Selection and Fusion of Facial Features for Face Recognition Xiaolong Fan and Brijesh Verma School of Computing Sciences, Faculty of Business and Informatics Central Queensland University, Rockhampton, QLD 4701, Australia x.fan@cqu.edu.au, b.verma@cqu.edu.au **Abstract-** The paper proposes and investigates a facial feature selection and fusion technique for improving the classification accuracy of face recognition systems. The proposed technique is novel in terms of feature selection and fusion processes. It incorporates neural networks and genetic algorithms for selection and classification of facial features. The proposed technique is evaluated by using the separate facial region features and the combined features. The combined features outperform the separate facial region features in the experimental investigation. A comprehensive comparison with other existing face recognition techniques on FERET benchmark database is included in the paper. The proposed technique has produced 94% classification accuracy which is significant improvement and best classification accuracy among published results in the literature. #### 1. Introduction ### 1.1 Background Face recognition is one of the most remarkable capabilities of human beings. It develops over the early years of childhood, and is important for several aspects of our social life. Human beings can remember hundreds or even thousands of faces in their whole life and can easily identify a familiar face in different perspective variations, such as illumination variations, age variations, pose variations, etc. Face recognition together with other abilities, such as estimating the expression of people with whom we interact, has played an important role in the course of evolution. The problem of machine recognition of faces has been studied for more than 30 years. It has attracted research interest from several disciplines such as image processing, pattern recognition, computer vision, neural networks and computer graphics. Such interest has been motivated by the growth of Face Recognition Technology (FRT) used in applications in many areas, including face identification in law enforcement and forensics, user authentication in building access or automatic teller machines, indexing of, and searching for, faces in video databases, intelligent computer user interfaces, etc. After the Sep 11 2001, terrorist attacks, FRT is gaining more interest due to its significant involvement in anti-terror activities. FRT numerously used in commercial and law enforcement applications poses a wide range of technical challenges and requires an equally wide range of techniques from different disciplines. A general statement of the problem of machine recognition of faces can be described as follows: Given still or video images of a scene, identify or verify one or more persons in the scene using a stored database of faces. Available collateral information such as race, gender, age, facial expression or speech may be used in narrowing the search. The solution to the problem involves face detection, feature extraction from face region, face verification or recognition. Face detection refers to the determination of the exact position and size of a human face from cluttered scenes. Feature extraction refers to obtaining the features that can be fed into a face classification system. Face recognition refers to comparing an input face against models of faces that are stored in a database of known faces and then indicating if a match is found. Face verification refers to confirming or rejecting the claimed identity of the input face. Although human beings seem to recognize a face in cluttered scenes with relative ease, machine recognition is much more difficult for a variety of reasons. Firstly, different faces may appear very similar, i.e. every face contains two eyes, two ears, one nose and one mouth, thereby necessitating an exacting discriminant task. Secondly, different views of the same face may appear quite different due to imaging constraints, such as changes in illumination and variability in facial expressions, and due to the presence of personal accessories, such as glasses, beards, hats, etc. Finally, when the face undergoes rotations out of the imaging plane, a large amount of detailed facial structure may be occluded. Therefore, until now in many implementations of face recognition algorithms, the face images are obtained in a constrained environment with controlled illumination, minimal occlusions of facial structures, uncluttered background, and so on. Face recognition in an unconstrained environment is still a quite challenging task. ### 1.2 Literature Review In the last decade, face recognition has become one of most active research areas of pattern recognition. The most existing face recognition methods can be simply classified into three categories: holistic feature based matching method, local feature based matching method and hybrid matching method [1]. In holistic feature based matching method, the whole face region is used as raw input to the recognition system, like Principal Component Analysis (PCA) projection method [2], Fisher-face method [3] and Nearest Feature Line (NFL) method [4]. Recently, an Independent Gabor Features (IGF) method [5] and a kernel Associative Memory (kAM) models based method [6] were also applied to face recognition. In local feature based matching method, the local features such as eyes, nose, and mouth are first extracted and then their locations and local statistics (geometric and/or appearance) are fed into a structural classifier. Geometrical features method [7] and Elastic Bunch Graph Matching (EBGM) method [8] belong to this category. In hybrid matching method, both holistic and local features are used for the recognition. A feature combination scheme for face recognition by fusion of global and local features is presented in [9]. A fully automatic system for face recognition in databases with only a small number of samples is presented in [10]. Global and local texture features are extracted and used in the recognition. Genetic Algorithms (GAs) can be used to select optimal feature set for pattern classification problems. Some researchers have used GAs for face recognition. In [11], GA-ID3 (decision tree learning) method is proposed to find optimal subset of discriminatory features for pattern classification. GAs were used to search the possible optimal subset of extracted features. ID3 was used to produce a decision tree based on a subset selected by GAs. The GA-ID3 method was experimented to recognize visual concepts in satellite and face images. The results showed significant improvement in classification performance and a good reduction in feature set dimension. In [12], a kernel scatter-difference based discriminant analysis for face recognition is presented. In [14], a genetic algorithm was used to select features for 3D face recognition. The method presented in [14], tries to optimise features by capturing good features which can minimize the inner-class distance and maximize the intra-class distance. In [15], an evolutionary pursuit (EP) based on GAs has been applied to face recognition. The idea in EP is to search for face basis through the rotated axes defined in PCA space. The overall classification rate obtained by existing techniques is unsatisfactory; therefore there is a need for a better feature selection and fusion technique which could improve the overall classification accuracy for face recognition. In this paper, a novel feature selection and fusion technique for face recognition is presented. GA for feature selection and Artificial Neural Network (ANN) for classification were incorporated into the proposed technique. The proposed technique has been tested on separate feature set from each facial region and compared with the combined feature set. A large set of dataset from the FERET benchmark database [13] is used for testing. The main research questions are (1) How to select the most significant facial features and combine them to improve an overall classification rate of face recognition systems? (2) What is the best combination of these features to a specific classifier? The original contributions of the research presented in this paper are as follows: (1) Identification of local facial regions by using distance threshold method based on centre coordinate information of each facial region. The facial features are extracted from each facial region. (2) A Genetic Algorithms (GAs) based approach for facial feature selection. The significant areas inside each facial region are located using this approach. (3) An Artificial Neural Network (ANN) based approach for facial feature classification. The selected facial features from GA approach are passed to ANN for final classification. The classification error is passed back to GA to calculate the fitness of each individual. (4) A combined technique for face recognition. The proposed approach is tested on the separate feature set from each facial region and the combined feature set. The FERET benchmark database is adopted to evaluate and compare the proposed approach. A comprehensive comparison of the proposed technique with other existing face recognition approaches has been conducted. # 2. Proposed Technique This section describes the proposed feature selection and fusion technique for face recognition. Section 2.1 provides an overview of the proposed methodology. Section 2.2 introduces the distance threshold method that is used to locate facial regions. The average grey level value features are discussed in section 2.3. Section 2.4 describes PCA features. The details of incorporating GAs and neural networks for feature selection and classification are discussed in section 2.5. ### 2.1 Overview The goal of the proposed technique is to select the most significant facial features effectively and find the best combination of these features for the classifier.
