
An Automatic Intelligent Language Classifier

Brijesh Verma
1
, Hong Lee

1
, and John Zakos

2

1 School of Computing Sciences, CQUniversity

Rockhampton, Queensland, Australia

{B.Verma, H.Lee1}@cqu.edu.au
2MyCyberTwin, Gold Coast, Queensland, Australia

Abstract. The paper presents a novel sentence-based language classifier that

accepts a sentence as input and produces a confidence value for each target

language. The proposed classifier incorporates Unicode based features and a

neural network. The three features Unicode, exclusive Unicode and word

matching score are extracted and fed to a neural network for obtaining a final

confidence value. The word matching score is calculated by matching words in

an input sentence against a common word list for each target language. In a

common word list, the most frequently used words for each language are

statistically collected and a database is created. The preliminary experiments

were performed using test samples from web documents for languages such as

English, German, Polish, French, Spanish, Chinese, Japanese and Korean. The

classification accuracy of 98.88% has been achieved on a small database.

Keywords: Classifiers, Language Classification, Neural Networks

1 Introduction

Automatic language classification systems are needed in many real world applications

such as web based communication, multilingual document classification, medical

cross-language text retrieval systems, helpdesk call routing and spoken language

classification just to mention a few.

Automatic language classification is the problem of identifying in which language

a given sample text has been written. Living in a global community, we are

surrounded by multi-lingual environments such as web documents, speeches, etc.

Especially, global advances in the Internet communities have imposed a great deal of

importance for language classification problem due to the huge amount of web

documents published in multi-languages. Successful research outcomes can affect

many industrial sectors. A multi language translation technique [1, 2] is one of the

examples, where the input language needs to be classified prior to the translation to a

target language. Also, the language identification plays a key role in the internet

search engines by identifying the language of the search keys [3]. Researchers have

found [4] that text-to-speech applications heavily depend on the language

identification performances in multi-lingual environments.

Language classification tasks based on the written mono text (single language

document) has been regarded as a relatively simple problem for small number of

languages and when a large amount of sample texts in the identification stage are

available. However, the task of language classification is very difficult and

challenging when we have multi-language documents and large number of languages

to classify. The complexity of the problem solving significantly increases [5] with the

size of input text.

The main goal of the research presented in this paper is to investigate a novel

classifier that accepts a sentence including multilingual/small sentence as input and

provide a confidence value for each language. The paper is divided into five sections.

Section 2 presents existing techniques for language classifiers, limitations and

difficulties. Section 3 presents the proposed research methodology. The

experimental results and analysis are presented in Section 4. Finally, a conclusion is

presented in Section 5.

2 Background

The standard framework involved in language identification is modeling and

classification. In language modeling stage, the most discriminative features of each

target language is extracted and stored in its language model. During classification,

similar feature extraction process is performed on input texts. Based on the models of

each language and input text, the distance of similarity or dissimilarity is measured

and the input text is identified according to the score. In [6], a language identification

system has been presented which can achieve accuracy of 93% with as little as a

three-word input.

There has been some research conducted in the area of automatic classification of

languages and some papers have been published in recent years. In [3], an approach is

proposed which can classify input texts‟ language by finding the maximum frequency

of input words in each dictionary of Spanish, French, English, Portuguese, German

and Italian. To identify the input language, heuristics are employed into the decision

making process. The methodology is effective to classify input texts‟ language as

accurate as 88% on randomly selected web pages and 99% on randomly selected

well-formatted texts. In [5], a decision tree scheme for common letters of language in

documents is used to identify Arabic from Persian. The decision tree is defined as a

series of questions about the context of the current letter. If a common but

discriminant letter from the other language is found, the classification is made on the

incident. The experiment result shows that average of around 98.8% accuracy was

achieved to identify 240 web documents (120 for Arabic and 120 for Persian). In [6],

each language is modeled from a corpus of training documents on features extracted

based on common words and N-gram methods. The features extracted by the common

words are the probability distribution of the frequency of the most common words in

the training documents in a language. Likewise, features of character N-gram is

measured to reflect the frequency score and the rank of N-gram instances are stored.

