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ABSTRACT 

Size effect on fracture properties of MEMS and traditional materials is detennined by the relative size of a testing 
specimen versus the material microstructure. In this study, size effect on quasi~brittle fracture is related to the length 
ratio determined by the fracture process zone (FPZ) and distance of a crack-tip to its nearest specimen boundary. It is 
shown that the tensile strength criterion applies if the specimen boundary is close to the crack-tip, and the fracture 
toughness criterion applies jf the specimen boundary is away from the crack-tip. The specimen boundary influence 
reflects the dominant size effect mechanism, i.e. the interaction of the crock-tip FPZ with the specimen boundary. The 
boundary effect model proposed in the study is compared with the common size effect model emphasising exclusively 
the influence of specimen size, and the major difference is discussed. 
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1. INTRODUCTION 

Size effect on material properties and structure behaviour is relevant not only to nano-technology and nano-materials, 
but also traditional engineering materials. In the field of macro-mechanics, size effect is well-known for concrete 
specimens commonly measured from 100 mm to 5,000 mm in s ize. Although the absolute size of a concrete specimen is 
huge. the ratio of specimen size over the concrete structure (typically with the maximum aggregate size above 5 mm) is 
very similar to that of micro-specimens used for advanced material systems such as thin films and MEMS structures. 
For instance, micro-specimens of polysilicon measured from 2.5 to 7.s ).Lm in thickness and from 6 to 20 J.lIn for the 
un cracked ligament have been used to determine the fTacture toughness [I]. The average grain size of polys iii con is 
typically around 200 nm or larger. Those micro-polysilicon specimens and macro-concrete specimens have an almost 
identical specimen size and material structure ratio. The similar relative size ratio implies that those macro- and micro­
specimens may face similar size effect issues besides their vast difference in absolute size. Because of the similarity, 
certain aspects of s ize effect dealt with by macro- fracture mechanics could provide valuable additions to the current 
nano-technology related size effect study. particularly in tenns of fundamental size effect mechanisms. 

Although the current study is confined mainly to macro- fracture mechanics, size effect issues relevant to micro­
specimens can be addressed fundamentally in a similar way. TIlerefore, the current study emphasises the funq amental 
mechanism of size effect on quasi-brittle fracture, i.e. the physical origin of the apparent specimen size effect, based on 
the recent boundary effect model developed by the authors [2-5] . 

2. MODELLING OF QUASI-BRITTLE FRACTURE 

Traditionally. size effect on quasi-brittle fracture of concrete-like engineering materials is described by the following 
relation [6J. The nominal strength O"N of a specimen with an initial notch a is evaluated from the experimentally 
measured maximum load ignoring the present of the initial notch or crack. and is related to the specimen size W. The 
definition of UN is also illustrated in Figure I . 
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in which ar is the tensile strength, A and W-- are two empirical scaling parameters that need to be detennined through 
cUIve-fitting to experimental measurements. There are two asymptotic limits for quasi-brittle fracture of concrete-like 
traditional engineering materials. The strength criterion crr is the dominant criterion for very small specimen size W 
while the fracture toughness criterion K1c is the dominant criterion for very large W. 

Equation (I) seems to suggest that the controlling parameter is specimen size W since the initial notch/crack a is not 
shown in the relation. It should be pointed out that a key condition for the applicability of equation (I) is that only 
geometrically similar specimens are considered by equation (1). That is specimens have the same geometry and have an 
identical initial notch (or crack) and specimen size ratio (a/11' = a-ratio = constant). Under such a condition, specimen 
size W becomes the dominant parameter. However, one could argue the initial notch/crack length controls the observed 
size effect because a-ratio =: constant and specimen size W can be replaced by crack a. 

Clearly, the influence of the initial notch/crack has not been identified in equation (1). Furthermore, experimental 
evidence suggests that the scaling parameters A and W· are a-ratio dependent, which suggests the initial crack length a 
has a strong influence on the observed size effect. 

