION (Contd.) 

(d) Eigenvectors 

Taking t h e  f i r s t  root  i .e. X 1  = 4.7 and expanding the  f i r s t  

row of Equation 2.23 

For h2 = 0.3 

2 . 2 ~ ~  + 2.20, = 0 

v, = -v2 

MODES OF VIBRATION 

Figure B.5 i l l u s t r a t e s  diagrammatically t h e  two modes of v ib ra t ion  

of t h e  beam. 

Symmetric 

A, = 0.3 

Skew Symmetric 

FIGURE B .5 

CLOSURE TO STRUCTURAL DYNAMICS 

The bas ics  of matrix s t r u c t u r a l  dynamics have been presented i n  

t h i s  Appendix i n  t h a t  the  s i n g l e  case of f r e e ,  undamped v ib ra t ions  has been 

considered . 
It should be noted t h a t  t h e  foregoing presenta t ion produces the  

n a t u r a l  frequencies of v ib ra t ion  of t h e  system together  wi th  t h e  r e l a t i v e  

displacements of the  masses. To obta in  the  a c t u a l  displacements of the  

masses a t  some t i m e  t however, requires  f u r t h e r  work which is  n o t  considered 

warranted a t  t h i s  s tage .  



CONCLUSION 

Only the  Direct  S t i f f n e s s  Method has been considered i n  t h i s  book 

mainly because i t  lends i t s e l f  s o  amicably t o  automatic computational 

techniques. It should be constant ly  borne i n  mind by the  s tuden t  t h a t  t o  

e x t r a c t  the  most from the  appl ica t ion of the  S t i f f n e s s  Method, access t o  a 

computer with reasonable core s t o r e  is absolute ly  e s s e n t i a l .  The S t i f f n e s s  

Method, o ther  than f o r  t h e  most t r i v i a l  problems, is not  a recommended 

hand method of so lu t ion .  The method comes i n t o  i t s  own f o r  obtaining 

so lu t ions  t o  problems with many degrees of freedom. It w i l l  no doubt have 

been observed t h a t  t h e  word indeterminacy did  not  have t o  be mentioned during 

formulation. This f a c t o r  i n  i t s e l f  is highly s i g n i f i c a n t  when one is i n t e n t  

on understanding t h e  fundamental s t r u c t u r a l  concepts of equil ibrium and 

compatibi l i ty.  

The contents  of t h i s  book are considered by the  author t o  be a 

minimum coverage of undergraduate requirements f o r  matr ix  methods of 

s t r u c t u r a l  analys is .  The work presented i n  t h e  book c o n s t i t u t e s  the  b a s i s  

of a 2 hour/week, one semester course f o r  a l l  3rd yea r  Civil  Engineering 

s tudents  at C.I.A.E. It is f e l t  t h a t  should t h e  s tuden t  choose t o  discontinue 

h i s  s t u d i e s  of s t r u c t u r e s  i n  t h e  4th year  of t h e  C i v i l  Course he  should have 

a t  l e a s t  s u f f i c i e n t  b a s i c  knowledge of modern methods of s t r u c t u r a l  ana lys i s  

t o  undergo a s e l f  educating programme on graduation. 
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