The proposed technique aims to locate the significant areas in facial regions from which the significant features are extracted. Facial regions refer to the separate regions in the face that contain one local organ, such as left eye region, right eye region, nose region and mouth region. These facial regions contain the most discriminant facial characteristics on human faces. The facial regions are the basis for the local feature based feature extraction techniques. Even on these discriminant facial regions, some areas inside may be more important than the other areas in a recognition task. By locating the most significant areas on the facial regions, the proposed approach actually removes "noise" information caused by other non-significant areas of the facial region. It may also remove part of the variation information caused by changes in facial expression, head rotation and illumination. By concentrating on these significant areas, it allows us to extract the most significant facial features from them to represent human faces. These features may improve the classification rate of face recognition systems. The first step in the proposed technique is to locate facial regions in the face images. The facial feature extraction technique is performed on these facial regions. After feature extraction, the features are selected, fused and classified. Through selection, the significant areas are located and through classification, the input face image is recognised or verified. The block diagram of the proposed technique to conduct experiments using separate and combined features on FERET benchmark dataset is depicted in Figure 2.1. The details are described in the following subsections. ## 2.2. Locate facial regions We first locate facial regions on each face image and then we extract features. The experimental face images are extracted from the FERET database. The center coordinate information provided for each facial region, like eye center coordinate, nose tip coordinate and mouth center coordinate is used and the distance threshold method is applied to locate the local facial regions. The distance threshold method defines distance thresholds in vertical and horizontal directions for the local facial region. These thresholds decide the size of the facial region. With center coordinate information, the facial region is easy to locate. Based on the images in the experimental database, the distance thresholds are set as follows. The vertical distance threshold is set to 16 and the horizontal distance threshold is set to 30 for the eyes and nose regions. They are set to 12 and 60 separately for the mouth region. ### 2.3. Average grey level value feature After locating the facial regions, each facial region was equally divided into small-size rectangle areas. The average grey level value features are extracted from these small rectangle areas. The average grey level value feature can be expressed as: $$g_i = \frac{\sum p(x, y)}{w \times h \times v} \tag{1}$$ where g_i is the average grey level value feature for the small rectangle area i, p(x, y) is grey level value of pixel p inside the rectangle area i. w is the width of the small rectangle area and h is the height. v is the maximum grey level value for the image, here 255 for the experimental database. After division, the average grey level value features are extracted on these small rectangle areas from left to right, top to bottom. In the experiments, The size of the small rectangle area was chose to be 6×4 (w = 6, h = 4). Then for the left eye region (same as right eye region and nose region), the size of extracted feature set becomes 20. For the mouth region, the size of the extracted feature set increases to 30 due to larger size of the mouth region. ### 2.4. PCA feature PCA projection method for face recognition, which is also called eigenface method, is a classical method for face recognition. The simple idea behind eigenface method is to capture the largest variances among a set of face images and then use this information to encode and compare face images. The advantage of eigenface method is to reduce dimensionality while maximizing the scatter of all projected samples. Let $\{X_1, X_2, ..., X_N\}$ be as set of N sample images. It takes values in an n-dimensional image space and each image belongs to one of the c classes $\{x_1, x_2, ..., x_c\}$. A linear transformation needs to be found to map the original n-dimensional image space into an m-dimensional feature space, where m < n. The new feature vector $y_k \in \mathbb{R}^m$ is defined by the following equation: $$y_k = W^T X_k, k = 1, 2, ..., N$$ (2) where $W \in \mathbb{R}^{n \times m}$ is a matrix with orthonormal columns. W is chosen to maximize the determinant of the total scatter matrix S of the projected samples. $$S = \sum_{k=1}^{N} (X_k - \mu)(X_k - \mu)^T$$ (3) $$W_{opt} = \underset{w}{\operatorname{arg\,max}} \left| w^T S W \right| = (w_1 w_2 ... w_m) \tag{4}$$ where N is the number of sample images and μ is the mean image of all samples. $\{w_i | i=1, 2, ..., m\}$ is the set of n-dimensional eigenvectors of S corresponding to the m largest eigenvalues. In the experiments, the PCA projection method is applied to local facial regions instead of the whole face images to extract features. ## 2.5. GA-ANN technique The GA and ANN based technique is used to identify the significant areas in each facial region and perform fusion and selection of features for face recognition. In this research, GA are used to find potential significant features which will generate higher recognition rate. The areas that contain these significant features are considered to be the significant areas. The chromosomes represent the possible selection of the significant features. Binary encoding is used for the chromosomes, where 1 represents that the feature is selected and 0 represents that the feature is not selected. In one generation, each chromosome is multiplied by the input feature set to generate the input feature vector to ANN. The input feature vector F can be represented as, $$F = CP \tag{5}$$ $$C = (c_1, c_2, \dots, c_l), \ c_i \in \{0, 1\}$$ (6) $$P = L + R + N + M \tag{7}$$ where C is a single chromosome, c_i is one gene in the chromosome. l is the length of the chromosome which is the same as the size of the input feature set P. When testing on the separate feature set from each facial region, P represents the separate feature set. As mentioned in the last section, size of the left eye feature set L is 20, size of the right