BE WHAT YOU WANT TO BE

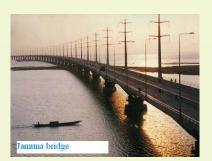
Condition monitoring of belt conveyors on mine sites

Dr. Abdul Md Mazid Senior Lecturer (Mechanical, Mechatronics, Bulk Materials) CQUniversity Australia Rockhampton E-mail: a.mazid@cqu.edu.au Ian Bond, Reliability Team Supervisor, GPC Gladstone E-mail: bondi@gpcl.com.au

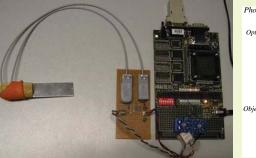
Dennis Zimmerlie, Maintenance Systems Manager, GPC Gladstone E-mail: zimmerlied@gpcl.com.au

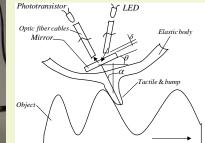
CRICOS PROVIDER CODES: QLD 00219C, NSW 01315F, VIC 01624D

Presentation plan:


- 1. Introducing myself
- 2. Introduction to belt conveyors
- 3. Condition monitoring
- 4. NDTs
- 5. Belt repair & installation
- Scattered energy of vibration 3rd parameter for vibration assessment
- 7. Vibration based fatigue damage of bearings
- 8. Mechanism of belt damage

My journey:



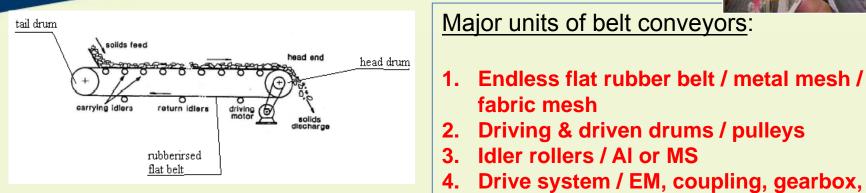


Areas of my specialisation:

- Machine tools design
- Manufacturing Technology
- Mechatronics

 Bulk materials handling

Belt conveyor – the backbone of mining industries:


- Prime bulk transportation means in mining & process industries;
- Capable of carrying a greater diversity of products at higher rates over longer distances;
- Belt conveyor "A driven endless strap of flexible flat material stretched between two drums and supported at intervals on idler rollers"

- May transport a daily average of 10,000 tonnes of coal;
- Individual sections of belts may make up an overall length of 100 km or more.
- Belt speed vary within 5-8 m/sec

Belt conveyor – design construction

NOTE:

The head drum is rotated by belt drive connected to the EM via a gear box (reducer)

1.

fabric mesh

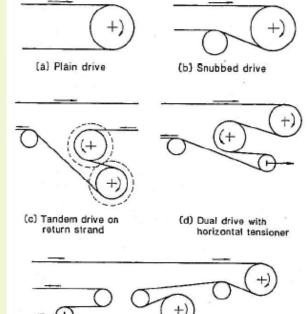
5. Structural assembly 6. Pre-tension loading

2. Belt cleaners / scrappers

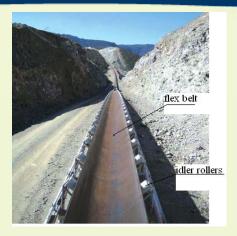
3. Emergency stop cord

Belt stabiliser

brake

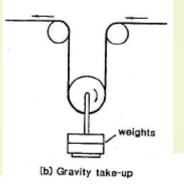

- The friction forces created by pre-tension of the flat belt makes it moving
- Idler rollers rotates by themselves on idler bearings supporting the load on be

University AUSTRALIA

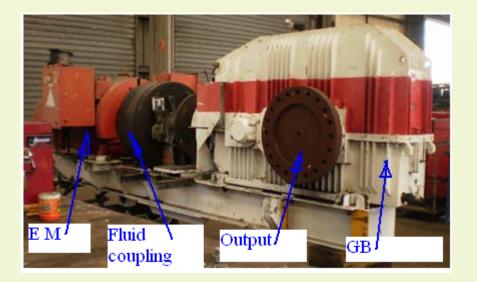

Belt conveyor - intro

Factors helping operation of belt conveyors:

