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Abstract

In the last two decades, the problem of odour source localisation has been widely

studied by using a single robot due to its practical significance for human security,

such as searching for the source of toxic gas leakage and locating the origin of a fire at

its initial stage. Recently, using a multi-robot system to locate the odour source has

received increasing interest from researchers because of several major benefits over a

single robot such as a wider detection range and multiple detection information. In

this dissertation, two aspects on the odour source localisation problem are studied;

one is to learn from data detected and collected by the multi-robot system to make

a decision on the position of the odour source while the other is to coordinate and

control the multi-robot system to locate the source of odour in terms of the decision

results. In particular, a distributed coordination control architecture including two

levels: a decision level and a control level, is designed. In the decision level, a new

distributed decision algorithm, which can make a decision on the position of the

odour source, is formulated. In the control level, a particle swarm optimization

based finite-time motion control algorithm, a consensus-based finite-time motion

control algorithm, and a potential-based finite-time motion control algorithm, are

then developed to control the robot group to locate the odour source, respectively.

Finally, the effectiveness of the proposed solutions consisting of the architecture,

the decision algorithm, and the control algorithms for odour source localisation is

illustrated through simulations.
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Chapter 1

Introduction

In nature, there exist some biological entities such as moths and lobsters, that

use their olfactory sense to detect and react to information in their environment

[90, 16, 139, 153, 152]. Odour source localisation originates from the behaviors of

such biological entities, and can be seen in the foraging by lobsters and mate-seeking

by moths. Due to its practical significance for human security such as searching for

the source of toxic gas leakage and locating the origin of a fire at its initial stage, the

problem of odour source localisation has received much attention from researchers

and engineers [4, 49, 37, 43, 88, 137].

In the last two decades, the problem of odour source localisation has been widely

studied by using a single robot system. Due to several major benefits over a single

robot such as a wider detection range and multiple detection information, using

a multi-robot system to locate the odour source has received increasing interest

from researchers. In this dissertation, two aspects on the problem of odour source

localisation are studied; one is to learn from data detected and collected by the

multi-robot system to make a decision on the position of the odour source while

the other is to coordinate and control the multi-robot system to locate the

source of odour in terms of the decision results.



2 CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 Problem Definition

Odour source localisation is a type of ill-posed and dynamical optimization problem,

which can be stated as

Problem 1 (Odour Source Localisation). An odour source localisation problem con-

sists of

• A set N of N mobile robots or vehicles,

• A set X of positions in a two-dimensional search space R2,

• A set M ⊆ N ×X of possible pairs, and

• A map f : X × [0,∞] → R giving a time-varying concentration value for each

position.

A feasible (suboptimal) solution is a set of pairs S ⊆ M such that there exists at

least a position xi (i ∈ N , xi ∈ X , (i, xi) ∈ S), which satisfies that position xi lies

in the vicinity of the odour source, i.e. ∥xi − xs∥2 < ϵ (the symbol ∥ · ∥2 refers to

an Euclidean vector norm; xs ∈ X denotes the position of the odour source; and the

choice of ϵ depends on applications). A feasible solution S is optimal if the position

xi is the position of the odour source, i.e. ∥xi − xs∥ = 0.

The problem of odour source localisation f(xi, t) (xi ∈ X , t ∈ [0,∞]) is illus-

trated in Figure 1.1 where the odour source marked by the yellow circle releases a

great deal of filaments (a group of odour molecules) that form a plume shaped by

wind (the arrow denotes the direction of wind and the length of the arrow denotes

the speed of wind). The position of the odour source is located at the (10m,0m)

and the search area is limited at 100m × 100m. From this figure, one can see that,

compared with a single robot [76, 29, 111], a multi-robot system obviously provides
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Figure 1.1: An instantaneous plume where black dots denote the filaments that form
a plume and arrows denote the wind speed and direction.

a wider detection region to capture the time-varying plume. Moreover, four main

characteristics of the problem of odour source localisation are summarized by

1. There exist a global concentration maximum, which is located in the vicinity

of the position of the odour source, and multiple local concentration maxima

along the plume;

2. The positions with local concentration maxima are time-varying due to the

influence of wind and dispersion of odour molecules;

3. Odour concentration occurs within a narrow region at each time, that is, at a

given time t, the odour dispersion region X can be partitioned into two parts:

X1 and X2 (X = X1

∪
X2) where f(xi, t) > 0, if xi ∈ X1, and f(xi, t) = 0, if

xi ∈ X2.

4. Wind direction and speed are time-varying.

Therefore, the characteristics of the problem will necessarily influence the design of

the decision algorithms and controllers of the multi-robot systems. Consequently,
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we will seek the new theories, methods, and technologies to deal with the problem

of odour source localisation. In order to validate the effectiveness of the proposed

solutions for odour source localisation, we need to build a simulation environment

whose kernel is an odour dispersion model.

1.1.2 Odour Dispersion Model

In terms of the odour dispersion studies [90, 16, 139, 153, 152], Farrell et al. (2002)

[28] modeled the movement of filaments released by the odour source (see [28] for

details), which is given by

ṗi = va + vi (1.1)

where pi = (x, y) is the ith filament location; vi = (vix, viy) presents the dispersion

velocity of the ith filament relative to the centerline and can be modeled by using

a white noise process with a given spectral density (σix, σiy); and va = (vax, vay)

denotes the advection velocity, which is calculated by

∂vax
∂t

= −vax
∂vax
∂x

− vay
∂vax
∂y

+
1

2
Kx

∂2vax
∂x2

+
1

2
Ky

∂2vax
∂y2

(1.2)

∂vay
∂t

= −vax
∂vay
∂x

− vay
∂vay
∂y

+
1

2
Kx

∂2vay
∂x2

+
1

2
Ky

∂2vay
∂y2

(1.3)

where Kx and Ky represent diffusivity and are assumed to be the constant.

Moreover, the size of the ith filament varies over time. Hence, the growth rate

of the ith filament is described by

dRi

dt
=

3

2
γRi(0)

1
3 (1.4)

where Ri(0) is the ith filament’s size at time t = 0; and γ is a parameter.

The instantaneous chemical concentration at the position z = (x, y) can be

computed by

C(z, t) =
N∑
i=1

Ci(z, t) (1.5)
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Figure 1.2: Concentration fluctuates at a concrete position (80m,0m) from t = 0 to
t = 250.

where N is the number of filaments; Ci(z, t) is the concentration of the ith filament

at the location z and is obtained by

Ci(z, t) =
Q√

8π3R3
i (t)

exp

(
−r2i (t)

R2
i (t)

)
ri(t) = ∥z − pi(t)∥2

where Q is the amount of the molecules per filament; Ri(t) is the ith filament’s size

at time t; and exp(·) refers to the exponential function e.

Based on (1.1), (1.2), (1.3), and (1.4), the position and size of the ith filament

can be calculated at any time t, and the chemical concentration at any position

can also be obtained in (1.5). By using this model, Figure 1.1 shows the shape of

an instantaneous plume, which consists of filaments released by an odour source.

Figure 1.2 shows that the density at a concrete position (80m,0m) fluctuates over

time from t = 0 to t = 250. Hence, from two figures, one can see that the odour



6 CHAPTER 1. INTRODUCTION

Table 1.1: The parameters of the Farrell’s odour dispersion model.

Variables Parameters

Area(m×m) 100 × 100

Odour source position(m) (10,0), (10,15),(10,-15)

Q 5123.7618

Kx, Ky 10,10

Growth rate 0.001

Initial wind velocity(m/s) S(0.8,0), M(1,0),L(1.5,0)

model proposed by Farrell et al. (2002) [28] simulates the dynamical movement

process of the filaments. Moreover, one can also see that the chemical concentration

at a concrete position is time-varying, multimodal, and discontinuous. Therefore,

in this dissertation, we will use the Farrell’s odour dispersion model to build the

simulation environment whose parameters are shown in Table 1.1 where “S”, “M”,

and “L” denote the small initial wind speed, the medium initial wind speed, and

the large initial wind speed, respectively.

1.1.3 Dynamics of Differentially Driven Mobile Robots

In order to search for and locate the odour source, we will use the differentially

driven mobile robots, such as P3-DX (www.mobilerobots.com) shown in Figure 1.3.

This type of robot will be employed to validate the proposed decision algorithms

and controllers. The dynamics can be described by
ṙxi
ṙyi
θ̇i
ν̇i
ω̇i

 =


νicosθi
νisinθi
ωi

0
0

+


0 0
0 0
0 0
1
mi

0

0 1
Ji


(

Fi

τi

)
(1.6)

where ri = (rxi, ryi)
T is the position of the ith (i ∈ {1, 2, . . . , N}) robot; θi denotes

the orientation; νi is the linear velocity; ωi is the angular velocity; τi is the torque; Fi

is the force; mi is the mass; and Ji is the moment of inertia. Let yi = (rTi , θi, νi, ωi)
T

be the state of the ith robot and pi = (Fi, τi)
T be the control input.
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Figure 1.3: P3-DX mobile robots.

Because the nonholonomic systems cannot be stabilized with continuous static

state feedback, we make use of the “hand position” instead of the “center position”

of the robot (see details in [68, 118]). Let (1.7) be the dynamics of the “hand

position” of the robot, and Li be a distance between the “hand position” and the

“center position” along the line that is perpendicular to the wheel axis [68, 118].{
ẋi = vi
v̇i = ui i ∈ {1, 2, . . . , N} (1.7)

where xi and vi, respectively, denote the position and velocity for the robot i at the

“hand position”; and ui is a control signal for the robot i at the “hand position”.

The variable relationship between the “hand position” and the “center position” is

shown in

xi = ri + Li

(
cosθi
sinθi

)
(1.8)

vi =

(
cosθi −Lisinθ
sinθi Licosθi

)(
νi
ωi

)
(1.9)

In the light of (1.8) and (1.9), we can obtain the position and velocity of the
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Table 1.2: The parameters of P3-DX mobile robots in the simulations.

mi (kg) Li (m) Ji (kg m2) b (m) l (m) Jwheel (kg m2) τmax
l,r τmin

l,r

9 0.12 0.2 0.079 0.381 0.07 0.8 -0.8

“hand position” of the robot, and then calculate the control law ui for the double-

integrator system (1.7). Finally, we obtain the control input (1.10) for the system

(1.6) [68] as

pi =

( 1
mi
cosθi −Li

Ji
sinθi

1
mi
sinθi

Li

Ji
cosθi

)−1
[
ui −

(
−νiωisinθi − Liω

2
i cosθi

νiωicosθi − Liω
2
i sinθi

)]
(1.10)

Usually, the applied torques for left wheel and right wheel are calculated by

τl =
Jwheel

b

(
Fi

mi

− τil

2Ji

)
(1.11)

τr =
Jwheel

b

(
Fi

mi

+
τil

2Ji

)
(1.12)

where b is the radius of the wheel; l denotes the axis length between two wheels;

Jwheel is a moment of inertia of the wheel; τl and τr refer to the applied torques for

the left wheel and right wheel, respectively. The parameters that are used for P3-DX

are shown in Table 1.2 where the maximum output torque τmax
l,r of the motors of the

left and right wheels is limited as 0.8 in the anticlockwise direction. Correspondingly,

in the clockwise direction, the maximum output torque of the motors of the left and

right wheels is also 0.8. But, from the the anticlockwise direction, the minimum

output torque τmin
l,r of the motors of the left and right wheels is -0.8. It is worth

mentioning that the maximum and minimum torques have been defined in Microsoft

Robotics Studio in order to control the P3-DX robots.

1.1.4 Odour Source Localisation Using a Single Robot

For this case, i.e. odour source localisation using a single robot, the major ap-

proaches that have been reported are chemotaxis [50, 43], anemotaxis [80, 44], and

the odour source mapping method [29, 111].
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An initial approach is to calculate a concentration gradient of odour in order to

orient the robot’s movement to search for the odour source, which is called chemo-

taxis [66, 125, 48]. In [43], for example, several chemotaxis-based algorithms were

employed to control a robot lobster to track a statistically characterized turbulent

plume by using two concentration sensors. The research results showed that these

algorithms were effective only in a narrow search region. In [120], the search results

of three chemotaxis algorithms observed in the bacterium E. coli [46], the silkworm

moth Bombyx mori [57], and the dung beetle Geotrupes stercorarius [50] were re-

ported and showed that the E. coli algorithm may only be useful in a very small

scale where the plume shape is dominated by the diffusion of molecules. The Bom-

byx mori algorithm can be applied in the environment where the chemical plume

rapidly fluctuates, and the Geotrupes stercorarius algorithm can work well for the

strong plumes. In [88, 89], three biologically inspired search strategies including

chemotaxis, biased random walk, and a combination of chemotaxis and biased ran-

dom walk, were proposed. The experimental results showed that chemotaxis is a

more efficient but a less robust strategy than the biased random walk method. The

combined approach is the most efficient one among the three strategies. From the

aforementioned research results, one can conclude that chemotaxis is not feasible in

an environment where the evolution of the chemical distribution is dominated by

turbulence. As a result, the current research based on a single robot mainly focuses

on anemotaxis and the odour source mapping method.

In order to enable the robot to locate the odour source in a turbulent environ-

ment, anemotaxis, where wind information is used to guide the robot, was proposed

[80, 44]. In [75, 76, 78, 27], a strategy was designed by simulating the manoeuvres of

moths flying upwind along a pheromone plume. Briefly speaking, instead of moving

directly upwind, the robot uses a counter-turn behavior across the wind for tracing

the plume. In [123, 124, 121, 122], a strategy, which is similar to the counter-turn
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behavior observed in moths and is called chemo-kino-kinesis, was also designed. In

this approach, the velocity of robot is decomposed into two components: a compo-

nent normal to the wind direction and another component tangential to the wind

direction. By controlling the turn rate of the component normal to the wind di-

rection, a zigzag behavior can be obtained. Different from the zigzag behavior,

spiral-surge is another moth-inspired anemotaxis approach. In [37, 35, 34, 36, 44],

the robot moved along spirals, which can be reset based on the concentration de-

tected. However, it is worth mentioning that the speed and heading of robots are

generated by using instantaneous sensor readings. Once the search task fails, the

robot cannot provide any information about the position of the odour source. In

order to deal with this issue, the odour source mapping approach, which not only

makes use of the instantaneous sensor information but also utilizes historical sensor

information, was proposed [29, 111].

For the odour source mapping approach, a source-likelihood map is estimated

and a path between the current position and the predicted position of the odour

source, which is most likely to detect chemical concentrations, is planned based on

this map. The robot moves along the path to the predicted location of the odour

source. During moving to the predicted position, the sensor readings are used to

update the source-likelihood map, and then a path is planned again. Finally, the

location of the odour source is declared according to the source-likelihood map.

For example, Farrell et al. (2003) [29] developed a hidden Markov based search

algorithm where the location of the odour source is predicted and a most likely

path taken by odour to a given location is designed. In [111], the results in [29]

were improved. Pang et al (2006) [111] proposed a new source-likelihood mapping

approach, which is derived based on a stochastic process theory and a Bayesian

inference method. According to the measured wind information and the detection

or undetection events, the location of the odour source can be predicted. However,
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the odour source mapping approach requires that the robot is equipped with devices

that have better sensing capabilities and stronger computational capabilities.

1.1.5 Odour Source Localisation Using a Multi-Robot Sys-
tem

Because the multi-robot system can detect a wider region to capture the time-

varying plume and obtain multiple detection information [19, 56, 68, 30, 65, 20], how

to locate the odour source using a multi-robot system has received increasing interest

from researchers [70, 148, 69, 148, 149, 134]. For example, Hayes et al. (2002) [44]

extended the spiral surge algorithm by using several simple types of communication

such that the extended spiral surge algorithm can be used to coordinate a multi-

robot system to search for the plume and locate the source of odour. The overall

search process is divided into two parts, namely, plume finding and plume tracing.

For plume finding, the outward spiral search pattern allows for the coverage of the

local space and provides an effective search for odour clues. For plume tracing, the

robot samples the wind direction and moves upwind for a set distance to locate the

odour source. Marques et al. (2002) [91, 92] used a genetic algorithm to coordinate

a group of mobile robots with random initial positions to locate the source of odour.

Hayes et al. (2003) [45] proposed a swarm intelligence based distributed search

algorithm where a team of robots can locate the odour source more efficiently than

a single robot. It is worth noting that the swarm intelligence techniques used in [45]

involve the study of the collective behaviors of biological groups found abundantly

in nature, including ant colonies, bird flocking, and fish schooling [98, 60].

The particle swarm optimization (PSO) algorithm, as one of the swarm intelli-

gence techniques, has been studied in the domain of cooperative search [113, 114,

115, 112, 91] and been used to coordinate a multi-robot system to deal with the

odour source localisation problem [93, 53, 52]. To search for an odour source, for

instance, Marques et al. (2006) [93] used two search strategies: a global search
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strategy and a local search strategy. In the global search strategy, robots cross

wind in a search space to search for odour cues. In the local search strategy, the

PSO algorithm is used to coordinate a multi-robot system to locate the source of

odour. To avoid trapping in local maximal concentrations, Jatmiko et al. (2007)

[53] improved the commonly used PSO algorithm through analogy with an electrical

charge theory. In the improved algorithm (CPSO), two types of robots (neutral and

charged robots) are used. Among neutral robots, there is no repulsive force while

among charged robots a mutual repulsive force is generated in order to maintain po-

sitional diversity of robots. To use the PSO algorithm for odour source localisation,

Lu and Han (2010) [81] proposed a distributed coordination control architecture

where the PSO algorithm is divided into three parts (prediction, plan, and con-

trol). Accordingly, the cooperative control system consists of three levels: a group

level, a trajectory level, and a robot level. In the group level, swarm information

and individual information are used to predict the probable position of the odour

source. In the trajectory level, a movement trajectory of the robot is planned from

the current position to the probable position of the odour source. In the robot level,

a control law is designed to enable the robot to move along the planned trajectory.

This control architecture makes the control system robust and evolvable [42]. In

terms of this control architecture, the search performance of the robot group co-

ordinated by the CPSO algorithm [53] is improved. To quickly locate the odour

source, Lu and Han (2011) [85] proposed a probability particle swarm optimization

with an information-sharing mechanism. Because of the introduction of a distri-

bution estimation algorithm, each robot can be provided an opportunity to choose

an appropriate position in the search space such that the search performance of

the robot group can be improved. However, the PSO algorithm is a kind of the

concentration-based approach [93, 53, 81, 85] . One can see that the local conver-

gence of the multi-robot system coordinated by the PSO algorithm often appears



1.1. BACKGROUND 13

in the environment characterized by high Reynolds numbers [86, 81]. Moreover, the

search results of the multi-robot system are always significantly influenced by the

detection precision of concentration sensors equipped on mobile robots [29, 111].

It should be pointed out that the decision on the position of the odour source

is the first and important step for odour source localisation. But, the position of

the odour source is not directly obtained. The PSO algorithm only presents a kind

of current understanding on the position of the odour source such that the error

between the decided position and the real position of the odour source is bigger,

especially in the initial search stage. Even if several researchers utilize wind infor-

mation to estimate the position of the odour source, the computational cost of the

proposed approaches is also higher [29, 111]. Therefore, how to design a distributed

decision algorithm with “computational simplicity” is the first motivation of this

dissertation.

Moreover, the controller design should satisfy the several requirements in the

dynamical search environment. From the perspective of control engineering, the

developed controller is required to be better disturbance rejection and robustness

against uncertainties. Moreover, the developed controller is also required to be bet-

ter tracking performance. From the perspective of characteristics of odour source

localisation, in order to adapt the dynamical search environment, the developed

controller is required to enable the system to be convergence within a finite-time

interval. Furthermore, there exists a mutual influence between decision and con-

trol, which originates from the unknown search environment. In other words, the

knowledge about the search environment is only from the current and previous in-

formation of the robot group. Consequently, we always require that the robot can

rapidly move to the target such that the new information can be obtained to update

the decision [138]. It is obvious that the PSO algorithm cannot satisfy aforemen-

tioned requirements. Therefore, how to design the finite-time cooperative motion
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control algorithms is the second motivation of this dissertation.

Before we design the distributed decision algorithm and the finite-time coopera-

tive motion control algorithms, we need to present an architecture that can guide the

design of the decision algorithm and the cooperative control algorithm and illustrate

the relationship of information exchange between the decision algorithm and the co-

operative control algorithm. Therefore, how to design a distributed coordination

control architecture is the third motivation of this dissertation.

1.2 Significance of This Dissertation

The significance of this dissertation can be stated in two aspects.

From the perspective of the research problem, this dissertation focuses on the

problem of odour source localisation, which is of practical significance for human

security such as searching for the source of toxic gas leakage and locating the origin

of a fire at its initial stage. Moreover, this problem possesses several important

characteristics, which will advance technologies. Hence, a meaningful research topic

is discussed in this dissertation.

From the perspective of the solutions, the characteristics of odour source localisa-

tion can impose several constraints for the distributed decision and the cooperative

control of the multi-robot system. For example, how do the intermittent detection

events influence the convergence of a distributed decision algorithm? How should

the cooperative control laws be designed to enable the robot group to rapidly find

the odour source in a dynamical environment? In this dissertation, several effective

solutions to deal with the aforementioned issues are proposed. Hence, the research

presented in this dissertation provides important contributions to the knowledge in

the fields of artificial intelligence and cooperative control.
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1.3 Contributions and Outline of This Disserta-

tion

1.3.1 Contributions

In this dissertation, in order to deal with the problem of odour source localisation

by using a multi-robot system, a distributed coordination control architecture which

consists of two levels: a decision level and a control level, is proposed. The main

contribution for the proposed distributed coordination control architecture is that

the decision about the position of the odour source in the decision level and the

cooperative control of the robot group in the control level can be separately designed.

For the decision on the position of the odour source, a distributed decision al-

gorithm with computational simplicity is formulated and its main contribution is

to use both concentration information and wind information to more accurately

and rapidly predict the position of the odour source. In particular, based on the

observation model of the position of the odour source, wind information is used to

predict the position of the odour source. The predicted position is then combined

with the position estimated by the concentration information as a final decision on

the position of the odour source.

For the cooperative control of the robot group, three kinds of cooperative control

algorithms, i.e., the PSO-based finite-time motion control algorithm, the consensus-

based finite-time motion control algorithm, and the potential-based finite-time mo-

tion control algorithm, are presented. The main contributions for three cooperative

control algorithm are to introduce the idea of finite-time into the design of control

laws such that the multi-robot system can finish the group objective in finite-time.

Firstly, a PSO-based finite-time motion control algorithm, which can control a sin-

gle robot to trace the plume, is designed. The analogy of the proposed PSO-based

finite-time motion control algorithm is the foraging behaviors of birds. Secondly, a

consensus-based finite-time motion control algorithm, which consists of a finite-time
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parallel motion control algorithm that can control the robot group to trace the plume

and a finite-time circular motion control algorithm that can control the robot group

to circle the predicted position of the odour source in order to search for the odour

clues, is developed. The idea of the proposed consensus-based finite-time motion

control algorithm is that we can flexibly arrange the formation shape of the robot

group and utilize the characteristic of the wider detection region of the multi-robot

system. Finally, a potential-based finite-time motion control algorithm, which also

consists of a finite-time parallel motion control algorithm and a finite-time circu-

lar motion control algorithm, is derived. The idea of the proposed potential-based

finite-time motion control algorithm is to integrate the obstacle avoidance function

into the cooperative control law.

The effectiveness of the proposed coordination control architecture, the distribut-

ed decision algorithm, and the cooperative motion controllers is validated by bench-

mark testing and comparison of the other solutions in the same simulation environ-

ment with the same odour dispersion model and the dynamics of the differentially

driven mobile robots.

1.3.2 Outline

The outline of the dissertation is briefly summarized in Figure 1.4.

Chapter 2 provides a distributed coordination control architecture, which con-

sists of two levels: a decision level and a control level.

In the decision level, a distributed decision algorithm is proposed in Chapter 3

to make a decision on the position of the odour source. Specifically, an observation

model for the position of the odour source based on wind information is derived. A

Kalman filter is then used to estimate the probable position of the odour source.

Moreover, a dynamic finite-time consensus fusion algorithm is designed to fuse the

estimated observation results from other robots. The position of the odour source

obtained by using wind information is combined with that of the odour source
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Figure 1.4: The outline of this dissertation.

obtained by using concentration information in order to make a final decision on

the position of the odour source. In addition, the movement direction of the robot

group is planned according to the predicted position of the odour source in order to

trace the plume.

In the control level, Chapter 4 develops the PSO-based finite-time motion control

algorithm, i.e. continuous-time finite-time particle swarm optimization (FPSO) by
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analyzing the continuous-time model of the PSO algorithm. As a discrete version of

the FPSO algorithm, the discrete-time FPSO algorithm is also proposed by employ-

ing the same discretization scheme as the generalized particle swarm optimization

(GPSO) and a linear matrix inequality (LMI) is used to obtain the convergence con-

dition of the discrete-time FPSO algorithm. On the basis of the distributed decision

algorithm, simulations are presented to illustrate the effectiveness of the PSO-based

finite-time motion control algorithm for the problem of odour source localisation.

In order to efficiently use the characteristic of the wider detection of the multi-

robot system, a consensus-based finite-time motion control algorithm is designed

in Chapter 5 in the control level based on a new nonlinear finite-time consensus

algorithm. This motion control algorithm consists of the finite-time parallel motion

control algorithm that can control a group of robots to parallel move to trace the

plume and a finite-time circular motion control algorithm that can enable the robot

group to circle the predicted position of the odour source. The effectiveness of

the consensus-based finite-time motion control algorithm is also illustrated for the

problem of odour source localisation.

By introducing the potential function into controllers, Chapter 6 achieves a

potential-based finite-time motion control algorithm in the control level based on a

new finite-time coordination control algorithm and a new finite-time tracking con-

trol algorithm. This motion control algorithm also consists of a finite-time parallel

motion control algorithm and a finite-time circular motion control algorithm. Simi-

larly, the effectiveness of the potential-based finite-time motion control algorithm is

illustrated for the problem of odour source localisation.

Chapter 7 provides final remarks on the contributions of this dissertation and

suggests future works in the problem of odour source localisation.



Chapter 2

A Distributed Coordination
Control Architecture

2.1 Introduction

In its traditional application, the PSO algorithm enables the velocity of the robot to

be determined by using odour concentration information of the group and individual.

We therefore begin this chapter by discussing the PSO algorithm in Section 2.2.

A distributed coordination control architecture is then proposed in Section 2.3.

Next, the effectiveness of the distributed coordination control architecture for the

odour source localisation problem is illustrated in Section 2.4. Finally, we give the

conclusion in Section 2.5.

2.2 The Analysis of the PSO Algorithm

In the last decade, the particle swarm optimization (PSO) [64] algorithm has been

widely studied [98, 140, 113, 114, 60, 58, 59, 45]. Empirical evidences have been

accumulated to show that PSO is a useful tool for optimization problems [140]. Due

to lacking precision in a local search solution, an inertia factor ω in the velocity

updating equation is introduced into the original version of PSO [55, 26], which

gives rise to a commonly used form of PSO described by{
vi(k + 1) = g(vi(k), ui(k))
xi(k + 1) = xi(k) + vi(k + 1)

(2.1)
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where

g(vi(k), ui(k)) = ωvi(k) + ui(k) (2.2)

ui(k) = α1(xl(k)− xi(k)) + α2(xg(k)− xi(k)) (2.3)

with

xl(k) = arg max{f(xi(k)), f(xl(k − 1))}

xg(k) = arg max{f(x1(k)), . . . , f(xN(k)), f(xg(k − 1))}

where vi(k) =
(
vi1(k) vi2(k) · · · vin(k)

)T
(i = 1, 2, · · · , N) is a velocity vector;

ui(k) is a control vector; xl(k) denotes the previously best position of the ith particle;

xg(k) refers to the globally best position of the swarm; ω is the inertia factor; N

is the number of particles; g : Rn × Rn → Rn is a map; f : Rn → R is a fitness

function; and αj (j = 1, 2) are random parameters, called acceleration coefficient.

