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ABSTRACT 

Non-invasive detection of three internal disorders of fruit of commercial relevance to 

Queensland horticulture was considered: (i) diffuse browning of apple fruit; (ii) 

gelling defect of mandarin fruit; and (iii) translucency of pineapple fruit. Visible - 

short wave near infrared spectroscopy (vis-SWNIRS) is in commercial use for non-

invasive field and in line assessment of fruit dry matter and soluble solids content of 

mango and apple. Some claims exist for commercially available instrumentation for 

sorting of fruit internal defects, but no assessment of such systems exists in the 

scientific literature. Four vis-SWNIRS instruments were trialled, varying in optical 

geometry: (i) the Integrated spectronics’s ‘Nirvana’ handheld instrument, operating 

with an interactance optical geometry; (ii) a purpose built unit employing a 300W 

halogen illumination source in a partial transmittance geometry, ‘IDD0’; (iii) the 

MAF Roda Insight2 unit, employing a 150W halogen lamp and operated in a full 

transmission geometry, and (iv) the MAF Roda IDD2 unit, employing four near 

infrared light emitting diodes and operated in a full transmission geometry. 

A number of reference methods were assessed for scoring level of apple flesh 

browning, including visual assessment, image analysis (% cross section area 

affected), chromameter CIE Lab values (L* and a* value) and juice Abs420nm, of 

which visual scoring on a 5 point scale was recommended. Chlorophyll fluorescence 

and acoustic resonant frequency was poorly related to extent of defect, and thus these 

non-invasive techniques are not recommended. Apple flesh browning was best 

assessed using visible-shortwave NIRS in a transmission optical geometry, with a 

typical PLSR model R
2
cv = 0.83 and RMSECV = 0.63 (5 point visual scale). Of 

different binary (good and defect fruit) classification approaches trialled, the best 

result was achieved using PLS discriminant analysis (PLS-DA) method, followed by 

linear discriminant analysis. More than 95% of defect fruit were predicted as defect 

(true negative rate) at the expense of having 10-20% of good fruit falsely predicted 

as defect fruit (false negative rate), across six populations. 

A number of reference methods were also assessed for scoring level of  granulation 

in mandarin fruit, including visual assessment (5 point scale), chromameter CIE Lab 

(L and colour index values) and % juice recovery, of which visual score and % juice 

recovery were recommended. Mandarin granulation, indexed by either visual score 
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or % juice recovery, was best non-invasively assessed using vis-SWNIRS in a 

transmission optical geometry, with a typical PLSR model R
2

cv = 0.74 and RMSEP = 

3.6 (% juice recovery). PLS-DAwas able to predict well for good fruit with up to 87 

and 100% of good fruit as good fruit (true positive rate) using the IDD0 and MAF 

Roda Insight2 units, respectively. Defect fruit were wrongly predicted as good fruit 

(false positive) using both the machine with best result (97 % true negative rate) 

obtained with PLS-DA using IDD0 unit.  

Translucency in pineapple, indexed by either a (5 point) visual score or image 

analysis was assessed using vis-SWNIR spectroscopy. Typical PLSR calibration 

results for models developed using the range 700-1000 nm results were modest       

(R
2

cv = 0.58, RMSECV = 0.55 on 5 point scale), and prediction results were poor 

(R
2

p = 0.41, RMSEP = 0.93. For binary classification, PLS-DA was able to predict 

98.7% of good fruit as good (true positive rate) while only 34% of defect fruit were 

predicted defect (true negative rate) based on visual translucent score.  

Sorting involves a trade-off between yield and quality. The use of a receiver 

operating characteristics curve (ROC) and a sorting optimisation curve (SOC) was 

explored for the comparison of binary classifiers and the optimisation of sorting set 

point. The need to adjust the sorting set point to maintain a desired quality 

specification (e.g. % of defect fruit in accepted class) as population mean and spread 

(SD) for the defect varies is explained. Internal defects of fruit under consideration 

are well detected and sorted for based under transmission optical geometry with 

visual defect score as a reference parameter.  
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Chapter 1. Introduction 

1.1 Thesis theme  

 

 

 

The fruit supply chain involves a range of actors including input suppliers, growers, packers, 

transporters and consumers, all working to provide quality fruit to consumers. Premium 

pricing requires consistent and high quality for both external (e.g. size, shape and colour) and 

internal attributes (e.g. dry matter, soluble solids). Internal defects deeply seated in the flesh 

can remain unnoticed until consumption. These types of defects are considered ‘major defects’ 

by the supply chain, e.g. retailer specifications of <2% of fruit. Sorting is required to ensure 

dispatched lots meet the tolerance limit for defects. There are reports of detection and sorting 

of internal defects based on X-ray imaging, magnetic resonance imaging (MRI), nuclear 

magnetic resonance (NMR), acoustic sensors however these methods have not achieved 

commercial application due to cost or inline applicability. NIR spectroscopy is a more 

promising technique for some internal defects. After the first spectroscopic assessment of 

internal defects within apple was made by Francis et al., (1965), this area of research 

remained dormant until 2000 when Upchurch et al., (1997), Clark et al., (2003) and McGlone 

et al., (2005) reported on the scope of internal defect detection in apple with NIR 

spectroscopy. The technology has achieved some commercial adoption, although there are no 

scientific literature reports on the efficacy of these commercial units. This thesis explores the 

use of such technologies, particularly the near infrared spectroscopy, in context of internal 

defects of commodities relevant to Queensland horticulture. Further, the sorting operation is a 

statistical ‘fog’, with uncertainties on measurement accuracy and on type I and II errors given 

the level of incidence of the disorder in a given population. The sorting technology operator 

therefore needs a decision support aid to guide setting of thresholds on the sorting operation.  
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1.2 Literature Review 

This review consist five sections (i) fruit quality (ii) fruit internal defects (iii) physiological 

basis of defects (iv) technologies for detection of internal defects and (v) review of 

technologies. 

1.2.1 Introduction to fruit quality  

The measurement of ‘quality’ involves the measure of ‘excellence’ of a product. For fruit, 

this excellence can refer to its appearance (size, shape or colour), nutritive value, sensory 

attributes and/or internal composition. The consumer may ‘buy with their eyes’ (i.e. base 

purchase decision on external appearance) but repeat purchasing is determined by the eating 

experience, and thus by internal attributes. There is also an increasing emphasis by market 

regulators on food safety, requiring a strong focus throughout supply chain (Harker et al., 

2008; Walsh, 2014).  

Fruit quality can be viewed from the perspective of any actor in the ‘value chain’, but the 

‘ultimate’ perspective is that of the consumer who purchases and consumes the product 

(Mowat & Collins, 2000). For fruit production, the value chain involves a network of 

participants, including suppliers of agricultural inputs (fertilisers, agrochemicals and 

seedlings), the grower, the packer, the transporter, the trader, the retailer, and ultimately the 

consumer (Walsh, 2014). The goal of each participant should be to add value at each step. 

The measure of success of a value chain is the creation of value to all of its members. Such 

success requires strict attention to the quality of the product, with each step in the chain 

maintaining this attention. For fruit, this also requires knowledge of the effect of growing 

condition on final product quality.  

Quality product is achieved by consistent commitment to given standards that lead to 

uniformity of product, ultimately to satisfy consumers' need. The quality is ensured by setting 

a standard, e.g. dry matter (%DM) or soluble solids content (%SSC), depending on the 

mutual needs of participants in the fruit supply chain. The agreed specifications should be 

quantifiable and replicable. Produce standards are in place for all commodities entering major 

retail chains of developed economies (Walsh, 2014). The development of such standards will 
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also occur in emerging economies, firstly in service to export markets and secondly to ensure 

food safety and eating quality to the consumers (Abbott, 1999).  

Historically, postharvest fruit grading on size, shape and colour was undertaken through 

manual inspection and sorting (Bollen & Prussia, 2009; Walsh, 2014). These practices 

depended on cheap labour, and suffered from lack of uniformity in sorting. An evolution of 

automated grading has occurred, progressing from simple diverging belts grading on fruit 

size to electronic platforms using load cells for fruit weight and machine vision (based on 

charge coupled device, CCD, cameras), combined with neural network routines and fuzzy 

logic to differentiate defects from acceptable features such as stalks (Bee & Honeywood, 

2004; Bollen & Prussia, 2009). However, these technologies are limited to the assessment of 

‘external’ fruit attributes.  

A range of non-invasive techniques hold promise for grading of fruit on internal quality 

attributes. For example, near infrared spectroscopy (NIRS) is used in grading of fruit for the 

quality parameters of %SSC and DM of apple and mango fruit (Subedi & Walsh, 2011; 

Subedi et al., 2007). Application of NIRS to grading of fruit on firmness and acidity has been 

proposed (Mendoza et al., 2014). Other technologies also hold promise, e.g. X-ray imaging 

(Haff et al., 2006; Mehta et al., 2013), nuclear magnetic resonance (NMR) (Hernández-

Sánchez et al., 2007; Hills & Clark, 2003), magnetic resonance imaging (MRI) (Herremans et 

al., 2014b), hyperspectral imaging (Lee et al., 2014; Lu & Ariana, 2013; Wu & Sun, 2013), 

acoustic methods including ultrasound (Mizrach, 2000, 2008; Mizrach & Flitsanov, 1999), 

and the electronic nose (Boeker, 2014; Kauer & White, 2009; Loutfi et al., 2015; Vagin & 

Winquist, 2015). However, commercial uptake of these technologies has been limited by cost, 

safety, accuracy, and compatibility for online application. This thesis will focus on the non-

invasive detection of fruit defects of relevance to Queensland horticulture. 

1.2.2 Fruit internal defects  

1.2.2.1 A definition 

The term ‘internal defect’ refers to an internal character that is deemed unacceptable by any 

member of the value chain, but principally the consumer. Attributes such as SSC and DM can 

be considered ‘positive’ attributes, used in sorting for fruit with an improved eating 
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experience and ideally an improved market value or acceptance, while defects such as 

internal rot represent a ‘negative’, resulting in consumer rejection. Fruit are metabolically 

active after harvest and may develop certain internal defects during storage or movement 

through the value chain. Although largely unnoticed until consumption, the presence of such 

defects will affect repeat purchase decisions and market share (Gamble et al., 2010). If such 

defects result in product rejection, not only are the costs incurred for production and harvest 

wasted, but also the costs incurred in sorting, packing, storage, postharvest treatments and 

transport. Re-establishment of brand reputation is difficult, with marketing studies indicating 

a delay on return purchase of fruit of 4 – 6 weeks after a consumer has a bad eating 

experience.  

For example, a study conducted in Australia on the effect of apple eating quality on consumer 

decision reported that a bad eating experience by a consumer typically resulted in change in 

purchasing decisions. It was reported that more than half (58%) of respondents shifted to 

another cultivar or purchased fewer fruit (31%), while 24% of respondents shifted to other 

types of fruit, and 17% did not buy apple for few weeks (Batt & Sadler, 1999). Sale volumes 

of apples were noted to be influenced more by fruit quality than by price Harker (2001); 

Harker et al., (2003, 2008). Internal disorders, such as internal browning in apple, are 

considered major defects by retailers. Retailers or standards bodies introduce produce 

specifications for their fresh fruit suppliers for their retail chain and set a limit on the 

presence of such disorders at < 2% of the consignment for ‘major’ defect and applies to any 

fruit commodities (Woolworths, 2015)  . Thus, there is incentive for development and use of 

non-invasive measurement techniques for sorting to remove fruit with internal defects. 

The issue of internal quality of fruit has received considerable scientific attention. 

Approximately 33,250 articles are associated with the key words “fruit internal quality” over 

the period 2000-2015 (www.sciencedirect.com; data retrieved on 18.12.2014). 

Approximately 20% of this number was captured by the descriptor ‘internal defect’, and 10% 

were associated with the descriptor ‘internal defects of apple’ (Fig. 1.1).  

http://www.sciencedirect.com/
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Figure 1.1. Number of refereed publications associated with key words ‘fruit internal quality’, 

‘Fruit NIR’ and ‘NIR and apple’. (Data sourced from Science Direct on May 15, 2015. Note 

use of a different scale for keywords ‘fruit internal quality). 

1.2.2.2 Types of internal defects  

Many types of internal defects can occur in fruit (Table 1.1). Water-soaked tissues (e.g. 

watercore in apple), hard or spongy flesh (e.g. lumpiness and spongy tissues in mango) flesh 

browning (e.g. in apple, pear, pineapple and avocado), mealy flesh (e.g. mealiness in apple 

and stone fruit), dry juice sacs (e.g. in mandarin) and formation of cracks and voids are a few 

of the common physiological disorders of fruit (Wongs-Aree & Noichinda, 2014) (Table 1.1). 

These defects may be the result of preharvest or postharvest conditions and may appear 

before or after harvest. Pre-disposing factors that occur pre-harvest include growing 

conditions such as soil, temperature, aspect, humidity, growing degree days, nutritional 

deficiency or excess, water relations and harvest time (Benkeblia et al., 2011; Bergman et al., 

2012; Galvis-Sánchez et al., 2004; Hannah, 2007; Hatoum et al., 2014b; James & Jobling, 

2009; Jobling & James, 2008; Moggia et al., 2015; Paull & Reyes, 1996). Postharvest factors 

include storage environment conditions such as temperature, humidity and gas concentrations 

(Castro et al., 2008; Castro et al., 2007; Eksteen & Truter, 1987; Galvis-Sánchez et al., 2004; 

Hatoum et al., 2014a; Hatoum et al., 2014b; Ho et al., 2013).  

Some common internal defects affecting fruit relevant to Queensland are discussed below 

(Table 1.1)                                                  .
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Table 1.1. Major internal disorders of fruits of a range of fruits grown in Queensland. 1 

Commodity/ Major 

internal disorders 

Predisposing factors /Causes Symptoms References 

Apple     

Bitter pit Low moisture in soil 

reducing the ability of tree 

to uptake and transport 

calcium from the soil. 

Excessive nitrogen and hot 

dry weather during fruit 

growth  

Bruise like spot in skin, disorder starts 

internally and may lead to bitter flavour 

as it worsens.  

de Freitas et al. (2013); de Freitas 

et al. (2010); Miqueloto et al. 

(2014); de Freitas et al. (2015) 

Internal browning Nutrition, maturity and CO2 

concentration in controlled 

atmosphere storage 

Development of a brown to dark brown 

spot limited to cortex or vascular bundle, 

sometimes extending through entire 

flesh.  

James and Jobling (2009); 

Holderbaum et al. (2010); 

Moggia et al. (2015);  

Water core Low night and high day 

temperature during maturity 

stages, low calcium and high 

nitrogen, over maturity and 

lean crop with large size 

fruit.  

Translucent flesh with high sugar sorbitol 

content.  

Yamada and Kobayashi (1999); 

Beaudry (2014); Dart and 

Newman (2005 ) 

Avocado     

Chilling injury Storage at 0-2 
o
C for a week 

or more 

Skin pitting, scald development and 

blackening .  

Florissen et al. (1996); Pesis et al. 

(2002)  

Internal flesh greying Storage of fruit at 3-5 
o
C for 

more than two weeks  

Gray pulp and vascular browning  Woolf et al. (2005); 

Gudenschwager et al. (2013) 
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Banana    

Under peel 

discolouration  

Bunches exposed to a 

temperature less than 12 
o
C 

Peel discolouration on ripening and 

develop grey or yellow colour 

Huang et al. (2013); Pongprasert 

et al. (2011) 

Citrus     

Granulation Nutrition imbalance, sandy 

soils, humid climates, fast 

growth of trees, large fruit 

Vesicle shrivelling and gel formation  Munshi et al. (1978); (Sharma et 

al., 2006; Singh & Singh, 1981a, 

1981b; Wang et al., 2014) 

Section drying Nutrition, irrigation Collapse of juice sacs or granulation also 

called dehydration disorder. 

Peiris et al. (1998) 

Gelling defect Nutrition, irrigation,  Dry, chewy and tasteless sensation from 

fruit consumption. Juiciness decreased. 

Subedi (2007) 

Macadamia nut     

Shrivelled kernel  Nutrition  Low oil content and hard after drying Wall (2013); Srichamnong and 

Srzednicki (2015) 

Immature kernel  Nutrition  Excessive browning during roasting  Srichamnong and Srzednicki 

(2015)  

Mango     

Spongy tissue High temperature, 

convective heat and 

postharvest exposure to 

sunlight. 

Patches of flesh fails to ripen and forms a 

lump  

Shivashankara and Mathai (1999) 

Chilling injury  cultivar, temperature and 

duration of exposure. 

Skin discolouration, uneven ripening, 

poor colour and flavour 

Chongchatuporn et al. (2013) 

Internal flesh 

breakdown  

late harvest  Flesh breakdown and development of 

internal cavities between seed and 

peduncle. 

Raymond et al. (1998) 
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Jelly seed  Ca deficiency Disintegration of flesh around seed into a 

jelly-like mass. 

Raymond et al. (1998) 

Soft-nose  Ca deficiency  Softening of tissue at apex. Flesh appears 

over-ripe and may discolour and become 

spongy.  

Burdon et al. (1991) 

Pear     

Core breakdown Delayed harvesting, over 

maturity, cold storage at 

high CO2 concentration 

Brown and soft breakdown of core, may 

have vascular browning  

Choi et al. (2015); Lammertyn et 

al. (2003); Verlinden et al. 

(2002); Franck et al. (2003) 

Internal browning Late harvest, CA storage  Franck et al. (2007); Wang and 

Sugar (2013); Yan et al. (2013) 

Watery breakdown Late precooling and short 

storage  

Soft and watery appearance of tissues, 

leakage of juice out of fruit 

Wang and Sugar (2013) 

Pineapple     

Internal browning  Low temperature (below 5 
o
C) storage 

Development of browning streaks in the 

pulp and expands to core 

Lu et al. (2011); Pusittigul et al. 

(2012); Selvarajah et al. (2001); 

Soares et al. (2005) 

Translucency Small crown, low night 

temperature during fruit 

growth, followed by high 

temperature during fruit 

maturation 

Low porosity and water soaked 

appearance, may develop overripe 

flavour 

 

Chen and Paull (2000) 

Paull and Reyes (1996) 



Introduction and literature review 

9 

 

Apple fruit can display internal flesh browning, water core or chilling injury with 

associated development of off flavours during storage (Hatoum et al., 2014b). Water 

core is a condition associated with pre-harvest conditions of low transpiration rate, 

and is not a common disorder in Queensland. Internal flesh browning develops 

during storage, with certain pre-harvest conditions pre-disposing fruit to 

development of the disorder. Growers in the Stanthorpe region of Queensland report 

that the variety Pink Lady
TM

 is prone to internal browning during controlled 

atmosphere (CA) storage, with loss up to 80% of fruit in some seasons for fruit from 

some paddocks and under certain nutrition management (Personal communication  

Rosie Savio, Savio farm, Stanthorpe). Indeed, in 2003, 35 containers of Pink Lady
TM

 

apples exported to UK were rejected on arrival due to internal browning (Jobling & 

James, 2008). This entrained loss of $35,000 per container, plus long term damage to 

brand reputation and loss of consumer confidence.  

Avocado fruit, especially of the Hass cultivar, suffer from chilling injury e.g. when 

fruit developed under shaded canopy conditions are stored at 0 
o
C for several days 

(Ferguson et al., 1999a). However, this disorder can be minimised by good 

temperature management during transport and storage. 

Banana fruit are affected by chilling, with development of dark brown streaks in the 

flesh and browning of peel and flesh in severe cases (Pongprasert et al., 2011)  . 

Severity is high if temperatures fall below 13 
o
C for more than 24 h. Impact bruising 

in banana may also cause flesh browning without any external skin symptoms 

(Bugaud et al., 2014). Again, these disorders can be minimised by good temperature 

management during transport and storage, and care in fruit handling.  

Macadamia kernels can develop internal discolouration leading to brown centres or 

rancidity during storage. Internal browning in macadamia is the result of presence of 

reducing sugars in the centre of kernel while an external browning developing during 

storage is associated with movement of sugars to the surface (Wall, 2013). Kernels 

with higher oil content are prone to rancidity. High moisture content in kernels 

during storage initiates rancidity, resulting from the decomposition of peroxides 

which, in turn, are the oxidative product of unsaturated fats and includes aldehydes, 

hydrocarbons and ketones (Wall, 2013). Current assessment requires physical 

inspection of kernels extracted from nuts. Unfortunately the thick exocarp and 
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mesocarp and woody endocarp of the fruit render non-invasive assessment 

techniques difficult to apply.  

Mandarin and other citrus fruit, particularly limes, lemons and grapefruit, suffer from 

chilling injury, granulation and puffiness (Ladaniya, 2008c, 2008b). Of these 

disorders, granulation in Imperial mandarin is the largest concern in Queensland. 

Hofman (2011) reported the incidence of granulation in the Burnett region of Central 

Queensland, Australia, as affecting >25% of fruit on average over four years, and 

reaching incidence levels of up to 33% in some seasons.  

Mango fruit can suffer ricey disorder, lumpy tissue, spongy tissue and black flesh 

due to preharvest reasons, while chilling injury, CO2 injury and black flesh are 

disorders caused by postharvest conditions (Shivashankar, 2014). Other important 

issues in mango include stone (seed) weevil infestation (Thomas et al., 1995; 

Verghese et al., 2005) and soft nose (Young, 1957), internal breakdown and jelly 

seed (Burdon et al., 1991; Raymond et al., 1998). However, seed weevil does not 

occur in Queensland and the other disorders do not cause large economic losses 

(Meurant et al., 1999). 

Pineapples can develop internal browning, internal rot or translucency. The growing 

or storage environment conditions that pre-dispose fruit to these disorders are not 

well defined (Haff et al., 2006; Marrero & Kader, 2006; Paull & Reyes, 1996; Zhang 

et al., 2013). 
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1.2.2.3 Horticultural production in Queensland 

Fruit production in Queensland is valued at $1169 million in Gross Value of 

Production (GVP) (five year average for the ten fruit commodities; Table 1.2). Of 

these commodities, banana fruit has the highest value, followed by avocado and 

mandarin (DAFF, 2013).  

Table 1.2. Gross value of production (GVP) of different fruit crops grown in 

Queensland, Australia (in $ million). 

Commodities 2008-09 2009-10 2010-11 2011-12 2012-2013* 
5 year 

average 

Apple 79 81 143 78 95 95 

Avocado 60 80 170 145 140 119 

Banana 390 448 283 415 500 407 

Macadamia 16 29 35 53 52 37 

Mandarin 64 76 89 71 64 73 

Mango 83 72 55 50 70 66 

Pineapple 88 70 50 68 83 72 

Strawberries 87 145 74 150 125 116 

Table grapes 24 36 32 18 50 32 

Other fruit and 

nuts 
126 257 129 92 200 161 

Total 1017 1294 1062 1139 1334 1169 

*forecast (Source: 2013) 

No formal estimate exists for the loss in production value due to internal disorders, 

and losses will vary with commodity, variety, and season. However, from the 

discussion above, the loss associated with apple flesh browning, mandarin dryness 

defect and pineapple translucency are significant, and these defects are candidates 

for non-invasive assessment/sorting.  

Based on economic value to Queensland (Table 1.2), the level of incidence of 

internal defects and potential application of technology for non-invasive detection of 

such defects, attention is given in this thesis to apple browning, citrus granulation 

defect and pineapple translucency. 
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1.2.3 Physiology and biochemical basis of internal defects  

Fruit are living biological entities, even after harvest, and accordingly demand 

management to retain physiological condition. The growing and storage environment 

and inherent nature of the variety/fruit determines the incidence of defects, both 

internal and external. Fruit exposure to inappropriate environments (light, 

temperature, gaseous concentration, relative humidity etc.) will affect physiology of 

the fruit, potentially creating a defect. For example, frost (freezing) can induce cell 

damage and later development of ‘dry’ areas within citrus fruit. Similarly, nutrition 

(deficit or excess), water management (deficit or excess) and gaseous environment 

(e.g. O2 and CO2 levels) can also have significant impact on the development of 

disorders.  

In this section, a review is presented on the basis of internal browning in apple, 

dryness defect in citrus and translucency in pineapple fruit. 

1.2.3.1 Apple Internal Browning 

 Apple is a member of the Rosaceae family, characterised by presence of flower 

parts in 5 or its multiple.  The fruit are pome, in which the inner core is the true fruit 

(ovary wall), with the endocarp lignified to a stony layer surrounding the seed.  The 

outer part of the fruit (the hypanthium) is formed by enlargement of sepal, petal and 

stamen tissue surrounding the ovaries in this inferior fruiting structure. As such the 

fruit contains accessory (non-ovary) tissue. 

Several types of internal browning have been recognised. Radial flesh browning is 

characterised by appearance of browning discolouration advancing along vascular 

bundles (Fig. 1.2A), while diffuse browning involved discolouration of the inter-

vascular areas (Fig. 1.2B) (James & Jobling, 2009). Bulge browning refers to 

browning of an area under a surface lump (Fig. 1.2C). This type of defect can be 

detected based on the external feature of the surface deformation. An internal 

breakdown disorder termed ‘brownheart’ is associated with CO2 injury and 

prolonged storage (Fig. 1.2D).  
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Figure 1.2. Types of internal flesh browning in apple A. radial. B. diffuse C. bulge 

and D. CO2 injury. (Source: Bergman et al., 2012;  James and Jobling (2009)) 

Apple fruit are rich in polyphenols, including procyanidin, catechin, epicatechin, 

chlorogenic acid, coumaroylquinic acid, and phloridzin, with the first four phenolic 

compounds predominating (Song et al., 2007). These polyphenols are responsible for 

flavour and colour development in apple but are also responsible for development of 

internal browning (Holderbaum et al., 2010; Lattaznzio, 2003; Macheix et al., 1990). 

Varieties that contain less of these compounds and polyphenol oxidase activities 

show less browning of cut surfaces, and less internal browning as a defect 

(Holderbaum et al., 2010). The browning symptom is thought to result from the 

oxidation of polyphenols to brown coloured pigments, namely quinone or its 

insoluble polymer, melanin as shown in Fig. 1.3 (Nicolas et al., 1994). These 

polyphenolic products have a phenolic ring with OH groups which has an absorption 

peak around 847 nm. 
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Figure 1.3. Proposed kinetic mechanism for enzymatic browning reaction in apple 

which leads to formation of brown polymer, melanin. Source: (Nicolas et al., 1994 ) 

The same process results in tissue surface browning following cutting of the fruit and 

exposure to air. Apple varieties that display a low propensity to brown on cutting 

(e.g. Granny Smith) possess a low concentration of precursor’s catechin and 

chlorogenic acid and also display a low propensity to develop internal browning 

during prolonged controlled atmosphere (CA) storage, relative to varieties that 

contain higher amounts of these polyphenols (Holderbaum et al., 2014; Holderbaum 

et al., 2010; Huque et al., 2013; Ma et al., 2015). A loss of malic acid was reported 

by Vandendriessche et al. (2013) in apple tissues with internal browning.  

For apples, the minimum level of physiological function and maximum storage life, 

as indexed by respiration, transpiration and enzymatic metabolism, is achieved 

through reduced oxygen (O2) concentration and temperature, and increased humidity 

and partial pressure of carbon dioxide (CO2) to minimize aerobic respiration while 

avoiding fermentation (Ho et al., 2013; Lumpkin et al., 2015; Nock & Watkins, 

2013). Apples, and pome fruit in general, are generally stored at around 2-5 
o
C with 

relative humidity above 70% in CA storage having gaseous concentration of oxygen 

and CO2, respectively, of 2% and 5-6% v/v. Higher partial pressures of CO2 and 

lower partial pressures of O2 can result in anaerobic respiration, and to disruption of 
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cell membranes thereby leading to a conducive environment for oxidative enzymatic 

browning. In practice, following controlled atmosphere storage of apple, fruit 

internal tissues may become hypoxic, leading to membrane dysfunction. This 

phenomenon appears to be more prevalent in modern varieties (e.g. Pink Lady
TM

) 

which have been bred for increased fruit ‘crispiness’, and indirectly for a reduced 

intercellular volume (Herremans et al., 2014a). 

Membrane dysfunction is associated with de-compartmentalisation of oxidative 

enzymes, leading to oxidation of polyphenols to quinone or related polymer 

compounds, and resulting in browning of flesh. The discoloured tissues areas are 

characterised by collapse of vascular and cortical cells in radial and diffuse flesh 

browning, respectively while CO2 injury is associated with formation of cavities in 

the cortical tissue (Fig. 1.4) (James & Jobling, 2009).   
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Figure 1.4. Scanning electron microscope (SEM) micrographs showing 

ultrastructure of apple vascular tissue (left) and cortex tissue (right) for sound fruit 

(upper row) and fruit with diffuse flesh browning (middle row)and with CO2 injury 

(bottom row) V = vascular tissues, C = cortex cells, D = collapsed tissues, cv = 

cavity and IS = intercellular spaces. Source: James and Jobling (2009). 
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1.2.3.2 Dryness defect/granulation in citrus 

Mandarin is a member of Rutaceae family, in which the fruit is a hesperidium. 

Anatomically, this fruit type consists of flavedo (skin and embedded oil glands), 

albedo (a thin layer of white tissue between skin and carpel), endocarp (with 

elongated multicellular structures projecting into the central locules forming juice 

vesicle) and seeds in the fruit axis.  

Various forms of granulation are reported in citrus fruit. Peiris et al. (1998) noted the 

use of terms such as section drying, gelling, granulation, crystallization, vesicle 

collapse and core dryness to describe these disorders. They divided these disorders 

into two broad categories, namely granulation and dehydration. In dehydration, 

collapse of the vesicles follows the shrinking of juice vesicles due to loss of fluids 

within the juice sac. One type of dehydration defect is associated with frost damage, 

in which juice vesicles are ruptured, and later lose their water content (e.g. after 

storage) (Subedi, 2007). The defect is characterised by decreased fruit density. 

