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Abstract

A new scalable segmentation algorithm is proposed in this paper for the forensic determination
of level shifts in geophysical time series. While a number of segmentation algorithms exist,
they are generally not 'big data friendly’ due either to quadratic scaling of computation time
in the length of the series N or subjective penalty parameters. The proposed algorithm is
called SumSeg as it collects a table of potential break points via iterative ternary splits on
the extreme values of the scaled partial sums of the data. It then filters the break points on
their statistical significance and peak shape. Our algorithm is linear in N and logarithmic
in the number of breaks B, while returning a flexible nested segmentation model that can be
objectively evaluated using the area under the receiver operator curve (AUC). We demonstrate
the comparative performance of SumSeg against three other algorithms. SumSeg is available
as an R package from the development site at http://github.com/davids99us/anomaly.
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1 Introduction

Has the level of a time series changed due to natural variation or an external influence? Abrupt
changes in level can be due to instrument faults or reconfiguration and so are necessary for
QA/QC on data from weather stations [1] and automatic tide or stream level gauges. The level
changes in a segmentation model may also represent gene expression in micro-array comparative
genomic hybridization data [2], regime shifts in climate data [3], breakouts in stock prices,
twitter or web service logs, or features of interest in weak machine learning classifiers [4].
Finding an optimal multi-segmentation is challenging as the number of potential segments
grows exponentially in N (as the number of potential ways to segment a sequence is equal to
the number of subsets of N, or 2V). Thus segmentation is an example of a big data problem
where larger data sets call for new approaches [5]. The following are key performance criteria:

1. Linear or better order of increase in the computational cost of data length N and number
of breaks B. Quadratic growth in computation cost does not scale.

2. Reliable application to noisy real world data with gaps, missing values and errors. Some
algorithms fail on missing data, while others become unreliable or produce biased statis-
tical measures.
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3. A well-known and transparent statistical framework. Type I/II errors (false positives and
negatives) are unfortunately incorporated in only a few segmentation algorithms (CLAC
and ACE) [2].

4. Objective model evaluation metrics like the Receiver Operating Characteristic (ROC) and
optimization using the Area Under Curve (AUC).

5. Robust to non-normal data. Some geophysical data such as rainfall is highly non-normal,
and most have strong periodic elements at a fine scale.

6. Flexible examination of models nested by confidence level. Output of a single model is
not conducive to ”drilling down” into sections with uncertainty.

This paper has three major contributions: 1) a novel ternary split segmentation algorithm
available as a R package based on minimum and maximum extrema of the partial sums; 2)
identification of linearity in length of data and number of breaks as crucial computational
criteria for scaling segmentation; 3) use of the familiar learning statistical metric of the AUC
as the criterion for breakpoints.

2 Related Work

Statistical methods for testing the homogeneity assumptions of linear models have a long his-
tory [6, 7]. An example of a simplistic algorithm would be to test each point for possible level
changes using a goodness-if-fit test such as the standard normal homogeneity test (SNHT) [8].
As the goodness of fit of a segmented model increases without limit with additional breaks, ad-
ditional penalties and measures such as AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) have been used to control over-fitting [9]. Combining the goodness of fit
and penalties for over-fitting, the problem becomes a minimization of a global cost function:

B

Zc(yjnext(j)) +B(B) (1)

j=1

where C is a goodness of fit function for each segment and 5 is the penalty function usually
over the number of breaks B. While the brute-force search for the optimum of equation 1
is O(2") dynamic programming can reduce the exact solution to O(BN?) [10]. Polynomial
growth in computation cost still imposes practical limits on N, and so is undesirable for big
data analysis. Users face a confusing choice of the ideal fit and penalty functions so introducing
potential operator bias (see [11]).

Segmentation algorithms are widely used in the detection and correction of meteorological
data sets as station moves or reconfigurations often cause step changes in temperature. The
International Surface Temperature Initiative (ISTI) is building global homogeneous temperature
products [12] from a network of inhomogenous meteorological station data. Such projects need
a very reliable segmentation method in the analysis chain. This is because segmentation is
applied to a contrast with regional climatology, using either a weighted average of neighbors
[13] or an exhaustive pairwise comparison [14]. While this reduces the noise from common
climate variations, biases and errors may be introduced from the comparators [15]. Analysis
of the original data collected at daily and shorter intervals is generally preferable as additional
steps in the analysis chain such as monthly or annual aggregation can also introduce bias [16].