To emphasize the influence of the initial crack a and its relation with the specimen boundary, an idealised specimen 
condition, a large plate with a small edge crack (the geometry factor l' ~ 1.12), has been selected. It is assumed that the 
specimen size W is big enough so that it does not need to be considered. In this case, quasi-brittle fracture of the large 
plate is purely determined by the crack length a and is given by [7-9]: 

(2) 

a: =0.25. (K{C)2 
CJ',. 

in which the reference a· ... is a measurement of the crack-tip FPZ for a quasi-brittle material or the crack-tip plastic zone 
for a ductile material. Equation (2) has two well-defined asymptotic limits, 0',. and K{c, for very short and very long 
cracks, respectively. The non-linear elastic fracture problems described by equation (2) can also be found in other 
material systems. For instance, the traditional elastic and plastic fracture of metals has the same asymptotic limits with 
(}r and KJC as the hvo extreme failure criteria. 

The crack ratio, a/a·_, in equation (2) describes the interactions behveen FPZ and its distance to the specimen front face 
boundary, which is also equal to the crack length in the case of an edge crack. The fracture transition from 0'1' to K/(_, 
described by equation (2) for W= constant is different to the size effect shown in equation (I) in which H' :t- constant. 

Typical fracture mechanics specimens may not be treated as large plates. This is because the specimen back face 
boundary may also be fairly close to the crack-tip FPZ depending on the length of un cracked ligament (W-a). Also, the 
geometry factor, l' ~ 1'(a) '" 1.12, varies with a-ratio. Equation (2) thus needs to be modified for a more general 
situation relevant to typical fracture mechanics specimens. 
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For a given material system. a specimen size W can always be found so that the condition of the linear elastic fracture 
mechanics (LEFM) is satisfied regardless whether Y= 1.1 2 or not. For instance, a concrete specimen with 11'= 1 m and 
a-ratio of 0.5. The nominal strength O'N. which does not consider the presence of a crack, and fracture toughness KIt' are 
then related. 

(3) 

For a finite-sized specimen, equation (3) is not valid if the a-ratio is close to 0 or I, as the tensile strength CJr becomes to 
dominate. The nominal strength aN, which does not consider the presence of a crack, is not an appropriate description of 
the stress state when the a-ratio is close to I. To solve this problem, another nominal strength 0;" which considers the 
presence of a crack, has been introduced [2-5] and is shown in Figure 1 together with aN. For the three-point-bending 
(3-p-b) situation, it can be found, 

0' N = A(a)· 0'" 

A(a)= (J _a)' 
(4) 

The A(a) can also be easi ly determined for other specimen geometry such as compact tension or single-edge-notch­
tension, following the definition shown in Figure I. 

Both aN and Oi, can be easily determined from the maximum load. If a~ 0 (such as the case ofa large plate). the two 
nominal st rengths. cr.", and 0;" are identical. and both should approach ar if the strength criterion is applicable. I f a ~ I. 
it is expected that the strength criterion ar should again be applicable, but only 0;/ can be used to compare with aT as (IN 

== O. It is clear that to cover the entire a-ratio from 0 to 1, Oi, should be used instead of aN. 

p 

0;, 

IV 

a 

IV 

'''' 
Figure I. Single edge notched tension (SENT) and 3-point-bending (3-p-b) specimens with two nominnl strengths: 

UN does not consider the presence or the crack, 0;1 considers the crack. 

The LEFM situation described by equation (3) can be taken as the asymptotic solution when the fracture toughness K,c is 
valid, e.g. when the crack-tip is away from specimen boundaries. Since 0;1 is identical to UN when a ~ 0, and is more 
suitable than UN as a strength measurement when a~ I, its variation with the crack length a is emphasised in this study. 
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0;, can be solved from equations (3) and (4) fo llowing the recent work [2-5], 

0'" = 
K,c = O'r = 

~ 
(5) 

J\(cr).}'(cr).~ (A(cr).}'(cr))' '0 

1.12 0_ 

1 ( K,C)' 
1.122;r 0',. 

