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Fault-Tolerant Master–Slave Synchronization for
Lur’e Systems Using Time-Delay Feedback Control

Maiying Zhong and Qing-Long Han

Abstract—This paper deals with fault-tolerant master–slave
synchronization for Lur’e systems using time-delay feedback
control. Taking a general nature of fault in the master system
into account, a new synchronization scheme, namely, fault-tol-
erant master–slave synchronization, is proposed, by which the
master–slave synchronization can be achieved no matter if the
fault occurs or not. By making use of an observer-based fault
estimator and a modified time-delay feedback controller, the
fault-tolerant master–slave synchronization is formulated so as
to discuss the global asymptotic stability of the error system and
the bound of energy gain from fault to state and fault estimation
error vectors. Some new delay-dependent criteria are derived
to analyze the synchronization error system, and based on the
analysis results, a sufficient condition on the existence of such
a master–slave synchronization scheme and a solution to the
controller and fault-estimator gain matrices are obtained in terms
of linear matrix inequalities. Finally, a Chua’s circuit is used to
illustrate the effectiveness of the proposed method.

Index Terms—Fault estimator, fault tolerance, Lur’e system,
master–slave synchronization, time delay.

I. INTRODUCTION

C HAOS SYNCHRONIZATION has been a focused
research topic during the last decade due to its theoret-

ical importance and practical applications [2], [6], [10], [17],
[21]–[25], [28]. Since there are some nonlinear systems, such as
Chua’s circuit, -scroll attractors, and hyperchaotic attractors,
that can be represented as Lur’e systems, the chaotic synchro-
nization problem was reformulated as a Lur’e system, and the
absolute stability of its error system was discussed [5], [7], [8],
[27]. In particular, due to the propagation delay frequently en-
countered in the remote master–slave synchronization scheme,
recently, there have been some research efforts to investigate
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the delay effect on master–slave synchronization [1], [13], [14],
[18], [30]. In [30], a constant time-delay static error output
feedback control was used for the master–slave synchronization
of Lur’e systems, and some delay-independent and -dependent
conditions were given. In [18], a feedback control including
both static error state feedback and time-delay static output
feedback was considered, and some algebraic criteria were
derived. In [1], the results in [18] and [30] were generalized and
improved. In [13], based on a more general Lur’e–Postnikov
Lyapunov functional, some less conservative delay-dependent
synchronization criteria for Lur’e systems were obtained and
formulated in the form of linear matrix inequalities (LMIs).
In [14], the author designed time-varying delay feedback con-
trollers for the master–slave synchronization of Lur’e systems,
and some delay-dependent criteria were derived by applying the
Lyapunov–Krasovskii functional approach. However, most of
the results on master–slave synchronization for Lur’e systems
did not consider the influence of a fault. In fact, the occurrence
of a fault is usually inevitable in a real system, such as the
component failure in a circuit or the changes in model parame-
ters caused by malfunctions in the sensors. In order to increase
the reliability and achieve master–slave synchronization with
the consideration of a fault, it is of practical significance to
develop a fault-tolerant synchronization scheme, which is one
motivation of the present study.

On the other hand, fault diagnosis and fault-tolerant control
has been an active research topic during the past two decades
for increasing the safety and reliability of the considered sys-
tems [9], [11]. Particularly, the study of reliable and fault-tol-
erant controls for time-delay systems has received some atten-
tion in recent years [4], [19], [26], [29]. In [26] and [29], the
reliable control for linear time-delay systems has been consid-
ered using a single controller with a fixed gain. In [19], a model
reference adaptive control for a class of linear systems with state
delay in the presence of unknown actuator failures has been
developed. In [4], an iterative learning observer is considered
for fault detection, estimation, and accommodation in a non-
linear time-delay system to offset the effect of a fault on the
system stability. To the best of the authors’ knowledge, how-
ever, research on the problem of fault-tolerant feedback control
for Lur’e systems with time delay is still open and remains chal-
lenging, which is the another motivation of the current study.

In this paper, we will deal with the problem of fault-tol-
erant master–slave synchronization for Lur’e systems using
time-delay feedback control. A general nature of fault in the
master system will be considered, and an observer-based fault
estimator will be used to estimate the fault, which includes step-
wise, slow-drifting, and sine-wave faults. A new master–slave
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synchronization scheme will be introduced by incorporating
the fault estimation into the feedback controller. Then, the
problem of fault-tolerant master–slave synchronization will
be formulated so as to discuss the global asymptotic stability
of the error system and the bound of energy gain from fault
to state and fault estimation error vectors. Applying the Lya-
punov–Krasovskii approach, the fault-tolerant controller and
fault estimator will be designed by solving LMIs. We will use
a Chua’s circuit to illustrate the effectiveness of the proposed
method.