eye feature set R is 20, size of the nose feature set R is 20 and size of the mouth feature set R is 30. When combining them together, the size of R is 90. Equation 7 shows the combining feature set R. The input feature vector F is fed to ANN for classification. An ANN with single hidden layer is used in this technique. A resilient backpropagation algorithm is used to train the network. The testing classification error is used to calculate the fitness of corresponding individual in GA. In the reproduction, the 'fittest' individual that achieves the best testing classification rate is retained in the next generation. The chromosomes in each generation of GA that achieve the best classification rate are recorded. The chromosomes indicate which feature is selected and which is not. After all generations, the total number of times that each feature has been selected for the best classification rate is calculated. All the features are ranked according to how many times it has been selected. The areas that contain the feature inside top n ranking are the top n significant areas. For the experiments, n is defined as 3. ### 3. Databases Three experimental databases were used in this research. All of them are extracted from the FERET benchmark database. The preliminary experimental database is a small subset of FERET database and consists of 13 classes (one class represents one distinct person). In each class, there are four face images. Three of them are randomly chosen for training and the remainder for testing. The total number of face images in the database is 52. The images are selected carefully in order to have minimum pose variation. Figure 4.1 shows the example images from the preliminary database. Top 3 rows show training images and bottom row shows testing images. The advance databases consist of 50 classes, each class represents one distinct person. In the original dataset (DB1) from our previous study, there are four face images in every class. Three of them are randomly selected for training and one for testing. The extended dataset (DB2) includes all of the images from DB1 and more images. In DB2, each class has 4 to 12 images for training and one for testing. There are total 376 images for training and 50 images for testing in DB2. ## 4. Experimental Results This section describes the experimental results on small and large databases. The goal of the experiments is to evaluate the proposed technique and make comparison with the other existing techniques. All experimental databases are extracted from the FERET benchmark database. Section 4.1 presents the experiments which are based on the preliminary database. Section 4.2 describes the advance experiments which are based on larger databases. # 4.1 Preliminary Results The preliminary experiments were conducted using preliminary database as described in section 3. Figure 4.1 shows the example images from the preliminary database. Top 3 rows show training images and bottom row shows testing images. $$L = (l_1, l_2, l_3, \dots, l_{20}) , l_i \in (0,1)$$ (8) $$R = (r_1, r_2, r_3, \dots, r_{20}), \quad r_i \in (0,1)$$ (9) $$N = (n_1, n_2, n_3, \dots, n_{20}), \quad n_i \in (0,1)$$ (10) $$M = (m_1, m_2, m_3, \dots, m_{30}), \quad m_i \in (0,1)$$ (11) These extracted feature sets were then fed to GA-ANN separately for selection and classification. To make the experiments consistent, the parameters of GA-ANN were set
exactly same for every set of experiments. The generation number was set to 50 and the population number was set to 15. The crossover rate was set to 0.9 and the mutation rate was set to 0.2. The hidden units of ANN were increased from 6 to 44 (each time increased 2 hidden units), and the selections that generated the best recognition rate were recorded. The epoch for ANN was set to 3000. Figure 4.1 Example images of the preliminary database. Top 3 rows show training images and bottom row shows testing images. The best classification results for each facial region feature set are shown in Table 4.1 to Table 4.4. The shadowed cells indicate the highest testing classification rate. Table 4.1 Best classification results for left eye feature set | Hidden | | Classification Rate | | | |--------|---|---------------------|----------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | | | Rate [%] | Rate [%] | | | 14 | 10000001100001010101 | 100 | 92.31 | 0.04719 | | 14 | 10000001100001000101 | 97.44 | 92.31 | 0.06064 | | 16 | 1110111111101111111 | 100 | 84.62 | 0.03070 | | 10 | 11000111100111110001 | 100 | 84.62 | 0.03960 | | 24 | 1000110110011011011 | 100 | 92.31 | 0.03910 | | 30 | 11111000010011101101 | 100 | 84.62 | 0.03758 | | 30 | 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 | 100 | 84.62 | 0.03948 | | 34 | 10000111100010011111 | 100 | 92.31 | 0.03698 | Table 4.2 Best classification results for right eye feature set | Hidden | | Classification Rate | | RMS | |--------|--|---------------------|------------|---------| | Units | Feature Selection (GA Chromosomes) | Trainin | Testin | Error | | | | g Rate [%] | g Rate [%] | - | | 14 | $0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1$ | 100 | 84.62 | 0.04686 | | 16 | 00011011011000000110 | 100 | 84.62 | 0.05209 | | 24 | 10010111010010010111 | 100 | 84.62 | 0.04268 | | 24 | 1001011101011001111 | 100 | 84.62 | 0.03669 | | 30 | 01111110111000110011 | 100 | 92.31 | 0.03492 | | 36 | $0 \; 1 \; 0 \; 1 \; 1 \; 0 \; 0 \; 1 \; 0 \; 0$ | 100 | 84.62 | 0.04036 | Table 4.3 Best classification results for nose feature set | Hidden | | Classifica | Classification Rate | RMS | |--------|--|------------|---------------------|---------| | Units | Feature Selection (GA Chromosomes) | Trainin | Testin | Error | | | | g Rate [%] | g Rate [%] | - | | 14 | $1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0$ | 76.92 | 69.23 | 0.10628 | | | $1\;1\;1\;1\;1\;0\;0\;0\;0\;1\;1\;0\;1\;0\;0\;0\;0\;1\;1$ | 92.31 | 61.54 | 0.08497 | | 16 | $1\;1\;1\;1\;0\;1\;0\;1\;0\;0\;0\;0\;1\;1\;0\;0\;1\;1\;1\;1$ | 87.18 | 61.54 | 0.07875 | | | 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 | 97.44 | 61.54 | 0.06720 | | 22 | $0 \; 1 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 0$ | 87.18 | 61.54 | 0.09534 | | 22 | $0 \; 1 \; 0 \; 0 \; 0 \; 1