In order to analyze how PSO algorithms are used to deal with the problem of

odour source localisation, we introduce the oscillation center pi(k) given in (2.4) into

(2.3).

pi(k) =
α1xl(k) + α2xg(k)

α1 + α2

(2.4)

Then, we have

ui(k) = (α1 + α2)(pi(k)− xi(k)) (2.5)

From (2.5), one can see that ui(k) can be regarded as a “P” controller and can keep

the system (2.1) stable at the equilibrium pi(k) calculated by using swarm informa-

tion xg(k) and individual information xl(k) under several parameter conditions [33].

Therefore, each particle uses both swarm information and individual information to

predict a probable target position pi(k), and then employs a “P” controller ui(k) to

adjust the movement direction of the particle toward the target position. In other
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words, the PSO algorithm provides a kind of “decision-control mechanism”, i.e. a

decision pi(k) and a control signal ui(k) [71].

From the perspective of “decision-control mechanism”, the study of PSO algo-

rithms consists of two categories: optimization performance improvement [81, 31,

146, 1] and stability analysis [15, 55, 32]. For optimization performance improvemen-

t, how to design a new pi(k) based on the characteristics of optimization problems is

one main research content, such as the problem of odour source localisation [82, 83],

the problem of disassembly sequencing [146], and the problem of vertical electrical

sounding [31]. For stability analysis, how to analyze the convergence of a particle

swarm [15, 55, 32] under a given control law ui(k) is another main research con-

tent. Accordingly, the commonly used analysis tools include a Lyapunov approach

and a passivity approach. Current results of stability analysis [15, 55, 32] indicate

that the particle swarm can converge under several conditions when k → ∞. It is

worth mentioning that the convergence analysis of PSO algorithms is of practical

significance because one can see that the better results can be obtained only in the

convergence region of PSO algorithms [31].

To sum up, one can see that PSO algorithms are suitable to coordinate a multi-

robot system to deal with the problem of odour source localisation. Each robot can

receive the current position information xj(k), j = 1, 2, . . . , N and the concentration

information f(xj(k)), j = 1, 2, . . . , N via the local sensors and wireless communica-

tion networks such that the oscillation center pi(k) in (2.4) can be calculated. Then,

the control signal ui(k) is generated in terms of (2.5). If one only considers the kine-

matics of mobile robots, the real control signal as an input to the mobile robot is

vi(k+1) (The readers can refer to [93, 53, 93]), which is calculated in (2.2). Hence,

we propose a formal control architecture, which is described in Figure 2.1 where

pi(k) and vi(k + 1) are produced in the decision module and the control module,

respectively. As a result, PSO algorithms can be employed to coordinate a robot
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Figure 2.1: The distributed coordination control architecture for the discrete-time
control signal.

group to deal with the problem of odour source localisation [93, 53, 93].

However, one can notice that several improved PSO algorithms cannot be directly

used to coordinate the robot group for the problem of odour source localisation

because they do not possess the form of control law. Due to the same reason,

other kinds of evolutionary algorithms such as genetic algorithms cannot also be

directly used for the problem of odour source localisation. Moreover, the researchers,

who design a new algorithm to coordinate the multi-robot system to deal with the

problem of odour source localisation, not only consider how to design the algorithm,
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but also notice that the developed algorithm should hold the expression of control

laws. If the improved PSO algorithms and evolutionary algorithms can be used in

the decision module to predict the probable position of the odour source, control

algorithms can be separately designed in the control module in terms of problem

characteristics. Therefore, we propose the following the distributed coordination

control architecture.

2.3 A Distributed Coordination Control Archi-

tecture

In this section, we will propose a distributed coordination control architecture and

consider a continuous-time kinematics model of N identical robots, which is de-

scribed by

ẋi = ui i = 1, 2, . . . N (2.6)

where xi denotes the position for the robot i.

It is obvious that a continuous-time control signal is utilized to control the mo-

bile robot in (2.6). Moreover, multiple robots need to communicate with each other

in order to coordinate their motion behaviors. Consequently, the distributed co-

ordination control architecture shown in Figure 2.1 is modified and illustrated in

Figure 2.2. From this figure, one can see that the probable position of the odour

source pi(k) is generated in the decision module and can be calculated in (2.4). In

the control module, the continuous-time control signal ui(t) is produced based on

the current individual information, group information, and the probable position of

the odour source pi(k). As an example, we can use a consensus algorithm proposed

by Ren [118] (2008) as a cooperative control law. This algorithm is given by

ui(t) = −αi(xi(t)− pi(k))−
N∑
j=1

aij

[
(xi(t)− pi(k))− (xj(t)− pj(k))

]
(2.7)
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Figure 2.2: The distributed coordination control architecture for the continuous-
time control signal.

where pi(k) and pj(k) denote the probable positions of the odour source for the ith

robot and the jth robot, respectively; xi(t) and xj(t) are the real positions of the ith

robot and the jth robot, respectively; aij is the (i, j) entry of an adjacent matrix A

related with a communication topology; αi is a positive scalar; and ui(t) is a control

signal. Proposition 1 will guarantee that the system (2.6) is stable under a given

cooperative control law (2.7).

Proposition 1. The consensus algorithm (2.7) can guarantee that xi(t) → pi(k),
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xj(t) → pj(k) , i = 1, 2, . . . N as t → ∞.

Proof. It is omitted because the proof is similar to Theorem 3.6 in [118, 119]. �

Remark 1. It should be pointed out that the decision algorithm in the decision

module and the control law in the control module can be separately designed by using

the distributed coordination control architecture shown in Figure 2.2. Researchers

can focus on one of two algorithms according to the characteristics of the problem of

odour source localisation. Therefore, the evolutionary theory in the computational

intelligence field can be employed to design the decision algorithm and the cooperative

control theory in the control field can be used to develop the control algorithm.

From the characteristics of the odour source localisation problem, one can notice

that tracing the plume is a better approach to locate the odour source. Therefore,

when a position of the odour source is predicted in the decision module, the robot

should not directly move toward the predicted position. Instead, the robot should

trace the plume based on the predicted position. As a result, we introduce a planning

module into the distributed coordination control architecture, which is shown in

Figure 2.3.

In the planning module, based on the predicted position of the odour source,

we will plan the movement direction of the robot in order to trace the plume. For

instance, we introduce a spiral trajectory from the current position to the predicted

position. This trajectory is shown in Figure 2.4 where “o” denotes the current

position of the robot xi(k) and “*” denotes the predicted position of the odour

source hic(k).

The model of the spiral trajectory of the ith robot, which originates from loga-

rithmic spiral, is described by(
pix(k

′)
piy(k

′)

)
=

(
cos θ1 − sin θ1
sin θ1 cos θ1

)(
aebθ(k

′) cos θ(k′)− a
aebθ(k

′) sin θ(k′)

)
+

(
hic
x (k)

hic
y (k)

)
(2.8)
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Figure 2.3: The proposed distributed coordination control architecture.
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Figure 2.4: A spiral trajectory.

where pi(k
′)(pix(k

′), piy(k
′)) is the position of the ith robot at time k′(k − 1 < k′ ≤

k); a and b (a = 0.1, b = 0.4 in the following simulations) are two parameters;

hic(k)(hic
x (k), h

ic
y (k)), which is a predicted position of the odour source for the ith

robot; θ(k′) is a spiral angle, which decreases from θmax(k) to 0 based on θ(k′) =

θ(k′ − 1)− 0.1 where θmax(k) can be computed in (2.9).

θmax(k) = (1/b)log(r/a) (2.9)

where r is a distance between the position pi(k) and the position hic(k). In the

equation (2.8), θ1 can be calculated by

θ1 = θ11 − θ12

where

θ11 =


θ′11, if h1 is satisfied;
2π + θ′11, if h2 is satisfied;
π + θ′11, otherwise.

θ12 =


θ′12, if h3 is satisfied;
2π + θ′12, if h4 is satisfied;
π + θ′12, otherwise.
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with

θ′11 = atan((piy(k)− hic
y (k))/(pix(k)− hic

x (k)))

θ′12 = atan((aebθmax sin θmax)/(ae
bθmax cos θmax))

h1 = pix(k) > hic
x (k) and piy(k) > hic

y (k)

h2 = pix(k) > hic
x (k) and piy(k) < hic

y (k)

h3 = aebθmax cos θmax > 0 and aebθmax sin θmax > 0

h4 = aebθmax cos θmax > 0 and aebθmax sin θmax < 0

Remark 2. The idea of spiral trajectories is also used in [37, 80]; however, there

exist two different points between spiral trajectories introduced in this section and

the ones described in [37, 80]. Firstly, the mathematical model of spiral trajectories

is clearly illustrated while in [37, 80] the mathematical model of spiral trajectories is

not given. In fact, the robots move along diamond shapes with a certain length and

angle, which have been determined before starting experiments. Secondly, the robots

move inward to trace the plume whereas in [37, 80] the robots move outward along

diamond shapes in order to search for chemical clues.

2.4 Odour Source Localisation

In what follows, we will give two examples to show the influence of the distributed

coordination control architecture on the search efficiency of the multi-robot system

for the problem of odour source localisation.

2.4.1 The Distributed Coordination Control Architecture
for the Continuous-Time Control Signal

In this subsection, we will test the distributed coordination control architecture

shown in Figure 2.2. PSO [93] and CPSO [53] algorithms as examples are imple-

mented to predict the probable position of the odour source in the decision module,
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Table 2.1: The parameters of the cooperative control algorithm in (2.7).

αi vmax(m/s) ωmax(rad/s)
0.35 0.8 1.57

respectively. A consensus algorithm (2.7), which parameters are shown in Table

2.1, is then applied at the control module. PSO-A and CPSO-A are used to name

the two algorithms with the architecture, respectively. In the light of the different

sampling time ∆t (∆t = 10s, 20s, 30s), PSO algorithms without the architecture

are named by PSO-10, PSO-20, and PSO-30, respectively. CPSO algorithms have

similar names.

In addition, the simulations are carried out under three kinds of environments,

which are characterized by small wind, medium wind, and large wind, respectively.

CPSO and PSO algorithms’ parameters chosen in the simulations can be found in

[93] and [53], respectively. It is worth mentioning that if any robot detects a maxi-

mum concentration predefined, the search behaviors of robots are terminated, and

then the search time is recorded (The max search time and concentration are limited

to 2500s and 19515ppt, respectively.). Tables 2.2-2.4 describe the success rates for

different algorithms under the small wind environment, the medium wind environ-

ment, and the large wind environment. Correspondingly, Figures 2.5-2.7 show the

average search time for different algorithms under the small wind environment, the

medium wind environment, and the large wind environment.

From simulation results, one can see that the distributed coordination control

architecture exerts different influence on PSO and CPSO algorithms, respectively.

CPSO-A can attain the better results for various number of robots under the three

kinds of wind speed. However, PSO-A only can obtain the better results than

PSO-30 for 5 robots under the three kinds of wind speed. For 10 robots, PSO-

A can generate very competitive results. But, for 15 and 20 robots, PSO-30 can

obtain much better results than PSO-A. To sum up, the distributed coordination
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Table 2.2: The success rates under the small wind environment based on 50 runs
for the coordination control architecture shown in Figure 2.2.

Robots PSO-10 PSO-20 PSO-30 PSO-A

5 0 2 34 30

10 0 34 82 70

15 2 56 70 74

20 4 68 74 92

Robots CPSO-10 CPSO-20 CPSO-30 CPSO-A

5 2 24 30 100

10 46 88 76 100

15 68 72 78 100

20 84 76 76 100

Table 2.3: The success rates under the medium wind environment based on 50 runs
for the coordination control architecture shown in Figure 2.2.

Robots PSO-10 PSO-20 PSO-30 PSO-A

5 0 2 20 50

10 0 38 86 82

15 2 80 92 84

20 16 90 96 92

Robots CPSO-10 CPSO-20 CPSO-30 CPSO-A

5 14 22 34 100

10 74 80 90 100

15 88 92 88 100

20 90 98 86 100

control architecture can improve the search performance for the CPSO algorithm

and provide competitive results for the PSO algorithm.

2.4.2 The Proposed Distributed Coordination Control Ar-
chitecture

In this subsection, we will test the proposed distributed coordination control archi-

tecture shown in Figure 2.3. PSO [93] and CPSO [53] are still used as examples to
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Table 2.4: The success rates under the large wind environment based on 50 runs for
the coordination control architecture shown in Figure 2.2.

Robots PSO-10 PSO-20 PSO-30 PSO-A

5 0 4 26 52

10 6 68 92 92

15 10 90 100 88

20 26 94 98 100

Robots CPSO-10 CPSO-20 CPSO-30 CPSO-A

5 16 38 44 100

10 82 88 96 100

15 98 94 98 100

20 100 100 96 100

evaluate the proposed distributed coordination control architecture. PSO-Consensus

(PSO-C), and CPSO-Consensus (CPSO-C) are used to name two algorithms using

the distributed coordination control architecture shown in Figure 2.2 while PSO-S-

Consensus (PSO-S-C) and CPSO-S-Consensus (CPSO-S-C) are used to name two

algorithms using the proposed distributed coordination control architecture shown

in Figure 2.3.

Figures 2.8-2.10 show the average search time for different algorithms under

the small wind environment, the medium wind environment, and the large wind

environment. Correspondingly, Tables 2.5-2.7 describe the success rates for different

algorithms under the small wind environment, the medium wind environment, and

the large wind environment. From simulation results, one can see that the proposed

distributed coordination control architecture can provide a flexible mechanism for

the CPSO algorithm and the PSO algorithm such that the researchers can focus on

the design of the decision algorithm or the cooperative control algorithm.
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Table 2.5: The success rates under the small wind environment based on 50 runs
for the coordination control architecture shown in Figure 2.3.

Robots PSO PSO-C PSO-S-C CPSO CPSO-C CPSO-S-C

5 34 30 80 30 100 100

10 82 70 100 76 100 100

15 70 74 100 78 100 100

20 74 92 100 76 100 100

Table 2.6: The success rates under the medium wind environment based on 50 runs
for the coordination control architecture shown in Figure 2.3.

Robots PSO PSO-C PSO-S-C CPSO CPSO-C CPSO-S-C

5 20 50 88 34 100 100

10 86 82 100 90 100 100

15 92 84 100 88 100 100

20 96 92 100 86 100 100

Table 2.7: The success rates under the large wind environment based on 50 runs for
the coordination control architecture shown in Figure 2.3.

Robots PSO PSO-C PSO-S-C CPSO CPSO-C CPSO-S-C

5 26 52 100 44 100 100

10 92 92 100 96 100 100

15 100 88 100 98 100 100

20 98 100 100 96 100 100

2.5 Conclusion

We have proposed a distributed coordination control architecture for a multi-robot

system. The proposed distributed coordination control architecture consists of two

levels: a decision level and a control level. In the decision level, we have predicted the

probable position of the odour source by using evolutionary algorithms. Moreover,

we have given the movement direction of the robot based on the predicted position of

the odour source in order to trace the plume. In the control level, we have employed

a consensus algorithm, which can enable robots to move along the given movement
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direction. Finally, we have illustrated the effectiveness of the proposed distributed

coordination control architecture.
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Figure 2.5: The average search time under the small wind environment for the
coordination control architecture shown in Figure 2.2.
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Figure 2.6: The average search time under the medium wind environment for the
coordination control architecture shown in Figure 2.2.
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Figure 2.7: The average search time under the large wind environment for the
coordination control architecture shown in Figure 2.2.
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Figure 2.8: The average search time under the small wind environment for the
coordination control architecture shown in Figure 2.3.
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Figure 2.9: The average search time under the medium wind environment for the
coordination control architecture shown in Figure 2.3.
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Figure 2.10: The average search time under the large wind environment for the
coordination control architecture shown in Figure 2.3.





Chapter 3

A Distributed Decision Algorithm

3.1 Introduction

It has been established in Chapter 2 that decision algorithms and controllers can

be separately designed in the distributed coordination control architecture. This

chapter presents several preliminaries and derives the distributed decision algorithm

with computational simplicity in Section 3.2 and Section 3.3, respectively. The

effectiveness of the proposed distributed decision algorithm for the problem of odour

source localisation is then illustrated in Section 3.4. In Section 3.5, the conclusion

is given.

3.2 Preliminaries

In this section, a continuous-time dynamic model of N identical robots is considered

and given in (1.7). Moreover, lN denotes the index set {1, 2, . . . , N}. Let sig(r)a =

sign(r)|r|a, where 0 < a < 1, r ∈ R, and sign(·) is a sign function. Next, we give a

definition of finite-time convergence [7, 6].

Definition 1. Consider the system ẋ = f(x(t)). The origin is said to be a finite-

time-stable equilibrium if there exists an open neighborhood N ⊆ D of the origin

and a function T : N \ {0} → (0,∞), such that for every x0 ∈ N \ {0}, x(t) is

defined for t ∈ [0, T (x0)], x(t) ∈ N \ {0}, for t ∈ [0, T (x0)], and limt→T (x0) x(t) = 0.
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If D = N = Rn, the origin is said to be a globally finite-time-stable equilibrium.

Correspondingly, we give the following lemmas [7, 6], which will be used in the

convergence analysis.

Lemma 1. Suppose there exists a continuously differentiable function V : D → R,

real number k > 0 and a ∈ (0, 1), and a neighborhood U ⊂ D of the origin such that

V is positive definite on U and V̇ + kV a is negative semidefinite on U . Then the

origin is a finite-time-stable equilibrium of the system ẋ = f(x(t)). Moreover, if T

is the settling time, then T (x0) ≤ 1
k(1−a)

V (0)1−a for all x0 in the open neighborhood

of the origin.

Moreover, let G = (ν, E , A) be a weighted directed graph of order N with the set

of nodes ν = {ν1, ν2, · · · , νN}, the set of edges E ⊆ ν × ν, and a weighted adjacency

matrix A = [aij] with nonnegative adjacency elements aij. Let L(A) = [lij] ∈ RN×N

denotes the graph Laplacian of G = (ν, E , A), which is defined by

lij =

{ ∑N
j=1,j ̸=i aij, i = j

−aij, i ̸= j
(3.1)

The graph G = (ν, E , A) is used to model the communication topology among

robots and we have the following property [144].

Lemma 2. If G = (ν, E , A) has a directed spanning tree, then eigenvalue 0 is alge-

braically simple and all other eigenvalues are with positive real parts for the Laplacian

matrix L(A).

3.3 A Distributed Decision Algorithm

In this section, we will first give a measurement model for the position of the odour

source based on wind information, and then use a Kalman filter to estimate the po-

sition of the odour source. Next, we will describe the details of a dynamic finite-time

consensus fusion algorithm. Finally, we will give the distributed decision algorithm.
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3.3.1 A Measurement Model

For short time-scales, various studies show that the filament movement can be mod-

eled as a random walk superimposed on the downflow advection [29, 111]. Based on

these studies, the movement process of a single filament can be modeled as

ẋ(t) = u(t) + n(t) (3.2)

where x(t) is the position of the filament at time t; u(t) is the mean airflow velocity

at the position x(t); and n(t) denotes a random process, which will be assumed to

be Gaussian with zero mean and σ2 variance.

If the odour source released this filament at time tl, the position x(tl, tk) of the

filament at time tk > tl can be calculated by integrating (3.2) as

x(tl, tk) =

∫ tk

tl

u(τ)dτ +

∫ tk

tl

n(τ)dτ + xs(tl) (3.3)

where xs(tl) refers to the position of the odour source at time tl. Because we only

have sensor measurements at the discrete times, {ti}ki=l = {tl, tl+1, . . . , tk−1, tk} can

be seen as the discrete-time indexes. Hence,
∫ tk
tl

u(τ)dτ is approximately computed

as
∫ tk
tl

u(τ)dτ ≈
∑tk−1

i=tl
u(i)∆t. Moreover, since we only consider a stationary odour

source, which means that the position of the odour source is not changed with the

increase of time, we have

xs(tk) = xs(tl) (3.4)

Define v(tl, tk) =
∑tk−1

i=tl
u(i)∆t and w(tl, tk) =

∫ tk
tl

n(τ)dτ that is a Gaussian

process with zero mean and (tk−tl)σ
2 variance; therefore, the position of the filament

can be rewritten in discrete time as

x(tl, tk) = xs(tk) + v(tl, tk) + w(tl, tk) (3.5)

However, time tl at which the source started to release the filament is unknown

and earlier than the start time of this mission. But, we only record wind information
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after starting this mission. Therefore, the start time of this mission is seen as the

releasing time of filaments. Moreover, we must account for all possible releasing

time tl as

v̄(tk) =
1

k

tk−1∑
tl=0

v(tl, tk) (3.6)

Similarly, we have

w̄(tk) =
1

k

tk−1∑
tl=0

w(tl, tk) (3.7)

where w̄(tk) is also a Gaussian process with zero mean and 1
k

∑tk−1

tl=0 (tk − tl)σ
2 vari-

ance. Moreover, if the ith robot detects the filament, the real movement distance

v(tl, tk) of the filament advected by wind flow should satisfy ∥ v(tl, tk)−xi(tk) ∥2< α

where α is a control parameter and xi(tk) is the current position of the ith robot at

time tk.

Finally, in the following, we use the discrete-time index k instead of the tk to

describe the current time. Hence, the movement process of this filament is modeled

as

x(k) = xs(k) + v̄(k) + w̄(k) (3.8)

In order to derive the measurement model, we define zi(k) = x(k)− v̄(k) in (3.8),

and then we get

zi(k) = xs(k) + w̄(k) (3.9)

where zi(k) is regarded as a measurement for xs(k) at time k; and w̄(k) is re-

garded as a measurement noise, which is a Gaussian process with zero mean and

1
k

∑k−1
l=0 (k − l)σ2 variance.

Remark 3. It is worth mentioning that the control parameter α has a significant

impact on the measurement value zi(k) = x(k)− v̄(k). If the inequality ∥ v(tl, tk)−



3.3. A DISTRIBUTED DECISION ALGORITHM 45

xi(tk) ∥2< α is not satisfied, the movement distance of the filament advected by

airflows will be neglected. Therefore, the control parameter α will influence the

quality of data obtained.

3.3.2 A Kalman Filter with Intermittent Observations and
Uncertain Measurement Noise

In order to use Kalman filters, we need to reformulate the odour source localisation

problem into a position estimation problem. Firstly, we have a measurement model

described by (3.9). Secondly, based on (3.4), the movement process of the odour

source can be modeled as

xs(k) = xs(k − 1) (3.10)

As a consequence, the odour source localisation problem can be dealt with as

a position estimation problem; therefore, we use a discrete Kalman filter method,

which consists of two parts: time update equations and measurement update equa-

tions. For the first part, time update equations are described by

x̂−i
s (k) = x̂i

s(k − 1) (3.11)

P−i(k) = P i(k − 1) (3.12)

where x̂−i
s (k) is a priori position of the odour source at time k for the ith robot

given knowledge of the process prior to time k− 1; x̂i
s(k− 1) is a posteriori position

estimate at time k − 1 for the ith robot; and P−i(k) is a priori estimate error

covariance at time k for the ith robot while P i(k − 1) is a posteriori estimate error

covariance at time k − 1 for the ith robot.

For the second part, measurement update equations are given by

Ki(k) = P−i(k)(P−i(k) +R0(k))
−1 (3.13)

x̂i
s(k) = x̂−i

s (k) +Ki(k)(zi(k)− x̂−i
s (k)) (3.14)

P i(k) = (I −Ki(k))P−i(k) (3.15)
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where Ki(k) is chosen to be the gain that minimizes a posteriori error covariance;

R0(k) is a measurement noise covariance matrix; x̂i
s(k) is a posteriori position es-

timate at time k for the ith robot; and zi(k) is obtained by the observation model

(3.9).

However, there exist two issues that must be considered when we use the Kalman

filters to estimate the position of the odour source. One issue is about the measure-

ment noise covariance matrix R0(k) that is known and approximately calculated (see

the measurement model (3.9)). In fact, the exact measurement noise covariance is

not known, i.e. Ri(k) = R0(k) + γiΨiΨ
T
i where Ri(k) is the actual measuremen-

t noise covariance and γiΨiΨ
T
i (γi ≥ 0) is unknown. Hence, we are interested in

how the uncertainties in the measurement noise covariance affect the state estimate.

Another issue is about the intermittent observations. Due to the characteristics of

the problem of odour source localisation, the robot cannot always detect the odour

clues. Therefore, we are interested in whether the Kalman filter converges in this

case.

We define the arrival of the observation at time k as a binary random variable

λk with probability distribution P (λk = 1). In the light of the reference [133], we

rewrite (3.14) and (3.15) as

x̂i
s(k) = x̂−i

s (k) + λkK
i(k)(zi(k)− x̂−i

s (k)) (3.16)

P i(k) = (I − λkK
i(k))P−i(k) (3.17)

From the measurement model (3.9), we have

zi(k) = xi
s(k) + ω̄i(k)

where zi(k) is the measurement for the robot i at time k; xi
s(k) is the position of

the odour source for the robot i at time k; and ω̄i(k) is the measurement noise for
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the robot i at time k. Moreover, based on (3.11), we obtain

x̂i
s(k) = x̂i

s(k − 1) + λkK
i(k)(xi

s(k)− x̂i
s(k − 1) + ω̄i(k))

= x̂i
s(k − 1) + λkK

i(k)(xi
s(k − 1)− x̂i

s(k − 1) + ω̄i(k))

= x̂i
s(k − 1) + λkK

i(k)(ei(k − 1) + ω̄i(k))

where ei(k − 1) = xi
s(k − 1)− x̂i

s(k − 1). Furthermore, we can derive

ei(k) = ei(k − 1)− λkK
i(k)(ei(k − 1) + ω̄i(k))

Let P̄ i(k) be a real error covariance matrix. We have

P̄ i(k) = E[ei(k)ei(k)T ]

= (λkK
i(k)− I)P̄ i(k − 1)(λkK

i(k)− I)T

+λ2
kK

i(k)R0(k)K
i(k)T + γiλ

2
kK

i(k)ΨiΨ
T
i K

i(k)T

where E is an expected symbol. When λk = 0, i.e. no observations, we have

P̄ i(k) = P̄ i(k − 1). Otherwise, when λk = 1, we have

P̄ i(k) = (Ki(k)− I)P̄ i(k − 1)(Ki(k)− I)T

+Ki(k)R0(k)K
i(k)T + γiK

i(k)ΨiΨ
T
i K

i(k)T (3.18)

In the following, we will describe that there exits a unique P̄ i(k) as k → ∞.

Hence, we first give two lemmas [5, 130].

Lemma 3. Consider the discrete-time Lyapunov equation

HXHT −X +M = 0

where M is Hermitian. Then, the following are true.

