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Abstract 
 

This paper presents a study on modeling the 
propagation process of topology-aware worms. 
Topology-aware worms are more intelligent and 
adaptive to network topologies than other worms, thus 
are more difficult to control. Due to the complexity of 
the problem, no existing work has solved the problem 
of modeling the propagation of topology-aware worms. 
Our major contributions in this paper are firstly, we 
propose an innovative logic matrix formulation of the 
propagation process of topology-aware worms; and 
secondly, we find, from the applications of the 
formulation in our experiments, the impacts of two 
different topologies, namely the simple random graph 
topology and the pseudo power law topology, on a P2P 
worm’s mean coverage rate in the P2P overlay 
network. The proposed innovative logic matrix 
formulation, which is a discrete time deterministic 
propagation model of topology-aware worms, can 
translate the propagation process of topology-aware 
worms into a sequence of logic matrix operations. Its 
effectiveness and efficiency are demonstrated by its 
applications in our experiments. 
 
 
1. Introduction 
 

Worms can be classified according to the 
techniques by which they discover new targets to 
infect. Scanning, which ‘entails probing a set of 
addresses to identify vulnerable hosts’ [1], is the most 
widely employed technique by worms. Scanning could 
be implemented differently, which leads to several 
different types such as random scanning, localized 
scanning [2], sequential scanning [3], routable 
scanning [4], selective scanning [4], importance 

scanning [5, 6], and topological scanning, which was 
employed by the Morris Internet Worm of 1988 as its 
target discovery technique [7]. Worms employing all 
other types of scanning except topological scanning 
among the above types do not need to have any 
knowledge on topology of the network they intend to 
propagate across. On the other hand, worms employing 
topological scanning must have the more or the less 
information on the network they intend to propagate 
over, or have the capability to discover that 
information if they do not have it in advance. 
Therefore, worms employing topological scanning are 
also called topology-aware worms.  

A typical example of topology-aware worms is a 
worm attacking a flaw in a Peer-to-Peer (P2P) 
application and propagating across the P2P network by 
getting lists of peers from its victims and directing its 
subsequent attacks to those peers. This sort of 
topology-aware worm is called P2P worm. The Slapper 
worm [8] of 2003 was a typical example of P2P 
worms. The subsequent appearance of variations of the 
Slapper worm (the Slapper.B worm a.k.a. Cinik and 
the Slapper.C worm a.k.a. Unlock) indicates that 
exploit code, viruses and worms are becoming 
increasingly complex and sophisticated [8]. They are 
posing a serious challenge to network security. Due to 
the recent popularity of P2P systems with increasing 
number of users, P2P systems can be a potential 
vehicle for worms to achieve faster propagation across 
the Internet. Worm propagation on top of P2P systems 
could result in significant damages as illustrated by [9]. 
In order to find an effective and efficient 
countermeasure against the propagation of topology-
aware worms in general, and P2P worms in particular, 
we must fully understand their propagation process. In 
this paper, we propose an innovative logic matrix 
formulation of the propagation process of topology-
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aware worms, which can be used to describe the 
propagation process of this type of worms.      
 
2. Related work 
 

Mathematical models developed to model 
propagation of infectious diseases have been adapted to 
model propagation of worms [10]. In epidemiology 
area, both deterministic and stochastic models exist for 
modeling the spreading of infectious diseases [11-14]. 
In network security area, both deterministic and 
stochastic models of worms based on their respective 
counterpart in epidemiology area have emerged. 
Deterministic models of worms could be further 
divided into two categories: continuous time and 
discrete time. Stochastic models of active worms are 
based on the theory of stochastic processes. All of 
them are discrete time in nature.  

In the classical simple epidemic model [11-14], all 
hosts stay in one of the only two states at any time: 
‘susceptible’ (denoted by ‘S’) or ‘infectious’ (denoted 
by ‘I’), and thus it is also called the SI model. 
Staniford et al. presented a propagation model for the 
Code-RedI v2 worm [15], which is essentially the 
above classical simple epidemic model. The classical 
general epidemic model (Kermack-McKendrick 
model) [11-14] improves the classical simple epidemic 
model by considering removal of infectious hosts due 
to patching. The two-factor worm model [10] extends 
the classical general epidemic model by accounting for 
removal of susceptible hosts due to patching and 
considering the pairwise rate of infection as a variable 
rather than a constant.  

