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Abstract - This paper describes a critical feature for the 
industrial process models of an expert advisory system and their 
integration within a knowledge based supervisory support system 
(KBSSS) for advice on best practices and management of a sugar 
mill crystallization stage. This functionality works cooperatively 
to translate pan stage industrial process models, used during the 
forward prediction of pan stage operating conditions, to a time 
scale basis by dynamically allocating forecast processing 
quantities to predefined intervals over the prediction horizon. The 
innovative dynamic allocation procedure outlined underpins the 
prediction ability of the process models, acting in a backbone 
capacity, to establish forecasting capabilities for the system. 

 The primary topic of this paper will be a description of the 
approach and how it supports the predictive modelling with focus 
on: (1) design features, (2) implementation and (3) application to 
the prediction of syrup quantities to the pan stage from cane 
receival and juice processing information.  

I. INTRODUCTION

Raw sugar production from cane is a nominally continuous 

operation, with 120-168 hours of processing per week, 

extending over 20-25 weeks of the harvest season. The 

crystallisation section, often loosely referred to as the pan 

stage, is the most complex part of the factory process where 

there are several batch wise and continuous crystallisation 

steps taking place concurrently [1].  

In current Australian practice, two operators are normally 

employed on the pan stage and usually their duties extend no 

further than this section. There is considerable process 

interaction between the pan stage and centrifugal stage 

although management of the centrifugals is undertaken by 

different operators.  The overall strategic management of the 

pan stage is quite difficult because of the very large number of 

process streams of varying compositions and crystal growth 

rate characteristics which must be managed [2]. Often the pan 

stage is managed in a sub-optimal manner because an overview 

of operations encompassing various sections - cane receival 

section, juice processing stations, the pan stage and centrifugal 

station - is not available. 

The pressures on the Australian sugar industry to reduce the 

costs of sugar manufacture and increase the consistency of 

producing sugar of high quality require a smarter strategy for 

operation.  

Previous literature [3] acknowledges that no conventional 

software engineering methods exist to provide an overall 

solution to this industrial problem due to its complexity, the 

wide variety of information sources required to be managed, 

overall management objectives, lack of adequate sugar mill 

crystallisation stage industrial process models and 

requirements for advisory strategies and supporting advice to 

validate recommendations. Such wide and varied requirements 

are not easily managed and no such software based system for 

their unification currently exists to provide a solution. 

Currently, there is no such supervisory control system for 

pan stage operations neither in the Australian sugar industry 

nor, as best as known to the collaborators, in the world sugar 

industry. The knowledge based supervisory support system 

uses advanced intelligent technologies to provide a 

standardised approach for pan operations by integrating data 

from a variety of information sources from different sections of 

the sugar mill, along with dynamic process models of the pan 

stage and the collective knowledge and expertise of pan stage 

operators [4]. 

The pan stage is a complicated feed-forward and feed-back 

series of operations superimposed upon a series of batch and 

continuous processing operations. In order to forward predict 

future pan stage operating conditions, a sequence of process 

models to describe the overall process is necessary. A series of 

models collectively working together to describe the primary 

pan stage inputs and outputs are required along with actual 

models of the internal workings of the pan stage itself. In 

determining pan stage inputs, this equates to establishing 

relationships for juice processing and how this section interacts 

with the pan stage. Syrup output from the juice processing 

section of the factory forms the primary input to the pan stage. 

For the purposes of providing a forward prediction and a view 
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of sugar factory sectional operations, such models logically 

need to have a time scale basis. 

An overall encompassing view of the various section of the 

factory is currently not available and hence operators are not 

able to predict future pan stage loadings with any form of 

assistance from existing factory systems. Furthermore, 

prediction facilities are not available to determine the 

consequence of operators actions other than the actual forward 

estimates the operators intuitively carry out. The technique 

described in this paper is an approach to help solve this 

problem and make such facilities available. 

This paper is organised as follows. Section II discusses an 

overview of the sugar factory processes undertaken to produce 

syrup for the pan stage. Section III presents the basic KBSSS 

framework used and how industrial process models such as 

that used to predict sucrose and impurity quantities to the pan 

stage are integrated.  Section IV discusses the major features 

and development of dynamically allocating quantities to future 

forecast intervals using the syrup quantity prediction as the 

basis for discussion. Section V presents results for the 

approach with Section VI then presenting a discussion and 

conclusions. 