Here we compare the algorithm SumSeg with three representative approaches to multiple
change-point detection algorithms supplied in the R package changepoint [11]. BinSeg, a bi-
nary segmentation algorithm, performs a recursive descent on binary splits blocking on segments
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where no split is found. BinSeg is an approximate minimization of equation 1 due to the trun-
cated search [17], as optimization of equation 1 would require descent into unitary sections to
find outliers or short breakouts. The segment neighborhood algorithm SegNeigh [10] minimizes
equation 1 exactly using a dynamic programming technique, but the computational complexity
is O(BN?) and so is unsuitable for longer sequences. The Pruned Exact Linear Time (PELT)
algorithm finds the optimum of equation 1 [11] using a modern bottom-up dynamic program-
ming and pruning approach, and is O(Nlog(N)), or O(N) subject to certain assumptions such
as the number of change points increases linearly as the data set grows.

3 Proposed Algorithm

The algorithm is motivated by the relationship between a sequence and its integral and deriva-
tive. Consider an original sequence y; where ¢ = 1...N is transformed into a partial sum
Si =Y y; where i = 1...N. In a scaled sequence with a change in level like a square wave, the
derivative consists of two spikes, one positive and one negative. The integral has the form of a
rotated 'Z’ where the turning points coincide with the level shifts of the original series, or the
spikes of the derivative. Thus, exhaustive comparison of means around every possible break in
the original series, as performed by exact methods, is not needed.

The integral (or partial sum) is more sensitive than the derivative due to supression of
random noise and robustness to non-normal distributions, a consequence of the central limit
theorem [9]. A drawback of the integral is that both level shifts and trends will produce extrema.
Gradual trends may be distinguished from level shifts by the peak height/width ratio in the
partial sum as level shifts produce sharper peaks than gradual trends. This will be addressed
in our future work.

The critical value for a standardized sequence is crit = py/n where p is the significance
level and n is the length of an individual segment. The crit can be tested in the presence
of gaps and missing values. Listing 1 shows the essential R code for algorithm, using an
extension of the base R construct data.frame called data.table [18], employing a powerful SQL-
like DT [where, select|update, groupby] idiom suited to large data applications.

Listing 1: Listing of the main function in SumSeg in the R language data.frame idiom.

model. ss<—function (D,max. breaks=4) {
#Initialise cut table with variables and start and end cuts
cuts=\pkg{data.table}(value=NA,Fl=factor (NA) ,F2=factor (NA),
cusum=NA, crit=NA, index=D[,c(index[1] ,index [.N]+1)], width=NA)
for (i in l:max.breaks) \{
cuts [ ,F1:=F2] # replace old groups
D[,F2:=cut(index, cuts$index) ,by=F1] # new groups
D[, cusum:=cumsum(scale (value)) ,by=F1] # calculate partial sum
D[, crit:=crit (.N,1) ,by=F1] # calculate critical value
# rows with mazrimum cusum by each group
max=D1[ ,.(index=index [which .max(cusum )], width=.N) ,by=F2]
# rows with minimum cusum by each group
min=D1 | ,.(index=index [which.min(cusum )], width=.N) ,by=F2]
cuts=rbind (cuts ,D[max] ,D[min]) # append new cuts
cuts=cuts [,.SD[1] ,by=index] # only unique cuts

cuts [, prob:=pnorm(abs(cusum) ,0,crit )] # probability
cuts [, peak:=(abs(cusum)—crit)/width] # peak width
return(cuts)

As the number of groups (or segments) increases by 3‘with each iteration, the residuals
are quickly driven towards the baseline as shown in Figure 2 (Tterations). As no step in the
algorithm is greater than O(N) the computational cost of the whole algorithm is O(N) or

41




Segmentation of geophysical data Stockwell D.R.B, L. Zhang and B. Verma

linear in N. The speed may be improved further by pruning or recording the maximum and
minimum values in conjunction with the calculation of the partial sums. The search blocks
when the maximum and the minimum are the endpoints of the segment.