The equivalent crack ae is introduced in equation (5) so that it has forrn of equation (5), which is given by: 

o. =(A(a).}'(a))2'
0 

, 1.12 
(6) 

Equation (2) is identical to the K1c criterion if alo'_ » I, which becomes: 

(7) 

Comparing equations (5) and (7), the general asymptotic solution for small specimens can be written as follows [2-5]: 

(8) 

Different to equations (3), (5) and (7) that are valid under the LEFM condition, equation (8) covers the entire fracture 
range from the strength criterion UT to K/c criterion including the quasi-brittle fracture region between the two rracture 
criteria. 

Different to equation (I), which is applicable only to geometrically similar specimens, equation (8) can be used to 
analyse experimental results from any fracture mechanics specimens, c.g. same size but different a-ratios, and even 
different geometries. This is because the geometry influence has been considered by the a-ratio-containing equivalent 
crack Qc . The physical meanings of the two scaling parameters are also clear, (J"r is the tensile strength, Q' _ is the 
measurement of the crack-tip FPZ, and both are material constants. Of course, equation (8) is also applfcable to 
geometrically similar specimens with a constant a-ratio. In this case, equation (1) can be derived from equation (8) as a 
special case for a-ratio = constant. The two scaling parameters are given by: 

A=A(a) . 
,a a"" 

W = W . -"- = --:-:='--:--:-:-""" 
0 ,. cr.(A(cr).}'(cr))2 

1.12 
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It is clear both A and JJI are a-ratio dependent. Without equation (9), they remain empirical scaling parameters, and 
have to be detennined from experimental data through curve-fitling. Furthermore, separate curve-fitting processes are 
required to detennine A and HI for different geometrically similar specimens (e.g. even if only the a-ratio is changed). 

It is worthwhile pointing out again that equations (2) and (8) are derived through considering the specimen boundary 
influence and interactions between FPZ and specimen boundaries. Specimen size IV is not considered as the dominant 
factor on the apparent "size effect". It is interesting to see the traditional size effect relation as given by equation (I) has 
been derived from the boundary effect model. Therefore, the dominant size effect mechanism is actually the interaction 
between FPZ and specimen boundary, or boundary effect. 

Rearranging equations (8) and (I), following linear relations suitable for curve-fitting can be established. 

I I I 0, - , =-, +-, '-, 
CYJI (j T crT G "", 

( 10) 

and 

I I I W 
- ,- = 2 + ")'--, 
(rN (A CT,. ) (A CT,. )' W 

(II) 

The two scaling parameters in equations (I) or (8) can be easily determined from experimental results using the above 
linear relations. 

If material constants (J'T and K,c are known, curve-fitting is not required for the boundary effect model , equation (8). 
Quasi-brittle fracture behaviour can be predicted directly from known (J't and K/c. Alternatively, important material 
properties (J'T and K,c can now be determined from quasi-brittle fracture results as shown in equation (10). However, 
curve-fitting is always necessary for the size effect relation, equation (I), unless the detailed expressions such as those 
given by the boundary effect model, equation (9). are used. 

3. ANALYSIS OF EXPERIMENTAL RESULTS 

Two different sets of experimental results measured from geometrically similar and dissimilar specimens are selected to 
illustrate the applications of the boundary effect model, equation (8). The results from geometrically dissimilar 3-p-b 
specimens [10] are shown in Figure 2. The span-to·depth ratio is 5. The nominal strength 0;/ results of all specimens 
approach that of the smallest specimen (W= 5 mm) when a~ 0 or I, which provides a reliable estimation of the tensile 
strength 0",. = 10.29 MPa. If the nominal strength O"N is used, the asymptotic limit at a -> I does not equal to 0",.. 

The traditional size effect model , equation (I), requires geometrically similar specimens, or a constant a-ratio. 
Therefore. the results in Figure 2 cannot be analysed by equation (I ). However. the present boundary effect model. 
equation (8) , does not require such a condition. 