During classification, rather than modeling the whole input text, features of random

sub-sections of the input texts are extracted to minimize the computational time. The

random sampling is performed until the standard error of the random samples is larger

than a threshold. The Monte Carlo method with N-gram and common words was

tested on Danish, Dutch, English, French, German, Italian, Norwegian, Portuguese,

Spanish, and Swedish from ECI database. However, it doesn‟t report the numerical

data on the performance of the classification apart from the comparative graph

between difference methods. In [8], two identification methods, enhanced N-gram

probabilities and decision tree are proposed to compare the performance of

classification accuracy. The authors enhanced N-gram feature extraction technique by

decomposing each word into three parts, head, body and tail. The decision trees are to

identify the most likely language for each letter in the input word. The experiment

results on local in-house guest names in four languages reported that 71.8% and 66.1%

average identification accuracies were achieved by N-gram and decision tree methods

accordingly. Vector-space based identification approach was proposed in [9] for 13

Latin character based languages. Features included in vectors were N-gram

frequencies and word sizes with inverse document frequency weight incorporated.

Between models and an input, cosine values are calculated and used to classify the

input text. Experiment results report various performance accuracies depending on the

input text size, which produced 100% accuracy on web documents with 1000 bytes.

In [10], the authors incorporated feature extraction technique of the common words in

a language, known as stop words like „the‟, „of‟ and „to‟, to identify the language

from scanned document images written in multi-lingual environments. In their

research, the stop words, their frequency and word shape code are used as key feature

vectors to classify the language which input documents were written in. The approach

was as effective as 96.75% of accuracy rate at best on locally prepared database. In

[11], Artemenko et al. evaluated performances of four different identification

methodologies in two separate experiments of mono-lingual and multi-lingual web

documents on 8 languages. Identification methods used in the experiments were

Vector space cosine similarity, „out of place‟ similarity between rankings and

Bayesian classifier on N-gram feature spaces. A word frequency based classification

was added to the comparison. The research inferred that N-gram based approach

outperforms the word frequency based methods for short texts. The researchers were

able to achieve 100% and 97% accuracies on mono and multi lingual documents

accordingly. In [12], an approach was proposed which can count common words and

character sequences of N-gram methods for a language. Then, the frequency was used

as the key information to distinguish the input documents against models. The

performance was measured on Europarl corpus test sets, and was satisfactory, 97.9%

on German language was achieved. In [13], an algorithm is presented which extends

the common N-gram corpus analysis complemented with heuristics. Classification

was to measure the similarity between input text and model languages. The literature

reports the performance on 12 languages of 6000 web documents was 100% accurate

at most. Rendering character sequence into HMM language model was manipulated

as a key ingredient for language classification task in [14]. The identification accuracy

of 95% was achieved in their proposal. In [15], term frequency and its weight by

entropy method over documents were used as feature for neural networks to

categorize the web documents. In [16], an approach was proposed which uses tri-

gram and frequency language modelling technique to identify the origin of names

written-in-Latin, Japanese, Chinese and English. An accuracy of 92% was achieved to

distinguish Japanese names from the others.

3 Proposed Research Methodology

The proposed research methodology is described in details in this section. Foremost,

an overview of the proposed technique is presented, followed by analysis of language

specific Unicode. The proposed feature extraction and classification algorithms are

described at the end of this section.

Input sentence in utf8 format

Preprocess the input sentence to remove irrelevant

characters such as ‘.’, ‘,’, ‘?’, etc.

n = total number of Unicode,

FU=(e/n, g/n, s/n, f/n, p/n, k/n, j/n, c/n)

Unicode for

English: e

Unicode for

German: g

Unicode for

Spanish: s

Unicode for

French: f

Unicode for

Polish: p

Unicode for

Korean: k

Unicode for

Japanese: j

Unicode for

Chinese: c

Exclusive

Unicode for

English: xe

Exclusive

Unicode for

German: xg

Exclusive

Unicode for

Spanish: xs

Exclusive

Unicode for

French: xf

Exclusive

Unicode for

Polish: xp

Exclusive

Unicode for

Korean: xk

Exclusive

Unicode for

Japanese: xj

Exclusive

Unicode for

Chinese: xc

s
f p k j ce g

n = total number of Unicode,

FX=(xe/n, xg/n, xs/n, xf/n, xp/n, xk/n, xj/n, xc/n)

xe xsxg
xf xp xk xj

xc

preprocessed input sentence

Count w found

in English

dictionary: we

Count w found

in German

dictionary: wg

Count w

found in

Spanish

dictionary: ws

Count w

found in

French

dictionary: wf

Count w found

in Polish

dictionary: wp

Increase

counter if w =

kor: wk

Increase

counter if w =

jap: wj

Increase

counter if w =

chi: wc

Space-based segmentation

of the preprocessed input

sentence:

Seg={Seg1, Seg2,...Segm}

For each segment

w in Seg
Seg

w based on

latin chars?
w

Yes

No

Huristics-based decision:

w = kor for Korean

w = jap for Japanese

w = chi for Chinese

w

m = total number of segments,

FW=(we/m, wg/m, ws/m, wf/m, wp/m, wk/m, wj/m, wc/m)

we wg ws wf wp wk wj wc

Classifier

FU

FX

FW

output

Fig. 1 Proposed methodology

3.1 Overview

The proposed approach shown in Fig. 1 takes an UTF8 formatted sentence as an input.

