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Abstract Hantaviruses are primarily rodent-borne pathogens which have received considerable attention recently 
due to their high mortality rates in humans. In order to find the causes of rapid transmission and emergence of 
hantavirus-associated diseases anthropogenic changes are a priority. These include deforestation, urbanization, noise 
pollution, light pollution and electromagnetic fields, all of which have been shown to profoundly affect rodent 
physiology and immunology. Moreover, anthropogenic events promote human-rodent co-habitation and thereby 
provide a driver to increase rates of transmission and, by extrapolation, levels of infection in humans. Such 
environmental disruption acts as a chronic stressor to rodents and causes elevated concentrations of glucocorticoids, 
which are a major class of immunosuppressive hormone. Glucocorticoids are responsible for altering the immune 
tolerance of rodents, thereby rendering them susceptible to infection. Glucocorticoids induce regulatory T 
lymphocytes to reduce inflammatory and antiviral responses and to activate regulatory responses, principally 
through production of the cytokines interleukin-10 and transforming growth factor-β to support viral persistence. In 
order to develop a low-cost intervention strategy for hantavirus infection consideration should be given to a systemic 
approach to therapy. This would both aim to achieve a reduction of anthropogenic stressors and to gain a greater 
understanding of host-pathogen interactions. 
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1. Introduction 
Developing strategies to counter the emergence and 

reemergence of infectious diseases has been the subject of 
an appreciable research effort over recent decades [1]. 
Currently, three-quarters of emerging human infectious 
diseases are caused by zoonotic pathogens, i.e. those that 
are transmitted naturally between vertebrate animals and 
humans, often through the agency of a vector or fomite 
[2,3]. At present, rodents are known to be a reservoir to 
more than 60 human-infecting viruses, including hantaviruses, 
the subject of this review, but also lymphocytic 
choriomeningitis virus, plague and leptospirosis [4,5]. 
Hence, control of rodents in situations of co-habitation 
with humans is a public health priority. Whereas rodents, 
the normal host of hantaviruses, show no signs of disease, 
infection in humans is severe and may be fatal [6,7]. 

Although anthropogenic stresses, caused by humans, are 
recognized as a major driving force to facilitate the recent 
repeated breakout of infectious diseases from wildlife 
reservoirs [8,9], neither the impact of such stressors nor 
their mechanism of action has been studied [10]. The 
emergence of hantaviruses could also be attributed to 
anthropogenic stressful events [8]. Several anthropogenic 
factors, for example deforestation, urbanization, noise and 
light pollution, and electromagnetic fields, contribute to 
the alteration of endocrine balance in rodents. These 
stressors are also responsible for immune, nervous and 
physiological alterations [11]. Rodents that are exposed to 
chronic anthropogenic stress are reported to have elevated 
levels of glucocorticoids (GCs) [12], a major class of 
immunosuppressive steroid hormone released from the 
adrenal gland [13]. Interactions between endocrine, 
nervous and immune systems play a major role in 
determining the outcome of host-pathogen interactions 
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[14]. GCs are responsible for reducing the resistance of 
wild animals to viruses and increase their tolerance to 
harbouring the virus in a minimal range without causing 
any disease [15]. The possibility has been suggested that 
by activating organ-specific regulatory mechanisms GCs 
also influence the host-pathogen interaction [16,17].  

In this review, hantavirus-associated disease symptoms 
and their epidemiology, current treatment, prevention and 
vaccine development are discussed. We describe the 
mechanism of viral persistence in rodents driven by 
glucocorticoid hormone and also shed light on different 
types of anthropogenic events thought to play a role in 
facilitating the emergence and transmission of hantavirus-
associated diseases in urban areas. An understanding of 
the chronicity of hantavirus infection in rodents, and its 
transmission to humans, would prove valuable to control 

programs for treating newly emerging and reemerging 
infectious diseases.  

