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Abstract 
There has been a considerable growth in the use of 
Statistical Process Control (SPC) for improving the 
quality in business, industries, or software development 
since the last decade. However, the processes are 
growing much more complex, and there is a tremendous 
increase of data size owning to the use of automated 
record machine. The conventional SPC tools become 
less effective in analyzing and identifying the cause of 
the process failures. This paper extends the idea of the 
Modified Centered CUSUMS, and proposes a new data 
selection procedure so that the associative discovery 
technique can be used in retrospective SPC analysis. 
Through our approach, the common data mining 
method (i.e. associative discovery) can be used to find 
the hidden knowledge from the data, and identify the 
causes of the process failure or success for the quality 
improvement. Besides, the hidden information that we 
extracted from the data can be used as supplement for 
the cause and effect diagram in the on-line process 
control. 
 
1. Introduction 
The use of Statistics in quality management and quality 
improvement has a long history. Since the study of 
Deming (1986, 1993), the Statistical Process Control 
(SPC) has formed the basis for continuous quality 
improvement that is the key component of Total Quality 
Management (TQM). In TQM, all activities are 
considered as processes. The performance of the 
process may have some fluctuation or variation over 
time. TQM will use the statistical techniques and 
relevant tools to identify the cause of the problem and 
to reduce the variation. Statistical Process Control 
(SPC) has been developed as one of the important 
components of the quality control activities for 
detecting and identifying the process failure in 
manufacturing industry, service organization or 
software development industry.  

 
In this paper, we mainly concentrate on identifying the 
persistent special causes for the improvement in the 
future. From the statistical point of view, the persistent 
special causes are a result of the structural change. The 
analyzed object changes from in-control distribution to 
out-of-control distribution. The persistent special causes 
will remain in out-of-control states until corrective 
actions are taken. As depicted in Figure 1, if the 

observed variability of the attributes of a process is 
within the range of variability from common causes, the 
process is said to be under statistical control. The 
practitioner of SPC tracks the variability of the process 
to be controlled. When that variability exceeds the 
range to be expected from the common causes, one then 
identifies assignable causes, and takes the corrective 
action and removes the persistent special causes. 
 
In common practice, cause and effect diagram is used to 
help to identify the persistent special cause.  The SPC 
provides the path for continuous improvement through 
learning from the mistakes.  
 

 
Figure 1: Statistical Process Control 
 

Cause and Effect Diagram 
In the traditional approach of off-line SPC analysis, the 
company may identify the cause of the process failure 
with the aid of the cause and effects diagrams. The 
cause-and-effect diagram, which is also known as 
“Ishikawa Diagram” or “Fishbone Diagram”, is 
designed to detect all possible contributing factors or all 
possible causes of effect. As indicated in Figure 2, the 
head of central ‘spine’ elicits the effect and the causes 
will be shown at the ‘rib’ ends. The diagram suggests 
that we should first work with the principal factors or 
causes and then reduce to sub-cause level, and even 
sub-sub-causes if needed. The process continues until 
all possible causes are extracted. (Smith 1998). 
However, it has become more difficult for the 
traditional approach to find out the cause of process 
failure or improvement because of the increasing 
complexity of the production process and product’s 
composition. Besides, due to the new measurement 
device and modern database capabilities, a large amount 
of production data is yield. There is an increasing 
demand of using Data Mining to extract the relevant 
information for quality improvement. Data mining has 
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been proved effective and efficient in analyzing large 
data sets and it has already been applied to many 
different areas, such as business, economic or ecology 
etc. (Giudici 2003, Milne, Drummond and Renoux 1998 
and Perner 2002). It is convinced that the great potential 
of data mining can be integrated effectively with SPC. 
 

 
.1Figure 2: Basic form of cause and effect diagram 

Limitations of the conventional SPC 
1. The improvement is mainly made through 
minimizing the mistake. SPC normally ignores the data 
with the success experience, which may contain some 
hidden knowledge for further process improvement. e.g. 
the process may give a very good performance in a 
particular period. Mining the hidden knowledge about 
the good performance in the data will be invaluable for 
further process improvement. 
 
2. The cause and effect diagram is constructed based on 
the previous experiences and knowledge. With the 
growing complexities of the process, and the 
tremendous increase of data size data size as well as the 
increasing number of input variables, it becomes more 
difficult to find out all possible causes, and construct an 
effective cause and effect diagram.   
 