Granulation starts with ‘hardening’ of juice vesicles, without loss of water, 

progressing to a collapse of the inner cells within the juice sacs and formation of an 

empty cavity (Fig. 1.5).  

 

Figure 1.5. Granulation in ‘Imperial’ mandarin, from juicy (left) to dry (right). 

The incidence of granulation in mandarin in Central Queensland cultivation has been 

associated with warm winters and high rainfall in spring or late summer, when there 

is high competition of resources between flowers, developing fruit and expanding 

flush. Hofman (2011) reviewed a range of hypotheses for the cause of gelling defect 

of Imperial mandarin, including sink competition between plant organs, accelerated 

senescence, temperature sensitivity, moisture stress, inefficient transport of 
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carbohydrates or too rapid growth, concluding that the sink competition hypothesis 

is the most favoured hypothesis. However, Hofman (2011) proposed a hypothesis 

based on results of trials on nutrition, thinning, plant growth regular use and 

irrigation (Fig. 1.6). This hypothesis postulates that juice cell water potential plays a 

role in the development of granulation, suggesting that the thickening of the juice 

cell walls is a protective mechanism to reduce water loss from the juice sacs. The 

‘sink competition’ hypothesis suggesting the higher degree of competition between 

fruit, roots and leaves received wider attention. This is supported with corresponding 

low soluble solids (carbohydrates) in the granulated fruit and incidence of 

granulation in tree with high vegetative growth Kaur et al. (1991). However, this 

hypothesis didn’t explain about cell wall thickening and gelling in vesicles (Hofman, 

2011). Other theories consider granulation as normal maturation process (Chen et al., 

2005) or temperature and/or moisture stress (Burns & Achor, 1989 ) or inefficient 

transport of metabolites into the fruit (Chakrawar & Singh, 1978 ).  

 

Figure 1.6. The water potential hypothesis for the development of granulation in 

mandarin. Source: adopted from Hofman (2011). 
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1.2.3.3 Pineapple translucency and browning  

Pineapple is a member of Bromeliaceae family, in which a multiple fruit is fruit is 

formed by fusion of multiple fruitlets and accessory (bract) tissue.   The fruit is 

infertile. Given this anatomical complexity, there can be a large variation in 

parameters such as TSS around the fruit. A water soaked appearance of the flesh of 

pineapple fruit is termed translucency (Haff et al., 2006) (Fig. 1.7). In this disorder, 

intercellular air spaces are filled with liquid, accompanied by loss of tissue gas 

permeability (Chen & Paull, 2000). High summer temperature and high rainfall 

during the ripening period followed by some duration of dry conditions pre-dispose 

fruit to this disorder (Paull & Reyes, 1996). The disorder involves a sugar induced 

solute-potential gradient between symplast and apoplast, involving a high rate of 

sucrose accumulation and increased sucrose synthase and cell wall invertase activity 

in affected fruit (Chen & Paull, 2000). Total sugar content and the sugar: acid ratio 

of translucent fruit is higher than that of normal flesh fruit. High levels of 

translucency result in poor oxygen diffusion into the fruit, and consequent anaerobic 

conditions resulting in \bacterial fungal infection and unpleasant flavour. The 

disorder occurs erratically, and is colloquially considered to occur following pre 

harvest rain.  Translucency in pineapple is mentioned by Department of Agriculture 

and Fisheries, Queensland as an issue if it exceeds 50% in the fruit 

(www.daf.qld.gov.au).  
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Figure 1.7. Flesh translucency in pineapple: normal (1) to most translucent (5). 

(Source: Edwards Don, University of California, Davis) 

1.2.4 Technology for assessment of internal defects in fruit  

1.2.4.1 Detection technologies 

All participants in a fruit value chain can take steps to minimise the incidence of 

defects, with some steps having more influence (e.g. selection of variety is a large 

determinant on apple internal browning incidence). A quality management system 

will aim to minimize the development of physiological disorders incidence in farm 

or storage or to identify and remove defect fruit before dispatch to retail. Small 

sample size destructive sampling can occur anywhere from in-field to retail 

distribution centre or in store. However, when for a retailer specification of no more 

than 2% of fruit to be affected by a defect, a typical destructive sample size of 30 

fruit is statistically unsound. For screening of large numbers of fruit, or indeed, or all 

fruit, a non-invasive technology is required. There are limited options for effective 

implementation points of such technologies in the value chain. Such points occur on 

packing lines near the production area, or in re-pack centres following storage.  

Recent advances in technology provide opportunities for detection of internal defects 

based on the physical and/or chemical differences between sound and defect fruit. 

Acoustic, X-ray imaging, Nuclear Magnetic Resonance (NMR) and Magnetic 
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Resonance Imaging (MRI), hyperspectral imaging and Near Infra-red Spectroscopy 

(NIRS) techniques have been proposed for in-line detection of internal defects, while 

other technologies (e.g. fluorescence; production of certain volatiles) have been 

discussed in terms of in-field or at-line assessment (Table 1.3). Some techniques 

have been used to non-invasively monitor the development of a disorder in fruit. For 

example, the use of chlorophyll fluorescence technique to assess the development of 

pithy brown core in pear, as caused by changes in partial pressure of O2 in controlled 

atmosphere (CA) storage, has been considered by a number of authors (Lumpkin et 

al., 2015; Mattheis et al., 2013; Mattheis & Rudell, 2011; Pasquariello et al., 2013; 

Pedreschi et al., 2008; Wang & Sugar, 2013; Yan et al., 2013; Zhang et al., 2015). 

The use of the technologies presented in Table 1.3 for detection of specific internal 

defects is presented in Table 1.4.  

A seminal review of technologies appropriate for non-invasive assessment of fruit 

was published by Abbott (1999), with subsequent reviews focussing on specific 

technologies such as NIRS by Nicolaï et al. (2007). Non-invasive quality assessment 

techniques have been well reviewed in recent years (Chen & Opara, 2013; Chen et 

al., 2013; Clark et al., 1997; Lin & Ying, 2009; Loutfi et al., 2015; Nicolaï et al., 

2007; Ruiz-Altisent et al., 2010; Wu & Sun, 2013; Zhang et al., 2014). Commercial 

uptake of these technologies has been modest, as for commercial application a 

technique must be both economic and robust in detection of the defect. A brief 

description of these technologies is presented here.  

Flotation of fruit in solutions of varied density has been used for sorting for internal 

defects involving change in fruit density, though with high inaccuracies (Clark et al., 

2007; Moscetti et al., 2014). The technique is compromised by entrapment of air (e.g. 

around bracts with pineapple fruit) and the effect of the solution may on the quality 

of fruit, e.g. incidence of mould.  

X-ray imaging and computer tomography have been used for detection of differences 

in density (and thus coefficient of absorption of X-ray) within fruit (Jha & Matsuoka, 

2000). In practice, the density differences of tissues within fruit are modest, such that 

normal transmission X-ray imaging yields relatively little information. However, air 

spaces can be readily detected. X-ray CT provides 3D imaging depicting much 

greater detail, but at greater cost and too-low speed to be practical to fruit sorting.
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Table 1.3. Summary of methods for detection of internal defect in fruit. 1 

Methods Attributes for study/detection Comments References 

X-ray transmission Attributes with density different to 

normal fruit tissue, e.g. decay and 

insect infestation, voids 

Well suited for detection of voids, health 

hazards, has been commercially used for 

detections of potato hollow heart  

Herremans et al. (2014b) 

Magnetic resonance 

and resonance 

imaging (MRI) 

Tissues varying in water mobility 

and water content e.g. water core, 

ripeness, core breakdown, pits, 

seeds, voids, bruises, dryness, 

chilling and freezing injuries 

Relaxation times are often used to 

describe the biological state of tissues 

and are interpreted as the ratio of bound 

water to free water. 

Abbott (1999); Gonzalez et al. 

(2001) 

Thermal Imaging Tissues varying in temperature e.g. 

bruises 

Up to 100% of apple bruises were 

detected using thermal imaging of the 

fruit surface 

Baranowski et al. (2012); 

Varith et al. (2003) 

NIR hyperspectral 

imaging 

Tissues varying in O-H, C-H, 

content or scattering properties, e.g. 

bitter pit in apple, maturity in 

banana, internal defects 

A discriminant calibration model was 

developed and successfully validated in 

different apple varieties. Cannot 

differentiate between bitter pit and corky 

tissues. 

Ariana and Lu (2010); 

Rajkumar et al. (2012) 

  2 
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NIR Spectroscopy 

-transmission 

geometry 

 

Major internal defects like apple 

browning, pear core breakdown, 

jujube insect infestation and cherry 

insect infestation, translucency in 

mangosteen 

 

Detect the defects due to difference in 

light absorptivity and scattering of the 

fruit  

 

Nicolaï et al. (2007); Nicolaï 

et al. (2009), Teerachaichayut 

et al. (2011); 

Terdwongworakul et al. 

(2012) 

-interactance  

geometry 

attributes to 1-2 cm depth like DM, 

SSC etc. 

Differences in light absorption and 

scattering by the tissues  

Upchurch et al. (1997); 

Nicolaï et al. (2009) 

-reflectance 

 geometry 

Attributes in the surface e.g., skin 

colour, presence of the bruises and 

moulds  

Differences in absorption of different 

colour in visible region  

Lorente et al. (2015) 

 1 

  2 
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Table 1.4. Summary of fruit defects and detection techniques used in detection of a range of fruit defects. 1 

Defects Fruit Type Detection References 

Internal Browning 

Apple 

X-ray micro CT Herremans et al. (2013) 

X-ray imaging Herremans et al. (2014b) 

NIRS 

 
Upchurch et al. (1997) 

MRI (sensors) Chayaprasert and Stroshine (2005) 

MRI Gonzalez et al. (2001) 

FT- NIR Li (2011) 

NIRS McGlone et al. (2005) 

NIRS Clark et al. (2003) 

Pear NIRS Fu et al. (2007) 

 

Thermography/ MRI Baranowski et al. (2009) 

  

MRI Clark et al. (1998) 

Internal Breakdown Apple NIRS Upchurch et al. (1997) 

Core breakdown Pear MRI Clark et al. (1998) 

Woolly breakdown Nectarines MRI Clark et al. (1998) 

Chilling Injury 
Persimmon MRI Clark et al. (1998) 

Pear NIRS Han et al. (2006) 

Mealiness Apple Ultrasonics Bechar et al. (2005) 

Pericarp hardening Mangosteen NIRS Teerachaichayut et al. (2011) 
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Translucency Mangosteen NIRS 
Teerachaichayut et al. (2007) 

Terdwongworakul et al. (2012) 

Translucency Pineapple MRI Clark et al. (1998) 

 

 

Insect damage 

Cherry NIRS 
Xing and Guyer (2008b) Xing and Guyer 

(2008a) 

Jujube NIRS Wang et al. (2011) Wang et al. (2010) 

Citrus Gas chromatography Kendra et al. (2011) 

Gelling defect Mandarin NIRS Subedi (2007) 

Section Drying Mandarin NIRS/ X-ray CT Peiris et al. (1998) 
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Chlorophyll fluorescence is a commonly used physiological method for assessment 

of photosynthetic activity and physiological status. Fluorescence is induced by direct 

excitation of chlorophyll molecules of photosystem II (PSII) by light and their 

immediate relaxation. Stresses such as chilling or high temperature injuries and low 

O2 can reduce PSII function thereby lowering the photochemical efficiency. A 

change in photosynthetic activity may be associated with the overall ‘health’ of a 

tissue.  Thus the technique has been utilised with stored apples to detect some 

physiological disorders and associated internal defects on the basis that PSII is 

interrupted and chlorophyll fluorescence will be high in stressed fruits (Lumpkin et 

al., 2015; Mattheis et al., 2013; Mattheis & Rudell, 2011; Pasquariello et al., 2013; 

Pedreschi et al., 2008; Wang & Sugar, 2013; Yan et al., 2013; Zhang et al., 2015). 

Equipment intended for controlled atmosphere (CA) storage room management is 

available (e.g. Harvest Watch; Bessling P/L). 

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) take  

advantage of the property of certain nuclei (such as 1H or 13C) to absorb 

electromagnetic radiation at a characteristic frequency when placed in a strong 

magnetic field, and weakly emit a radio frequency when ‘relaxing’ (Zhang, 2012). 

The spin-spin relaxation time (T2) and spin- lattice relaxation time (T1) refers to the 

mode of relaxation process which involves loss of energy.  

Tissues within a fruit that vary in water content and distribution can be differentiated 

based on NMR T2 relaxation times. Hills and Clark (2003) presented a summary of 

use of MRI in assessment of fruit quality attributes and in measurement of 

physiological changes in fruit and vegetables. Vandendriessche et al. (2013) reported 

the use of NMR in detection of internal flesh browning in Braeburn apple. There are 

number of reports of use of NMR in defects detection in pear (Franck et al., 2007; 

Hernández-Sánchez et al., 2007). Other potential applications include detection of 

woolly breakdown (Sonego et al., 1995), insect damage  and freezing injuries in fruit 

(Clark et al., 1997). This technique is not in commercial use for detection of the 

internal defects in fruit owing to its cost and processing. However, Aspect Imaging 

(www.aspectimaging.com) claims development of an in-line real time application 

suitable for fruit quality measurement and sorting with speed of 10-12 fruit per 

second. 

http://www.aspectimaging.com/
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Ultrasound technology (sonography) involves use of high-frequency sound waves 

wave for non-invasive assessment (Mizrach, 2008). Vibrations in the order of 20 Hz 

to 20 kHz are audible to humans, vibration below this range is termed infrasound, 

and above this range, ultrasound. In sonography, a pulse of ultrasound is propagated 

into the sample from a transducer, with reflected sound (echoes) from the sample 

detected and displayed as an image, typically of the acoustic impedance of a two-

dimensional cross-section of tissue. The frequency used in an application is a 

compromise between spatial resolution and imaging depth. Higher frequencies allow 

greater resolution but with a higher attenuation coefficient the depth of penetration of 

the sound wave into the sample is limited. For human and animal tissues, the 

frequency range of 1 to 18 mHz is normally used. 

This technique has been widely used in human and animal medicine but it does not 

work well in plant tissue due to prevalence of air-water interfaces. These interfaces 

reflect sound waves, limiting effective visualisation depth, even with use of lower 

frequencies. Other limitations include the need for a bridging medium between the 

transducer and the sample. In human applications a gel is used, and in industrial 

applications a stream of water has been used. There are number of reports of use of 

ultrasonic technology for fruit quality assessment including fruit defects (Bechar et 

al., 2005; Mizrach & Flitsanov, 1999). 

Acoustic methods utilise lower frequencies than ultrasound to index the stiffness of 

the fruit rather than to create an image. Typically an impact or an electromechanical 

device is used to produce acoustic vibration, with assessment of the frequencies best 

transmitted through the sample, the ‘resonant’ frequencies. The stiffness index is 

calculated from the resonant frequency, the mass of the sample and an index that 

describes the shape of the sample. A number of researchers have reported correlation 

between the stiffness index and firmness of the fruit, or presence of internal defects 

such as voids or bruises, using acoustic methods (Jamal, 2012). For example, the 

Aweta unit (AFS, Aweta, Nootdrop, The Netherlands) creates vibration using the 

impact of an electro-magnetically activated plunger and is used for firmness 

assessment of avocado (Arpaia, 2007 ), apple and tomato (Ramos- Garcia et al., 

2005 ). A microphone records the frequencies of transmitted sound to detect the 

dominant frequency. Subedi and Walsh (2009) reported use of a device that also 
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induces vibration by impacting the sample, but with measurement of transmission 

time of the vibration across the tissue to assess the fruit firmness. In another 

approach, vibration is applied to the sample using a sinusoidal wave vibration from 

10 Hz to 2 kHz in a sweep mode, with a detector on the opposite side of the sample 

used to detect the dominant frequency (Applied Vibro-Acoustics 

http://www.ava.co.jp/kataroguEnglish.pdf). This technique is claimed to be useful in 

assessment of fruit texture (Ramos- Garcia et al., 2005 ) and trialled in kiwifruit 

firmness measurement by Muramatsu et al. (1997). These techniques have seen very 

limited use in pack houses due to the need for contact to the sample, and to 

interference from other vibrations in the packing house. 

Near infra-red spectroscopy was developed for assessment of quality of dry 

agricultural produce, beginning with grain and (dry) forage materials in the 1980s, 

with subsequent extension to a wide range of industrial, pharmaceutical and medical 

applications. The technique is based on the absorption of frequencies matching that 

of the stretching or vibration of chemical bonds such as C-H and N-H. This 

technique is focus for this research study and is reviewed in greater detail in a 

subsequent section. 

1.2.4.2 Case study: citrus 

Various non-invasive measures have been used for quality evaluation of citrus. 

Zheng et al. (2010) reported use of Vis-SWNIR reflectance spectroscopy for 

predicting oleocellosis (a skin disorder in citrus fruit leading to development of 

surface blemishes), with the oleocellosis disorder associated with lower absorbance 

over the range 400-1000 nm (Rcv = 0.98, RMSECV = 0.0015 and Rp =  0.97, RMSEP 

= 0.035). Lorente et al. (2015) explored use of laser light backscatter imaging 

method for the early fungal (Penicillium digitatum) decay detection of citrus. An 

average correlation coefficient of determination of 0.99 was reported, given inputs at 

532, 660, 785, 830 and 1060 nm. Kawano et al. (1993) introduced SWNIRS for 

evaluation of the sugar content of Satsuma mandarin. 

In summary, various technologies are in use for detection of internal defects in 

different fruit species (Table 1.4), though very few of these have achieved 

commercial use. For example, the potential health hazards and cost of X-ray imaging 

http://www.ava.co.jp/kataroguEnglish.pdf


Introduction and literature review 

29 

limit the adoption of this technology, while cost and speed of assessment are limits 

to adoption of magnetic resonance imaging. 

1.2.4.3 Detection of internal defects of fruit using NIR  

There is a substantial scientific literature on the field of NIR and fruit quality. For 

example, in the 2010-13 period there were 900 papers associated with the terms 

‘fruit internal quality, of which approximately 10% were associated with ‘apple’, and 

5% with ‘apple internal defect’(Fig. 1.8). 

NIR spectroscopy is so far the only method for non-invasive assessment of internal 

quality in commercial use (e.g. packline manufacturers Greefa, www. greefa.nl/UK, 

MAF-Roda, www.maf.com; and Compac-Taste Technologies, www.taste-

technologies.com), primarily in context of sorting on fruit SSC or DM content. 

Within recent years the Taste Technology website has specifically mentioned the 

detection of water core and browning in apple and internal browning in kiwifruit 

while Greefa claims technology available to detect water core and apple browning 

with its ‘Combisort’ (http://www.greefa.nl/UK/products-grading-machines-

combisort.htm) and ‘Geo sort’ (http://www.greefa.nl/ UK/ products-grading-

machines-geosort.htm) products. However, there is no characterisation of these 

systems or validation of their efficacy in the scientific literature.  

 

Figure 1.8. Number of refereed publications associated with key words ‘fruit quality 

NIR’, ‘fruit internal defect NIR’ and ‘apple internal defect NIR’. Data sourced from 

Science Direct on May 15, 2015. Note use of a different scale for keywords ‘fruit 

quality and NIR’. 

http://www.taste-technologies.com/
http://www.taste-technologies.com/
http://www.greefa.nl/UK/products-grading-machines-combisort.htm
http://www.greefa.nl/UK/products-grading-machines-combisort.htm
http://www.greefa.nl/%20UK/%20products-grading-machines-geosort.htm
http://www.greefa.nl/%20UK/%20products-grading-machines-geosort.htm
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1.2.4.4 NIR spectroscopy  

Electromagnetic spectrum  

The electromagnetic spectrum (Fig. 1.9) encompasses all frequencies of 

electromagnetic radiation. Human eyes are sensitive to a small portion of this 

spectrum, 400-700 nm but it is this portion that most of the energy of sunlight at 

earth’s surface is present.  

 

Figure 1.9. A diagram of the electromagnetic spectrum, showing various properties 

across the range of frequencies and wavelengths. 

The presence of energy beyond the red part of the spectrum was discovered by 

Friedrich Wilhelm Herschel in 1800 A.D. The American Society of Testing and 

Materials (ASTM) have defined the NIR region of the electromagnetic spectrum as 

the wavelength range of 780– 2526 nm. In practice this region is divided by detector 

function, with Silicon based (charged coupled devices, CCD or photodiode arrays 

PDA) detectors sensitive from 450 to 1100 nm, and lead sulphide (PbS) detectors 

sensitive from 1100 to 2500 nm. More recently InGaAs detectors have become 

available, typically functioning from 800 to 2200 nm. Thus the term NIR is generally 

taken to infer the range 1100 to 2500 nm, while the term short wave near-infrared 

(SWNIR) refers to operation within the Herschel region of the spectrum, from 780-

1100 nm. This wavelength region of the electromagnetic spectrum is of particular 

importance as water O-H bonds are strong absorbers. As fruit contains above 80% 

water, absorption around 1850-1920 nm and 1400-1450 nm, associated with the first 

and second overtone bands of the O-H will be very strong such that the effective 

path length is a few millimetres. The absorption coefficients of the third and fourth 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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overtone stretch feature, at approximately 1150 and 930 nm, are lower, allowing 

effective penetration of biological tissue, albeit at the expense of peak broadening 

and thus overlapping of spectra features (Lin & Ying, 2009). The three absorption 

peaks of 760 nm, 840 nm and 970 nm are associated with water or OH group (Clark 

et al., 2003).  

Principles of Spectrophotometry  

When electromagnetic radiation penetrates an object, it subject to scattering and 

absorption processes. Incident radiation can be either reflected, absorbed or 

transmitted. The proportion of each phenomenon depends on the chemical 

composition and physical parameters of the sample. The scattering properties of light 

are a physical phenomenon and are dependent upon the changes in refractive index 

within the sample while absorption of light depends on the chemical composition of 

the product (Fu et al., 2007; Nicolaï et al., 2007).  

Radiation of certain frequencies will be absorbed by particular chemical bonds 

present in the biological materials (e.g. an O-H bond within sugar or water), causing 

stretching of the bond. The absorption difference is governed by the magnitude of 

dipole change during the displacement of atoms and its anharmonicity during 

vibration (Pasquini, 2003). High anharmonicity and displacement is observed in 

presence of bonds with hydrogen atoms with heavier elements like oxygen, carbon, 

nitrogen and sulphur in O-H, C-H, N-H and S-H bonds. The response to incident 

radiation depends on the match of radiation energy with the difference in energy 

level of the various states of the bond. This will lead to absorption or non-absorption 

of radiation frequencies at particular wavelength. For example, aromatic 

hydrocarbon (Ar-OH) of phenolic compounds shows high absorbance at 750 nm and 

1000 nm (Fu et al., 2007). The series of absorption features for the mix of bonds 

present in a sample results in the absorption spectrum of the sample under 

consideration, and its spectral ‘signature’.  

Acquisition Modes – optical geometry 

Different optical geometries should be used for acquisition of spectra depending on 

the nature of the sample under consideration. Typical geometries are reflectance, 

interactance and transmission (Fig. 1.10). Some of the incident radiation reaching an 
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object will be reflected. Reflected light will consist of specular reflection and 

external diffuse reflection. Specular reflections are mirror-like, and the light carries 

no information on the sample it was reflected from. Diffuse reflection represents 

light that has penetrated to some depth into the sample and re-emerged and thus 

carries information about the sample. For an optical geometry based on use of 

diffuse reflection, the detector is typically set at an angle of 45
o
 relative to the light 

source – object axis, to minimise detection of specular reflection (Fig. 1.10A). Full 

transmission geometry is suggested for parameters deeply seated in the sample like 

internal defects (Fig. 1.10C), while the information on skin colour can be obtained 

better by a reflectance geometry. Transmittance is the fraction of incident light 

(electromagnetic radiation) at a specified wavelength that passes through a sample. 

Issues associated with internal structure such as the presence of a large seed or 

difficulties in detecting low levels of transmitted light can be addressed using a 

partial transmittance optical geometry (Fig. 1.10C). An interactance geometry is a 

special case of a partial transmission geometry in which the light source and detector 

are typically set parallel to each other in a way that light due to specular reflection 

cannot directly enter the detector but the re-emitted light from sample is detected 

(Fig. 1.10C).  

http://en.wikipedia.org/wiki/Specular_reflection
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Wavelength
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Figure 1.10. Optical geometries for the acquisition of spectra from samples, 

involving a light source (LS), sample (S), and detector (D) in A. Partial transmittance 

B. Full Transmission and C. Interactance and D. Reflectance optical geometries 

(modified from Nicolai et al., 2007). 

1.2.4.5 Chemometrics 

1.2.4.5.1 Pre-treatment techniques 

Chemometrics aims at extracting hidden information from chemical systems by data-

analysis. The NIR spectrum of a fruit contains information on multiple variables, 

including chemical variables such as water content and sugars, physical variables 

such as light scattering, and non-sample variables such as instrumental noise, and 

effect of external temperature and light (Nicolaï et al., 2007). Chemometrics 

A 
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approaches can also be taken to deal with skewed data sets, using data de-noising 

and smoothing pre-treatment procedures. A range of spectral pre-treatments methods 

are available to remove the influence of variables such as scattering. Chemometrics 

can thus give important qualitative and quantitative information to best describe the 

parameter(s) under consideration.  

Two broad categories of pre-treatments methods are employed in spectra pre-

processing in NIR spectroscopy namely scatter correction and derivatization (Rinnan 

et al., 2009). Scatter correction includes standard normal variate (SNV), 

multiplicative scatter correction (MSC), Inverse MSC, extended MSC (EMSC), 

extended inverse MSC, de-trending, and normalization while derivatization consists 

Norris-Williams (NW) derivatives (gap segment) and Savitzky-Golay(SG) 

polynomial derivatives with different data points. Other treatments methods include 

size and weight correction (by dividing the spectra features for particular 

sized/weight fruit with average spectra). Mean centering and auto scale are some 

other pre-treatment techniques. 

Some of commonly used pre-processing techniques are briefly discussed here: 

Derivatives 

Derivatization is undertaken done to overcome effect of baseline shift and to separate 

peaks of overlapping bands. Calculation of a derivative involves use of a ‘window’ 

of wavelength data. For example, calculation of Savitzky Golay (Savitzky and Golay, 

1964) derivative requires the setting of the number of data points used for 

polynomial fitting as well as the polynomial order. A higher number of data points 

used in derivatization will led to creation of smooth spectrum but potentially at the 

loss of useful information. Derivatization can result in magnification of noise and 

can complicate interpretation of results in terms of absorbance features. 

Standard Normal Variate (SNV) 

This transformation removes variation caused by differential scattering related to 

particle sizes (Rinnan et al., 2009). The SNV involved auto scaling of each spectrum 

individually by deducting the mean spectrum not by entire sample set, which in 
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effect, removes the scatter effect from spectra. SNV does not use any average 

spectrum in the set.  

Multiplicative Scatter Correction (MSC) 

MSC is a scatter correction method by use of least squares regression of a given 

spectrum to the ideal spectrum (commonly the averaged spectrum). This involves the 

use of slope and intercept of the best line of fit to correct the sample spectra (Martens 

& Naes, 1989; Rinnan et al., 2009). MSC pre-treated spectra, in many cases, look 

similar to SNV treated spectra. Many chemometricians prefer SNV over MSC as 

MSC is set dependent, and thus if sample membership changes, the mean spectrum 

will change and a recalculation is required (Dhanoa et al., 1994).  

Spectral truncation 

Spectral truncation involves optimisation of the wavelength range used in analysis, 

to involve the assessment of wavelengths carrying information related to the attribute 

of interest, and avoiding inclusion of irrelevant wavelengths that contribute only 

noise to the analysis  (Huang et al., 2010). For example, wavelength range of 729-

975 nm was recommended for estimation of SSC and DM in fruit (Golic et al., 

2003 ).  

1.2.4.5.2 Quantitative predictions 

Partial least square regression (PLSR) is the most commonly employed algorithm for 

prediction of a continuous variable in a sample from spectral data, although other 

techniques are also used (e.g. multiple linear regression, MLR, support vector 

machines, SVM).  

PLSR is a statistical tool used to regress a large set of variables and combines 

features of multiple linear regression and principal component analysis (Herve, 

2003 ). PLSR involves reduction of the spectral data set to a few latent variables 

(LVs) or principal components (PCs) that are then regressed on the attribute values. 

This regression technique utilises the reference values in calculation of PCs. The end 

result is a model with a weighting on absorbance at each wavelength in the chosen 

region.  
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PLSR model development typically involves the following steps (Conzen, 2003 ):  

i. Sample selection for model development: Sample selection should represent 

the range of variation that could be observed in given population. Sample 

size can vary from 30 to thousands but at least 10 samples per principal 

component and more samples than the independent variables is a generic rule. 

Many literature reports are based on over-fitted models, wherein apparently 

good calibration results are achieved by use of too many principal 

components (Al-Najjar & Pai, 2014; Andreassen, 2015; Subramanian & 

Simon, 2013). 

ii. Prediction set: A test set different from the calibration set, representing future 

samples, should be used. Many studies fail to use an independent test set, but 

rather go to some length to select a test set that is matched to the calibration 

set, with all samples drawn from a common population. 

iii. Spectra acquisition from samples 

iv. Spectral pre-treatment: Appropriate spectra pre-treatments are applied to the 

spectra before making a regression model, e.g. standard normal variate with 

or without derivatization.  

v. Wavelength selection: An appropriate wavelength region should be selected, 

e.g. based on spectroscopy knowledge, univariate correlation across the 

available wavelength range with attribute level, or a wavelength range 

optimisation procedure using multiple range settings in the multivariate 

regression method of choice.  

vi. Regression: Pre-treated spectra are regressed against the reference values, 

with cross validation in which a number of samples are sequentially left out 

from the calibration set as a validation set, and the resulting model is tested 

on the validation set. Cross validation set selection will influence the 

regression outcome, with the ‘leave one out’ procedure being least onerous. 

vii. Outlier removal: A fault in reference assessment or spectral acquisition or 

instrumental noise for a sample will increase error in the model if included in 

the calibration modelling. These outliers should be removed from the data set, 

but ideally only where the cause is known. Indiscriminate removal of data 

that does not fit the model will produce apparently good calibration statistics 

but a model that is not robust in use with future populations. 
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viii. Testing the model: The model should be tested using an independent test set.  