The discrete time deterministic Analytical Active 
Worm Propagation (AAWP) model [16] takes into 
account the time an infectious host takes to infect other 
hosts, which is an important factor for the spread of 
active worms [17]. Since propagation of active worms 
is a discrete event process, this model of active worms 
is more accurate than its continuous time counterparts 
in the deterministic regime. 

Rohloff and Basar presented a stochastic density-
dependent Markov jump process propagation model 
[18] for worms employing the random scanning 
approach drawn from the field of epidemiology [12, 
19]. Sellke et al. presented a stochastic Galton-Watson 
Markov branching process model [20] to characterize 
the propagation of worms employing the random 
scanning approach. 

A more detailed survey on modeling the 
propagation process of worms can be found in [21]. 

The formulation proposed in this paper is a discrete 
time deterministic propagation model of topology-
aware worms. 

3. The proposed innovative formulation 
 

At the beginning of this section, we extend 
definition of a matrix to allow its elements to be 
variables or constants of logic type; and term such kind 
of matrices logic matrices. Several operations of logic 
matrices are defined. Then, topology and state of a 
network are represented by its topology logic matrix 
and state logic matrix, respectively. Finally, an 
innovative logic matrix formulation of the propagation 
process of topology-aware worms is derived from first 
principle.        
 
3.1. Logic matrices and their operations 
 

We extend definition a matrix to allow variables or 
constants of logic type as its elements.  The value of a 
variable of logic type can only be one of the only two 
logic constants: True (denoted by ‘T’) or False 
(denoted by ‘F’). Therefore, a logic matrix could be 
defined as a two-dimensional array of elements ‘T’ and 
‘F’ only. If a logic matrix has only one row or one 
column, we can also call it a logic row vector or logic 
column vector, respectively. 

We define degree of a variable l  of logic type 
(denoted by )deg(l ) as 1 when its value is ‘T’, and 0 
when ‘F’; and define degree of a logic 
matrix L (denoted by )deg(L ) as the total number of 
its elements whose value is ‘T’. According to the 
above definitions, degree of a logic matrix L could be 
worked out by summing degree of its each element l , 
that is,  

∑= )deg()deg( lL .                                         (1) 

Two logic matrices A and B can be added if and 
only if their dimensions are the same, that is, they all 
have the same number of rows and columns. The 
resultant BAS += is a logic matrix of the same 
dimension with its element ijs (lies in the i -th row and 

the j -th column) being the results of logic OR of the 

corresponding elements ija and ijb of the two logic 
matrices to be added. It can be defined mathematically 
as follows: 

ijij as = OR ijb .                                                     (2) 
It could be easily derived that degree of the resultant 

logic matrix S cannot be less than that of both logic 
matrices A and B to be added; and that degree of the 
resultant logic matrix cannot be greater than sum of 
degree of each logic matrix to be added, that is,  

)deg()deg()deg()deg( BASA +≤≤ ;         (3) 
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and 
)deg()deg()deg()deg( BASB +≤≤ .         (4) 

A logic matrix A can be multiplied by another logic 
matrix B if and only if their inner dimensions are the 
same, that is, number of columns of the multiplicand 
logic matrix (the left one) is equal to number of rows 
of the multiplier logic matrix (the right one). Mutation 
law, which applies to logic matrix addition, does not 
apply to logic matrix multiplication. The product 

BAP ×= is a logic matrix of the same number of 
rows as A and the same number of columns as B . We 
define value of element ijp (lies in the i -th row and 

the j -th column) of the product to be determined by 
the following equation: 

∑
=

=
n

k
ikij ap

1

AND kjb ,                                         (5) 

where AND stands for logic AND operation,  
n denotes inner dimensions of the multiplicand and 

multiplier logic matrices, and∑
=

n

k 1

represents logic OR 

operation of all those resultants of logic AND 
operations when k from 1 to n , inclusive. 