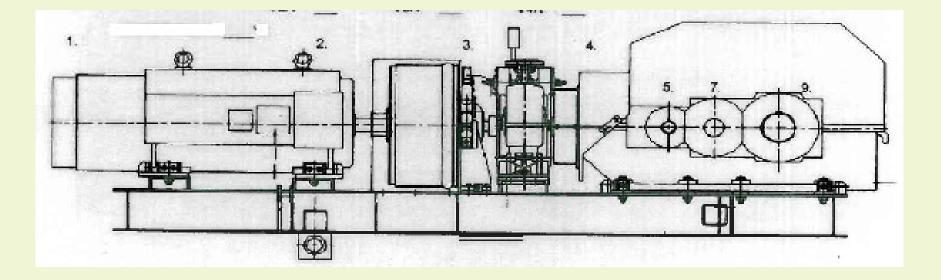
- Toughness of the belt
- Fitting sidewalls to increase the carrying capacity, and
- Fitting transverse slats or texturing the surface of the belt



(e) Dual drive arrangement having both drums in contact with clean side of belt


⁽c) Standard 3-roll idler set

Drive system of belt conveyors:



- A high power electric motor / 3-phase asynchronic
- A heavy duty gearbox / input & output shafts
- Fluid coupling / soft coupling
- Brake
- Resilient disc for flexibility

An assembly of a drive system:

Maintenance, Reliability & Condition Monitoring:

Definition of maintenance:

- To maintain plant in time
- Keep your plant in existing working condition
- Preserve & protect your plant
- Keep your plant from failure & decline

Objective of maintenance:

• To maintain the assets of a company so that they meet the reliability needs at an optimal cost

Maintenance, Reliability & Condition Monitoring: ... contd.

Definition of Reliability:

• "The probability or duration of failure-free performance under stated conditions"

Conveyor Maintenance Strategies:

- Reliability Centered Maintenance (RCM) a process to ensure that assets continue to do what their users require in their present operating context
- Predictive Maintenance (Condition Monitoring) e.g. Oil Analysis & Tribology, Vibration Analysis, Thermography, NDT (Non Destructive Testing), Ultrasonics, and Motor Current Analysis – All these techniques are used to monitor machine health and help determine if corrective maintenance is required;

Conveyor Maintenance Strategies:..contd.

- Preventive maintenance & scheduled restoration Inspection of equipment & components at fixed intervals. e.g. lubrication of pulley bearings;
- Scheduled discard e.g. replacement of a string of idler trough rollers;
- Calibration –e.g. Instruments / often faults are discovered during calibration and are rectified;
- One-of re-design / one-time replacement;
- Run to failure –e.g. components are run to failure replaced;

University

Points to monitor for belt conveyors:

- Pulley bearings e.g. Head/Tail/Idlers;
- Belt wear e.g. Condition/thickness;
- Pulley Wear Condition/thickness;
- Belt cleaners/Tail plough/Scrapper adjustments;
- Tracking frames –rollers & servo rollers condition and correctly adjusted 20mm clear each side of centred belt;
- Emergency stop cables and switches.

Belt, pulleys, rollers – condition inspection:

- All pulley shells/lagging for damage or uneven wear;
- Operation of belt trackers and adjust to ensure correct alignment / servo rollers have 20mm clearance from the edge of belt, ensure all components move freely;
- Inspection of plough scrappers/belt cleaners / replace rubber;
- Inspection of skirting for wear & correct adjustment.