An increasing number and complexity of historical 
production data increase the difficulties to apply SPC 
for quality improvement. Lam (1996) conducted the 
survey and showed that the lack of ability of quality 
improvement tools to solve existing quality problem 
was cited by respondent as the major barrier to their 
use. As Guter (1998) mentioned, “The reality of modern 
production and service processes has simply 
transcended the relevant and utility of this honored but 
ancient tool.” The manufacturing environment in which 
SPC is used is changing rapidly. In view of the great 
need to improve the SPC tools to cope with the 
changing manufacturing environment, we are motivated 
to propose a new approach to mine the cause for the 
process improvement.  
 
In order to extract effectively and exhaustively the 
information hidden in the data, we propose a 
preprocessing process that convert the historical process 
data into the format that Data Mining technique (i.e. 
Association discovery) can be used to identify the 
cause.  

Conventionally, the retrospective analysis for quality 
improvement normally focuses on a portion of most 
recent segment data for finding out the cause of the 
process failure. However, it is not appropriate in some 
situations. Let us use Figure 3 to explain. The 
conventional retrospective analysis for the quality 
improvement normally focuses on Segment A6 only. 
The out of the control Segment A2 is easily ignored as 
the people may consider the problem has been solved. It 
may not be easy to identify the cause if the size of 
segment A6 is small, and the same problem may appear 
intermittently. For example, the supplier provides two 
synthetic resins to the company, everything of these 
synthetic resins are the same; the only difference is that 
they are produced from the different supplier's 
branches. If one of supplier's branches makes a mistake 
in particular production lot of the synthetic resins, and 
the company does not notice the problem, the problem 
will re-appear after a certain period. In this situation, it 
will be helpful for mining the cause of the process 
failure if both segments A2 and A6 are selected, as some 
hidden information is available in Segment A2 
In addition, the ignorance of the success experience in 
the Segment A4 will make us lose some important 
information for further improvement. 
 

 
Figure 3: Retrospective data with different structures 
  

In this paper, we extend the idea of the Modified 
Centered CUSUMS (Pang and Ting 2004) for 
estimating all change points of the process of the 
retrospective data, so the process data is separated into 
multiple segments. Take Figure 3 as an example, we try 
to estimate the change points ,1a 2a ,.. 4a  and 5a , and 
find the segments A1, A2,.. A5 and A6. We try to find out 
the factors of the process failure from the segments with 
the abnormal performance (i.e. Segments A2 and A6), 
and the factor of achieving success in the segment A4. 
 
2. Description of the process data 
The main purpose of this paper is to propose the new 
pre-processing process that can convert the original 
process data to the new data set with the format that 
Data Ming technique can be applied to find out the 
hidden reason of better performance or poor 
performance (i.e. what input variables with what 
parameter setting will affect the performance of the 
process.)  
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We assume the process are presented by  {(Ut, yt),t = 
1,2,...,n}where Ut=(u1t,u2t,...,ukt) is a vector of k input 
variables at time t, u1, u2, ... uk are the numerical or 
categorical input variable. yt is the output numerical 
variable at time t. yt is assumed to be constant and stable 
over time if nothing is changed in the process. We 
suppose observation of yt will be used for tracking the 
performance of the process. Let us use the sample of the 
injection machine production to illustrate the process. 
Suppose that yt is the number of qualified product 
produced by injection machine per hour (QPR), GPR 
provides the index indicating the performance of the 
injection machine.  The value of GPR can be affected 
by the set of the input variables that may include the 
type of synthetic resin, production lot number of the 
resin, types of dye, production lot no. of dye, name of 
vendor of that dye, name of machine operator, or the 
machine settings (e.g. temperature, pressure or cooling 
time setting) etc.  In many situations, a factory normally 
has lots of alternative sources of material (e.g. several 
materials may have the identical specification, but from 
different manufacturers). When there is an increase of 
input variables and data size, the conventional SPC 
approach may not be capable to find out the possible 
cause.  
 