Now the stage for later discussion has been set. In 
the next two sub-sections, we will introduce the 
concepts of a network’s topology logic matrix and state 
logic matrix, respectively; and derive our innovative 
logic matrix formulation of the propagation process of 
topology-aware worms from first principle.                                         
 
3.2. Logic matrix representations 
 

According to the traditional graph theory, a 
computer network could be represented by a directed 
graph G , with its set of vertices V  representing all 
computers connected to form the network, and its set 
of directed edges E  representing all directed links 
among these computers. A directed link from computer 
i  to computer j  means computer i  is able to send 
messages to computer j , but computer j  is not able 
to send messages to computer i . 

Topology of a computer network consisting of 
n computers could be represented by a n by n square 
matrix with its element ijt (lies in the i -th row and 

the j -th column) indicating whether there is a directed 
link from computer i  to computer j . Under the 
traditional directed graph theory, the numeric constant 
1 is used to indicate there is a directed link, and 0 to 
indicate there is not.  

We, in this paper, propose a different approach to 
indicating the existence or not of a directed link. The 
logic constant ‘T’ is used to indicate there is a directed 
link, and ‘F’ to indicate there is not. Therefore, 
topology of a computer network consisting of 
n computers could be represented by a n by n logic 
square matrix T . We term it topology logic matrix of 
the network. 

Each row of the topology logic matrix of a 
computer network forms a logic row vector, which is a 
logic vector representation of outbound link(s) of a 
particular computer belonging to the network. We call 
this logic vector the computer’s topology out-degree 
logic vector. Each column of the topology logic matrix 
of a computer network forms a logic column vector, 
which is a logic vector representation of inbound 
link(s) of a particular computer belonging to the 
network. We call this logic vector the computer’s 
topology in-degree logic vector. For example, the i -th 
row of a topology logic matrix represents outbound 
link(s) of computer i , and the j -th column of a logic 
matrix represents inbound link(s) of computer j . 

 It can be easily derived that values of topology in-
degree and out-degree of each computer belonging to a 
network equate to degrees of the computer’s topology 
in-degree and out-degree logic vector, respectively, 
which can be worked out by using equation (1) given 
in the previous sub-section.     

Next, we represent states of all n computers 
belonging to a network by a logic matrix (row vector) 
S of dimension 1 by n with its element jS1 (lies in the 

1st row and the j -th column) indicating whether 
computer j has been infected by any malware and 
become infectious. The logic constant ‘T’ is used to 
indicate the computer has been infected and become 
infectious, and ‘F’ to indicate it has not. We term the 
above logic matrix (vector) the network’s state logic 
matrix (vector).  

It can be easily derived that the total number of 
infected and infectious computers in a network equates 
to degree of the network’s state logic matrix (vector), 
which can be worked out by using equation (1) given 
in the previous sub-section.                                    
 
3.3. The logic matrix formulation 
 

Based on the above extensions to matrices and their 
operations and extensions to the matrix representation 
of a network in the traditional directed graph theory, 
we are now ready to derive our innovative logic matrix 
formulation of the propagation process of topology-
aware worms from first principle.                                         
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The derivation of our innovative logic matrix 
formulation of the propagation process of topology-
aware worms is based on the following assumptions. 
An infectious computer will send worm packet(s) to all 
other computers belonging to the same network to 
which it has a outbound link, regardless of the state 
(infected and infectious or not) of those computers. A 
healthy (not infected and not infectious) computer 
belonging to a network will be infected and become 
infectious once it receives worm packet(s) from 
another infectious computer belonging to the same 
network. An infected and infectious computer 
belonging to a network will remain in that state when it 
receives worm packet(s) from another infectious 
computer belonging to the same network. The 
propagation process from sending worm packet(s), to 
receiving worm packet(s), to having the recipient 
infected and the infected becoming infectious will be 
completed in the time interval TI of strictly the same 
length. There are a total of n computers belonging to a 
logical (not physical) network under consideration. 
Initially, there are a total of 0I computers which are 
infected and infectious. 