The most commonly used statistics in multivariate data analysis are: 

Correlation coefficient (r or R) and Correlation Coefficient of determination (r
2
 or 

R²). Calibration statistics may be distinguished from cross validation or prediction 

statistics using the notation r and R, respectively, or by use of subscripts c, cv and p 

(e.g. R
2

cv).  

RMSEC (Root Mean Square Error of Calibration), RMSECV (Root Mean Square 

Error of Cross Validation) and RMSEP (Root Mean Square Error of Prediction) are 

estimates of error in calibration, cross validation and prediction, respectively. 

Prediction can involve a bias, an average increase or decrease in set value, and so a 

bias corrected RMSEP (SEP or RMSEPbc) is also a useful statistic.  

 

 

 

 

 

 

 

 

where p = predicted value, a = actual value, n = number of samples, b = bias 

 

There also exists a relationship among R
2
, RMSEP and SD. The derivation of this 

relationship is as follows: 

R
2
 = ratio of the total variance to the explained variance  
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R
2
 (coefficient of determination) is the ratio of total variance to explained variance, 

expressed mathematically as: 

2 1 SSR
R

SST




  

where, SSR is the sum of squared residuals, and SST is the sum of squared total 

variance. 

2

2

2

( )
1

( )

p a
R

a 


 




       Equation 1  

where µ is the mean value of analyte. 

We also know: 

2

2
( )p a

RMSEP
n





     Equation 2 

2( )
y

a
SD

n





     Equation 3 

Substituting equation 1 with values equation 2 and 3: 

2
2

2

( )
1

( )y

n RMSEP
R

n SD
 

 

2
2

2
1

y

RMSEP
R

SD
 

     Equation4 

 

There exists a relationship between RMSEP, bias and SEP as shown below: 

22 2RMSEP Bias SEP   

 

SDR: This is ratio between standard deviation (SD) and RMSECV/RMSEP of an 

parameter of a set of samples either used in calibration or prediction.  
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ySD
SDR

RMSECV


 or 

ySD
SDR

RMSEP


 

RPD: This is the measure of ratio of bias corrected standard error of prediction (SEP) 

to sample standard deviation. RPD for calibration and prediction results are reported 

as RPDc and RPDp. 

ySD
RPD

SEC


or 

ySD
RPD

SEP


 

1.2.4.5.3 Discriminant predictions 

A range of methods are used for discrimination of groups based on spectral data, 

including principal component analysis (PCA), linear discriminant analysis (LDA), 

PLS-discriminant analysis (PLSDA), PCA linear discriminant analysis, support 

vector machine classification (SVM), k nearest neighbourhood (kNN), soft 

independent modelling of class analogy (SIMCA) and logistic regression. 

Principal Component Analysis (PCA): This procedure converts a set of spectral data 

into linearly uncorrelated variables named Principal Components, where the first 

principal component accounts for the highest possible variances in the spectral data. 

The PCs can be used to describe the difference of a given sample to that of an 

existing set. 

Linear Discriminant Analysis (LDA): LDA is a pattern recognition technique 

involving supervised classification involving pre-specified classes. This 

classification tool involves a reduction in the dimension of variation in the given 

sample while retaining discriminatory information, and uses a linear combination of 

features that enables classification to given classes or groups (Zhang et al., 2006). 

For example, Vanoli et al., (2014) report use of linear discriminant (canonical) 

analysis for classification of Braeburn apples with internal defects based on time 

resolved reflectance spectroscopy estimates of absorbance and scattering at 670 nm 

and 740-1040 nm. A classification accuracy of 89.7% for healthy fruit, 42.7% for 

brown core fruit and 75% for brown pulp fruit was reported.  

K Nearest Neighbours algorithm (kNN): kNN is one of the non-parametric tests used 

for classification. In this method the number of nearest neighbours in a given feature 
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space is calculated for the sample with reference to the training set (Gongal et al., 

2015). In the example Fig 1.11, the unknown (?) has 2 neighbours of class 1 (red 

triangles) and 3 neighbours of class 2 (purple squares). For a k value of 2, the 

unknown has more neighbours in class 1 than 2 and the sample will be assigned to 

class 1. If we assign the k value of 3, this unknown sample will fall in class 2. Higher 

values of k are recommended to reduce noise in classification. 

 

Figure 1.11. An explanation of k-NN decision based on nearest neighbours numbers 

Source: Mucherino et al. (2009) 

Partial Least square – discriminant analysis (PLS–DA): Partial least square 

regression discriminant analysis (PLS-DA) uses the PLS linear classification 

technique in combination the discrimination ability of a classification technique. In 

essence, a PLS regression is carried out in which groups are assigned unit value (e.g. 

0 and 1). The model is used to predict the class of the unknown, using a threshold 

value (e.g. 0.5) to differentiate samples to classes. 

Support vector machine discriminant analysis (SVM-DA): This is a supervised 

classification technique using pattern recognition. Samples are arranged in a 

different feature space separated by a hyperplane for classification 

(Khanmohammadi et al., 2014). Samples lying on the borderline are named support 

vectors and are used in designing rules for classifying rest of samples. This 

classification method is considered suitable for heterogeneous classes with 

overlapping features. For example, the technique has been used in discriminating 

animal feed contaminated with toxic material and for separation of plastic types in 

recycling operations, based on NIR spectral information (Abe, 2010). 

Soft independent model of class analogy (SIMCA): Soft independent model of class 

analogy (SIMCA) is based on use of a principal components model, with 
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discrimination based on PCA model scores of the unknown and training sample. 

SIMCA is considered more suitable where classes do not overlap. 

Logistic regression: This is a regression algorithm for ordinal variables (class or 

groups) which calculates the probability of a sample belonging to a given 

class/category based on independent variables (Bielza et al., 2003; Kleinbaum & 

Mitchel, 2002; Lammertyn et al., 2000). Logistic regression can be binomial (only 

two class/categories) or multinomial (more than two categories) (Schein & Ungar, 

2007 ). For example, Yang et al. (2012) used this technique with a training set 1378 

samples, reporting a classification accuracy of more than 95% for discrimination of 

mature and immature fruit, and leaves of blueberry based on multispectral imaging 

using UV-Vis-NIR regions. 

1.2.4.6 Sorting of fruit  

The terms ‘sorting’ and ‘grading’ are interchangeable terms that refer to the 

segregation of material into quality categories, be that a binary sorting operation for 

removal of fruit that do not meet a specification, or assignment of consumable fruit 

into several subgroups based on a set of specifications (Bollen & Prussia, 2014). In 

the case of fruit with internal defect, the primary requirement is to separate affected 

from sound fruit, that is, consumer acceptable from non-acceptable fruit. If unsorted 

fruit is marketed, the consumer becomes a discriminant classifier, accepting or 

rejecting fruit. As discussed above, various technologies may be employed for non-

invasive detection of internal defect. However, any sorting operation will have 

measurement error, resulting in misclassifications. If the classifier (e.g. defect level) 

is a continuous value, a threshold value must be set to act as a boundary between 

classes. As the threshold value is varied, the number of ‘true’ and ‘false’ positive 

identifications will vary. There are four possible outcomes from a binary 

classification, a positive identification that is either true (TP) or false (FN), or a 

negative identification that is either true (TN) or false (FP). Several evaluation 

indices have been used based on these values (Table 1.5). 

Practical operation requires the operator to manage a compromise between 

classification accuracy and yield of the operation. There are several tools used in 

other fields that hold promise for use in fruit classification. 
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Table 1.5. Definition of terms and indices used in binary classification. 1 

Terms Nomenclature Description 

Total positive P Total number of actual good samples in the given population 

Total negative N Total number of actual defect samples in the given population 

True positive TP actual good sample predicted as good by model 

True negative TN actual defect sample predicted defect by model 

False negative FN actual good sample predicted as defect, Type II error 

False positive FP actual defect sample predicted good, Type I error 

Prevalence  P/(P+N) 

False discovery rate FDR measure of total defect out of total predicted good, FP/(FP+TP) 

False omission rate FOR measure of total good out of total predicted defect, FN/(FN+TN) 

False positive rate 

(Hit rate) 
FPR false positive divided by condition negative, FP/N 

False negative rate (Miss rate) FNR false negative divided by condition positive, FN/P 

True positive rate (Sensitivity or recall), 

positive predictive value  
TPR, PPV true positive divided by condition positive, TP/P 

True negative rate (Specificity) or 

negative predictive value  
TNR, NPV true negative divided by condition negative, TN /N 

Accuracy ACC 
true positive plus true negative divided by total population, 

TP+TN/P+N 

Positive likelihood ratio LR+ TPR/FPR 

Negative likelihood ratio LR- FNR/ TNR 

Diagnostic Odd ratio DOR LR+/LR- 
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Receiver operating characteristic (ROC) curve  

A ‘receiver operator characteristic’ or ROC (also known as a Receiver Operating 

Curve) can be used to compare the performance of binary classifiers. This curve is a 

plot of the true positive rate (sensitivity, d-prime or recall) against the false positive 

rate (fall-out or 1 – Specificity) at various threshold settings (Santos-Pereira & Pires, 

2005). The ROC plot was developed by the British army in WWII for comparison of 

operators interpreting radar signals, with true positives being incoming German 

planes and false positives associated with flocks of birds or other events. The plot 

was later used extensively in psychology test interpretation and more recently for 

medical diagnostic tests based on pathological, biomarker or imaging results (Hanley 

& McNeil, 1982). 

The ROC curve is equivalent to a plot of the cumulative distribution of the detection 

probability (y axis) against the cumulative probability of the false alarm probability 

(x axis), which can be calculated if the probability distributions for TP and FP are 

known. The best result for a binary classifier is 100% TPR and 0% FPR (perfect 

classification, i.e. a point at 0,100 on the ROC). A random assignment results in a 

point on the diagonal line (line of no-discrimination). A result below the line has 

discriminatory power, but the predictions must be reversed (shifting the result above 

the line of no-discrimination). Several summary statistics are used to describe the 

overall performance of a ROC curve (e.g. intercept of a line at 90
o
 to both ROC 

curve and no-discrimination line, known as Youdens J statistic; area between ROC 

curve and no-discrimination line; area under ROC curve, known as AUC or A’ or c-

statistic; or d’, the distance between the means of distribution for the native and 

sorted populations, divided by their respective standard deviations, assuming normal 

distributions). The AUC is equivalent to the probability that a classifier will rank a 

positive event higher than a negative event (Fawcett, 2006; Mason & Graham, 2002 ) 

and is related to Mann-Whitney U and the Wilcoxon test of ranks (Fawcett, 2006). 

However such summary statistics lose information on the shape of the ROC curve, 

i.e. the pattern of trade-offs. 

A body of work exists around classifier training techniques to optimise AUC, 

particularly for the case where the training set is large, so that computation time 

becomes significant. Calders and Jaroszewicz (2007) describe techniques which use 
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differentiable algorithms to estimate AUC as ‘soft-AUC’, and propose a technique 

based on a polynomial approximation of the AUC. Other techniques have been 

proposed, e.g. a support vector machine learner (Joachims, 2005). Calders and 

Jaroszewicz (2007) also advocate a method that assigns more than a simple binary 

score for points close to the threshold border, such that points with a small difference 

(predicted value – threshold value) are weighted lower than those with large 

difference, as occurs in calculation of mean squared error. 

As well as use for comparison of classifiers, a ROC curve can be used in the choice 

of the threshold value for a given classifier. This threshold value may be chosen to 

maximise both sensitivity and specificity, i.e. the upper left point of the curve, 

however in practice the optimal threshold value depends on the application demands 

for sensitivity and specificity. In practical terms, there are times in a sorting 

operation when the FNR (presence of defect items in the accepted category) is 

critical to the value chain, even at the expense of a high miss rate (FN/P), while at 

other times the operator may desire to maximise pack-out (TP+FN) at the expense of 

a higher false discovery rate FP/(FP+TP). 

Ooms et al. (2010) note that the ROC is well suited to the diagnosis of disease, for 

which the impact of mis-classification is large, but they suggest it is less relevant to 

the sorting of materials. As an alternative, the detection error trade off (DET) graph 

gives more attention to the area of interest of the ROC curve (i.e. region of minimal 

FPR and maximal TPR, top left region of plot). The DET plots missed detections 

(false negative rate, FNR) against false alarms (false positive rate, FPR) using x and 

y scales transformed by the quantile function of the normal distribution (the inverse 

of the cumulative normal distribution).  

Ooms et al. (2010) also describe compromise between yield and a quality factor to 

produce a ‘sorting optimisation curve’ (SOC) to guide the choice of the threshold 

value used in the classifier. In this approach, yield refers to (TP+FP)/(P+N), while 

quality refers to TPR with an assigned value (e.g. price) to sorted objects based on 

the proportion of defect items present in the lot. 

Given the apparent relevance of the use of ROC and its derivatives, there are 

surprisingly very few reports of application to fruit sorting as discussed by Bollen 
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and Prussia (2009, 2014). An ROC curve was developed for the application of 

detection of the apple bruises based on spectral information over the range 380-1000 

nm by (Luo et al., 2012). Reflectance difference between 808 and 760, 832 and 772, 

834 and 762 and 788 and 742 nm was recommended for bruise detection in cultivars 

Fuji, Jonagold, Orin and Sinano Gold, respectively, based on the AUC character. 

Siedliska et al. (2014) reported use of the AUC of a ROC curve for comparison of 

binary classifiers for bruise detection based on the hyperspectral imaging data. The 

binary classifier used was reflectance at 718-890 nm and 1017-1118 nm where 

reflectance of non-bruised (normal) fruit was higher than bruised one. The accuracy 

of bruise detection was as high as 95% and 90% for calibration and prediction sets 

respectively. 

Example data 

A simple explanation of the ROC curve is presented for the case of sorting of defect 

fruit. Good fruit may be predicted as good (True positive, TP) or defect (False 

negative, FN). Similarly defect fruit may predicted defect (true negative, TN) or 

false positive (FP). Let us assume an arbitrary population of fruit comprising 100 

good and 100 defect fruit, noninvasively assessed for the degree of defect on a 1 to 5 

(nil to severe defect). Let score 1 and 2 represent acceptable fruit, while 3 to 5 are 

unacceptable. Given the measurement technique has error, it can be seen that setting 

the sorting threshold at 2 will result in a level of errors. Increasing the threshold will 

result in more Type 1 errors (FP), while decreasing the threshold will result in more 

Type II errors (FN). An example data set is given in Table 1.6. In this data set, for a 

threshold value of 3.0, the distribution of true positive, false negative, false positive, 

true negative are 88, 12, 19 and 81, respectively  

Sensitivity (S, also called true positive rate, TPR), a measure of how well the good 

fruit were predicted, is calculated as TP/P. In this example, Sensitivity = 88/100 = 

0.88. Other parameters are documented in Table 1.6. 
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Table 1.6. Example data set of a sorting operation involving prediction of defect 

level and a sorting threshold value varied between 0.5 and 5, with calculations of 

various descriptive parameters based on these data.  

 Threshold value 

Descriptive parameters 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

True positive (TP) 10 35 52 72 84 88 92 95 97 100 

True negative (TN) 100 100 100 100 98 81 65 35 22 0 

False negative (FN) 90 65 48 28 16 12 8 5 3 0 

False positive (FP) 0 0 0 0 2 19 35 65 78 100 

Prevalence 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

False discovery rate 

(FDR) 
0 0 0 0 0.02 0.18 0.28 0.41 0.45 0.5 

False omission rate 

(FOR) 
0.47 0.39 0.32 0.22 0.14 0.13 0.11 0.13 0.12 NA 

False positive rate 

(FPR)/(Hit rate) 
0 0 0 0 0.02 0.19 0.35 0.65 0.78 1 

False negative rate 

(FNR)/(Miss rate) 
0.9 0.65 0.48 0.28 0.16 0.12 0.08 0.05 0.03 0 

True positive rate 

(Sensitivity or recall), 

TPR 

0.1 0.35 0.52 0.72 0.84 0.88 0.92 0.95 0.97 1 

True negative rate 

(Specificity) TNR 
1 1 1 1 0.98 0.81 0.65 0.35 0.22 0 

Accuracy (ACC) 0.55 0.68 0.76 0.86 0.91 0.85 0.79 0.65 0.60 0.5 

Positive likelihood ratio 

(LR+) 
NA NA NA NA 42.00 4.63 2.63 1.46 1.24 1 

Negative likelihood 

ratio (LR-) 
0.9 0.65 0.48 0.28 0.16 0.15 0.12 0.14 0.14 NA 

Diagnostic Odd ratio 

(DOR) 
0 0 0 0 257.3 31.3 21.4 10.2 9.1 NA 

 

Specificity (or true negative rate, TNR) is measured as TN/N. Sensitivity (or true 

positive rate) is measured as TP/P. Adjustment of the threshold value will alter 

classification accuracy, both in terms of sensitivity and specificity. In this example, 

for a threshold of 3, Specificity = 81/100 = 0.81 and Sensitivity is 0.88 (Table 1.6).  

The Receiver Operating Characteristic (ROC) curve is obtained using the 1-

Specificity and sensitivity values for a range of threshold values (Fig. 1.12). For a 

specificity of 0.81, false positive rate (1 - Specificity) = (1-0.81) = 0.19. In this 

example, the threshold is varied from 0.5 to 5 for fruit scored on a 1-5 defect scale 
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(Table 1.6). The ideal ROC would track to the top left (ie. to 0,1) of the ROC (Fig. 

1.12). 

 

Figure 1.12. Receiver operating characteristic (ROC) curve for an arbitrary 

population plotting the true positive rate and false positive rate. 

A discriminant function may also involve a threshold value, being the value that 

separates the two classes during prediction and yields a classification. 

A Sorting optimisation curve (SOC) is intended to aid the decision in sorting 

operation. The operator of a sorting operation on defect fruit must compromise 

between yield (TP+FP/P) and false discovery rate (FP/FP+TP), with control exerted 

through selection of a threshold value. Thus, yield and false discovery rate can be 

plotted against Threshold value (for the example data set, Fig. 1.13). In this example, 

a threshold value of approx. 2.5 is required to achieve a false discovery rate of <2%, 

and this setting involves a yield of 43%. However, other parameters may also impact 

operator behaviour, e.g. pricing on premium and defect lines. The design of a SOC to 

include such factors will be considered later.  
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Figure 1.13. Sorting optimisation plot of relevant characters (yield and false reject 

rate) at a range of threshold values for visual score of cut surface. 

Alternately, the Detection Error Trade-off (DET) curve can be used, in which the 

missed detection rate (false negative rate) is plotted against the false alarm (false 

positive rate) using x and y scales transformed by the quantile function of the normal 

distribution (the inverse of the cumulative normal distribution) or by logarithm base 

10. This presentation expands the false reject scale in the area of interest, in this case 

around a value of 2%. 
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Figure 1.14. Detection Error Trade-off (DET) curve: plot of missed detection rate 

(false detection rate) against the false alarm (false positive) rate: top panel, raw scale; 

middle panel, log-log plot; bottom panel, quantile (probit) function plot. 
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1.3 Conclusion 

A number of internal defects within fruit result in consumer dissatisfaction and thus 

in consignment rejection by retailers. Internal browning of apple, granulation of 

mandarin and translucency of pineapple are disorders of economic importance to 

Queensland. There is some understanding of the physiological basis of these 

disorders, but little ability to control their incidence by management practices. With 

variable occurrence comes the need for sorting to remove affected fruit. 

Instrumentation for fruit internal defect detection and sorting must be rapid, accurate, 

non-invasive and cost effective for commercial adoption. The use of several methods 

have been explored over the past 50 years, including methods based on X-ray 

transmission, NMR, MRI, acoustics, and ultrasound. Complexity, cost, speed and 

reliability have limited adoption of these methods. Two methods have seen limited 

adoption: chlorophyll fluorescence for monitoring physiological status of fruit in 

storage, and NIR spectroscopy. NIR spectroscopy has been applied to the non-

invasive measurement of soluble sugars, dry matter content and some other attributes 

of fruit. The technique usually involves a tedious process of calibration model 

development and seasonal updates for increasing model robustness, a process which 

limits widespread adoption. 

Non-invasive detection and sorting of fruit on internal defects is yet limited in terms 

of commercial use. This thesis will explore use of visible-short wave near infrared 

spectroscopy to non-invasively detect the disorders of internal browning of apple, 

granulation of mandarin and translucency of pineapple, with attention to approaches 

that increase classification accuracy and that optimizing the sorting operation and 

provide guidance to the operator of the sorting operation. 
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Chapter 2.   

Non-invasive detection of internal 

flesh browning of apple using 

visible-short wave near infrared 

spectroscopy
1
 

Abstract 

Certain cultivars of apple are prone to an internal flesh browning defect in regular air 

storage and/or following extended controlled atmosphere storage. A number of 

(destructive) reference methods were assessed for scoring the severity of this defect 

in a fruit, including visual assessment, image analysis (% cross section area affected), 

chromameter CIE Lab values and juice Abs420nm, of which visual scoring on a 5 

point scale and a colour index based on CIE Lab were recommended. Fruit 

chlorophyll fluorescence and acoustic resonant frequency were not consistently 

related with presence of defect, and these non-invasive methods were discounted for 

this application. Non-invasive detection of this disorder using three instruments 

operating in the visible-shortwave NIR but varying in optical geometry (interactance, 

partial transmission and full transmission) was attempted. Quantitative prediction of 

defect level was best assessed using visible-shortwave NIRS in a transmission 

optical geometry, with a typical partial least squares (PLS) regression model R
2
p = 

0.83 and RMSEP = 0.63 (5 point defect score). Of 12 binary (good and defect fruit) 

classification approaches trialled, the best result was achieved using the PLS 

discriminant analysis (PLS-DA) method, followed by linear discriminant analysis 

and support vector machine classification. Classification accuracy ((TP+TN)/(P+N)) 

on an independent validation population  of > 95% was achieved, with a false 

discovery rate (FP/(TP+FP)) of <2% using linear discriminant analysis, PLS-

discriminant analysis, a support vector machine approach and a logistic regression.  

A simple two wavelength based discriminator was also demonstrated to support 

promising sorting results.   

Keywords: model, colour index, score, optical geometry, classification 

                                                 
1
 This chapter is in preparation for submission to Postharvest Biology and Technology, a journal of 

the Elsevier group. Part of the work was presented at the International Horticultural Congress, 2014 

Brisbane, Australia, as an oral paper (“Internal defect detection in fruit”) and as a peer reviewed paper 

in the conference proceedings. 
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2.1 Introduction 

Several types of internal browning are recognised in apple (Malus domestica Borkh.) 

and other pome fruit, including radial, diffuse, bulge or internal breakdown 

(Bergman et al., 2012; James & Jobling, 2009). The browning symptom is 

considered to result from membrane disruption, with consequent oxidation of 

polyphenols otherwise localised to the vacuole to the brown compound, quinone, or 

its insoluble polymer, melanin (Hatoum et al., 2014a). The browning disorder 

developing during ambient storage or following controlled atmosphere (CA) storage 

is associated with varieties with lower intercellular space content but incidence 

severity is influenced by both pre and postharvest factors, and their interaction 

(Benkeblia et al., 2011; Bergman et al., 2012; Castro et al., 2008; Castro et al., 2007; 

Felicetti et al., 2011; Franck et al., 2007; Hatoum et al., 2014b; Lau, 1998; Wang & 

Sugar, 2013). The incidence of the disorder can therefore be erratic (James & Jobling, 

2009). Pre-harvest factors include nutrition (chiefly calcium and nitrogen), irrigation, 

harvest maturity, growing degree days and days after full bloom (Moggia et al., 

2015). The main postharvest factor associated with diffuse internal browning is high 

carbon dioxide concentration, referred to as CO2 phyto-toxicity (Ferguson et al., 

1999b; Hatoum et al., 2014b), with probability of incidence increasing for fruit in 

controlled atmosphere storage beyond six months (Castro et al., 2007).  

Internal browning is considered a ‘major defect’ by retailers, with consignments 

subject to rejection if more than 2% of fruit display the disorder (Woolworths, 2015). 

This market pressure creates demand for a technology capable of detection of the 

disorder in fruit, allowing for sorting to remove defect fruit.  

Chlorophyll fluorescence has been widely adopted for assessment of stress in plants. 

The technology has been commercialised for measurement of stress of fruit in 

controlled atmosphere storage, particularly apples (Neuwald et al., 2007; Prange et 

al., 2002). It is possible that fruit developing internal browning may display 

increased levels of fluorescence. For example, Prange et al. (2002) report a decrease 

from 0.8 to 0.63 in photochemical efficiency (Fv/Fm) of apple fruit in storage as O2 

concentration decreased from 3.5 to 0.5% over 120 hours. Similarly, Fv/Fm of 

Braeburn apple stored for two weeks at 0 and 30 kPa CO2 was 0.51 and 0.44, 

respectively (Neuwald et al., 2007). Indeed, Saquet and Streif (2002) reported use of 
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chlorophyll fluorescence measurements for early detection of high CO2 and low O2 

stress in ‘Conference’ pear fruit. A marked decrease in chlorophyll fluorescence was 

noted after two weeks of storage in conditions which were associated with the 

development of internal tissue browning at a later stage, following prolonged CA 

storage (Saquet & Streif, 2002). However, the arrest in photosystem II might be 

observed due to any adversities in change in fruit physiology and does not 

necessarily imply an internal disorder.  

Of technologies with potential for detection of this disorder, visible-short wave near 

infrared spectroscopy (SWNIRS) shows more promise than acoustic, X-ray or 

nuclear magnetic imaging techniques for adoption into online sorting. The first 

report of detection of apple water core and internal breakdown using light 

transmittance was produced by Francis et al. (1965), with the topic then left 

unreported for 30 years, until the work of Clark et al., (2003), Upchurch et al., (1997) 

and McGlone et al., (2005) and then others, as summarised in Table 2.1. 

The work of Francis et al. (1965) was based on Richard Delicious apples, with 

absorbance measured in a full transmission optical geometry using a single beam 

Biospec spectrophotometer (high intensity grating and Dumont 6911 photomultiplier 

tube) at three wavelengths (740, 805 and 840 nm). The absorbance difference of 740 

-805 nm was negatively correlated (R = -0.81) with severity of watercore while the 

absorbance difference between 840 - 740 nm was correlated with severity internal 

breakdown (R = 0.91), unless internal browning was present. 

 



Apple flesh browning 

54 

Table 2.1. Overview of reports of use of NIR spectroscopy for non-invasive assessment of internal browning in apple. 

Population 

(n) 

Reference 

method 

Wavelength 

(nm) 
Detector Geometry R

2
 

Classification (%) 

TPR, TNR 
References 

100 score 740, 840 Biospect Transmission 0.82 98, 93 Francis et al. (1965) 

556 score 450-1050 SiPDA Interactance 0.71 94, 88 Upchurch et al. (1997) 

240 % area  697- 861 SiPDA Transmission 0.91 NA Clark et al. (2003) 

117 % area 650-950 SiPDA Transmission 0.9 NA McGlone et al. (2005) 

512 juice A420 950-2300 InGaAs Interactance 0.87 NA Li (2011) 

120 visual 780  TRS  90, 71 Vanoli et al. (2014) 

 

PDA: Photodiode Array, SiDA: Silicon Diode Array, InGaAs: Indium Gallium Arsenide, True Positive Rate (TPR) refers to the % of 

good fruit predicted as good and True Negative Rate (TNR) refers to the % of defect fruit predicted as defect.  
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Upchurch et al. (1997) reported use of a full transmittance optical geometry and a 

spectrometer with entrance slit of 500 µm, 150 grooves/mm ruled grating and a 

silicon diode array detector, supporting a spectral resolution of 12 nm, for detection 

of internal browning in apple. Spectra were acquired using an exposure time of 5 s (a 

time impractical for on-line grading). The study was based on 556 Delicious apples 

stored at 0 
o
C for 6 months to develop internal breakdown. A set of 136 apples were 

used for calibration set development while the remaining (420) apples were used for 

prediction purposes. A visual score of 0 (no browning) to 3 (extreme browning) was 

assigned after cutting each fruit perpendicular to stem-calyx axis. Defect fruit were 

reported to absorb more light below 750 nm (particularly 720-750 nm) and less 

above 750 nm, relative to healthy apples. A ratio between transmittance at 720 and 

810 nm was selected as a classifier for discrimination between defective and good 

apples. The ratio decreased as the browning intensity increased and was correlated 

with the degree of internal breakdown (R
2
 = 0.71). Error rates of 6.3% good apples 

misclassified as defect (false negative) and 12% defect fruit misclassified as good 

(false positive) were reported. The presence of bruises contributed to instances of 

false negatives.  