II. SYRUP PRODUCTION

The standard operation of a sugar factory involves the 

processing of large quantity of cane for the purpose of sugar 

production. An overview [5] of the process from cane receival 

to the production of syrup providing the primary input to the 

pan stage is now presented.  

After harvesting, cane is transported to the mill where it is 

weighed and processed at an automated cane receival station. 

Information on the producing farm along with the weight of 

each cane bin is automatically recorded at the cane receival 

station. Bins of cane may be transported to the factory via lorry 

or tram system. A series of cane bins from a particular sugar 

farm location are collectively known and processed as a 

“rake”.  

Within the sugar mill setting the bins of cane are 

sequentially fed to the shredder via a cane carrier system. The 

shredder disintegrates the cane and breaks it down into a 

fibrous material while rupturing the juice cells. An analysis of 

the first expressed juice of the cane allows the determination of 

the sugar content of the cane and associated payment to the 

cane grower depending upon the juice characteristics. Pairs of 

rollers feed the cane through a series of mills. This process 

separates the sugar juice from the fibrous bagasse material. The 

bagasse is used as fuel for the boiler furnaces and the juice is 

pumped away for further processing. 

There are two main methods of analysis of the composition 

of the rakes.  The traditional method is to send a sample of the 

first expressed juice from the first rolls of the mills to the juice 

laboratory for analyses.  The juice from a rake is composited so 

only one sample is analysed.  However, factories are now 

moving towards the use of near-infrared spectroscopy 

measurement on the cane in the chute to the first mill.  

Measurement by near-infrared spectroscopy is undertaken 

continuously but still the result for a rake is combined to 

provide a single analysis for the entire rake. 

The juice extracted by the crushing mills contains impurities. 

These impurities are removed through the addition of lime and 

then by further heating the juice. The added lime assists in 

neutralizing the acids and to precipitate impurities. The process 

coagulates the impurities into “flocs” of mud which then settle 

in large vessels known as “clarifiers”.  

Muddy juice extracted from the bottom of the clarifiers is 

mixed with fine bagasse material and then filtered using 

vacuum filters to recover the sugar. The mud and bagasse mix 

that is extracted by the filters is returned to the cane fields for 

use as fertilizer. 

The clear juice from the clarifiers is then further 

concentrated. This process is undertaken in a series of 

connected vessels called “evaporators” by boiling the juice 

under vacuum. The resulting concentrated juice is known as 

“syrup”. This product forms the primary input to the pan stage 

for use within the sugar crystallization process.  

III. OVERVIEW OF THE FRAMEWORK

The KBSSS is essentially a hybrid fuzzy logic based expert 

system incorporating fuzzy logic, explanatory capabilities and 

industrial process models of the pan stage. The knowledge base 

is composed of human operator knowledge coupled with 

dynamic industrial process models describing the 

crystallization process. The integration of such features leads 

to a challenge in the design and development of the KBSSS.  

The KBSSSs modular architecture is based upon 

conventional expert systems [6,7] and conventional If-Then 

fuzzy rule based systems design [8,9]. Fig. 1 provides a 

representation of the overall system framework [4].  

A core feature of this system is a predictive mechanism to 

determine future pan stage operating conditions with industrial 

process models describing the pan stage and its interaction

Fig. 1.  Smart supervisory control system framework diagram. 
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with the other sections of the sugar factory.  

Fig. 2.  Dynamic allocation algorithm used to allocate predicted 
quantities to future forecast intervals. 

The intermittent nature of stock tank level fluctuations 

within the pan stage means an advisory scheme warning of 

future levels and advising on corrective strategies to current 

stock usage is recognized as being of beneficial use to pan 

stage operators and supervisors in management and best 

practices for pan stage operations [3,10,11]. 

The prediction of syrup quantities to the pan stage liquor 

tank determines the majority of future liquor tanks inputs with 

the only other feed material input consisting of a continuous 

remelt material stream from C sugar production. Such 

prediction of liquor tank levels, through the prediction of syrup 

quantities, will aid in the stock tank management goals which 

form part of the primary system control strategies and offer 

support in the prediction of future pan stage operating 

conditions [4]. 