According to the above assumptions, the logical 
network’s initial state could be represented by its initial 
state logic matrix (vector) 0S of dimension 1 by n ; and 
the total number of initially infected and infectious 
computers 0I equates to degree of 0S : 

)deg(SI 00 = .                                                      (6) 

Time intervalTI later, the logical network’s state 
could be represented by its state logic matrix 
(vector) 1S of dimension 1 by n at that time; and the 

total number of infected and infectious computers 1I at 

that time equates to degree of 1S : 

)deg(S  I 11 = .                                                       (7) 
In the same way, time interval TI×2 later, the 

logical network’s state could be represented by its state 
logic matrix (vector) 2S of dimension 1 by n at that 
time; and the total number of infected and infectious 
computers 2I at that time equates to degree of 2S : 

)deg(S  I 22 = .                                                      (8) 
Generally, time interval TIg × later, the logical 

network’s state could be represented by its state logic 
matrix (vector) gS of dimension 1 by n at that time; and 
the total number of infected and infectious 
computers gI at that time equates to degree of gS : 

)deg(S  I gg = .                                                      (9) 

In the same way, time interval ( ) TIg ×+1 later, 
the logical network’s state could be represented by its 
state logic matrix (vector) 1+gS of dimension 1 by n at 
that time; and the total number of infected and 
infectious computers 1+gI at that time equates to degree 

of 1+gS : 

)deg(S  I 1g1g ++ = .                                              (10) 
During the above propagation process, the total 

number of infected and infectious computers keeps 
increasing prior to a certain time point. Finally, time 
interval ( ) TIG ×+1 later the total number of infected 

and infectious computers 1+GI at that time will be equal 

to GI , which reveals the above propagation process 

will actually stop at time point TIG × . 
We notice that the logical network’s state at time 

point ( ) TIg ×+1 represented by its state logic matrix 

(vector) 1+gS is fully determined by its state at time 

point TIg × represented by its state logic matrix 

(vector) gS and its logical topology represented by its 

topology logic matrixT . We find the relationship 
among 1+gS , gS , andT could be mathematically 
described as follows: 

T  SS  S gg1g ×+=+ ,                                         (11) 
where× stands for logic matrix multiplication, 
and + denotes logic matrix addition, both of which 
have been defined in sub-section 3.1.  

In the above equation, gS is a 1 by n logic matrix 

andT is a n by n square logic matrix. The resultant 
of T  Sg × (denoted by gS ' ) is a 1 by n logic matrix 
(row vector) representing all computers belonging to 
the network that could be infected at time 
point ( ) TIg ×+1 given the network’s state at time 
point TIg × represented by its state logic matrix (row 

vector) gS and its logical topology represented by its 

topology logic matrixT . According to definition of 
logic matrix multiplication given in sub-section 3.1, 
value of the j -th element of gS ' (denoted by

jgs
1

' ) is 

determined by equation (5), where i equates to 1 
because both the multiplicand and the resultant logic 
matrix are logic row vectors, that is,  
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∑
=

=
n

k
gg

kj
ss

1
11

' AND kjt ,                                   (12)                   

where
k

gs
1

stands for the value of the element which 

lies in the k -th column of gS , and kjt denotes value of 

the element which lies in the k -th row and the j -th 
column ofT . 
In the above equation, kjt for all k from 1 to n actually 

represents compute j ’s topology in-degree logic 

vector. The resultant of
k

gs
1

AND kjt                                    
will be logic ‘T’ if and only if both values of 

k
gs

1
and kjt are logic ‘T’, which indicates at time 

point TIg × computer k is infectious and computer j  
has an inbound link from computer k . The logic OR 
operation of all those resultants of logic AND 
operations when k from 1 to n , inclusive, denoted by 

∑
=

n

k 1

in the above equation actually says if there exists 

at least one value of k from 1 to n , inclusive, which 
makes the value of the resultant of 

k
gs

1
AND kjt                                    

to be logic ‘T’, the value of
j

gs
1

' will be logic ‘T’. 

