
An Automatic Intelligent Language Classifier 

Brijesh Verma
1
, Hong Lee

1
, and John Zakos

2
 

1 School of Computing Sciences, CQUniversity 

Rockhampton, Queensland, Australia 

{B.Verma, H.Lee1}@cqu.edu.au 
2MyCyberTwin, Gold Coast, Queensland, Australia  

Abstract. The paper presents a novel sentence-based language classifier that 

accepts a sentence as input and produces a confidence value for each target 

language. The proposed classifier incorporates Unicode based features and a 

neural network. The three features Unicode, exclusive Unicode and word 

matching score are extracted and fed to a neural network for obtaining a final 

confidence value. The word matching score is calculated by matching words in 

an input sentence against a common word list for each target language. In a 

common word list, the most frequently used words for each language are 

statistically collected and a database is created. The preliminary experiments 

were performed using test samples from web documents for languages such as 

English, German, Polish, French, Spanish, Chinese, Japanese and Korean. The 

classification accuracy of 98.88% has been achieved on a small database.  

Keywords: Classifiers, Language Classification, Neural Networks 

1   Introduction 

Automatic language classification systems are needed in many real world applications 

such as web based communication, multilingual document classification, medical 

cross-language text retrieval systems, helpdesk call routing  and spoken language 

classification  just to mention a few. 

Automatic language classification is the problem of identifying in which language 

a given sample text has been written.  Living in a global community, we are 

surrounded by multi-lingual environments such as web documents, speeches, etc. 

Especially, global advances in the Internet communities have imposed a great deal of 

importance for language classification problem due to the huge amount of web 

documents published in multi-languages. Successful research outcomes can affect 

many industrial sectors. A multi language translation technique [1, 2] is one of the 

examples, where the input language needs to be classified prior to the translation to a 

target language. Also, the language identification plays a key role in the internet 

search engines by identifying the language of the search keys [3]. Researchers have 

found [4] that text-to-speech applications heavily depend on the language 

identification performances in multi-lingual environments. 

Language classification tasks based on the written mono text (single language 

document) has been regarded as a relatively simple problem for small number of 

languages and when a large amount of sample texts in the identification stage are 



available. However, the task of language classification is very difficult and 

challenging when we have multi-language documents and large number of languages 

to classify. The complexity of the problem solving significantly increases [5] with the 

size of input text. 

The main goal of the research presented in this paper is to investigate a novel 

classifier that accepts a sentence including multilingual/small sentence as input and 

provide a confidence value for each language. The paper is divided into five sections. 

Section 2 presents existing techniques for language classifiers, limitations and 

difficulties.  Section 3 presents the proposed research methodology. The 

experimental results and analysis are presented in Section 4. Finally, a conclusion is 

presented in Section 5. 

2   Background 

The standard framework involved in language identification is modeling and 

classification. In language modeling stage, the most discriminative features of each 

target language is extracted and stored in its language model. During classification, 

similar feature extraction process is performed on input texts. Based on the models of 

each language and input text, the distance of similarity or dissimilarity is measured 

and the input text is identified according to the score. In [6], a language identification 

system has been presented which can achieve accuracy of 93% with as little as a 

three-word input. 

There has been some research conducted in the area of automatic classification of 

languages and some papers have been published in recent years. In [3], an approach is 

proposed which can classify input texts‟ language by finding the maximum frequency 

of input words in each dictionary of Spanish, French, English, Portuguese, German 

and Italian. To identify the input language, heuristics are employed into the decision 

making process. The methodology is effective to classify input texts‟ language as 

accurate as 88% on randomly selected web pages and 99% on randomly selected 

well-formatted texts. In [5], a decision tree scheme for common letters of language in 

documents is used to identify Arabic from Persian. The decision tree is defined as a 

series of questions about the context of the current letter. If a common but 

discriminant letter from the other language is found, the classification is made on the 

incident. The experiment result shows that average of around 98.8% accuracy was 

achieved to identify 240 web documents (120 for Arabic and 120 for Persian). In [6], 

each language is modeled from a corpus of training documents on features extracted 

based on common words and N-gram methods. The features extracted by the common 

words are the probability distribution of the frequency of the most common words in 

the training documents in a language. Likewise, features of character N-gram is 

measured to reflect the frequency score and the rank of N-gram instances are stored. 