2. Transmission and Epidemiology 
Hantaviruses are negative-sensed, enveloped, single 

stranded RNA viruses that belong to the genus Hantavirus 
and family Bunyaviridae. This family includes four other 
genera (Nairovirus, Orthobunyavirus, Phlebovirus and 
Tospovirus) with about 330 species currently recognized 
[18]. The precise number of hantavirus species to be 
identified is a matter of debate, but over 20 distinct viral 
species exist in nature; at least 11 are associated with 
human disease. 

Table 1. Geographical Distribution of Pathogenic Hantaviruses with their Natural Reservoirs 
Hantavirus Serotype Associated Clinical Syndrome Natural Reservoir Geographical Distribution 

Amur HFRS Apodemus peninsulae 
(Korean field mouse) 

Far east Russia, Southeast Siberia, 
Northeast China, South Korea 

Dobrava-Af HFRS Apodemus flavicollis 
(Yellow-necked field mouse) Central Europe, European Russia 

Dobrava-Aa HFRS Apodemus agrarius 
(Striped field mouse) Central and Eastern Europe 

Puumala NE, a type of HFRS Clethrionomys glareolus 
(Red bank vole) Europe-wide 

Seoul HFRS Rattus norvegicus, Rattus rattus (Brown 
rat, black rat) Worldwide 

Tula HFRS Microtus arvalis 
(Common vole) Northern and Eastern Europe 

Hantaan HFRS Apodemus agrarius 
(Striped field mouse) Central Europe, Korea, China, Taiwan 

Andes Oran HPS Oligoryzomys longicaudatus 
(Long-tailed pygmy rice rat) Argentina, Chile, Uruguay 

Araraquara HPS Bolomys lasiurus 
(Hairy-tailed bolo mouse) Brazil 

Bermejo HPS Oligoryzomys chacoensis 
(Chacoan pygmy rice rat) Northwest Argentina 

Black Creek 
Canal HPS Sigmodon hispidus 

(Hispid cotton rat) USA (Florida) 

Castelo dos 
Sonhos HPS _ Brazil 

Choclo HPS Oligoryzomys fulvescens 
(Fulvous pygmy rice rat) Panama 

Hu39694 HPS _ Argentina 

Juquitiba HPS Oligoryzomys nigripes 
(Black-footed pygmy rice rat) Brazil 

Laguna Negra HPS Calomys laucha 
(Vesper mouse) Bolivia,Paraguay 

Lechiguanas HPS Oligoryzomys flavescens 
(Yellow pygmy rice rat) Argentina 

Maciel HPS Necromys benefactus 
(Dark field mouse) Argentina 

Sin Nombre HPS Peromyscus maniculatus 
(Deer mouse) USA, Canada 

New York HPS Peromyscus leucopus 
(White-footed mouse) USA 

Rio Mamore HPS Neacomys spinosus 
(Common bristly mouse) Bolivia 

Oran HPS Oligoryzomys longicaudatus 
(Long-tailed pygmy rice rat) Northern Argentina 

Monongahela HPS Peromyscus maniculatus (Deer mouse) Eastern USA 

The transmission of hantaviruses involves the transfer 
of virus to humans from a typically disease-free 
hantavirus-associated rodent host. The geographical 
distribution of each species is dependent upon the regional 
location of its reservoir host, that which serves as a source 
of infection and potential reinfection of humans and as a 
means of sustaining the pathogenlong-term (Table 1) [19]. 
Humans may become infected after coming into contact 

with hantavirus-infected rodent egestion, excretions and 
secretions, or soiled nesting material. This is most 
commonly through airborne transmission via inhalation of 
aerosols containing the virus [20,21]. Persons dwelling in 
confined spaces that contain fresh droppings, urine or 
saliva from infected rodents place themselves at risk of 
becoming infected [22]. Interpersonal transmission is very 
uncommon with the noted exception of Andes virus [23]. 
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Similar negative-stranded RNA viruses, such as Ebola and 
Marburg, can be transmitted by contact with infected 
human blood and body fluids, and are known to spread to 
patient care workers in African hospitals [24]. These 
viruses, however, do not transfer readily in a modern 
hospital setting implementing universal precautions. In 
general, droplet and/or fomite transfer has not been 
demonstrated for hantaviruses in either the haemorrhagic 
or pulmonary forms. 