Clark et al. (2003) reported use of SWNIRS to detect internal browning in Braeburn 

apple fruit that had been selected to represent a range of severities of the disorder 

using clinical magnetic resonance imaging (MRI). The light source and detector 

were located at right angles to one another relative to the fruit (partial transmittance 

geometry), with spectra collected over the range 300-1140 nm using a Zeiss MMS1 

spectrometer. Errors in assessment were partly attributed to asymmetric distribution 

of browning within fruit. Regression based on simple wavelength ratios, multiple 

linear regression and partial least squares regression were considered for segregation 

of good and bad fruit. Changes in spectral features between 680 and 900 nm were 

observed as browning intensity increased. Absorbance was higher in defect fruit over 

the range 680-825 nm and lower at wavelengths above 825 nm. The best PLSR 

model prediction result reported was obtained using a model developed utilizing 

absorbance spectra over the range 697-861 nm (R
2
p = 0.91, RMSEP = 7.9% of cut 

surface affected), obtained by averaging spectra from opposite sides of the fruit.  
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McGlone et al. (2005) considered detection of brownheart disorder of Braeburn 

apples using two detector types with integration times short enough to allow on-line 

grading. SWNIR transmittance spectra were acquired over the 650-950 nm range, 

with fruit moving at a speed of 500 mm per second (5 fruit per second). A set of 117 

fruit kept for 4 weeks in cold storage was used, with severity of browning ranging 

from 0-60% of the surface area of an equatorial cut of the fruit. A ‘large aperture 

spectrometer’ was recommended for online measurement, with a PLSR model result 

achieving R
2

p = 0.9, RMSEP = 4%. Multiple measurements of a given fruit in 

different orientations was recommended for more accuracy, and for application on 

line, a good seal between fruit and the conveyor cup was recommended to block 

stray light to the detector. 

Li (2011) reported assessment of internal browning in Fuji apples (n = 512) using 

Fourier Transform (FT) NIR (Bruker Optics, Germany, 800-2500 nm, InGaAs 

detector, 50 W light source) in an interactance optical geometry. Four spectra were 

acquired per fruit and were averaged for further analysis. Fruit were stored in 

controlled atmosphere (CA) storage (at 8% O2 and 5% CO2 for 20, 40, 60, 80, 100, 

120, 140 and 160 days. Of these fruit, 300 fruit were used for calibration and 212 

fruit for validation purposes. The best PLSR model (R
2
 = 0.87) was obtained using 

the wavelength ranges of 950-1440 nm, 1480-1890 nm and 1960-2300 nm. The 

degree of apple browning was analysed using 4 mL of juice mixed with 0.05 g of 

polyvinyl polypyrrolidone (PVPP) and 6 mL of 95% ethanol for measurement at 

wavelength of 420 nm using a UV-visible spectrophotometer (UV 2600 Shanghai, 

China).  

Working with another member of the pome fruit family, pear (Pyrus communis L.), 

Han et al. (2006) reported use of a discriminant technique for detection of brown 

core using spectra collected over the range 651-1282 nm with a transmission optical 

geometry at. A perfect classification result was obtained with discriminant analysis 

(DA) using Mahalanobis distance (MD). Using the absorbance difference between 

713 and 743 nm as a classifier, 5.3% of good pears were classified as defect while 

only 4.3% of defect fruit were classified as good.  

Fu et al. (2007) compared the use of two instruments for detection of internal 

browning in pear. Transmission spectra were acquired using a 50 W tungsten 
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halogen lamp and a Si based Ocean Optics spectrometer operating over the range of 

400-1028 nm. Spectra were collected from fruit in two fruit orientations, with stem-

calyx axis vertical or horizontal. Diffuse reflectance spectra were also acquired with 

an FT-NIR spectrometer (Bruker Optics Corporation, Germany) operating with two 

detectors (silicon 670-1100 nm and InGaAs 800-2630 nm). Only 57 pears were used 

for the exercise, which were stored for 5 months at 4 
o
C to allow development of 

brown heart. Samples were cut perpendicular to stem-calyx axis for visual scoring on 

a three point scale (no browning, slight browning and severe browning). 

Discriminant Analysis (DA) was used to discriminate classes using the Mahalanobis 

distance. Of the 57 fruit, 37 (24 with brownheart and 13 good) were used for 

calibration and the remaining 20 were used for prediction purposes. Better results 

were obtained with the transmission geometry instrumentation. Defect pear fruit 

demonstrated a higher absorbance below 750 nm and a lower absorbance above 750 

nm. Increased absorbance below 750 nm is consistent with absorption in the visible 

wavelengths, presumably by phenolics associated with the browning symptoms. In 

calibration, an accuracy of 89% was noted, for validation accuracy decreased to 81%.  

Other detection technologies continue to benefit from development. Chayaprasert 

and Stroshine (2005) reported use of magnetic resonance imaging (MRI) for 

detection of browning in intact apple in an online sorting conveyor belt at speed of 

lower than 150 mm/s achieving the classification accuracy (TP+TN/P+N) of 88%. 

Gonzalez et al. (2001) also reported the use of MRI in detection of internal browning 

in Fuji apples with difference in longitudinal (T1) and transverse (T2) relaxation 

time and proton density between the normal, moderate and severe browning fruit. 

Vanoli et al. (2014) reported the use of time resolved reflectance spectroscopy (TRS) 

estimated absorption and scattering coefficients at 780 nm for separation of internal 

browning in apple fruit. They reported correct classification of 90% of good fruit and 

71% of defect fruits. 

Thus a number of reports indicate that non-invasive sorting of fruit on internal 

browning is possible. For the light transmission studies, two approaches have been 

used – the estimation of a continuous variable associated with the level of defect (e.g. 

the output of a partial least square (PLS) regression prediction) and a binary 

classification to defect and sound fruit (principally LDA). Other discriminant 
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techniques of promise to this application include PLS–discriminant analysis (PLS-

DA), support vector machine (SVM) classification, soft independent modelling of 

class analogy (SIMCA), and multiple logistic regression (MLR) (Yang et al., 2012).  

The published reports of detection of internal browning generally recommend a 

transmission geometry and the use of wavelengths in the vis-SWNIR region, but 

there is discrepancy between the reports on the best range to use, and on the 

algorithm to use (PLS regression, simple ratio, discriminant analysis etc.). The 

comparison of published studies is difficult, as results depend on instrumentation, 

population distribution and the reference method used to assess level of defect. 

Further, all of the reports mentioned above are based on relatively small sample sizes, 

basically limited to a single population of fruit divided into training and validation 

sets. As such, these studies have failed to consider the range in variation of fruit 

optical properties occurring between populations (of different growing conditions 

etc.).  

Perhaps it should not be a surprise that commercial adoption of such technology 

appears limited, an indication that application is not as straightforward as some of 

the scientific literature suggests. Indeed, there are no reports in the scientific 

literature of use of commercially available equipment targeted to detection of apple 

fruit with internal diffuse browning. In the current exercise, results for detection of 

internal browning in apple are compared for spectra collected with instruments using 

an interactance, partial transmittance and full transmission geometries, including the 

instrumentation of fruit grading equipment manufacturer, MAF Roda, with 

consideration of reference method, wavelength region and algorithm. 

2.2 Materials and Methods 

2.2.1 Fruit 

Apple (Malus domestica Borkh.) cv Pink Lady
TM

 fruit were commercially harvested 

in Stanthorpe, south Queensland, Australia, in April 2013 and stored for six months 

in controlled atmosphere storage with 1-2% O2 and 4-5% CO2 at temperature of 2 
o
C 

and relative humidity more than 85%. Fruit were sampled  randomly from various 

bins, and represents different harvest dates in the harvesting season, transported to 

Rockhampton, Queensland at 25 
o
C, and then stored for another two months at 4 

o
C 
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in a refrigerator with relative humidity of 85%. Fruit were allowed to equilibrate to 

room temperature of 25 
o
C for 6 h before spectra were acquired. The room and fruit 

temperature during spectra acquisition was at 25 
o
C.  

The four independent lots (populations) of fruit contained a total of 296 fruit (93 

good and 203 defect). Population 1, consisting of 90 fruit (31 good and 59 defect), 

was used for calibration model development. Population 2 and 3 contained 60 (12 

good and 48 defect) and 77 (28 good and 49 defect) fruit, respectively, and were 

used as independent prediction sets. Population 4, containing 69 fruit (22 good and 

47 defect fruit), was used for trials on sound frequency, resonant frequency, DA 

index measurement, chlorophyll fluorescence and absorbance at 420 nm of extracted 

juice. Population 1 and 2 (a total of 150 fruit) was subset into five groups of 30 fruit 

for a study of the impact of fruit temperature on model prediction. Each lot of the 

fruit represents fruit from same harvest season but differ in storage time of 3 weeks 

in refrigerator at 4 
o
C before experiment.  

2.2.2 Chlorophyll fluorescence 

Chlorophyll fluorescence was assessed for each fruit after dark adaptation (Fig. 2.1). 

Fruit were wrapped with aluminium foil for 24 h prior to measurement of 

photosynthetic efficiency using an OptiSciences 30p (Bioscientific, Australia) at a 

modulation intensity of 4. This unit employs a PIN photodiode with a 700 - 750 nm 

band pass filter. One reading was taken per fruit within 2 s of removing the 

aluminium foil. 

  

Figure 2.1. Measurement of chlorophyll fluorescence of apple fruit. 
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2.2.3 SWNIRS 

Four spectra were acquired of each fruit (detector facing each of four equidistant 

locations around the equator of the fruit) using each of three instruments, involving 

different optical geometries and detectors (for an expanded description, see 

Appendix 1). 

Nirvana (Integrated Spectronics, Sydney, Australia); a handheld instrument using an 

interactance optical geometry (Greensill & Walsh, 2000) with a 32 W halogen lamp 

and a MMS-1 photodiode array spectrometer (302-1150 nm); 

IDD0 (Fig. 2); an instrument developed ‘in-house’ employing a partial transmission 

optical geometry with a 300 W halogen lamp and a MMS1 photodioide array 

spectrometer (302-1150 nm) operated with an integration time of 1000 ms;  

Insight-2 (MAF Roda, Montabaun, France); an online sorting instrument using a full 

transmission geometry with a 150 W halogen lamp and an Avantes spectrometer 

(600-973 nm) operated with an integration time of 9 ms. 

IDD2 (MAF Roda, Montabaun, France); an online sorting instrument employing a 

full transmission optical geometry with pulsed light emitting diodes (LEDs) of peak 

emission wavelengths 700, 780, 810 and 880 nm and a single photodiode detector. 

All units achieved repeatability (SD of absorbance of 20 repeated measurements of a 

white tile) of around 1 mAbs unit (Appendix 1). 
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Figure 2.2. Schematic diagram of IDD0 instrumentation, featuring: 

Lamp power supply (1): step-down transformer model MM 115/250EN (Peter 

Martin Sales P/L, Newstead, Qld, Australia), input 240VAC 50Hz, output: 

115V-250V, Fan power supply (2): adjustable transformer; input: 240VAC, 

50Hz, output 12VDC 0.8A to 30A, Power switches (3,4) on fans (5) and lamp 

(6) (300W, 120V, Quartzline lamp, General Electric Company, Nela Park, 

Cleveland, OH, 44112),  Adjustable shutter (7) with aperture to suit fruit (8) of 

different sizes. on aluminium block heat sink (9), Lens assembly (10) with 

SMA connection to fibre optic of Zeiss MMS 1 spectrometer (11) (employing 

Hamamatsu S3904-256Q diode array); dimension 70x50x40 mm ), supported 

by a 16 bit analog to digital converter (tec5, Germany) (12) and computer (13) 

for data acquisition and processing using an in-house developed LabView 

based program, ‘Hortical’. 

The IDD0 (Table. 2.2) was developed for this project, and was based on the Zeiss 

MMS-1 spectrometer, operated with a 16 bit analogue to digital converter (tec5, 

Germany). This unit has a mean pixel pitch of 3.3 nm, a wavelength resolution 

(FWHM) of approximately 10 nm, a signal to noise of 1 milli absorbance and a well 

depth of 1013 counts/watt seconds and operates over the spectral range 310-1100 nm. 

Thus the unit has high signal to noise but modest sensitivity. To achieve a 180
o
 

geometry (lamp-fruit-detector angle) involving transmission of light through a whole 

fruit, a high intensity lamp (300 W Quartzline) and a long integration time were 

employed. The use of the 300 W lamp entailed heating problems of both fruit and 

lamp housing, so the unit was designed with a series of fans and a failsafe circuit to 
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cut power if lamp holder temperature exceeded 100 
o
C. A shutter was incorporated 

to allow shielding of the fruit until measurement.  

Spectrometer analogue to digital conversion counts (ADCC) of over 67% of detector 

maximum were achieved for citrus fruit using this lighting, but for apple, reasonable 

detector ADCC and integration time was achieved only with a 90
o
 illumination-

sample-detector angle. 

2.2.4 Reference measurements 

The extent of the browning disorder within apple fruit was assessed using several 

reference methods:  

2.2.4.1 Visual browning score  

A panel of 6 members was trained in the assignment of a score for the severity of 

defect as visible in a transverse equatorial cut of the fruit, using either a 5 (Fig. 2.3) 

or 10 point scale, with scorers assisted by a reference pictorial chart. The average 

value of all scorers was used. The 10 point visual scale was initially used, to mimic 

practice observed in industry (personal communication, Philippe Plagnol, MAF 

Roda, France). A 5 point scale (Jobling, 2005) was later trialled. In the 5 point scale, 

score 1 is symptomless and score 2 is associated with a faint ‘off white’ colouration 

that can be considered acceptable to consumers. Scores 3-5 are associated with 

increasingly distinct symptoms, but all categories can be considered unacceptable to 

consumers. Therefore fruit of score 1 and 2 are considered ‘acceptable’ fruit, while 

those of 3, 4 and 5 can be considered as ‘defect’ fruit (Fig 2.3). For the 10 point scale, 

scores 4-10 are associated with defect fruit. 

Figure 2.3. Cut surfaces of apple with diffuse internal browning symptoms in order 

of increasing browning intensity from left to right, with visual score ratings of 1 to 5, 

respectively. 
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2.2.4.2 Area of defect  

The cut apple (equatorial transverse cut), as used in visual scoring, was imaged using 

a Canon DS 126211 camera with a 17-85 mm lens at a fixed focal distance. Images 

were processed using ImageJ software, with conversion of the RGB colour image 

into grayscale and use of a threshold setting to differentiate defect tissues and 

masking of the core area (Fig. 2.4). Affected tissue area was expressed as a 

percentage of total fruit cross-sectional area, with subtraction of the core area.  

 

Figure 2.4. Image processing using ImageJ software for quantification of affected 

area as a % of total cross-sectional area. 

2.2.4.3 CIE colour space readings 

The cut apple (equatorial transverse cut), as used in visual scoring, was also used for 

the measurement of surface colour (CIE Lab colour space) a Chromameter CR 400 

(Konica Minolta; 2 degree observer, D65 illuminant), with averaging of five 

randomly located measurements per fruit. The measurements was taken following 

the cut and completed within 15 seconds for each fruit so as to avoid further 

browning. The Chromameter was calibrated using a standard calibration procedure. 

CIE Lab values were used to calculate the Colour index (CI), as described by 

Magwaza et al. (2014): 
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2.2.4.4 Absorbance of juice aliquot at 420 nm 

A measurement of absorbance of extracted juice was attempted, after the method of  

Song et al. (2007). Tissue was sampled for this measurement at the point where 

Chromameter readings were taken. Apple flesh (10 g FW) was chopped into fine 

pieces, blended with 12.5 ml of water using an ultra turrax and centrifuged for 5 min 

at 3000 rpm. An aliquot (5 mL) of juice extract was then mixed with 7.5 mL of ethyl 

alcohol and centrifuged for another 10 min at 3000 rpm before measurement of 

supernatant absorbance at 420 nm using an UV-Visible spectrophotometer (Cary 50 

Bio, Ontario, Canada). 

2.2.4.5 Weight, SSC and DM 

Following weighing of each fruit, a 20 mm diameter core was extracted to 10 mm 

depth from the point of spectral assessment. The core was halved radially, with one 

half used for dry matter (DM) and the other for soluble solids content (SSC) 

measurement. For DM assessment, tissue was dried in a fan forced oven at 65 
o
C for 

48 h. For SSC, juice was extracted using a garlic press and measured using a 

refractometer (RFM 320, Belingham and Stanley Ltd). 

2.2.5 Data analysis and Chemometrics 

Data analysis was undertaken using Excel (Microsoft, USA), the multivariate data 

analysis software The Unscrambler 10.3 (Camo, Norway) and Matlab (Mathworks 

Inc., USA) with PLS Toolbox (Eigenvector, USA). IDD0 and Nirvana spectral data 

was collected in Absorbance units. Insight2 spectral data was output in units of % 

transmittance (T) and was converted to Absorbance (log 1/T). Absorbance data of all 

instruments was subject to a number of pre-treatments including mean centring, 

standard normal variate (SNV), multiple scatter correction (MSC), and Savitzky 

Golay second derivatization using a window of 9 points (SG-9). Spectral data used 

for the analysis was restricted to 500-975 nm for IDD0 and Nirvana instrumentation 

while for the Insight2 unit the entire available range (600-973 nm) was used. 

Predictive quantitative models were developed using the calibration data set using 

partial least square regression (PLSR). PLSR models were assessed using the criteria 

of correlation coefficient of determination (R
2

cv), root mean square error of cross 

validation (RMSECV) and number of principal components (PCs), while predictive 
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performance was assessed based on coefficient of determination of prediction (R
2
p), 

root mean square error of prediction (RMSEP) and bias. 

The binary classification algorithms of linear discriminant analysis (LDA), PLS–

discriminant analysis (PLS-DA), support vector machine (SVM) classification, soft 

independent modelling of class analogy (SIMCA), and multiple logistic regression 

(MLoR) were assessed based on the true positive rate (TPR = TP/P) and true 

negative rate (TNR = TN/N) and accuracy (TP+TN/P+N).   

2.3 Results and Discussion 

2.3.1 Population description 

Of the four populations assessed, population 2 had the highest mean visual (5 point) 

scores (Table 2.2). The mean CIE a and colour index values of the three populations 

was not proportionate to the mean visual scores, consistent with a poor relationship 

between these variables (Table 2.2). 

Table 2.2. Mean and standard deviation of reference parameters for calibration and 

prediction sets. 

Parameters 
Calibration 

Pop 1 

Prediction 1 

Pop 2 

Prediction 2 

Pop 3 

Preliminary 

Pop 4 

Number of fruit 90 60 77 69 

Score (5) 3.21 ± 1.53 3.81 ± 1.39 3.36 ± 1.75 2.8 ± 1.60 

Colour Index 0.37 ± 1.29 1.05 ± 1.4 1.38 ± 1.38  

CIE a* value  0.63 ±  2.2 1.75± 2.32 2.45 ±  2.48  

 

The five sets of fruit used in the exercise on assessment of influence of temperature 

on prediction performance (section 1.3.8) each contained 30 fruit with mean and SD 

of 2.96 ± 1.49, 3.28 ± 1.57, 3.14 ± 1.48, 3.36 ± 1.51 and 3.85 ± 1.38, respectively. 

2.3.2 Reference methodologies 

Consumer assessment of the diffuse browning defect of apple involves subjective 

visual inspection of a cut surface of the fruit. However there are inexacitudes 

involved in classifying this disorder, e.g. how should a fruit with a diffuse overall 

browning be scored compared to a fruit with a patchy but darker areas. In an attempt 
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to quantify the visual assessment, five and ten point scoring systems were compared. 

The average RMSED (root mean of squares of error of differences) of assessment by 

six different operators relative to an ‘average assessor’ using the 5 point scale was 

0.54 (n = 6), while for the 10 point scale it was 0.79 (adjusted to a 5 point scale). For 

a repeated assessment using the 5 point scale by one assessor only the RMSED was 

0.28, Appendix 2). These errors are likely to be associated with the ability of a 

human observer to remember the descriptions of multiple levels. Further, the use of 

scales with an odd number of classes was recommended by Rensis Likert in 1932, 

based on social science research involving participant agreement or disagreement 

with a declaration statement (Likert, 1933). 

Thus the 5 point scale is recommended over the 10 point scale for human scoring of 

this disorder, given the error of assessment and the preference for an odd number of 

classes. The lower limit benchmark (RMSED) against which non-invasive 

assessment techniques should be judged is 0.28, being the error of the reference 

method. 

For a set of 69 fruit, the two visual score ratings (5 and 10 point scales) were better 

related (R
2
 = 0.85) to each other than any other reference parameters, although visual 

score was better indexed by % area (image analysis) than juice Abs420nm (Table 2.3). 

The image analysis procedure required manual intervention to adjust the threshold 

level on each image, to achieve segmentation of areas comparable to that see by 

human eye. This was despite imaging of the cut fruit under conditions of constant 

illumination. Potentially results could be improved by use of a more diffuse source 

of illumination, but at this point the image analysis method cannot be recommended 

over simple visual 5 point scoring. 
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Table 2.3. Correlation coefficient of determination (R
2
) between attributes in context 

of assessment of extent of the internal diffuse browning in apple fruit. Data of 

population 4 (n = 69). Attribute % area refers to extent of browning on a cut fruit 

surface, while visual 5 and 10 relate to a visual score of the same surfaces using a 5 

and 10 point scale, respectively. A420nm refers to a measurement of extracted juice. 

Parameters % area  Fv/Fm  Abs420 

nm 

Visual 1-5 Visual 1-10  

% area  1     

Fv/Fm 0.26 1    

Abs420 nm  0.045 0.0013 1   

Visual 1-5 0.64 0.20 0.013 1  

Visual 1-10 0.65 0.19 0.0005 0.85 1 

Note: Values greater than 0.75 are shown in bold. 

The poor relationship between visual score and juice A420 nm (Table 2.3) could be 

due to either differences in the sample volume assessed by the two methods or 

method artefact. Visual score involves consideration of an equatorial plane, juice 

absorbance involves juice extracted from a sample of the fruit. As diffuse browning 

is not uniformly distributed through the fruit, the difference in the two measures may 

reflect sampling differences. Alternately, the procedure used for the juice absorbance 

may be flawed in that it did not employ PVPP as recommended by (Li, 2011). PVPP 

is commonly used in extraction protocols precipitate polyphenols and tannins, and to 

prevent browning reactions through reduction of polyphenols. PVPP was therefore 

avoided as it could remove the coloured compounds in the diffuse browning affected 

tissue. Nonetheless, future work should consider use of this additive. 

In a second exercise involving 150 fruit (Pop 1 and 2), visual score was better 

correlated to CIE a (R
2
 = 0.78) than L or the colour index, and poorly related to SSC 

or DM (Table 2.4). Again, the visual 5 point score is recommended as an easy to 

undertake, though destructive, reference method for indicting the extent of diffuse 

browning in apple fruit. 
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Table 2.4. Correlation coefficient of determination (R
2
) between various destructive 

measures of Pink Lady
TM

 apple fruit (Populations 1 and 2; n = 150). Values above 

0.75 are in bold. 

Parameters  Score 

(5) 

CIE L*  CIE a*  CIE b*  Colour 

Index  

DM  SSC 

Score (5) 1       

CIE L 0.68 1      

CIE a 0.78 0.90 1     

CIE b 0.40 0.56 0.52 1    

Colour Index  0.70 0.71 0.77 0.43 1   

DM  0.11 0.14 0.12 0.07 0.19 1  

SSC  0.23 0.30 0.28 0.18 0.38 0.61 1 

 

SSC was weakly related to DM (R
2 

= 0.61). McGlone et al. (2003) reported a 

correlation coefficient of determination (R
2
) of 0.93 between harvest time DM and 

post storage SSC for Royal Gala apple. For Pink Lady, the relation between DM and 

SSC for mixed population of good and defect fruit was modest (R
2
 = 0.61), with a 

poorer relationship between DM and SSC for defect fruit (R
2
 = 0.47) than sound fruit 

(R
2
 = 0.76) (data not shown).  

2.3.3 Chlorophyll fluorescence 

Chlorophyll fluorescence involves emission from the de-excitation of excited 

chlorophyll molecules, with values of photochemical efficiency (Fv/Fm), a measure 

of the efficiency of the light reactions of photosynthesis, decreasing with increasing 

stress. Fv/Fm of sound fruit was 0.57, a level consistent with previous reports of 

healthy apple fruit (Neuwald et al., 2007). Fv/Fm was not significantly (P> 0.05) 

different between fruit of visual score ratings of 1 to 4, but severely affected fruit 

(score 5) demonstrated a decreased value of 0.47 (Fig. 5). 



Apple flesh browning 

69 

 

 

Figure 2.5. Photochemical efficiency (Fv/Fm) of photosynthesis in apple fruit 

relative to degree of internal browning in population 4 (n = 69). Top panel displays 

raw values, bottom panel shows mean and associated SE. 

 

Thus the chlorophyll fluorescence technique may have value for detection of severe 

defect levels in ‘sentinel’ fruit within CA storage consignments, using equipment 

such as that offered by HarvestWatch or Bessling P/L but with a form of carousel to 

allow monitoring of a larger sample of fruit. Potentially the technique could be 

implemented for in-line grading, however detection of only severely affected fruit is 

not a practical outcome in terms of sorting to remove defect (score 3-5) fruit. 
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2.3.4 Visible – SWNIR spectral features 

Fruit absorbance spectra of fruit collected using all instruments were characterised 

by features associated with anthocyanin at around 550 nm, chlorophyll at around 665 

nm and water at 730, 840 and 950 nm (Fig. 2.6). The Nirvana unit employs a gold 

coated reference, while poly-tetrafluorethylene (PFTE) references were used with 

other two units, accounting for difference in absorbance values in the visible range. 

Average absorbance values were higher for defect relative to sound fruit at 

wavelengths less than 830 nm for the Insight2 spectra, and less than 730 nm for the 

IDD0 spectra (Fig. 2.6). This observation is consistent with previous reports. Clark 

et al. (2003) reported higher absorbance for apple with internal browning over the 

range 600-750 nm, and weaker absorbance beyond 850 nm. McGlone et al. (2005) 

noted higher absorbance in the red to near red region of spectrum. For pear, higher 

absorbance was noted over the range 640-860 nm for fruit with brown core (Han et 

al., 2006). The higher absorbance values in this region may represent absorption of 

light by the polyphenols associated with browning. 

The strongest correlation between absorbance at a single wavelength and defect 

intensity was achieved at around 620 and 710 nm for the Nirvana, IDD0 and 

InSight2 instruments, respectively (Fig. 2.6). 
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Figure 2.6. Mean absorbance spectra for good and defect fruit and their difference (score 1 and 5, respectively, from populations 1 and 2) and 

univariate correlation coefficient (R) of internal defect parameters (visual score and colour index) with absorbance at each wavelength. 
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2.3.5 Partial Least Square Regression 

Partial least square regression (PLSR) models were developed using the reference 

values of visual score, colour index (Table 2.5). Similar results were obtained for 

Lab colour space based parameters (a* and Colour Index) across the three 

instruments, with slightly better results for Lab a* value (data not shown). Better 

calibration results were obtained using the Lab colour space based parameters than 

the visual score value, but the reverse held for prediction results.  

Initially, PLSR models were developed using the full wavelength range available 

from a given instrument. Smooth regression coefficients were obtained for the region 

500-975 nm for the units based on a MMS 1 spectrometer (Nirvana and IDD0), and 

for the entire available range of 600-973 nm for Avantes spectrometer (Insight2 

instrumentation) (Fig 2.7). Thus, these ranges were selected for PLS regression 

models. For the IDD0 and InSight2 units, the PLSR models gave strong weighting to 

absorbance at 670, 710 and 900 nm, and 680, 710, 800 and 835 nm, respectively. 

For the reference parameter of visual score and spectra obtained using the IDD0 and 

InSight2 units, better calibration and prediction performance was obtained for 

models based on raw absorbance spectra, followed by use of SNV and MSC pre-

treatments (Table 2.5). A correlation coefficient of determination (R
2
) of 0.89 was 

achieved for IDD0 SNV or MSC treated absorbance spectra. However, model 

predictive performance was higher for models developed using second derivative 

spectra. Poor predictive performance was obtained using spectra acquired with the 

Nirvana unit.  

Overall, of the three instruments, best results were obtained using the IDD0 unit (e.g. 

R
2

cv = 0.83, RMSECV = 0.62, for visual score model), with comparable results from 

the InSight2 unit but poorer results from the Nirvana unit (e.g. R
2

p = 0.62, RMSEP = 

0.99, visual score). The poorer performance of Nirvana unit is expected given its 

interactance geometry, i.e. assessment of only a localised area of the fruit. IDD2 was 

operated in a 90
o
 optical geometry, but scattering of light within the fruit apparently 

resulted in an adequate volume of fruit explored by detected light, supporting models 

comparable or superior to that achieved with the full transmission InSight2 system. 
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Figure 2.7. PLS Regression coefficients for Nirvana (top), IDD0 (middle) and 

Insight2 (bottom) for visual score models based on absorbance data.
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Table 2.5. Partial least square regression results for spectra from three instruments, for raw absorbance spectra and for spectra treated 

with several pre-processing methods for Nirvana, IDD0 and Insight2 instrumentation. Calibration, prediction set 1 and prediction set 2 

consist of 90, 60 and 77 fruit respectively. 