\; 0 \; 1 \; 0 \; 0$ | 94.87 | 61.54 | 0.08828 | | 32 | $1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\\$ | 89.74 | 69.23 | 0.07957 | | 34 | 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 | 97.44 | 76.92 | 0.06574 | From Table 4.1 to Table 4.4, eye region and mouth region achieve better recognition rate than nose region. For nose region, the best recognition rate is just 76.92% when hidden units are 34. For left eye region, the best recognition rate is 92.31% when hidden units are 14, 24 and 34. For right eye region, the best recognition rate is 92.31% when hidden units are 30 and 44. For mouth region, the best recognition rate is also 92.31% when hidden units are 10 and 36. Table 4.4 Best classification results for mouth feature set | Hidden | | Classification Rate | | RMS | |--------|------------------------------------|----------------------|---------------------|----------| | Units | Feature Selection (GA Chromosomes) | Training
Rate [%] | Testing
Rate [%] | Error | | 10 | 011101000111101100011100100011 | 94.88 | 92.31 | 0.056066 | | 14 | 011110000100100101110000100100 | 100 | 84.62 | 0.048529 | | 18 | 100011011111011010011000110111 | 100 | 84.62 | 0.03591 | | | 1111111001111100011111101000111 | 100 | 84.62 | 0.029281 | | 30 | 11111110011111111001111111100011 | 100 | 84.62 | 0.028075 | | | 1111111001111111100110011101111 | 100 | 84.62 | 0.02902 | | 32 | 011011000000001001010010101111 | 100 | 84.62 | 0.038419 | | 36 | 011010010101010101110100011010 | 100 | 92.31 | 0.03661 | Table 4.5 Feature selections for achieving the best recognition rate | Facial Region | Hidden Units | Feature Selection | |------------------|----------------|---| | - Tuciui region | Thursday Chits | Toutare percentair | | | 14 | l_1 , l_8 , l_9 , l_{14} , l_{16} , l_{18} , l_{20} | | Laft ava ragion | 14 | l_1 , l_8 , l_9 , l_{14} , l_{18} , l_{20} | | Left eye region | 24 | $l_1, l_5, l_6, l_8, l_9, l_{12}, l_{13}, l_{15}, l_{16}, l_{19}, l_{20}$ | | | 34 | $l_1, l_6, l_7, l_8, l_9, l_{13}, l_{16}, l_{17}, l_{18}, l_{19}, l_{20}$ | | Dight ave maden | 30 | r_2 , r_3 , r_4 , r_5 , r_6 , r_7 , r_9 , r_{10} , r_{11} , r_{15} , r_{16} , r_{19} , r_{20} | | Right eye region | 44 | $r_2, r_3, r_4, r_5, r_7, r_9, r_{10}, r_{14}, r_{16}, r_{19}$ | | Nose region | 34 | $n_1, n_2, n_4, n_9, n_{10}, n_{13}, n_{15}, n_{16}, n_{18}, n_{19}, n_{20}$ | | Mouth region | 10 | $m_2, m_3, m_4, m_6, m_{10}, m_{11}, m_{12}, m_{13}, m_{15}, m_{16}, m_{20}, m_{21}, m_{22}, m_{25}, m_{29}, m_{30}$ | | | 36 | $m_2, m_3, m_5, m_8, m_{10}, m_{12}, m_{14}, m_{16}, m_{18}, m_{19}, m_{20}, m_{22}, m_{26}, m_{27}, m_{29}$ | When achieving the best recognition rate for each facial region, the corresponding feature selection and combinations are shown in Table 4.5. From Table 4.5, left eye region has four different feature combinations which contain the same feature l_1 , l_8 , l_9 , l_{20} . Right eye region has two different feature combinations which contain the same feature r_2 , r_3 , r_4 , r_5 , r_7 , r_9 , r_{10} , r_{16} , r_{19} . Mouth region also has two different feature combinations which contain the same features m_2 , m_3 , m_{10} , m_{12} , m_{16} , m_{20} , m_{22} , m_{29} . Nose region just has one feature combination. | Table 4.6 Classification results for combined feature set | | | | | |---|----------------------------------|---------------------------------|-----------|--| | Hidden Units | Training Classification Rate [%] | Testing Classification Rate [%] | RMS Error | | | 8 | 100 | 100 | 0.030384 | | | 24 | 100 | 100 | 0.008929 | | | 38 | 100 | 100 | 0.009836 | | | 44 | 100 | 100 | 0.01825 | | All feature sets were combined together to feed to GA-ANN again for experiments. The size of input feature vector increased to 90. The parameters of GA-ANN were set exactly same as the previous experiments. Table 4.6 lists the best classification results achieved. The recognition rate is improved to 100%. When the recognition rate is 100%, these selected features were added together to locate the most selected features. The top 10 selected features are shown in Table 4.7. Most of these features are concentrated in eye region and there is no feature coming from nose region. Table 4.7 Top 10 most selected features | | ost serected reditares | |------|------------------------| | Rank | Features | | 1 | l_{20} | | 2 | l_{11}, r_5 | | 3 | m_{21} | | 4 | r_1 | | 5 | m_{28} | | 6 | r_{3}, r_{4} | | 7 | r_{19} | | 8 | m_{27} | | 9 | l_{19} | | 10 | r_6 | ### **4.2 Advance Experiments** The preliminary experiments achieved very good results. This indicates the proposed technique is promising. Since the preliminary database is relatively small, the proposed technique needs to be investigated on much larger databases. Another two databases are set up to conduct the experiments, referred to as Database1 and Database2. Same as the preliminary database, both Database1 and Database2 are extracted from the FERET database and consist of 50 classes in each database. In Database1, there are 150 face images for training and 50 face images for testing. The Database2 includes all of the images from Database1 and increases the training set. In Database2, there are totally 376 face images for training and 50 face images for testing. Section 4.2.1 presents the experimental results from Database1 and Section 4.2.2 presents the results from Database2. ### 4.2.1 Database1 Results There are four face images per class in Database1. Three of them are randomly selected for training and the left one for testing. Example images from Database1 could be found in Figure 4.2. Two different sets of experiments were conducted on Database1. In the first set of experiments, the average grey level value features were investigated. In the second set of experiments, the PCA features were investigated. Section 4.2.1.1 describes the experiments using average grey level value features. The experiments using PCA features are explained in Section 4.2.1.2. ### 4.2.1.1 Average Grey Level Value Features For the experiments using average grey level value features, two different sizes of small rectangular areas for feature extraction were investigated. In the experiments, the size of small rectangular area was firstly set to 6 \times 4 and then set to 10 \times 4. Section 4.2.1.1.1 presents the results when the size of small rectangular area is 6 \times 4. Figure 4.2 Example images from Database1. Top three rows show training images and bottom row shows testing images. # **4.2.1.1** Small rectangular area size is 6×4 When the size of small rectangular area for feature extraction is 6×4 , the GA-ANN technique was firstly tested on each facial region feature set separately. During the experiments, the hidden units of ANN were increased from 8 to 64 (an increment of 4 hidden units each time), and