During classification, rather than modeling the whole input text, features of random 

sub-sections of the input texts are extracted to minimize the computational time. The 

random sampling is performed until the standard error of the random samples is larger 

than a threshold. The Monte Carlo method with N-gram and common words was 

tested on Danish, Dutch, English, French, German, Italian, Norwegian, Portuguese, 



Spanish, and Swedish from ECI database. However, it doesn‟t report the numerical 

data on the performance of the classification apart from the comparative graph 

between difference methods. In [8], two identification methods, enhanced N-gram 

probabilities and decision tree are proposed to compare the performance of 

classification accuracy. The authors enhanced N-gram feature extraction technique by 

decomposing each word into three parts, head, body and tail. The decision trees are to 

identify the most likely language for each letter in the input word. The experiment 

results on local in-house guest names in four languages reported that 71.8% and 66.1% 

average identification accuracies were achieved by N-gram and decision tree methods 

accordingly. Vector-space based identification approach was proposed in [9] for 13 

Latin character based languages. Features included in vectors were N-gram 

frequencies and word sizes with inverse document frequency weight incorporated. 

Between models and an input, cosine values are calculated and used to classify the 

input text. Experiment results report various performance accuracies depending on the 

input text size, which produced 100% accuracy on web documents with 1000 bytes. 

In [10], the authors incorporated feature extraction technique of the common words in 

a language, known as stop words like „the‟, „of‟ and „to‟, to identify the language 

from scanned document images written in multi-lingual environments. In their 

research, the stop words, their frequency and word shape code are used as key feature 

vectors to classify the language which input documents were written in. The approach 

was as effective as 96.75% of accuracy rate at best on locally prepared database. In 

[11], Artemenko et al. evaluated performances of four different identification 

methodologies in two separate experiments of mono-lingual and multi-lingual web 

documents on 8 languages. Identification methods used in the experiments were 

Vector space cosine similarity, „out of place‟ similarity between rankings and 

Bayesian classifier on N-gram feature spaces. A word frequency based classification 

was added to the comparison. The research inferred that N-gram based approach 

outperforms the word frequency based methods for short texts. The researchers were 

able to achieve 100% and 97% accuracies on mono and multi lingual documents 

accordingly. In [12], an approach was proposed which can count common words and 

character sequences of N-gram methods for a language. Then, the frequency was used 

as the key information to distinguish the input documents against models. The 

performance was measured on Europarl corpus test sets, and was satisfactory, 97.9% 

on German language was achieved. In [13], an algorithm is presented which extends 

the common N-gram corpus analysis complemented with heuristics. Classification 

was to measure the similarity between input text and model languages. The literature 

reports the performance on 12 languages of 6000 web documents was 100% accurate 

at most. Rendering character sequence into HMM language model was manipulated 

as a key ingredient for language classification task in [14]. The identification accuracy 

of 95% was achieved in their proposal. In [15], term frequency and its weight by 

entropy method over documents were used as feature for neural networks to 

categorize the web documents. In [16], an approach was proposed which uses tri-

gram and frequency language modelling technique to identify the origin of names 

written-in-Latin, Japanese, Chinese and English. An accuracy of 92% was achieved to 

distinguish Japanese names from the others. 



3   Proposed Research Methodology 

The proposed research methodology is described in details in this section. Foremost, 

an overview of the proposed technique is presented, followed by analysis of language 

specific Unicode. The proposed feature extraction and classification algorithms are 

described at the end of this section. 
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Fig. 1 Proposed methodology 

3.1   Overview 

The proposed approach shown in Fig. 1 takes an UTF8 formatted sentence as an input. 

The irrelevant Unicodes from the input sentence, are removed through a 

preprocessing module before feature extraction. Based on the preprocessed input, 

Unicodes for each language are counted and divided by the total number of Unicodes. 

The second feature is to extract and count the language specific Unicodes for each 

language. Again, the count for exclusive Unicode of each language is divided by the 



total number of Unicodes in the preprocessed input sentence. The final feature is 

related to identifying each segment or word separated by a space. There are two 

different methodologies suggested for identification of each segment or word. Firstly, 

Latin character-based languages like English, German, Polish, French, Spanish, etc. 

put spaces between words. However, it is not true for Chinese, Japanese, Korean, etc. 

to distinguish words by spaces. So, it is more appropriate to call a component in a 

sentence separated by spaces a “segment”. To identify each segment composed of 

Latin characters, a dictionary matching method is proposed. Heuristics are employed 

to identify each segment composed of Unicodes from Chinese, Japanese and Korean. 

Finally, the features are fed to a classifier to decide which language the input sentence 

belongs to and provide confidence values. 