The irrelevant Unicodes from the input sentence, are removed through a

preprocessing module before feature extraction. Based on the preprocessed input,

Unicodes for each language are counted and divided by the total number of Unicodes.

The second feature is to extract and count the language specific Unicodes for each

language. Again, the count for exclusive Unicode of each language is divided by the

total number of Unicodes in the preprocessed input sentence. The final feature is

related to identifying each segment or word separated by a space. There are two

different methodologies suggested for identification of each segment or word. Firstly,

Latin character-based languages like English, German, Polish, French, Spanish, etc.

put spaces between words. However, it is not true for Chinese, Japanese, Korean, etc.

to distinguish words by spaces. So, it is more appropriate to call a component in a

sentence separated by spaces a “segment”. To identify each segment composed of

Latin characters, a dictionary matching method is proposed. Heuristics are employed

to identify each segment composed of Unicodes from Chinese, Japanese and Korean.

Finally, the features are fed to a classifier to decide which language the input sentence

belongs to and provide confidence values.

3.2 Unicode and UTF8

Unicode is a standard representation of characters to be expressed in computing [17].

UTF8 (8-bit Unicode Transformation Format) is a preferred protocol to encode the

Unicode characters for storing or streaming them electronically [18, 19]. Characters

for all languages are defined as ranges in UTF8 format [20].

3.3 Feature Extraction

The proposed methodology utilizes three features related to Unicode components in

the pre-processed sentence. The three features are Unicode, exclusive Unicode and

segments for each language.

3.3.1 Unicode Feature

FU = {u1, u2, …, un}, um =
g(m)

t
, m = 1…n, where n is the number of languages, g(m)

is the total number of Unicodes for language m, and t is the total number of Unicode

in an input sentence.

Example:

Input sentence: „My name is 이상민 in Korean‟

Unicode distribution:

English, German, French, Spanish, and Polish: M, y, n, a, m, e, i, s, i, n, k, o, r, e, a,

n (Total: 16)

Chinese and Japanese: 0

Korean: 이, 상, 민 (Total: 3)

Total Unicode in the input sentence: 19

FU = {16/19, 16/19, 16/19, 16/19, 16/19, 0, 0, 3/19}

3.3.2 Exclusive Unicode Feature

FX = {u1, u2, …, un}, um =
g(m)

t
, m = 1…n, where n is the number of languages, g(m)

is the total number of exclusive Unicode for language m, and t is the total number of

Unicode in an input sentence.

3.3.3 Segment feature

FW = {S1, S2, …, Sn}, Sm =
f(m)

y
, m = 1…n, where n is the number of languages, y is

the total number of space-separated segments/words, and f(m) is the total number of

space-separated segments/words identified by dictionary matching in a pre-processed

input sentence.

3.4 Classification

The weighted sum feature classification and neural network based classification as

described below have been investigated in this research.

3.4.1 Weighted Sum Feature Classification (WSFC)

The three features described in previous sections are extracted from the input sentence.

The features are multiplied by a preset weight and sum of weighted features is

calculated. The language with highest weighted feature value is selected.

3.4.2 Neural Classification (NC)

An overview of neural classification process is shown below in Fig. 2. The three

features are extracted from the input sentence and fed to a neural classifier. The

classifier fuses the features and gives the final confidence for each language. The final

output contains the total score for each language. The neural network based classifier

is trained using artificially generated training set before it is used for testing.

Fig. 2. Overview of neural network classification process

4 Experiments and Results

The proposed methodology has been implemented in Java programming language.

The experiments were conducted using weighted sum feature classification (WSFC)

and neural classification (NC).

A small database of sentences with less than 10 words taken from web pages has

been created. A news article for each language is selected and input samples for

testing has been prepared by segmenting the article into sentences by finding a period

symbol “.” at the end of sentence. One hundred sentences for each language were

collected, which give the total of eighty hundred sentences, and stored in an input file

with UTF8 format.

The classification accuracies for experiments are shown in Table 1. The proposed

approach has been compared to other methods in the literature. The proposed

approach shows the similar performance over methodologies in [5, 8, 11, 12], but they

are lower than the results from [9, 13]. However, considering the input language

mode and the size of the input data, it is fair to conclude that the proposed approach

were competitive to the existing approaches. Unlike the proposed approach,

experimental results from [9] used longer input data size. The method in [11] has

achieved the higher accuracy than the proposed approach on only mono input lingual

mode. Finally, the approach in [13] achieved 100% accuracy on only English input

documents.