This predictive behaviour is a key characteristic of dynamic 

process models of the pan stage expert system framework [4]. 

These pan stage process models are tightly integrated into and 

work in tandem with the expert system rule base and are a core 

system technology. 

IV. PROVISION OF FORECAST FACILITIES FOR SYRUP 

PREDICTION: FEATURES AND DEVELOPMENT 

This syrup prediction model, as established in previous 

literature [12], predicts the future syrup loading quantities to 

the pan stage by relating cane receival data with juice 

processing information through use of an empirical factory 

operational fraction. This measure determines the fractional 

sucrose and impurity losses through bagasse and mud by-

products and consequently the sucrose and impurity quantity 

loadings in syrup to the pan stage. Collectively this determines 

future syrup quantities loadings to the pan stage and allows a 

forward forecast of the future pan stage loading of syrup.  

This model is of key importance as syrup comprises the 

basic input to the pan stage with direct feed to the pan stage 

liquor tank. Given that there is approximately a 96 minute 

delay from cane entering the factory and being processed to its 

associated syrup flows to the pan stage, this provides the 

prediction window for future syrup quantities flowing to the 

pan stage based upon cane receival crushing information.  

It is important to realize that cane receival information is 

non-discrete and may be entered into the sugar mill cane 

receival system at any time. There may also be subsequent 

delays till information for the first expressed juice sample is 

available from the juice laboratory. These information sources 

need to be collated together for each rake of cane to allow an 

estimate of the sucrose quantity in syrup produced from the 

juice to be calculated. 

The processing duration to crush a rake of cane will differ 

between rakes depending upon the number of bins in the rake 

and the transport system at the factory. For smaller factories 

that receive cane through lorry delivery the cane tipped per bin 

is about 6 minutes of crushing time. For factories with 
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tramway systems no juice sample is used to analyse the cane 

unless there are at least three to four bins, each with an 

approximate weight of 4 tonnes. Hence this could equate to 16 

tonnes of cane to be crushed. In a large factory this may 

correspond to only 1 or 2 minutes of crushing. The typical 

range of rakes correspond to 10 to 30 minutes of crushing but 

this is solely dependant upon the number of bins within the 

rake, factory crushing rate and cane delivery system in place. 

Such varying factors bring about a challenge to the 

development of a forward prediction model for relating syrup 

quantities to the pan stage from cane quantities being crushed 

and in allocating these syrup quantities to future forecast 

intervals over the prediction horizon. 

In order to realize a predictive model for the allocation of 

quantities to future time intervals a specialized dynamic 

forecasting algorithm was developed. This method is tightly 

integrated into and works in tandem with the pan stage process 

models to provide forecast abilities. 

Given a specified forecast period for forward prediction at 

15 minute intervals, the forecasting algorithm needs to 

determine and apportion the sucrose and impurity quantities for 

each batch to each associated prediction interval over the 

forecast horizon. Determining the exact intervals that these 

quantities are apportioned to and the apportioned quantities 

forms the overall goal of the proposed algorithm.  

Key requirements in the development of the dynamic 

allocation process are the: 

• determination of projected starting and finishing 

points for future batch processing accounting for process 

delays; 

• ability to handle date/time points for any period in the 

day; 

• robust handling of date/time for rollover periods 

across the midnight period of the day; 

• number of batches to be processed is not initially 

known so the algorithm must be generic enough to handle an 

undefined amount; 

• batches can exhibit differing processing rates so 

starting time information for batches may differ; 

• forecast horizon must be flexible; 

• forecast interval resolution fixed to 15 minutes 

discrete phases; and 

• software components are reusable and able to be 

applied to other forward forecast process models for the pan 

stage.

The overall algorithm as depicted in Fig. 2 consists of two 

major event loops. The first event loop progressively moves 

through each batch in a list and determines to which 15 minute 

interval phase in the day that the start and end batch belong to. 