University

Oil analysis:

 Oil analysis is the sampling and laboratory analysis of a lubricant's properties, suspended contaminants, and wear debris

Regular analysis of oil samples from engines, transmissions, hydraulic systems, compressors provide:

- Oil Condition & performance
- Wear trends

Magnification X 200

- Abnormal working condition to pinpoint likely causes
- Allows corrective actions to
 he planned

Transmission & Lub-oil & cooling fluid testing:

Testings:

- Microscopic studies
- Spectrum analysis
- Sludge testing for metallic particles
- Viscosity
- Density

- Regular analysis of used oil from engines, transmissions, hydraulic systems, compressors provide:
- Establish wear trends
- Abnormal working condition to pinpoint likely causes
 - **Corrective can be planned**

Condition of drive system/ 6000 hrs running

For gear boxes

- Grease labyrinth seals
- Inspect silica gel indicator
- Condition of gear cooler
 lines
- Visual inspection for oil leaks
- Condition of guarding

For fluid coupling:

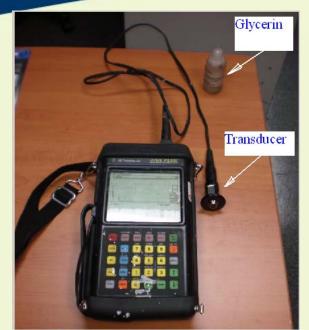
- Inspect cooler for oil leakage
- Condition of routing of cooler lines
- Inspect silica gel indicator
- Condition of gear cooler lines

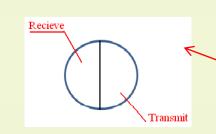
Inspection of structure:

- Framework for corrosion
- Walkways & handrails for damage/corrosion

NDT methodologies:

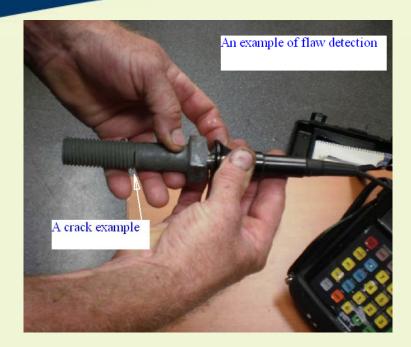
- 1. Magnetic particle testing for crack detection
- 2. Ultrasonic flaw detection / thickness detection
- 3. Radiographic examination (X-ray / Y-ray)
- 4. Dye penetration testing / red & white paints
- 5. Florescent particle testing
- 6. Eddy current testing / aerospace applications
- 7. Visual inspection


NDT - Magnetic particle testing for crack detection:



NDT- Ultrasonic flaw & thickness detection

37DL PLUS Ultrasonic thickness gauge / GE Panametics


- Transducer D790-SM 5MHz / piezielectric element excited by short electrical impulse to generate a burst of high frequency ultrasonic wave;
- Piezoelectric materials Quartz crystals, Rochelle salts, barium titanate
- Sound energy consists of a pattern of organised mechanical vibration travelling through a medium such as air or steel;
- Air is a bad medium for vibration transmission;

NDT- Ultrasonic flaw & thickness detection – demo:

- Soundwaves in the Megahertz range do not travel efficiently through air
- A drop of coupling liquid is used between the transducer & the test piece;
- Good couplants are glycerin, propelyne glycol, water;

NDT- Ultrasonic flaw & thickness detection..a demo:

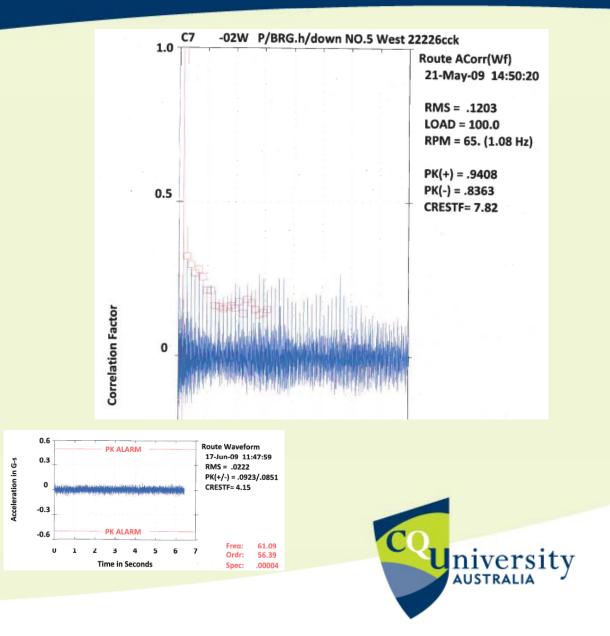
Thickness, $T = V \times t/2$

V = the velocity of sound in the test material;