A. Nirvana 

Pre treatments 

/Parameters 
Calibration statistics Prediction statistics on set 1  Prediction statistics on set 2 

 R
2

cv RMSECV PCs R
2
p RMSEP Bias R

2
p RMSEP Bias 

Raw Abs          

Score 0.79 0.7 14 0.57 1.01 -0.1 0.62 0.99 0.14 

Colour Index 0.86 0.45 14 0.8 0.62 0.15 0.7 0.83 -0.12 

Abs SNV 

Score 0.77 0.71 14 0.52 0.4 -0.11 0.53 1.3 0.24 

Colour Index 0.85 0.47 14 0.77 1.15 -0.48 0.71 0.82 -0.1 

Abs MSC  

Score 0.76 0.73 11 0.53 1.08 -0.03 0.6 0.99 0.2 

Colour Index 0.83 0.51 11 0.75 0.73 0.2 0.66 0.88 -0.1 

d2A 

Score 0.77 0.71 10 0.6 0.96 0.01 0.64 0.95 0.28 

Colour Index 0.84 0.49 10 0.74 0.69 0.12 0.71 0.82 -0.11 

Abs SNV d2A 

Score 0.76 0.74 10 0.56 1.01 -0.08 0.59 1.00 0.2 

Colour Index  0.83 0.52 10 0.71 0.71 0.02 0.66 0.9 -0.19 
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B . IDD0 

Pre-treatments 

/parameters 

Calibration statistics  Prediction statistics on set 1  Prediction statistics on set 2  

 R
2

cv  RMSECV  PCs R
2
p RMSEP  Bias  R

2
p RMSEP  Bias  

Raw Abs 

Score  0.83 0.62 4 0.70 0.83 0.24 0.87 1.08 0.88 

Colour Index 0.87 0.46 4 0.73 0.72 0.04 0.75 0.73 -0.16 

Abs  SNV  

Score  0.78 0.71 4 0.76 0.7 0.16 0.89 0.82 0.56 

Colour Index 0.87 0.46 3 0.71 0.75 0.03 0.77 0.61 -0.53 

Abs MSC   

Score  0.77 0.73 3 0.75 0.71 0.13 0.89 0.9 0.66 

Colour Index 0.88 0.45 3 0.74 0.71 0.03 0.77 0.68 -0.06 

d2A 

Score  0.75 0.75 3 0.73 0.73 0.06 0.84 0.8 0.02 

Colour Index 0.86 0.49 4 0.68 0.79 -0.08 0.77 0.82 -0.47 

Abs SNV d2A  

Score  0.76 0.75 3 0.76 0.68 0.03 0.86 0.79 0.02 

Colour Index  0.87 0.47 5 0.7 0.76 -0.06 0.77 0.67 -0.1 
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C. Insight2 

Pre-treatments 

/parameters 

Calibration statistics Prediction results on set 1 Prediction results on set 2 

 R
2

cv RMSECV  PCs R
2
p RMSEP  Bias  R

2
p RMSEP  Bias  

Raw Abs 

Score  0.83 0.63 7 0.75 0.81 0.26 0.84 1.12 0.87 

Colour Index 0.85 0.50 7 0.68 0.81 0.11 0.65 0.89 0.23 

Abs SNV   

Score  0.84 0.61 6 0.72 0.88 0.25 0.82 1.18 0.86 

Colour Index 0.84 0.52 6 0.68 0.82 0.13 0.64 0.99 -0.13 

Abs MSC  

Score  0.83 0.62 5 0.73 0.84 0.23 0.79 1.49 1.10 

Colour Index 0.84 0.51 5 0.68 0.82 0.12 0.70 0.92 -0.16 

d2A 

Score  0.78 0.71 5 0.75 0.69 -0.08 0.84 0.92 0.56 

Colour Index 0.79 0.58 8 0.58 0.90 -0.1 0.61 1.08 -0.66 

Abs SNV d2A  

Score  0.80 0.68 7 0.74 0.72 -0.03 0.87 0.73 0.39 

Colour Index 0.77 0.61 7 0.56 0.94 -0.18 0.69 1.02 -0.68 
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2.3.6 PLS model robustness to temperature across population 

Fruit consist of approximately 80% water. The IR/NIR spectrum of water is affected 

by temperature due to an effect on the extent of hydrogen bonding. This issue has 

been well explored in context of prediction of SSC and DM in intact fruit using 

SWNIRS (Acharya et al., 2014), with the simplest accommodating measure being 

the inclusion of samples of a range of temperatures into the training sets. Given that 

the spectral information relevant to internal browning is in the red-far red region, 

spectral based measures of internal browning may be free from interference 

associated with temperature change. It can be inferred that the brix model is 

temperature dependent but can be made more robust by including spectra from range 

of temperatures in calibration model while the model for internal browning is 

independent of temperature.  

PLSR models developed on internal browning score using fruit at 10, 25 or 35 
o
C or 

combined possessed near identical b coefficients (Fig. 2.8). The effect of sample 

temperature on prediction of apple diffuse browning was considered for the case of a 

PLSR model on diffuse browning developed using 120 absorbance spectra of 30 

intact fruit (Pop 5) at 10 
o
C, with prediction undertaken for the same fruit at 10, 25 

and 35 
o
C, and for further lots of fruit at these three temperatures. There was no bias 

associated with prediction of fruit at temperatures different to that of the calibration 

samples (Table 2.6), consistent with use of wavelength regions in the model (e.g. 

570, 620, 670, 720, 900) that were insensitive to temperature. The b coefficients for 

the combined temperature model were similar to those models developed using fruit 

at a single temperature.  This similarity is consistent with model insensitivity to 

temperature.   
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Table 2.6 Prediction performance for a PLSR model on apple internal browning 

visual score (calibration R
2

cv = 0.87, RMSECV = 0.53, PCs =  8) developed using 

IDD0 absorbance spectra (500-975 nm) collected of intact fruit at 10 
o
C. Populations 

are subsets of population 1 and 2, with 30 fruit in each population. 

Calibration set: Pop 5, 10 
o
C:  R

2
cv =  0.87, RMSECV = 0.52, PCs = 4 

Populations Temp (
o
C) R

2
p RMSEP  Bias  

Pop 5  10 0.88 0.50 0.00 

SD = 1.49 25 0.86 0.58 0.14 

 35 0.88 0.52 0.14 

Pop 6 10 0.81 0.65 -0.09 

SD = 1.57 25 0.84 0.59 0.07 

 35 0.83 0.60 0.03 

Pop 7  10 0.59 1.41 0.25 

SD = 1.48 25 0.66 1.07 0.17 

 35 0.57 1.28 0.27 

Pop 8  10 0.46 1.18 0.04 

SD = 1.51 25 0.53 0.99 0.06 

 35 0.54 0.93 0.07 

Pop 9  10 0.64 1.49 0.64 

SD = 1.38 25 0.69 1.15 0.51 

 35 0.73 0.98 0.47 
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Figure 2.8. PLSR b-coefficients for browning score models developed using spectra 

of fruit at three different temperatures (IDD0 instrumentation). 

 

2.3.7 Principal component analysis 

Principal component analysis (PCA) was undertaken using MSC treated absorbance 

data from the three instruments. A principal component plot using the first three PCs 

(explaining >95% of variation in the three cases) demonstrated separation of 

consumer acceptable fruit (visual score of 1 or 2) from defect fruit (visual score of 3 

to 5 (Fig. 2.9).  
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Figure 2.9. Score plots for principal components 1, 2 and 3 from a principal 

component analysis of MSC treated absorbance spectra (500-975 nm) using an 

interactance (A), partial transmission (B) and full transmission (C) optical 

geometries for 150 fruit (populations 1 and 2). Values for defect fruit displayed as 

circular dots while those of good fruit is displayed as square dots. 

 

A 

B 
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2.3.8 Classification of defect and good fruit 

Discrimination of sound fruit from defect based on spectra collected using the three 

instrumentations was attempted using several classification algorithms. Relatively 

poor prediction results were achieved for the Nirvana instrument compared to that 

for the other two instruments for prediction set 1, and use of this instrument was 

discontinued (Table 2.6). 

Comparable results were obtained with PLS DA, LDA and PCA LDA classification 

algorithms (Table 2.7). The PLS DA classification method yielded fairly consistent 

classification accuracy for all three instruments, while PLS based classification gave 

best results for the IDD0 instrumentation. 

Prediction set accuracy of more than 95% and false discovery rate of < 2% was 

achieved using IDD0 spectra with either SVM classification, logistic regression or 

PLS-DA using 4 PCs.  The specifications were achieved using InSight2 spectra 

using LDA, PCA-PLDA and PLS-DA using 6 PCs (Table 2.7). 
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Table 2.7. Classification of good and defect fruit in calibration and in prediction of independent sets using 12 classification algorithms, 

using absorbance spectra from two instruments, against a reference assessment of visual score. TPR is true positive rate, TNR is true 

negative rate. Accuracy (Accu.) is mean of TPR and TNR, false discovery rate (FDR), FP/(TP+FP). False discovery rates <2% 

associated with accuracy rate of >95% are shown in bold. Units are in percentage. 

A. IDD0 

 Calibration set (n=90) Prediction set 1 (n=60) Prediction set 2 (n=77) 

Algorithms TPR TNR Accu.  FDR  TPR TNR Accu.  FDR  TPR TNR Accu.  FDR  

PLS-DA 83 98.3 90.7 2.0 83.3 99.1 91.2 1.1 83.9 93.9 88.9 6.8 

LDA, Linear 87.6 98.6 93.1 1.6 80.5 99.5 90.0 0.6 91 86.7 88.9 12.8 

LDA MD 95.2 97.6 96.4 2.5 76.3 98 87.2 2.6 92.9 93.9 93.4 6.2 

PCA LDA  78.5 97.2 87.9 3.4 98.6 97 97.8 3.0 98.2 83.7 91.0 14.2 

PCA LDA MD 85.5 93.9 89.7 6.7 89.6 99.5 94.6 0.6 96.4 95.9 96.2 4.1 

k-NN  94.3 98.3 96.3 1.8 93 94.6 93.8 5.5 83 97.5 90.3 2.9 

SIMCA 94.6 55.5 75.1 32.0 82.6 77.8 80.2 21.2 100 3.57 51.8 49.1 

SVM. Linear 77.7 98.2 88.0 2.3 97.9 99.6 98.8 0.4 92.9 100 96.5 0.0 

Logistic regression 86.8 94.2 90.5 6.3 99.3 100 99.7 0.0 70.5 100 85.3 0.0 

PLS DA(1-5) 4 

PCs 

76.3 98 87.2 2.6 89.6 96 92.8 4.3 97.3 91.84 94.6 7.7 

PLS DA (5) 4PCs 84.9 92.4 88.7 8.2 97.2 99.8 98.5 0.2 96.4 100 98.2 0.0 

PLS DA (2) 4PCs 79.8 94.2 87.0 6.8 97.9 97.9 97.9 2.1 100 82.7 91.4 14.7 
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B. Insight2 

 Calibration set (n=90) Prediction set 1 (n=60) Prediction set 2 (n=77) 

 TPR TNR Accu.  FDR  TPR TNR Accu. FDR  TPR TNR Accu.  FDR  

PLS-DA 79.4 99.6 89.5 0.5 100 97.6 98.8 2.3 87.9 97.8 92.9 2.4 

LDA, Linear 91.6 99.1 95.35 1.0 80.5 98.8 89.65 1.5 91 98.5 94.8 1.6 

LDA MD 99.2 100 99.6 0.0 33.3 100 66.65 0.0 0 100 50.0 0.0 

PCA LDA 

Linear 

82.2 97.7 89.95 2.7 85.2 99.8 92.5 0.2 89.3 100 94.7 0.0 

PCA LDA MD  91.4 90.2 90.8 9.7 88.1 92.2 90.15 8.1 96.4 80.1 88.3 17.1 

k-NN 96.5 98.0 97.25 2.0 73.6 92.8 83.2 8.9 77.7 95.4 86.6 5.6 

SIMCA 98.4 43.5 70.95 36.5 95.1 59 77.05 30.1 96.4 84.2 90.3 14.1 

SVM. Linear 99.2 99.8 99.5 0.2 84.7 95.6 90.15 4.9 75.9 100 88.0 0.0 

Logistic 

regression 

86 94.9 90.45 5.6 84.7 99.5 92.1 0.6 67.9 100 84.0 0.0 

PLS-DA(1-5) 

6PCs 

87.1 88.9 88 11.3 89.6 93.7 91.65 6.6 91 93.8 92.4 6.4 

PLS (1-5) 6 PCs 90 95.6 92.8 4.7 82.6 99.3 90.95 0.8 86.6 100 93.3 0.0 

PLS-DA (1-2) 6 

PCs 

88.2 96.6 92.4 7 85.4 99.5 92.45 0.6 91 100 95.5 0.0 
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2.3.9 Classification based on two wavelengths 

To enable wider adoption of defect sorting technology across the fruit industry, 

cheaper instrumentation is required. Use of models based on only a few (two) 

wavelengths and a single detector rather than use of a full spectrometer allows for a 

decrease in the cost of instrumentation. In this exercise, the coefficient of 

determination (R
2
) was compared for the relationship between several two 

wavelength indices and internal defect detection (Table 2.7). 

The indices trialled included those recommended by Francis et al. (1965) and 

Upchurch et al. (1997), an index based on the wavelength available in the IDD2 unit, 

and indices chosen based on the wavelength of maximum absorbance difference of 

defect and good fruit recorded in this study normalised by that of minimum 

difference (Abs 525-1040 nm for Nirvana, 600-482 nm for IDD0 and 714-900nm for 

Insight2).  An R
2
 of 0.74 was achieved with the two wavelength index of 720 and 

810 nm for IDD0 data, and 714 and 900 for InSight2 data (Table 2.8; Fig. 2.10).  As 

expected given the partial transmission optical geometry, results for Nirvana data 

were poor.   

Table 2.8. Regression coefficient of determination (R
2
) for two wavelength 

difference model against visual score for three instruments (Nirvana, IDD0 and 

Insight2). 

 Instrumentation 

Two wavelength based index Nirvana IDD0 Insight2 

A740 - 805 nm (Francis et al., 1965) 0.37 0.62 0.15 

A720 - 810 nm (Upchurch et al., 1997) 0.44 0.74 0.64 

A 840 - 740 nm (Francis et al., 1965)  0.30 0.72 0.66 

A 552- 1040 nm, 600 – 482nm , 714 – 900 0.39 0.39 0.74 

A 880 / 780 nm (IDD2) 0.39 0.69 0.67 
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Figure 2.10. Scatter plot between the absorbance difference between 714 and 900 

nm and visual score (5 point scale), InSight2 data. 

2.3.10 Sorting operation based on IDD2 

This section begins a discussion that is further developed in Chapter 5 ‘Sorting 

Optimisation’.  For the techniques that return a continuous value in prediction of 

defect level in fruit, a threshold value must be set to act in discrimination of accepted 

and rejected groups.  For the IDD2 instrumentation, a value can be placed on 

absorbance (A880/780) ratio index.  Using a value of 76 as the threshold, sorting 

accuracy of between 70 to 83% were recorded across three populations with false 

discovery rate (FP/FP+TP) of less than 10% (Table 2.9).  

Table 2.9. Classification of fruit as defect or good using the IDD2 instrumentation 

based on A 880/780 nm and assessed based on visual score for three population sets 

at threshold of 76. Values are in percentages.  TPR = true positive rate (TP/P), TNR 

= true negative rate (TN/N), Accuracy = (TP+TN/P+N) and FDR = false discovery 

rate (FP/(FP+TP)). 

Population  TPR TNR Accuracy  FDR  

Population 1 (n = 90) 35.48 98.31 76.66 8.33 

Population 2 (n = 60) 41.66 100.00 70.83 0.00 

Population 3 (n = 77) 64.28 93.87 83.11 8.69 
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Altering the threshold value on the sorting operation will impact these results (Fig. 

2.11).  For example, at a threshold of 76, 94% of defect fruit are identified as defects 

(TNR), while only 64% of non-defect fruit are correctly identified (TPR), while at a 

threshold of 104, TNR is 28% while TPR is increased to 100%. 

 

 

Figure 2.11. Classification of fruit into different categories as dependant on sorting 

threshold value:  IDD2 data population 3 involving 77 fruit (combined population). 

 

Formats for presentation of this data (in terms of individual score bands) are 

explored in Figures 2.12 to 2.14 (Fig. 2.12, 2.13).  Decreasing the threshold value 

increases the proportion of score 1 (good) fruit in the accepted population, but at the 

expense of overall yield (TP/P).  Cumulative distribution plots convey similar 

information (Fig 2.14).   

While useful in a general descriptive sense, these plots are not recommended for use 

by a packline operator to aid the decision on selection of threshold value.  This 

decision requires compromise between yield (TP/P), false discovery rate 

(FP/(TP+FP)) and knowledge of pricing.  As indicated, these issues are explored 

further in Chapter 5. 

-10

10

30

50

70

90

110

76 80 86 90 96 100 104

P
er

ce
n

ta
g
e 

(%
) 

Threshold value 

True Positive False Negative

False Positive True Negative



Apple flesh browning 

87 

 

 

Figure 2.12. Proportion of fruit from different quality category and rejection based 

on the threshold value. 

Figure 2.13. Distribution of fruit in new sorted population based on different cut off 

settings with respective yield. 
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Figure 2.14.   Distribution of defect for a population of apple before and after 

sorting to various threshold values A. cumulative distribution in each threshold in 

percentages   and B. distribution of fruit in each threshold in number of fruit.  

(Threshold value is ratio of B/A at two wavelengths; IDD2 unit).  
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2.4 Conclusion 

Internal diffuse browning disorder is an economically important disorder induced 

during storage in some apple cultivars, particularly Pink Lady TM apples. This 

susceptibility is related to the physiology of fruit tissue where tissue undergoes stress 

under low oxygen in CA storage, leading to increase in reactive oxygen which 

causes membrane integrity loss, finally visible as oxidation of phenolic compounds 

into brown colored polymers. This issue is further exacerbated by recent breeding 

programs focussed on improving crispiness in the fruit, which has resulted in 

decreased air space volume in fruit tissue. Further, although this issue is evident after 

storage, it is influenced by various pre harvest factors and so there is a large variation 

in incidence of the disorder between orchards and seasons.  Multivariate approaches 

to understanding of the causes of the disorder may help management of the level of 

incidence, but sorting technologies to remove defect fruit from affected 

consignments will remain necessary for the foreseeable future.  

The absorbance of defect fruit was generally higher than that of control fruit.   

Previous work (e.g. Clark et al., 2003; McGlone et al., 2005) on the utility of near 

infrared spectroscopy using partial or full transmission geometry over the 

wavelength range 500-975 nm or selected wavelengths from this region for the 

detection of the internal flesh browning was validated, with a discriminant analysis 

classification method achieving a sorting accuracy as high as 98%, independent of 

fruit temperature.  Every detection technique has errors, however, with the 

proportion of type 1 and type 2 errors changing with defect level and distribution 

within a population.  Thus further effort is required to provide operators of a sorting 

process with management tools, extending that produced in chapter 5. 

Another application areas may be in use with fruit in storage, for monitoring of 

‘sentinel’ fruit to detect the onset of the disorder, and so guide the decision to out-

turn fruit, and to provide information on conditions that pre-dispose fruit to 

development of the defect.  

The chlorophyll fluorescence measures of fruit also association with level of defect, 

and further work on diagnosis of fruit with the disorder using this measurement 

technique is recommended. 
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Chapter 3.  

Detection and characterisation 

of granulation in mandarin by 

using NIR spectroscopy 
1
 

 

Abstract  

Granulation in ‘Imperial’ mandarin was attributed to cell wall (cellulose, 

hemicelluloses) proliferation in the hypodermis of the juice sacs, leading to increased 

light scattering (L value of cut surface) and reduced juice recovery although constant 

water content except in extreme granulation.  Spectroscopic instrumentation 

operating in full transmission optical geometry was compared for the non-invasive 

assessment of the disorder, using visual score, luminosity (L) and juice recovery as 

reference attributes.  Classification based on wavelength ratio based algorithm and 

other classification algorithm yielded classification accuracy as high as 98 % for 

good fruit while for defect fruit, the classification accuracy was lower. High 

prediction accuracy (92%) was reported for IDD0 instrumentation using PLS-DA 

classification method . 

 

Keywords: sorting, regression, classification, score, spectra 
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3.1 Introduction  

Citrus fruit can develop a range of physiological disorders including fruit cracking, 

sunburn, puffiness, rind breakdown, chilling injury and internal dryness (Munshi et 

al., 1978; Peiris et al., 1998; Subedi, 2007). The descriptor of internal dryness and 

the associated terms granulation, section drying and gelling have been used 

somewhat interchangeably by several authors. Peiris et al. (1998) categorized 

internal dryness into two broad categories, namely dehydration and granulation     

(Fig. 3.1). Dehydration involves shrinkage of the tissue followed by complete 

collapse of the affected vesicles due to loss of vesicle contents, e.g. following frost 

damage. In contrast, granulation begins with the hardening of the affected vesicles 

following gradual collapse of the inner cells resulting in an empty cavity (Peiris et al., 

1998). Juice recovery rate is decreased proportionate to the extent of the disorder 

(e.g. 40% v/w for normal fruit to 5% in defect fruit), but water content and TSS is 

constant, except in severely granulated fruit, in which levels of these attributes are 

decreased (Subedi, 2007). Affected fruit become unfit for fresh consumption due to a 

chewy, dry and tasteless mouth-feel. 

  

Figure 3.1. Internal defects of citrus: A. dehydration defect (white areas) following 

freezing injury B. granulation defect in ‘Imperial’ mandarin. 

Approximately 28,000 ha of land in Queensland is under citrus production, with 13% 

of this (3,590 ha) associated with Imperial mandarin production (Citrus Australia 

website, accessed 28/4/15). ‘Imperial’, a brightly coloured and easy-to-peel cultivar, 

is prone to the granulation disorder. An erratic incidence of this disorder is reported 

in Queensland, with variation among soil types, nutrition, irrigation, rootstock and 

orchard locations (Hofman, 2011). There can be difference in incidence of this defect 

within a single tree. Hofman (2011) reported the incidence of granulation is 

A B 
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associated with the very early fruit development stages with competition between 

fruitlets, flowers and flush for the nutrients and water and nitrogen. It was observed 

that granulation was decreased when winter nitrogen application was followed by an 

additional spring application.  

Affected fruit cannot be recognised on visual external appearance. Severely dry fruit 

can be detected by hand feel based on firmness. Given the difficulty in recognising 

affected fruit and that unpredictable nature of incidence of the disorder, there is a 

clear need for development of a non-invasive sorting technology.  

Difference in fruit optical properties (extent of light scattering) and water content 

offer promise for the application of non-invasive detection technologies. Peiris et al. 

(1998) reported use of SWNIR absorption spectrometry and X-ray computed 

tomography for detection of the tangerine tissue drying disorder. NIR absorption 

spectra (500-1000 nm) were acquired using a 75 W tungsten halogen lamp as the 

light source and a Si CCD based spectrometer (Ocean Optics, SD 1000-TR). A 

multiple linear regression was undertaken, with a model based on second derivative 

absorbance values at 768 nm and 960 nm yielding a correlation coefficient of 

determination (R
2
) of 0.77 on a two point scale of visual granulation scores. The 960 

nm absorbance feature of fruit is well known to be associated with the second 

overtone of O-H stretching, and thus to water content (Acharya et al., 2014). This 

result is consistent with detection of a dehydration defect, but this measurement may 

not be appropriate for detection of granulation defect within a fruit given the lack 

association of granulation level to water content (Subedi, 2007).  

Subedi (2007) explored the use of SWNIR (500-1000 nm) spectroscopy to assess 

granulation of intact Imperial mandarin. Defect level was scored by visual 

assessment and by a chromameter (luminosity, L*) reading of the cut surface of the 

fruit. For fruit without peel, luminosity was reasonably well modelled (R
2 

= 0.84). 

However, for whole fruit, calibration R
2
 was decreased to 0.74 and validation of the 

model using an independent population was poor (Subedi, 2007).  

There does not appear to have been a successful commercial implementation of a 

non-invasive technology for in-line assessment of ‘granulation’ of citrus or indeed 

other fruit. The work of Peiris et al. (1998) with dehydration defect, but applicability 
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to detection of granulation defect remains to be demonstrated. Further work is 

therefore warranted to explore appropriate techniques to non-invasively detect the 

granulation disorder. 

3.2 Materials and methods  

3.2.1 Anatomical and chemical characterisation 

Representative fruit samples were chosen for chemical and anatomical 

characterisation.  The procedure of Cunnigham and Walsh (2002) was followed for 

analysis of the sugar composition of labile carbohydrates in the insoluble (cell wall) 

fraction.  Normal and ‘gelled’ juice sacs were dissected from the fruit segments and 

the sac contents were dissected from ‘gelled’ juice sacs.  A sample of known weight 

(approximately 0.5 g) was washed repeatedly with 70% ethanol, and then digested at 

110 
o
C for 1 hour in 2.0 ml trifluoroacetic acid (TFA) within a pressure vessel.  The 

TFA was then evaporated with forced air assistance on a water bath at 40 ºC, and the 

residue dissolved into 2.0 ml sterile dH2O.  This solution was filtered to pass a 5.0 

μm and then a 0.4 μm filter.  The resulting solution was then analysed for sugar 

content by HPLC using a Supelcosil LC-NH2, 5 μm, 250 x 4.6 mm ID amino-propyl 

bonded phase column (Sigma Aldrich 5-8338). 

For anatomical characterisation, normal and granulation affected tissue was fixed in 

a 3% glutaraldehyde in 10% sucrose solution, dehydrated through an alcohol/acetone 

series, and embedded in LR white resin before sectioning to 2 µm thickness.  Fresh, 

hand cut sections and resin embedded sections were examined using a Nikon 

epifluorescence microscope, as unstained sections and following staining with 

toluidine blue, safranine, phloroglucinol, and aniline blue.  Fresh material was also 

rapidly frozen by plunging into liquid nitrogen, and either used directly in a crude 

freeze fracture preparation, or freeze dried, cut with a sharp razor blade and gold 

sputter coated before examination using a JEOL scanning electron microscope 

(model JSM-6360), operating at 15 kV. 

3.2.2 Fruit 

Fruit of the mandarin variety ‘Imperial’ were sourced from two commercial farms in 

Central Queensland, Australia during 2014 and 2015, and stored at 10 
o
C. Fruit were 

harvested from areas which the farm manager reported as having a high incidence of 



Mandarin granulation 

95 

granulation. Population 1 represents a fruit from 2014 harvest and consisted of 125 

(76 good and 49 defect fruit) while the population 2 from 2015 harvest, includes a 

total of 310 fruit (234 good and 76 defect samples).Each fruit was marked at two 

locations on the equator of the fruit, opposite to each other. Fruit were harvested at 

commercial harvest maturity. Fruit were stored for a week at 10 
o
C before 

assessment. Few fruit observed air gap between skin and flesh however, most of the 

fruit didn’t observe the air gap.  

3.2.3 Instrumentation and fruit measurements 

3.2.3.1 Visible-SWNIR and IDD2 

Full transmission measurements were acquired using IDD0, InSight2 and IDD2 

instruments (for detail, see Appendix 1). Briefly, the IDD0 was developed in-house 

and utilised a 300 W tungsten halogen lamp and a MMS 1 Zeiss spectrometer (300-

1100 nm with interval of 3.3 nm) and was operated using an integration time of 400 

ms. The Insight-2 (MAF Roda, France) unit utilises a 150 W tungsten halogen lamp 

and an Avantes spectrometer (600-973 nm) and was operated using an integration 

time of 4 ms. The two units were characterised by a repeatability of less than 2 mA 

in the 600-900 nm range. The IDD2 unit (MAF Oceania) is based on sequential 

operation of LEDs at four peak wavelengths (700, 810, 780 and 880 nm) with 

transmitted light detection by a single photodiode detector. For IDD0, and InSight2 

instruments, four spectra were averaged from the each of the two marked positions 

per fruit. 

For the IDD0 and InSight2 instruments, dark and white reference measurements 

were acquired at the initiation of each run, with integration time set to achieve an 

analogue to digital conversion count with fruit samples of >50% of saturation level 

(32,000 for IDD0, 64,000 for InSight2). Example spectra (raw analogue to digital 

conversion count, ADCC) are displayed in Fig. 3.2. 
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Figure 3.2. White reference and sample spectra from IDD0 (A) and Insight2 (B) 

units, with spectra acquired using an integration time of 400 ms and 2 ms, 

respectively, with samples stationary and moving, respectively. Black solid line 

represents white reference. 

3.2.4 Other non-invasive measures 

Each fruit was wrapped with aluminium foil for 24 h prior to measurement of 

photosynthetic efficiency (chlorophyll fluorescence) using an OptiSciences 30p 

(Bioscientific, Australia) at a modulation intensity of 9. This unit employs a PIN 

photodiode with a 700 -750 nm band pass filter. Four readings were taken per fruit 

within 4 s of removal from the aluminium foil, in a darkened room. Values for a 

given fruit were averaged.  

The Difference in Absorbance (DA) index, calculated as difference in absorbance at 

670 nm and 720 nm, was recorded for each marked spot using the DA meter (TR 

Turoni srl, Italy). Values for a given fruit were averaged. 

Resonant frequency was measured using Aweta resonant frequency device (AFS, 

Aweta, Nootdrop, The Netherlands). 
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3.2.4.1 Destructive reference methods 

Visual granulation score 

Each fruit were cut transversely at the equator of the fruit and the cut surface 

photographed using a Canon PC1474 12.1 megapixel digital camera.  

The cut surface image was visually scored for the extent of granulation score based 

on a five point scale, aided by reference images (Fig. 3.3). This subjective score 

depends on the area affected by the defect and the degree of the defect (whiteness of 

the tissue). The fruit having visual score 1 to 3 are considered acceptable while those 

scoring 4 and 5 are considered unacceptable or defect.  

 

Figure 3.3. Visual score (1 to 5 scale) in granulation in ‘Imperial’ mandarin. 

CIE colour space values  

The fruit CIE Lab colour space was meassured at four locations on the cut surface of 

each fruit using a Chromameter CR 400 (Konica Minolta; 2 degree observer). Values 

for a given fruit were averaged. The Chromameter was calibrated using a standard 

calibration procedure before each lot of Lab measurements.  

Other measurements 

Diameter and weight of each fruit was recorded. Juice was extracted from both 

hemispheres of the cut fruit using a manual juice extractor. Juice recovery was 

calculated as total juice weight divided by total fruit weight including peel weight. 

Total Soluble Solids (TSS) was measured using a refractometer (RFM320, 

Bellingham and Stanley Limited). 
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3.2.5 Data analysis and Chemometrics  

Chemometric analysis was undertaken using The Unscrambler 10.3 (Camo Inc. Oslo, 

Norway) and Matlab (Mathworks Inc.) software. Principal component analysis 

(PCA), partial least square regression (PLSR) and multiple linear regression (MLR) 

were utilised. The classification algorithms of linear discriminant analysis (LDA), 

partial least square discriminant analysis (PLS DA), support vector machine (SVM) 

classification and soft independent modelling of class analogy (SIMCA) and 

multiple logistic regression were trialled for classification of good and defect fruit. 