The overall quantity for the batch is determined by the sucrose 

and impurity model [12]. This is linearly apportioned to each 

phase dependant upon how many minutes of the overall 

duration occur within each phase. The difference in the batch 

start and end phase numbers is used as the basis for allocating 

quantities to the intervals occurring between the start and the 

end of the batch. With no difference, quantities are allocated to 

a single phase. If a large difference exists then the quantities 

are apportioned over a greater time period and allocated to 

multiple phases. The overall batch is temporarily broken down 

into a series of phases which store the allotted quantity 

information. Each element in the individual batch array is then 

mapped back to the major data array for storage. This process 

is depicted in Fig. 3. 

Fig. 3.  Updating of major data array with quantities from individual batch 

array phases corresponding to the processing of sucrose/impurity batches. 

In this manner the algorithm iterates through each batch in 

the list, determines the number of required phases and 

quantities for each phase. Each phase is then mapped to the 

overall phase data for the day. A day period consists of 96 

discrete 15 minute phases – however this mapping only needs 

to be started from the initial phase number of the very first 

batch. The initial phase number for the start of the first batch is 

stored for compact data representation and used as an offset for 

array access. Further date/time accountability is ensured by 

extending the array beyond this 96 phase “soft limit” if a batch 

start or end period, encountered throughout the iterative 

process, moves into a new day. This is done for allocation of 

syrup quantities with prediction intervals that cross the 

midnight threshold into a new day period.  

Fig. 3 shows the updating and mapping process used to 

translate quantities allocated in individual phases to the overall 

data array. Several batches may update quantities to a 

particular phase interval and act in an additive fashion to 

existing array data. While the majority of syrup quantities for a 

cane rake will only be allocated to a single or two time 

intervals, the approach is robust and flexible enough to handle 

cane rakes of a much larger processing duration. 

The second event loop in the algorithm progressively passes 

through each element in the major data array and determines 

the actual prediction time that the array element corresponds 

to. This determination is provided by ancillary information 

from the initial setup of the major data array. Final results are 
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then written to a database for further use in liquor stock tank 

models. 

Fig. 4.  Sucrose and impurity quantity forward prediction made at 03/09/2003 

11:45PM. 

V. RESULTS

A 90 minute forward forecast of sucrose and impurity 

quantities is presented in Fig. 4 for Racecourse sugar mill 

(Mackay, Australia) cane rake data at 11:45pm on 03/09/2003 

for information specific to the 2003 cane crushing season. 

For the rake data presented in Table I cane quantities were 

measured at the cane receival station while pol%cane was 

calculated from juice laboratory analysis of the first expressed 

juice sample. The syrup purity value was measured in 

laboratory shift analyses on 03/09/2008 and determined to be 

89%. The empirical operational factory fraction used was 

established in previous research [12] and set as 0.9725. 

Table I shows the rake data for the preceding 96 minute 

period before the time that the prediction is carried out. All 

identifying information has been removed from rake data in 

order to protect the data privacy of cane suppliers. A 96 minute 

time frame is used as this is the approximate time it takes syrup 

from crushed cane to reach the pan stage. 

Using the algorithm presented in Fig. 2 sucrose and impurity 

quantities are allocated to the intervals shown in Tables II and 

III respectively. The break down of sucrose and impurity 

quantities to each 15 minute interval over the forecast horizon 

is presented with reference to the logical rake numbers 

specified Table I. 

TABLE II 
BREAKDOWN OF SUCROSE QUANTITIES USING FORECAST ALGORITHM

Logical 

Rake 

Number

11:45

PM

12:00

AM

12:15

AM

12:30

AM

12:45

AM

1:00A

M

1:15A

M

1 4.37 3.28

2 14.94 3.74

3 11.70

4 1.34 14.72

5 5.01 15.04

6 3

7 0

8 5

9 5.92 14.21

10 4.86

Total 

Sucrose (t) 4.37 18.22 16.78 19.73 18.71 19.19 19.07

Sucrose quantity allocated (t) to time interval

.67 7.34

.82

.11

The total sucrose and impurity quantities from tables II and 

III are presented in Fig. 4 along with their associated future 

prediction intervals. When summated these quantities indicate 

the expected syrup quantity to the pan stage after cane 

crushing. This quantity is also presented in Fig. 4.   Note: This 

total quantity of syrup is the quantity of solids (taken as the 

sum of sucrose and impurities) and excludes the quantity of 

water that is present in practice.  