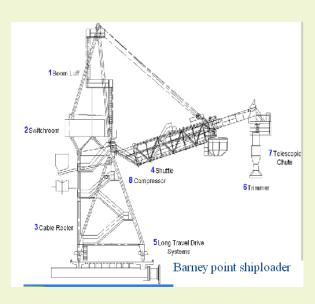
.t = the measured round-trip cyclic transit time

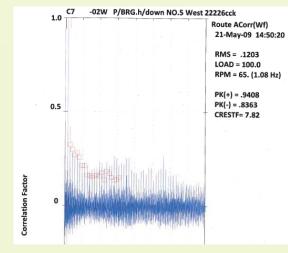
Vibration:

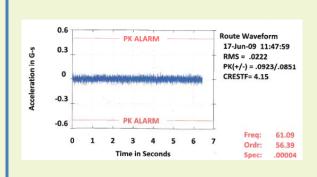
- Bearing defects
- Gear mesh defects
- Misalignment shaft/coupling
- Shaft axial inaccuracy
- Unbalance
- Resonance

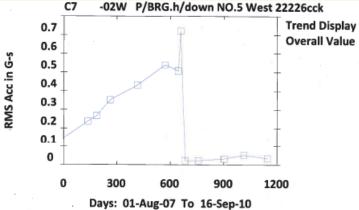


Vibration monitoring






CSI2130 m/c health analyser



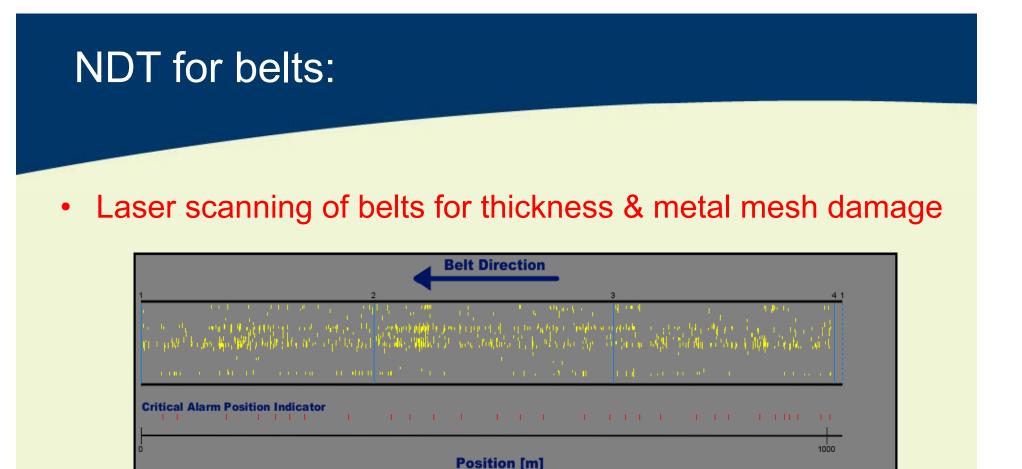
Vibration monitoring – a case study:

Ultrasonic noise detection:

- Ultrasonic devices can also be used to detect both high speed and slow speed bearing noise;
- AE acoustic emission meters can be used to identify idler bearing distress

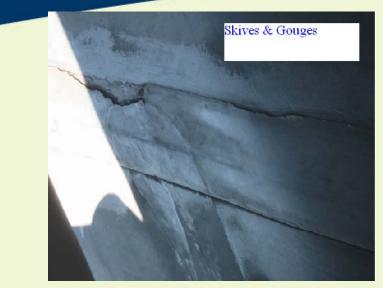
Test bearing condition

Temperature recording / Thermography


Use of a infrared temperature gun to monitor trough rollers bearing temperatures

Symptoms of broken bearings:

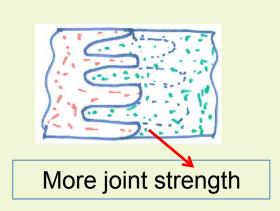
- Excessive vibrations
- Raised temperature
- Unusual acoustic emission


niversity

 Belt shows significant damage by the yellow indicators, the red indicators show critical events, these critical events may be repairs that have been carried out previously