Notations: The superscripts “ 1” and “ ” stand for the in-
verse and transpose of a matrix, respectively. denotes the

-dimensional Euclidean space. is the set of all
real matrices. is the identity matrix with appropriate dimen-
sions. denotes the space of square integrable vector functions
over with norm or the space of
energy bounded signals with energy , where denotes
the Euclidean vector norm of . For a real matrix ,
(respectively, ) means that is real symmetric and posi-
tive definite (respectively, negative definite). denotes a
block-diagonal matrix. For an arbitrary matrix and two sym-
metric matrices and , the symmetric term in a symmetric

matrix is denoted by , i.e., . For

, is an impulse function satisfying
and .

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following master–slave synchronization scheme
using time-delay static error feedback control [18]:

(1)

(2)

(3)

where , , and denote the master system, slave system,
and controller, respectively; is the time delay; the master
and slave systems are Lur’e systems with state vectors and

and output vectors and , respec-
tively; , , , and are constant matrices with appropriate di-
mensions; and are controller gain matrices;

is a memoryless nonlinear vector-valued function which is
globally Lipschitz, , and suppose that the nonlinearity

is time invariant, decoupled, and satisfies a sector condition
with belonging to a sector , i.e.,

(4)

Defining , we have the error system

(5)

where

(6)

The initial condition of system (5) is defined as

where is a continuous vector-valued function.
The goal in the master–slave synchronization of the system

described by (1)–(4) is to ensure the global asymptotic stability
of system (5) by choosing controller gain matrices and .

Taking a fault in the master system into account, we have

(7)

where is the fault and is a constant matrix with
compatible dimensions. The error system (5) becomes

(8)

In this case, it is usually impossible to ensure the asymptotic
stability of system (8) when a fault occurs.

In order to find a fault-tolerant controller for master–slave
synchronization, we first analyze the characteristics of unknown
constant, ramp, and sine-wave faults, respectively.

It is known that a constant but unknown fault can be charac-
terized as

when
when

(9)

where and and denote the occurring
time and value of the fault, respectively.

When a ramp fault is considered, it is assumed that there is
an unknown constant such that and

when
when

where is the occurring time of the fault, is the slope of the
ramp fault, and both and are unknown. For this case, the
fault can also be regarded as the output of the following system
with a fictitious signal :

(10)

where .
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For a sine-wave fault with a given frequency but unknown
phase , amplitude , and occurring time , it can be the output
of the following system:

(11)

where and .

In this paper, we focus on a more general case. It is assumed
that the fault is the output of the following system:

(12)

where is a state; , , and are ma-
trices obtained from the prior knowledge about the possible
fault; , and are unknown pa-
rameters, and is a positive unknown integer. Obviously, sys-
tems (9)–(11) are three particular cases of (12) and can be used
to model stepwise, slow-drifting, and sine-wave faults, respec-
tively, when .

For the purpose of synchronization, we now consider a mod-
ified feedback controller

(13)

where is the estimation of fault given by the following
observer-based fault estimator:

(14)

and are fault-estimator gain matrices to be determined.
Defining

it follows from (2), (7), (12)–(14) that

(15)
where

Let , , .
Suppose that belongs to the sector , i.e.,

(16)

Notice that, if system (15) with is globally asymp-
totically stable, then and
can be achieved for , which means that
the master–slave system is synchronized when a fault character-
ized by (12) occurs. Therefore, the main objective of fault-tol-
erant master–slave synchronization is to find matrices and

such that system(15) with is globally
asymptotically stable. Moreover, we define the following error
energy as a cost function to measure the influence of fault on
transient state error and fault estimation error :

(17)

where and are weighting matrices. Introducing
a new variable as

where , one obtains

Let

We have

(18)

where .
Now, the problem of fault-tolerant master–slave synchroniza-

tion can be formulated so as to find matrices and
such that system (18) is globally asymptotically stable with

an energy-gain bound for a prescribed , i.e., system
(18) with is globally asymptotically stable, and for
all , the performance
is satisfied under zero initial condition.