1. If H is stable, then X is unique and Hermitian and

X =
∞∑
k=0

HkMHk
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2. If H is stable and M > 0, then X is unique, Hermitian and X > 0.

We introduce (3.12) and (3.13) into (3.17) to obtain the discrete-time Riccati

equation, which is described by

P i(k) = P i(k − 1)− λkP
i(k − 1)[P i(k − 1) +R0]

−1P i(k − 1) (3.19)

Lemma 4. Consider the discrete-time Riccati equation (3.19) where λk = 1 and

P i(0) ≥ 0. Then

1. There exists a P ≥ 0 such that for all P i(0) ≥ 0,

lim
k→∞

P i(k) = P

Furthermore, P is the unique solution of the algebraic matrix equation

P [P +R0]
−1P = 0

within the class of positive semidefinite symmetric matrices.

2. The eigenvalues of the matrix

D = I − [P +R0]
−1P

are strictly within the unit circle.

Therefore, we have the following proposition.

Proposition 2. Consider the actual error covariance P̄ i(k) as k → ∞. P̄ i(∞) is

the unique solution that satisfies

P̄ i(∞) = (Ki(∞)− I)P̄ i(∞)(Ki(∞)− I)T

+Ki(∞)R0K
i(∞)T + γiK

i(∞)ΨiΨ
T
i K

i(∞)T (3.20)

Furthermore,

P̄ i(∞) = P̄ i(∞)|γi=0 + γiV1
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where

M = Ki(∞)ΨiΨ
T
i K

i(∞)T

V1 =
∞∑
k=0

(Ki(∞)− I)kM((Ki(∞)− I)T )k

Proof. In terms of the second part of Lemma 4, I − [P + R0]
−1P is stable, which

means that−(I − [P i(∞) + R0]
−1P i(∞))T is stable. Hence, we can derive that

Ki(∞)− I is also stable. In the light of Lemma 3, P i(∞) is the unique solution to

(3.20) and we can get

P̄ i(∞) = P̄ i(∞)|γi=0 + γiV1

Hence, this completes the proof of Proposition 2. �

Remark 4. From Proposition 2, one can see that the actual error covariance P̄ i(∞)

is bounded even if observation is intermittent and there exist uncertainties in the

measurement noise. Therefore, we can use the Kalman filter to estimate the position

of the odour source.

Example 1 : Consider the following process

x(k) = x(k − 1)

z(k) = x(k) + w̄(k)

where w̄(k) satisfies a normal distribution with zero mean and 2.1 variance. The

uncertain measurement noise variance is assumed to satisfy a normal distribution

with zero mean and 10.3 variance. The probabilities of measurement arrival is

P (λk = 1) = 0.9, P (λk = 1) = 0.5, and P (λk = 1) = 0.1, respectively. We use

the Kalman filter to estimate the state with initial state x̂i
s(0) = 0 and covariance

P i(0) = 103. Figure 3.1 shows the filtering results for the different probabilities of

measurement arrival. From this figure, one can see that process states estimated by

Kalman filters converge even though there exist uncertainties in the measurement
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Figure 3.1: Estimate errors for the different probabilities of measurement arrival.

noise and intermittent observations. Moreover, the results are better when we in-

crease the probability of measurement arrival, which means that we need to design

an efficiently cooperative control algorithm that can control the robot group to trace

the plume in order to obtain more observations.

3.3.3 Information Fusion for Multiple Observations

From the left side of the measurement model (3.9), one can see that the measurement

value zi(k) = x(k)− v̄(k) can be calculated only when the robot detects the odour

clues where x(k) = xi(k) and xi(k) is the position of robot i at time k. Therefore,

there exist two issues that need to be considered. One issue is that there exist noises

on the position sensor and wind velocity sensor, which results in uncertainties in

the measurement value zi(k). Another issue is that there exist multiple observations

from neighborhood robots, which requires the robot to fuse multiple observations.

In the following, we provide a dynamic finite-time consensus fusion algorithm to



3.3. A DISTRIBUTED DECISION ALGORITHM 51

deal with two issues.

ẋi(t) = u̇i(t) +
N∑
j=1

aij(xj(t)− xi(t)) + λ(ui(t)− xi(t))

+βsig

(
N∑
j=1

aij(xj(t)− xi(t)) + λ(ui(t)− xi(t))

)a

(3.21a)

yi(t) = xi(t) (3.21b)

where β > 0, λ > 0, and 0 < a < 1; xi(t) is regarded as a decision state for the

ith robot; ui(t) is the input of measurement and yi(t) is the corresponding fused

output. In order to guarantee the convergence of the dynamic finite-time consensus

fusion algorithm (3.21), we have the following proposition.

Proposition 3. Consider the dynamic finite-time consensus fusion algorithm, (3.21)

with the input ui(t) = r(t) and λ > 0. If the interaction topology G(ν, E , A) is undi-

rected and connected, the dynamic finite-time consensus fusion algorithm converges

within a finite-time interval

[
0, (1+a)V (0)

1−a
1+a

k(1−a)

]
, i.e. xi(t) → xj(t) and xi(t) → r(t) as

t → (1+a)V (0)
1−a
1+a

k(1−a)
.

Proof. Let si(t) = xi(t)− r(t) and introduce si(t) into (3.21). Then, we have

ṡi(t) =
N∑
j=1

aij(sj(t)− si(t))− λsi(t)

+βsig

(
N∑
j=1

aij(sj(t)− si(t))− λsi(t)

)a

(3.22)

Further, set ϕi(t) =
∑N

j=1 aij(sj(t)− si(t))− λsi(t). Hence, we can obtain

ṡi(t) = ϕi(t) + βsig(ϕi(t))
a (3.23)

Let s(t) = [s1(t), · · · , sN(t)]T and ϕ(t) = [ϕ1(t), · · · , ϕN(t)]
T . We rewrite (3.23) as

ṡ(t) = ϕ(t) + βsig(ϕ(t))a (3.24)

We choose a Lyapunov candidate as

V (t) =
N∑
i=1

(
β

1 + a
|ϕi(t)|a+1 +

1

2
ϕi(t)

2

)
(3.25)
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Obviously V (t) ≥ 0 and along the closed-loop trajectories,

dV (t)

dt
=

N∑
i=1

(βsig(ϕi(t))
aϕ̇i(t) + ϕiϕ̇i(t))

=
N∑
i=1

(βsig(ϕi(t))
a + ϕi(t))ϕ̇i(t)

= (βsig(ϕ(t))a + ϕ(t))T ϕ̇(t)

Moreover, we have

ϕ̇(t) = −(L(A) + λI)(βsig(ϕ(t))a + ϕ(t))

Hence, we obtain

dV (t)

dt
= −ξT (L(A) + λI)ξ

where ξ = βsig(ϕ(t))a + ϕ(t).

In the light of Lemma 2, we have dV (t)
dt

< 0. The finite-time consensus fusion

algorithm (3.21) is asymptotically stable, i.e. xi(t) → r(t) as t → ∞. Similar to the

proof process in [144], the fusion algorithm (3.21) is a finite-time convergence one

and the settling time T ≤ (1+a)V (0)
1−a
1+a

k(1−a)
. �

However, it is worth mentioning that the signal ṙ(t) is hard to be obtained.

Hence, we will use an approximately dynamic finite-time consensus fusion algorithm,

which is given by

ẋi(t) =
N∑
j=1

aij(xj(t)− xi(t)) + λ(ui(t)− xi(t))

+βsig

(
N∑
j=1

aij(xj(t)− xi(t)) + λ(ui(t)− xi(t))

)a

(3.26a)

yi(t) = xi(t) (3.26b)

Remark 5. It is obvious to see that if β = 0 and λ = 1, then the dynamic finite-time

consensus fusion algorithm described by (3.26) becomes a linear consensus algorithm,

which was studied by R. Olfati-Saber et al. (2005) [109, 105], R. A. Freeman et al.
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(2006) [39, 38], and P. Yang [145] (2008). Hence, the linear consensus algorithm

described in [109, 105, 39, 38, 145] can be regarded as special cases of the nonlinear

consensus algorithm (3.26).

For the proposed consensus fusion algorithm (3.26), we have the following con-

vergence proposition.

Proposition 4. Let r(t) be a signal with a uniformly bounded rate |ṙ(t)| ≤ ν.

Consider the dynamic finite-time consensus fusion algorithm (3.26) with the input

ui(t) = r(t), λ > 0, and ϵ = max

{
ν
√
N

λmin(L(A)+λI)(β+1)
, ν

√
N

λmin(L(A)+λI)
− β

√
N

||L(A)+λI||2

}
. If

the interaction topology G(ν, E , A) is undirected and connected, the dynamic finite-

time consensus fusion algorithm is a ϵ-convergence within a finite-time interval.

Proof. Defining the error variable si(t) = xi(t)− r(t) gives

ṡi(t) = −ṙ(t) +
N∑
j=1

aij(sj(t)− si(t))− λsi(t)

+βsig

(
N∑
j=1

aij(sj(t)− si(t))− λsi(t)

)a

(3.27)

Let

ϕi(t) =
N∑
j=1

aij(sj(t)− si(t))− λsi(t) (3.28)

and s(t) = [s1(t), · · · , sN(t)]T and ϕ(t) = [ϕ1(t), · · · , ϕN(t)]
T . We can rewrite (3.27)

as

ṡ(t) = −1N ṙ(t) + ϕ(t) + βsig(ϕ(t))a (3.29)

where 1N = [1, 1, . . . , 1︸ ︷︷ ︸
N

]T .

We choose a Lyapunov candidate as

V (t) =
N∑
i=1

(
β

1 + a
|ϕi(t)|a+1 +

1

2
ϕi(t)

2

)
(3.30)
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Obviously V (t) ≥ 0 and along the closed-loop trajectories,

dV (t)

dt
=

N∑
i=1

(βsig(ϕi(t))
aϕ̇i(t) + ϕiϕ̇i(t))

=
N∑
i=1

(βsig(ϕi(t))
a + ϕi(t))ϕ̇i(t)

= (βsig(ϕ(t))a + ϕ(t))T ϕ̇(t)

Moreover, we have

ϕ̇(t) = −(L(A) + λI)ṡ(t)

Hence, we obtain

dV (t)

dt
= −ξT (L(A) + λI)ξ + ξT (L(A) + λI)1N ṙ(t)

≤ −λmin(L(A) + λI)||ξ||22

+ν
√
N ||L(A) + λI||2||ξ||2

where ξ = βsig(ϕ(t))a + ϕ(t). Furthermore, when

||ξ||2 >
ν
√
N ||L(A) + λI||2

λmin(L(A) + λI)

we get dV (t)
dt

< 0. In addition, we have

||ξ||2 = ||βsig(ϕ(t))a + ϕ(t)||2

≤ ||βsig(ϕ(t))a||2 + ||ϕ(t)||2

If |ϕi(t)| ≥ 1, we can obtain

||ξ||2 ≤ β||ϕ(t)||2 + ||ϕ(t)||2

≤ (β + 1)||L(A) + λI||2||s(t)||2

Hence, we derive

||s(t)||2 ≥ ν
√
N

λmin(L(A) + λI)(β + 1)
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1

2 3

4

Figure 3.2: The communication topology among four robots.

If 0 ≤ |ϕi(t)| < 1, we can obtain

||ξ||2 ≤ β
√
N + ||L(A) + λI||2||s(t)||2

Therefore, we get

||s(t)||2 ≥ ν
√
N

λmin(L(A) + λI)
− β

√
N

||L(A) + λI||2

Let Bρ be a closed ball centered at s(t) = 0 with radius

ρ = max

{
ν
√
N

λmin(L(A) + λI)(β + 1)
,

ν
√
N

λmin(L(A) + λI)
− β

√
N

||L(A) + λI||2

}

As a consequence, any solution (3.27) starting in RN/Bρ satisfies dV (t)
dt

< 0. Thus,

it enters Bρ in finite time and remains in Bρ thereafter. This guarantees finite-time

ϵ-stability of s(t) = 0 with a radius ϵ = ρ. �

Remark 6. From the proposed dynamic finite-time consensus fusion algorithm

(3.26), one can see that each robot can access to the observations uj(t) detected

by the robot j via the state xj(t) transferred by communication networks. Because

the state xi(t) of the fusion algorithm (3.26) can track the average measurement

value, the dynamic finite-time consensus fusion algorithm (3.26) acts as a low-pass

filter.
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Figure 3.3: (a) sensor measurements ui(t) = r(t)+ωi(t) and (b) fused data yi(t) via
the proposed finite-time consensus fusion algorithm (3.26).
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Remark 7. From Proposition 4, one can see that ϵ will be decreased if we increase

the parameter β, which means that the state xi(t) rapidly reaches r(t) in finite time

with the lesser stable error. Therefore, we can adjust the parameter β to obtain a

better fusion result.

Example 2 : Let the Figure 3.2 show the communication topology among four

robots. It is obvious that the communication topology is undirected and connected.

Set parameters β = 4, λ = 0.8, a = 0.5 and the initial state xi(t) = 0, i = 1, 2, 3, 4

for the finite-time consensus fusion algorithm (3.26). The sensing model is ui(t) =

r(t) + ωi(t) where r(t) = sin(2t) and the covariance of ωi(t) is 0.3. Figure 3.3(a)

shows the sensor measurements for the first robot and Figure 3.3(b) shows the fused

sensor data via the proposed dynamic finite-time consensus fusion algorithm (3.26).

3.3.4 A Distributed Decision Algorithm

In terms of the probable position of the odour source yi(k) in (3.26), we use concen-

tration information p̂i(k) to obtain the final estimated position of the odour source,

which is described by

hic(k) = c1yi(k) + c2p̂i(k) (3.31)

where yi(k) is the position of the odour source estimated by the ith robot in (3.26);

p̂i(k) denotes the position of the odour source estimated by the ith robot in (2.4);

and cj(j = 1, 2) are weighted parameters and satisfy c1 + c2 = 1. To sum up, the

distributed decision algorithm is described in Algorithm 1.

3.4 Odour Source Localisation

In order to validate the effectiveness of the distributed decision algorithm, we will

plan the movement direction of the robot group based on the estimated position of

the odour source. Then, we will design a simple cooperative control law. Finally,

we will show the simulation results of the distributed decision algorithm.
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Algorithm 1 A distributed decision algorithm

1: /*Initialization*/
2: Initialize parameters α, β, a, c1, c2 and λ;
3: Initialize a posteriori estimate error covariance P i(0) and a measurement noise

covariance matrix R(0);
4: Initialize fusion algorithm’s state in (3.26) and the source estimate position

x̂s(0) using the current position xi(t) when the first concentration detection
event occurs;

5: Set robot.l = 0 and robot.windcount = 0; /*Releasing time and an accumulator
that can record the number of wind velocity*/

6: /*Main Body*/
7: repeat
8: /*Store wind velocity within 100s*/
9: robot.wind[robot.windcount] = wind;
10: Perform (2.4) to get p̂i(k).
11: /*Concentration detection events occur*/
12: if robot.snsd > 0 then
13: /*Calculate the movement distance of filaments*/
14: Set sumtemp = 0 and kk = 0;
15: for i = 0; i < robot.windcount; i++ do
16: Set sum = 0;
17: for j = i; j < robot.windcount; j ++ do
18: sum = sum+ robot.wind[j];
19: end for
20: if sum < robotposition+ α ∧ sum > robotposition− α then
21: sumtemp = sumtemp+ sum;kk = kk + 1;
22: end if
23: end for
24: Calculate the measurement zi(k) = robotposition− sumtemp/kk;
25: end if
26: Perform (3.11) and (3.12) to obtain a priori position of the odour source

x̂−i
s (k) and a priori estimate error covariance P−i(k);

27: /*Calculate measurement noise variance*/
28: Set kk = 0 and sum = 0;
29: for i = robot.l; i < int(CurrentT ime); i++ do
30: sum = sum+ (int(CurrentT ime)− i) ∗R(k − 1); kk = kk + 1;
31: end for
32: R(k) = sum/kk;
33: Perform (3.13) to calculate the Kalman gain;
34: Perform (3.15) to calculate a posteriori estimate error covariance P i(k);
35: Perform (3.14) to generate a posteriori position estimate of the odour source

x̂i
s(k);

36: Perform (3.26) to obtain the fused measurement yi(k);
37: Perform (3.31) to generate the final position estimate of the odour source

hic(k);
38: until Termination conditions are satisfied.
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3.4.1 The Planning of Movement Direction of the Robot
Group

In this subsection, we use a different movement planning method from Chapter 2

to trace the plume. The target position pi(k) of the ith robot is shown in Figure

3.4. From this figure, one can see that the robot probably detects the plume at

the direction from the current position to the target position under an assumption

that filaments that are released at the estimated position hic(k) may move along the

current wind direction. In order to let the robot detect the odour and move toward

the estimated position, the target position of the robot can be calculated according to

(3.32) where a center point between the estimated position and the current position

at the x direction is chosen due to simple computation. Moreover, the short blue

arrow in Figure 3.4 denotes the wind direction and magnitude. Further, hic
x (k)

and hic
y (k) denote the coordinates of the estimated position at the x axis and y

axis, respectively. xi is the current position of the robot. xxi(k) and xyi(k) are

coordinates of xi at the x axis and y axis, respectively. Similarly, wx and wy are the

velocities of wind at the x and y axis, respectively. |xxi(k)−hic
x (k)|

2
is the coordinate of

the goal position at the x axis if the estimated position is regarded as the origin.

Based on the rule of similar triangles, sign(wy)× |xxi(k)−hic
x (k)|

2
× |wy|

wx
is the coordinate

of the goal position at the y axis if the estimate position is regarded as the origin.

Therefore, in terms of the coordinate system shown in Figure 3.4, we have the goal

position described by

pxi(k) = hic
x (k) +

|xxi(k)− hic
x (k)|

2
(3.32a)

pyi(k) = hic
y (k) + sign(wy)×

|xxi(k)− hic
x (k)|

2
× |wy|

wx

(3.32b)

where pxi(k) and pyi(k) are the coordinates of the target position pi(k) of the ith

robot at the x and y axis, respectively.
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Figure 3.4: A target position of the ith robot.

3.4.2 A Cooperative Control Algorithm

The robot will move along the direction from the current position to the target

position. Moreover, if time of the robot group failing to detect the plume is over

20s, the robot group will move toward the estimated position hic(k). Based on these

movement strategies, we give the following finite-time control law as

ui(t) = v̇c +
N∑
j=1

aij(vj − vi) + δ(vc − vi)

+sig

(
N∑
j=1

aij(vj − vi) + δ(vc − vi)

)a

(3.33)

where 0 < a < 1, δ > 0 and vc is a reference velocity of the robot group and is

decided by the above movement strategies. We have the following proposition to

guarantee the stability of the system (1.7) under the control law (3.33).

Proposition 5. Consider the robot dynamics (1.7) with the control input (3.33).

If the interaction topology G(ν, E , A) is undirected and connected, the control law
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guarantees vi → vj and vi → vc within a finite-time interval

[
0, (1+a)V (0)

1−a
1+a

k(1−a)

]
.

Proof. Let qi = vi−vc and pi = xi−
∫
vcdt. Following the similar step of Proposition

3, we can prove that the proposed control law (3.33) guarantees vi → vj and vi → vc

within a finite-time interval

[
0, (1+a)V (0)

1−a
1+a

k(1−a)

]
. �

However, each robot has its individual reference velocity based on the distributed

decision algorithm and movement strategies. Hence, the control law (3.33) can be

modified by

ui(t) = v̇ic +
N∑
j=1

aij(vj − vi) + δ(vic − vi)

+sig

(
N∑
j=1

aij(vj − vi) + δ(vic − vi)

)a

(3.34)

where vic is the reference velocity of the ith robot.

Moreover, in order to provide robots with obstacle avoidance capabilities, we

give the following control law which was proposed by Choi et al. (2009) [14].

ui(t) = −∇U(xi) (3.35)

where ∇U(xi) is the gradient of the potential U with respect to xi for robot i.

U =
∑
i

∑
j∈N(i)

Uij(||xi − xj||2)

=
∑
i

∑
j∈N(i)

Uij(rij) (3.36)

where N(i) denotes a set among which each robot can communicate with the robot

i, and

Uij(rij) =
1

2

(
log(κ+ rij) +

κ+ d2

κ+ rij

)

where rij = ||xi − xj||2; κ and d are parameters. If the distance between any two

robots is smaller than d0, we use the control law (3.35) and (3.34) otherwise.
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Table 3.1: The parameters used in the distributed decision algorithm.

β λ a c1 c2 α(m) Sampling time(s)

8 0.8 0.5 0.8 0.2 40 1

Table 3.2: The parameters used in (3.34) and (3.35) for the cooperative control
algorithm.

a δ κ d0 d vmax(m/s) ωmax(rad/s)

0.5 0.2 0.5 6.6 4 0.8 1.57

Example 3 : Consider three robots. Set parameters δ = 0.1, a = 0.5, d0 = 6.6,

κ = 0.8, and d = 4. Let vc = [9 − 9]. Figure 3.5 shows the parallel movement of

three robots under the control laws (3.34) and (3.35).

3.4.3 Simulation Results

In this subsection, we will test the proposed distributed decision algorithm (DDA)

which parameters are shown in Table 3.1. It should be pointed out that the parame-

ters β and λ in Table 3.1 are to guarantee the convergence of the proposed dynamic

finite-time consensus fusion algorithm. α can influence the quality of data received.

Moreover, we use the given cooperative control algorithm (3.34) and (3.35) which

parameters are shown in Table 3.2 where the parameters vmax and ωmax are to limit

the maximum linear velocity and angular velocity of robots, respectively. Further,

we utilize a circle where the real position of the odour source is viewed as a center

with a predefined radius 1m as one of termination conditions, which means that

the search task is finished if any robot enters the circle. (The other termination

condition is the maximal search time 1500s). In addition, it is worth mentioning

that the robot group will search for the odour clues along the direction of y axis

from the initial positions (right-up corner) to the (80m,50m). Once the odour clues

are detected by any robot, the proposed DDA will start to run.

The motion process of the robot group with five robots under all to all commu-
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nication topology is illustrated in Figures 3.6-3.9. In Figure 3.6, the initial positions

of the robot group are set at the right-up corner in the search region. In Figure 3.7

and Figure 3.8, the parallel motion is used to track the plume and to move along the

plume in terms of the probable positions of the odour source given by the distributed

decision algorithm. In Figure 3.9, the robot group finds the real odour source. The

corresponding prediction distribution of the position of the odour source is shown

in Figures 3.10-3.13. The prediction errors of five robots about the position of the

odour source are shown in Figure 3.14 where the robots keep the predefined posi-

tion (80m,0m) of the odour source from 0s to about 40s. After about 40s, the robot

group detects the odour clues, and then the proposed DDA starts to run. It is worth

mentioning that the prediction accuracy of the position of the odour source is higher

if more odour information can be obtained, which implies that we need to enable

the robot group to rapidly arrive the target position.

3.5 Conclusion

We have proposed a distributed decision algorithm, which is used to make a de-

cision on the position of the odour source. We have first derived an observation

model for the position of the odour source based on wind information. In terms

of the observation, we have used a Kalman filter to estimate the position of the

odour source. Moreover, we have developed a dynamic finite-time consensus fusion

algorithm to fuse observations from other robots. As a final decision on the position

of the odour source, we have proposed a distributed decision algorithm, which com-

bines the source position predicted by concentration information with one estimated

by wind information. Finally, we have illustrated the effectiveness of the proposed

distributed decision algorithm for the problem of odour source localisation.
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Figure 3.5: The parallel movement for three robots. “o” and “*” denote the initial
position and the end position, respectively.

Figure 3.6: The search process of five robots at T = 0s.
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Figure 3.7: The search process of five robots at T = 47s.

Figure 3.8: The search process of five robots at T = 98s.
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Figure 3.9: The search process of five robots at T = 185s.
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Figure 3.10: The probability distribution of the position of the odour source esti-
mated by five robots at T = 0s.
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Figure 3.11: The probability distribution of the position of the odour source esti-
mated by five robots at T = 47s.
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Figure 3.12: The probability distribution of the position of the odour source esti-
mated by five robots at T = 98s.
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Figure 3.13: The probability distribution of the position of the odour source esti-
mated by five robots at T = 185s.
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Figure 3.14: Prediction error ∥hic(k) − xs∥2 over time. xs is a real position of the
odour source.



Chapter 4

Particle Swarm Optimization
Based Finite-Time Motion Control

4.1 Introduction

Accordingly, in the control level of the distributed coordination control architecture

presented in Chapter 2, a PSO-based finite-time motion control algorithm will be

designed in Section 4.2. In Section 4.3, we will propose a discrete-time finite-time

PSO (FPSO) algorithm and prove its convergence. Then, the benchmark functions

will be used to validate the performance capabilities of the discrete-time FPSO

algorithm in Section 4.4. The effectiveness of the PSO-based finite-time motion

control algorithm for odour source localisation will be illustrated in Section 4.5.

Finally, we will give the conclusion in Section 4.6.

4.2 A PSO-Based Finite-TimeMotion Control Al-

gorithm

In this section, we will briefly describe the continuous model of the PSO algorithm.

Then, we will derive a continuous-time FPSO algorithm that is used as the PSO-

based finite-time motion control algorithm. Finally, we will analyze its finite-time

convergence property by using a Lyapunov approach.
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MOTION CONTROL

4.2.1 A Continuous-Time Model of the PSO Algorithm

The stochastic differential model of the PSO algorithm, i.e. the continuous-time

model of the PSO algorithm, can be given by

ẍi(t) + (1− ω)ẋi(t) + αxi(t) = α1xl(t) + α2xg(t) (4.1)

with

α = α1 + α2

xi(0) = x0

ẋi(0) = v0

where xl(t) and xg(t) are the trajectories of the local and global best positions

associated with the ith (i ∈ lN) particle, respectively; ω is an inertial factor; αj

(j = 1, 2) are random variables; xi(0) and ẋi(0) are the initial states at time t = 0.

This continuous-time PSO model is derived by Fernández Mart́ınez et al. [33]

(2008) in terms of physical analogy with a damped mass-spring oscillator. We use

the following discretization scheme in (4.2), and then introduce it into the stochastic

differential model of the PSO algorithm in (4.1).

ẋi(t) ≃ xi(t)− xi(t−∆t)

∆t
(4.2a)

ẍi(t) ≃ xi(t+∆t)− 2xi(t) + xi(t−∆t)

∆t2
(4.2b)

Consider one case, i.e. ∆t = 1 and t = k, we have

xi(k + 1) = −(α− ω − 1)xi(k)− ωxi(k − 1) + α1xl(k) + α2xg(k) (4.3)

with

xi(0) = x0

xi(1) = (1− α)x0 + ωv0 + α1xl(0) + α2xg(0)
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Moreover, the difference form of the PSO algorithm in (4.3) can be rewritten in

terms of the position and velocity. Consequently, we can derive the most commonly

used form, which is presented by (2.1).