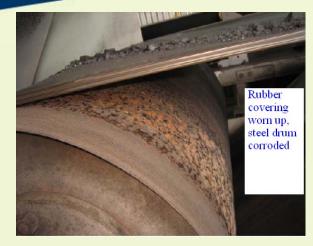
Typical belt damages:

Belt replacement & repair:


Belt splice types:

Overlap splice

 Finger splice / high integrity splice



Mechanism of belt fatigue damage:

- Actions of Ft & Fp create expansion & compression stresses on the belt causing pulsating fatigue stresses
- Rubber portion is flexible but metal wires have a limited expansion capability

Typical drum damage, repair & replacement:

Shaft restoration:

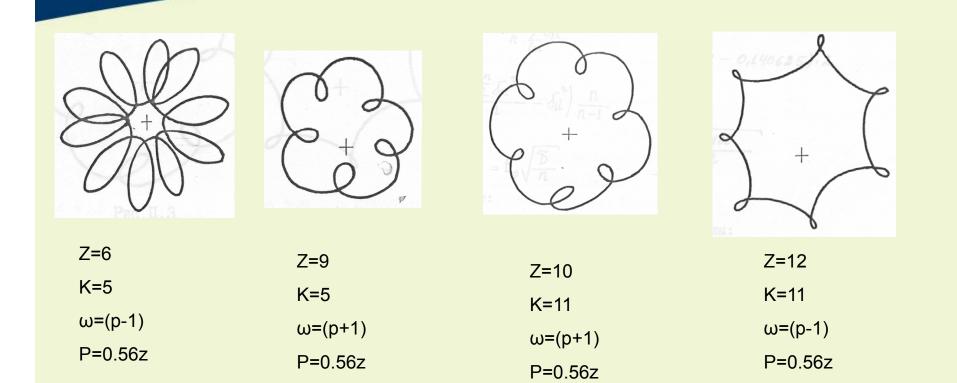
- metal cladding / laser
- Machining to size

Idler roller bearing damage:

- Hundreds of unexpected idler failure due to bearing damage;
- Failed idlers damage belt, create skives;
- Unexpected shutdown;
- Huge loss of production;

Vibration based fatigue damage of bearings !!!

Reason: Scattered energy of vibration



Interpretation of vibration of a mechanical body:

- Faster translation of mass of a body / shaft / spindle / particles in chaotic manner, in unaccountably multiple directions
- Mechanical vibration of a shaft/spindle mounted on bearings - chaotic oscillation of the shaft axis during its rotation in unaccountable multiple directions
- Any motion that repeats itself after an interval of time is called "vibration" or "oscillation"

Piotrashke P. found the following phenomena studying machine tool spindle rotation: oscillographic models of spindle-nose vibration

Z=No. of rolling elements; K=face-centricity;

ω=angular velocity in rad

P=number of peaks

How do we assess vibrations conventionally?

By evaluating the following parameters:

Frequency of vibration
 Amplitude of vibration

Proposed a 3rd parameter:

Scattered energy of vibrations

Galileo Galilei

So, what is "Scattered Energy of Vibration" ?

- Scattered Energy of Vibration "the energy emanated during vibration by the force generating motion / translation of a mass to a particular displacement"
- Scattered Energy of Vibration it creates impact forces

Therefore, the conclusion: what we need for modelling of energy?

 Determine the micro-translations of mass-load / mass-moment – (displacement)

- Velocity of translation of the mass-load to get the force
- Determine the acting portion of forces (NOTE: during calculation "work" to be converted into "energy")

"the energy emanated during vibration by the force generating motion of a mass to a particular displacement"

NOTE:

Micro-translations viz shaft vibrations are emanated from individual cause

AUSTRAL

Particular example and objectives:

• Application of scattered energy of vibrations of a high-speed spindle for its life prediction