The following lemmas are useful in deriving synchronization
criteria.
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Lemma 1 [15]: For any constant matrix ,
, scalar , and vector function

such that the following integration is well defined:

Lemma 2 [12]: For any real matrices and and real sym-
metric positive definite matrix with compatible dimensions

III. MAIN RESULTS

In order to design matrices and , we
first need the analysis result on system (18). Choose a Lya-
punov–Kravoskii functional candidate as

(19)

where is defined as , and , ,
and are real symmetric positive definite
matrices. Using (19) and Lemma 1, we have the following result.

Proposition 1: For the given scalars and
and matrices and , system (18) is globally asymptoti-
cally stable with an energy-gain bound if there exist real

matrices , , and
and a matrix such that

(20)

where

Proof: Taking the derivative of with respect to
along the trajectory of (18) yields

(21)

For any , from (16) and (21), we
have

(22)

Use Lemma 1 to obtain

It follows from (22) that

(23)

where .
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First, we analyze the global asymptotic stability of system
(18) with . In the case of , from (23), one
obtains

where

with

In view of Schur complement, LMI (20) implies that .
Then, we have for all , from which we
conclude that system (18) with is globally asymptot-
ically stable.

Next, we consider performance for
all and a prescribed under condition

. Define

(24)

From (23) and (24), we have

With the observation of

we then have

where

with

Using Schur complement, we have from LMI (20).
Thus, , which implies that . This
completes the proof.

When the third term is ignored, the Lyapunov–Kravoskii
functional candidate (19) becomes

(25)

Then, Proposition 1 implies the following delay-independent re-
sult.

Corollary 1: For a given scalar and ma-
trices and , system (18) is globally asymptotically
stable with an energy-gain bound if there exist real

matrices and and a matrix
such that

where

If the fault is not taken into account, the master–slave
synchronization is formulated as the global asymptotic stability
of error system (5). Setting , ,
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Fig. 1. Stepwise fault signal ����.

and , where , , and are real
positive definite matrices, the Lyapunov–Kravoskii functional
candidate (19) is reduced to

Then, Proposition 1 implies the synchronization criterion Corol-
lary 3 in [14].

Corollary 2: For the given scalars and and ma-
trices and , system (18) is globally asymptotically stable
if there exist real matrices , and
and a matrix such that

where

We are now in the position to design a feedback controller and
fault estimator for the fault-tolerant master–slave synchroniza-
tion. Applying Proposition 1, pre- and post-multiplying both
sides of (20) with and its transpose,
and letting

it is easy to see that system (18) is globally asymptotically stable
with an energy-gain bound if there exist real

matrices , , and , a matrix

Fig. 2. Fault estimation ����� and estimation error ����.

, and matrices and with
appropriate dimensions such that

(26)

where

Notice that condition (26) includes nonlinear term .
Using Lemma 2, for any scalar , we have

(27)
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Fig. 3. Master–slave state without fault.

In light of Schur complement, we have (26) from (27) and

(28)
where terms (1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,6), (3,6), and
(4,6) are given as in (26). From the aforementioned discussion,
we conclude the following result.

Proposition 2: For the given scalars , , and
, system (18) with and is

globally asymptotically stable with an energy-gain bound if
there exist real matrices , , and

, a matrix , and matrices
and with appropriate dimensions such that LMI (28) is

satisfied.
Remark 1: For the given scalars and , a proper

is easily chosen by iteratively applying Proposition 2.
Similarly, for the given and (or and

, respectively), the minimum allowed (or the maximum
allowed , respectively) can also be calculated by iteratively
applying Proposition 2.

If the current state information is not available for measure-
ment due to the existence of a time delay, one can set

. Then, the error system (18) becomes

(29)

Fig. 4. Synchronization error without fault.

Proposition 2 implies the following result.
Corollary 3: For the given scalars , , and

, system (29) with is globally asymptotically
stable with an energy-gain bound if there exist real

matrices , , and , a matrix
, and a matrix with appropriate

dimensions such that the LMI (28) with is satisfied.
Similar to Proposition 2, we have the following delay-in-

dependent result using Corollary 1, which is also implied by
Proposition 2.

Corollary 4: For a given scalar , system (18) with
and is globally asymptotically

stable with an energy-gain bound if there exist real
matrices and , a matrix

, and matrices and with ap-
propriate dimensions such that
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Fig. 5. Master–slave state with fault ����.

where

If the fault is not considered, we design feedback con-
troller (3) such that error system (5) is globally asymptotically
stable. Similar to Proposition 2, we have the following result ap-
plying Lemma 2 and Corollary 2.