Consider another case, i.e. ∆t = ∆k > 0 and t = k, we can obtain the generalized

PSO (GPSO) algorithm [31] as

xi(k +∆k) = γ1xi(k) + γ2xi(k −∆k) + ∆k2(α1xl(k) + α2xg(k)) (4.4)

with

γ1 = 2− (1− ω)∆k − α∆k2

γ2 = (1− ω)∆k − 1

We rewrite the equation (4.4) based on the position and velocity (xi(k), vi(k))

as

vi(k +∆k) = (1− (1− ω)∆k)vi(k)

+α∆k

(
α1xl(k) + α2xg(k)

α1 + α2

− xi(k)

)
(4.5a)

xi(k +∆k) = xi(k) + vi(k +∆k)∆k (4.5b)

As pointed out by Fernández Mart́ınez et al. [33] (2008), the particle swarm

movement controlled by the GPSO algorithm becomes more elastic and less damped

when ∆k → 0.

Remark 8. Both the PSO algorithm (2.1) and the GPSO algorithm (4.5) can be

derived according to the same the continuous-time model (4.1) under different condi-

tions. The motivation of which Fernández Mart́ınez et al. [33] (2008) proposed the

GPSO algorithm is that the search performance of the GPSO algorithm approaches

that of the corresponding continuous-time model when ∆k → 0.

4.2.2 A Continuous-Time Model of the FPSO Algorithm

In this subsection, in the light of the continuous model of the PSO algorithm (4.1),

we will first give a continuous-time FPSO algorithm, and then present remarks
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about parameters introduced by the continuous-time FPSO algorithm. Let ξi(t) =

xi(t)− pi(t) where pi(t) is described in (2.4) and introduce ξi(t) into the continuous

model of the PSO algorithm in (4.1). We have

ξ̈i(t) + (1− ω)ξ̇i(t) + αξi(t) = −p̈i(t)− (1− ω)ṗi(t) (4.6)

Moreover, set y1(t) = ξi(t) and y2(t) = ξ̇i(t). Then, the equation (4.6) is rewrit-

ten as

ẏ1(t) = y2(t) (4.7a)

ẏ2(t) = −(1− ω)y2(t)− αy1(t)− (1− ω)ṗi(t)− p̈i(t) (4.7b)

In the stagnation and deterministic case, i.e., pi(t) is stable and α is a constant, we

have

ẏ1(t) = y2(t) (4.8a)

ẏ2(t) = −(1− ω)y2(t)− αy1(t) (4.8b)

The system described by (4.8) is asymptotically stable at the origin when t → ∞, if

the parameters ω and α satisfy ω < 1 and α > 0, respectively. Figure 4.1 illustrates

the asymptotical stability of the system given by (4.8).

Remark 9. It is obvious that the system described by (4.7) is not stable at the

origin if the pi(t) is time-varying, which enables us to consider the stable system

(4.8). Moreover, one can see that the continuous-time PSO algorithm (4.7) does

not possess a good tracking performance, which may result in the higher oscillation

of convergence results for a class of optimization problems. Therefore, this issue

motivates us to introduce the control theory to modify the continuous-time PSO

algorithm (4.7) under a given decision on pi(t).

In what follows, we provide a nonlinear finite-time PSO algorithm. In order to

enable the states of the system (4.8) to rapidly converge to the origin and enlarge
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Figure 4.1: The convergence curves of the system states in (4.8) (ω = 0.8, α = 6,
y1(0) = 5, and y2(0) = −9).
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Figure 4.2: The convergence curves of the system states in (4.9) (ω = 0.8, α = 6,
a = 0.5, β = 1.9, γ = 0.5, y1(0) = 5, and y2(0) = −9).
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the magnitude of state oscillation, a nonlinear damping item and a parameter γ are

added into the system (4.8) as

ẏ1(t) = y2(t) (4.9a)

ẏ2(t) = −γ

(
(1− ω)y2(t) + αy1(t)

)
− βsig

(
(1− ω)y2(t) + αy1(t)

)a

(4.9b)

where 0 < a < 1, β > 0, and 0 < γ ≤ 1.

It is obvious that if β = 0 and γ = 1, then the system described by (4.9)

becomes a linear system (4.7) in the stagnation case, which was studied by Fernández

Mart́ınez et al. [33] (2008). Hence, the system (4.7) in the stagnation case can be

regarded as a special case of the system (4.9). Figure 4.2 illustrates the convergence

of the system states in (4.9) under the same parameter values ω, α and initial states

(y1(0), y2(0)) in the deterministic case.

By letting y1(t) = ξi(t) and y2(t) = ξ̇i(t), the system (4.9) can be written as

ξ̈i(t) + γ(1− ω)ξ̇i(t) = −γαξi(t)− βsig

(
(1− ω)ξ̇i(t) + αξi(t)

)a

(4.10)

Moreover, by setting ξi(t) = xi(t) − pi(t), the continuous-time FPSO algorithm

is presented by

ẍi(t) = −γ(1− ω)(ẋi(t)− ṗi(t))− γα(xi(t)− pi(t))

−βsig

(
(1− ω)(ẋi(t)− ṗi(t)) + α(xi(t)− pi(t))

)a

+ p̈i(t) (4.11)

Consider the dynamics model (1.7) of the robot. We derive the control algorithm

(4.12) as the PSO-based finite-time motion control algorithm.

ui(t) = −γ(1− ω)(vi(t)− ṗi(t))− γα(xi(t)− pi(t))

−βsig

(
(1− ω)(vi(t)− ṗi(t)) + α(xi(t)− pi(t))

)a

+ p̈i(t) (4.12)

If the five parameters (ω, α, a, γ, β) fall into the following set (4.13), the continuous-

time FPSO algorithm is finite-time stable.

Ωc = {(ω, α, a, γ, β)| ω < 1, α > 0, 0 < a < 1, 0 < γ ≤ 1, β > 0} (4.13)
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Figure 4.3: The curve of the average oscillation magnitude for the parameter γ for
the system state y2(t) in (4.9) (ω = 0.8, α = 6, a = 0.5, β = 0.1, y1(0) = 5, and

y2(0) = −9).

It is worth mentioning that the parameters γ and β are used to control the oscil-

lation magnitude and the convergence speed of the state trajectory of the particle,

respectively. From Figure 4.3 and Figure 4.4, one can see that increasing the pa-

rameter γ and β means the decrease of the average oscillation magnitude and the

convergence time, respectively. Hence, the proposed continuous-time FPSO algo-

rithm provides a flexible mechanism to control “frequency” and “magnitude” such

that we can always adjust two parameters to deal with the problem of odour source

localisation in terms of problem’s characteristics.

Remark 10. ṗi(t) describes the velocity of the variable pi(t) decided by α1xl(t)+α2xg(t)

α1+α2
.

Moreover, the decision process is a discrete-time process, which results in that pi(t)

is piece-wise continuous. Consequently, the direction of ṗi(t) can be approximately

calculated from pi(k − 1) to pi(k) (k − 1 < t ≤ k) and the magnitude of that is

given based on the maximum linear velocity of the robot. p̈i(t) can be approximately
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Figure 4.4: The curve of the convergence time for the parameter β for the system
state y2(t) in (4.9) (ω = 0.8, α = 6, a = 0.5, γ = 1, y1(0) = 5, and y2(0) = −9).

calculated based on ṗi(t) and previous velocity information.

4.2.3 Convergence Analysis

In this subsection, we will prove the finite-time convergence of the continuous-time

model of the FPSO algorithm. The following Lyapunov analysis provides a global

convergence result.

Proposition 6. Consider the continuous-time model of the FPSO algorithm (4.11)

with (ω, α, a, γ, β) ∈ Ωc in (4.13) and α is a constant in the deterministic case. The

continuous-time FPSO algorithm converges within

[
0, (1+a)V (0)

1−a
1+a

k(1−a)

]
where V (0) and

k can be calculated based on (4.15) and (4.20), respectively, i.e. xi(t) → pi(t) and

vi(t) → ṗi(t) when t → (1+a)V (0)
1−a
1+a

k(1−a)
.

Proof. Introduce ξi(t) = xi(t)− pi(t) into (4.11) and set y1(t) = ξi(t), y2(t) = ξ̇i(t).

As a result, the system (4.9) can be obtained. Consider the deterministic case, we
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can write the system (4.11) as

ẏ1(t) = y2(t)

ẏ2(t) = −γϕm − βsig(ϕm)
a (4.14)

for every a ∈ (0, 1), where ϕm = (1− ω)y2(t) + αy1(t).

If the origin (0, 0) of the system (4.14) is a finite-time-stable equilibrium, xi(t)

and vi(t) will reach pi(t) and ṗi(t) in finite-time. Choose a Lyapunov candidate as

V (t) =
β(1− ω)

a+ 1
|ϕm|a+1 +

γ(1− ω)

2
ϕ2
m +

α(1− ω)

2
y22 (4.15)

Obviously, V (t) ≥ 0 and along the closed-loop trajectories, we obtain

dV (t)

dt
= β(1− ω)sig(ϕm)

aϕ̇m + γ(1− ω)ϕmϕ̇m + α(1− ω)y2ẏ2

= −(1− ω)2(γϕm + βsig(ϕm)
a)2 (4.16)

Given initial state y1(0) and y2(0), if there exists a constant k > 0 such that

dV (t)

dt
≤ −kV (t)

2a
a+1 (4.17)

V (t) will reach zero in finite-time t∗ = (1+a)V (0)
1−a
1+a

k(1−a)
in terms of Lemma 1, which

implies that y1(t) and y2(t) will be zero.

Suppose V (t) ̸= 0 (This proof is trivial when V (t) = 0) and let Υ1 = −
dV (t)
dt

V (t)
2a
1+a

.

Therefore,

Υ1 =
(1− ω)2(γϕm + βsig(ϕm)

a)2[
ρ1|ϕm|a+1 + ρ2ϕ2

m + ρ3y22

] 2a
1+a

≥ (1− ω)2β2|ϕm|2a

ρ
2a
1+a

1 |ϕm|2a + ρ
2a
1+a

2 |ϕm|
4a
1+a + ρ

2a
1+a

3 |y2|
4a
1+a

, Υ2(y1, y2)

where ρ1 = β(1−ω)
a+1

, ρ2 = γ(1−ω)
2

, and ρ3 = α(1−ω)
2

; The inequality follows from the

fact that ϕm = sig(ϕm).
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It should be pointed out that it is obvious that ϕm = 0 if y1(t) = 0 and y2(t) = 0.

Moreover, we have the following claim.

Claim 1 : If ϕm = 0, then y1(t) = 0 and y2(t) = 0.

This can be proved as follows. If ϕm = 0, which implies (1−ω)y2(t)+αy1(t) = 0,(
y1(t)
y2(t)

)
= h

(
−1−ω

α

1

)
where h ∈ R. If h = 0, then y1(t) = 0 and y2(t) = 0. If

h ̸= 0, both y1(t) and y2(t) are constants and are not zero. In terms of (4.14), we

can obtain ϕm = 0 and y2(t) = 0, which means y1(t) = 0 that is contradict. Hence,

we have h = 0, i.e. y1(t) = 0 and y2(t) = 0. The proof of this claim is finished.

Because we suppose V (t) ̸= 0, ϕm ̸= 0 by Claim 1.

Due to ϕm = (1− ω)y2(t) + αy1(t) =
(
α 1− ω

)
ζ(t) where ζ(t) =

(
y1(t)
y2(t)

)
presents the system state, we have

ϕ2
m = ζ(t)T

(
α2 α(1− ω)

α(1− ω) (1− ω)2

)
ζ(t) (4.18)

Let M =

(
α2 α(1− ω)

α(1− ω) (1− ω)2

)
and the eigenvalues of the matrix M are

λ1 = 0 and λ2 = α2+(1−ω)2, respectively. Hence, the matrix M is a semi-positive

definite one, i.e. M ≥ 0. For any vector x ̸= 0, xTMx = 0 implies x = h

(
−1−ω

α

1

)
where h ∈ R and h ̸= 0. Consider the set U = {ξ ∈ R2 : ξT ξ = 1}. Then U is a

bounded closed set. It is obvious that x /∈ U . Since the function ξTMξ is continuous

with respect to ξ and for any ξ ∈ U , ξTMξ ̸= 0, we have that minξ∈Uξ
TMξ, denoted

by k1, exists and is larger than zero.

Consider (4.18) that can be rewritten as

ϕ2
m =

(
ζ

||ζ||2

)T (
α2 α(1− ω)

α(1− ω) (1− ω)2

)
ζ

||ζ||2
||ζ||22 (4.19)

where || · ||2 presents the 2-norm. Since ζ
||ζ||2 ∈ U , ϕ2

m ≥ k1||ζ||22 ≥ k1y
2
2, which
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implies |ϕm|
4a
1+a ≥ k

2a
1+a

1 |y2|
4a
1+a . Therefore, we have

Υ2(y1, y2) =
(1− ω)2β2|ϕm|2a

ρ
2a
1+a

1 |ϕm|2a + ρ
2a
1+a

2 |ϕm|
4a
1+a + ρ

2a
1+a

3 |y2|
4a
1+a

≥ (1− ω)2β2|ϕm|2a

ρ
2a
1+a

1 |ϕm|2a + ρ
2a
1+a

2 |ϕm|
4a
1+a + ρ

2a
1+a

3 ( 1
k1
)

2a
1+a |ϕm|

4a
1+a

≥ (1− ω)2β2

ρ0

|ϕm|2a

|ϕm|2a + |ϕm|
4a
1+a

, (1− ω)2β2

ρ0
∆(|ϕm|)

where ρ0 = max

{
ρ

2a
1+a

1 , 2×max

{
ρ

2a
1+a

2 , ρ
2a
1+a

3 ( 1
k1
)

2a
1+a

}}
. If the minimum of ∆(|ϕm|)

can be obtained and is larger than zero, (4.17) will be satisfied.

It follows from |ϕm| =

∣∣∣∣∣ ( α 1− ω
)
ζ(t)

∣∣∣∣∣ that |ϕm| ≤

∥∥∥∥∥ ( α 1− ω
) ∥∥∥∥∥

2

||ζ(t)||2

based on the Hölder inequality, which implies |ϕm| ≤
√

α2 + (1− ω)2||ζ(t)||2. In

the light of (4.16), one can see that the state of the system asymptotically converges

to the origin, which means ||ζ(t)||2 ≤ ||ζ(0)||2 where ζ(0) is the initial state and can

be given in advance. Furthermore, because we suppose V (t) ̸= 0, ϕm ̸= 0 by Claim

1. Thus, we have 0 < |ϕm| ≤
√

α2 + (1− ω)2||ζ(0)||2.

In order to obtain the minimum of ∆(|ϕm|), which is a nonlinear function

for |ϕm|, two cases are considered: one is the set χ1 = {|ϕm| : 1 ≤ |ϕm| ≤√
α2 + (1− ω)2||ζ(0)||2} while the other is the set χ2 = {|ϕm| : 0 < |ϕm| < 1}.

It is worth mentioning that χ1 = ∅ if
√

α2 + (1− ω)2||ζ(0)||2 < 1. On the one

hand, if χ1 ̸= ∅, it is a compact set, for any |ϕm| ∈ χ1, ∆(|ϕm|) ̸= 0. Hence,

k2 = min|ϕm|∈χ1∆(|ϕm|) exists, and is larger than zero. On the other hand, if

χ1 = ∅ or |ϕm| /∈ χ1, we have |ϕm| ∈ χ2, which implies |ϕm|
2

1+a < 1. Hence,

|ϕm|
4a
1+a < |ϕm|2a. In this case, ∆(|ϕm|) > 1

2
.

Let

k =
(1− ω)2β2

ρ0
×min

{
k2,

1

2

}
(4.20)
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Since V (t) is radially unbounded and V̇ (t) is negative definite, global stability holds.

�

Remark 11. From Proposition 6, one can see that the proposed continuous-time

FPSO algorithm possesses a good tracking performance. Especially, when pi(t) is

time-varying, the proposed continuous-time FPSO algorithm can always track pi(t)

within a finite-time interval, which enables this algorithm to efficiently deal with a

class of ill-posed and dynamical optimization problems such as odour source locali-

sation.

Remark 12. It should also be pointed out that Proposition 6 gives a convergence

condition for the deterministic system, i.e., α is a constant. If α is a random num-

ber, Proposition 6 describes an expected convergence condition in the mean square.

4.3 A Discrete-Time FPSO Algorithm

4.3.1 A Discrete-Time Model of the FPSO Algorithm

As a part of the FPSO algorithm, we discretize the system (4.9) to derive the

discrete-time model of the FPSO algorithm by employing (4.2). The discrete-time

model is described by

y1(k +∆k) = y1(k) + y2(k +∆k)∆k (4.21a)

y2(k +∆k) = y2(k)− γ∆kϕa(k)− β∆ksig(ϕa(k))
a (4.21b)

ϕa(k) = (1− ω)y2(k) + αy1(k) (4.21c)

By introducing (4.22) into (4.21), the discrete-time model of the FPSO algorithm

can be obtained.

y1(k +∆k) = xi(k +∆k)− pi(k +∆k) (4.22a)

y2(k +∆k) = vi(k +∆k)− pi(k +∆k)− pi(k)

∆k
(4.22b)
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Based on the forms of the position and velocity, the discrete-time model of the

FPSO algorithm is given by

vi(k +∆k) = vi(k) +
pi(k +∆k)− 2pi(k) + pi(k −∆k)

∆k

−γ∆kϕa(k)− β∆ksig(ϕa(k))
a (4.23a)

xi(k +∆k) = xi(k) + vi(k +∆k)∆k (4.23b)

with

ϕa(k) = (1− ω)vi(k) + αxi(k)−
1− ω + α∆k

∆k
pi(k) +

1− ω

∆k
pi(k −∆k)

Remark 13. From (4.23), one can see that p̈i(t) ≃ pi(k+∆k)−2pi(k)+pi(k−∆k)
∆k2

. Howev-

er, it is not easy to calculate pi(k+∆k). Hence, we will design a kind of method to

calculate pi(k +∆k) in the following simulations.

To illustrate the characteristic of the discrete-time FPSO algorithm, we set

pi(k) = 0 and use the PSO algorithm and the GPSO algorithm as comparison

examples whose results were also presented in [33]. Figures 4.5-4.7 show the cor-

responding results. The magnitude of position oscillation denotes the exploration

capability of particles while the number of sampling points refers to the exploiting

capability of particles. From these figures, one can see that the discrete-time FPSO

algorithm provides a flexible mechanism to tradeoff the exploration capability and

the exploiting capability of the particle swarm.

Remark 14. In Figures 4.5-4.7, the trajectories of all particles are the same due

to the fact that pi(k) = 0 and other parameters are constant. One reason is that

the movement of the particle from the same initial position to the same equilibrium

position can be easily shown in the same environment. The other reason is that the

characteristics of the discrete-time FPSO algorithm can also be easily illustrated.
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Figure 4.5: The convergence curves of the states of the basic model of the discrete
PSO (ω = 0.8, α = 2.2, β = 0, γ = 1, ∆k = 1, xi(0) = 5, and vi(0) = −9).
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Figure 4.6: The convergence curves of the states of the generalized model of the
discrete PSO (ω = 0.8, α = 2.2, β = 0, γ = 1, ∆k = 0.5, xi(0) = 5, and vi(0) = −9).



4.3. A DISCRETE-TIME FPSO ALGORITHM 85

0 10 20 30 40 50 60 70 80
−15

−10

−5

0

5

10

15

Time

v
(k

)

(a) vi(k)

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

Time

x
(k

)

(b) xi(k)

Figure 4.7: The convergence curves of the states of the finite-time model of the
discrete PSO (ω = 0.8, α = 2.2, β = 0.5, γ = 0.5, ∆k = 0.5, xi(0) = 5, and

vi(0) = −9).
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4.3.2 Convergence Analysis

We first give a Schur complement lemma, which will be used in the convergence

proof of the discrete-time FPSO algorithm.

Lemma 5. (Schur complement) Given constant matrices P1, P2 and P3 with ap-

propriate dimensions, where P T
1 = P1 and P T

2 = P2 > 0, then P1 + P T
3 P

−1
2 P3 < 0 if

and only if (
P1 P T

3

P3 −P2

)
< 0, or

(
−P2 P3

P T
3 P1

)
< 0

For the discrete-time model of the FPSO algorithm, a convergence condition is

given in Proposition 7.

Proposition 7. Consider the discrete-time model of the FPSO algorithm (4.23)

with (ω, α, γ, a) ∈ Ωd in (4.24) and α is a constant in the deterministic case. If

there exist a positive-definite matrix Q = QT > 0 and a parameter β such that the

LMI (4.25) holds, the discrete-time FPSO algorithm converges within a finite-time

interval.

Ωd =

{
(ω, α, γ) : 1− 2

γ∆k
< ω < 1,

0 < α <
4− 2γ∆k(1− ω)

γ∆k2
,

0 < γ ≤ 1, 0 < a < 1

}
(4.24)

 I −Q AQ 0
QAT −Q QHT

0 HQ − 1
ϖ
I

 < 0 (4.25)

where ϖ is a positive constant, I is a unit matrix, H =

(
α 1− ω
0 0

)
, and A =



4.3. A DISCRETE-TIME FPSO ALGORITHM 87

(
A11 A12

A21 A22

)
with

A11 = 1− γ∆k2α

A12 = ∆k − γ∆k2(1− ω)

A21 = −γ∆kα

A22 = 1− γ∆k(1− ω)

Proof. Because the discrete-time model of the FPSO algorithm (4.23) can be derived

in terms of (4.21), we write the system (4.21) in the Matrix-Vector form:(
y1(k +∆k)
y2(k +∆k)

)
=

(
A11 A12

A21 A22

)(
y1(k)
y2(k)

)
+

(
−β∆k2sig(ϕa(k))

a

−β∆ksig(ϕa(k))
a

)
(4.26)

with

A11 = 1− γ∆k2α

A12 = ∆k − γ∆k2(1− ω)

A21 = −γ∆kα

A22 = 1− γ∆k(1− ω)

Set A =

(
A11 A12

A21 A22

)
, η(k) =

(
y1(k)
y2(k)

)
, and f(η(k)) =

(
−β∆k2sig(ϕa(k))

a

−β∆ksig(ϕa(k))
a

)
.

The system (4.26) can be rewritten as

η(k +∆k) = Aη(k) + f(η(k)) (4.27)

If the nonlinear item f(η(k)) = 0, the stability region of the system (4.27) is the

part of the space (ω, α), where the roots of the characteristic equation

λ2 + (αγ∆k2 + γ∆k(1− ω)− 2)λ+ (1− γ∆k(1− ω)) = 0

are in the unit circle. Based on Routh-Hurwitz criteria [102], this region turns to be

Ωd =

{
(ω, α, γ) : 1− 2

γ∆k
< ω < 1, 0 < α <

4− 2γ∆k(1− ω)

γ∆k2
,

0 < γ ≤ 1, 0 < a < 1

}
(4.28)
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If the nonlinear item f(η(k)) ̸= 0, we have

fT (η(k))f(η(k)) = (β2∆k4 + β2∆k2)|ϕa|2a

Consider the case where |ϕa| > 1. We obtain

fT (η(k))f(η(k)) ≤ (β2∆k4 + β2∆k2)|ϕa|2

= δη(k)THTHη(k) (4.29)

where

δ = β2∆k4 + β2∆k2

H =

(
α 1− ω
0 0

)
Consider another case where 0 < |ϕa| ≤ 1. There exits a positive constant ε > 0

such that

fT (η(k))f(η(k)) ≤ δε|ϕa|2 (4.30)

Therefore, ϖ = max{δ, δε}. Choose a Lyapunov candidate as

V (η(k)) = η(k)TPη(k) (4.31)

where P = P T > 0 and P ∈ R2×2.

△V (η(k)) = V (η(k +∆k))− V (η(k))

= (Aη(k) + f(η(k)))TP (Aη(k) + f(η(k)))− η(k)TPη(k)

= −(Aη(k) + f(η(k)))TP (Aη(k) + f(η(k)))− η(k)TPη(k)

+2(Aη(k) + f(η(k)))TP (Aη(k) + f(η(k)))

= −(Aη(k) + f(η(k)))TP (Aη(k) + f(η(k)))− η(k)TPη(k)

+(Aη(k) + f(η(k)))TPAη(k) + (Aη(k) + f(η(k)))TPf(η(k))

+η(k)TATP (Aη(k) + f(η(k)))

+f(η(k))TP (Aη(k) + f(η(k))) (4.32)
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Based on the inequality xTy + yTx ≤ xTx+ yTy for any x, y ∈ Rn, we can derive

△V (η(k)) ≤ −(Aη(k) + f(η(k)))TP (Aη(k) + f(η(k)))− η(k)TPη(k)

+(Aη(k) + f(η(k)))TPAη(k)

+η(k)TATP (Aη(k) + f(η(k))) + f(η(k))Tf(η(k))

+(Aη(k) + f(η(k)))TP 2(Aη(k) + f(η(k)))

In terms of (4.30), we have

△V (η(k)) ≤ (Aη(k) + f(η(k)))T (P 2 − P )(Aη(k) + f(η(k)))

+η(k)T (ϖHTH − P )η(k) + (Aη(k) + f(η(k)))TPAη(k)

+η(k)TATP (Aη(k) + f(η(k)))

Therefore, we obtain

△V (η(k)) ≤
(

P (Aη(k) + f(η(k)))
Pη(k)

)T

×
(

I − P−1 AP−1

P−1AT ϖP−1HTHP−1 − P−1

)
×
(

P (Aη(k) + f(η(k)))
Pη(k)

)
If (

I − P−1 AP−1

P−1AT ϖP−1HTHP−1 − P−1

)
< 0 (4.33)

we have △V (η(k)) < 0.

Set Q = QT = P−1 and (4.33) can be written as(
I −Q AQ
QAT ϖQHTHQ−Q

)
< 0 (4.34)

Further, we have (
I −Q AQ
QAT −Q

)
+

(
0 0
0 ϖQHTHQ

)
< 0 (4.35)

In order to use Lemma 5, we rewrite (4.35) as(
I −Q AQ
QAT −Q

)
+

(
0

QHT

)
ϖI
(
0 HQ

)
< 0 (4.36)
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Set P1 =

(
I −Q AQ
QAT −Q

)
, P2 =

1
ϖ
I, and P3 =

(
0 HQ

)
. In terms of Lemma 5,

the matrix inequality can be described in the form of the linear matrix inequality

given in Proposition 7. Hence, the system (4.26) is asymptotically stable, and is also

finite-time stable since it is a discrete-time version of the FPSO algorithm, which

means that the discrete-time FPSO algorithm (4.23) converges within a finite-time

interval. �

Remark 15. In fact, if the parameters α, β, γ, a, and ω can satisfy the linear

matrix inequality (4.25), the discrete-time FPSO algorithm (4.23) converges within

a finite-time interval. However, how to choose the parameters is a hard problem.

In order to deal with this problem, we first select the parameters γ and a where γ

is used to control exploration ability and a does not influence the search ability of

the discrete-time FPSO algorithm. Then, we choose α and ω from Ωd in (4.24),

which can influence the convergence of the discrete-time FPSO algorithm. Finally,

by using Matlab LMI toolbox to solve the linear matrix inequality (4.25), we can get

the parameter β which is used to control convergence time.

4.4 Benchmark Functions

In this section, we will illustrate the optimization characteristics and performance of

the discrete-time FPSO algorithm through three ill-posed functions and twenty-five

benchmark functions.