Recognized risk factors for transmission include the 
presence of rodents and rodent excreta in the proximity of 
domestic and work place buildings. In endemic areas 
particular problems are associated with summer cottages 
that have poor ventilation and with farmhouses on land 
with abundant rodent populations [19,25,26,27]. Long-
term residential stay for work or military service in forests 
with a high prevalence of hantavirus-infected rodents also 
poses a significant risk of transmission [26,28,29]. In 
Europe and Asia the most reported cases of hantavirus 
infection come from Russia and China, respectively 
[30,31]. Ecological disturbances play a crucial role in 
hantavirus transmission. Reduction of the natural habitat 
of a reservoir host combined with loss of biodiversity 
promotes migration of infected rodents into areas of 
human habitation. This has the effect of further increasing 
the rate of pathogen transmission [19,32]. 

3. Evolution of Hantaviruses 
It was long since thought that hantaviruses have co-

evolved with their rodent host [33,34], but the concept of 
co-divergence is supported by recent evidence of host 
switching, i.e. cross-species transmission, followed by 
local host adaptation [35]. Increasing evidence suggests 
that in addition to rodents, shrews and moles also serve as 
hosts for hantaviruses [35,36,37,38]. 

Phylogenetic analysis suggests that ancestral 
soricomorphs, consisting of five families –Soricidae 
(shrews), Talpidae (moles), Solenodontidae (solenodons), 
Erinaceidae (hedgehogs and gymnures) and 
Nesophontidae (now extinct West Indies shrews) – may 
be the original mammalian hosts for hantaviruses [39]. 
Hantaviruses are unique in being the only known genus of 
Bunyaviridae which maintain rodent hosts, with all other 
viruses in this family carried by insects or arthropods. 
This lends credibility to the view that present day 
hantaviruses may have arisen from invertebrate-borne 
vectors as for other members of the Bunyaviridae [38]. 
Another recent study showed that hantaviruses share a 
mixed evolutionary history of infection of both shrews 
and rodents instead of being monophyletic with rodents, 
which is of direct relevance to the host switching event 
[37]. Care should be taken to distinguish shrews and 
moles from rodents as they differ in many characteristics, 
such as evolution, taxonomic order and lifespan, while at 
the same time sharing the common trait of inhabiting the 
same environmental communities, which sheds light on 
our understanding of host switching. This could occur 
following inter- or intra-species wounding or by virus 
shedding in respiratory secretions or excretions within the 
same ecological niche [35,40]. Immunologically-based 
mechanisms of persistence of hantaviruses in shrews and 

moles appear similar to those which are thought to have 
occurred in rodents throughout evolutionary history [41]. 

4. Hantavirus-Associated Major Clinical 
Syndromes 

Hantaviruses show no clinical symptoms in rodents 
while humans, considered an unnatural dead-end host for 
infection, are susceptible to two distinct manifestations of 
hantavirus-associated clinical disease, haemorrhagic fever 
with renal syndrome (HFRS) and hantavirus pulmonary 
syndrome (HPS). The name hantavirus comes from the 
Hantan River region of South Korea, for which Hantaan 
virus, the cause of Korean haemorrhagic fever that was 
first isolated in the late 1970s, is named [4]. During the 
Korean War (1950-1953) more than 3,000 United Nations 
soldiers were infected with Korean haemorrhagic fever, 
now referred to as HFRS. Another notable outbreak 
during 1993 in the ‘Four Corners’ region of the 
Southwestern United States was associated with HPS [42]. 

