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VI. CONCLUSION

We have expanded the recently proposed NNRC framework by in-
corporating an extra module, which is responsible for achieving fair-
ness in allocating network resources among the competing sources.
This has been satisfied by introducing a novel algorithm that controls in
a stable and adaptive manner the number of communication channels in
each source. Besides fairness, the ENNRC framework still guarantees
small enough queues at equilibrium, preventing large queueing delays
and congestion collapse, though not zero, thus avoiding link starvation.
Simulations have been conducted to highlight the performance of the
proposed scheme and to compare it with other well-established conges-
tion control mechanisms. A limitation of the proposed theory seems to
be the assumed availability of the ECN bit. Possible modifications in
the direction of relaxing such an assumption and thus broadening the
applicability of the presented methodology are currently under inves-
tigation.
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New Lyapunov–Krasovskii Functionals for Global
Asymptotic Stability of Delayed Neural Networks

Xian-Ming Zhang and Qing-Long Han

Abstract—This brief deals with the problem of global asymptotic stability
for a class of delayed neural networks. Some new Lyapunov–Krasovskii
functionals are constructed by nonuniformly dividing the delay in-
terval into multiple segments, and choosing proper functionals with
different weighting matrices corresponding to different segments in
the Lyapunov–Krasovskii functionals. Then using these new Lya-
punov–Krasovskii functionals, some new delay-dependent criteria for
global asymptotic stability are derived for delayed neural networks, where
both constant time delays and time-varying delays are treated. These
criteria are much less conservative than some existing results, which is
shown through a numerical example.

Index Terms—Linear matrix inequality (LMI), Lyapunov–Krasovskii
functional, neural networks, stability, time delay.

I. INTRODUCTION

Neural networks have been extensively investigated in the last two
decades due to their important applications in different fields such as
image processing, pattern recognition, associate memory, combina-
torial optimization, solving nonlinear algebraic equations, and so on.
As is well known, most of these applications depend on their stability
behavior of the neural networks. However, time delays, which are
unavoidable in neural networks, may induce instability of the neural
networks. Therefore, the stability analysis of delayed neural networks
has been received much attention in recent years. By employing
Lyapunov–Kraskovskii stability theorem incorporating with a linear
matrix inequality (LMI) technique, a number of sufficient conditions,
either delay independent or delay dependent, have been presented to
ensure the global asymptotic stability for delayed neural networks;
one can refer to [1]–[4], [6]–[13], [15]–[21], and references therein.
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Delay-dependent stability conditions, which contain information
concerning time delays, are usually less conservative than delay-in-
dependent ones, especially for a neural network with a small time
delay. As a result, recently, much attention has been paid on the
delay-dependent stability analysis for delayed neural networks. The
main aim is to derive a maximum admissible upper bound (MAUB)
of the time delay such that delayed neural networks are globally
asymptotically stable. The larger the MAUB of the time delay is,
there is less conservatism of a delay-dependent stability criterion.
In [6]–[8], some less conservative stability conditions are obtained
by employing an appropriate Lyapunov–Krasovskii functional. In
[11], an augmented Lyapunov–Krasovskii functional is introduced to
improve the results in [6]–[8]. However, the results in [6]–[8] and [11]
are still conservative due to the fact that in the Lyapunov–Krasovskii
functional employed in [6]–[8] and [11], the weighting matrices
� � � and � � � in the integral terms

�

��
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���

��� ���� ��������� �
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�� ��� ������� ���� (1)

where ���� � � is the system state and � � � and � � �, are kept on
the whole delay interval ��	
 ��. Consequently, this feature may lead
to a conservative result. On the other hand, by introducing a fraction
	�� of the time delay 	 , where � � � is an integer, the following
Lyapunov–Krasovskii functional [14], [15] was employed to handle
the delay-dependent stability for Hopfield neural networks with time
delay:
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Though the obtained results in [15] are improvement over some ex-
isting ones, they may not be applied to neural networks with time-
varying delays. One of the reasons is that the weighting matrix �� is
confined to just one subinterval ���	���
 ��, which means that it is
undefined on other subintervals. Moreover, it is worth noting that the
number ���� of scalar decision variables in (2) is a quadratic function
of �

���� 	
 ������ ��� � ���� �� (3)

With � increasing, ���� is quickly enlarged, which means a larger
central processing unit (CPU) time cost when testing the stability
criteria.