4.4.1 Three Ill-Posed Functions

In this subsection, we will illustrate the characteristics of the proposed discrete-time

FPSO (DFPSO) algorithm based on three ill-posed functions: Griewank, Rastrigin,

and Ackley with two dimensions. A similar analysis has been given for the PSO

algorithm and the GPSO algorithm in [31, 33]. Moreover, the max function eval-

uation is limited to 4000 and the population size is 40. The parameters ω and α
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are given such that the corresponding algorithms converge. For the PSO algorithm,

0 < α < 4 and −1 < ω < 1. For the GPSO algorithm, 0 < α < 16, −3 < ω < 1,

and ∆t = 0.5. For the DFPSO algorithm, 0 < α < 32, −7 < ω < 1, ∆t = 0.5,

γ = 0.5, and β = 0.01. The success rates and average iterations over 100 simulations

(within a tolerance of 10−4) are shown in Figures 4.8-4.16 for Griewank, Rastrigin,

and Ackley, respectively. In these figures, the triangles denote the stability region

for three algorithms, that is, three algorithms converge when the parameters fall

into the triangles.

Remark 16. It should be pointed out that the decision on pi(k) are the same for

three algorithms. But, three algorithms possess different controllers ui(k).

From Figures 4.8-4.16, one can see that the proposed DFPSO algorithm can

obtain the higher success rates (A wider stability region with dark red) and lower

average iterations (A wider stability region with dark blue) within a wider range

of parameters. Hence, from more simulation results, we can conclude that the

better optimization results can be obtained only in the stability regions of three

algorithms. Moreover, the DFPSO algorithm provides a flexible mechanism of

parameter choice to obtain the better results for a class of ill-posed optimization

problems, which implies that the controller ui(k) has an important impact

on optimization results. In addition, one can also see that the higher success

rates and the lower average iterations are got for the DFPSO algorithm when the

parameters fall into −2.5 < ω < 0.2 and 0 < α < 10.

4.4.2 Twenty-Five Benchmark Functions

In this subsection, we will test the performance of the DFPSO algorithm based on

twenty-five benchmark functions listed in Table 4.1. It is worth mentioning that f1−

f10 are the unimodal functions where f6−f10 are from the reference [135] (The reader-

s can refer to [135] and visit the website http://www.ntu.edu.sg/home/EPNSugan/
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Table 4.1: The test functions.

Test functions n Optimum Domain Name

f1(x) =
∑n

i=1 x
2
i 30 0 [-100,100] Sphere

f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 0 [-10,10] Schwefel’s P2.22

f3(x) =
∑n

i=1(
∑i

j=1 xj)
2 30 0 [-100,100] Schwefel’s P1.2

f4(x) =
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] 30 0 [-2,2] Rosenbrock

f5(x) =
∑n

i=1(⌊xi + 0.5⌋)2 30 0 [-100,100] Step

f6(x) =
∑n

i=1 z
2
i + fbias1 , z = x− o 30 -450 [-100,100] Shifted Sphere

f7(x) =
∑n

i=1(
∑i

j=1 zj)
2 + fbias2 , z = x− o 30 -450 [-100,100] Shifted Schwefel’s P1.2

f8(x) =
∑n

i=1(10
6)

i−1
n−1 z2i + fbias3 , z = x− o 30 -450 [-100,100] Shifted Rotated High Condi-

tioned Elliptic

f9(x) = (
∑n

i=1(
∑i

j=1 zj)
2)(1+0.4|N(0, 1)|)+

fbias4 , z = x− o
30 -450 [-100,100] Shifted Schwefel’s P1.2 with

Noise in Fitness

f10(x) = max{|Aix−Bi|}+ fbias5 30 -310 [-100,100] Schwefel’s P2.6 with Global
Optimum on Bounds

f11(x) =
∑n

i=1 −xisin(
√

|xi|) 30 -12596.5 [-500,500] Schwefel

f12(x) =
∑n

i=1[x
2
i − 10cos(2πxi) + 10] 30 0 [-5.12,5.12] Rastrigin

f13(x) =
∑n

i=1[y
2
i − 10cos(2πyi) + 10] 30 0 [-5.12,5.12] Noncontinuous Rastrigin

f14(x) = −20exp(−0.2
√

1/n
∑n

i=1 x
2
i ) −

exp(1/n
∑n

i=1 cos2πxi) + 20 + e

30 0 [-32,32] Ackley

f15(x) = 1/4000
∑n

i=1 x
2
i −

∏n
i=1 cos(xi/

√
i)+

1
30 0 [-600,600] Griewank

f16(x) = π/n{10sin2(πy1) +
∑n−1

i=1 (yi −
1)2[1 + 10sin2(πyi+1)] + (yn − 1)2} +∑n

i=1 u(xi, 10, 100, 4), yi = 1 + 1
4
(xi + 1)1

30 0 [-50,50] Generalized Penalized

f17(x) = 1
10

{sin2(3πx1) +
∑n

i=1(xi − 1)2[1 +

sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]} +∑n
i=1 u(xi, 5, 100, 4)

1

30 0 [-50,50] Generalized Penalized

f18(x) =
∑n

i=1(
∑20

k=0[a
kcos(2πbk(xi +

0.5))])− n
∑20

k=0[a
kcos(πbk)], a = 0.5, b = 3

30 0 [-0.5,0.5] Weierstrass

f19(x) =
∑n−1

i=1 (100(z2i − zi+1)
2+(zi−1)2)+

fbias6 , z = x− o
30 390 [-100,100] Shifted Rosenbrock’s Func-

tion

f20(x) =
∑n

i=1
z2i

4000
−

∏n
i=1 cos(

zi√
i
+ 1 +

fbias7 ), z = (x− o)M

30 -180 [0,600] Shifted Rotated Griewank’s
Function without Bounds

f21(x) = −20exp(−0.2
√

1/n
∑n

i=1 z
2
i ) −

exp(1/n
∑n

i=1 cos2πzi) + 20 + e + fbias8 , z =
(x− o)M

30 -140 [-32,32] Shifted Rotated Ackley’s
Function with Global Opti-
mum on Bounds

f22(x) =
∑n

i=1[z
2
i − 10cos(2πzi) + 10] +

fbias9 , z = x− o
30 -330 [-5,5] Shifted Rastrigin’s Function

f23(x) =
∑n

i=1[z
2
i − 10cos(2πzi) + 10] +

fbias10 , z = (x− o)M
30 -330 [-5,5] Shifted Rotated Rastrigin’s

Function

f24(x) =
∑n

i=1(
∑20

k=0[a
kcos(2πbk(xi +

0.5))]) − n
∑20

k=0[a
kcos(πbk)] + fbias11 , a =

0.5, b = 3, z = (x− o)M

30 90 [-0.5,0.5] Shifted Rotated Weierstrass
Function

f25(x) =
∑n

i=1(Ai − Bi(x))
2 + fbias12 , Ai =∑n

i=1(aijsinαj + bijcosαj)
30 -460 [−π, π] Schwefel’s P2.13

1 ui(xj , a, k,m) =


k(xj − a)m, xj > a

0, −a ≤ xj ≤ a

k(−xj − 1)m, xj < −a
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to obtain the benchmark functions and the corresponding Matlab codes.). For the

multimodal functions, f11 − f18 are basic multimodal functions while f19 − f25 are

complex multimodal functions. In the simulations, the number of dimensions of all

the functions is set as 30 and a maximum function evaluation number is 1 × 105.

Each test is repeated 50 times independently. All simulations are carried out on

a laptop with two Cores(TM) Duo CPU T6670 running at 2.20GHz with 3GB of

RAM. The operation system is Windows Vista and the compiler is Matlab.

In order to illustrate the effectiveness of the proposed DFPSO algorithm, sev-

en state-of-the-art PSO variants, which include the global version PSO-1 algorithm

with a fixed inertia weight ω = 0.4 [131], the global version PSO-2 algorithm where

ω linearly changes from 0.9 to 0.4 [132], the ALC-PSO algorithm [13], the local ver-

sion SPSO2007 [110], the generalized PSO algorithm [32], the hierarchical version

CLPSO algorithm [77], and the SPSO2011 algorithm [110], are used as comparison

algorithms. The reasons of selecting the aforementioned PSO variants are stated in

the following. On the one hand, the six algorithm consisting of the PSO-1 algorith-

m, the PSO-2 algorithm, the ALC-PSO algorithm, the SPSO2007 algorithm, the

SPSO2011 algorithm, and CLPSO algorithm are representative and well-performed

PSO algorithms that cover the two categories of the improved PSO algorithms. For

instance, the PSO-1 algorithm and the PSO-2 algorithm are a class of the well-

known PSO variants where the algorithm’s parameters are adjusted to obtain the

new pi(k). The ALC-PSO algorithm, the SPSO2007 algorithm, the SPSO2011 al-

gorithm, and the CLPSO algorithm algorithm are another class of well-known PSO

variants where the communication topologies are defined to get the new pi(k). On

the other hand, the GPSO algorithm and the DFPSO algorithm provide the new

ui(k) and a flexible mechanism, which pi(k) proposed by well-known PSO variants

can be used to obtain the better search performance under the given ui(k). More-

over, the parameters of the comparison algorithms can be found in the corresponding
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references. For the DFPSO algorithm, we set ω = −0.7 if the test functions are the

unimodal functions or ω = −2.1 if the test functions are the multimodal functions.

Other parameters are ∆t = 0.5, γ = 0.5, α = 8.5, and β = 0.01. The population

size is set to 20 for all the algorithms.

Remark 17. It is worth noting that the proposed DFPSO algorithm only provides

a kind of the motion control mechanism of the particle swarm, that is, the DFPSO

algorithm gives a cooperative controller ui(k) with a finite-time convergence proper-

ty. In this dissertation, we mainly illustrate the significance of the motion control

mechanism. In other words, we do not design the decision algorithm pi(k). Instead,

we plan the motion trajectory of the particle swarm. Moreover, the proposed FPSO

algorithm is motivated by the problem of odour source localisation and can effectively

locate the odour source in a dynamical environment. Hence, the corresponding de-

cision algorithm, i.e. pi(k), is also developed according to the characteristics of the

odour source localisation problem. But, for the discrete-time optimization problems,

we do not give the corresponding decision algorithm. Hence, in numerical simula-

tions, we use (2.4) to calculate pi(k) and the method proposed by the SPSO2011

algorithm [110] to compute pi(k + 1).

Results on Unimodal Functions

In Table 4.2, the mean function errors, the minimal function errors, and standard

errors given by the different PSO variants after 1E + 05 are reported. One can see

from this table that the results yielded by the DFPSO algorithm are better than

those obtained by the other algorithms for a majority of test functions. Moreover,

the statistical results are also reported by using a two-sample Wilcoxon rank sum

test. The Wilcoxon rank sum test as a nonparametric statistical test can be used

to determine the statistical significance of the difference between two independent

samples. For the most test functions, the difference between the results yielded by
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the DFPSO algorithm and the results obtained by the other algorithms are statis-

tically significant. Finally, the number of functions where the DFPSO algorithm

yields significantly better or worse results is also shown in Table 4.2.

Results on Basic Multimodal Functions and Complex Multimodal Func-
tions

For the multimodal functions, the global optimum is difficult to be located, espe-

cially for the complex multimodal functions. In Table 4.3, the results for the basic

multimodal functions are reported. Form this table, the proposed DFPSO algorith-

m can produce the very competitive results for the most test functions. In order to

further test the effectiveness of the proposed algorithm, the results for the complex

multimodal functions are also given in Table 4.4. Similarly, the statistical test re-

sults by using the Wilcoxon rank sum test for the basic multimodal functions and

the complex multimodal functions are also listed in Table 4.3 and Table 4.4, respec-

tively. In addition, it is not real that we require that the DFPSO algorithm can

obtain the better optimization results for all the test functions. From Table 4.4, one

can see that the number of functions where the ALC-PSO algorithm can obtain the

better results is more than the one of functions where the DFPSO algorithm can

get the better results. One reason is that the DFPSO algorithm is designed for the

problem of odour source localisation, which means that we develop the proposed

algorithm according to the characteristics of the odour source localisation problem.

If the characteristics of test functions are different from the odour source localisation

problem, then the DFPSO algorithm maybe obtain the worse results.

4.5 Odour Source Localisation

In this section, we will deal with the problem of odour source localisation by using

the PSO-based finite-time motion control algorithm.
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Table 4.2: The function error values on the unimodal functions based on 50 runs.

Func. Index DFPSO PSO-1 PSO-2 ALC-PSO SPSO2007 GPSO SPSO2011 CLPSO

f1

mean1 4.14E-300 8.83E-17 1.44E-21 7.36E-70 7.15E-77 8.45E-191 9.09E-99 3.80E-12

best2 2.54E-314 1.45E-78 8.29E-26 1.07E-89 3.56E-83 6.53E-205 2.64E-104 4.76E-13

std3 0 4.36E-16 8.83E-21 5.15E-69 2.56e-76 0 3.50E-98 2.61E-12

pvalue
4 – 9.43E-14∗ 5 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗

f2

mean 7.92E-148 6.46E-32 9.42E-08 1.50E-31 4.33E-37 3.98E-67 3.01 3.20E-08

best 6.92E-153 1.64E-37 4.97E-16 4.49E-39 3.80E-16 3.28E-87 5.69E-01 1.14E-08

std 3.05E-147 2.02E-31 4.38E-07 8.65E-31 1.69E-36 1.78E-66 1.67 1.89E-08

pvalue – 9.43E-14∗ 9.32E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗

f3

mean 5.72E-136 5.10E-03 1.81E+04 2.90E-03 6.50E-05 7.92E-132 3.71E-10 9.58E+03

best 5.27E-152 5.82E-05 180.64 1.14E-04 7.67e-07 1.87E-178 1.78E-11 4.77E+03

std 2.74E-135 1.16E-02 8.29E+03 4.50E-03 9.03E-05 3.65E-131 5.20E-10 2.01E+03

pvalue – 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 0.21 9.43E-14∗ 9.43E-14∗

f4

mean 25.39 25.37 33.82 24.64 17.45 28.90 23.02 25.01

best 25.18 8.58 8.09E-01 8.95 14.30 28.80 20.62 22.05

std 1.21E-01 14.67 26.51 12.91 2.26 3.76E-02 1.81 9.32E-01

pvalue – 7.92E-06∗ 1.73E-02∗ 3.57E-08∗ 9.43E-14∗ 9.43E-14∗ 8.96E-09∗ 0.06

f5

mean 0 18.38 1.50 0 15.56 0 5.56 0

best 0 1 0 0 0 0 0 0

std 0 35.94 1.77 0 58.98 0 3.32 0

pvalue – 1.88E-14∗ 3.14E-09∗ 0.27 3.05E-11∗ 0.27 4.87E-14∗ 0.27

f6

mean 6.82E-14 2.50E-03 337.54 3.30E-03 7.95E-14 1.17E-12 7.38E-14 7.85E-13

best 5.68E-14 1.13E-13 1.13E-13 1.13E-13 5.68E-14 2.27E-13 0 2.84E-13

std 2.31E-14 1.65E-02 867.04 2.35E-02 5.74E-14 1.96E-12 2.87E-14 3.46E-13

pvalue – 1.21E-13∗ 9.54E-14∗ 5.20E-14∗ 0.59 4.11E-14∗ 0.32 4.07E-14∗

f7

mean 1.36E-05 6.90E-03 1.41E+04 2.20E-03 1.08E-04 37.39 3.03E-09 4.87E+03

best 5.46E-06 1.42E-04 339.06 2.00E-04 3.25E-06 1.57E-01 6.01E-11 3.12E+03

std 3.80E-06 1.78E-02 1.14E+04 2.3E-03 1.27E-04 92.48 4.62E-09 1.24E+03

pvalue – 9.43E-14∗ 9.43E-14∗ 3.01E-11∗ 1.72E-06∗ 9.43E-14∗ 9.43E-14∗ 3.01E-11∗

f8

mean 7.29E+05 4.51E+06 1.78E+07 4.15E+06 1.01E+06 9.77E+05 6.14E+05 4.16E+07

best 3.54E+05 1.07E+06 3.38E+06 1.25E+06 4.42E+05 2.97E+05 1.53E+05 2.44E+07

std 3.11E+05 2.55E+06 1.10E+07 2.52E+06 3.34E+05 4.23E+05 2.57E+05 1.06E+07

pvalue – 2.08E-13∗ 9.17E-14∗ 7.01E-11∗ 7.58E-04∗ 3.24E-02∗ 0.06 2.82E-11∗

f9

mean 1.98E+03 6.19E+03 3.59E+04 4.76E+03 6.33E+02 3.17E+04 3.26E+03 1.22E+04

best 6.62E+02 6.27E+02 1.18E+04 3.60E+02 8.39E+01 2.20E+04 8.55E+02 5.46E+03

std 1.36E+03 5.47E+03 1.37E+04 3.67E+03 6.90E+02 6.16E+03 1.51E+03 3.80E+03

pvalue – 4.95E-06∗ 9.43E-14∗ 1.17E-04∗ 1.49E-06∗ 3.01E-11∗ 6.88E-05∗ 3.11E-11∗

f10

mean 5.33E+03 6.50E+03 7.99E+03 6.16E+03 4.11E+03 7.83E+03 6.64E+03 3.69E+03

best 4.07E+03 3.97E+03 3.42E+03 3.28E+03 2.06E+03 4.56E+03 4.38E+03 2.56E+03

std 8.91E+02 1.58E+03 2.40E+03 1.50E+03 9.75E+02 1.63E+03 1.33E+03 4.43E+02

pvalue – 1.80E-02∗ 1.58E-08∗ 6.14E-04∗ 1.07E-05∗ 3.86E-08∗ 2.44E-05∗ 1.05E-10∗

sum.
better6 – 9 10 8 6 8 6 7

worse7 – 1 0 1 3 0 2 1

1mean: The value denotes the mean function error based on 50 runs.
2 best: The value is the minimal function error among 50 runs.
3 std: The value denotes the standard error based on 50 runs.
4 pvalue: The value is a p value of a two-sample Wilcoxon rank sum test for the function error
between the DFPSO algorithm and other comparison algorithms in the corresponding colum-
n. The p value being smaller means that the results obtained by the DFPSO algorithm are
significant compared with ones obtained by other algorithms.

5 ∗: The difference between two samples is significant at level α = 0.05.
6 better : The number of functions where the DFPSO algorithm obtains significantly better
results.

7worse : The number of functions where the DFPSO algorithm obtains significantly worse results.
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Table 4.3: The function error values on the basic multimodal functions based on 50
runs.

Func. Index DFPSO PSO-1 PSO-2 ALC-PSO SPSO2007 GPSO SPSO2011 CLPSO

f11

mean1 5.66E+03 3.44E+03 1.51E+03 1.32 4.37E+03 5.06E+03 5.02E+03 3.78E+01

best2 4.01E+03 2.05E+03 1.07E+03 2.33E-02 2.19E+03 2.95E+03 2.68E+03 3.11E+01

std3 8.54E+02 6.59E+02 2.70E+02 1.70 7.95E+02 8.70E+02 1.00E+03 3.61

pvalue
4 – 1.32E-10∗5 2.66E-11∗ 3.01E-11∗ 1.60E-06∗ 1.69E-02∗ 1.76E-02∗ 3.01E-11∗

f12

mean 9.63E-11 7.28E+01 8.05E+01 1.86E+01 4.99E+01 3.54E+01 3.25E+01 1.85E+01

best 1.70E-13 3.58E+01 2.68E+01 8.95 2.78E+01 1.20E+01 1.69E+01 1.01E+01

std 1.24E-10 2.11E+01 3.23E+01 5.66 1.29E+01 1.91E+01 9.12 6.70

pvalue – 2.91E-11∗ 2.91E-11∗ 2.88E-11∗ 2.90E-11∗ 2.91E-11∗ 2.89E-11∗ 2.91E-11∗

f13

mean 2.89E-10 6.04E+01 1.16E+02 4.2E-01 4.78E+01 3.94E+01 5.85E+01 1.96E+01

best 6.82E-13 7 4.20E+01 6.20E-10 2.9E+01 1.00E+01 2.4E+01 1.04E+01

std 4.11E-10 3.00E+01 4.41E+01 2.6E-01 1.40E+01 2.71E+01 2.50E+01 5.48

pvalue – 2.87E-11∗ 2.88E-11∗ 3.42E-11∗ 2.85E-11∗ 2.89E-11∗ 2.87E-11∗ 2.89E-11∗

f14

mean 6.83E-07 2.48 1.99E+01 1.95 1.73 5.32E-01 2.26 6.11E-02

best 1.11E-09 5.77E-14 1.97E+01 9.31E-01 7.99E-15 1.06E-01 9.31E-01 7.57E-05

std 7.47E-07 1.60 3.78E-02 6.81E-01 6.64E-01 3.32E-01 5.75E-01 1.87E-01

pvalue – 8.45E-09∗ 1.93E-11∗ 3.01E-11∗ 5.43E-10∗ 3.01E-11∗ 2.99E-11∗ 3.01E-11∗

f15

mean 6.28E-14 4.91E-02 9.8E-03 4.19E-02 4.48E-02 1.50E-02 9.8E-03 3.96E-04

best 0 0 0 2.22E-16 0 1.12E-31 1.11E-16 2.51E-08

std 1.07E-13 7.93E-02 1.21E-02 6.42E-02 1.48E-01 2.67E-02 9.3E-03 6.15E-04

pvalue – 1.58E-04∗ 0.27 3.08E-04∗ 2.5E-03∗ 3.79E-10∗ 4.7E-03∗ 2.99E-11∗

f16

mean 3.17E-25 9.50E-01 1.76E-01 6.23E-02 2.56E-01 2.21E-01 1.38 1.24E-09

best 7.53E-26 2.08E-32 3.84E-21 1.82E-32 1.57E-32 2.14E-06 1.57E-32 2.45E-11

std 2.16E-25 1.59 2.85E-01 1.14E-01 3.72E-01 2.60E-01 2.16 1.50E-09

pvalue – 7.9E-03∗ 2.84E-11∗ 0.18 0.37 2.91E-11∗ 9.23E-06∗ 2.91E-11∗

f17

mean 1.16E-01 1.68E-01 1.05E-02 1.03E-02 1.37E-01 1.7E-03 9.4E-03 3.09E-10

best 1.34E-11 2.58E-32 1.41E-22 2.95E-32 1.34E-32 1.08E-08 1.34E-32 3.74E-11

std 4.81E-01 5.10E-01 1.36E-02 1.51E-02 4.35E-01 7.8E-03 2.25E-02 4.99E-10

pvalue – 1.5E-03∗ 1.01E-04∗ 8.30E-05∗ 1.45E-04∗ 4.49E-07∗ 1.19E-06∗ 9.91E-08∗

f18

mean 7.1E-03 6.01 6.35E-01 2.15 2.36 8.69 9.95 3.00E-04

best 1.0E-03 1.85 3.03E-04 1.39E-01 4.95E-01 4.09 5.56 1.47E-04

std 5.3E-03 2.04 6.6E-01 1.26 1.39 2.49 1.65 1.11E-04

pvalue – 3.01E-11∗ 7.68E-08∗ 3.01E-11∗ 3.01E-11∗ 3.01E-11∗ 3.01E-11∗ 3.01E-11∗

sum.
better6 – 7 5 5 6 6 6 5

worse7 – 1 2 2 1 2 2 3

1mean: The value denotes the mean function error based on 50 runs.
2 best: The value is the minimal function error among 50 runs.
3 std: The value denotes the standard error based on 50 runs.
4 pvalue: The value is a p value of a two-sample Wilcoxon rank sum test for the function error
between the DFPSO algorithm and other comparison algorithms in the corresponding column.
The p value being smaller means that the results obtained by the DFPSO algorithm are
significant compared with ones obtained by other algorithms.

5 ∗: The difference between two samples is significant at level α = 0.05.
6 better : The number of functions where the DFPSO algorithm obtains significantly better
results.

7worse : The number of functions where the DFPSO algorithm obtains significantly worse
results.
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Table 4.4: The function error values on the complex multimodal functions based on
50 runs.

Func. Index DFPSO PSO-1 PSO-2 ALC-PSO SPSO2007 GPSO SPSO2011 CLPSO

f19

mean1 1.95E+02 5.29E+01 5.26E+07 7.35E+01 4.90E+01 1.71E+02 1.04E+03 1.23E+02

best2 2.61E+01 1.38E-01 1.17E-01 3.46E-02 2.30E-02 2.54E-01 1.85E+01 4.23E+01

std3 2.47E+02 7.02E+01 1.31E+08 9.64E+01 6.95E+01 2.09E+02 1.96E+03 6.23E+01

pvalue
4 – 3.66E-06∗5 0.55 2.20E-04∗ 1.82E-07∗ 0.65 4.95E-02∗ 0.51

f20

mean 4.69E+03 4.71E+03 4.69E+03 2.89E+03 4.69E+03 4.69E+03 4.89E+03 4.69E+03

best 4.69E+03 4.69E+03 4.69E+03 2.17E+03 4.69E+03 4.69E+03 4.77E+03 4.69E+03

std 3.67E-12 3.39E+01 3.67E-12 3.47E+02 3.67E-12 3.67E-12 9.33E+01 3.67E-12

pvalue – 4.67E-19∗ Nan 3.37E-20∗ Nan Nan 3.31E-20∗ Nan

f21

mean 20.9264 20.9449 20.9383 20.9496 20.9587 20.9489 20.9259 20.9889

best 20.7679 20.7679 20.7465 20.7207 20.7672 20.7682 20.7311 20.8461

std 6.01E-02 6.79E-02 6.38E-02 6.7E-02 6.74E-02 6.67E-02 7.25E-02 5.33E-02

pvalue – 1 0.3431 3.7E-02∗ 5.9E-02∗ 7.81E-02∗ 0.8442 8.06E-07∗

f22

mean 32.40 81.96 117.46 20.30 51.19 103.79 73.27 72.89

best 11.45 43.75 63.28 5.96 22.88 42.78 42.78 61.28

std 2.13E+01 2.05E+01 2.06E+01 7.33 1.64E+01 2.60E+01 1.80E+01 6.27

pvalue – 1.6E-10∗ 2.31E-13∗ 4.8E-03∗ 8.49E-06∗ 2.71E-12∗ 1.26E-09∗ 5.09E-10∗

f23

mean 130.47 146.28 204.53 152.05 78.84 170.57 83.61 190.55

best 100.98 77.60 106.15 77.60 31.83 103.47 41.80 157.32

std 1.92E+01 4.77E+01 4.09E+01 4.43E+01 3.74E+01 3.56E+01 2.43E+01 1.52E+01

pvalue – 0.24 5.59E-11∗ 2.7E-02∗ 1.02E-07∗ 2.49E-07∗ 3.94E-10∗ 1.33E-12∗

f24

mean 26.02 29.22 32.11 30.71 35.26 26.48 30.24 33.49

best 20.28 22.46 25.96 20.97 28.88 18.62 18.80 29.19

std 2.97 2.84 2.65 3.44 2.33 2.61 5.15 1.54

pvalue – 7.80E-05∗ 1.44E-11∗ 3.16E-07∗ 1.47E-13∗ 0.86 2.92E-05∗ 1.27E-13∗

f25

mean 9.39E+05 4.64E+04 1.92E+05 4.63E+04 8.05E+05 8.22E+05 1.09E+06 6.14E+05

best 6.78E+05 3.74E+03 7.95E+04 3.24E+03 3.09E+04 1.58E+05 6.81E+05 4.55E+05

std 1.23E+05 3.68E+04 8.77E+04 3.23E+04 1.82E+05 2.42E+05 1.94E+05 7.36E+04

pvalue – 9.43E-14∗ 9.43E-14∗ 9.43E-14∗ 4.95E-04∗ 0.06 1.08E-04∗ 2.88E-13∗

sum.
better6 – 3 3 3 3 3 5 4

worse7 – 2 1 4 3 0 1 1

1mean: The value denotes the mean function error based on 50 runs.
2 best: The value is the minimal function error among 50 runs.
3 std: The value denotes the standard error based on 50 runs.
4 pvalue: The value is a p value of a two-sample Wilcoxon rank sum test for the function error
between the DFPSO algorithm and other comparison algorithms in the corresponding column.
The p value being smaller means that the results obtained by the DFPSO algorithm are
significant compared with ones obtained by other algorithms.