3. The proposed approach 
To improve the conventional SPC in finding the cause 
for process improvement, we propose a new 
preprocessing procedure that consists of 3 steps as 
described in Figure 4: (i) Split a whole process segment 
data into multiple process sub-segment data , (ii) group 
the segments with the optimum performance and (iii) 
transform as described in Figure 3, After completing all 
steps, two different new data sets in the format that data 
mining technique (i.e. association Discovery) can be 
used will be generated. One is used for mining the 
causes of the mean change of the process, another one is 
for mining the cause of the variance change of the 
process. Through our approach, the association 
discovery technique can be used to identify the possible 
cause.  
Whole set of the historical process data is assumed to be 
A, A={(Ut, yt),t=1,2,3,...,n}. The descriptions of the 
process variable are provided in last section. 
 
Step 1:  Split a whole process segment data into 

multiple segments 
The whole process segment data A will be split into 
multiple process sub-segment data {{A1},{A2}, 
{A3},…,{Am}} according to the structure of yt, where m 
is the number of change points in the original process 
segment data. yt is expected to have the distribution 

),( iiN σµ in the ith segment.  We apply the Modified 

Centered CUSUMS with the binary segmentation to 
locate all change points, and then split the whole 
process data into multiple process sub-segment data. 
The details about Modified Centered CUSUMS for 
change point detection will be described in the next 
section. Binary Segmentation is the algorithms for 
estimating the multiple break points. If a change is 
detected, then the data is divided at the most likely 
location for a single change, and the change-point 
procedure is applied to each new group of data. This 
process is repeated until no group shows evidence of a 
change.  
 
Modified Centered CUSUMS 
The process sub-segments will be generated based on 
the structure of yt.  Modified Centered CUSUMS is 
used to identify the change points of data 

},...,2,1,{ ntyt =  
Each sample is interpreted as: 

tttty εσµ +=  for t = 0, 1,2,3,…,n 

where tε has the standard normal distribution. 
We use the following notations to denote the 
observation matrices Ym,g and Xm,g which consist of (g-
m+1) samples in the process starting from the mth 
sample to the gth sample.   

Ym,g = 
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where m < n, and nmm xxx ,...,, 1+ are the row vectors. 
If the process parameters σ  andµ  are constant in all 
samples, the relationship between the variable 
expressed in Equation (1) can be rewritten as: 

nnn EXY ,0,0,0 += β , where [ ]µβ = , and  

nσσσσ ...210 ===  
With the above notation of the matrices, we can 
construct Modified Centered CUSUMS for detecting all 
change points. 
The standardized recursive prediction residual wr can 
be obtained by: 

rrrrrrrr dydxyw /)(/)ˆ( 11 −− −=−= µβ ,  r = 1,2…,n-1,n             
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where  

rrrrr YXXX ,0
/
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,0 )(ˆ −=β ,    
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,0 )(1 rrrrr xXXxd −+= ,   r = 0, 1, 2,3,…,n;   

Modified Centered CUSUMS will be: 
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where n1 is the selected sample size that the maximum 
Tn1 is generated. 

),(max 10 1
1

nrMT
nrn ≤<

=
 

, 1,...,2,1 nr = ,  where nn ≤1                                        

The estimated change point )ˆ(r will be:  

),(maxargˆ 1
0 1

nrMr
nr≤<

=
 

, where nn ≤≤ 10                                   

When the maximum value Tn1 is over the control limit, 
the process will be deemed to be ‘Out-of-Control’. The 
critical values (i.e. control limits) of Tn1 for the specified 
n1 are tabulated in Inclan and Tiao (1994). 
 
Step 2: Group the segments with the optimum 

performance together  
In this step, we will generate six different groups of 
segments, three groups are generated for analyzing the 
change of the process mean, and the other three groups 
are for the change of the process variance. 
 
We assume m sub-segments are generated in step 1, 
these sub-segment are A1, A2, A3,…,Am, the distribution 
of yt of ith segment is assumed to be ),( 2

iiN σµ . We 
calculate the mean and variance for each segment from 
A1 to Am, and find the segments which have the largest 
mean, the smallest mean, the largest variance and the 
smallest variance. We suppose that the maximum 
process sub-segment mean pµ  is found in Ap, the 

minimum process sub-segment mean qµ  is found in Aq, 

the maximum process sub-segment variance Rσ  is 
found in AR, and the minimum process sub-segment 
variance gσ  is found in Ag.  
 