Therefore, equation (12) actually says if at time point 
TIg × at least one computer among those computers 

from which computer j has an inbound link is 
infectious, computer j will be infected and become 

infectious at time point ( ) TIg ×+1 . 
Then, according to the definition of logic matrix 

addition given in sub-section 3.1, it could easily 
derived that  T  SS gg ×+ actually just adds all those 
computers that could be infected at time 
point ( ) TIg ×+1 represented by  T  Sg × to the 

network’s state at time point TIg × represented 

by gS . The resultant of the above logic matrix addition 
operation represents the network’s state at time 
point ( ) TIg ×+1 , which is represented by 1+gS . 
Hence, equation (11) gets proved.  

The framework formed by Equations (9) and (11) 
along with the criterion proposed in this paper used to 
determine whether the propagation process has actually 
stopped is a discrete time deterministic propagation 
model of topology-aware worms. We call the above 
framework the logic matrix formulation of the 

propagation process of topology-aware worms. The 
formulation can translate the propagation process of 
topology-aware worms into a sequence of logic matrix 
operations, which are easily implemented with any 
matrix-friendly mathematics programs. 
 
4. Applications of the formulation 

 
We apply the logic matrix formulation of the 

propagation process of topology-aware worms 
proposed in this paper to investigate the impacts of two 
different topologies, namely the simple random graph 
topology and the pseudo power law topology on the 
coverage rate of topology-aware worms. Coverage rate 
(denoted by CR in this paper) of a worm is defined in 
this paper as a ratio in percentage of the maximum 
number of computers belonging to a network that 
could be infected and become infectious to the total 
number of computers n belonging to the same network. 
According to the criterion proposed in this paper used 
to determine whether the propagation process of a 
topology-aware worm has actually stopped, coverage 
rate of a topology-aware worm in a network could be 
worked out by using the following equation: 

%100)deg( ×=
n
SCR G ,                                (13) 

where GS represents the state logic matrix of the 
network at the time point when the propagation process 
has just stopped. 
 
4.1. The simple random graph topology 
 

Firstly, we apply the proposed logic matrix 
formulation of the propagation process of topology-
aware worms to investigate the impacts of two 
parameters, namely the number of initially infected 
computers 0I belonging to a network and the mean 

value of topology out-degree )( outDE of the network, 

on the coverage rate CR of a particular sort of 
topology-aware worm called P2P worm in the network.  

We program the proposed formulation with 
MathWorks’ MATLAB, which is a matrix–friendly 
mathematics program. Our implementation in 
MATLAB assumes there are a total 
of 000,10=n peers (computers) belonging to the 
logical P2P overlay network under consideration. 
Therefore, the topology of the overlay network is 
represented by its topology logic matrixT , which is a 
10,000 by 10,000 square logic matrix; and the its initial 
state is represented by its initial state logic 
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matrix 0S ( )deg(SI 00 = ), which is a 1 by 10,000 
logic matrix (row vector). We randomly select all 
initially infected peers (computers) from all peers 
belonging to the overlay network.  

Mean value of topology out-degree )( outDE of the 
overlay network is determined by the following 
equation: 

n

T
DE

n

i
i

out

∑
== 1

)deg(
)( ,                                   (14) 

where iT stands for the i -th row ofT , which is actually 
the topology out-degree logic vector of peer 
(computer) i belonging to the overlay network. In the 
experiments conducted for this sub-section, we assume 
each peer has the same value of topology out-degree. 
Peers to which each peer has outbound links are 
randomly selected from all peers except the peer itself 
belonging to the overlay network, which means we do 
not allow loop, that is, no peer has an outbound link to 
itself. Therefore, we call the topology of the overlay 
network in the experiments conducted for this sub-
section the simple random graph topology. 

 We conduct our experiments with MATLAB under 
different combinations of values of 0I and )( outDE .  