In this brief, we will nonuniformly decompose the whole delay
interval into multiple subintervals, and construct a new Lyapunov–
Krasovskii functional by choosing different weighting matrices on
different subintervals. Then, we will employ the new Lyapunov–
Krasovskii functional to formulate some new delay-dependent sta-
bility criteria for a class of delayed neural networks, where both
constant time delays and time-varying delays will be treated. We will
also give a numerical example to illustrate that the obtained results in
this brief are less conservative than some existing ones.

Throughout this brief, the notations are standard. For simplicity, the
symmetric term in a symmetric matrix is denoted by �, e.g.,

� �

� �



� �

� � �
�

II. PROBLEM DESCRIPTION

Consider the delayed neural network

����� 
 ������ ���� ������ ���� �� ��� 	 ����� � � (4)

where � 
 ����������� � � � ������
� � � is the neuron state vector

and � 
 ����� � � ����
� � � is a constant input vector. ������� 


����������������� � � � ���������
� � � is the neuron activation func-

tion satisfying for � 
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where �� �� 
 
 �
 � � � 
 �� are known real scalars, � 

�������
 ��
 � � � 
 ��� is a constant real matrix with �� � �
�� 
 
 �
 � � � 
 �� �� and �� are the interconnection matrices
representing the weighting coefficients of the neurons, and 	 ��� is
the time delay of the system. In this brief, two cases of 	 ���, namely,
constant and time varying, will be discussed, respectively.

Suppose �� 
 �����
�

� � � � 
 �
�

��
� is an equilibrium of the system (4).

We shift the equilibrium to the origin by changing variables
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where � 
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 � � � 
 �. Then, the system (4) is readily transformed into
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where
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In addition, it is easily verified from (5) that  �������� satisfies  ���� 
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which can be written as

 � ������� � � �������� �������� � �
 � 
 
 �
 � � � 
 �� (7)

To end this section, we introduce an integral inequality [5], which
will play an important role in deriving stability criteria.

Lemma 1 [5]: For any constant matrix � � ���, � 
 �� � �,
a scalar function ! 	
 !��� � �, and a vector-valued function �� 	
��!
 �� 	 � such that the following integration is well defined, then

�!

�

��

��� ��� ��� ����� ���� � �� ���
�� �

� ��
���� (8)

where ���� 
 ��� ��� �� ��� !��
�

.

III. STABILITY CRITERIA

In this section, we introduce new Lyapunov–Krasovskii functionals
to derive some new delay-dependent stability criteria for the system
described by (6) and (7). Both constant time delays and time-varying
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delays are treated, respectively. We begin with the case of the constant
time delay.

A. The Case of a Constant Time Delay: � ��� � �

Let� � � be an integer and �� �� � �� �� �� � � � ��� be some scalars
satisfying

� � �� � �� � �� � � � � � �� � �

then the delay interval ���� �	 is nonuniformly decomposed into� seg-
ments, that is, ���� �	 � �

������� ������	. For convenience, we de-
note �� the length of the subinterval ���� ������	, i.e., �� � �������
�� � �� �� � � � ���. We introduce the following Lyapunov–Krasovskii
functional to deal with the asymptotic stability for systems (6) and (7):
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with

� � � �� � � �� ��
�� ��

� ��
� �� � � �� �� � � � ��

being real matrices of appropriate dimensions and �� � �
�� � �� �� � � � � ��.

Remark 1: Notice that (9) is different from existing ones. The first
term 	��
�� is motivated by the Lyapunov–Krasovskii functional em-
ployed in [8] and [9]. The second and third terms 	��
�� and 	��
��
are constructed by using such an idea that the whole delay interval
���� �	 is nonuniformly decomposed into multiple subintervals; then,
on each subinterval, we choose different weighting matrices. Another
different point of (9) is that in 	��
�� two vectors 
��� and �
����
are coupled by �� . If we set � � � and �� � �, then 	��
�� re-
duces to the one in [8] and [9] in the case of a constant time delay.
On the other hand, the number of scalar decision variables in (9) is
����
 ���� 
 ��� 
 ����, which is a linear function of �, not a
quadratic one as the one in (3).

In this subsection, we employ (9) and the integral inequality (8) to
study the stability of the system described by (6) and (7). In doing so,
for simplicity, we introduce two vectors
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Then, rewrite system (6) as
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Now we state and establish the following result.
Proposition 1: For a given � � �, the origin of a system described

by (6) and (7) is globally asymptotically stable if there exist
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where �� and �� are defined in (12), respectively, and
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Proof: Taking the time derivative of 	 �
�� in (9) along the tra-
jectory of (11) yields

�	 �
�� � �	��
�� 
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�� (14)
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Apply Lemma 1 to obtain
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Notice that from (7), for any ��� � � �� � �� 	� �� 
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Notice that if (13) is feasible, then � � � by using Schur complement.
Let � � ��������; it is clear from (17) that �� ���� � ���� ������� �
� for ���� 	� �, from which we can conclude that the system described
by (6) and (7) is globally asymptotically stable, which completes the
proof.