After the segments with the optimum performance are 
identified, we will group all segments which structure is 
the same as the segment with the optimum 
performance. This step composes of two independent 
procedures, and these procedures are almost identical, 
the only difference is: (a) One procedure is to group the 
segments for analysis of process mean, (b) another 
procedure is to group the segments for analysis of 
process variance. 

 
(a)  group the segments for analysis of the change of 

the process mean 
Three subsets G1, G2, and G3 will be generated. Whole 
data set will be G={G1, G2, G3}  

G1:  A group of segments in which yt have the same 
structure as the segment with the maximum process 
mean (i.e })(),{(1 pttt ymeanyUG µ=•= ); 

G2:  A group of segments in which yt have the same 
structure as the segment with the minimum process 
mean (i.e. })(),{(2 qttt ymeanyUG µ=•= ); 

G3: A group formed by the rest of segments (i.e. 
)}(),(),{( 21 GGyUyU tttt ∪∉• ). 

 
(b)  group the segments for analysis of the change of 

the process variance 
Three subsets Q1, Q2, and Q3 will be generated. Whole 
data set will be Q={Q1, Q2, Q3}  

Q1:  A group of segments which yt have the same 
structure as the segment with the maximum process 
variance (i.e. })var(),{( 2

1 Rttt yyUQ σ=•= ). 

Q2:  A group of segment {(Ut, yt)} which yt have the 
same structure as the segment with the minimum 
process variance (i.e. 

})var(),{( 2
2 gttt yyUQ σ=•= ). 

Q3: A group formed by the rest of segments (i.e. 
)}(),(),{( 213 QQyUyUQ tttt ∪∉•= ). 

 
In order to group the segments with the same structure, 
we use Chow test to detect whether the specified two 
segments have the same structure.  
 

(SSM – SSM  1– SSM  2) Chow test = 
(SSM1+SSM2)/(e-2) 

Chow test has F1, n-2 distribution 
Where  
SSM = the sum of square deviation about the process 
mean in which process mean and process variance are 
assumed to be the same in two specified segments (i.e. 
Segment 1 and Segment 2); 
SSM1 = the sum of square deviation about the process 
mean estimated in Segment 1; 
SSM2 = the sum of square deviation about the process 
mean estimated in Segment 2; 
e is total number of observations. 
 
Given the sub-segment data sets As and Av, let us define 
Chow test as a function as follows: 

1 if As and Av are found to have 
the different structure of yt; 

 
Chow(As,Av)= 

 

{ 0 if As and Av are found to have 
the same structure of yt; 

If As and Av are two data sets, 
vS AA U  denotes the union 

of sets As and Av. 
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The Pseudo Code for G1, G2 and G3 is described as: 
G1=Ap 
G2=Aq 
G3=[] 
i = 1 
Do while i <= m and  i!=p and i!=q 
 If Chow(Ap, Ai) = 0 
  G1= G1∪Ai 

 elseif Chow(Aq, Ai) = 0 
                G2= G2∪Ai 

 else 
                G3= G3∪Ai 

 endif 
 i = i +1 

enddo  
 

The Pseudo Code for Q1, Q2 and Q3 is described as: 
Q1=AR 
Q2=Ag 
Q3=[] 
i = 1 
Do while i <= m and  i!=R and i!=g 
 If Chow(AR, Ai) = 0 
  Q1= Q1∪Ai 

 elseif Chow(Ag, Ai) = 0 
                Q2= Q2∪Ai 

 else 
                Q3= Q3∪Ai 

 endif 
 i = i +1 

enddo 
 

Step 3: Transform the data into the format for using 
associative discovery technique 
This step aims to transform the format of the data subset 
generated in step 2 to the format that can be used by 
associative discovery technique. 
Two final data sets G' and Q' will be generated. G' will 
be used for mining the causes or conditions for 
improving the process mean. Q' will be used for mining 
the causes or conditions for improving the process 
variance. 
 
The G' consists of three subsets, },,{' /

3
/
2

/
1 GGGG = , 

/
2

/
1 ,GG  and /

3G  are transformed from the subsets G1, G2 
and G3 generated in Step 2. 