the selections that generated the best recognition rate were recorded. To make the experiments consistent, the other parameters of GA-ANN were set exactly same for every experiment. The generation number was set to 40 and the population number was set to 10. The crossover rate was set to 0.9 and the mutation rate was set to 0.2. The epoch for ANN was set to 10000. Table 4.8 to Table 4.11 list the best classification results achieved for each facial region feature set. Table 4.8 Best classification results for left eye feature set | Uiddon | Hidden Feature Selection (GA | | ication Rate | | |--------|------------------------------|----------|--------------|-----------| | Units | Chromosomes) | _ | Testing Rate | RMS Error | | | · | Rate [%] | [%] | | | 12 | 10001111111100011100 | 82 | 48 | 0.090757 | | 32 | 11011001100111011000 | 100 | 52 | 0.065463 | | 40 | 111110001010011110110 | 100 | 48 | 0.055730 | | 44 | 111110000100111111101 | 100 | 54 | 0.055398 | | 48 | 11111000010011101101 | 100 | 50 | 0.055502 | | 56 | 11111111011011011101110 | 100 | 54 | 0.04531 | | 60 | 111110111011111101101 | 100 | 54 | 0.045535 | | 64 | 11111000010011101101 | 100 | 52 | 0.050977 | Table 4.9 Best classification results for right eye feature set | Hidden | | Classific | cation Rate | | |--------|---------------------------------------|-------------------|--------------------|-----------| | Units | Feature Selection (GA Chromosomes) | Training Rate [%] | Testing
Rate[%] | RMS Error | | 16 | 11111001010011101101 | 100 | 56 | 0.075269 | | 24 | 11111000011100010101 | 98 | 56 | 0.067813 | | 28 | 11111000110001010000 | 98.67 | 62 | 0.067738 | | 36 | 11111000010010010010010 | 99.33 | 60 |
0.061682 | | 44 | 11111000010011011010101 | 100 | 56 | 0.052249 | | 52 | 11011011010000010001 | 99.33 | 60 | 0.058238 | | 60 | 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 | 99.33 | 58 | 0.062595 | | 64 | 11111001010000010001 | 99.33 | 58 | 0.057562 | Table 4.10 Best classification results for nose feature set | | Table 4.10 Dest classification results | TOT HOSE TEUT | ar c bet | | |--------|--|---------------|----------|-----------| | Hidden | | Classificatio | n Rate | | | Units | Feature Selection (GA Chromosomes) | Training | TestingR | RMS Error | | Circs | | Rate [%] | ate[%] | | | 20 | 10100011111011011111 | 82 | 34 | 0.083747 | | 32 | 11111110100101010111 | 94.67 | 32 | 0.074111 | | 36 | 11101010111000101110 | 91.33 | 32 | 0.078527 | | 44 | 10010110000100100101 | 87.33 | 34 | 0.087115 | | 48 | 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 | 84.67 | 30 | 0.084655 | | 52 | 11111111011011101101 | 98.67 | 38 | 0.06674 | | 60 | 1001011000100010101101 | 88 | 34 | 0.081849 | | 64 | 10111000010011101101 | 97.33 | 32 | 0.075388 | Table 4.11 Best classification results for mouth feature set | Hidden | | Classific | cation Rate | | |--------|------------------------------------|-----------|-------------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | | | Rate [%] | Rate [%] | | | 32 | 101101110100011010100100100110 | 100 | 62 | 0.055177 | | 36 | 11111111111110111001011000110010 | 100 | 70 | 0.047729 | | 40 | 11111100111001101000010010010 | 100 | 66 | 0.048634 | | 44 | 001110110101100101100100101010 | 100 | 62 | 0.047705 | | 48 | 001110110100011010100100011010 | 100 | 66 | 0.048532 | | 52 | 111111110100011010100100100101 | 100 | 66 | 0.042634 | | 32 | 111111110010011010100100111010 | 100 | 66 | 0.04244 | | 56 | 110001001101101110011000110010 | 100 | 68 | 0.042558 | | | 0011010011111010101010010101110 | 100 | 62 | 0.04191 | | 60 | 001101001111101001010101010110 | 100 | 62 | 0.041762 | | 00 | 001101010011101001010101010110 | 100 | 62 | 0.043019 | | | 001010101111101001010101010110 | 100 | 62 | 0.0413 | | 64 | 101001110000010101101000111101 | 100 | 64 | 0.042305 | In the above tables, the shadowed cells indicate the highest testing classification rate. The highest testing classification rate for left eye feature set is 54% (hidden units 44, 56, 60), for right eye feature set is 62% (hidden units 28), for nose feature set is 38% (hidden units 52) and for mouth feature set is 70% (hidden units 36). From Table 4.8 to Table 4.11, the mouth region alone achieved the best classification rate while the nose region achieved the worst classification rate. Table 4.12 Best classification results for combined feature set in original order | Hidden | | Classificati | ion Rate | | |--------|---|--------------|----------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | Cints | | Rate [%] | Rate [%] | | | | 1101000001001000001111001110110111 | | | | | | 0001011011100100001011011010000111101 | 100 | 80 | 0.03366 | | 36 | 1111101101101110111 | | | | | 30 | 1101000001001000001111001110110111 | | | | | | 000101101110010111101001001011111000010 | 100 | 80 | 0.03500 | | | 0000010010010001111 | | | | | | 001011111010011111100001111100111101 | | | | | 40 | 0010000101000110011111001101101001101 | 100 | 86 | 0.02964 | | | 1100111111111101101 | | | | | | 1000101100001101001111001110110111 | | | | | 48 | 000101101110010111101001001011111000010 | 100 | 82 | 0.02819 | | | 0000010010010001000 | | | | | | 1010111111011011101111001110110111 | | | | | 56 | 11101001000110100010100101011111100110 | 100 | 86 | 0.01939 | | | 0111110111111101010 | | | | | | 0011110000110001110110100110111111 | | | | | 60 | 1100001101000101100011001001011010100 | 100 | 84 | 0.02054 | | | 0001001010011011111 | | | | The extracted average grey level value features from each facial region were combined together to form the input feature vector for GA-ANN. The size of input feature vector increased to 90. The other parameters of GA-ANN were set exactly same as experiments using separate facial feature set. The feature combination sequence was left eye, right eye, nose and mouth. Table 4.13 Best classification results for combined feature set in reverse order | | tore 4.13 Dest classification results for combined | I | cation Rate | | |-----------------|--|----------|-------------|--------------| | Hidden
Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS
Error | | Units | | Rate[%] | Rate[%] | EITOI | | | 101001011111111110100011011001110101 | | | | | 28 | 10101001000001001101100001000011110111 | 100 | 80 | 0.038631 | | | 00111111111101101 | | | | | | 00111011010001101010010000101101100 | | | | | 40 | 01111101000000001001000100001101101000 | 100 | 80 | 0.033954 | | | 00101110000011100 | | | | | | 00011010110001101010010010010101011 | | | | | 52 | 00011110000010110001100100110110001001 | 100 | 84 | 0.023553 | | | 01101111000001101 | | | | | | 100111010110100101010111100001010011 | | | | | 56 | 10100111010011110110100100001101111110 | 100 | 82 | 0.021568 | | | 00001000000010101 | | | | | 60 | 00111101011010101010100011110101100 | 100 | 0.0 | 0.017561 | | 60 | 010111001011001101101110111100100101111 | 100 | 80 | 0.017561 | | | 11011110111100001 | | | | | | 11011101011010100011110011101101101 | 100 | 86 | 0.016062 | | | 0010011010111011101101101101101000 | 100 | 80 | 0.016062 | | 64 | 1101110101101010101111100111101110 | | | | | | 0011001101001111011110111011101110 | 100 | 86 | 0.015144 | | | 00100110000011110 | 100 | 00 | 0.013111 | | | 01100010100101010101011100001010011 | | | | | | 101001001011000010010001100001101101000 | 100 | 82 | 0.01995 | | 60 | 00100001111100001 | | | | | 68 | 10011101011010101010100011110101100 | | | | | | 010110110100111101101110111100100101111 | 100 | 82 | 0.015121 | | | 11011110000011110 | | | | Table 4.12 lists the results of combined feature set that achieved above 80% testing classification rate on Database1. From the table, the best testing classification rate is 86% (hidden units 40, 56), and the best training classification rate is 100%. The shadowed cells indicate the best testing classification rate. The combined feature set outperformed the separate feature set from each facial region and improved the classification rate significantly. To investigate the effects of feature combination sequence on the recognition rate, the feature combination sequence was reversed to mouth, nose, left eye and right eye to form a new input vector. Then the same experiments under same parameters were conducted. Table 4.13 lists the best classification results of combined feature set in reverse order. The best recognition rate is still 86% (hidden units 64). When the recognition rate is 86% (hidden units 40, 56) for combined feature set in original order, the total selection times of each feature were calculated. By mapping the total selection times of each feature to its corresponding extraction area, Figure 4.3 is generated. In Figure 4.3, the shaded areas are the areas that contain the top selected features. These areas are considered to be the significant areas. There are totally 36 areas. Among these areas, there are 9 areas from left eye region, 7 areas from right eye region, 5 areas from nose region and 15 areas from mouth region. The results in Table 4.13 show that the best recognition rate is still 86% when the feature combination sequence is reversed. When the recognition rate is 86% (hidden units 64), the total selection times of each feature were calculated. Similarly, by mapping the total selection times of each feature to its corresponding extraction area, Figure 4.4 is generated. In Figure 4.4, the shaded areas are the areas that contain the top selected features. There are total 49 areas. Among these areas, there are 7 areas from left eye region, 12 areas from right eye region, 11 areas from nose region and 19 areas from mouth region. Figure 4.3 Significant areas in facial regions (original order combination) Figure 4.4 Significant areas in facial regions (reverse order combination) ### **4.2.1.2 PCA Features** PCA features are extracted separately from each facial region and then combined together to form the input feature vector for GA-ANN. After feature extraction, the sequence of feature combination is left eye, right eye, nose and mouth. Because we do not know how many eigenvectors should be suitable for encoding the face images, different number of eigenvectors was evaluated in the experiments. The experiments using 10 eigenvectors, 14 eigenvectors, 18 eigenvectors and 22 eigenvectors were conducted. The parameters of GA-ANN were set exactly same for every experiment. The generation number was set to 40 and the population number was set to 10. The crossover rate was set to 0.9 and the mutation rate was set to 0.2. The epoch for ANN was set to 10000. The hidden units were increased from 8 to 68 (an increment of 4 hidden units each time). Table 4.14 Best classification results for 10 eigenvectors | Hidden | | Classification Rate | | | |--------|--|---------------------|----------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | | | Rate [%] | Rate [%] | | | 12 | 0000001011100100110000101101111010
111001 | 100 | 60 | 0.080433 | | 12 | 1111110101001010001111001110001100
110011 | 98.67 | 60 | 0.076291 | | 36 | 0000001011100100101100110100101100
110011 | 100 | 64 | 0.043994 | | 52 | 10000110011111111000001000001011000
110010 | 100 | 62 | 0.035194 | | 32 | 100001100111111111111001000001011000
110010 | 100 | 62 | 0.033143 | | 56 | 0000001011100100101100110100101100
110011 | 100 | 66 | 0.033341 | Tables 4.16-4.18 present the best classification results for different number of eigenvectors. From Table 4.16, the best
testing classification rate for 10 eigenvectors is 66% when hidden units are 56. The corresponding best training classification rate is 100%. Table 4.15 Best classification results for 14 eigenvectors | Hidden | Tuble Wile Dest classification results to | Classification Rate | | | |--------|---|---------------------|----------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | Cints | | Rate [%] | Rate [%] | | | 20 | 00001100101100110100101100110011100
001100111111 | 100 | 68 | 0.059964 | | 20 | 11110111101100110100101100110011100
001100111111 | 100 | 68 | 0.055764 | | 40 | 00001100101100110100101100110011100
001100111111 | 100 | 74 | 0.038337 | | 48 | 000011001011001101001011001101111100
001100111111 | 100 | 76 | 0.034414 | | 60 | 000011001011001101001010111110111100
001100111111 | 100 | 78 | 0.026711 | | 64 | 0000110010110011010101111000100111100