5 ∗: The difference between two samples is significant at level α = 0.05.
6 better : The number of functions where the DFPSO algorithm obtains significantly better
results.

7worse : The number of functions where the DFPSO algorithm obtains significantly worse
results.
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Table 4.5: The parameters used in (4.12) for the motion control.

β γ α a ω vmax(m/s) ωmax(rad/s)

0.01 0.5 8 0.5 -0.5 0.8 1.57

4.5.1 Motion Process of a Group of Robots

In the following, we will test the search efficiency of a multi-robot system coordinated

by the proposed PSO-based finite-time motion control algorithm (Continuous-time

FPSO algorithm, CFPSO). The parameters β, γ, α, a, ω, which are given in Table

4.5 in terms of the numerical results for the DFPSO algorithm, are used to guarantee

the convergence of the motion control while the parameters vmax and ωmax are used

to limit the maximum linear velocity and angular velocity of robots, respectively. It

is worth mentioning that the robot group will search for the odour clues along the

direction of y axis from the initial positions (right-up corner) to the target positions

(right-down corner) in the initial stage. Once the odour clues are detected by any

robot, the proposed CFPSO algorithm will start to run. Moreover, we use a circle

where the real position of the odour source is regarded as a center with a predefined

radius 1m as one of termination conditions, which means that the search task is

terminated if any robot enters the circle. The maximal search time 1500s is used as

another termination condition.

As an example, the motion process of the robot group controlled by the proposed

CFPSO algorithm is illustrated in Figures 4.17-4.18. In Figure 4.17(a), the initial

positions of the robot group are set at the right-up corner in the search region. In

Figure 4.17(b) and Figure 4.18(a), the robot group controlled by ui(t) traces the

plume and moves along the plume in the light of the probable positions of the odour

source hi(k). In Figure 4.18(b), the robot group finds the real odour source. From 0s

to about 40s, the robots keep the predefined position (80m,0m) of the odour source.

After about 40s, the robot group detects the odour clues, and then the proposed
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CFPSO algorithm starts to run. Correspondingly, the prediction errors and average

prediction errors based on 50 runs of five robots for the position of the odour source

are shown in Figure 4.19 where the real position of the odour source is located at

(10m,0m). From Figure 4.19, one can see that the average prediction error of hic(k),

i = 1, 2, 3, 4, 5 in (3.31) for the position of the odour source approaches to 2m.

Among 5 robots, the best prediction prediction error is lesser than 1m with a higher

proportion for 50 runs. The aforementioned simulation results mainly illustrate

that the prediction error for hic(k) calculated in (3.31) under a given finite-time

cooperative controller (4.12) can provide stable prediction results for the probable

position of the odour source, which reflects the importance of finite-time convergence

for motion control.

4.5.2 Comparison Results

In this subsection, we will compare the search efficiency of the multi-robot system

coordinated by the proposed CFPSO algorithm with several selected algorithms,

which include the PSO algorithm [93], the PPSO-IM algorithm [85], the LPSO al-

gorithm [87], the CPSO algorithm [53], the WUI-45 algorithm [53], and the WUII

algorithm [53]. It is worth mentioning that the PPSO-IM, PSO, and CPSO algo-

rithms only utilize concentration magnitude information while the WUI-45, WUII,

and LPSO algorithms make use of not only concentration magnitude information

but also wind information. The parameters of the seven algorithms can be found in

[85], [53], [93], and [87], respectively. Furthermore, we use three evaluation index-

es to estimate the search performance of multi-robot systems coordinated by these

algorithms. These indexes are success rate, search time, and consumed energy. Fi-

nally, we will test all the algorithms in the nine scenarios listed in Table 4.6, but use

the new termination conditions, that is, the maximum search time is set as 1000s

for shortening the experimental time and the radius of the circle is still set as 1m.
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Table 4.6: The nine scenarios.

cases The position of odour source (x, y) The initial wind speed (vx, vy)

case 1 (10, 0) (1,0)

case 2 (30, 10) (1,0)

case 3 (30, -20) (1,0)

case 4 (10, 0) (1.5,0)

case 5 (30, 10) (1.5,0)

case 6 (30, -20) (1.5,0)

case 7 (10, 0) (0.8,0)

case 8 (30, 10) (0.8,0)

case 9 (30, -20) (0.8,0)

Remark 18. The seven algorithms are chosen because they have been used to deal

with the problem of odour source localisation. Hence, it is unfair to choose

other kinds of PSO algorithms that are not designed for the problem of

odour source localisation. It should be indicated that the seven algorithms, which

include the PSO algorithm[93], the CPSO algorithm [53], the WUI-45 algorithm [53],

the WUII algorithm [53], the PPSO-IM algorithm [85], and the LPSO algorithm [87],

use the same initial search process as the proposed CFPSO algorithm and run at the

same simulation environment. Moreover, the simulation results not only reflect the

importance on the position prediction of the odour source, but also illustrate the

effectiveness of the finite-time motion control in the dynamical environment.

Remark 19. It should also be pointed out that the initial wind speed and the po-

sition of the odour source are two key parameters in Table 1.1 for the dynamical

environment because a combination of the wind speed and the position of the odour

source reflects a class of the environmental condition in the real world. Therefore,

we design nine scenarios described in Table 4.6 in order to validate the effectiveness

of the proposed CFPSO algorithm.

Remark 20. In the simulations, we choose 3 robots and 5 robots to locate the odour



102
CHAPTER 4. PARTICLE SWARM OPTIMIZATION BASED FINITE-TIME

MOTION CONTROL

source, respectively. The reasons are stated in the following. From the viewpoint

of engineering, if we can use a few robots to successfully deal with this problem,

we will do not use more robots due to costs. In addition, In terms of the third

characteristics of the odour source localisation problem described in Chapter 1, a

few robots can also sample sufficient odour concentrations through the appropriate

design of the the robot behavior.

In Table 4.7 and Table 4.8, compared with these methods like the PSO algorithm,

the CPSO algorithm, the WUI-45 algorithm, the WUII algorithm, the PPSO-IM

algorithm, and the LPSO algorithm, the CFPSO algorithm generates the better

success rates and search time for the different numbers of robots. Correspondingly,

the statistical results by using the Wilcoxon rank sum test are also given in Table 4.7

and Table 4.8. Moreover, since path length denotes the energy consumed by robots,

the shorter path length means the better search performance. From Figures 4.20-

4.29, one can also see that robots coordinated by the CFPSO algorithm consume the

lesser energy than those coordinated by the PSO algorithm, the CPSO algorithm,

the WUI-45 algorithm, the WUII algorithm, the PPSO-IM algorithm, and the LPSO

algorithm.

4.6 Conclusion

A PSO-based finite-time motion control algorithm has been proposed to deal with

the problem of odour source localisation. Specifically, we have derived a continuous-

time FPSO algorithm by introducing a nonlinear damping item and a parameter into

the continuous model of the PSO algorithm such that the continuous-time FPSO

algorithm can converge within a finite-time interval and its exploration capability

can be improved. Then, we have used a Lyapunov approach to analyze the finite-

time convergence of the continuous-time FPSO algorithm. Next, we have given a

discrete-time FPSO algorithm by employing the same dicretization scheme as the



4.6. CONCLUSION 103

Table 4.7: The statistical results of search time for 3 robots based on 50 runs.

Robots Index CFPSO PSO CPSO WUI-45 WUII PSO-IM LPSO

case 1

suc%1 100 4 6 2 34 80 100

meantime
2 162.51 991.53 990.29 995.90 837.40 602.15 289.79

stdtime
3 18.76 43.99 42.04 29.01 265.65 264.16 71.55

ptime
4 – 6.63E-20∗ 6 9.12E-20∗ 4.73E-20∗ 1.74E-18∗ 6.80E-18∗ 1.95E-17∗

rank 5 1 6 5 7 4 3 2

case 2

suc% 98 54 32 32 20 86 94

meantime 201.12 860.28 894.94 917.18 894.69 398.28 348.87

stdtime 158.12 176.30 187.32 149.54 243.62 324.99 216.94

ptime – 1.08E-16∗ 2.53E-17∗ 2.11E-17∗ 3.55E-17∗ 1.92E-7∗ 1.05E-9∗

rank 1 4 5 7 6 3 2

case 3

suc% 100 28 14 14 22 84 96

meantime 123.85 933.28 967.13 960.97 871.66 389.52 237.72

stdtime 46.39 137.94 94.08 109.70 260.19 333.28 196.32

ptime – 1.12E-18∗ 2.75E-19∗ 2.75E-19∗ 1.10E-18∗ 6.35E-12∗ 1.34E-10∗

rank 1 5 6 7 4 3 2

case 4

suc% 98 4 4 2 34 74 100

meantime 216.19 987.95 991.50 997.87 826.31 680.63 292.40

stdtime 120.37 59.64 54.23 15.30 282.60 262.37 76.79

ptime – 2.79E-19∗ 2.72E-19∗ 1.87E-19∗ 9.58E-16∗ 7.44E-16∗ 1.22E-9∗

rank 2 5 6 7 4 3 1

case 5

suc% 100 48 50 22 22 90 94

meantime 187.45 887.01 825.84 936.26 830.12 338.01 440.65

stdtime 106.52 161.25 211.22 143.65 294.16 290.64 277.63

ptime – 6.25E-18∗ 1.87E-17∗ 1.03E-18∗ 8.24E-17∗ 9.74E-6∗ 6.19E-11∗

rank 1 6 4 7 5 3 2

case 6

suc% 100 34 40 16 18 86 98

meantime 137.50 898.92 878.68 959.89 884.71 350.81 247.74

stdtime 72.09 171.79 189.88 123.71 264.31 299.42 171.16

ptime – 2.10E-18∗ 2.82E-18∗ 3.73E-19∗ 2.46E-18∗ 1.57E-9∗ 5.36E-10∗

rank 1 5 4 7 6 3 2

case 7

suc% 100 4 0 0 42 70 100

meantime 191.26 991.01 1000 1000 823.40 705.99 305.69

stdtime 37.71 68.16 0 0 258.32 278.97 69.34

ptime – 6.63E-20∗ 3.31E-20∗ 3.31E-20∗ 1.61E-17∗ 2.61E-17∗ 1.12E-14∗

rank 1 5 6 6 4 3 2

case 8

suc% 100 50 34 24 40 92 96

meantime 158.87 856.64 894.72 950.38 826.42 328.47 402.56

stdtime 45.22 185.59 185.61 104.28 257.13 270.58 268.09

ptime – 3.89E-18∗ 1.85E-18∗ 7.98E-19∗ 4.33E-18∗ 2.42E-12∗ 2.14E-14∗

rank 1 5 6 7 4 3 2

case 9

suc% 100 6 6 4 24 84 98

meantime 129.29 987.23 979.37 997.16 835.19 370.34 242.93

stdtime 58.33 51.78 91.22 16.91 284.96 312.06 166.77

ptime – 9.12E-20 ∗ 9.11E-20∗ 6.63E-20∗ 3.06E-18∗ 3.90E-10∗ 1.23E-10∗

rank 1 6 5 7 4 3 2

avg-rank 1.11 5.22 5.22 6.88 4.55 3 1.88

1 suc%: The value denotes the success rate among 50 runs.
2meantime: The value is the mean of search time among 50 runs.
3 stdtime: The value is the standard error of search time among 50 runs.
4 ptime: The value is a p value of a two-sample Wilcoxon rank sum test for search time
between the CFPSO algorithm and other comparison algorithms in the corresponding
column. The p value being smaller means that the results obtained by the CFPSO
algorithm are significant compared with results obtained by other algorithms.

5Composite ranking is applied to all the algorithms, which is evaluated by the descend-
ing order of suc% and the ascending order of search time.

6 ∗: The difference between two samples is significant at level α = 0.05.
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Table 4.8: The statistical results of search time for 5 robots based on 50 runs.

Robots Index CFPSO PSO CPSO WUI-45 WUII PSO-IM LPSO

case 1

suc%1 100 10 4 8 72 90 100

meantime
2 165.06 983.61 993.15 975.72 718.74 616.85 267.54

stdtime
3 24.55 53.38 37.68 85.26 256.87 206.78 53.14

ptime
4 – 1.63E-19∗ 6 6.63E-20∗ 1.23E-19∗ 1.16E-17∗ 1.72E-17∗ 3.01E-16∗

rank 5 1 6 7 5 4 3 2

case 2

suc% 100 82 74 68 52 100 100

meantime 141.25 698.38 745.51 793.25 687.27 246.89 403.68

stdtime 32.96 197.59 203.52 217.49 334.58 165.65 258.71

ptime – 6.87E-18∗ 6.50E-18∗ 6.83E-18∗ 1.10E-17∗ 1 7.07E-16∗

rank 1 4 5 7 6 2 3

case 3

suc% 100 8 14 6 36 98 92

meantime 103.05 984.29 967.58 983.06 798.46 207.22 349.77

stdtime 20.09 67.87 100.20 80.12 311.03 174.64 279.45

ptime – 1.23E-19∗ 2.75E-19∗ 9.11E-20∗ 2.53E-18∗ 1.12E-12∗ 2.41E-4∗

rank 1 7 5 6 4 2 3

case 4

suc% 100 20 18 26 68 98 100

meantime 168.50 962.01 969.25 945.41 655.06 526.41 256.18

stdtime 22.57 110.19 93.63 104.02 308.83 216.85 50.23

ptime – 5.42E-19∗ 4.38E-19∗ 9.52E-19∗ 8.18E-18∗ 8.46E-18∗ 8.37E-16∗

rank 1 6 7 5 4 3 2

case 5

suc% 100 72 68 62 28 98 94

meantime 151.45 742.11 764.81 817.17 834.95 244.33 366.92

stdtime 62.07 229.53 210.05 200.53 283.17 184.68 262.45

ptime – 1.47E-17∗ 8.69E-18∗ 6.94E-18∗ 3.47E-18∗ 1.54E-8∗ 4.19E-13∗

rank 1 4 5 6 7 2 3

case 6

suc% 100 64 38 48 38 98 90

meantime 101.45 799.81 871.54 887.91 789.09 222.06 380.05

stdtime 11.84 199.61 189.20 158.13 303.71 166.67 319.44

ptime – 5.67E-18∗ 2.23E-18∗ 3.60E-18∗ 2.23E-18∗ 1.73E-15∗ 3.30E-17∗

rank 1 4 7 6 5 2 3

case 7

suc% 100 6 2 6 64 94 100

meantime 175.58 984.26 997.51 986.49 725.37 583.19 306.42

stdtime 34.56 85.47 17.65 60.61 287.51 202.52 76.40

ptime – 9.12E-20∗ 4.73E-20∗ 9.12E-20∗ 6.14E-17∗ 1.36E-17∗ 1.31E-15∗

rank 1 5 7 6 4 3 2

case 8

suc% 100 68 74 58 46 98 94

meantime 132.69 737.01 756.74 822.34 762.34 240.75 403.15

stdtime 20.36 217.92 203.45 198.85 304.75 185.45 273.43

ptime – 6.05E-18∗ 6.50E-18∗ 4.97E-18∗ 3.99E-18∗ 9.66E-13∗ 6.71E-17∗

rank 1 5 4 7 6 2 3

case 9

suc% 100 2 0 2 52 98 100

meantime 108.38 999.29 1000 999.48 748.79 206.56 237.65

stdtime 27.48 5.08 0 3.74 314.80 189.82 234.70

ptime – 4.73E-20∗ 3.30E-20∗ 4.73E-20∗ 7.23E-18∗ 7.64E-10∗ 8.81E-10∗

rank 1 5 7 6 4 3 2

average rank 1 5.11 6 6 4.88 2.44 2.55

1 suc%: The value denotes the success rate among 50 runs.
2meantime: The value is the mean of search time among 50 runs.
3 stdtime: The value is the standard error of search time among 50 runs.
4 ptime: The value is a p value of a two-sample Wilcoxon rank sum test for search time
between the CFPSO algorithm and other comparison algorithms in the corresponding
column. The p value being smaller means that the results obtained by the CFPSO
algorithm are significant compared with results obtained by other algorithms.

5Composite ranking is applied to all the algorithms, which is evaluated by the descend-
ing order of suc% and the ascending order of search time.

6 ∗: The difference between two samples is significant at level α = 0.05.
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GPSO algorithm and analyzed the convergence of the discrete-time FPSO algorithm.

Finally, this study has shown the characteristics of the discrete-time FPSO algorithm

through numerical simulations on the benchmark functions and the performance

capabilities of the continuous-time FPSO algorithm that is used as the PSO-based

finite-time motion control algorithm for the problem of odour source localisation.
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Figure 4.8: Success rates and average iterations for the Griewank function for PSO.
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Figure 4.9: Success rates and average iterations for the Griewank function for GPSO.
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Figure 4.10: Success rates and average iterations for the Griewank function for
DFPSO.
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Figure 4.11: Success rates and average iterations for the Rastrigin function for PSO.
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Figure 4.12: Success rates and average iterations for the Rastrigin function for
GPSO.
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(a) Success rates for DFPSO ∆t = 0.5, γ = 0.5, β = 0.01
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(b) Average iterations for DFPSO ∆t = 0.5, γ = 0.5, β = 0.01

Figure 4.13: Success rates and average iterations for the Rastrigin function for
DFPSO.
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(b) Average iterations for PSO

Figure 4.14: Success rates and average iterations for the Ackley function for PSO.
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(b) Average iterations for GPSO ∆t = 0.5

Figure 4.15: Success rates and average iterations for the Ackley function for GPSO.
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(a) Success rates for DFPSO ∆t = 0.5, γ = 0.5, β = 0.01

omega

a
lp

h
a

 

 

−7 −6 −5 −4 −3 −2 −1 0 1
0

5

10

15

20

25

30

30

40

50

60

70

80

90

(b) Average iterations for DFPSO ∆t = 0.5, γ = 0.5, β = 0.01

Figure 4.16: Success rates and average iterations for the Ackley function for DFPSO.
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Figure 4.17: The search process of five robots for T=0s and T=49s.
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(a) T=128

(b) T=150

Figure 4.18: The search process of five robots for T=128s and T=150s.
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Figure 4.19: The prediction errors. xs is the real position of the odour source.
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Figure 4.20: The consumed energy for case 1 and case 2 based on 3 robots with 50
runs.
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Figure 4.21: The consumed energy for case 3 and case 4 based on 3 robots with 50
runs.



120
CHAPTER 4. PARTICLE SWARM OPTIMIZATION BASED FINITE-TIME

MOTION CONTROL

500

1000

1500

2000

2500

3000

3500

4000

4500

CFPSO PSO CPSO WUI−45 WUII PPSO−IM LPSO

C
o

n
su

m
e

d
 E

n
e

rg
y(

m
)

(a) Case 5

500

1000

1500

2000

2500

3000

3500

4000

4500

CFPSO PSO CPSO WUI−45 WUII PPSO−IM LPSO

C
o

n
su

m
e

d
 E

n
e

rg
y(

m
)

(b) Case 6

Figure 4.22: The consumed energy for case 5 and case 6 based on 3 robots with 50
runs.
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Figure 4.23: The consumed energy for case 7 and case 8 based on 3 robots with 50
runs.
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Figure 4.24: The consumed energy for case 9 based on 3 robots with 50 runs.
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Figure 4.25: The consumed energy for case 1 and case 2 based on 5 robots with 50
runs.
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Figure 4.26: The consumed energy for case 3 and case 4 based on 5 robots with 50
runs.
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Figure 4.27: The consumed energy for case 5 and case 6 based on 5 robots with 50
runs.
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Figure 4.28: The consumed energy for case 7 and case 8 based on 5 robots with 50
runs.
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Figure 4.29: The consumed energy for case 9 based on 5 robots with 50 runs.





Chapter 5

Consensus-Based Finite-Time
Motion Control

5.1 Introduction

In order to use the characteristic of the wider detection region of the multi-robot

system, a consensus-based finite-time motion control algorithm, which consists of a

finite-time parallel motion control algorithm and a finite-time circular motion control

algorithm, is proposed in Section 5.2. Then, we test the performance capabilities of

the finite-time parallel motion control algorithm and the finite-time circular motion

control algorithm in Section 5.3. Next, the effectiveness of the consensus-based

finite-time motion control algorithm for odour source localisation is illustrated in

Section 5.4. Finally, the conclusion is presented in Section 5.5.

5.2 A Consensus-Based Finite-Time Motion Con-

trol Algorithm

In this section, we will briefly describe the background of consensus algorithm and

then propose a finite-time consensus algorithm. According to the proposed algo-

rithm, we will give a finite-time parallel motion control algorithm and a finite-time

circular motion control algorithm. Finally, we will summarize the consensus-based

finite-time motion control algorithm.
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5.2.1 The Consensus Algorithm

Recently, there has been a surge of interest among control scientists in consen-

sus problems [2, 143, 150, 8, 22, 74, 96, 10, 100, 151, 147, 11] due to the work of

Olfati-Saber and Murray [108] (2004). On the basis of the research work [108], for

consensus problems, discrete-time controllers [51, 99, 12] and continuous-time con-

trollers [117, 118, 9] were developed for a discrete-time multi-robot system and a

continuous-time multi-robot system, respectively. For the discrete-time multi-robot

system, a controller classification is briefly shown in Figure 5.1 and mainly includes

linear controllers [12, 99, 51, 30] and cost function based controllers (prediction con-

trol model [62, 25, 61, 54] and game theory [127, 126]) for one-order kinematics

and two-order dynamics. For the continuous-time multi-robot system, a controller

classification [95, 107] is briefly shown in Figure 5.2 and mainly consists of linear con-

trollers [108, 117, 118], variable structure controllers [9], and finite-time controllers

[144, 142] for one-order kinematics and two-order dynamics.

Discrete-time 

System

One-order 

Kinematics

Two-order 

Dynamics

Linear Controller

Cost Function 

Based Controller

Cost Function 

Based Controller

Figure 5.1: A controller classification for a discrete-time multi-robot system.

Because of the time-varying characteristic of the plume, there exist two cases for

the problem of odour source localisation. One case is that the multi-robot system

detects the chemical signal while the other case is that the multi-robot system loses

the chemical signal. When the multi-robot system receives the chemical signal, the

plume linking the odour source with the multi-robot system provides an important

clue for the position of the odour source. Moving along the plume is an efficient
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Controller
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Controller
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Controller

Figure 5.2: A controller classification for a continuous-time multi-robot system.

approach to locate the odour source. When the multi-robot system may not detect

the chemical signal, Circling a probable position of the odour source is an efficient

approach to collect odour clues. According to the aforementioned idea, the design

of controllers for the single robot should enable the robot group to parallel move

for tracing the plume [128, 129, 103] and to circularly move for searching for odour

clues [94, 72, 104, 79, 23] such that the characteristic of the wider detection region of

the multi-robot system can be efficiently used. Hence, the consensus algorithm with

finite-time convergence can be used to design the parallel motion control algorithm

and the circular motion control algorithm. The idea is in part from the work on the

design of finite-time controllers [17, 144, 97, 136, 41] and from the study of swarming

behaviors [106, 18, 32, 101].

5.2.2 The Finite-Time Consensus Algorithm

In this subsection, we provide a class of new nonlinear finite-time consensus protocol,

which is the basis of the finite-time parallel motion control algorithm and the finite-

time circular motion control algorithm. The proposed finite-time consensus protocol
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is given by

ui = sig

(
N∑
j=1

aij

(
β(xj − xi) + γ(vj − vi)

))a

+
N∑
j=1

aij

(
β(xj − xi) + γ(vj − vi)

)
(5.1)

where 0 < a < 1, β > 0, and γ > 0.

Remark 21. It is obvious to see that if the nonlinear item is canceled, then the

consensus protocol described by (5.1) becomes a linear consensus protocol, which

was studied by Ren and Beard [118] (2008). If γ = 0 for a single integrator, then

the consensus protocol given by (5.1) has been investigated by Xiao et al. [144]

(2009). Hence, the linear consensus protocol described in [118] and the nonlinear

consensus protocol given in [144] can be regarded as special cases of the nonlinear

consensus protocol (5.1).

The following proposition characterizes the finite-time convergence property of

the nonlinear consensus protocol (5.1) as

Proposition 8. Consider the continuous-time model (1.7). Let µi denote the ith

nonzero eigenvalue of L(A). If the interaction topology G is an undirected and

connected graph and

γ > max
i∈lN

√
4β

3µi

(5.2)

then the consensus protocol (5.1) guarantees xi → xj and vi → vj, ∀i ∈ lN , within

a finite-time interval

[
t0, t0 +

2V (0)
1−a
2

k(1−a)

]
where t0 is the initial time.

Proof. Without loss of generality, we assume t0 = 0 and let

yi =
N∑
j=1

aij(xj − xi)

zi =
N∑
j=1

aij(vj − vi)
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y = [y1, y2, . . . , yN ], and z = [z1, z2, . . . , zN ]. Then, we have

ẏ = z

ż = −L(A)(sig(ϕ)a + ϕ)

ϕ = βy + γz

Choose a Lyapunov candidate as

V (t) =
(
yT zT

)
P

(
y
z

)
where

P =

(
βγ
2
L(A)2 β

2
L(A)

β
2
L(A) γ

2
L(A)

)
Let L(A) = Γ−1ΘΓ be diagonalized where Θ = diag{µ1, µ2, . . . , µN} with µi being

the ith eigenvalue of L(A). Hence, P can be written as

P =

(
Γ 0
0 Γ

)−1( βγ
2
Θ2 β

2
Θ

β
2
Θ γ

2
Θ

)(
Γ 0
0 Γ

)

If Ω =

(
βγ
2
Θ2 β

2
Θ

β
2
Θ γ

2
Θ

)
is a positive semi-definite matrix, P is also a positive semi-

definite matrix. To find the eigenvalues of Ω, we can solve the equation det(λI2N −

Ω) = 0, where det(λI2N − Ω) is the characteristic polynomial of Ω. Note that

det(λI2N − Ω) = det

(
λIN − βγ

2
Θ2 −β

2
Θ

−β
2
Θ λIN − γ

2
Θ

)
= det

[
λ2IN − λ(

γ

2
Θ +

βγ

2
Θ2)

+
βγ2

4
Θ3 − β2

4
Θ2

]

=
N∏
i=1

[
λ2 − λ(

γ

2
µi +

βγ

2
µ2
i )

+
βγ2

4
µ3
i −

β2

4
µ2
i

]

If βγ2

4
µ3
i −

β2

4
µ2
i > 0 and γ

2
µi+

βγ
2
µ2
i > 0, we have the positive and zero eigenvalues of

Ω. In terms of Lemma 2 and (5.2), we have Ω ≥ 0. It is straightforward to see that
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{(y, z)|z = 0N , y = 1Nd} where d ∈ R is a equilibrium set. In the following, we will

see that the equilibrium (0N ,0N) is stable while others are not stable. Obviously

V (t) ≥ 0 and along the closed-loop trajectories,

dV (t)

dt
= βγyTL(A)2z + βzTL(A)z + ϕTL(A)ż

= −ζT
(

β2L(A)2 βγ
2
L(A)2

βγ
2
L(A)2 γ2L(A)2 − βL(A)

)
ζ

−ϕTL(A)2sig(ϕ)α

where ζ =

(
y
z

)
. Since ϕTL(A)2sig(ϕ)a = |ϕ|TL(A)2|ϕ|a, we have ϕTL(A)2sig(ϕ)a ≥

0.