B. The Case of a Time-Varying Delay: � � ���� � � �


For simplicity of the presentation, we introduce two vectors as
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In this section, � ��� is treated as the following two subcases.
Subcase 1: � ��� is a continuous function satisfying
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Subcase 2: � ��� is a differentiable function satisfying
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where � and � are two scalars. In subcase 1, employing the
Lyapunov–Krasovskii functional (9) again, we establish the
following.

Proposition 2: Under subcase 1, for a given scalar � � �, the origin
of system described by (6) and (7) is globally asymptotically stable if
there exist matrices
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� � � � � � !� 
� �

� � � � � � � !�	� �

� � � � � � � � �

��� ��

"� � � � � � ���
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...

...
. . .

...
...

� � � � � "�	� �

� � � � � � �

��� ��

#� � � � � � ���

� #� � � � � �
...

...
. . .

...
...

� � � � � #�	� �

� � � � � � ���

��
�� �� $

�
��


�	���
�	��

$
�
�� ��

�
�� � �  � � �  � 	


�� � � � �  � 	�� � � �� �

��
�� � � �� �� � � �� �

�� otherwise

with !� � "� � #� , �� � 	� �� 
 
 
 ���	� being defined in Proposition 1.
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Proof: Taking the time derivative of � ���� in (9) along the tra-
jectory of (19), we have

�� ���� � �
� ������� ��
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� ����� � ��� ���

�

���
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�
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� 	
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���

��� ����� �������

For any � � �, there should exist an integer � � �	� �� 
 
 
 � �� such
that 
 ��� � �
���� 
��. In this situation, apply Lemma 1 to obtain
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 (24)

For � 	� �, using Lemma 1 again yields
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From (7), it is easy to see that for any ��� � � �� � �� 	� �� 
 
 
 � �� and
�� � �, the following are true for any � � �	� �� 
 
 
 � ��:
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��� �	� ������ 
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which result in
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After some algebraic manipulation, we have
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(25)

where
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��� � ��
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� ���
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�
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���
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����

�

with �����
�
���������� being defined in (23). A sufficient condition

for global asymptotic stability of systems (6) and (7) is that

� � � �� � � �� ��
�� ��

� ��
� �� � � 	� �� 
 
 
 ��

of appropriate dimensions, and �� � ��������� ���� 
 
 
 � ���� � �
�� � �� 	� �� 
 
 
 ��� and � � �������� ��� 
 
 
 � ��� � �, � �
�������� ��� 
 
 
 � ��� � � such that

�� ���� �
���

���

�

��

���

���

� � ��
� ������� � � 
���� 	� � (26)

where � � �. In order to guarantee (26), we require the condition that
�� � �, which is equivalent to

��� � ��
�� ��� ����

�
� �� � � � ������ ��

� ��� ����
�
� �� � � � ������ ��

� � ��� � � � �
...

...
...

. . .
...

� � � � � � ���

� �

Considering all the possibilities of � in the set �	� �� 
 
 
 ���, we ar-
rive at the condition that (23) holds for any � � �	� �� 
 
 
 ���, which
completes the proof.

From the above proof of Proposition 2, it is clear that the Lya-
punov–Krasovskii functional (9) can be used to handle the case when
the time delay is time varying. One main reason is that the relation-
ship between the states ����� ��� � 
��� 
 
 
 � ��� � 
�� and the state
����
���� are well established by (24), which is due to the term ������
in (9). If we replace ������ with ��

�

��

�

��	
��� ����� ���������,

which is similar to the first term in (2), then the relationship in (24)
cannot be built because the time-varying delay 
 ��� is not always on
the subinterval ��
�� ��.

In subcase 2, modify (9) as

�� ���� � � ���� � �	���� (27)

where � ���� is defined in (9) and

�	���� ��

�
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with

�� ��

� ��
� �

to be determined. Similar to the proof of Proposition 2, we have the
following.

Proposition 3: Under subcase 2, for given scalars � � � and �,
the origin of system described by (6) and (7) is globally asymptotically
stable if there exist matrices

� � � 	� � � �� ��
�� ��
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 � � �
 �
 � � � 
 �

of appropriate dimensions, and � � ��	
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 ��
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 ��� � � such that for � � � ��
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 ��
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...