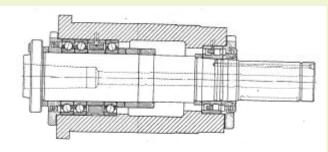
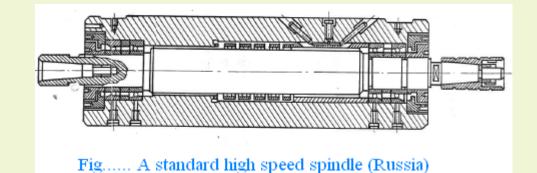
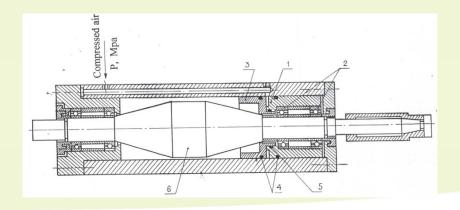
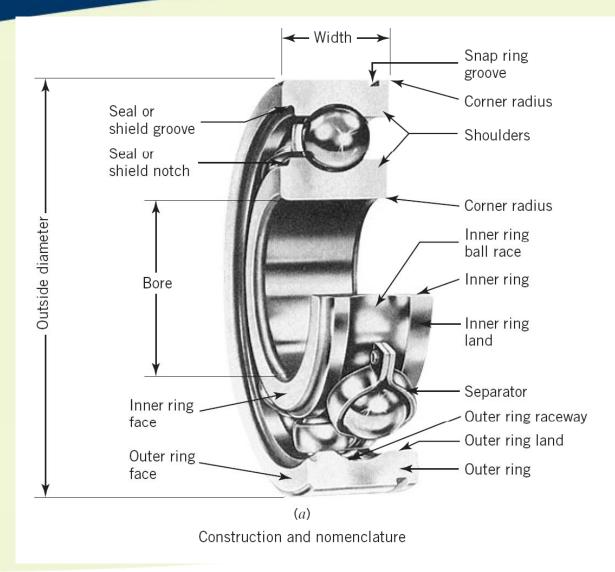




Fig.. A high speed spindle (Europe)



Causes of spindle vibrations:

- 1) Deviation of ideal geometric shape i.e. profile irregularities of working surfaces and surface texture of outer and inner races of spindle bearing;
- 2) Deviation of ideal geometric shape of rolling elements (balls, rollers and needles) or scattered location of the latter having different tolerances during bearing assembly;
- 3) Technological fit-gap between rolling element and the nest of the separator (cage) of bearings;
- 4) Ovalness of races of rings of the spindle bearing;

Nomenclature:

- 5) Presence of fluidic and other hard dust particles on the working surfaces;
- 6) Elastic contact deformation of rolling elements and rings during high loading of spindles;
- 7) Manufacturing quality of separator and other elements of bearings; and
- 8) So many to enlist.

Hence the novel parameter:

• Scattered energy of vibrations (En) emanated from individual causes of vibrations

NOTE:

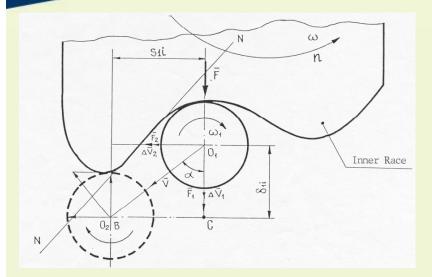
 Scattered energy of vibration – is the energy emanated during vibration by the motion of a body to a particular displacement and this energy is instantly disbursed around in its environment as it is emanated.

The Total Scattered Energy of Vibrations for a high-speed spindle:

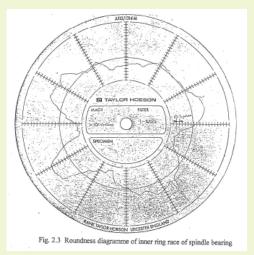
$\sum En = \xi \left(En.pi + En.fg + En.be + En.ov + -- \right) \quad (9)$

Where,

 ξ - Coefficient of occurrence probability of a spindle/shaft vibrations or simply the factor of vibration probability. It considers all other probable vibrations emanated from known and / or unknown causes except those identified and taken into account.


What's happening with this Total Scattered Energy of vibrations?