Firstly, we fix the number of initially infected peers 
(computers) 0I belonging to the overlay network to be 
1, and try to find out the impact of mean value of 
topology out-degree )( outDE on the coverage 

rate CR of P2P worms in the overlay network. We 
randomly select all initially infected peer(s) from all 
peers belonging to the overlay network. A total of 5 
scenarios ( )( outDE from 1 to 5, inclusive) are 
investigated. Experiment for each scenario is repeated 
100 times. Then, the mean value of coverage rate and 
coefficient of variation of coverage rate are worked 
out. Results from the experiments are listed in Table 1. 

 
Table 1. The simple random graph topology 
(when there is only 1 initially infected peer 

randomly selected from all peers) 
Mean Value of 
Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

1 1.23 54.81 
2 79.64 0.68 
3 94.08 0.27 
4 98.06 0.16 
5 99.31 0.09 

 

As shown by the above experimental results, mean 
value of topology out-degree has great impact on both 
mean value and coefficient of variation of coverage 
rate of P2P worms in the overlay network featuring the 
simple random graph topology. Increase in mean value 
of topology out-degree results in increase in mean 
value of coverage rate but decrease in coefficient of 
variation of coverage rate. When mean value of 
topology out-degree is increased to 3, mean value of 
coverage rate is increased to over 90% and its 
coefficient of variation becomes very small, which 
indicates 3 is the minimum mean value of topology 
out-degree which can make a P2P worm be able to 
infect most peers with very high certainty.  

After that, we fix the number of initially infected 
peers (computers) 0I belonging to the overlay network 
to be 10, and repeat the above experiments. Results 
from the experiments are listed in Table 2. 

 
Table 2. The simple random graph topology 

(when there are a total of 10 / 100 initially 
infected peers randomly selected from all 

peers) 
Mean Value of 
Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

1 4.28 / 13.53 16.22 / 5.43 
2 79.80 / 80.06 0.63 / 0.62 
3 94.10 / 94.16 0.27 / 0.26 
4 98.03 / 98.06 0.15 / 0.15 
5 99.30 / 99.31 0.08 / 0.09 

 
The above experimental results show similar trends 

to those shown by Table 1, which indicates the impact 
of number of initially infected peers on the coverage 
rate of a P2P worm in the overlay network featuring 
the simple random graph topology is insignificant.  

 
4.2. The pseudo power law topology 
 

Secondly, we apply the proposed logic matrix 
formulation of the propagation process of topology-
aware worms to investigate the impacts of two 
parameters, namely the number of initially infected 
computers 0I belonging to a network and the maximum 

value of topology out-degree )( outDMax of the 

network, on the coverage rate CR of P2P worms in the 
network. In the experiments conducted for this sub-
section, we assume only a very small number (10 in 
our experiments) of peers have the maximum value of 
topology out-degree, and all other peers have the 
minimum value (1 in our experiments) of topology out-
degree. Although the distribution of topology out-
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degree in our experiments does not strictly follow 
power law, it does have the most important features of 
power law distribution, namely peers with maximum 
value of topology out-degree are rare and most peers 
have minimum value of topology out-degree. 
Therefore, we call the topology of the overlay network 
in the experiments conducted for this sub-section the 
pseudo power law topology. 

We conduct our experiments with MATLAB under 
different combinations of values 
of 0I and )( outDMax .  

Firstly, we fix the number of initially infected peers 
(computers) 0I belonging to the overlay network to be 
1, and try to find out the impact of maximum value of 
topology out-degree )( outDMax on the coverage 

rate CR in the overlay network of topology-aware 
worms. We randomly select all initially infected 
peer(s) from all peers belonging to the overlay 
network. A total of 5 scenarios 
( 2000,1000,100)( =outDMax ) are investigated. In 
the experiments conducted for this sub-section, we 
assume each peer has either the maximum value of 
topology out-degree or the minimum value of topology 
out-degree. Peers to which each peer has outbound 
links are randomly selected from all peers except the 
peer itself belonging to the overlay network, which 
means we do not allow loop, that is, no peer has an 
outbound link to itself. Experiment for each scenario is 
repeated 100 times. Then, the mean value of coverage 
rate and coefficient of variation of coverage rate are 
worked out. Results from the experiments are listed in 
Table 3. 