Let

Q =

(
β2L(A)2 βγ

2
L(A)2

βγ
2
L(A)2 γ2L(A)2 − βL(A)

)
Similarly, we have

Q =

(
Γ 0
0 Γ

)−1(
β2Θ2 βγ

2
Θ2

βγ
2
Θ2 γ2Θ2 − βΘ

)(
Γ 0
0 Γ

)
The eigenvalues of Q can be calculated as

det(λI2N −Q) =
N∏
i=1

[
λ2 + λ(−γ2µ2

i + βµi − β2µ2
i )

−β2µ2
i (−γ2µ2

i + βµi)−
β2γ2

4
µ4
i

]

If −γ2µ2
i + βµi − β2µ2

i < 0 and −β2µ2
i (−γ2µ2

i + βµi) − β2γ2

4
µ4
i > 0, we have the

positive and zero eigenvalues of Q. Since the graph G is undirected and connected,

it is obvious (by Lemma 2) and (5.2) to see that Q is a positive semi-definite matrix.

Therefore, we have dV (t)
dt

≤ 0.

Set E = {(y, z) ∈ R2N |V̇ = 0}. It is straightforward to see that (0N ,0N) ∈ E

and (1Nd,0N) ∈ E where d ̸= 0,1N = (1, 1, . . . , 1)︸ ︷︷ ︸
N

T}. Consider the equilibrium

(1Nd,0N) ∈ E . Because z = −L(A)v and rank(L(A)) = N − 1, z = 0N implies that
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v1 = v2 = · · · = vN . Hence, we have

ui = sig

(
N∑
j=1

aij

(
β(xj − xi)

))a

+
N∑
j=1

aij

(
β(xj − xi)

)
Since v1 = v2 = · · · = vN implies ui = 0, then we have

0N = sig(βy)a + βy

that is, y = 0N , which is a contradiction. Therefore, M = {(0N ,0N)} is the largest

invariant set, and by the LaSalle Invariance principle, solutions converge to the

largest invariant set M , which implies x1 = x2 = · · · = xN and v1 = v2 = · · · = vN .

To show (0N ,0N) is a finite-time-stable equilibrium, we suppose V (t) ̸= 0, and

then let Υ1 = −
dV (t)
dt

V (t)
1+α
2

and U = {ξ ∈ RN | ξT ξ~ = 1, 0 < ~ ≤ 1 and the nonzero

terms of ξ1, . . . , ξN are not the same}. U denotes a compact set. Hence, ξTL(A)2ξ~ >

0 for any ξ ∈ U . Let minξ∈Uξ
TL(A)2ξ~ = k1 > 0. Since ϕ = (βIN , γIN)ζ, we have

ϕTϕ = ζT
(

β2IN βγIN
βγIN γ2IN

)
ζ. Moreover, B =

(
β2IN βγIN
βγIN γ2IN

)
≥ 0 and ζTBζ is

a continuous function with respect to ζ, which implies ||ζ||22 ≤ k2||ϕ||22 = k2
∑N

i=1 ϕ
2
i .

where k2 is a positive constant. Hence,

Υ1 =
ζTQζ + |ϕ|TL(A)2|ϕ|α

V (t)
1+α
2

≥ |ϕ|TL(A)2|ϕ|α

(λmax(P )
1+α
2 )(||ζ||2) 1+α

2

≥

|ϕ|T√
|ϕ|T |ϕ|α

L(A)2 |ϕ|α√
|ϕ|T |ϕ|α

|ϕ|T |ϕ|α

(λmax(P )
1+α
2 )(k2

∑N
i=1 ϕ

2
i )

1+α
2

≥ k1
∑N

i=1 |ϕi|α+1

λmax(P )
1+α
2 k

1+α
2

2 (
∑N

i=1 ϕ
2
i )

1+α
2

≥ k1(
∑N

i=1 ϕ
2
i )

α+1
2

λmax(P )
1+α
2 k

1+α
2

2 (
∑N

i=1 ϕ
2
i )

1+α
2

=
k1

λmax(P )
1+α
2 k

1+α
2

2

Let k = k1

λmax(P )
1+α
2 k

1+α
2

2

. And we have dV (t)
dt

≤ −kV (t)
1+α
2 . By Lemma 1, the

equilibrium (0N ,0N) is finite-time stable. �
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1

2 3

Figure 5.3: The communication topology among three robots.

Example: Let the Figure 5.3 show the communication topology among three

robots. It is obvious that the communication topology is undirected and connected.

In order to illustrate the finite-time convergence, we use the logarithmic scale for

error variables |x1 − x2|, |x1 − x3|, |x2 − x3|, |v1 − v2|, |v1 − v3|, |v2 − v3| and set

parameters β = 0.5, α = 0.6, γ = 0.9, initial positions x1(0) = −9, x2(0) = 0,

x3(0) = 9, and initial velocities v1(0) = 20, v2(0) = 4, v3(0) = −20. Figure 5.4(a)

and Figure 5.4(b) show finite-time convergence results on error variables for vi(t)

and xi(t) (i ∈ l3).

Remark 22. In the simulations, one can see that the system (1.7) is stable with the

given control law (5.1) at T > 55.32. Therefore, the proposed finite-time consensus

protocol can guarantee that the system (1.7) converges within a finite-time interval

and the max settling time can be calculated based on 2V (0)
1−α
2

k(1−α)
.

5.2.3 A Finite-Time Parallel Motion Control Algorithm

In this subsection, we will propose a parallel motion control algorithm, which can

coordinate robots to form a parallel motion through the interaction with its neigh-

bors and environment. We first give a finite-time formation algorithm that can keep

a certain distance among robots. This finite-time formation algorithm is described
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Figure 5.4: The convergence curves for the system (1.7) under a given control law
(5.1).
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by

ui=sig

(
N∑
j=1

aij

(
β((xj − hj)− (xi − hi)) + γ(vj − vi)

))α

+
N∑
j=1

aij

(
β((xj − hj)− (xi − hi)) + γ(vj − vi)

)
(5.3)

where hi(i ∈ lN) is a constant.

Corollary 1. Consider the continuous-time model (1.7). If the interaction topology

G is an undirected and connected graph and γ > maxi∈lN

√
4β
3µi

, then the formation

algorithm (5.3) guarantees xi − hi → xj − hj and vi → vj, ∀i ∈ lN , within a

finite-time interval.

Proof. By observing (5.3) and Proposition 8, xi − hi and vi (i ∈ lN), respectively,

will reach a consensus within a finite-time interval, i.e., if t > T ( T is the settling

time), xi − hi = xj − hj and vi = vj. �

Therefore, we have the following parallel motion control algorithm.

ui = v̇c + sig

(
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ(vj − vi)

)
+ λ(vc − vi)

)α

+
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ(vj − vi)

)
+ λ(vc − vi) (5.4)

where vc is a reference velocity of the robot group and λ > 0.

Corollary 2. Consider the continuous-time model (1.7). If the interaction topology

G is an undirected and connected graph and γ > maxi∈lN

√
4β
3µi

, then the parallel

motion control algorithm (5.4) guarantees xi − hi → xj − hj, vi → vj, and vi → vc,

∀i ∈ lN , within a finite-time interval.
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Proof. Let x̄i = xi − hi, x̃ = x̄i − x̄c where x̄c =
∫ t

0
vc(τ)dτ , and ṽc = vi − vc.

By Corollary 1 and the proof process of Proposition 8, xi − hi and vi (i ∈ lN),

respectively, will reach a consensus within a finite-time interval, i.e., after the settling

time T , xi − hi = xj − hj, vi = vj = vc. �

Example: Let the Figure 5.3 show the communication topology among three

robots and set parameters β = 0.5, α = 0.6, γ = 0.9, λ = 0.1, hi = 10 ×(
cos(2πi

3
+ π

6
)

sin(2πi
3

+ π
6
)

)
(i = 1, 2, 3), and vc =

(
9 −9

)T
. The initial positions for three

robots are (41.7194, -21.4161), (25.72, 25.3729), and (-11.9554,6.7822), respective-

ly. And the initial velocities of three robots are (-8.4829, -8.9210), (0.6160,5.5833),

and (8.6802,-7.4019), respectively. Figure 5.5 shows the movement of three robots

controlled by the finite-time parallel motion control algorithm and Figure 5.6 illus-

trates the convergence of velocity. Moreover, one can see that the real settling time

is T = 46.05 in this case.

However, it should be pointed out that each robot has its own decision about

the movement direction due to limited communication links, which means that the

reference velocity vc is different for the different robot. Hence, for each robot, the

parallel motion control algorithm is described by

ui = v̇ic + sig

(
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ(vj − vi)

)
+ λ(vic − vi)

)α

+
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ(vj − vi)

)
+ λ(vic − vi) (5.5)

where vic is a velocity decided by the current position of the ith robot and the

probable position of the odour source hic(k), which is shown in Chapter 3.
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Figure 5.5: The parallel movement for three robots. “o” and “*” denote the initial
position and the end position, respectively.
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5.2.4 A Finite-Time Circular Motion Control Algorithm

In this subsection, we provide a finite-time circular motion control algorithm, which

is given by

ui = ḧi + sig

(
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ((vj − ḣj)− (vi − ḣi))

)
+ λ1(ḣi − vi)

+λ2(h
c − (xi − hi))

)α

+
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ((vj − ḣj)− (vi − ḣi))

)
+ λ1(ḣi − vi))

+λ2(h
c − (xi − hi)) (5.6)

where hi(t) =
(
rcos(θi) rsin(θi)

)T
; θ̇i = ω0; r denotes the radius; hc refers to the

center; ω0 denotes the angular velocity; and λ1 > 0, λ2 > 0.

The following corollary can guarantee the finite-time convergence of the proposed

circular motion control algorithm.

Corollary 3. Consider the continuous-time model (1.7). If the interaction topology

G is an undirected and connected graph and γ > maxi∈lN

√
4β
3µi

, then the circular

motion control algorithm (5.6) guarantees xi−hi → xj−hj → hc, vi− ḣi → vj− ḣj,

and vi → ḣi, where hi(t) =
(
rcos(θi) rsin(θi)

)T
and θ̇i = ω0, ∀i ∈ lN , within a

finite-time interval.

Proof. Let x̄i = xi − hi, ˙̄xi = vi − ḣi. Further let ξi = x̄i − hc and ζi = ˙̄xi. By

the proof process of Proposition 8, we have ξi → 0 and ζi → 0, which implies that

xi−hi → hc and vi → ḣi, ∀i ∈ lN within a finite-time interval, i.e., after the settling

time T , xi − hi = xj − hj = hc and vi = ḣi. �
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Similarly, the finite-time circular motion control algorithm for each robot is given

by

ui = ḧi + sig

(
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ((vj − ḣj)− (vi − ḣi))

)
+ λ1(ḣi − vi)

+λ2(h
ic − (xi − hi))

)α

+
N∑
j=1

aij

(
β((xj − hj)− (xi − hi))

+γ((vj − ḣj)− (vi − ḣi))

)
+ λ1(ḣi − vi))

+λ2(h
ic − (xi − hi)) (5.7)

Example: Let the Figure 5.3 show the communication topology among three

robots and set parameters β = 0.5, α = 0.6, γ = 0.9, λ1 = 0.1, λ2 = 0.1, r =

10, ω0 = 2.5, hc =
(
20 20

)T
. Figure 5.7 shows the movement of three robots

controlled by the finite-time circular motion control algorithm.

Remark 23. For each robot, the reference velocity or the reference center are dif-

ferent. For the parallel motion, the proposed control algorithm (5.5) also provides

a group decision process, i.e., the result of information exchange is to adjust the

velocity of each robot such that vi ≃ vj (i, j ∈ lN). Similarly, for the circular motion

(5.7), the result of information exchange is to adjust the circular center such that

xi − hi ≃ xj − hj (i, j ∈ lN). If ∥vic − vjc∥2 and ∥hic − hjc∥2 are bounded, i.e.

maxi,j∈lN∥vic − vjc∥2 < ϵ1 (ϵ1 is a given parameter.) for the parallel motion and

maxi,j∈lN∥hic − hjc∥2 < ϵ2 (ϵ2 is a given parameter.) for the circular motion, the

proposed motion control algorithms (5.5) and (5.7) converge.
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Figure 5.7: The circular movement for three robots. “o” and “*” denote the initial
position and the end position, respectively.

5.2.5 Consensus-Based Finite-Time Motion Control

The consensus-based finite-time motion control algorithm includes a finite-time par-

allel motion control algorithm and a finite-time circular motion control algorithm.

In terms of the detection event of the multi-robot system, the different motion con-

trol algorithm is used. To sum up, the consensus-based finite-time motion control

algorithm is described in Algorithm 2.

5.3 Performance Capabilities of the Consensus-

Based Finite-Time Motion Control

We will first make use of the communication topology shown in Figure 5.3 to test

the consensus-based finite-time motion control algorithm. Let the sampling time

be 0.01s and hi = 5 ×
(

cos(2πi
3

+ π
6
)

sin(2πi
3

+ π
6
)

)
(i = 1, 2, 3). Table 5.1 and Table 5.2

show the parameters of the consensus-based finite-time motion control algorithm.
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Algorithm 2 The consensus-based finite-time motion control algorithm

1: /*Initialization*/
2: Initialize parameters β, a, γ, and λ for the parallel motion control algorithm (5.5);
3: Initialize parameters λ1, λ2, γ, β, α, r, and ω0 for the circular motion algorithm (5.7);
4: Run the distributed decision algorithm to obtain the reference motion direction of the robot

and the position of the odour source;
5: /*Main Body* for the ith robot/
6: repeat
7: IF the robot group does not detect the chemical signal and the time T > 20s
8: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
9: Perform (5.5) to calculate the control law ui(t);
10: Perform (1.10) to calculate the control input pi;
11: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;
12: ELSE
13: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
14: Perform (5.7) to calculate the control law ui(t);
15: Perform (1.10) to calculate the control input pi;
16: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;

17: until Termination conditions are satisfied.

Table 5.1: The parameters of controllers (5.5).

γ λ β α vc(m/s)

1.2 2 0.5 0.4 (0.4,-0.2)

Table 5.2: The parameters of controllers (5.7).

γ λ1 λ2 β α r1(m) r2(m) r3(m) ω0(radian/s) hc(m,m)

1.2 3.2 3.2 0.5 0.4 3 8 12 0.1 (0,0)

Moreover, we record the data at every 0.5s. Figures 5.8-5.12 show the results of

parallel movement whereas Figures 5.13-5.17 show the results of circular movement.

In order to further test the proposed consensus-based finite-time motion control

algorithms, we use the communication topology shown in Figure 5.18. The results

for parallel movement and circular movement are shown in Figures 5.19-5.26.

5.4 Odour Source Localisation

In this section, we will use the finite-time parallel motion control law (5.5) and the

finite-time circular motion control law (5.7) to control a group of robots to trace

the plume and search for the odour clues, respectively. The simulation consists of
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Table 5.3: The parameters used in (5.5) for the parallel motion control for odour
source localisation.

β γ α λ δ hi

0.5 2 0.6 0.1 0.3 (5cos(2πi/5 + π/6), 5sin(2πi/5 + π/6))

Table 5.4: The parameters used in (5.7) for the circular motion control for odour
source localisation.

β γ α λ1 λ2 δ ω0 r θi vmax(m/s) ωmax(rad/s)

0.5 2 0.6 0.1 0.1 0.3 0.1 10 2πi/5 0.8 1.57

two parts. In the first part, we will show the motion process of the multi-robot

system. In the second part, we will compare the search performance of the multi-

robot system with that of the multi-robot system coordinated by several selected

algorithms. The parameters used in this section can be found in Table 5.3 and Table

5.4. In addition, the maximum search time is 1500s and the radius is 1m.

The prediction errors of five robots about the position of the odour source are

shown in Figure 5.27 where the robots keep the predefined position (80m,0m) of

the odour source from 0s to about 50s. After about 50s, the robot group detects

the odour clues, and then the proposed motion control algorithms start to run.

Correspondingly, the motion process of the robot group is illustrated in Figures

5.28-5.29. In Figure 5.28(a), the initial positions of the robot group are set at the

right-up corner in the search region. In Figures 5.28(b) and 5.29(a), the parallel

motion is used to track the plume and to move along the plume in the light of the

probable positions of the odour source. In Figure 5.29(b), the real odour source is

found.

Then, we will compare the search efficiency of the multi-robot system coordinated

by the decision-control systems (DCS) which include a distributed decision algorithm

and the consensus-based finite-time motion control algorithm with several selected

algorithms which include PSO [93], PPSO-IM [85], LPSO [87], CPSO [53], WUI-
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Table 5.5: The success rates (%) based on 50 runs.

Algorithms 3 robots 5 robots 7 robots 9 robots

PSO [93] 36 54 70 68

PPSO-IM [85] 92 100 100 100

LPSO [87] 100 100 100 100

CPSO [53] 42 46 70 76

WUI-45 [53] 40 70 90 80

WUII [53] 58 86 98 96

CCS(L=2) [84] 96 100 100 100

DCS 100 100 100 100

45 [53], WUII [53], and CCS(L=2) [84]. For all algorithms, the robot group will

search for the odour clues along the direction of y axis from the initial positions

(right-up corner) to the (80m,0m). Once the odour clues are detected by any robot,

these algorithms will start to run. In Table 5.5, the success rates obtained by eight

algorithms are shown. Figure 5.30 shows less search time obtained from DCS. From

Figure 5.31, one can see that robots coordinated by DCS consume the lesser energy

than those coordinated by other compared algorithms.

5.5 Conclusion

We have developed the consensus-based finite-time motion control algorithm to con-

trol the robot group to trace and search for the plume. Specifically, we have first

proposed a nonlinear finite-time consensus algorithm and used a Lyapunov approach

to analyze the finite-time convergence of the proposed consensus algorithm. Then,

in terms of the proposed finite-time consensus algorithm, we have derived a finite-

time parallel motion algorithm and a finite-time circular motion algorithm. Next,

we have summarized the consensus-based finite-time motion control algorithm. Fi-

nally, the effectiveness of the consensus-based finite-time motion control algorithm

is illustrated for the odour source localisation problem.
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Figure 5.8: The parallel movement with communication topology shown in Figure
5.3.
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Figure 5.9: The change curve of linear velocity for parallel movement with commu-
nication topology shown in Figure 5.3.
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Figure 5.10: The change curve of angular velocity for parallel movement with com-
munication topology shown in Figure 5.3.
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Figure 5.11: The change curve of the heading for parallel movement with commu-
nication topology shown in Figure 5.3.
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Figure 5.12: The change curves of the applied torques for left wheel and right wheel
for the parallel movement with communication topology shown in Figure 5.3.
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Figure 5.13: The circular movement with communication topology shown in Figure
5.3.
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Figure 5.14: The change curve of linear velocity of circular movement with commu-
nication topology shown in Figure 5.3.
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Figure 5.15: The change curve of angular velocity for circular movement with com-
munication topology shown in Figure 5.3.
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Figure 5.16: The change curve of the heading for circular movement with commu-
nication topology shown in Figure 5.3.
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(a) Left Wheel
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(b) Right Wheel

Figure 5.17: The change curves of the applied torques for left wheel and right wheel
for circular movement with communication topology shown in Figure 5.3.
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Figure 5.18: The communication topology among three robots.
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Figure 5.19: The parallel movement with communication topology shown in Figure
5.18.
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Figure 5.20: The change curve of linear velocity for parallel movement with com-
munication topology shown in Figure 5.18.
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Figure 5.21: The change curve of angular velocity for parallel movement with com-
munication topology shown in Figure 5.18.
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Figure 5.22: The change curve of the heading for parallel movement with commu-
nication topology shown in Figure 5.18.
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Figure 5.23: The circular movement with communication topology shown in Figure
5.18.
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Figure 5.24: The circular movement with communication topology shown in Figure
5.18.

0 25 50 75 100 125 150 180
−5

−4

−3

−2

−1

0

1

2

3

4

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 (
ra

di
an

/s
)

 

 
Robot1
Robot2
Robot3

Figure 5.25: The change curve of angular velocity for circular movement with com-
munication topology shown in Figure 5.18.
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Figure 5.26: The change curve of the heading for circular movement with commu-
nication topology shown in Figure 5.18.
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Figure 5.27: Prediction error ∥hic(k) − xs∥2 over time. xs is a real position of the
odour source.
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(a) T=0s

(b) T=66s

Figure 5.28: The search process of five robots at T=0s and T=53s.
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(a) T=115s

(b) T=203s

Figure 5.29: The search process of five robots at T=103s and T=146s.
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Figure 5.30: The average search time based on 50 runs.
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Figure 5.31: The average consumed energy based on 50 runs.



Chapter 6

Potential-Based Finite-Time
Motion Control

6.1 Introduction

In order to introduce the obstacle avoidance function into cooperative control laws, a

potential-based finite-time motion control algorithm, which consists of a finite-time

parallel motion control algorithm and a finite-time circular motion control algorithm,

is designed in Section 6.2. In Section 6.3, the performance capabilities of the finite-

time parallel motion control algorithm and the finite-time circular motion control

algorithm are tested. Moreover, the effectiveness of the potential-based finite-time

motion control algorithm for odour source localisation is illustrated in Section 6.4.

Finally, the conclusion is given in Section 6.5.

6.2 Potential-Based Finite-Time Motion Control

In this section, we will introduce the potential function that can be used for obstacle

avoidance, the coordination control algorithm that can enable the virtual formation

and the velocity consensus to be reached, and the tracking control algorithm that can

enable the real formation and velocity to track the virtual formation and velocity. In

terms of the coordination control algorithm and the tracking control algorithm, we

will give the finite-time parallel motion control algorithm and the finite-time circular
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motion control algorithm. Finally, we will summarize the potential-based finite-time

motion control algorithm and give stability analysis about the coordination control

algorithm and the tracking control algorithm.

6.2.1 The Potential Function

The potential functions have been widely used for the robot navigation and control

[3]. Various functions have been proposed for different aims [116, 67, 40, 21]. In

this chapter, we consider the potential function in which it does not include any

environmental terms. In particular, consider the following potential function form

as

J = f(∥xi − xj∥2)

where f : Rn × Rn → R denotes a map; ∥xi − xj∥2 refers to the distance between

the ith robot and the jth robot; and ∥ · ∥2 denotes the Euclidian norm. Moreover,

the potential function has the following properties.

• Set xi = ξi − x0 where x0 is a constant vector. The potential function J

satisfies f(∥xi − xj∥2) = f(∥ξi − ξj∥2) and

∂J

∂xi

=
∂J

∂ξi

• The potential function J has the zero minimum at ∥xi − xj∥2 = d where d is

a predefined parameter.

• There exists a constant c such that the potential function satisfies

J ≤ c
N∑
i=1

∥∥∥∥∥ ∂J∂xi

∥∥∥∥∥
2

2

It is obvious that we can always build a potential function which satisfies the

aforementioned properties. For example, the potential function proposed by Olfati-

Saber [106] (2006) satisfies the above properties.
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6.2.2 Coordinating Control

In this subsection, we provide the following finite-time coordination control algorith-

m (6.1), which can enable the virtual velocity consensus and the accurate formation

shaped by the potential function to be reached within a finite-time interval.

˙̂xi(t) = v̂i(t)− β

(
∂J

∂x̂i

) 2a−1
2a+1

(6.1a)

˙̂vi(t) = γ

(
N∑
j=1

aij(v̂j − v̂i)

) 2a−1
2a+1

(6.1b)

where a > 0.5, β > 0, γ > 0; N is the number of robots; x̂i(t) and v̂i(t) denote the

virtual position and velocity of the ith robot, respectively; J is a potential function

which satisfies the aforementioned properties; and aij refers to the communication

link between the ith robot and the jth robot. If there exists a communication link

between the ith robot and the jth robot, aij = 1 and aij = 0 otherwise.

It is obvious to see that in (6.1), the velocity and position are decoupled, which

means that the virtual velocity consensus of the robot group can be first reached, and

then the virtual position reaches the one decided by the potential function. Hence,

in the stable state, virtual dynamics in (6.1) equals to the real dynamics in (1.7).

Moreover, the proposed finite-time coordination control algorithm is continuous,

smooth, and easily to be programmed compared with other finite-time controllers

[63, 142, 73, 9, 47, 141] because of no“sign” function.

The objective of the finite-time coordination control algorithm (6.1) is to guar-

antee that the potential J is minimized and v̂i → v̂j, ∀j within a finite-time interval.

The following Example 1 will illustrate the objective of the finite-time coordination

control algorithm.

Example 1 : Consider six robots and use the potential function given in [106]. For

the potential function, the parameters are d = 7, r = 1.2d, a = b = 5, ϵ = 0.1, and

h = 0.2. For the finite-time coordination control algorithm (6.1), the parameters
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||v1−v2||
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Figure 6.1: The finite-time convergence results on error variables ||v1 − v2||2, ||v1 −
v3||2, ||v1 − v4||2, ||v1 − v5||2, and ||v1 − v6||2 where vi denotes the virtual velocity of

the ith robot.

are a = 1, β = 0.6, and γ = 0.9. Figure 6.1 and Figure 6.2 show the finite-time

convergence results of the virtual velocity and position in the logarithmic scale for

the robot 1. From two figures, one can see that the virtual velocity reaches the

consensus after about 3s while the virtual position is the position decided by the

potential function after about 6s.

6.2.3 Tracking Control

In order to enable the real velocity and position for the second-order dynamics (1.7)

to track the virtual velocity and position, we give the following finite-time tracking

control algorithm, which is described by

ui(t) = ˙̂vi − k((vi − v̂i)
1/q + k1

1/q(xi − x̂i))
2q−1 (6.2)

where xi is the real position of the ith robot; x̂i is the virtual position of the ith

robot; vi is the real velocity of the ith robot; v̂i is the virtual velocity of the ith

robot; k1 > 1
3
; k > 2

2+q
2 + 2(2 − q)k

1/q
1 |vi − v̂i|max + k1 − 1

3
; |vi − v̂i|max is the max
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|||x1−x2||−d|
|||x1−x5||−d|
|||x1−x6||−d|

Figure 6.2: The finite-time convergence results on error variables |||x1 − x2||2 − d|,
|||x1 − x4||2 − d|, |||x1 − x5||2 − d|, and |||x1 − x6||2 − d| where xi denotes the virtual
position of the ith robot and d denotes the predefined distance between two robots.

bound for vi − v̂i; and q = 2a−1
2a+1

> 1
2
because 2q − 1 should be larger than zero and

equal 2a−3
2a+1

where both 2a− 3 and 2a+ 1 are odd integers.

The objective of the finite-time tracking control algorithm (6.2) is to guarantee

that xi → x̂i, and vi → v̂i within a finite-time interval. The following Example 2

will illustrate the objective of the finite-time tracking control algorithm.