3.2   Unicode and UTF8 

Unicode is a standard representation of characters to be expressed in computing [17]. 

UTF8 (8-bit Unicode Transformation Format) is a preferred protocol to encode the 

Unicode characters for storing or streaming them electronically [18, 19]. Characters 

for all languages are defined as ranges in UTF8 format [20]. 

3.3   Feature Extraction 

The proposed methodology utilizes three features related to Unicode components in 

the pre-processed sentence. The three features are Unicode, exclusive Unicode and 

segments for each language. 

3.3.1   Unicode Feature 

FU = {u1, u2, …, un}, um = 
g(m)

t
, m = 1…n,  where n is the number of languages, g(m) 

is the total number of Unicodes for language m, and t is the total number of Unicode 

in an input sentence. 

Example: 

Input sentence: „My name is 이상민 in Korean‟ 

Unicode distribution:  

English, German, French, Spanish, and Polish: M, y, n, a, m, e, i, s, i, n, k, o, r, e, a, 

n (Total: 16) 

Chinese and Japanese: 0 

Korean: 이, 상, 민 (Total: 3) 

Total Unicode in the input sentence: 19 

FU = {16/19, 16/19, 16/19, 16/19, 16/19, 0, 0, 3/19} 



3.3.2   Exclusive Unicode Feature 

FX = {u1, u2, …, un}, um = 
g(m)

t
, m = 1…n,  where n is the number of languages, g(m) 

is the total number of exclusive Unicode for language m, and t is the total number of 

Unicode in an input sentence. 

3.3.3   Segment feature 

FW = {S1, S2, …, Sn}, Sm = 
f(m)

y
, m = 1…n, where n is the number of languages, y is 

the total number of space-separated segments/words, and f(m) is the total number of 

space-separated segments/words identified by dictionary matching in a pre-processed 

input sentence.  

3.4   Classification 

The weighted sum feature classification and neural network based classification as 

described below have been investigated in this research.  

 

3.4.1 Weighted Sum Feature Classification (WSFC) 

The three features described in previous sections are extracted from the input sentence. 

The features are multiplied by a preset weight and sum of weighted features is 

calculated. The language with highest weighted feature value is selected.  

 

3.4.2 Neural Classification (NC) 

An overview of neural classification process is shown below in Fig. 2. The three 

features are extracted from the input sentence and fed to a neural classifier. The 

classifier fuses the features and gives the final confidence for each language. The final 

output contains the total score for each language. The neural network based classifier 

is trained using artificially generated training set before it is used for testing.  

 

 

 

Fig. 2. Overview of neural network classification process 



4   Experiments and Results 

The proposed methodology has been implemented in Java programming language. 

The experiments were conducted using weighted sum feature classification (WSFC) 

and neural classification (NC). 

 

A small database of sentences with less than 10 words taken from web pages has 

been created. A news article for each language is selected and input samples for 

testing has been prepared by segmenting the article into sentences by finding a period 

symbol “.” at the end of sentence. One hundred sentences for each language were 

collected, which give the total of eighty hundred sentences, and stored in an input file 

with UTF8 format. 

 

The classification accuracies for experiments are shown in Table 1. The proposed 

approach has been compared to other methods in the literature. The proposed 

approach shows the similar performance over methodologies in [5, 8, 11, 12], but they 

are lower than the results from [9, 13]. However, considering the input language 

mode and the size of the input data, it is fair to conclude that the proposed approach 

were competitive to the existing approaches. Unlike the proposed approach, 

experimental results from [9] used longer input data size. The method in [11] has 

achieved the higher accuracy than the proposed approach on only mono input lingual 

mode. Finally, the approach in [13] achieved 100% accuracy on only English input 

documents.  

Table 1  Experimental results  

Technique Number of Sentences 
Accuracy on Test 

Data [%] 

Proposed approach with 

WSFC 
800 

98.88 

Proposed approach with 

NC  
98.88 

5   Conclusions and future research 

In this paper, a novel approach for language classification has been presented and 

investigated. UTF8 encoding scheme has been used to construct the features for 

classification. The Unicode, exclusive Unicode and word matching score features in 

conjunction with a neural network are used to classify a language of an input sentence. 

Word matching score was extracted against a common word list of each language, 

rather than full length dictionaries, to simplify the computational searching cost. The 

experiments with the proposed approach produced very competitive results, 

considering the limited length of input sentences. In our future research, the focus will 

be on improving the training data for neural network and testing on shorter sentences.  
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