 
Table 3. When there is only 1 initially infected 

peer randomly selected from all peers 
Maximum Value 
of Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

100 3.17 200.74 
1000 13.83 209.20 
2000 14.54 226.10 

 
As shown by the above experimental results, when 

all initially infected peers are randomly selected from 
all peers, maximum value of topology out-degree has a 
little impact on both mean value and coefficient of 
variation of coverage rate of P2P worms in the overlay 
network featuring the pseudo power law topology. 
Increase in maximum value of topology out-degree 
results in a little increase in mean value of coverage 
rate and a little increase in coefficient of variation of 
coverage rate as well, which indicates the small gain in 

coverage rate could be offset by the small loss in 
certainty. The worm is not able to infect most peers 
with high certainty. 

After that, we fix the number of initially infected 
peers (computers) 0I belonging to the overlay network 
to be 10, and repeat the above experiments. Results 
from the experiments are listed in Table 4. 

 
Table 4. When there are a total of 10 initially 
infected peers randomly selected from all 

peers 
Maximum Value 
of Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

100 11.25 79.51 
1000 33.06 111.27 
2000 36.23 120.07 

 
The above experimental results show similar trends 

(just an insignificantly higher coverage rate and an 
insignificantly lower coefficient of variation of 
coverage rate) to those shown by Table 3, which 
indicates, when all initially infected peers are randomly 
selected from all peers, the impact of number of 
initially infected peers on the coverage rate of a P2P 
worm in the overlay network featuring the pseudo 
power law topology is insignificant.  

Finally, we randomly select all initially infected 
peers (computers) from only those peers with 
maximum topology out-degree, and repeat all the 
above experiments described in this sub-section. 
Results from the experiments are listed in Table 5 and 
Table 6 for 1I0 = and 10I0 = , respectively. 

 
Table 5. When there is only 1 initially infected 
peer randomly selected from only those peers 

with maximum topology out-degree 
Maximum Value 
of Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

100 20.74 26.65 
1000 78.21 11.17 
2000 95.33 0.89 

 
Table 6. When there are a total of 10 initially 
infected peers randomly selected from only 

those peers with maximum topology out-
degree 

Maximum Value 
of Topology Out-
Degree 

Mean Value of 
Coverage Rate 
(%) 

Coefficient of 
Variation of 
Coverage Rate 
(%) 

100 38.50 1.53 
1000 85.19 0.41 
2000 95.94 0.19 
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As shown by the above experimental results, when 
all initially infected peers are randomly selected from 
only those peers with maximum topology out-degree, 
maximum value of topology out-degree has a great 
impact on both mean value and coefficient of variation 
of coverage rate of P2P worms in the overlay network 
featuring the pseudo power law topology. Increase in 
maximum value of topology out-degree results in 
increase in mean value of coverage rate but decrease in 
coefficient of variation of coverage rate. However, the 
impact of number of initially infected peers is 
insignificant. When maximum value of topology out-
degree reaches 2,000, the worm is able to infect most 
peers with very high certainty, regardless of number of 
initially infected peers. 

 
5. Conclusions and future research 
 

This paper presents a study on modeling the 
propagation process of topology-aware worms. Our 
major contributions in this paper are firstly, we propose 
an innovative logic matrix formulation of the 
propagation process of topology-aware worms; and 
secondly, we find, from applications of the formulation 
in our experiments, the impacts of two different 
topologies, namely the simple random graph topology 
and the pseudo power law topology, on a P2P worm’s 
mean coverage rate in the P2P overlay network.  

We believe the innovative logic matrix formulation 
proposed in this paper, which is a discrete time 
deterministic propagation model of topology-aware 
worms described by a difference equation of logic 
matrix, is a highly effective and efficient tool for 
investigating the propagation process of topology-
aware worms in general and P2P worm in particular.  

In the future, we are going to incorporate removal 
of susceptible and/or infectious computers (peers) into 
the proposed discrete time deterministic propagation 
model of topology-aware worms, which will greatly 
enhance the adaptability of the framework proposed in 
this paper. 
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