Table 1 Experimental results

Technique Number of Sentences
Accuracy on Test

Data [%]

Proposed approach with

WSFC
800

98.88

Proposed approach with

NC
98.88

5 Conclusions and future research

In this paper, a novel approach for language classification has been presented and

investigated. UTF8 encoding scheme has been used to construct the features for

classification. The Unicode, exclusive Unicode and word matching score features in

conjunction with a neural network are used to classify a language of an input sentence.

Word matching score was extracted against a common word list of each language,

rather than full length dictionaries, to simplify the computational searching cost. The

experiments with the proposed approach produced very competitive results,

considering the limited length of input sentences. In our future research, the focus will

be on improving the training data for neural network and testing on shorter sentences.

Acknowledgements
This research work is supported by CQUniversity‟s industry collaborative small

research grant and MyCyberTwin.

References

[1] Artemenko, O., Mandl, T., Shramko, M., & Womser-Hacker, C. Evaluation of a language

identification system for mono- and multilingual text documents, Proceedings of the 2006 ACM
symposium on applied computing, pp. 859-860, 2006.

[2] Dunning, T. Statistical identification of language, Technical report CRL MCCS-94-273, New Mexico

State University, Computing Research Lab, March 1994.
[3] Hakkinen, J., & Tian, J. N-gram and decision tree based language identification for written words,

IEEE workshop on automatic speech recognition and understanding (ASRU'01), pp. 335-338, 2001.

[4] Lins, R., & Goncalves, P. Automatic language identification of written texts. Proceedings of the 2004
ACM symposium on applied computing, pp. 1128-1133, 2004.

[5] Lu, S., & Tan, C. L. Retrieval of machine-printed Latin documents through word shape coding.

Pattern Recognition, vol. 41, no. 5, pp. 1799-1809, 2008.
[6] Martins, B., & Silva, M. Language identification in web pages. Proceedings of the 2005 ACM

symposium on applied computing, pp. 764-768, 2005.

[7] McNamee, P. Language identification: a solved problem suitable for undergraduate instruction. J.
Comput. Small Coll., vol. 20, no. 3, 94-101, 2005.

[8] Muthusamy, Y., Barnard, E., & Cole, R. Automatic language identification: a review/tutorial. IEEE

Signal Processing, vol. 11, 33-41, 1994.
[9] Poutsma, A. Applying monte carlo techniques to language identification. Proceedings of

computational linguistics in the Netherlands (CLIN), vol. 45, pp. 179-189, 2001.

[10] Prager, J. Linguini: Language identification for multilingual documents. Proceedings of the 32nd
annual Hawaii international conference on system sciences, vol. 2, p. 2035, 1999.

[11] Qu, Y., & Grefenstette, G. Finding ideographic representations of Japanese names written in Latin

script via language identification and corpus validation. Proceedings of the 42nd annual meeting on
association for computational linguistics, pp. 183, 2004.

[12] Romsdorfer, H., & Pfister, B. Text analysis and language identification for polyglot text-to-speech

synthesis. Speech communication, vol. 49, no. 9, pp. 697-724, 2007.
[13] Selamat, A., & Omatu, S. Web page feature selection and classification using neural networks.

Information sciences, vol. 158, pp. 69-88, 2004.

[14] Selamat, A., Ching, N. C., & Mikami, Y. Arabic script web documents language identification using
decision tree-ARTMAP model. IEEE International conference on convergence information

technology, pp. 721-726, 2007.

[15] The Unicode Consortium. The Unicode Standard, Version 5.0 (5th Edition). Addison-Wesley
Professional, 2006.

[16] Unicode. (2008, June 26). Retrieved June 27, 2008, Wikipedia: http://en.wikipedia.org/wiki/Unicode

[17] Unicode/UTF-8-character table. Retrieved June 26, 2008, UTF8-CharTable: http://www.utf8-
chartable.de/unicode-utf8-table.pl

[18] UTF-8. (2008, June 24). Retrieved June 26, 2008, Wikipedia: http://en.wikipedia.org/wiki/UTF-8

[19] Xafopoulos, A., Kotropoulos, C., Almpanidis, G., & Pitas, I. Language identification in web
documents using discrete HMMs. Pattern recognition, vol. 37, no. 3, pp. 583-594, 2004.

[20] Yergeau, F. UTF-8, a transformation format of ISO 10646. In RFC 3629, internet engineering task

force, 2003.