General computation and graphs were performed by Microsoft Excel software. The 

test of significance for chemical components of normal, moderate and severe defect 

fruit was performed by using Genstat 16.0 (VSN International, UK), using one way 

analysis of variance (ANOVA) without blocking.  

3.3 Results and discussion  

3.3.2 Characterisation of defect 

3.3.2.1 Chemical characterisation 

The granulation defect is associated with a decrease in juiciness of fruit although the 

level of water content is unchanged, except in extreme defect. A population 

comprising 50 fruit with various degree of granulation shows a dry matter content of 

10.02, 10.07 and 12.61% respectively for normal, moderate granulated and severely 

granulated fruit. Thus the water content of the juice sacs is gelled, raising the 

possibility of involvement of a  galactomann (plant gum). Cell wall chemical 

characterisation was undertaken to investigate this possibility. 

Mandarin juice sac cell wall material was composed of cellulose, fucose, arabinose, 

rhamnose, galactose, xylose, mannose and lignin (Table 3.1). The primary change in 

granulated material was a higher glucose content (17% w/w).  This result is 

consistent with an increase in cellulose and hemicellulose, i.e. cell wall, rather than 

galactomannan, in granulated tissue.  Increased hemicellulose content could result in 

the gelling of water, resulting in decreased juiciness.  Future studies might attempt to 

fraction the cell wall components (e.g. using a mild TFA digest to solubilise 

hemicelluloses but not crystalline cellulose). The difference of these insoluble cell 
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wall material  for good, moderate defect and severe defect fruit are highly significant 

at 5% level of significance except fucose and manose.  

The soluble (juice) fraction contained glucose, fructose, sucrose and fucose, with a 

notable decrease in sucrose content only in fruit with severe symptoms (Table 3.2). 

These results are highly significant at 5% level of significance for glucose while 

results are significant at 1% level of significance for rest of parameters.   

Table 3.1. Chemical characterisation (insoluble fraction) of the normal, moderate 

defect and severe defect ‘Imperial’ mandarin based on tissue analysis using acid 

hydrolysis method (average for 5 samples). Unit in mg / 100 mg of dry weight of 

insoluble fraction. 
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Normal 

Mean 0.68 7.88 1.52 3.77 17.62 4.55 4.38 3.07 

SD 0.03 0.74 0.06 0.04 0.37 0.04 0.05 0.83 

Moderate 
Mean 0.74 4.37 1.70 3.28 22.72 5.14 4.82 5.80 

SD 0.08 0.45 0.27 0.46 3.86 0.27 0.28 1.24 

Severe 
Mean 0.80 4.66 1.31 2.91 20.59 5.41 5.35 5.35 

SD 0.12 0.47 0.20 0.23 0.79 0.74 1.06 0.54 

 

Table 3.2. Chemical characterisation (soluble fraction) of the normal, moderate 

defect and severe defect ‘Imperial’ mandarin based on tissue analysis using acid 

hydrolysis method (n=5). Unit in mg / 100 mg of dry weight of soluble fraction.  

Sample  Statistics Glucose Fructose Sucrose Fucose Total Gluc:Fruc  

Normal 
Mean 14.97 50.31 40.84 0.40 106.5 0.29 

SD 3.76 3.38 6.39 0.06 9.42 0.07 

Moderate  
Mean 11.6 61.23 21.34 0.70 94.9 0.19 

SD 1.42 3.91 3.21 0.15 5.13 0.03 

Severe 
Mean 9.76 79.21 12.92 1.15 103.1 0.12 

SD 1.60 6.75 3.75 0.42 5.31 0.02 
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3.3.2.2 Anatomical characterisation 

Based on both light and scanning electron microscopy observations (Figs. 3.4, 3.5), 

juice sacs from control fruit were characterised by large internal cells, enveloped by 

an epidermal and hypodermal layers, approximately three to five cells deep (Fig. 3.4 

A,B). These layers were composed of smaller cells, relative to the internal cells. In 

granulated fruit these hypodermal layers were increased. In extremely affected fruit 

(fruit with no extractable juice), the cell wall thickness of juice cells was also 

increased (Fig. 3.6). These cell walls appeared to consist of an expansion of the 

primary cell wall only (based on colour of toluidine blue staining).  

Thus, anatomical observations are consistent with granulation involving a 

proliferation of juice sac hypodermal layers, such that juice is less easily released 

from the juice sac. Only in severely granulated fruit were juice sacs collapsed, 

consistent with loss of water. This description is different to that for citrus drying 

defects reported by Albrigo et al. (1980), in which cell wall thickening and cell 

collapse was reported as a general symptom. Cell division and maturation within 

juice sacs occurs early in the growth of a fruit (Hofman, 2011; Peiris et al., 1998). 

The mature juice sac cells are highly specialized for storage and would presumably 

not be able to de-differentiate and divide. It is unlikely that the cell proliferation 

associated with the granulation could occur late in fruit development. Thus the 

disorder must be ‘set’ early in fruit development through the effect of some assembly 

of environmental conditions. Future studies could usefully consider the extent of cell 

proliferation in the juice sacs during fruit development as a function of the final 

extent of the disorder in mature fruit.  
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Figure 3.4. Light microscopy of toluidine blue stained sections of resin embedded 

juice sacs, for (A, B) control fruit; (C, D), fruit with moderately severe symptoms of 

granulation, and (E, F) severely affected fruit. The number of cell layers in the 

hypodermal tissue increased in drynness affected fruit. However, there was no 

apparent difference in cell wall thickness. 
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Figure 3.5. Scanning electron microscopy of the periphery of cryo-section frozen 

juice sacs, for (A, B) control fruit; (C, D) fruit with moderately severe symptoms of 

granulation; and (E,F) extremely affected fruit (no extractable juice). Collapse of 

juice sacs is evident in severely affected fruit.  
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Figure 3.6. Transmission electron microscopy of section resin embedded juice sacs 

Photograph of (A) juice sacs used in microscopy work, (B) normal fruit, (C) 

moderate defect and (D) and severe defect. 

3.3.3 Fruit sample and population structure 

Statistics on the populations of fruit used in terms of reference quality parameters is 

presented in Table 1. Unfortunately, different fruit populations were used with each 

instrument, due to instrument availability windows. 

Table 3.3. Population statistics on visual score (5 point scale) and juice recovery (% 

w/w, peel included) for calibration and prediction sets in season 1 and season 2. Data 

presented as mean ± SD. 

 IDD0 instrumentation Insight2 instrumentation 

Set  Calibration  Prediction  Calibration  Prediction  

Sample  75 50 200 110 

Visual score  3.0 ± 1.4 2.8 ± 1.4 2.2 ± 1.3 2.9 ± 1.4 

Juice recovery  21.5 ± 7.9 21.8 ± 7.9 28.4 ± 7.9 29.0 ± 7.4 

CIE L* value    51.9 ± 4.2 49.7 ± 4.1 
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3.3.4 Non spectral measures as an index of granulation 

As with any sorting operation, clarity on the attribute to be assessed is critical. 

Consumers object to the granulation defect on two grounds, a visual assessment 

(whiteness of the segment contents, as revealed when bitten) and on an eating quality 

basis (dry mouth feel). Visual score on a 5 point scale and cut surface luminosity, 

and % juice recovery were assessed in an attempt to provide relevant objective 

measurements of the defect. However the linearity of such measures with a physical 

(e.g. scattering) or chemical (e.g. water content) fruit attribute associated with 

granulation defect is not clear. 

Relationships between reference attributes were only weakly correlated (e.g. 

correlation coefficient of determination between juice recovery and visual score of 

R
2
 = 0.57, and with L value of cut surface, of R

2
 = 0.83, Fig 3.7). A non-linearity is 

evident in the relationship between score and % juiciness, with visual score 5 fruit 

having low juiciness. There was effectively no relationship between DA meter 

reading, resonant frequency, chlorophyll fluorescence (Fv/Fm) or juice TSS and 

visual score (Table 3.4).  

  

Figure 3.7. Scatter plot of juice recovery and surface Luminosity and visual score 

(Season 1, n=125). 

  

Cut surface L* value is thus a potential quantitative reference method for assessing 

this disorder, to mimic the human observation, while % juiciness is a measure related 

to eating experience. 
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Table 3.4. Correlation coefficient of determination (R
2
) between reference 

parameters 

 Score  Juice 

recovery  

DA  Sound 

frequency  

Chlorophyll 

Fluorescence  

TSS 

Score  1      

Juice recovery  - 0.57 1     

DA 0.0017 0.0078 1    

Sound 

Frequency  

0.0001 0.0227 0.0183 1   

Fv/Fm  0.00004 0.0152 0.0092 0.0322 1  

TSS 0.0096 0.0107 0.0042 0.0035 0.16 1 

CIE Lab L*  0.84 0.34    0.0019 

 

3.3.5 Spectral features – linear regressions 

The average (IDD0) absorbance spectra of defect (visual score 5, n= 88) fruit was 

higher than that of good (visual score 1, n = 248) fruit across the wavelength range 

500 - 980 nm, with a maximum difference at 578 nm (Fig. 3.8). This result is 

consistent with higher scattering of light in defect fruit, as manifest in the increased 

L value of the cut fruit surface.  

 

Figure 3.8. Average IDD0 absorbance spectra of good (n = 30 fruit; solid line) and 

defect (n = 22 fruit; dashed line) fruit and the difference spectra (good – defect; 

dotted line) 

However the linear correlation between the absorbance at the single wavelength of 

578 nm and the visual granulation score was relatively poor (R
2
 = 0.3) and is 

-1

-0.5

0

0.5

1

1.5

2

2.5

500 600 700 800 900 1000

A
b

so
rb

a
n

ce
 

Wavelength, nm 



Mandarin granulation 

106 

therefore not useful as an index for discriminating good and defect fruit (Fig. 3.9). 

The relationship between Abs578 and score demonstrated non-linearity, with higher 

absorbance associated with score 5 fruit.  

 

Figure 3.9. Scatter plot of apparent absorbance at 578 nm and visual score of cut 

surface.  

This consideration of the relationship between defect attribute level and absorbance 

at a single wavelength was extended to all wavelengths (Fig. 3.10). A correlation 

coefficient R of approx. -0.75 existed between apparent absorbance at wavelengths 

between 600 and 920 nm and % juiciness (scale 1-5) (Fig. 3.10). The relationship 

between absorbance and score was similar, if slightly weaker. Water absorption 

features (e.g. as expected for the second overtone of the O-H stretch at 960 nm) were 

not weighted, consistent with spectral information relevant to this defect being 

related to scattering rather than water content.  
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Figure 3.10. Univariate correlation coefficient (R)between absorbance at a given 

wavelength for internal quality parameters visual score and % juice recovery for 

mandarin (n=125) .  

Multiple linear regression on score achieved a calibration R
2

c = 0.41,  RMSEC = 

0.97 with use of absorbance at of wavelengths 621, 634, 667 and 790 nm. For % 

juiciness, a result of (R
2
c = 0.6, RMSEC = 5.16) was achieved, using wavelengths 

611, 617, 621, 732, 738, 832 and 903 nm.  

The regression coefficients for a PLS regression model based on absorbance data and 

defect score using the entire available wavelength range were noisy at wavelengths 

below 550 and above 870 nm, suggesting little information was carried in these 

regions. The PLS model awarded high positive coefficient values to 550, 575, 661 

and 765 nm, and high negative values to 560, 621, 713 and 869 nm. 
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Figure 3.11. Regression coefficients for a PLSR model of visual score using 

absorbance values over the wavelength range of 300-1080 nm (top) and 550-870 nm 

(bottom). 

The predictive performance of the PLSR model was improved by use of pre-

processing treatments (IDD0 spectra, Table 3.5). The best result, in terms of 

prediction of an independent set, was achieved with standard normal variate and 

second derivative pre-treatments. Similar results were achieved for PLSR models 

based on spectra of the Insight2 unit (Table 3.6). However, while better results were 

obtained for the % juiciness model than the visual score model with the IDD0 unit, 

the reverse was true for the Insight2 unit (Table 3.6). This result could be due either 
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to the difference in wavelength ranges of the two instruments, or aspects of the two 

populations of fruit. 

Table 3.5. Partial least square regression (PLSR) model performance for IDD0 

spectra at 550-870 nm for (A) visual granulation score and (B) % juice recovery. 

(Season 1) 

Parameter   Calibration set (n = 75)   Prediction set (n = 50)  

Visual score  R
2

cv
 
 RMSECV  PCs  R

2
p RMSEP bias 

Abs   0.6 0.87 10  0.33 1.35 0.6 

Abs SNV   0.56 0.93 9  0.45 1.1 0.27 

Abs MSC  0.51 0.98 10  0.49 1.04 0.19 

d2A  0.56 0.93 7  0.49 1.04 0.27 

SNV d2A   0.55 0.94 8  0.49 1.07 0.33 

MSC d2A   0.54 0.95 7  0.47 1.06 0.28 

% juice         

Abs   0.76 3.64 9  0.43 6.49 -1.36 

Abs SNV   0.76 3.61 7  0.49 6.01 -0.53 

Abs MSC  0.65 4.23 11  0.6 5.22 -0.71 

d2A  0.72 3.97 7  0.66 5.04 -0.75 

SNVd2A   0.74 3.59 7  0.68 4.87 0.13 

MSC d2A   0.66 4.37 7  0.66 4.86 -0.34 
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Table 3.6. Calibration and prediction statistics based on the partial least square 

regression (PLSR) of SNV d2A spectra at 600-973 nm for Insight2 taking visual 

granulation score (1-5) as reference parameters.  

 Instrumentation   Insight2 instrumentation 

  Calibration statistics       

(n = 200) 

Prediction statistics        

(n = 110) 

Parameter  R
2

cv RMSEC

V  

PCs R
2
p RMSEP  Bias  

Granulation score   0.63 0.8 7 0.62 1.05 -0.57 

 

3.3.6 Spectral features – discriminant analysis 

MLR and PLSR are essentially linear regression techniques, although PLS can 

handle a degree of non-linearity in the data.  However, the level of granulation defect 

in mandarin fruit as assessed by visual score, luminosity or % juiciness, does not 

necessarily link to a linear quantitative change in a physical or chemical attribute 

with an associated spectral feature, in the way that, e.g. water content is related to 

dry matter content, with water having clear absorbance features in the SWNIR.  

Therefore use of a discriminant technique rather than a regression technique is 

logical for assessment of this attribute. 

Various algorithms were trialled for classification of fruit as defect or sound based 

on spectral information over the range 550-870 nm and 600-973 nm for the IDD0 

and Insight 2 units respectively (Table 3.7).  For IDD0 instrumentation, the highest 

prediction sorting accuracy was achieved with a PLS-DA routine, while for InSight2, 

best results were obtained using a PCA-LDA-MD or a PLS-DA (undertaken in 

Matlab). 
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Table 3.7. Results of several algorithms for classification of good and defect fruit based on visual score using IDD0 and Insight 2 

instrumentation using raw absorbance spectra at 550-870 nm for IDD0 and 600-973 nm for Insight2 data. Units in percentage.  

 IDD0   Insight 2   

 

Calibration 

statistics (n = 75) 
Prediction statistics (n = 50) Calibration statistics 

(n = 200) 
Prediction statistics (n = 110) 

Classification 

methods 
TPR TNR TPR TNR Accuracy FDR TPR TNR TPR TNR Accuracy FDR 

PLS-DA (Unsb.) 87.5 81.0 87.0 97.0 92.0 3.33 98.00 59.25 100 9.83 54.9 47.4 

PCA LDA Linear 8 

PCs 
87.7 69.2 98.1 43.1 70.6 36.7 88.75 78.75 83.63 43.58 63.6 40.3 

PCA LDA MD 5 PCs 82.9 75.5 96.2 50.0 73.1 34.2 98.75 37.5 97.3 47.2 72.2 35.2 

KNN (4 neighbours) 94.9 81.6 85.4 42.0 63.7 40.4 98.3 86.9 92.2 34.0 63.1 41.7 

SIMCA 97.8 48.6 89.2 43.75 66.5 38.6 98.8 30 100 2.77 51.4 49.3 

SVM. (Csvc Linear) 98.0 40.1 89.6 25.00 57.3 45.6 98.8 37.5 100 4.16 52.0 48.9 

PLS-DA-matlab 89.8 67.9 91.4 48.2 69.8 36.2 86.4 82.5 80.7 52.8 66.7 36.9 
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3.3.7 IDD2 two wavelength model 

IDD 2 unit employs LEDs producing four wavelengths.  Using a population of 160 

fruit (a subset of Season 2 set), the use of various ratios of these wavelengths were 

assessed (data not shown), with the best result for detection of granulation defect 

obtained using Abs 810/Abs 700 nm.  A total of 160 fruit were scanned using the 

IDD2 instrumentation. (Fig. 3.12).    

 

Figure 3.12. Scatter plot of ratio of absorbance at 810/700 nm and visual score, for a 

population involving 160 fruit. FN  = false negative, TN = true negative, TP = true 

positive, FP = false positive.  

3.3.8 IDD2 sorting optimisation 

The impact of varying the threshold set on a sorting function on output classes was 

considered for the IDD2 results for a population involving 160 fruit (126 or 79% 

score 1-3 and 34 or 21% score 4 and 5) (Fig. 3. 13).  The population distribution of 

defect level was shifted to lower values following removal of fruit above decreasing 

threshold values, although this was at the expense of the number of accepted fruit.   
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Figure 3.13. Cumulative distribution of mandarin defect for populations before and 

after sorting, to various threshold values on the IDD2 detection result. A. 

Distribution based on % B. Distribution by fruit number. 

The sorting results wer re-presented to emphasise features of interest to operator with 

change in threshold value (Fig. 3.14).  For this population, a false discovery rate 

(FP/(FP+TP)) of 5% (a market tolerance point) was achieved at a threshold of 29, 

associated with a 67% yield.  If a false discovery rate of 10% is acceptable, a 

threshold of 31 can be used, achieving a yield of 78%. (Fig. 3.14). 
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Figure 3.14. Effect of threshold sorting value on classification error for mandarin 

defect (with score 1 to 3 considered acceptable fruit, and score 4 and 5 deemed 

defect fruit) for population 2 (involving 160 fruit). 

3.4 Conclusion  

The granulation is an economically important defect in mandarin. The defect was 

characterised as involving proliferation of hypodermal cells within juice sacs, and 

consequent increase in cell water material, likely celluloses and hemicelluloses. This 

material is hypothesised to act in the gelling of cellular water, resulting in the 

observed decrease in % recovery of juice without decrease in water content, except 

in severe granulation where juice sacs collapsed. This renders the defect hard to 

detect based on water content differences. The increase in cell number is consistent 

with increased light scattering, and thus an effect on the luminosity of defect fruit.  

For non-invasive sorting of fruit using SWNIR spectroscopy, a discriminant analysis 

approach, such as PLS-DA, was recommended over linear regression techniques 

such as PLS and MLR. However, a simple two wavelength discriminator was also 

shown to be useful, with an accuracy of 92% demonstrated for the assessed 

population.  Further trials are recommended to demonstrate robustness of detection 

for fruit of a range of growing conditions. 

 

32.5 

23.8 

15.0 

11.3 

8.8 

5.6 
4.4 

2.5 2.63 

5.38 
4.67 

7.69 

9.68 
10.69 

11.85 

14.69 

0

10

20

30

40

50

60

70

80

90

100

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

27 28 29 30 31 32 33 34

Y
ie

ld
 (

%
) 

F
N

R
, 

F
P

R
, 

a
n

d
 F

D
R

 (
%

) 

Threshold  

False negative rate (FN/P+N)

False positive rate (FP/P+N)

False discovery rate (FP/FP+TP)

Yield (%) (FP+TP/P+N)



Pineapple translucency 

115 

Chapter 4.  

Non-invasive assessment 

of pineapple translucency 

using NIR transmission 

measurements 
1
 

 

Abstract 

Pineapple fruit with translucent flesh were not characterised by higher fruit density 

or TSS levels.  Non-invasive assessment of this disorder in intact fruit was trialled 

using near infrared (300-1100 nm) transmission measurements using a total of 222 

fruit that were cut and rated on a scale of 1 (no translucency) to 5 (extremely 

translucent).  PLS regression at 500-1000 nm region yielded a prediction model (R
2
p 

= 0.41, RMSEP = 0.93 and bias -0.36 units of score 1-5 on defect level) while linear 

discriminant analysis achieved classification accuracy (TP+TN/P+N) of 72% for 

prediction of independent population using IDD1 instrumentation whereas for IDD0 

instrumentation, the classification accuracy of 66% was achieved. While this 

accuracy is not suitable for use by industry, the results are promising and suggestions 

are made for further work. 

 

Keywords: score, defect, transmission geometry, classification 
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4.1 Introduction  

Australia produced and marketed 89,099 t (tonnes) of pineapple (Ananas comosus 

(L.) in 2013-2014 season (ABS, 2015). In 2012-2013 season, production was 48,000 

and 39,000 t for fresh and processing, valued $70 million (DAF, 2015). Queensland 

produced approximately 80 % of the national crop. The farm value of pineapple 

external quality is judged on size, shape, colour and absence of defects, while 

internal quality includes total soluble solids (TSS), dry matter, titratable acidity 

(TA), protein (bromelain) levels and internal defects (Haff et al., 2006; Hong et al., 

2013).  

Internal defects include internal browning, blackheart and translucency (Collins, 

1968). Internal browning is associated with low temperature storage and affects flesh 

and core (Sukwanit & Teerachaichayut, 2013) and can be avoided with proper 

temperature management. Blackheart is a form of chilling injury associated with 

temperatures below 10 
o
C in field or in storage (Zhou et al., 2003). Blackheart is 

considered as a major postharvest problem in Australia, often limiting refrigerated 

export with corresponding annual loss of US$ 1.3 million out of total production 

worth of US$ 30 million (Ko et al., 2006 ). Waxing, controlled atmosphere storage 

and heat treatment are recommended as effective methods for reducing blackheart 

incidence (Abdullah et al., 2010). Translucency is regarded as an issue to deal with 

when it exceeds 50% leading to decrease in palatability and posing transportation 

problem (www.daf.qld.gov.au).  

Translucency is associated with growing condition, mainly pre-harvest rain and 

temperature (Chen & Paull, 2000). It is a common cause of reduced quality in 

Thailand (Pankasemsuk et al., 1996). The disorder is characterized by the presence 

of water soaked flesh, a symptom - due to accumulation of sugar and other 

metabolites in the intercellular spaces (Chen & Paull, 2000), similar to that occurring 

in mangosteen (Garcinia mangostana L.) and apple (Malus domestica Borkh.) 

(Herremans et al., 2014b; Pankasemsuk et al., 1996). The physiological basis of 

these disorders is based on sugar loss to the apoplast and consequent osmotic 

movement of water into intercellular spaces.  

http://www.daf.qld.gov.au/
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It is to be expected that the filling of apoplast spaces with water should result in 

changes in the optical properties of the fruit, e.g. less scattering and greater 

transmission. Short wave NIR spectroscopy (SWNIRS) appears suited to assessment 

of such a disorder, given its assessment of apparent absorption (i.e. both scattering 

and absorption) and the relatively low absorptivity by water, allowing for 

measurement of light passage through an intact fruit (Nicolaï et al., 2007; Subedi, 

2007).  

Teerachaichayut et al. (2007) reported prediction of internal translucency of intact 

mangosteen fruit using a transmission optical geometry and a wavelength range of 

640-980 nm, taking the percentage weight of translucent flesh as the reference 

method with accuracy of classification (correctly classifying good and defect fruit 

out of the total sample) of 89%. The spectra were acquired using a 200W light 

source with an integration time of 78 ms. Using the same apparatus, 

Terdwongworakul et al. (2012) reported use of PLS regression based on pre-treated 

spectra (MSC, SNV, first and second derivatives, 665–955 nm) of intact mangosteen 

fruit and percentage area affected by translucency in images of the transversely cut 

fruit (as analysed using Image J software). The highest correlation coefficient of 

determination (R
2 

= 0.74) was obtained with the stem to crown axis horizontal and at 

135
o
 angle between the light source and detector. A similar type of disorder in apple 

(watercore) has been non-invasively detected using light (SWNIR) transmission, X-

ray CT, MRI and thermography (Beaudry, 2014; Herremans et al., 2014b; Olsen et 

al., 1962; Wang et al., 1988).  

Non-invasive assessment of several characters of pineapple fruit has been reported, 

using vis-SWNIRS, X-ray imaging and electronic noses (Chia et al., 2012; Sukwanit 

& Teerachaichayut, 2013; Torri et al., 2010). Guthrie et al. (1998) reported relatively 

poor results for assessment of TSS of intact pineapple using vis-SWNIRS, a result 

ascribed to the high variability of TSS and optical properties in this compound and 

accessory fruit, in which optical assessment involves passage of light through several 

tissue types (e.g. bract, vascular core). Assessment of TSS using vis-SWNIR 

reflectance spectroscopy and artificial neural networks was also reported by (Chia et 

al., 2012, 2013). Pathaveerat et al. (2008) reported the use of specific gravity and 

stiffness coefficient as estimated from an acoustic measurement for assessment of 



Pineapple translucency 

118 

pineapple fruit maturity. Fourier Transform (FT) NIR and FT-IR spectroscopy has 

been used for assessment of shelf life of fresh cut pineapple with corresponding 

change in SSC, TA and pH during 10 days of storage at three different temperatures 

(Egidio et al., 2009). Torri et al. (2010) reported the use of an electronic nose for 

monitoring of volatile compounds in relation to quality assessment.  

Haff et al. (2006) utilized an X-ray imaging technique for detection of translucency 

in pineapple. Visual observation of the X-ray images was undertaken to separate 

affected fruit. Fruit were then cut and assigned a translucency score on a 1-5 scale. A 

true positive rate of 86% (predicted good/total good) and a true negative rate of 95% 

(predicted defect/total defect) was reported. More recently, Donis-González et al. 

(2014) reported use of X-ray computed tomography imaging the extent of 

translucency in intact fruit. 

Sukwanit and Teerachaichayut (2013) reported use of SWNIRS for the non-invasive 

assessment of pineapple internal browning using a 90
o
 partial transmission optical 

geometry (Purespect HOS-200 spectrometer, Japan) to collect spectra over the range 

665-955 nm. Spectra were collected from six locations on the fruit and averaged, but 

the reference method involved a medial slice only, with visual categorisation as 

sound or defect. PLS-DA was used, with a 0.5 threshold value resulting in a true 

positive rate of 89% and a false positive rate of 93%. 

There has been no report of use of visible-SWNIRS to non-invasively detect 

translucency in pineapple. This exercise explores the use of SWNIR in partial 

transmission, as used by Sukwanit and Teerachaichayut (2013) in assessment of 

internal browning in pineapple fruit, for the application of assessment of pineapple 

translucency.  

4.2 Materials and Methods  

4.2.1 Samples and sample preparation  

A total of 222 mature fruit (cultivar Hybrid Gold) of commercial harvest with shell 

color changes from green to yellow at the base of fruit were used, in two sets (season 

1, n = 138; 106 normal and 32 translucent; season 2, n = 84; 59 normal and 25 

translucent), sourced from a commercial pineapple farm in Yeppoon, Queensland. 

Season 2 fruit consists of four lots of fruit each collected and scanned at weekly 
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intervals. Fruit were stored at 15 
o
C for up to a week before experimentation to let 

them to optimum ripening for consumption. On the day of assessment, fruit were 

allowed to equilibrate to room temperature for 6 h. Each fruit was marked at four 

equidistant locations around the equator of the fruit. The diameter of fruit at equator  

ranged from 63 to 92 mm.  

4.2.2 Instrumentation and spectra acquisition 

Four spectra per fruit were acquired, at each marked spot. Spectra were acquired 

using a MMS 1 spectrometer (silicon photodiode detector array operating over the 

range (308-1100 nm) at an integration time adjusted to achieve a signal >67% of 

saturation intensity. Integrations times as high as 1000 ms were required with less 

mature fruit. Two purpose built systems were used:  

(i) a single 300W halogen lamp used in a partial transmission geometry (Fig. 

4.1), with the stem - crown axis of the fruit horizontal, and a light source 

– sample – detector angle of 90
o
. 

(ii) eight 60 W halogen lamps (four on either side of the fruit) illuminating 

the fruit at 90
o
 to the point of detection (Fig. 4.2), with the stem-crown 

axis of the fruit horizontal, a light source – sample – detector angle of 90
o
 

and the detector mounted under the fruit.  
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Figure 4.1. Schematic (top) and image (below) for a single 300 W light source unit, 

designated IDD0, used in acquisition of spectra of pineapple fruit.  
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Figure 4.2. Schematic (top) and image (below) for an eight 60 W light source unit, 

designated IDD1, used in acquisition of spectra of pineapple fruit.  

The IDD1 and IDD0 systems were used to acquire fruit spectra in season 1 and 2 

respectively. These systems are comparable to that utilised by Teerachaichayut et al. 

(2007) and Sukwanit and Teerachaichayut (2013) for detection of translucency in 

mangosteen fruit and internal browning in pineapple fruit, respectively. 