VI. DISCUSSION AND CONCLUSIONS 

The syrup production rate is very consistent at 

approximately 25 tons of syrup quantity being delivered to the 

pan stage at each 15 minute interval. 

The cane to syrup relationship is used to illustrate the overall 

method of dynamically allocating forecast quantities to future 

TABLE III 
BREAKDOWN OF IMPURITY QUANTITIES USING FORECAST ALGORITHM

Logical 

Rake 

Number

11:45

PM

12:00

AM

12:15

AM

12:30

AM

12:45

AM

1:00A

M

1:15A

M

1 0.54 0.40

2 1.85 0.46

3 1.45

4 0.17 1.82

5 0.62 1.86

6 0.62 0.91

7 0

8 0

9 0

10 0.60

Total 

Impurities 

(t) 0.54 2.25 2.08 2.44 2.48 2.37 2.36

Impurity quantity allocated (t) to time interval

.10

.63

.73 1.76

TABLE I 
CANE RAKE DATA FOR THE 96 MINUTE PERIOD BEFORE 03/09/2003 11:45PM

Logical Rake 

Number

Nett Weight 

(t) Crushing Time Pol % Cane

1 49.49 3/09/2003 22:05 15.9

2 126.06 3/09/2003 22:12 15.2

3 79.85 3/09/2003 22:27 15.1

4 102.48 3/09/2003 22:38 16.1

5 132.50 3/09/2003 22:50 15.6

6 77.17 3/09/2003 23:06 14.7

7 5.98 3/09/2003 23:15 14.1

8 36.40 3/09/2003 23:16 14.4

9 142.55 3/09/2003 23:19 14.5

10 33.01 3/09/2003 23:36 15.2
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forecast intervals however this approach (with associated 

changes to the determination of prediction quantities and 

handling of possible process delays) is very similar. Other 

implementations however are complicated due to requirements 

for the interaction of additional industrial process models of 

the pan stage. 

Since this algorithm deals with assigning quantities of 

materials to future forecast intervals this methodology, with 

some minor modification to handle process delays and the 

method used to determine projected quantities to be 

apportioned during batch processing, is also used for: 

Forward prediction of syrup usage during forecast 

batch pan operational phases. 

Forward prediction of A molasses usage during 

forecast batch pan operational phases. 

Forward prediction of B molasses usage during 

forecast batch pan operational phases. 

A molasses return rates from centrifugals after A 

massecuite pan drop to receiver. 

B molasses return rates from centrifugals after B 

massecuite pan drop to receiver. 

Furthermore, this approach facilitates a unification method 

for batch and continuous processing regimes in the prediction 

of feed and production rates of process materials. This 

methodology makes it very easy to integrate continuous 

processing streams. For each time interval continuous process 

flow rates and hence quantities are fixed. The only 

modification required is to locate the interval period relevant to 

the continuous flows and perform the required quantity updates 

in an additive manner. Since the time intervals are readily 

available over the forecast period this is a simple process to 

interrogate the future time interval forecast list and update the 

associated quantities. The structured methodology presented 

makes seamless unification of batch and continuous processing 

possible when forward predicting process stream feed or 

production rates. 

The overall strategic management of the pan stage is quite 

difficult because of the very large number of process streams 

of varying compositions and crystal growth rate characteristics 

which must be managed. Often the pan stage is managed in a 

sub-optimal manner because an overview of operations 

encompassing various sections - cane receival sections, juice 

processing stations, the pan stage and centrifugal station - is 

not available. The method presented in this paper when 

working in tandem with the syrup prediction model allows an 

overview of syrup loadings to the pan stage by relating the 

cane receival and juice processing sections of the factory 

directly to the pan stage. 

A time based methodology is employed for mapping forecast 

production quantities and apportioning them to future time 

intervals. It provides a unifying system for pan stage process 

model forecasting though the allocation of prediction quantities 

to future forecast intervals. This technique is a fundamental 

and core component of the KBSSS that acts cooperatively with 

the process models to provide forecast capabilities.  
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