The list of potential breaks in the output model (an example of which is shown on Ta-
ble 1) can be filtered by criteria such as the AUC, a user-defined significance value, or peak
width/height ratio. The algorithm embodies the cost function in equation 1 via the AUC; the
point shown on the ROC curve (Figure 2 ROC). The AUC is defined so that any other point
increases either omission or commission errors — a two term objective function.

4 Experiments

While actual results vary between runs, Figurel shows a typical segmentation (red lines) on
4000 simulated random data with SD=1 and level changes of +1.0, -1.0 and +0.2 (dashed green
line). All algorithms identified the three breaks correctly (true positives). SegNeigh, BinSeg
and particularly PELT introduced tiny breaks shown as red dots (false positives). SumSeg
introduced a small false positive at location 2249, but with prob=0.84 (see Table 1 for results),
this break would be eliminated at the default AUC value of 0.9. A typical worst case compu-
tation time was SumSeg=0.054s, SegNeigh=37.272s, PELT=0.231s, and BinSeg=0.338s. The
SegNeigh method is considerably slower than the other three methods and so was not evaluated
further.

Table 1 is the SumSeg model on the 4000 simulated data points in Figure 1. The variables
in the table are as follows: index - the location of the putative break, value - the sequence value
at the break point, F'2 the range of the segment (group) in which the break was found, cusum -
the cumulative sum of the value by segment, crit - the critical value at one standard deviation
for that segment, prob - the confidence level of that break, peak - the peak height/width ratio.

Table 1: A SumSeg model: Listing of the variables in the table of breaks on the simulated
data in Figure 1.

index value F2 cusum crit  width prob peak
1 2001 0.79 (1,4e+03] 405.46 63.24 2989 1.00 0.11
2 999 -0.68 (1,4e+03] -246.79 63.24 2989 1.00 0.06
3 3003 -0.28 (2e+03,4e+03] -136.49 44.71 1384 1.00 0.07
4 2249 -1.62 (2e4+03,4e4+03] -44.78 44.71 1384 0.84 0.00

Figure 2 (Length) is a linear-linear plot of length vs. computation time for SumSeg, PELT
and BinSeg. SegNeigh is not tested due to the excessively long computation time. The compu-
tation time of PELT increases quickly and slightly accelerates with increasing N. The SumSeg
algorithm has an intermediate slope while BinSeg is fast and linear. Figure 2 (Breaks) is a
log-log plot of breaks vs. computation time for SumSeg and BinSeg with constant N. SumSeg
is linear, indicative of log(B) growth, while BinSeg grew much faster than log(B). We note that
BinSeg is limited to 2001 potential breaks while SumSeg is not limited. PELT is not plotted
as it does not appear to have a parameter controlling the maximum number of breakpoints. A
similar effect can be achieved to a degree by adjusting the penalty parameter pen.value which
appears to represent the significance of the global model.

Wind speed data from Claremorris in the Republic of Ireland, available in the R pack-
age gstat [19], records 6574 daily wind speeds from 1961 to 1978. The dataset has a strong
fine-scale structure due to daily periodicity. Figure 3 (Wind Speed) shows the coarsest segmen-
tation achievable with the PELT (green) using pen.value = 10~*°. SumSeg produces a close
approximation to PELT with parameter max.breaks = 3 (i.e. a maximum of 27 breaks).