•= )'',{(/
1 goodUG t }, 1domGU t ∈  

•= )'',{(/
2 poorUG t }2domGU t ∈  

•= )'',{(/
3 normalUG t }3domGU t ∈  

 

The Q/ consists of three subsets, },,{ /
3

/
2

/
1

/ QQQQ = , 
/
2

/
1 ,QQ  and /

3Q  are transformed from the subsets 

21,QQ  and 3Q  generated in Step 2. 

•= )'',{(/
1 goodUQ t }, 1domQUt ∈  

•= )'',{(/
2 poorUQ t }2domQUt ∈  

•= )'',{(/
3 normalUQ t }3domQUt ∈  

Association Discovery 
After obtaining the transformed data sets G/ and Q/, we 
will apply the simple associative discovery technique 
for the data set G/ and Q/ separately.  G/ will be used for 
identifying the cause of the change of the process mean, 
and Q/ will be used to identify the cause of the change 
of the process variance. Association Discovery is to 
find items what imply the presence of other items in the 
same record. The discovery process produces 
association rules in the form: “If C inputs are used then 
R will happen.” 
 
In this paper, we suggest using Leverage to indicate the 
validity and importance of the rule. 
 

 
Figure 4:Venn Diagram 
 

Let us assume we have an association rule indicated as 
LHS → RHS 
|T| is the total number of records in the database. 
|C| is the number of records covered by the LHS. 
|R| is the number of record covered by RHS. 
|C∩R| is the number of records covered by both the 
LHS and RHS, indicated by the overlapping area in 
Figure 4. 
 
The measures Leverage can be expressed as follows. 

T
R

T
C

T
RC

Leverage ×−=
I  

 
3. Example 
Let us consider the following data set from the injection 
machine. The data set contains the attributes: 
Production_date (date of production), operator_no (no. 
of workers operating the machine), shift (period of 
operating time), PN1 (part number of synthetic resins), 
Prod_Lot1 (production lot of the synthetic resins), PN2 
(part no. of dye), Prod_Lot2 (production lot of the dye), 
QPR (production rate of the qualified product). QPR is 
the attributes which observations can be used to present 
the performance of the injection machine. The attributes 
other than QPR will be used as input attributes. 
 
This injection machine produces a single product using 
several alterative synthetic resins and alternative dyes.  
The quality of the product from the machine is unstable. 
The supplier of the injection machine checks the 
machine and reports that the problem is not related to 
the machine, so further investigation on the cause of 
process failure is needed. 
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From the data set, we plot the data of QPR as the 
following: 
 

 
We split the data of QPR into multiple segments using 
Modified Centered CUSUMS according to its 
distribution, then we group the relevant segments with 
the transformation and form G' and Q'. After that, we 
generate the following rules using measure Leverage.  
 

R1: operator_no=00124 and shift=night → low process 
mean; 

R2: PN1=R-0024 and PN2=D0054 → high process 
mean; 

R3:  Prod_Lot1=950415L → high process variance; 
R4: Operator_no=00321 → low process variance. 
 
After the rules are generated, we can investigate and 
verify the rule, e.g. we can see why the production lot 
950415L increases the process variance. 
 
4. Discussion and Conclusion 
This paper contributes to propose a new preprocessing 
process which enables the association discovery 
technique to find out the condition for improving and 
the causes of deteriorating the process performance.  
 
Our approach is not only designed as the supplement of 
the cause and effect diagram, but is also deployed to 
update the cause and effect diagram for the on-line and 
off-line process analysis.  
 
The process can be improved through our proposed 
approach in two ways: 

(1) Learning from the mistake; 
(2) Learning from data with success experience.  

 

The proposed idea enriches the information in the cause 
and effect diagram as shown in Figure 5. The proposed 
preprocess procedure with associative discovery 
technique provides an alternative method for mining the 
condition for improving the process performance. 
Besides, the knowledge generated from our approach 
can update the knowledge shown in the cause and effect 
diagram. The update knowledge increases the 
effectiveness of the cause and effect diagram for the 
future on-line or off-line process analysis. 
 
The Product traceability plays the significant role for 
the success of our approach. Many causes of scrap and 

rework originate from poor raw material quality or the 
problems in an earlier process step. To successfully 
identify the root causes of the problems, it is often 
necessary to trace the product back to an earlier process. 
If we fail to fulfill this condition, hidden knowledge 
will not be found effectively.  
 

 
Figure 5: Updating the cause and effect diagram 
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