Corollary 5: For a given scalar , system (5) with
and is globally asymptotically stable

if there exist real matrices , , and ,
a matrix , and matrices
and with appropriate dimensions such that

where

IV. NUMERICAL EXAMPLE

To show the effectiveness of the proposed fault-tolerant
master–slave synchronization method, three kinds of faults are

Fig. 6. Synchronization error with fault ����.

TABLE I
� FOR DIFFERENT TIME DELAYS �

to be considered, i.e., the stepwise, slow-drifting, and sine-wave
faults.

When a fault is taken into account, Chua’s circuit in [5] and
[20] becomes

where
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Fig. 7. Fault estimation ����� and estimation error ����.

Fig. 8. Master–slave state without fault ����.

with , , , , and
. Then, the master system can be represented in Lur’e

form (7) with

Fig. 9. Synchronization error without fault.

and belonging to sector
with .

We first consider the stepwise fault characterized by (9) with
. Set . Choosing ,

applying Proposition 2, we calculate the minimum allowed
(i.e., ) and gain matrices and for different
time delays . Table I lists the obtained for different time
delays .

For and , we have
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Fig. 10. Master–slave state with fault ����.

The initial conditions of the master and slave systems are chosen
as

Over time interval [0,50] s, when a fault simulated as in Fig. 1
occurs, Fig. 2 shows the fault estimation and fault esti-
mation error . Figs. 3–6 show the master system states

, the slave system states ,
and the synchronization errors ,

, and for both
the fault-free and faulty cases, respectively.

If the current master–slave system states are not available, we
set . Choosing , applying Corollary
1, we calculate the minimum allowed and gain matrices

for different time delays . Table II lists the ob-
tained for different time delays .

For and , we have

Similar to the case of , the fault estimation and
estimation error, the master–slave system state, and the synchro-
nization errors for both the fault-free and faulty cases are shown
in Figs. 7–11, respectively.

In order to compare the obtained result with that of the
master–slave synchronization scheme , we choose

and . When a
fault in Fig. 1 occurs, the master–slave synchronization error
using is shown in Fig. 12. It is clear to see
from Figs. 11 and 12 that, when a fault in Fig. 1 occurs, the
master–slave synchronization has been realized using the new

Fig. 11. Synchronization error with fault ����.

TABLE II
� FOR DIFFERENT TIME DELAYS �

scheme , but that cannot be achieved by scheme
.

Next, we consider the slow-drifting fault described by (10)
with . Similar to the case of the
stepwise fault, we can calculate the minimum allowed and
gain matrices , for different time delays
applying Proposition 2. For the sake of simplicity, these are not
listed here. Let , , and . We have
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Fig. 12. Synchronization error with fault ���� �� �� � � �.

Fig. 13. Ramp fault signal ����.

When a ramp fault in Fig. 13 occurs, Fig. 14 shows the fault
estimation and fault estimation error . Figs. 15 and 16
show the faulty-case master system states , the

Fig. 14. Fault estimation ����� and estimation error ����.

Fig. 15. Master–slave state with fault ����.

slave system states , and the synchroniza-
tion errors , , and , respectively.

Finally, we consider the sine-wave fault given by (11)
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Fig. 16. Synchronization error with fault ����.

Fig. 17. Sine-wave-fault signal ����.

with . Similarly, we have

Fig. 18. Fault estimation ����� and estimation error ����.

Fig. 19. Master–slave state with fault ����.

for , , and . A sine-wave fault
, the fault estimation , fault estimation error ,

faulty-case master system states , slave system
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Fig. 20. Synchronization error with fault ����.

states , and the corresponding synchroniza-
tion errors , , and are shown in Figs. 17–20,
respectively.

V. CONCLUSION

The fault-tolerant master–slave synchronization for Lur’e
systems using time-delay feedback has been addressed. First,
an observer-based fault estimator has been used to estimate
faults in the master system, and the fault estimation has been
incorporated into the feedback controller. Then, the fault-tol-
erant master–slave synchronization has been formulated so as
to discuss the global asymptotic stability of the synchronization
error system and the bound of energy gain from an exogenous
signal to synchronization and fault estimation errors. New
delay-dependent criteria have been derived to analyze the
master–slave synchronization error system, and some existing
results have been covered as their special cases. Based on
these analysis results, delay-dependent sufficient conditions
on the existence of a fault-tolerant controller and a solution

to the controller and fault-estimator gain matrices have been
obtained in terms of LMIs. Finally, a Chua’s circuit has shown
the effectiveness of the proposed method, and the simulation
results have shown that the master–slave synchronization has
been achieved for Lur’e systems by using the fault-tolerant
feedback control with time delay.
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