...
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. . .
...
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where
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 ���
 �
 � � � 
 �
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���� ����� � ��	
 ���
 �
 � � � 
 �
���� �����

���� ����� � ��	
 ���
 �
 � � � 
 �
���� �����

with ��
��, ���, ���, ���, ���, and ��� being defined in Proposition 2.

Remark 2: When the time delay is constant, by employing a Lya-
punov–Krasovskii functional [14], [15], some less conservative delay-
dependent criteria were obtained in [15], but the results in [15] are ap-
plicable just to delayed Hopfield neural networks, not to system (4)
with �� 	� �. Furthermore, when the time delay is in subcase 2,
the authors claimed in [15, Remark 3] that just modifying the Lya-
punov–Krasovskii functional by replacing the constant delay � with
the time-varying delay � ��� can yield LMI-based delay-dependent con-
ditions without introducing any other assumptions. Unfortunately, this
claim is not true. In fact, by replacing � with � ���, the corresponding
Lyapunov–Krasovskii functional can be written as

�� ���� �� �� �������� �

�

�

�

���

��� ��� �	 ���������
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�
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where
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...
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�
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�

TABLE I
ACHIEVED MAUBS FOR A CONSTANT TIME DELAY

Now, taking the derivative of �� ���� on �, we have the corresponding
derivative of the third term as

��� ��� �������� ��
�� ���

�
��� ��

� ���

�
���� ��

� ���

�

which results in some new delay states shown in the following:
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...
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� ���

�
� �� 	���

�

�

These new delay states ��� � �������� � �������� � ����������
�� � �
 �
 � � � 
���� will make the delay-dependent stability analysis
more complicated, which needs to be further investigated. Therefore,
without any other assumptions, the claim in Lemma 3 in [15] is not
realistic.

Remark 3: Propositions 1–3 provide some new delay-dependent sta-
bility criteria for delayed neural networks based on the delay decom-
position approach. With � increasing, the dimensions of the involved
LMIs are fast growing, which will lead to more CPU computing time.
However, it can be easily seen from Section IV that the larger � is,
there will be less conservatism of the results. As a compromise, for
practical neural networks, we can take � � � or � � � to obtain
some results, which are still less conservative than those in some ex-
isting literature.

IV. A NUMERICAL EXAMPLE

In this section, a numerical example is given to illustrate the effec-
tiveness of the proposed results. Consider the delayed neural network
(4) with

� ���	
�������
 ������
 ������
 �������

�� �

������� ������ ������� ������

������� ������ ������� ������

������ ������� ������� �������

������� ������ ������� �������

�� �

������ ������� ������� ������

������ ������� ������ ������

������ ������ ������� ������

������� ������ ������ ������

 � �������  � � ������  � � ������  � � �������

Suppose the time delay is a constant time delay. Using the crite-
rion in [16], no conclusion can be made. Employing criteria in [8], [9],
and [11], the maximum admissible upper bounds (MAUBs), �	
�, are
listed in Table I. Applying Proposition 1 with �� � �� � � � � � �� �
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TABLE II
ACHIEVED MAUBS FOR A TIME-VARYING DELAY

����� yields some results for different values of �, which are also
listed in the table. From this table, one can see that Proposition 1 pro-
vides larger MAUBs than the those criteria in [8], [9], and [11] and the
larger � is, the larger ���� becomes. We also computed the cost of
CPU time for � � � and � � ��; the results are 84 and 2844 s, re-
spectively. Apparently, the difference between the values of ���� for
� � �� and � � � is just 0.0688, but the CPU time cost by the former
is almost 34 times larger than the cost by the latter. As a compromise,
taking � � � is a good choice for the obtained MAUB and for the cost
of the CPU time.

Next, let us assume that the time delay � ��� is in subcase 2. For
� � ��� and � � ���, the obtained MAUBs by applying the criteria in
[9] and [11] and Proposition 3 with �� � �� � � � � � �� � �����
are listed in Table II, from which it is clear that this paper yields much
less conservative results than those in [9] and [11], which demonstrates
the effectiveness of the criterion in this paper. It should be mentioned
that no conclusion can be made by using the criteria in [3] and [4].

V. CONCLUSION

The problem of global asymptotic stability for delayed neural net-
works has been addressed by using new Lyapunov–Krasovskii func-
tional, which has been constructed by nonuniformly dividing the whole
delay interval into multiple segments. Some new delay-dependent sta-
bility criteria have been derived for neural networks with both constant
time delays and time-varying delays. A numerical example has shown
that these new stability criteria are less conservative than some existing
ones in the literature.

REFERENCES

[1] S. Arik, “Global asymptotic stability of a larger class of neural net-
works with constant time delay,” Phys. Lett. A, Gen. Phys., vol. 311,
pp. 504–511, 2003.