HFRS and HPS share some common clinical signs. 
These include increased vascular permeability with 
hypotension, haemoconcentration, overexpression of 
CD8+ T lymphocytes and sometimes elevated leukocyte 
levels in peripheral blood [43]. While the name HFRS 
indicates a renal involvement with haemorrhagic fever, its 
clinical development is divided into five distinct stages: 
febrile; hypotensive; oliguric; diuretic and convalescent. A 
usual fatality rate due to HFRS in humans of 5-20% is 
widely recognized [44]. In some cases, it has been known 
to cause permanent renal failure. Facial flushing and 
conjunctival injection are initial signs of HFRS, followed 
by high fever, backache, abdominal pain, photophobia and 
pharyngeal enanthem. Febrile stage symptoms arise 
usually 2-3 weeks after exposure and typically occur for 
3-7 days. The hypotensive stage follows onset of fever and 
involves a drop in blood pressure due to vascular leakage. 
Reduced kidney function causes abnormal urinary 
sediment. The onset of renal failure and proteinuria, 
together with severe abdominal or back pain, is observed 
in the oliguric phase. The diuretic phase, characterized by 
the passing of 3-6 litres of urine per day, begins from day 
11 and can last for a couple of days to weeks. Symptoms 
improve as recovery occurs during the convalescent phase, 
which lasts from weeks to several months [43,44]. 

HPS is noted for influenza-like symptoms including 
high fever, headache, myalgia and shortness of breath [45]. 
Hypotension and acute non-cardiac pulmonary oedema 
may develop within 2-15 days. Neutrophilic leukocytosis 
and haemoconcentration are also observed. HPS can 
deteriorate rapidly into acute respiratory failure and, 
despite mechanical ventilation and intervention with 
potent diuretics, is characterized by a high mortality rate 
of approximately 50% [44,46]. 

5. Anthropogenic Stresses in Urban Areas 
and their Effects on Rodents  

A man-made disturbance of the natural environment is 
known as an anthropogenic event, which results in stress 
to wild animals. This has been identified as a key factor in 
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the advent of emerging infectious diseases (EIDs) in 
wildlife but has not been studied in detail [10]. Although 
hantaviruses have persisted in rodents for thousands of 
years, the advent of civilization has increasingly brought 
about chronic anthropogenic events which are thought to 
promote more efficient transmission of the virus and 
thereby the emergence of hantavirus-associated diseases 
[47]. Here, we discuss several classes of anthropogenic 
events most common in urban areas, including 
deforestation, urbanization, noise pollution, light pollution 
and electromagnetic fields, and evaluate how each affects 
rodent physiology and immunity. These effects probably 
facilitate the rapid transmission of hantaviruses in urban 
areas.  

5.1. Effects of Deforestation and Urbanization 
The rate of urbanization by human populations is 

escalating rapidly which favours direct human dominance 
over nature in environments in which deforestation is a 
common event. Since urbanization is correlated positively 
with loss of biodiversity, this influences shift and 
migration of host, vector, food competition and, most 
importantly, host-pathogen ecology [48,49]. A high level 
of biodiversity is responsible for a reduction of pathogen 
transmission while anthropogenic factors are found to 
decrease diversity and to increase pathogen transmission 
risk [32]. Landscape fragmentation increases rodent 
population density in areas of high food competition, 
which consequently brings rodents into close contact with 
humans. This supports inter- or intra-species transmission 
and a high prevalence of viruses [50,51]. Effects of 
urbanization, such as habitat fragmentation, deforestation 
and food scarcity leading to increased feeding competition, 
act as chronic stressors for rodents. This results in rapid 
physiological changes and lower immunity to viruses, 
which is mediated by GCs [52,53]. 