It instantly is disbursed in the following four ways, and that's why its called scattered energy:

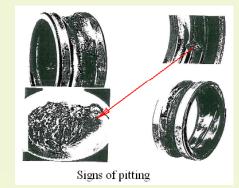

- *En.dest* (portion-energy accumulated in the crystal lattice of bearing material)
- *En.cond* (portion-energy conducted into surrounding components of the spindle head)
- *En.rad* (portion-energy radiated in the surrounding environment)
- *En.ac* (portion energy converted into acoustic energy)

1. Scattered energy of vibration due to profile irregularities (*En.pi*)

$$En.pi = \gamma \cdot M \cdot \frac{2 \pi z n^2}{60} \cdot R \cdot \sum_{i=1}^k \cos(\operatorname{arctg} \frac{S_{1i}}{\delta_{1i}}) \cdot \delta_{1i}; \qquad (5)$$

- M Deduced average mass-load on the considered centre of rotation of the shaft.
- z Quantity of rolling elements in the bearing considered;
- n Speed of spindle rotation (rpm);
- R Deduced average radius of rotation of the system;
- γ Coefficient of relative slip of rolling element;

 S_{1i}, δ_{1i} - Geometry of i-th profile irregularity of race of inner ring of spindle bearing as in the Figure;


Bearing damage

Bearing Outer Race

Bearing Inner Race - Double row spherical

<u>Hypothesis</u> - Criterion of working surface destruction of bearings due to scattered energy of vibration:

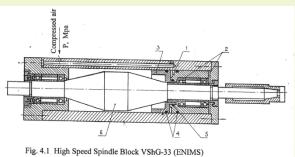
"Vibration based fatigue damage of bearing parts occurs due to accumulation of scattered impact energy of shaft/spindle vibration in the crystal lattice of bearing parts, achieving the threshold energy required for damaging the crystal-bonding of material initiating fracture in working surfaces bearing parts."

The hypothesis promotes the phenomena of vibration based fatigue damage of working-surfaces discovering the real causes of fatigue damage and fatigue crack initiation in metals.

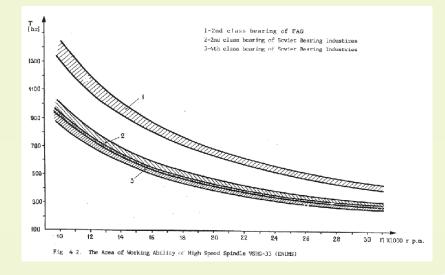
Criterion of working surface destruction:

We have the energy balance formulated:

$$\sum E_{n.scat} = \left(E_{n.dest} + E_{n.cond} + E_{n.rad} + E_{n.ac}\right)$$

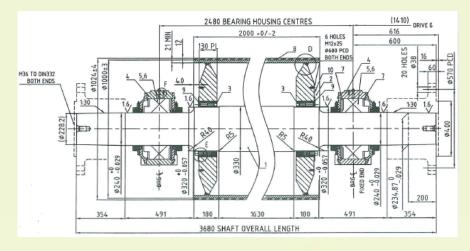

Rewriting this we get the a criterion for working surface destruction:

$$\left(\sum E_{n.sc} - E_{n.cond} - E_{n.rad} - E_{n.acc}\right) \ge E_{n.dest}$$



Application of scattered energy of vibration model for idler bearing fatigue damage:

Have done these:



1- bearing housing, 2 - outer ring of bearing, 3- support,4, 5 - gaskets, 6 - spindle shaft

Want to do for these:

Authors sincerely acknowledge the mentorship & active help of Reliability & Condition Monitoring Division at GPC Gladstone:

- Damian Ahern, Condition Monitoring Technician (Mechanical)
- Kenneth Tighe, Condition Monitoring Technician (Electrical)
- Craig Maxwell, Workshop Supervisor
- Elliot W Gibb, Technician

Sincere acknowledgement for help to:

- Steel Kingsburry, ALS Gladstone
- John Dair, ALS Gladstone
- Axel Engelhardt, Clean Oil services, Townsville

THANK YOU FOR YOUR PATIENCE & ATTENTION !!!

Question Time

Email: a.mazid@cqu.edu.au