001100111111 | 100 | 78 | 0.027607 | Table 4.17 shows that the best testing classification rate for 14 eigenvectors is 78% when hidden units are 60 and 64. The corresponding best training classification rate is 100%. Table 4.16 Best classification results for 18 eigenvectors | Hidden | | Classific | cation Rate | | |--------|---|-----------|-------------|-----------| | Units | Feature Selection (GA Chromosomes) | Training | Testing | RMS Error | | Cints | | Rate [%] | Rate [%] | | | 16 | 110111101011001010101011111110010000 | 100 | 70 | 0.064818 | | 10 | 10100010001101010001101101000000000000 | 100 | 70 | 0.004818 | | 32 | 111110011011111010101001001111101111 | 100 | 72 | 0.040375 | | 32 | 0101110110110101000110010011101010100 | 100 | 12 | 0.040373 | | 40 | 000010001110101010101111010111010000 | 100 | 74 | 0.036662 | | 40 | 0110100000101100000111100111011011100 | | | 0.030002 | | 48 | 11101100011010101010100101001010011 | 100 | 68 | 0.030918 | | 40 | 0110100000101100000111100111011011100 | | | | | 56 | 10010111100000111101011010111010000 | 100 | 74 | 0.026269 | | 30 | 0110100000101100000111100111011011100 | 100 | 74 | 0.020209 | | 60 | 101010111010101010010010101111110000 | 100 | 80 | 0.024114 | | 00 | 011010000011001101110011111111111101101 | 100 | 80 | 0.024114 | | 64 | 000100111001010101010110101111010000 | 100 | 74 | 0.027777 | | 04 | 0110100000101100000110110011010100001 | 100 | /4 | 0.021111 | Table 4.18 shows that the best testing classification rate for 18 eigenvectors is 80% when hidden units are 60. The corresponding best training classification rate is 100%. ## 4.2.2 Database 2 Results In Database2, each class has 4 to 12 images for training and one for testing. Because combined feature set (using average grey level value features) achieved much better results on Database1, so only the combined feature set (using average grey level value features) experiments were conducted on Database2. To make the experiments faster, the best feature selection from the previous experiments on Database1 was used directly to train and test the ANN. The epoch was increased to 15000 because there are more face images in the database. More hidden units were also used in the experiments. Table 4.17 Best classification results (database 2) of hidden units 40 feature selection (database1) | Hidden Units | Training Classification Rate | Testing Classification Rate | | |--------------|------------------------------|-----------------------------|--| | 30 | 100% | 88% | | | 42 | 100% | 94% | | | 48 | 100% | 88% | | | 52 | 100% | 90% | | | 54 | 100% | 92% | | | 60 | 100% | 90% | | | 66 | 100% | 88% | | | 74 | 100% | 94% | | | 76 | 100% | 90% | | | 82 | 100% | 88% | | | 86 | 100% | 94% | | When the size of small rectangular area was 6×4 , the hidden units 40 and 56 feature selections achieved the best recognition rate on Database1. These two feature selections were directly used in the experiments on Database2. The results based on the hidden units 40 feature selection are listed in Table 4.19. The results based on the hidden units 56 feature selection are presented in Table 4.20. From both tables, the highest recognition rate is improved to 94%. Table 4.18 Best Classification results (database2) of hidden units 56 feature selection (database1) | Hidden Units | Training
Classification Rate | Testing Classification Rate | |--------------|---------------------------------|-----------------------------| | 26 | 100% | 88% | | 38 | 100% | 92% | | 44 | 100% | 92% | | 54 | 100% | 90% | | 58 | 100% | 94% | | 68 | 100% | 90% | | 72 | 100% | 92% | | 78 | 100% | 88% | | 80 | 100% | 88% | | 88 | 100% | 90% | When the size of small rectangular area was 10×4 , the hidden units 44 feature selection achieved the best recognition rate on Database1. Table 4.21 shows the best classification results using hidden units 44 feature selection on Database2. From Table 4.21, the highest recognition rate is also improved to 94%. Table 4.19 Best classification results of hidden units 44 feature selection | Hidden Units | Training | Testing | |--------------|---------------------|---------------------| | | Classification Rate | Classification Rate | | 28 | 99.20% | 90% | | 30 | 99.73% | 88% | | 34 | 100% | 88% | | 36 | 99.47% | 90% | | 38 | 100% | 94% | | 42 | 100% | 90% | | 50 | 99.73% | 90% | | 52 | 100% | 92% | | 54 | 100% | 94% | | 56 | 100% | 94% | | 62 | 100% | 90% | | 64 | 100% | 92% | | 66 | 100% | 92% | ## 5. Comparative Analysis The results obtained in this research are compared to the results of the other methods mentioned in a recent study [6]. The authors [6] also extracted a dataset from the FERET database as their experimental database, which has 927 images corresponding to 119 persons. Three different methods are experimented on this dataset. These methods include kernel associative memory (kAM) method which is proposed in their study, PCA-neareast-neighbor method and a simple NN-based template matching method termed ARENA. In this study, we compared with the highest classification rate achieved in their [6] study. They conducted two sets of experiments similar as in our research: the first one used 3 images per class for training and the second one used 4 images per class for training. Figure 5.1 shows the comparison of the best recognition rates between our DB1 (database1) experimental results and their first set results. Figure 5.2 shows the comparison of the best recognition rates between our DB2 (database2) experimental results and their second set results. Both figures show that our approach achieves a better recognition rate. Table 5.1. Separtate facial region feature set results on DB1 | | Hidden Units | Training Rate [%] | Testing Rate [%] | |------------------|--------------|-------------------|------------------| | | 44 | 100 | 54 | | Left Eye Region | 56 | 100 | 54 | | Left Lye Region | 60 | 100 | 54 | | | 64 | 100 | 52 | | | 20 | 97.33 | 60 | | Right Eye Region | 28 | 98.67 | 62 | | Right Lye Region | 36 | 99.33 | 60 | | | 52 | 99.33 | 60 | | | 20 | 82 | 34 | | Nose Region | 44 | 87.33 | 34 | | Nose Region | 52 | 98.67 | 38 | | | 56 | 96.67 | 36 | | | 36 | 100 | 70 | | Mouth Region | 40 | 100 | 66 | | Mouni Region | 48 | 100 | 66 | | | 56 | 100 | 68 | Table 5.2. Combined feature set results on DB1 (database 1) | | | , | |--------------|-------------------|------------------| | Hidden Units | Training Rate [%] | Testing Rate [%] | | 40 | 100 | 86 | | 44 | 100 | 82 | | 48 | 100 | 82 | | 56 | 100 | 86 | | 60 | 100 | 84 | | 64 | 100 | 84 | | 68 | 100 | 82 | Table 5.3. Combined feature set results on DB2 (database 2) | Hidden Units | Training Rate [%] | Testing Rate [%] | |--------------|-------------------|------------------| | 26 | 99.73 | 88 | | 30 | 100 | 88 | | 38 | 100 | 88 | | 42 | 100 | 94 | | 50 | 100 | 90 | Figure 5.1. Classification rate comparison between different feature sets Figure 5.2. Comparison with other approaches. (3 images per class for training set) Figure 5.3. Comparison with other approaches. (4 or more images per class for training set) #### 6. Conclusions We have presented a feature selection and fusion technique for face recognition in this paper. The GA for feature selection and ANN for feature classification are incorporated in the proposed technique. The technique performs fusion and selection of facial features for face recognition. The significant