The results in Figure 2 are replotted in Figure 3 following the forms of equations (10) and (II). The tensile strength rJ,. 

and fracture toughness K1c (through the reference crack Q'_) are determined from Figure 3(a) using equation (10). 
However. the nominal strength O"N data in Figure 3(b) cannot be analysed by equation (II) because the 3-p-b specimens 
are not geometrically similar. Therefore. the size effect model. equation (I), cannot explain the results. The straight 
lines in Figure 3(b) for different a-ratios are the predictions frol11 the boundary effect model , equation (8), based on the 
results in Figure 3(a). 
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Figure 2. Comparisons of experimental results [10] with predictions from 
the boundary cfTcct model. 
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Figure 3. (n) Dctcnninntion of material constants (1'1' nnd (I " .. , and (b) predictions from the from the boundary eITeel model. 

120 

The predicted strength and toughness controlled fracture regions together with the transitional quas i-brittle fracture 
region for the most commonly used 3-p-b geometry with the span-la-depth ratio of 4 are shown in Figure 4. The crack 
ratio, a/ a· ... , as used in equation (8) provide a convenient measurement for those different fracture regions. It is clear 
from Figure 4 that even very large specimens (e.g. Wla'_ > 1,000) can still experience quasi ·brittle fracture or even 
strength controlled failure if the a·ratio is very small or close to unity, which shows the specimen boundary indeed 
influences the material fracture behaviour. To our best knowledge, a clear fracture map on various fracture regions as 
given in Figure 4 has not been shown before by the size effect model. 

The nominal strengths of a high strength concrete from three groups of geometrically similar 3·p·b specimens with three 
different a·ratios [II] are shown in Figure 5. The span·to-depth ratio is 4 for those specimens. The boundary effect 
relation shown in Figure 5 (a) is unique while three linear relations exist for the size effect solution depending on the G-
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ratio as shown in Figure 5(b). The results in Figure 5 further demonstrate the boundary effect model, equation (8), has 
much wider applicat ions than the traditional size effect model, equation (I ). 
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Figure 4. Fracture transition zones of3-p-b specimcll5 showing the influence 
of specimen size nnd boundaries. 
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4. DISCUSSION AND CONCLUSIONS 

500 

Contrary to the common belief that size effect on fracture properties is induced by the variation of specimen size W, the 
present study based on consideration of the specimen boundary influence shows that the relative crack ratio, aj a

O

_ , 

scaled by FPZ controls the size effect. That is the reason why micra'specimens of MEMS malerials with FPZ 
comparable to the size ofmicro~specimens would show similar size effect as those rnacro~specimens of traditional quasi~ 
brittle materials. The size effect issue certainly needs to be addressed when interpreting experimental results and 
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studying fracture initiated from micro-cracks. It has been reported that the fracture toughness of polysilicon measured 
from micro-specimens could vary from 1.6 to over 3.2 MPa""m [1] even after excluding a group of results show extra­
ordinary high fracture toughness values. Clearly, a wrong selection of the fracture toughness value would lead a huge 
error in the estimation of micro-cracks. 

The experimental results examined in the present study clearly show that the traditional size effect model, equation (I), 
is inadequate, as it can only be used for a single set of geometrically similar specimens. As a matter of fact, equation (I) 
is only a special case of the present boundary effect model, equation (8). Applications of equation (8) are much more 
flexible. Most importantly, the present boundary effect model addresses the fundamental mechanisms of size effect, i.e. 
the influence of specimen boundary on fracture and the interaction of specimen boundary with FPZ. 

The reference crack aO"" as a measurement of crack-tip FPZ is an important material property. As shown in Figure 4, the 
equivalent crack Q/: scaled by Q'~ has effectively combined contributions from both the front and back face boundaries 
together. Such a clear definition of various fracture regions has not been reported before in the literature. 
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