[2] J. D. Cao and M. Xiao, “Stability and Hopf bifurcation in a simpli-
fied BAM neural network with two time delays,” IEEE Trans. Neural.
Netw., vol. 18, no. 2, pp. 416–430, Mar. 2007.

[3] T. Ensari and S. Arik, “Global stability of a class of neural networks
with time-varying delay,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.
52, no. 3, pp. 126–130, Mar. 2005.

[4] T. Ensari and S. Arik, “Global stability of neural networks with mul-
tiple time varying delays,” IEEE Trans. Autom. Control, vol. 50, no. 11,
pp. 1781–1785, Nov. 2005.

[5] Q.-L. Han, “A new delay-dependent stability criterion for linear neutral
systems with norm-bounded uncertainties in all system matrices,” Int.
J. Syst. Sci., vol. 36, no. 8, pp. 469–475, 2005.

[6] Y. He, Q. G. Wang, and M. Wu, “LMI-based stability criteria for neural
networks with multiple time-varying delays,” Physica D, vol. 212, pp.
126–136, 2005.

[7] Y. He, M. Wu, and J. H. She, “Delay-dependent exponential
stability for delayed neural networks with time-varying delay,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp.
230–234, Jul. 2006.

[8] Y. He, G. P. Liu, and D. Rees, “New delay-dependent stability cri-
teria for neural networks with time-varying delay,” IEEE Trans. Neural
Netw., vol. 18, no. 1, pp. 310–314, Jan. 2007.

[9] Y. He, G. P. Liu, D. Rees, and M. Wu, “Stability analysis for neural
networks with time-varying interval delay,” IEEE Trans. Neural Netw.,
vol. 18, no. 6, pp. 1850–1854, Nov. 2007.

[10] C. C. Hua, C. N. Long, and X. P. Guan, “New results on stability anal-
ysis of neural networks with time-varying delays,” Phys. Lett. A, Gen.
Phys., vol. 352, pp. 335–340, 2006.

[11] T. Li, L. Guo, C. Sun, and C. Lin, “Further results on delay-dependent
stability criteria of neural networks with time-varying delays,” IEEE
Trans. Neural. Netw., vol. 19, no. 4, pp. 726–730, Apr. 2008.

[12] P. Liu and Q.-L. Han, “On stability of recurrent neural networks—An
approach from Volterra integro-differential equations,” IEEE Trans.
Neural Netw., vol. 17, no. 1, pp. 264–267, Jan. 2006.

[13] P. Liu and Q.-L. Han, “Discrete-time analogues of a class of contin-
uous-time recurrent neural networks,” IEEE Trans. Neural Netw., vol.
18, no. 5, pp. 1343–1355, Sep. 2007.

[14] F. Gouaisbaut and D. Peaucelle, “Delay-dependent stability analysis
of linear time delay systems,” in Proc. 6th IFAC Workshop Time-Delay
Syst., Aquila, Italy, Jul. 10–12, 2006.

[15] S. Mou, H. Gao, J. Lam, and W. Qiang, “A new criterion of delay-
dependent asymptotic stability for Hopfield neural networks with time
delay,” IEEE Trans. Neural. Netw., vol. 19, no. 3, pp. 532–535, Mar.
2008.

[16] J. H. Park, “A new stability analysis of delayed cellular neural net-
works,” Appl. Math. Comput., vol. 181, pp. 200–205, 2006.

[17] V. Singh, “A generalized LMI-based approach to the global asymp-
totic stability of delayed cellular neural networks,” IEEE Trans. Neural
Netw., vol. 15, no. 1, pp. 223–225, Jan. 2004.

[18] V. Singh, “Global robust stability of delayed neural networks: An LMI
approach,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 1, pp.
33–36, Jan. 2005.

[19] Z. Wang, Y. Liu, and X. Liu, “On global asymptotic stability of neural
networks with discrete and distributed delays,” Phys. Lett. A, Gen.
Phys., vol. 345, pp. 299–308, 2005.

[20] Z. Wang, Y. Liu, M. Li, and X. Liu, “Stability analysis for stochastic
Cohen-Grossberg neural networks with mixed time delays,” IEEE
Trans. Neural Netw., vol. 17, no. 3, pp. 814–820, May 2006.

[21] H. G. Zhang and Z. S. Wang, “Global asymptotic stability of delayed
cellular neural networks,” IEEE Trans. Neural. Netw., vol. 18, no. 3,
pp. 947–950, May 2007.

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 19,2010 at 07:45:38 UTC from IEEE Xplore.  Restrictions apply. 