4.2.3 Reference assessment methods 

Following spectral acquisition, each fruit was assessed for fruit density, TSS and 

extent of defect visible on the cut surface of a medial section of the fruit, as indexed 

by imaging and by visual assessment. Fruit density was measured by volume 

displacement method (Wanitchang et al., 2010)   into 75% methanol (density = 

0.792). Pineapple fruit can have a density lower than water but their density is 

always greater than methanol and thus fruit sink unaided.  
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Each fruit was then cut perpendicular to the axis of fruit at the middle of the fruit 

(i.e. through the marked areas) and the cut surface was imaged using a Canon DS 

126211 camera with a 17-85 mm lens at a fixed focal distance. In preliminary work, 

fruit were repeatedly cut in 3 locations however scoring was uniform and the method 

was scaled back to a single cut assessment at middle of fruit for visual score 

assessment. Images were analysed for the percentage of area affected by 

translucency using ImageJ public domain software based on a user adjusted 

threshold on a grayscale value. The core of the fruit was masked and excluded from 

this analysis. Additionally, fruit were ranked based on visual assessment of images 

using a five point scale based on affected area and intensity of translucency (Fig. 

4.3). TSS was measured of juice extracted from a 3 cm sided cube of flesh was taken 

from each marked spot at equator just below the skin, using a digital refractometer 

(RFM320, Bellingham and Stanley P/L). 

 

Figure 4.3. Cut medial surface of pineapple fruit ranked on a visual five point scale 

for extent of translucency. Fruit with score 1 and 2 are considered acceptable to 

consumers while score 3, 4 and 5 are considered as defect fruit. 

4.2.4 Chemometrics  

The multivariate data analysis software Unscrambler 13.2 (Camo, Oslo, Norway) 

and MS-Excel were used. Partial least square regression (PLSR) was performed 

using random cross validation with 10 samples per segment. The optimum number 

of principal components (factors) was selected based on the lowest root mean square 

of errors of cross validation (RMSECV). Model performance was described in terms 

of correlation coefficient of determination (R
2

cv) and RMSECV. Each model was 

validated using a prediction set and performance assessed in context of the 

correlation coefficient of determination in prediction (R
2
p) and the root mean square 

error of prediction (RMSEP). Attempts to reduce scattering effects and instrumental 

noise were made using various pre-processing treatments, including maximum 
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normalization, multiple scatter correction (MSC), standard normal variate (SNV), 

second derivatization using Savitzky Golay (9 points) or using gap segments with 

four samples per segment.  

For classification of fruit into good and defect, discriminant analysis methods 

including linear discriminant analysis (LDA), partial least square discriminant 

analysis (PLS-DA), k nearest neighbourhood, support vector machine classification 

(SVM) were employed.  

4.3 Results and Discussion  

4.3.1 Population structure  

Population mean and SD are presented for the calibration and prediction sets of the 

two populations in Table 4.1. Of the 84 fruit collected in season 2, the first 50 were 

used as a calibration set and the last 34 were used as validation set. Thus, second set 

had a notably higher level of defect (higher visual score and affected area), as these 

represents the fruit scanned as last two lots and were over ripen. 

Table 4.1. Population statistics of different quality parameters of pineapple for 

calibration and validation sets. 

 Population 1 (n = 138) Population 2 (n = 84) 

 
Calibration set 

(n = 90) 

Prediction set 

(n = 48) 

Calibration set 

(n = 50) 

Prediction set 

(n = 34) 

Parameters Mean SD Mean SD Mean SD Mean SD 

Translucency 

score 
1.75 0.87 1.92 1.07 1.72 1.56 2.67 2.06 

TSS     12.25 1.86 12.87 1.27 

% area 

translucent 
    23.0 20.1 32.1 23.5 

Fruit density     0.94 0.01 0.94 0.02 

The extent of the disorder within the fruit was quite variable, both radially and along 

the length of the fruit. Attempts were made to estimate an average value based on 

assessment of defect extent in transverse slices taken at multiple locations along the 

length of the fruit, but use of average values did not improve results (data not 

shown). An estimate of error on the visual estimation of defect level was attempted 
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by scoring the same set of images on two occasions. The RMSE of the repeated 

measurement of translucency score was 0.37 on a 5 point scale.  

4.3.2 Overview of Vis- SWNIR spectra  

Absorbance spectra of pineapple fruit were characterised by absorbance maxima at 

430, 530 and 670 nm, presumably associated with carotenoids and chlorophyll (Fig 

4.4 A). The chlorophyll associated peak was variable in intensity. Absorbance 

maxima were evident at 740, 840 and 960 nm as expected for water (O-H) features. 

SNV treatment decreased the spread of values somewhat and the second derivative 

treatment removed baseline differences, as expected (Fig 4.4, B and C).  

  

 

 

Figure 4.4. Vis-SWNIR spectra   A. raw absorbance   B. SNV pre-treated 

absorbance and   C. second derivative absorbance. 
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4.3.3 Relation between reference parameters  

The visual translucency score was relatively poorly indexed by the image analysis of 

% area affected (R
2
 value of 0.65) (Table 4.2). The image analysis method depended 

on matching of an image gray scale level with areas of translucency density, a 

relationship that was apparently weak. 

The visual translucency score was effectively not related to density (Table 4.2). The 

filling of apoplast spaces with solution in translucent fruit might be expected to 

increase fruit density, however, the pineapple fruit is complex, and contains locular 

air spaces associated with each fruitlet, and air may also be entrained under bracts.  

The visual score was also not related to TSS (Table 4.2). The disorder is believed to 

be associated with the presence of sugars in the apoplast where sugars have largest 

share in TSS (Chen & Paull, 2000). Evidently, the mechanism of filling of the 

apoplast space with solution does not require a significantly higher overall level of 

sugar in the fruit. 

Table 4.2. Correlation coefficient of determination (R
2
) among the studied quality 

parameters from reference assessments from season 2 population (n = 84). 

 

 Score % area translucent Density TSS 

Score 1    

% area translucent 0.65 1   

Density 0.009 0.09 1  

TSS 0.049 0.056 0.09 1 

 

Spectra of season 1 fruit demonstrated a stronger chlorophyll absorbance feature at 

670 nm than fruit of season 2. The average absorbance of fruits with a visual score of 

1 or 2 was higher than that of score 3 to 5 fruit between the wavelengths of 500 and 

950 nm in Season 1 but not 2 (Fig. 4.5). Evidently the two populations are different 

in a number of ways despite both being harvested at commercial maturity. The 

season 2 fruit were more yellowish than season 1 on visual observation of skin color. 

The objective maturity assessment like assessment of soluble soilds content and 

acidity were not considered, as are not under our scope. 
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Figure 4.5. Mean spectra of acceptable and defect (translucent) fruit. Top panel: 

Season 1 fruit assessed with T1 unit; bottom panel: Season 2 fruit assessed with 

IDD0 unit. 

4.3.4 Univariate linear regression and multiple linear regression 

The correlation between absorbance at a single wavelength and visual score was 

strongest between 650 and 850, peaking at 710 nm for Season 1, but the weightings 

were quite different in Season 2 (Fig. 4.6). The 710 nm weighting is consistent with 

a difference in chlorophyll level in defect fruit in Season 1. The shape of the 

wavelength weights for R were similar for the attributes of visual score and % area 

affected, although the absolute levels of R were higher for the % area affected 

attribute (season 2 data, Fig. 4.6).  
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Figure 4.6 Correlation coefficient (R) for visual score and % area affected by 

translucency for absorbance at each pixel over the range 300-1100 nm for Season 1 

fruit assessed with IDD0 (A) and Season 2 fruit assessed with IDD 1 (B). 

Multiple linear regression on visual score involving wavelengths 582, 644, 670 and 

700 nm yielded a fairly poor statistics (R
2

C = 0.35, RMSEC = 1.16).   

 

4.3.5 Partial least square regression (PLSR) 

Of the pre-treatment options trialled, similar results were obtained for raw 

absorbance and for SNV and second derivative data (Table 4.3). However, in 

prediction the lowest bias was achieved with models that involved a SNV pre-

treatment of spectra, while the best overall result in prediction was achieved using 

absorbance data. This result is consistent with the expectation that raw absorbance 

spectra would support a better result than derivatised data based on the presence of 

both scatter and absorbance information in the raw (apparent) absorbance data. 
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Table 4.3. PLSR model calibration and prediction statistics for models for 

translucency score developed using a number of pre-processing treatments. Spectra 

from IDD1 and population 1 (n = 138; 700-1000 nm) and spectra from IDD0 and 

population 2 (n = 84; 490-980 nm). 

Spectra pre-

treatments 

Calibration statistics            

(n = 90) 
 

Prediction statistics        

(n = 48) 

Population 1 R
2

cv RMSECV PCs  R
2
p RMSEP Bias 

Abs 0.58 0.55 10  0.41 0.93 -0.36 

Abs MSC 0.55 0.55 7  0.34 0.86 0.10 

Abs SNV 0.56 0.55 7  0.39 0.83 0.009 

Abs d2A 0.52 0.6 8  0.29 1.23 0.54 

Abs SNV d2A 0.58 0.56 6  0.32 0.87 -0.05 

Population 2 
Calibration statistics                 

(n = 50) 
 

Prediction statistics           

(n = 34) 

 R
2

cv RMSECV PCs  R
2
p RMSEP Bias 

Abs 0.50 1.01 10  0.40 1.46 0.77 

Abs MSC 0.42 1.09 7  0.29 1.34 0.30 

Abs SNV 0.42 1.09 7  0.29 1.35 0.33 

Abs d2A  0.47 1.05 5  0.28 1.55 0.81 

Abs SNV d2A  0.42 1.1 6  0.33 1.31 0.35 

(Note: Abs = Raw absorbance, SNV = standard normal variate, MSC = multiple 

scatter correction, SG = Savitzky Golay, GS = Gap segment, d2A = Second 

derivative of absorbance)  

The weighting of the regression coefficients for a PLSR model developed using the 

range 490-980 nm was similar to that obtained for a model developed using the 

range 305-1080 nm (Table 4.4). This similarity and the relatively ‘smooth’ nature of 

the coefficient plot augers well for the stability of the model (Fig 4.7).  
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Figure 4.7. PLS regression coefficients for the parameter of translucency score for 

models developed using different wavelength regions (population 2). 

Table 4.4. PLSR model statistics for population 1 (n = 138) and population 2 (n = 

84). Wavelength regions were selected based on lack of noise in regression 

coefficients. 

Wavelength 

range (nm) 
Calibration statistics (n = 90) Prediction statistics (n = 48) 

 R
2

cv RMSECV PCs R
2
p RMSEP Bias 

426-1150  0.29 0.75 7 0.05 2.89 1.54 

700-1000  0.58 0.56 6 NA 0.32 0.87 
 

Wavelength 

range (nm) 

Calibration statistics (n = 50) Prediction statistics (n = 34) 

 R
2

cv  RMSECV  PCs  R
2
p RMSEP  Bias  

305-1080  0.50 1.00 8 0.45 1.44 0.90 

490-980  0.50 1.01 10 0.40 1.46 0.77 

 

The PLSR model for % area affected by translucency was superior to that for visual 

score (Table 4.5). The character of % area affected may be a better reference 

attribute than visual score. 
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Table 4.5. PLS regression statistics based on absorbance data (population 2, n = 84) 

for the wavelength range 490-980 nm for the parameters of density and percentage 

area affected by translucency.  

 Calibration statistics (n = 50)  Prediction statistics (n = 34) 

 R
2

cv RMSECV  PCs   R
2
p RMSEP  Bias  

        

% area 

translucent  

0.57 13.21 8  0.26 20.46 -0.76 

 

A comparable study was undertaken by Terdwongworakul et al. (2012) for detection 

of mangosteen translucency using NIR transmittance measurements (n = 135). NIR 

transmission spectra (665–955 nm) were acquired with instrumentation based on a 

single 100 W tungsten halogen lamp, averaging four spectra for each fruit. Using 

PLS regression with pre-treated (MSC, SNV and derivatization), the highest 

correlation coefficient of determination (R
2
) achieved was 0.74. The short integration 

time and the higher correlation relative to that of the current study is ascribed to fruit 

structure that is more suitable to spectroscopy. Mangosteen fruit have a smooth skin, 

a rind to 10 mm and a diameter of 50-80 mm.  

4.3.6 Classification  

Of the discriminant methods trialled, linear discriminant analysis based on 

Mahalanobis distance gave the best results, with attention to prediction true negative 

rate (TNR). Support vector machine classification (SVM-DA) failed in this context 

(TNR = 0), although a 100% true positive rate was achieved. Better results were 

achieved with the prediction set of population 1 (TNR = 69%) than 2 (TNR = 31%). 
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Table 4.6. Classification of intact pineapple based on the raw absorbance spectra (700-1000 nm for population 1 and 490-980 nm for 

population 2) based on visual translucency score (score 1 and 2 as normal fruit, score 3-5 as translucent defect fruit). 

  Population 1 (n = 138)   Population 2 (n = 84)  

Classification 

methods 

Calibration set (n = 90) Prediction set (n = 48) Calibration set (n = 50) Prediction set (n = 34) 

 TPR  TNR  Accuracy  TPR  TNR  Accuracy TPR  TNR  Accuracy TPR  TNR  Accuracy  

PLS-DA 91.5 41.2 66.3 60.0 23.0  41.5 98.7 25.0 61.8 98.7 33.3 66.0 

LDA-MD 80.2 68.4 74.3 74.3 69.2 71.7 72.5 52.5 62.5 34.2 31.7 33.0 

LDA-Linear 74.6 73.7 74.1 54.2 69.2 61.7 57.5 62.5 60.0 42.1 20.0 31.0 

SVM  94.7 64.3 79.5 91.9 27.3 59.6 83.0 79.0 81.2 38.9 59.4 49.2 

k-NN 89.5 0 44.7 100.0 9.0 54.5 76.0 77.0 76.5 70.8 59.4 65.1 
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Classification was undertaken using partial least square discriminant analysis, with 

accuracy (true positive+true negative/total fruit) of 92% with informative 

wavelength of 673, 692, 723, 727, 743 and 762 nm. A similar result was reported by 

Benjakul et al. (2013) who employed a logistic regression method for discrimination 

of mangosteen translucent fruit based on electrical impedance measurements. These 

authors report an accuracy of discriminating the good and defect fruit (true positive + 

true negative/total fruit) as 87.3% while setting cut off point at 0.5. Again, the better 

results achieved with mangosteen than the pineapple work reported here is ascribed 

to a fruit structure that is more suitable to light transmission. Sukwanit and 

Teerachaichayut (2013) reported a true positive rate of 89% and false positive rate of 

93% with use of SWNIR spectra for sorting of pineapple for internal browning. This 

result was based on very clear difference in spectra between good and defect fruit, 

which were not present for the translucent defect of the current study. 

4.4 Conclusion 

This work is the first reported for use of NIR spectroscopy for the detection of 

translucency in pineapple. The results achieved for non-invasive detection of 

translucency in pineapple were encouraging, but not at an accuracy suitable for use 

by the industry. This result, in comparison to literature reports of detection of 

translucency in mangosteen, is ascribed to the more complex anatomy of the 

pineapple fruit. Variation in bract tissues, internal locular spaces and rachis 

vasculature (i.e. fruit core) will all impact light transmission, ‘diluting’ the impact of 

the translucency disorder on light transmission. Also, the extent of the disorder 

within the fruit was quite variable, both radially and along the length of the fruit.  

Future research could include refinement of a reference method, inclusion of more 

populations in an attempt to develop a more robust data set, use of more sensitive 

detectors to enable a shorter integration time, and use of a rotating sample stage to 

‘sample’ more of the fruit (with a series of spectra taken as the fruit rotates and 

detection of light from various points along the length of fruit).  

Alternatively, other detection technologies, such as electrical impedance or X-ray 

imaging, could be considered.  Translucency involves extra water content in 

intercellular spaces which presumably affects electrical conductivity and certainly 
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should impact density and thus X-ray imaging.  Likely problems for the former 

method include variation in electrical conductivity for reasons other than water 

content, e.g. salt content.  A likely problem for the latter method is that overall fruit 

density is not related to defect level, due to variation in other air spaces within the 

fruit (e.g. locule and bract space).  A micro-focus method would be required to 

assess tissue only. 
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Chapter 5.  

Sorting optimisation for internal 

defects in fruit based on NIR 

spectroscopic measurements
1
 

Abstract 

The sorting of defect from good fruit represents a binary classification, in which 

measurement error will cause both Type I and II errors. Typically the operator of a 

sorting operation has control of a threshold value on the classifier, compromising 

between yield (true positive rate) and adherence to a specification on proportion of 

defect fruit (false discovery rate). Adjustment of this threshold value is required in 

response to changes in measurement error, the severity of incidence of defect fruit in 

a given population (e.g. as proportion increases, more type II errors occur) and in 

terms of the pricing achieved for populations of varying defect incidence.  A ‘sorting 

optimisation’ decision support guide was developed for use of a defect sorter based 

on a model of the sorting function, knowledge of the defect distribution in a 

population and pricing.   

 

Keywords: binary classification, ROC, SOC, optimisation, threshold 

 

 

 

 

 

 

1 
I acknowledge Mark Loeffen of Delytics P/L (Hamilton, New Zealand) for 

assistance with this Chapter and Mrs. Rosie Savio of Savio farm, Stanthorpe, 

Queensland, for advice on marketing of apple. 
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5.1 Introduction  

Sorting of agricultural products is undertaken to maintain quality and to bring 

uniformity to the sorted population. Separation of a consignment to two or more 

quality classes is generally done to specifications agreed mutually between parties 

(e.g. packer and wholesaler) (Bollen & Prussia, 2009, 2014; Laofor & Peansupap, 

2012). However, whether the sorting/grading operation is a manual or a machine task, 

class assignment errors are anticipated (Ladaniya, 2008a).  

To achieve a binary classification for a measurement system producing continuous 

values, a  threshold or cut off value (t) can be used, e.g. with the output values (v) 

higher than the threshold resulting in rejection of the product (Ooms et al., 2010). 

v<t: Accept; v>t: Reject  

There are four possible classes in such a classification: true positive, TP, true 

negative, TN, false positive FP and false negative, FN.  The performance of a binary 

classifier is generally assessed in terms of accuracy, classification error for positive 

and negative classes, as defined below: 

Accuracy = (TP+TN)/(P+N)  

Classification error for positive item (good fruit category) FPR= FP/N 

Classification error for negative item (defect fruit category), FNR= FN/P 

where P and N denote number of actual positive and actual negatives. 

The operator in control of a sorting operation normally has control of the threshold 

value, balancing a trade-off between the false negative rate (good fruit predicted as 

defect, FNR) and the false positive rate (defect fruit predicted as good, FPR).  

However, consignments may be rejected if a specification on the false discovery rate 

(defect fruit in accepted group; FP/(TP+FP)) is exceeded.  Further, the economic 

outcome will also depend on the true positive rate (TPR, TP/P or yield) and return 

(price) achieved for batches with different levels of defect.  The operators task in 

optimisation of the setting of this threshold value could be assisted by provision of 

tools that demonstrate these trade-offs.  
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A receiver operating characteristic (ROC) curve, the plot of true positive (TP/P, or 

Sensitivity) against false positive (FP/N, or 1 -  Specificity) rates of classification 

(Gómez Sanchis et al., 2013; Luo et al., 2012; Ooms et al., 2010), is one such tool.  

This plot illustrates the trade-off between the yield of the sorting operation (TP/P) 

and the compliance to a criterion of relevance to the market (FP/N). However, the 

area of most interest in a ROC plot is the region of minimal FPR and maximal TPR, 

displayed in the top left region of the plot.  As an alternative, the detection error 

trade off (DET) graph gives more attention to the area of interest of the ROC curve.  

The DET plots missed detections (false negative rate, FNR) against false alarms 

(false positive rate, FPR) using x and y scales transformed by the quantile function 

of the normal distribution (the inverse of the cumulative normal distribution). 

A sorting optimization curve (SOC) utilises additional information to optimise the 

selection of the threshold value (Ooms et al., 2010). For example, the marketplace 

criterion on diffuse browning in apple is not FP/N per se, but rather FP/(TP+FP) 

(false discovery rate, or defect fruit in the accepted class). There may also be latitude 

given in this criterion (e.g. the market cannot accurately measure and so does not 

strictly enforce a 2% false discovery rate on apple browning), and ideally this 

latitude should be included in the SOC.  The price differential on product with 

different levels of defect is another driver of operator behaviour that should be 

included in an effective SOC. 

Given knowledge of measurement error (e.g. RMSEP for a SWNIRS based 

prediction of an internal attribute) and the distribute of attribute level in a population 

it should be possible to model the proportion of Type I and II errors that will be 

made in a sorting operation, and thus provide information to support a SOC that 

incorporates pricing (ie. a SOC based on value of sorting outcomes).  In this section, 

the value of these various aids in guiding the operation of a sorting operation is 

discussed.  Data of sorting of fruit for internal browning is used. 
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5.2 Materials and Methods 

5.2.1 Data 

Data of 227 apple fruit from six populations sorted using the IDD0 unit were 

considered for this exercise. The overall diameter at equator and weight of the fruit 

was 72.8 ± 4.1 mm and 154.3 ± 22.4 g (mean ± SD).  An additional data set of 7 

populations of fruit (each of approximately 200 fruit) from a pilot in-packhouse 

sorting operation (near Stanthorpe, Queensland) were also accessed.  A visual 

browning score of cut fruit was used as the reference measurement. On this scale, 

scores 1 and 2 are associated with consumer acceptance while scores 3 – 5 represent 

unacceptable fruit. A partial least square regression model based on IDD0 

absorbance data over the wavelength range 500-975 nm was used in prediction using 

The Unscrambler 13.1 (CAMO, Oslo, Norway). 

Details of the fruit, instrumentation and spectra acquisition and manipulation are 

presented in Chapter 2. 

5.2.2 Data analysis 

Microsoft Excel 2010 was used, utilizing features of the Data Analysis ToolPak.  

The Detector Error Trade-off probit function plot was undertaken using the Excel 

+NORMSINV function, which returns the inverse of the standard normal cumulative 

distribution (i.e. mean of zero and standard deviation of 1). 

5.3 Results and Discussion 

5.3.1 Sampling statistics 

The number of samples required to estimate the mean value of an attribute with a 

continuous value (such as severity of internal browning of apple) can be estimated 

from the relationship between sample uncertainty, probability and standard deviation 

(Fornasini, 2008).  

𝑛 = (
𝑡 𝑆𝐷

𝑒
)

2

 

where n is the number of samples required, SD is the standard deviation of the 

population, t is the t statistic (1.96 for n>30 and a 95% confidence interval) and e is 
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the measurement error.  A preliminary sampling is required to estimate population 

SD. 

Thus to estimate mean level of internal browning in a population of fruit with a 95% 

confidence interval (CI), a SD of 1.5 and an error of 0.24 (RMSED of operator 

repeatability on a 5 point visual score scale), the number of samples required is:  

𝑛 = (
1.96 𝑋 1.5

0.24
)

2

= 150 

However, the fresh fruit value chain specification on this defect is one of 

discrimination (accept/reject), not estimation of level of severity of defect.  Diffuse 

browning in apple is described as a major defect by major retailers, with a 

specification of no more than 2% of fruit in a consignment to be affected 

(Woolworths,2015). The typical test imposed by retailers is the cutting and 

assessment of 30 fruit on receival of a consignment of fruit at the distribution centre.  

The probability of encountering a defect fruit if the defect is present in 2% of the 

population when n fruit are sampled is: 

Let P = probability of finding one or more defect fruit when sampling n fruit from a 

population with p incidence of defect. 

𝑃 = 1 − (1 − 𝑝)𝑛 

where p is the actual proportion of defect fruit in the population and n is the number 

of fruit sampled 

For x ≥1, p = 0.01 and n = 30 

𝑃 = 1 − (1 − 0.01)30 = 0.2603 

 

The same result can be estimated using the Excel binomial distribution function, as : 

𝑃 = 1 − 𝐵𝐼𝑁𝑂𝑀𝐷𝐼𝑆𝑇(𝑥 − 1, 𝑛, 𝑝, 𝑇𝑅𝑈𝐸) 

Examples are provided in Figure 5.1 for the probability (P) of selecting at least one 

defect fruit when sampling 10, 30 and 300 fruit from a consignment, for various 

levels of incidence of defect in the consignment.  For a consignment with a defect 

incidence of 2%, there is a 17.5, 45.5 and 99.98% chance of choosing a defect fruit 

when sampling 10, 30 and 300 fruit respectively (Fig. 5.1).   
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Obviously a sampling strategy using only 10 or 30 fruit would often be in error, 

failing to detect presence of defects, for low incidence rates. Thus a supplier with 

perfect knowledge of product defect levels might choose to provide the retailer with 

fruit of a slightly higher level of defect incidence than the specification level, given 

the probability of detection. In practice, the major retailers must recognise this 

sampling issue, as although the official specification is no more than 2% incidence, 

suppliers report retailer tolerance of 5% incidence of defect fruit (personal  

communication, Rosie Savio, Savio packing house, Stanthorpe, Queensland, 

Australia).  At a 5% incidence level, a 30 fruit sample would include select a defect 

fruit in 77% of sampling events. 
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Figure 5.1. Probability of finding 0,1 or >1 defect fruit in a sample of (A) 10, (B) 30 

and (C) 300 fruit from a consignment containing between 0 and 15% defect fruit. 

5.3.2 Population Description 

In total, 227 fruit (71 good and 156 defect) were considered. This exercise involved 

five populations each containing 30 fruit and one population with 227 fruit which is 
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77 fruit from a population in addition to fruit in all 1-5 pop combined. Population 

statistics are presented in Table 5.1. 

Table 5.1. Average and variation of visual browning score (5 point scale) in each 

population. 

Population  Pop 1  Pop 2  Pop 3  Pop 4  Pop 5  Pop 6 

# fruit  30 30 30 30 30 77 

Mean  2.96 3.28 3.14 3.36 3.85 3.32 

SD 1.49 1.57 1.48 1.56 1.38 1.42 

 

5.3.3 A sorting operation based on PLSR model output 

Let us consider the sorting of an example batch of fruit (population 6) using 

SWNIRS for the level of diffuse browning on a five point scale, given variation of 

the threshold value on sorting (Fig. 5.2).  For example, at a threshold of 1, the FPR 

(FP/N) is 0% but there was 70.8% rejection of actual good fruit (FNR, FN/P), with 

consequent economic loss. At a threshold value of 2.5, the % of defect fruit predicted 

as good (FP/N) was increased to 0.93% while only 9.7% of good fruit were falsely 

considered to be defect fruit (FN/P).    
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Figure 5.2. Classification of an apple fruit population as the threshold value for 

visual score is varied, in terms of % of good and defect fruit accepted and rejected 

respectively. % on y axis relates to descriptors associated with each line. Fruit with 

values < threshold are graded as acceptable fruit, while those > threshold value are 

rejected as defect. Prediction of defect made using absorbance data over the range 

500 – 975 nm using IDD0 instrumentation for population 1. 

The effect of change in threshold value on classification results for five populations 

of apple fruit is shown in Figure 5.3.  For example, for population 1, a threshold 

value of 2.5 would achieve a FP/N rate of 0.93% and a FP/(TP+FN), or false 

discovery rate, of 1.5% at the expense of a FN/P rate (% of good fruit rejected as 

defect, with economic loss) of 9.7%. 
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Figure 5.3. Classification error for apples with internal browning based on 

assessment using IDD0 instrumentation for populations 1-5. Top panel depicts the 

rate of defect fruit predicted as good fruit (FP/N) and bottom panel depicts the rate of 

good fruit predicted as defect (FN/P), as influenced by the threshold value used in 

sorting.  

 

5.3.4 Describing the sorting operation with ROC and DET 

Receiver Operating Characteristic (ROC) and Detection Error Trade-off (DET) 

curves are commonly used in describing sorting operations.  The Receiver Operating 

Characteristic curve depicts the true positive and false positive rate.  Such a curve 

can be generated for the apple internal browning example using sorting outcomes 

resulting from the use of different threshold values (e.g. for five populations, Fig. 

5.4).  Note that the area under the RUC curve is a measure of sorting effectiveness, 

suggesting sorting of population 1 was achieved more effectively than other 

populations (Fawcett, 2006). The ideal operating point would be (0,1), representing 

perfect operation, achieving 100% accuracy in sorting both the good and defect fruit. 
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In practice, the optimum operating point (and associated threshold value) is 

associated with the shoulder of the curve in the top left of the graph. 

 

Figure 5.4. Receiver operating characteristics (ROC) curve for five population of 

apple showing true positive rate (TP/P or Sensitivity) and false positive rate (FP/N or 

1 - Specificity) for data from IDD0 instrumentation.  

The Detection Error Trade-off (DET) curve involves a plot of the missed detection 

rate (false reject rate, FN/(P+N)) against the false alarm (false accept rate, FP/(P+N)) 

using x and y scales transformed by the quantile function of the normal distribution 

(the inverse of the cumulative normal distribution) or by logarithm base 10. This 

presentation expands the false reject scale in the area of interest, in this case around a 

value of 2%.  

However, while such presentations require development for each population assessed.  

Developments of some guidelines or ‘rules of thumb’on how to chose threshold 

values therefore has merit.  Further, attention to the marketplace criterion of false 

discovery rate (FP/(FP+TP)) is required. 
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Figure 5.5. Detection error trade off (DET) curve – the plot of false negative against 

false positive rate for a range of sorting threshold values. A. Raw data. B. log-log 

plot plot.  

5.3.5 Choosing a threshold value  

For internal browning of apple, the retail specification is the percentage incidence of 

defect in the consignment (false discovery rate or total defect in accepted category; 

FP/(FP+TP)).  If a set sorting threshold value is used across all populations, the false 

discovery rate will vary (e.g. for  a threshold setting of 2.5, Fig, 5.5).  Thus the 

threshold value required to achieve a False Discovery Rate of 2% will vary with 

population, depending on defect mean and range. 
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Figure 5.6. False discovery rate (FP/(FP+TP)) for five populations sorted using a 

range of threshold value.  FDR displayed on a log scale. 