areas inside each facial region are located through the feature selection. The FERET benchmark database is adopted to evaluate and compare the proposed technique with existing techniques. Three different databases were used in the experimental investigation and all of them were extracted from the FERET benchmark database. Database 2 is the largest database, containing 50 classes and 426 face images. The experiments are conducted on Cluster machine at Central Queensland University. The preliminary experiments were conducted simply to pre-test the proposed technique. The experiments investigated the separate facial region feature set and the combined feature set using the average grey level value features. The preliminary results were promising. Left eye feature set, right eye feature set and mouth feature set all achieved the highest recognition rate 92.31%. Nose feature set just achieved the highest recognition rate 76.92% and was the worst performer. The combined feature set outperformed the separate facial region feature set by improving the recognition rate to 100%. On Database1, many experiments were conducted to perform further investigation. The different size of feature extraction area, the different feature extraction technique and the different sequence for feature combination were considered in the experimental investigation. When average grey level value features were used and size of small rectangular area was 6 × 4, left eye feature set achieved 54% recognition rate, right eye feature set achieved 62% recognition rate, nose
feature set achieved 38% recognition rate and mouth feature set achieved 70% recognition rate. Mouth feature set was the best performer and nose feature set was the worst performer. Combined feature set outperformed the separate facial region feature set by achieving 86% recognition rate. The combination sequence did not affect the recognition rate for combined feature set. For significant areas, the mouth region contributed the most and the nose region contributed the least. When size of small rectangular area was increased to 10 × 4, left eye feature set achieved 54% recognition rate, right eye feature set achieved 56% recognition rate, nose feature set achieved 36% recognition rate and mouth feature set achieved 64%. Mouth feature set was still the best performer and nose feature set was still the worst performer. Combined feature set improved the recognition rate to 86% when compared to the separate facial region feature set. The combination sequence slightly affected the recognition rate. The original order combination achieved 84% recognition rate while the reverse order combination achieved slightly higher recognition rate 86%. For significant areas, the mouth region still contributed the most and the nose region contributed the least. The above results indicate the mouth region is the most important facial region. Combination of facial features from each facial region is much more useful in improving recognition rate compared to just one facial region feature set. Different number of eigenvectors was used for PCA features experiments. The 18 eigenvectors achieved the highest recognition rate 80%. The average grey level value features (combined feature set) outperformed the PCA features by 6%. The experiments on Database 2 were conducted by just using combined feature set of average grey level value features. The recognition rate was improved to 94%. The experimental results of the proposed approach were also compared with the results of the other three approaches based on FERET database: PCA, ARENA and kAM. Figure 5.2 was based on Database 1 results and the proposed approach improved the recognition rate by 1.3% compared to kAM method, 36% compared to PCA method and 41% compared to ARENA method. Figure 5.3 was based on Database2 results and the proposed technique improved the recognition rate by 2.4% compared to kAM method, 43.2% compared to PCA method and 48.3% compared to ARENA method. The proposed technique achieved the highest recognition rate among the existing techniques based on FERET database. # 7. References - [1] R. Chellappa, C. L. Wilson and S. Sirohey, "Human and machine recognition of faces: A survey," Proceedings of the IEEE, vol. 83, pp. 705-740, 1995. - [2] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol. 3, pp.71-86, 1991. - [3] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 711-720, 1997. - [4] S. Z. Li and J. Lu, "Face recognition using the neareast feature line method," IEEE Transactions on Neural Networks, vol. 10, pp. 439-443, 1999. - [5] C. Liu and H. Wechsler, "Independent component analysis of Gabor features for face recognition," IEEE Transactions on Neural Networks, vol. 14, pp. 919-928, 2003. - [6] B. Zhang, H. Zhang and S. Ge, "Face recognition by applying wavelet subband representation and kernel associative memory," IEEE Transactions on Neural Networks, vol. 15, pp. 166-177, 2004. - [7] R. Brunelli and T. Poggio, "Face recognition through geometrical features," Proc ECCV92, pp. 792-800, 1992. - [8] L. Wiskott, J. M. Fellous and C. Malsburg, "Face recognition by elastic bunch graph matching," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 775-779, 1997. - [9] Y. Fang, T. Tan and Y. Wang, "Fusion of global and local features for face verification," IEEE International Conference on Pattern Recognition, vol. 2, pp. 382–385, 2002. - [10] S. Yan, X. He, Y. Hu, H. Zhang, M. Li and Q. Cheng, "Bayesian shape localization for face recognition using global and local textures," IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 102-113, 2004. - [11] J. Bala, J. Huang, H. Vafaie, K. DeJong and H. Wechsler, "Hybrid learning using genetic algorithms and decision trees for pattern classification," Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 1, pp. 719-724, 1995. - [12] Q. Liu, X. Tang, H. Lu and S. Ma, "Kernel scatter-difference based discriminant analysis for face recognition, 17th International Conference on Pattern Recognition, 2, pp.419-422, 2004. - [13] P. J.Phillips, H. Wechsler, J. Huang, and P. Rauss, "The FERET database and evaluation procedure for face recognition algorithms," Image and Vision Computing, Vol. 16, No. 5, 295-306, 1998. - [14] Y. Sun and L. Yin, A genetic algorithm based feature selection approach for 3D face recognition, Biometric Consortium Conference, USA, 2005. - [15] C. Liu and H. Wechsler, "Evolutionary pursuit and its application to face recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 6, 570 582, 2000.