Example 2 : Consider that the finite-time coordination control algorithm has

converged, i.e. v̂i = 0.8 and ˙̂xi = 0.8. For the finite-time tracking control algorithm

(6.2), the parameters are q = 3/5, k1 = 0.5, and k = 7. Figure 6.3 and Figure

6.4 show the finite-time convergence results of the real position and velocity in the

logarithmic scale for the robot i. From two figures, one can see that the real velocity

tracks the virtual velocity after about 4s while real position equals to the virtual

one after about 5s.
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Figure 6.3: The finite-time convergence results on error variables |xi − x′
i| where xi

and x′
i denote the real position and virtual position of the ith robot, respectively.

6.2.4 Finite-Time Parallel Motion Control

Based on the finite-time coordination control algorithm and the finite-time tracking

control algorithm, we will propose a finite-time parallel motion control algorithm,

which can coordinate the robot group to parallel move in order to trace the plume.

Therefore, we use the following control algorithm to take place of the finite-time

coordination control algorithm (6.1).

˙̂xi(t) = v̂i(t)− β

(
∂J

∂x̂i

) 2a−1
2a+1

(6.3a)

˙̂vi(t) = v̇c + γ

(
N∑
j=1

aij(v̂j − v̂i) + λ(vc − v̂i)

) 2a−1
2a+1

(6.3b)

where a > 0.5, β > 0, γ > 0, λ > 0; x̂i(t) and v̂i(t) denote the virtual position and

velocity of the ith robot, respectively; vc is the reference velocity. J is a potential

function that can be constructed based on the real requirements.
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Figure 6.4: The finite-time convergence results on error variables |vi − v′i| where vi
and v′i denote the real velocity and virtual velocity of the ith robot, respectively.

It is straightforward to see that the reference velocity vc from the decision level is

introduced into the finite-time coordination control algorithm (6.1). The objective

of the control algorithm (6.3) is to guarantee that the potential J is minimized and

vi → vc, vj → vc. Therefore, the finite-time parallel motion control algorithm is

described in Algorithm 3.

Example 3 : Consider the double-integrator dynamics (1.7). The conditions and

parameters are the same as Example 1 and Example 2, and set λ = 0.5 and vc =

[−1.9, 1.9]. Figure 6.5 shows that the parallel movement of six robots. Figure 6.6

and Figure 6.7 show the finite-time convergence results of the real velocity and

position in the logarithmic scale under the reference velocity vc.

However, each robot has its individual reference velocity. Hence, the motion
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Algorithm 3 The finite-time parallel motion control algorithm

1: /*Initialization*/
2: Initialize parameters β, a, γ, and λ for the coordination control algorithm (6.3);
3: Initialize parameters k, k1, and q for the tracking control algorithm (6.2);
4: Initialize parameters for the potential function J ;
5: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
6: Run the the distributed decision algorithm to obtain the reference motion direction of the

robot and initialize the virtual position x̂i(0) and velocity v̂i(0);
7: /*Main Body* for the ith robot/
8: repeat
9: Perform (6.3) to obtain the virtual position x̂i(t) and velocity v̂i(t);
10: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
11: Perform (6.2) to calculate the control law ui(t);
12: Perform (1.10) to calculate the control input pi;
13: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;

14: until Termination conditions are satisfied.
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Figure 6.5: The parallel movement for six robots where ‘o’ denotes the initial position
and ‘*’ denotes the end position.

control algorithm (6.3) can be modified by

˙̂xi(t) = v̂i(t)− β

(
∂J

∂x̂i

) 2a−1
2a+1

(6.4a)

˙̂vi(t) = v̇ic + γ

(
N∑
j=1

aij(v̂j − v̂i) + λ(vic − v̂i)

) 2a−1
2a+1

(6.4b)

where vic is the reference velocity of the ith robot.
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Figure 6.6: The finite-time convergence results on error variables ||v1 − vc||2, ||v2 −
vc||2, ||v3 − vc||2, ||v4 − vc||2, ||v5 − vc||2, and ||v6 − vc||2 where vi denotes the real

velocity of the ith robot.
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Figure 6.7: The finite-time convergence results on error variables |||x1 − x4||2 − d|,
and |||x1−x5||2−d| where xi denotes the real position of the ith robot and d denotes

the predefined distance between two robots.
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6.2.5 Finite-Time Circular Motion Control

Based on the finite-time coordination control algorithm and the finite-time tracking

control algorithm, we will propose a finite-time circular motion control algorithm,

which can coordinate the robot group to circle a predicted odour source position

in order to search for odour clues. We first introduce a virtual robot that can

communicate with all real robots, which is shown in Figure 6.8 where ξr denotes the

virtual robot. Accordingly, the position and velocity of the virtual robot are hr and

ḣr, respectively. hr(t) =
(
hc
x +Rcos(θr) hc

y +Rsin(θr)
)T

; θ̇r = ω0; R denotes the

radius; ω0 denotes the angular velocity; and hc(hc
x, h

c
y) denotes the probable position

of the odour source.

Then, we use the following control algorithm to take place of the finite-time

coordination control algorithm (6.1).

˙̂xi(t) = v̂i(t)− β

(
∂J̌

∂x̂i

) 2a−1
2a+1

(6.5a)

˙̂vi(t) = ḧr + γ

(
N∑
j=1

aij(v̂j − v̂i) + λ(ḣr − v̂i)

) 2a−1
2a+1

(6.5b)

where a > 0.5, β > 0, γ > 0, λ > 0; x̂i(t) and v̂i(t) denote the virtual position and

virtual velocity of the ith robot, respectively; ḣr is the velocity of the virtual robot.

J̆ is an extended potential function for all robots including the virtual robot.

The objective of the control algorithm (6.5) is to guarantee that the extended

potential J̌ is minimized and vi → ḣr, vj → ḣr. Therefore, the finite-time circular

motion control algorithm is described in Algorithm 4. Similarly, each robot may

obtain the different reference center hc, i.e. hic.

Example 4 : We still use five robots marked by black star and a virtual robot

marked by red star and the same initial conditions as Example 3 except for d = 2.5.

Moreover, let parameters R = 15, ω0 = 0.1, and hc = [9, 9]. Figure 6.9 shows the

circular movement process of six robots.
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1 2

3

Figure 6.8: The communication topology for three robots with a virtual robot.

Algorithm 4 The finite-time circular motion control algorithm

1: /*Initialization*/
2: Initialize parameters β, γ, a, and λ for the coordination control algorithm (6.5);
3: Initialize parameters of the virtual robot R, θr(0), and ω0;
4: Initialize parameters k, k1, and q for the tracking control algorithm (6.2);
5: Initialize parameters for the potential function J ;
6: Initialize the virtual position x̂i(0) and velocity v̂i(0);
7: Run the distributed decision algorithm to obtain the position of the odour source;
8: /*Main Body* for the ith robot/
9: repeat
10: Perform (6.5) to obtain the virtual position x̂i(t) and velocity v̂i(t);
11: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
12: Perform (6.2) to calculate the control law ui(t);
13: Perform (1.10) to calculate the control input pi;
14: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;

15: until Termination conditions are satisfied.
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Figure 6.9: The circular movement for six robots where ‘o’ denotes the initial posi-
tion, ‘*’ denotes the end position, ‘+’ refers to the position of the odour source, the
red line denotes the trajectory of the virtual robot, and the yellow line denotes the

trajectories of the real robot.

6.2.6 Potential-Based Finite-time Motion Control Algorith-
m

The potential-based finite-time motion control algorithm includes a finite-time par-

allel motion control algorithm and a finite-time circular motion control algorithm.

In terms of the detection event of the multi-robot system, the different motion con-

trol algorithms are used. To sum up, the potential-based finite-time motion control

algorithm is described in Algorithm 5.

6.2.7 Stability Analysis

In this subsection, we will prove the convergence of the finite-time coordination con-

trol algorithm (6.1) and the finite-time tracking control algorithm (6.2). Moreover,

the proof processes of the motion control algorithms (6.3) and (6.5) are omitted

because they are similar to that of the finite-time coordination control algorithm



6.2. POTENTIAL-BASED FINITE-TIME MOTION CONTROL 173

Algorithm 5 The potential-based finite-time motion control algorithm

1: /*Initialization*/
2: Initialize parameters β, γ, a, and λ for the coordination control algorithm (6.5);
3: Initialize parameters of the virtual robot R, θr(0), and ω0;
4: Initialize parameters k, k1, and q for the tracking control algorithm (6.2);
5: Initialize parameters for the potential function J ;
6: Initialize parameters β, a, γ, and λ for the coordination control algorithm (6.3);
7: Initialize parameters for the potential function J ;
8: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
9: Run the the distributed decision algorithm to obtain the reference motion direction of the

robot and initialize the virtual position x̂i(0) and velocity v̂i(0);
10: /*Main Body* for the ith robot/
11: repeat
12: IF the robot group does not detect the chemical signal and the time T > 20s
13: Perform (6.5) to obtain the virtual position x̂i(t) and velocity v̂i(t);
14: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
15: Perform (6.2) to calculate the control law ui(t);
16: Perform (1.10) to calculate the control input pi;
17: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;
18: ELSE
19: Perform (6.3) to obtain the virtual position x̂i(t) and velocity v̂i(t);
20: Perform (1.8) and (1.9) to get the real position and velocity of the “hand position”;
21: Perform (6.2) to calculate the control law ui(t);
22: Perform (1.10) to calculate the control input pi;
23: Perform (1.11) and (1.12) to obtain the applied torques for the left and right wheels;

24: until Termination conditions are satisfied.

(6.1). We give the following lemmas [7, 6, 24], which will be used in convergence

analysis.

Lemma 6. For any real numbers xi, i = 1, . . . , n and 0 < b ≤ 1, the following

inequality holds:

(|x1|+ · · ·+ |xn|)b ≤ |x1|b + · · ·+ |xn|b

When b = p/q ≤ 1, where p > 0 and q > 0 are odd integers,

|xb − yb| ≤ 21−b|x− y|b

Lemma 7. Let c, d be positive real numbers and γ(x, y) > 0 a real-valued function.

Then,

|x|c|y|d ≤ cγ(x, y)|x|c+d

c+ d
+

dγ−c/d(x, y)|y|c+d

c+ d
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The following proposition will show that the coordination control algorithm (6.1)

converges in finite-time.

Proposition 9. Consider the coordination control algorithm (6.1). If the interac-

tion topology G(ν, E , A) among robots is undirected and connected, the finite-time

coordination control algorithm guarantees that the potential J is minimized and

v̂i → v̂j, ∀j within a finite-time interval.

Proof. For the coordination control algorithm (6.1), position and velocity are de-

coupled. Hence, we first show the velocity consensus in finite-time.

Let ϕi =
∑N

i=1 aij(v̂i − v̂j) and choose a Lyapunov candidate as

V =
1

2

N∑
i=1

ϕ2
i

Along the trajectory (6.1), we have

V̇ =
N∑
i=1

ϕiϕ̇i

= −γϕTL(A)ϕ
2a−1
2a+1

≤ −k1γ

N∑
i=1

ϕ
4a

2a+1

i

Where L(A) is Laplacian matrix. Because V̇ < 0 at v̂i ̸= v̂j, v̂i → v̂j as t → ∞.

Moreover, we can get

V
2a

2a+1 =

(
1

2

) 2a
2a+1
(

N∑
i=1

ϕ2
i

) 2a
2a+1

≤ k2

(
1

2

) 2a
2a+1 N∑

i=1

ϕ
4a

2a+1

i

Let k = k1γ

k2(1/2)
2a

2a+1
. Hence, we have V̇ + kV

2a
2a+1 ≤ 0. By Lemma 1, v̂i → v̂j as

t → 2a+1
k

V (0)
1

2a+1 .

Assume that v̂i = v̂j = v0 = ẋ0 when t > 2a+1
k

V (0)
1

2a+1 . We can rewrite (6.1a)

as

˙̂xi(t) = ẋ0(t)− β

(
∂J

∂x̂i

) 2a−1
2a+1

(6.6)
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Let ξi(t) = x̂i(t)− x0(t) and then get

ξ̇i(t) = −β

(
∂J

∂ξi

) 2a−1
2a+1

(6.7)

Choose a nonnegative function as

V = J

Along the system trajectories (6.7), we can derive

dV

dt
=

N∑
i=1

(
∂J

∂ξi

)T

ξ̇i(t)

= −β
N∑
i=1

(∥∥∥∥∥∂J∂ξi
∥∥∥∥∥
2

2

) 2a
2a+1

≤ −β

(
N∑
i=1

∥∥∥∥∥∂J∂ξi
∥∥∥∥∥
2

2

) 2a
2a+1

which means the function V is monotonically decreasing for all t > 2a+1
k

V (0)
1

2a+1 .

From LaSalle’s invariance principle, all solutions starting in Ωc = {ξi|∥ξi−ξj∥2 = d}

converge to the largest invariance set in E = {ξi ∈ Ωc|dVdt = 0}. Hence, ξi(t) will

asymptotically converge to the local minimum of the potential function J , which

means ∥ξi − ξj∥2 = d, i.e. ∥xi − xj∥2 = d.

To show that ∥xi − xj∥2 = d is a finite-time-stable equilibrium, we suppose

V (t) ̸= 0, and then let Υ1 = −
dV (t)
dt

V (t)
2a

2a+1
. Hence,

Υ1 ≥
β(
∑N

i=1 ∥
∂J
∂ξi

∥22)
2a

2a+1

J
2a

2a+1

≥ β

c
2a

2a+1

where the second inequality comes from the property of the potential function.

Let k′ = β

c
2a

2a+1
and we have V̇ + kV

a+1
2 ≤ 0. Hence, when t > 2a+1

k
V (0)

1
2a+1 +

2a+1
k′

J(0)
1

2a+1 , ξi(t) will converge to the local minimum of the potential function J

in finite-time. �
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The following proposition guarantees the finite-time convergence of the tracking

control algorithm (6.2).

Proposition 10. Consider the robot dynamics (1.7) with the control input (6.2).

The finite-time tracking control algorithm guarantees that vi → v̂i and xi → x̂i,

i ∈ lN within a finite-time interval.

Proof. When t > 2a+1
k

V (0)
1

2a+1 + 2a+1
k′

J(0)
1

2a+1 , let x1 = xi − x̂i and x2 = vi − v̂i,

and consider the following Lyapunov candidate as

V =
1

2
x2
1 +

∫ x2

x∗
2

(s1/q − x∗
2
1/q)2−qds (6.8)

where q = 2a−1
2a+1

; x∗
2 = −k1x

q
1, k1 > 0.

Along the trajectory of (6.2), we have

V̇ = x1x2 + (x
1/q
2 − x∗

2
1/q)2−qui

−(2− q)x2
∂x∗

2
1/q

∂x1

∫ x2

x∗
2

(s1/q − x∗
2
1/q)1−qds (6.9)

Let ξ1 = x1 and ξ2 = x
1/q
2 − x∗

2
1/q.

V̇ ≤ ξ1(x2 − x∗
2) + x1x

∗
2 + ξ2−q

2 ui

+(2− q)k
1/q
1 |x2||x2 − x∗

2||x
1/q
2 − x∗

2
1/q| (6.10)

By Lemma 6 and Lemma 7,

V̇ ≤ 2|ξ1||x1/q
2 − x∗

2
1/q|q − k1x

q+1
1 + ξ2−q

2 ui

+2(2− q)k
1/q
1 |x2||x1/q

2 − x∗
2
1/q|q|ξ2|

≤ 2|ξ1||ξ2|q − k1x
q+1
1 + ξ2−q

2 ui

+2(2− q)k
1/q
1 |x2||ξ2|1+q

≤ 1

3
|ξ1|1+q + 2

2+q
q |ξ2|1+q − k1ξ

q+1
1 + ξ2−q

2 ui

+2(2− q)k
1/q
1 |x2||ξ2|1+q
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Because |x2| < σ, let k2 = 2
2+q
q + 2(2− q)k

1/q
1 σ and d = q + 1.

V̇ ≤ −(k1 −
1

3
)|ξ1|d + ξ2−q

2 ui + k2|ξ2|d

Let k1 >
1
3
, k = k2 + k1 − 1

3
and ξ2−q

2 ui + k|ξ2|d = 0. Then, we have

V̇ ≤ −(k1 −
1

3
)(|ξ1|d + |ξ2|d)

Moreover,

V ≤ 2|ξ1|2 + 2|ξ2|d+1

Because the system (1.7) is asymptotical convergence with the control input

(6.2), consider the set U = {ζ||ζ| < 1}. When ξ2 ∈ U , we derive

V ≤ 2|ξ1|2 + 2|ξ2|2

Then

V d/2 ≤ 2d/2(|ξ1|d + |ξ2|d)

Let k′ = k1−2
2d/2

and we obtain

V̇ + k′V d/2 ≤ 0

By Lemma 1, the system (1.7) is finite-time stable with the control input (6.2).

�

6.3 Performance Capabilities of the Potential-Based

Finite-time Motion Control

In this section, we will implement the potential-based finite-time motion control al-

gorithm (FTMCS) in a physics simulation platform provided by Microsoft Robotics

Studio. It should be pointed that the state data such as νi, ri, θi, and ωi are mainly
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Table 6.1: The parameters of the parallel motion control algorithm.

λ γ β q k k1 vc(m/s) r(m) d(m) ϵ h

0.4 1 0.5 0.6 7 0.5 (0.4,-0.2) 5 2.8 0.1 0.2

Table 6.2: The parameters of the circular motion control algorithm.

λ γ β q k k1 R(m) ω0(radian/s) hc(m,m) r(m) d(m) ϵ h

0.6 1 0.3 0.6 7 0.5 8 0.02 (0,0) 9 2.8 0.1 0.2

provided by the Physics Engine of Microsoft Robotics Studio. The parameters for

FTMCS are listed in Table 6.1 and Table 6.2.

Figure 6.10 shows the parallel movement of three robots. The corresponding

linear velocity, angular velocity, heading, and torques are shown in Figure 6.11,

Figure 6.12, Figure 6.13, and Figure 6.14, respectively. Figure 6.15 shows the circu-

lar movement of three robots. The corresponding linear velocity, angular velocity,

heading, and torques are shown in Figure 6.16, Figure 6.17, Figure 6.18, and Figure

6.19, respectively. From Figure 6.10 and Figure 6.15, one can see that the parallel

motion and the circular motion has been realized in the physics environment by

employing FTMCS. Moreover, from other figures, one can also see that the error ac-

cumulation is inevitable and puts an impact on the linear velocity, angular velocity,

and heading. An important characteristic of the finite-time controller is to enable

the system states to rapidly arrive in the vicinity of equilibriums, which is efficient

especially for the dynamical search environment because rapid formation can better

capture the time-varying plume.

6.4 Odour Source Localisation

In this section, we will test the effectiveness of FTMCS for odour source localisation.

For the parallel motion, the parameters can be found in Table 6.1 except for d = 7

and r = 1.2d. For the circular motion, the parameters can also be found in Table 6.2

except for d = 2.5, r = 1.2d, R = 15, and ω0 = 0.1. Moreover, we use a circle where
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the real position of the odour source is viewed as a center with a predefined radius

1m as one of termination conditions, which means that the search task is finished if

any robot enters the circle. (The other termination condition is the maximal search

time 1500s). In addition, it should be pointed out that the robot group will search

for the odour clues along the direction of y axis from the initial positions (right-up

corner) to the (80m,0m). Once the odour clues are detected by any robot, FTMCS

will start to run.

The prediction errors of five robots about the position of the odour source are

shown in Figure 6.20 where the robots keep the predefined position (80m,0m) of the

odour source from 0s to about 50s. After about 50s, the robot group detects the

odour clues, and then FTMCS starts to run. Correspondingly, the motion process of

the robot group controlled by FTMCS is illustrated in Figure 6.21 and Figure 6.22.

In Figure 6.21(a), the initial positions of the robot group are set at the right-up

corner in the search region. In Figures 6.21(b) and 6.22(a), the parallel motion is

used to track the plume and move along the plume in terms of the probable positions

of the odour source. In Figure 6.22(b), the robot group finds the real odour source.

Then, we will compare the search efficiency of the multi-robot system coordinated

by FTMCS with several selected algorithms which include PSO [93], PPSO-IM

[85], LPSO [87], CPSO [53], WUI-45 [53], WUII [53], and CCS(L=2) [84]. The

parameters of the seven algorithms can be found in [85], [53], [93], [87], and [84],

respectively. For all algorithms, the robot group will search for the odour clues along

the direction of y axis from the initial positions (right-up corner) to the (80m,0m).

Once the odour clues are detected by any robot, these algorithms will start to run.

In Table 6.3, the success rates obtained by eight algorithms are shown. Figure 6.23

shows less search time obtained from FTMCS. Moreover, since path length denotes

the energy consumed by robots, the shorter path length means the better search

performance. From Figure 6.24, one can see that robots coordinated by FTMCS
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Table 6.3: The success rates (%) based on 50 runs.

Algorithms 3 robots 5 robots 7 robots 9 robots

PSO [93] 36 54 70 68

PPSO-IM [85] 92 100 100 100

LPSO [87] 100 100 100 100

CPSO [53] 42 46 70 76

WUI-45 [53] 40 70 90 80

WUII [53] 58 86 98 96

CCS(L=2) [84] 96 100 100 100

FTMCS 100 100 100 100

consume the lesser energy than those coordinated by other compared algorithms.

6.5 Conclusion

We have developed a potential-based finite-time motion control algorithm to deal

with the problem of odour source localisation. Firstly, we have developed a finite-

time coordination control algorithm such that the virtual shape decided by the

potential function and virtual velocity consensus can be reached in finite-time. Sec-

ondly, we have derived a finite-time tracking control algorithm such that the real

velocity and position can track the virtual velocity and position. On the basis of

the finite-time coordination control algorithm and the finite-time tracking control

algorithm, we have developed a potential-based finite-time motion control algorith-

m, which includes a finite-time parallel motion control algorithm and a finite-time

circular motion control algorithm. Finally, we have illustrated the effectiveness of

the potential-based finite-time motion control algorithm for the problem of odour

source localisation.
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Figure 6.10: The parallel movement for three robots where ‘o’ denotes the initial
position and ‘*’ denotes the end position.
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Figure 6.11: The change curve of linear velocity for parallel movement.
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Figure 6.12: The change curve of angular velocity for parallel movement.
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Figure 6.13: The change curve of the heading for parallel movement.
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(b) Right Wheel

Figure 6.14: The change curves of the applied torques for left wheel and right wheel
for the parallel movement.
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Figure 6.15: The circular movement for three robots where ‘o’ denotes the initial
position and ‘*’ denotes the end position.
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Figure 6.16: The change curve of linear velocity for circular movement.
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Figure 6.17: The change curve of angular velocity for circular movement.
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Figure 6.18: The change curve of the heading for circular movement.
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Figure 6.19: The change curves of the applied torques for left wheel and right wheel
for the circular movement.
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Figure 6.20: Prediction error ∥hic−xs∥2 over time. xs is a real position of the odour
source and hic is estimate position of the odour source.
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(a) T=0s

(b) T=57s

Figure 6.21: The search process of five robots at T=0s and T=57s.
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(a) T=113s

(b) T=148s

Figure 6.22: The search process of five robots at T=113s and T=148s.
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Figure 6.23: The average search time based on 50 runs.
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Figure 6.24: The average consumed energy based on 50 runs.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

This dissertation has dealt with the problem of odour source localisation based on

a multi-robot system. By analyzing PSO algorithms, we have derived a distributed

coordination control architecture, which consists of two levels: a decision level and a

control level. In the decision level, environmental information and individual infor-

mation has been used to predict a probable position of the odour source. Moreover,

the movement direction for each robot based on the predicted position of the odour

source has been designed in order to trace the plume. In the control level, a coop-

erative control law has been developed to enable robots to move along the planned

movement direction. Based on the distributed coordination control architecture, de-

cision and cooperative control approaches can be separately designed. Consequently,

we have developed a distributed decision algorithm and three cooperative control

algorithms including a PSO-based finite-time motion control algorithm, a consensus-

based finite-time motion control algorithm, and a potential-based finite-time motion

control algorithm.

For the distributed decision algorithm, which can be used to make a decision

on the position of the odour source, we have derived an observation model for the

position of the odour source based on wind information and used a Kalman filter

to estimate the probable position of the odour source. We have designed a dynamic
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finite-time consensus filter to fuse observations from other robots. In terms of fused

observation, we have combined the position of the odour source obtained by using

concentration information with that of the odour source obtained by using wind

information in order to make a final decision on the position of the odour source.

Moreover, we have planned the movement direction of the robot group in terms of

the predicted position of the odour source in order to trace the plume.

For the PSO-based finite-time motion control algorithm, we have derived a

continuous-time FPSO algorithm by introducing a nonlinear damping item and a

parameter into the continuous model of the PSO algorithm such that the continuous-

time FPSO algorithm can converge within a finite-time interval and its exploration

capability can be improved. We have used a Lyapunov approach to analyze the

finite-time convergence of the continuous-time FPSO algorithm, given a discrete-

time FPSO algorithm by employing the same dicretization scheme as the GPSO

algorithm, and analyzed the convergence of the discrete-time FPSO algorithm. We

have shown the characteristics of the discrete-time FPSO algorithm through nu-

merical simulations on the benchmark functions and the performance capabilities of

the PSO-based finite-time motion control algorithm for the problem of odour source

localisation.

For the consensus-based finite-time motion control algorithm, we have proposed a

nonlinear finite-time consensus algorithm and used a Lyapunov approach to analyze

the finite-time convergence of the proposed consensus algorithm. In terms of the

proposed algorithm, we have derived a consensus-based finite-time motion control

algorithm, which includes a finite-time parallel motion control algorithm and a finite-

time circular motion control algorithm. On the basis of the distributed decision

algorithm, we have shown the effectiveness of the consensus-based finite-time motion

control algorithm for the problem of odour source localisation.

For the potential-based finite-time motion control algorithm, we have given an
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artificial potential function to provide obstacle avoidance capabilities for a group

of robots. Based on the artificial potential function, we have proposed a finite-

time coordination control algorithm and a finite-time tracking control algorithm. In

terms of the two algorithms, we have derived a potential-based finite-time motion

control algorithm, which includes a finite-time parallel motion control algorithm

and a finite-time circular motion control algorithm. On the basis of the distributed

decision algorithm, we have shown the effectiveness of the potential-based finite-time

motion control algorithm for the problem of odour source localisation.

7.2 Future Works

As described in Chapter 1, the problem of odour source localisation is of practical

significance for human security. Even if we have proposed several solutions for this

problem in this dissertation, there still exist several works that need to be done in

the near future.

• How to accurately estimate the position of the odour source by analyzing

odour clues is still a challenging topic in our future works because of four

main characteristics of the problem of odour source localisation.

• Several communication topologies such as the directed topology and the switch-

ing topology can occur when the wireless communication networks are used to

exchange information among the multi-robot systems. Hence, how to analyze

and design a stable and effective cooperative controller under these communi-

cation topologies is also a hard topic in our future works.

• A general framework for consensus has been proposed based on Lie group

theory for the single integrator. How to develop a general framework for finite-

time consensus such that a theory guidance for finite-time controller design

can be provided is one of our future works.
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• How to use our solutions to control the real robot group to deal with the

problem of odour source localisation is an aim of our future works.
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