 

The mean and range of defect level in the populations displayed in Fig. 5.4 did not 

differ greatly (Table 5.1), and the threshold value required to achieve a 2% FDR was 

similar for these populations.  For another set of data involving 7 populations of fruit 

(each approximately n=200), the threshold value required to achieve a 2% FDR was 

noted to alter with change in population defect level distribution (mean score or % of 

unacceptable fruit in population).  With addition of data from further populations an 

operating rule might be developed for setting of a threshold value given knowledge 

of defect incidence. 
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Figure 5.7. The threshold value required to achieve a 2% false discovery rate 

(FP/(FP+TP)) for seven populations, as a function of the % of defect fruit in the 

population (top panel) or mean defect score (bottom panel) for each population. 

5.3.6 Estimation of defect distribution in the sorted population using a 

transfer function 

Given knowledge of the accuracy of the sorting operation (i.e. RMSEP), the effect of 

error in the sorting operation on the distribution of defect levels in the end population 

should be able to be estimated using a ‘transfer function’.  This transfer function is 

proposed to have the shape of a normal distribution with a SD equal to the RMSEP 

of the sorting operation, with its mean set on the desired threshold level.  The 

product of the transfer function and the defect distribution in the unsorted population 

will yield an estimate of the distribution of defect level in the sorted population.   
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For example, consider a population with some (normal) distribution of defect levels 

around a mean value x and with a standard deviation SD.  If we set the sorting 

threshold at the value of x-SD, a perfect sorter would yield two populations, one 

with values <(x-SD), one with values >(x+SD), ie. composed of 16 and 84% of the 

original population respectively. However, the sorting accuracy is not perfect.  Score 

5 fruit are unlikely to be graded as score 1, but a score 3 fruit might be graded as 

score 2.  In the example, let us assume a sorting error (RMSEP) of 0.5*SD.  There 

will be the possibility of incorrectly grading good fruit with scores of up to x-SD-

2*RMSEP as defect fruit, with a decreasing probability for more extreme values.  

This probability is estimated using a normal distribution with a standard deviation 

termed ‘band width’. 

An Excel based model was developed using the ‘NORMDIST’ function as the base 

of the transfer function, using the desired threshold value as the mean for this 

function, and setting a ‘band width’ as the standard deviation.   A routine was added 

to compare the difference between the predicted defect levels in accepted and 

rejected classes with the actual levels in populations sorted using different threshold 

values, to allow for optimisation of the bandwidth setting at a given threshold setting.  

Data of population 6 (227 fruit) was used to illustrate model performance. 

As the bandwidth of the transfer function is decreased, sorting accuracy increases.  

For example, a ‘perfect’ sorting result (i.e. no errors) is achieved using a bandwidth 

of 0.1 (Fig. 5.8), while a bandwidth of 1.39 results in considerable errors (Fig. 5.9).  

For this data set, model error was minimised at a bandwidth setting of 0.6 (Fig. 5.10).   

The fit of the model was surprisingly good, indicating that the normal distribution 

used in the transfer function was a reasonable choice.  Interestingly, the band width 

required to minimise the model output error to actual sorting results was less than the 

actual RMSEP of the sorting operation.  In this example, the RMSEP was 1.39, the 

value used for the bandwidth in Figure 5.9.  Model performance error was minimised 

using a bandwidth of 0.6 at a threshold of 2.5, but bandwidth optimum varied with 

threshold setting (Table 5.2).  Thus the sorter was performing better than expected 

by the model in terms of adopting the RMSEP as the SD input of the transfer 

function. 
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Consideration of a number of populations is recommended to allow interpretation of 

optimal bandwidth and RMSEP.  Likely factors include variation in the value of 

residuals with level of attribute. 

 

 

Figure 5.8. Probability distribution of filters and of classes.  Sorter accept and reject 

curves represent the transfer function, a normal distribution with a standard deviation 

equal to the band width setting.  The probability distribution for the five score bands 

is shown for (a) the initial (unsorted) population, (b) the modelled accepted 

population, (c) the modelled rejected population, (d) the actual accepted population 

and (e) the actual rejected population.  Bottom panel represents the sorter accept 

curve with model-accepted data with addition of data on the actual-accepted. 
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Figure 5.9. Probability distribution of filters and of classes.  Sorter accept and 

reject curves represent the transfer function, a normal distribution with a standard 

deviation equal to the band width setting.  The probability distribution for the 

five score bands is shown for (a) the initial (unsorted) population, (b) the 

modelled accepted population, (c) the modelled rejected population, (d) the 

actual accepted population and (e) the actual rejected population.  Band width 

changed to 1.39.  
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Figure 5.10. Probability distribution of filters and of classes.  Sorter accept and 

reject curves represent the transfer function, a normal distribution with a standard 

deviation equal to the band width setting.  The probability distribution for the five 

score bands is shown for (a) the initial (unsorted) population, (b) the modelled 

accepted population, (c) the modelled rejected population, (d) the actual accepted 

population and (e) the actual rejected population.  Band width changed to 0.6. 
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Table 5.2. Optimum bandwidth for the given threshold setting for model and actual 

sorting operation. 

Model 

Threshold 

Actual 

Threshold 

Band width  Sum of squares root  

0.5 0.5 0.28 1.01209E-07 

1 1 0.29 0.001940655 

1.5 1.5 0.81 0.000597161 

2 2 0.71 0.000905361 

2.5 2.5 0.6 0.000807934 

3 3 0.75 0.000443311 

3.5 3.5 0.68 0.00021429 

4 4 0.96 1.93852E-05 

4.5 4.5 1.75 0.004545492 

5 5 0.5 0.005943266 

 

5.3.7 A Sorting Optimisation Curve with pricing data as a decision 

support aid 

In sorting of fruit for internal browning, two groups of fruit are created, one with 

lower incidence of defect and so higher value, and one with higher incidence of 

defect and so lower value.  As noted earlier, ‘harsher’ sorting (lower threshold value) 

will result in a lower false discovery rate but also a lower yield.  A practical or 

economic decision on sorting pressure (threshold value setting) requires 

consideration of the three parameters of input distribution, misclassification level 

and pricing. Ooms et al. (2010) describe the compromise between yield and a quality 

factor and suggest use of a ‘sorting optimisation curve’ (SOC) to guide the choice of 

the threshold value used in the classifier. In this approach, yield refers to 

(TP+FP)/(P+N), while quality refers to TPR or TPR with an assigned value (e.g. 

price) to sorted objects based on the proportion of defect items present in the lot.  

For example, if price achieved on fruit with <2% incidence level of defect is $35/(9 

kg) box with the alternative being sale at $150/tonne ($13.50/9 kg) for juicing (a 

scenario presented by one grower), then the sorting operator will ‘intuitively’ know 

to adjust the sorting threshold so as to achieve specification on false discovery rate, 

regardless of yield, in order to optimise economic outcome.  However, when the 
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price differential is not as clear, other sorting outcomes may lead to the optimal 

economic result.  For example, in practice growers report that the major retailers 

display some tolerance in false discovery rate above their published specification 

levels for apple browning.  Additionally fruit at moderate levels of defect may be 

sold on the general market.   

A decision support tool was created to assist the sorting operator in setting of a 

threshold value.  This tool codifies optimum behaviour in terms of price achieved.  

The tool requires: 

(i) knowledge of the distribution of defect in the population.  The output of 

the sorting unit could be accepted. 

(ii) knowledge of accuracy of the sorting operation.  A representative number 

of fruit estimated as per 1.3.2 should be destructively sampled and 

assessed relative to the sorting operation result.   

(iii) knowledge of price achieved for fruit with given levels of defect,  

The modelling of sorter output accuracy for given threshold settings has been 

described in the previous section.  A function was added to this model to couple 

user-supplied pricing data to the sorter output distribution data to calculate total 

value achieved for the consignment.  To demonstrate this calculator, consider the 

following three scenarios: 

Case 1.  Pricing of $ 35 / 9 kg box if defect incidence level is below 2%, $0/box for 

higher levels of defect incidence.   

Case 2. Pricing of $ 35 / 9 kg box if defect incidence level is below 5%, $0/box for 

higher levels of defect incidence.   

Case 3. Pricing of $ 35 / 9 kg box if defect incidence level is <5% defect incidence,  

$ 20/box for fruit with up to 40% incidence, $0 for other fruit. 

Maximum value is achieved using a threshold of 2, 2.5 and 3.5 in Cases 1, 2 and 3, 

respectively (Fig 5.11).  
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Figure 5.11. Value ($) of product achieved with change in sorting threshold level for 

three arbitrary market pricing scenarios:  (a)  $35/box for fruit with <2% defect 

incidence, $0 for other fruit; (b) $35/box for fruit with <5% defect incidence, $0 for 

other fruit; (c) $35/box for fruit with <5% defect incidence,  $ 20 for fruit with up to 

40% incidence, $ 0 for other fruit.  
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A similar optimisation applies for change in the sorting function. For example, 

should the sorting accuracy decrease, resulting in more misclassification events, the 

threshold sorting value to achieve maximum value will change. 

 

5.4 Conclusion 

 

The commercial front of the application of NIR spectroscopy in quality sorting 

involves the classification of the entire fruit into groups of desired quality. This 

process includes transcribing the spectroscopic information retained in the spectra 

into the number and applies on to the sorting operation. Sorting fruit for internal 

defects involves an exercise of probabilities, of incidence and of detection.  

Optimising the sorting process also requires knowledge of price available for fruit 

with different defect incidence levels and tolerance for those defects in the market 

based on given consignment criteria agreed between parties.  Calculators have been 

produced to guide the choice of a statistically relevant number of fruit samples to 

judge defect incidence level, to predict the sorting outcomes given change in 

threshold sorting values and to estimate the value achieved for the sorted product.  

This field is ‘fertile’ and further effort is recommended to maximise the practical 

outcomes possible from sorting technology. 

Further work with a range of populations varying in defect level and spread is 

recommended to develop decision guides around the setting of a threshold sorting 

level given knowledge of population statistics, to maintain a desired false defect rate, 

and to allow for interpretation of the value of the bandwidth setting that minimises 

model error, relative to sorting error as measured by RMSEP.   It is recommended 

that the operation of the sorting process be guided by a destructive sampling of 

sample lots to gauge errors in class assignment.  
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Chapter 6.  

Conclusion and future directions  

The need to focus on fruit quality is a mantra within the fruit industry.  Such a focus 

must be applied throughout a developed horticulture supply chain. The use of near 

infrared spectroscopy (NIRS) in the sorting of internal defects is but one element in a 

quality ‘tool-kit’, in which the ultimate aim must be to avoid the development of 

disorders, and thus avoid the need for sorting processes.  However, in practice there 

is need for efficient sorting processes to at least reduce defect incidence in 

consignments to a level that is acceptable to the market place.   

Seated deeply in the fruit tissue, internal defects pose a major problem for detection 

and automated sorting. Many research reports on sorting of fruit for internal defect 

have been based on limited sample sets (one population divided into a calibration 

and validation set), and so offer optimistic results.  Further, while some commercial 

claims exist for sorting of fruit on internal defect, performance of such 

instrumentation has yet to be documented.   

In approaching the issue of detection of a particular disorder, the following questions 

should be raised: (i) what is the cause of the disorder (and how can a range of levels 

of defect be produced/acquired for trial work); (ii) what are the anatomical features 

of the disorder and how does this inform selection of detection technology and 

arrangements, e.g. choice of optical geometry; (iii) is a quantitative estimation of 

defect level required or is a discriminate pass/fail answer sufficient?; (iv) what level 

of type I and II errors are required?   

In this thesis these issues were explored in context of apple browning, mandarin 

gelling defect and pineapple translucency.  Chapters 2 presents on the non invasive 

detection of apple diffuse browning using spectra acquired from defect and good 

fruit in interactance, partial transmission and full transmission optical geometries. 

Defect fruit reveals high absorbance of light at visible-shortwave NIR region 

compared to normal one with distinctive difference at certain wavelength associated 

with varied absorbance with aromatic hydrocarbons (brown polymers). This exercise 

results in improved classification accuracy of good and defect fruit to meet the 

retailer’s standards for defects at the cost of losing less than 10% of the good fruit as 
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defect using discriminant analysis methods. Similarly, detection of granulation in 

‘Imperial’ mandarin was presented in Chapter 3, based on a transmission optical 

geometry, although the robustness of the technique to fruit grown under different 

conditions requires further work. Chemical and anatomical characterisation reveals 

that the granulation in mandarin is more ‘gelling’ of the tissues with rapid cell 

division, formation of multiple epidermal and hypodermal layers.  It is likely that the 

method will be sensitive to changes in fruit optical properties, e.g. resulting from 

skin ‘tightness’. This defect was also characterised as representing a proliferation on 

the hypodermal cells of the juice sacs.   Results for detection of pineapple 

translucency, presented in Chapter 4, were less encouraging.  The complexity of the 

multiple and aggregate fruit, with presence of bracts and central vascular axis, are 

likely contributors to the poorer result for this application.  Operational issues 

associated with the instrumentation used in the thesis are presented in Appendix 1. 

Further work in the development of instrumentation is anticipated, both in terms of 

full window spectral devices and devices based on absorbance at only a few 

wavelengths, given continued advances in both light sources (particularly LEDs) and 

detectors.  Attention to the development of imaging systems is recommended, to deal 

with the issue of non-uniform distribution of defect within fruit, and the presence of 

unrelated structures, such as in pineapple fruit.  Technologies other than NIRS also 

hold promise, particularly Xray-CT and MRI, as speed of operation and cost 

decrease.  Aspect Imaging P/L of Israel is one company to watch in this context.  

The development of chlorophyll fluorescence as an on-line screening tool also has 

potential.  The continued adoption of this technology into controlled atmosphere 

fruit storage by companies such as Harvest Watch and Bessling is anticipated. 

The consumer ‘pull’ for improved fruit quality, particularly demand for fruit free 

from internal defect, will extend the use of non-invasive sorting technology to other 

fruit commodities and other internal defects. Insect infestation and internal rots are 

likely target applications.   For example, Thomas et al. (1995) reported detection of 

mango seed weevil (Cryptorynchus mangiferae) inside mango fruit using a X-ray 

imaging technique with 100% accuracy, although the sample was relatively small 

(84). (Xing & Guyer, 2008a) reported use of SWNIR transmittance (550-980 nm) for 

detection of internal insect infestation in cherry, with higher absorbance at longer 



Conclusion 

158 

wavelengths in defect fruit. Canonical discriminant analysis yielded a classification 

accuracy of 80-86% for infested fruit. (Wang et al., 2011) also reported the use of 

discriminant analysis models for detection on insects within jujube fruit.  (Haff et al., 

2013) reported detection of mango fruit fly infestation using a hyperspectral imaging 

technique with 50 mangoes.  A 6% misclassification rate was recorded, including 1% 

defect fruit predicted as good while 11.1% of the good fruit predicted as defect.   

The application of a detection technology in context of a sorting operation, to 

achieve binary classifier through setting of a threshold value, is discussed in Chapter 

5. The trade-off between the good fruit rejected as defect (economic loss to the 

growers) and defect fruit accepted as good (threat to retail specification) are 

discussed. Various aids to assist the operator in choice of a threshold sorting value 

are presented, including a Receiver Operator Characteristic (ROC) curve and a 

Sorting Optimization Curve (SOC). Further work in this area is recommended, to 

produce tools of practical value to the packing line operator.  Further, sorting to 

remove defect fruit represents economic loss, so with greater knowledge of incidence 

levels from the sorting operations, increased attention on the control of the 

development of the defect is likely.  A key part of such control is the improvement of 

models that predict defect incidence, based on genotypic, pre-harvest and postharvest 

conditions.  Future research on internal defects in fruit should focus on; 

i. preventing the incidence of internal defects by assessing the interactions 

among different management and genetic factors  using multivariate 

statistical approach.  

ii. quantitative modelling of incidence of internal defects by integrating the 

biochemical (within fruit) and environmental data (outside fruit).  

iii. development of economic, fast, accurate, non-invasive and easy – to- 

operate methods for measuring and on line sorting of defect fruit for 

commercial application.  
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Appendix 1. 

Instrumentation study of machines used in 

internal defects detection of fruit 

 

 

 

Abstract 

This chapter documents aspects of the SWNIRS instrumentation developed and/or 

used in this thesis. The application of internal defect assessment of intact fruit 

demands use of high light intensities and/or sensitive detectors. This instrumentation 

was based on high wattage tungsten halogen lamps and Zeiss MMS1 or Avantes 

array detectors, or LEDs with a single photodiode detector.  

 

Keywords: light emitting diodes, count, light intensity, spectra 
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Introduction 

The detection of internal defects in fruit requires the measurement of light 

transmitted through whole fruit. This can be accomplished using high intensities of 

incident light or through use of sensitive detectors. Long integration times are not an 

option for the assessment of moving fruit on a packline, for which consideration of 

timing and position of fruit relative to spectra acquisition is critical. The use of 

increased illumination levels from a broad output source such as a tungsten halogen 

lamp is fraught in terms of the incidental heat load. This issue is not trivial – plastic 

conveyor belts will melt or burn if not moving! Obviously there is also potential for 

heat damage to fruit if the exposure time increases beyond a few tens of milliseconds. 

The use of narrow band sources is a solution to this issue, coupled with use of a large 

area Si photodiode detector. 

In this thesis, four instruments have been used: (i) Nirvana, (ii) IDD0; (iii) InSight2; 

(iv) IDD2. The purpose of this Appendix is to describe these units.  
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Nirvana 

The Nirvana unit uses the shadow probe optical configuration described by Greensill 

and Walsh (2000). This is not an appropriate optical geometry (i.e. not 180
o
 

transmission) for assessment of internal defects; nevertheless the instrument was 

used for benchmarking purposes as a unit of known specifications (good 

repeatability etc). 

 

 

 

Equipment Nirvana 

Manufacturer  Integrated Spectronics, Sydney, Australia 

Wavelength Range 

(nm)  

308-1150 

Light source  Single halogen lamp, 32W 

Detector  Zeiss MMS1 NIR enhanced photodiode array 

Resolution  FWHM approximately 10 nm 

Sensitivity  10
13

 Counts/Ws (with 14 bit conversion 

Pixel dimensions  25x2500 µm
2
 

Optical geometry  Interactance (‘shadow probe’) 

Integration time (ms)  Automatic variation to achieve >75% detector saturation 

Referencing Internal gold shutter; referencing on every sample 

Repeatability <1mA 
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Instrument repeatability  

The repeatability of the instrument is measured as the SD of repeated measures in 

white tile.  

 

Figure 6.1 Standard deviation of absorbance for repeated spectra acquired of a white 

tile, using the internal reference of the Nirvana for calculation of absorbance.  
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IDD0 

 

Equipment: IDD0 

 

Manufacturer  purpose built instrumentation, CQU, Australia (technical 

assistance of Larry Coleman is acknowledged) 

Wavelength Range 

(nm)  

300-1100  

Light source  Single halogen lamp, 300W  

Detector  Zeiss MMS1 NIR enhanced photodiode array 

Resolution  FWHM approximately 10 nm 

Sensitivity  10
13

 counts/Ws for 14 bit conversion  

Pixel size  256 

Optical geometry  Partial transmittance 90
o 

or varying
 
angle  

Integration time (ms)  4-2000 ms, varied depending on type of fruit to achieve 

count >67% of ADC saturation 

 

The IDD0 instrument was developed in house for the purpose of this thesis. It 

consists of a 300 W halogen lamp as a light source and supplied with MMS 1 

spectrometer acquiring the spectra at 300-1100 nm. The instrument allows for work 

in a full transmission optical geometry with possibility of varying orientation of fruit 

and detector as desired. A sliding aperture of desired dimensions can be used to 

control the amount of light incident on the fruit. A light barrier minimizes any light 

received by the detector. 
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Instrument repeatability 

The repeatability of the IDD0 unit was assessed as the SD of repeated measures of a 

white tile. 

 

Figure 2. Standard deviation of Absorbance for repeated spectra acquired of a white 

tile, using spectra of the same white tile for calculation of absorbance. 
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Insight2  

The MAF RODA Insight2 was designed to assess fruit DM, soluble solids and 

internal defects using a full transmission optical geometry. It is equipped with the 

150 W halogen lamp installed in 180
o
 to the fruit and an Avantes spectrometer.  

 

 

Equipment  InSight2 

Manufacturer  MAF Agrobotics, France 

Wavelength 

Range  

600-973 nm  

Light source  Single halogen lamp, 150 W  

Detector  Avantes Avaspec ULS backthinned CCD  

Resolution  approx 10 nm (better resolution posible with narrower slit) 

Sensitivity  600,000 counts/Ws for 14 bit conversion  

Pixel step 1.5 nm 

Optical 

geometry  

transmittance 180
o 

 

Integration time 

(ms)  

4-10 ms, varied depending on type of fruit to achieve 

count >67% of ADC saturation 

 Repeatability  <1mA at 650-975 nm 
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Instrument repeatability 

Standard deviation of repeated measurement of white tile reveals the repeatability 

0.5 mA for this spectrometer. 

 

Figure 2. Standard deviation of Absorbance for repeated spectra acquired of a white 

ball, using spectra of the same white ball for calculation of absorbance. 
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Lamp stability 

Lamp output was stable in terms of spectral quality ad intensity over the period 

measure (0-76 sec) (Fig. 3). 

 

Figure 3. Spectra with white tile (dynamic) with PETE reference. Spectra acquired 

of 8 mm thick PFTE tile from time of lamp power-on.  
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Effect of cup on prediction  

On a grading machine fruit are conveyed in ‘finger cups’ or ‘hands’. Each cups or 

fingers are supposed to behave equally in terms of performance. To test the impact 

of the hand on a spectral prediction of defect level in apple fruit, a population of 50 

fruit (apple var. Pink Lady) was repetitively run on each of 6 different cups. The fruit 

size and weight ranged from 50-80 mm in diameter and 105 - 188 g. The conveyor 

belt was operated at a speed of 255 cups/min. Fruit were placed on cups with the 

stem - calyx axis perpendicular to detector optics. The cup did not impact PLSR 

model performance.  

Table 1. Partial Least square regression results for defect score (5 point scale) for a 

population  of 50 fruit (4 spectra from each fruit, transmittance 600-973 nm, mean 

and SD of score = 2.44  ± 1.51) for each of 6 cups.  

 
Visual browning score 

(2.44 ± 1.51) 

Cup # R
2
cv RMSECV PCs 

Cup 1 0.83 0.63 6 

Cup 2 0.84 0.59 6 

Cup 5 0.85 0.58 6 

Cup 7 0.85 0.58 6 

Cup 9 0.83 0.63 6 

Cup 13 0.84 0.60 6 

 

The calibration model for visual score on one cup has similar prediction performance 

for rest of the cups showing that every cup are behaving equally for the grading of 

fruit (Table 2).   
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Table 2.  Prediction performance of the model developed for visual score by fruit 

placement in cup 1to other cups.   

(Cup 1 score model (R
2
cv = 0.83;  RMSECV= 0.63) ) 

Cup # R
2

p RMSEP  Bias  

Cup 1  0.84 0.6 -6.31
-8

 

Cup 2  0.8 0.93 -0.24 

Cup 5 0.83 0.65 -0.13 

Cup 7 0.8 0.67 0.07 

Cup 9  0.82 0.64 0.06 

Cup 13  0.82 0.63 0.07 
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IDD2 

LEDs offer long life, efficiency and less generation of heat compared to tungsten 

halogen lamps (e.g. 30000-50000 h compared to 1500-2000 h). LEDs have no warm 

up requirement and can be powered with short pulses to generate higher intensities 

of light output. 

The IDD-2 system involves a horizontal 180
o
 lamp-fruit-detector axis, with lamp and 

detector mounted above the conveyor cups. The detector is a silicon photodiode 

equipped with a 1.5 x 10
6
 amplifier. The lDD-2 light source is an array of 32 Epitec 

(JAPN) LEDs (8 each of four wavelengths, with peak outputs of 780, 880, 700 and 

810 nm, designated A, B, C and D). The physical constraints of LED arrangement in 

a cluster will lead to some non-uniformity of illumination of the sample by the 

various wavelengths. This may be an issue with change in fruit size or for non-

uniform distribution of internal disorder. The LEDs are rated for 2 A maximum 

current. They are operated using a 27 V power supply with 8 LEDs in series, i.e. 

operated at 3.3 V. The LEDs are operated in a pulsed (0.5 ms) mode. 

The system is designed for an apple fruit of 56-95 mm diameter. Smaller fruit will 

result in increased illumination of the detector, to the point of detector saturation. 

Larger fruit will result in lower detector illumination, with lower signal to noise. 

Conveyor cups are set on 100 mm centres, and the conveyor position is monitored 

with an encoder giving 64 pulses between each cup (i.e. each pulse represents 

movement of 1.6 mm). At leading and trailing edges of the fruit, signal will be 

saturated. The detector signal for the middle three steps are averaged and measured. 
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Technical specifications  

 

 

 

Equipment IDD2 

Manufacturer  MAF RODA Agrobotics, France 

Wavelength 

Range (nm)  

700, 810, 780, 880 nm absorption peak wavelengths  

Light source  4 Light Emitting Diodes (LEDs)  

Detector  A single silicon photodiode array  

Optical 

geometry  

Full transmission, 180 
o
 

  

White ball 

repeatability  

SD or 20 repeated measures of B/A = 0.086 
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Effect of varying current on LED output intensity  

The IDD-2 unit offers control of the current to each set of LEDs.  To characterise 

this control, current level to the individual LEDs was varied and photodiode output 

recorded (Fig. 4).  LED intensity was directly related to current for three of the four 

LEDs for current levels over the range 40 – 240 units (units of IDD control). The 

exception was the 700 nm LED which increased output for current up to 100 units, 

then output decreased with increasing current.  Presumably the maximum current 

rating of the 700 nm LED was achieved at a setting of 120. 

 

Figure 4. Linear relationship of the light intensity received at spectrometer against 

the increase in current flow in each LEDs for white ball at 700, 780, 810 and 880 nm. 

The output intensities of the 4 LEDs were quite different, in the order of 880 > 810  > 

780 > 700 nm. 
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LED stability 

LED output was monitored over time from power on, in terms of signal received 

from a white reference ball. A drift of approximately 1% was observed after 30 

minutes as observed by small change in count readings. Peak wavelength and 

intensity of output of LEDS is temperature sensitive. The working hypothesis is that 

observed shifts in intensity result from changes in ambient temperature. 

 

Figure 5. Output of four LED channels of IDD-2 unit from time of power-up of 

LEDs. 
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Effect of cabinet temperature  

With increase in cabinet temperature, a small decrease in signal was seen for the four 

channels (Fig. 6), however the ratio of B/A and D/C was stable.  

 

 

Figure 6. Influence of increase in cabinet temperature on luminous intensity with 

white ball at given peak wavelength.  
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Effect of cup on prediction 

In a conveyor based sorting system, effectively both the fruit (sample) and the 

transport cup are assessed by a given sensor.  For weight grading, a tare system can 

be used to remove the weight of each cup from subsequent measurements.  For 

spectroscopic measurements there is the possibility that differences between cups 

may affect measurement.  However, there was no evidence for such an effect, in 

terms of the R
2
 of B/A values for fruit run on different cups (Table 3), or the R

2
 of 

B/A value and visual score level (Table 4).  

Table 3. Correlation coefficient of determination (R
2
) for B/A values of 50 fruit 

recorded both on cup 1 (following reloading of fruit) and other cups of the conveyor 

system.  

B/A value Cup 1 Cup 2  Cup 3  Cup 4  Cup 5  Cup 6  

Cup 1  0.99 0.94 0.94 0.93 0.95 0.95 

 

Table 4. Correlation coefficient of determination (R
2
) for B/A and visual defect 

score (50 fruit, average of two readings per fruit). 

B/A vs 

score 

Cup 1  Cup 2  Cup 3  Cup 4  Cup 5  Cup 6 

Score  0.76 0.77 0.71 0.71 0.73 0.74 
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Appendix  2. Repeated measurement error of 1-5 or 1-10 visual score scale for assessment based on cut surface of apple. This involves total of 

125 fruit of Cv. Pink Lady.  

1-5 visual score   

              

Panel 

members  

Panel 

Membe

r 1  

Panel 

member 

2  

Panel 

member 

3  

Panel 

member 

4  

panel 

member 

5  

Panel 

member 

6  

average  (PM1-

Av)^2 

(PM2-

Av)^2 

(PM3-

Av)^2 

(PM4-

Av)^2 

(PM5-

Av)^2 

(PM6-

Av)^2 

Scale 1-5        RMSE RMSE RMSE RMSE RMSE RMSE 

Mean  3.22 2.43 2.92 2.61 3.07 3.08 2.89 0.58 0.69 0.48 0.51 0.52 0.45 

SD  1.39 1.52 1.20 1.53 1.61 1.39 1.37       

 

1-10 scale  

Panel 

members  

Panel 

Member 

1  

Panel 

member 

2  

Panel 

member 

3  

Panel 

member 

4  

panel 

member 

5  

Panel 

member 

6  

average  (PM1-

Av)^2 

(PM2-

Av)^2 

(PM3-

Av)^2 

(PM4-

Av)^2 

(PM5-

Av)^2 

(PM6-

Av)^2 

Scale1-10        RMSE RMSE RMSE RMSE RMSE RMSE 

Mean  4.73 4.78 5.21 4.90 4.97 4.65 4.87 0.71 0.72 1.14 0.47 0.76 0.95 

SD  3.10 3.01 2.54 2.95 3.40 3.24 2.94       
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Statistics of 1-5 scale repeated measurements by a single assessor  

 Day 1 Day 2  Day 3  Day 4  Day 5 Average  (Day 1-Av)^2 (Day 2 -Av)^2 (Day 3 -

Av)^2 

(PM4-

Av)^2 

(PM5-

Av)^2 

scale 1-5 mean mean mean mean mean mean  RMSE RMSE RMSE RMSE RMSE 

Mean 2.81 2.90 2.79 2.82 2.92 2.85  0.28 0.27 0.29 0.27 0.30 

SD 1.67 1.62 1.64 1.68 1.65 1.63       

 

 