42



Segmentation of geophysical data Stockwell D.R.B, L. Zhang and B. Verma

SumSeg SegNeigh

-2

I I I I I I I I I I
0 1000 2000 3000 4000 0 1000 2000 3000 4000

PELT BinSeg

-2

I I I I I I I I I I
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 1: Recovery of known level changes (green) from the four algorithms on simulated
data (in red): SumSeg, SegNeigh, BinSeg and PELT. The simulated data has length
N=4000, level changes at 1000, 2000, and 3000, and the means for each segment are 0, 1, 0,
and 0.2 with introduced random noise mean=0 and SD=1. The PELT algorithm introduced a
number of small additional breaks (false positives). The computation time was SumSeg=0.054s
SegNeigh=37.272s PELT=0.231s BinSeg=0.338s.
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Figure 2: Simulated Data: Iterations, ROC, Length and Breaks. Iterations illustrates
three successive iterations of the cumulative sums, with the break points of the first cumulative
sum (black) shown by dashed vertical lines. The data is split into three segments at these
two break points and rescaled, yielding the second (red, largely obscured by third green line)
cumulative series. The final splits yield the green line. ROC illustrates the Receiver Operating
Curve on simulated data. The value of the Area Under Curve for these data is around 0.9 for
these data. Note that PELT, BinSeg and SegNeigh cannot be plotted in this manner as they do
not assign Type I error probabilities to the individual breaks. Length shows the computation
time with increasing data and constant breakpoints for SumSeg (red), PELT (green) and BinSeg
(blue) on a linear-linear plot. Breaks shows computation time vs. number of breaks for SumSeg
(red) and BinSeg (blue) on a log-log plot.
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Figure 3: Real Data: Wind Speed, Tide Height, Temperature and Temperature -
detail. Wind Speed: analysis of the PELT (green) and SumSeg (red) algorithms as they
segment daily wind speeds for a single site, Claremorris in the Republic of Ireland. Tide
Height: Port Hacking Tide Gauge Data consisting of 766,902 ocean heights collected every
15 minutes from 1987 to 2014. Note the notches at the lower margin of the data due to a
malfunction are indicated in the segmentation (red line above). The gaps and missing values,
and anomalies were caused by the tide gauge not ’bottoming-out’ periodically can be seen as
a notch in the minimum of the data (gray), and a corresponding step in the segmented model
(red). Temperature: Rutherglen minimum temperature from Climate Data Online (CDO)
raw data with three nested segmentation models at three levels of confidence: 0.9 (red), 0.95
(green) and 0.99 (blue). Temperature - detail: Zoom-in location of Rutherglen showing
distinct break in the daily time series.

45



Segmentation of geophysical data Stockwell D.R.B, L. Zhang and B. Verma

Figure 3 (Tide Height) shows 766,902 measurements of tide data recorded every 15 minutes
from the Port Hacking Tide Gauge in Australia between 1987 to 2014. SumSeg identifies
artifacts in the data seen as the notches at the lower margin of the data around 2002, apparently
caused by a sticking gauge mechanism.

Figure 3 (Temperature) shows a nested segmentation model of 34,642 daily minimum tem-
perature measurements taken at Rutherglen from 1910 to the present downloaded from the
Australian Bureau of Meteorology website. A number of significant step changes (blue - 0.99CL)
occurred in the early century, while level changes also occurred in the 1970’s (green - 0.90CL)
and 2010’s (red - 0.95CL). One advantage of analyzing daily data is the capacity to pinpoint
the exact date of a change. As an example, Figure 3 (Temperature-detail) shows a small level
change in the early 1970’s coinciding with a gap in the data that may indicate an undocumented
station move or reconfiguration.

From the above experimental results, it can be concluded that the proposed algorithm is
able to accurately detect the changes in data sequences, and effectively segment the data into
homogeneous subsets with a linear computational cost.

5 Conclusions

A novel segmentation algorithm for large data has been proposed and evaluated on simulated
and real world data. The computation time of SumSeg is linear in length of the series and
logarithmic in number of breaks. It outputs a set of possible break points and their statistical
significance, which could then be evaluated and optimized using the receiver operating curve
and AUC value. We compared the suitability of SumSeg for big data applications with three
alternative algorithms: SegNeigh an exact algorithm, BinSeg a binary recursive, and PELT a
modern dynamic programming algorithm. SegNeigh is disadvantaged by a quadratic increase in
computation time with N and PELT increased rapidly also. While fast and linear in N BinSeg
is disadvantaged by quadratic increase in time with number of breaks B. We were unable to
produce coarse segmentations in PELT as demonstrated on the wind speed data. The utility
of the capacity generate a range of coarse to fine nested segmentations was demonstrated
on the temperature data from Rutherglen. The data and code, available as an R package
at http://github.com/davids99us/anomaly, will be further refined through application to real
geophysical data problems.
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