5.2. Effects of Noise 
Noise pollution is identified as a source of 

anthropogenic stressors to urban animals. Significant 
levels of physiological changes occur in those rodents that 
are exposed to noise, while no such changes are observed 
in rodents in fields with little outside sound [54,55]. 
Changes in physiological and behavioral responses in 
rodents due to noise effects may be characterized by an 
elevated level of corticosterone, immune alteration, a 
decrease in reproductive function, reduced body weight 
and reduced gastric secretion. Noise pollution also has 
profound effects on the rodent nervous system. This may 
be demonstrated by subjecting rodents to conditions of 
either noise or quiet. When rats were subjected to an 
electronically generated noise stimulus of 10 Hz to 10 kHz 
at a specific time every morning for 3 weeks, they 
developed an attenuation of their parasympathetic nervous 
system while their sympathetic nervous system remained 
unchanged [54]. Intestinal mucosa of rats exposed to high 
levels of noise developed significant inflammation 
compared to the gut of rats kept in quiet conditions. 
Furthermore, rats subjected to loud noise were found to 
have a reduced humoral immune response and phagocytic 
activity and also showed a decreased number of T 
lymphocytes [56]. 

5.3. Effects of Artificial Lighting 
Humans first started to interfere with the natural day-

night cycle following the discovery of fire. This increased 
over the last century with the invention of artificial 
lighting, which escalated to the extent of now causing 
what we recognize as ‘light pollution’. Rapid urbanization 
is further intensifying levels of artificial light at night in 
metropolitan areas where the night sky is always lit as if 
by a full moon[57,58]. Exposure to continuous artificial 
light at night can suppress the rhythmicity of circadian 
activity, body temperature and initiate sleep deprivation in 
rodents, which has the potential to modulate the immune 
system [59,60,61]. Sleep deprivation further activates the 
hypothalamic-pituitary-adrenal (HPA) axis and may alter 
the consequent stress response [62]. The balance of 
several hormones, including GCs, prolactin, 
adrenocorticotropic-releasing hormone, corticotrophin-
releasing hormone, serotonin and melatonin, is altered by 
the constant light or light-light cycle. Continuous low 
level artificial light at night is identified as reducing 
melatonin production in rodents and this phenomenon 
could suppress immunostimulation [60,63]. Increased 
concentrations of plasma corticosterone are observed in 
male mice under conditions of prolonged artificial lighting, 
which is an indicator of stress [64,65]. Artificial lighting is 
also responsible for suppression of cell-mediated and 
humoral immune responses in rodents [61]. These 
findings collectively suggest potential harmful effects of 
disrupting natural lighting by introducing artificial light. 
In contrast, environmentally-attached species, those which 
are not exposed to artificial lighting, do not show any sign 
of these physiological or immunological changes [65]. 

5.4. Effects of Electromagnetic Fields  
The absolute dependence on electricity in the daily lives 

of people resident in developed nations and, increasingly, 
in developing nations means that globally humans 
discharge a significant level of electromagnetism into the 
environment. In this age of widespread electrification we 
are surrounded by transformers, power lines, mobile 
telephone signal transmitters, radio waves, microwaves 
and electronic devices, the activities of which generate 
electromagnetic fields (EMFs). The correlative evidence 
that extremely low frequency (ELF) EMFs are a health 
hazard has become a matter of great concern in recent 
decades [66,67]. City dwellers have considerable exposure 
to ELF magnetic flux on a daily basis. Leakage of stray 
current is the most common source of magnetic flux in 
urban environments [68]. In most countries, electrical 
power is generated at an ELF-EMF frequency of 50/60 Hz. 
The flow of alternating current generates a low level EMF. 
Several reports have suggested that long-term exposure to 
ELF-EMF induces elevated levels of plasma 
corticosterone and depressive-like behaviours in rodents 
[69,69,71]. Continuous exposure of rodents to ELF-EMF 
promotes a state of chronic stress and triggers activation 
of the HPA axis [71]. Another recent report provided 
evidence that rats exposed to EMF have significantly 
higher levels of corticosterone than do control animals 
[72]. Chronic low power density microwaves have also 
been shown to increase corticosterone concentrations in 
rats [73]. EMF-mediated chronic stress and an elevated 
persistence of GCs are causally linked toa significant 
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reduction of mononuclear cells, especially CD8+T 
lymphocytes. Production of interleukin (IL)-2 is also 
decreased. All these events result in suppression of 
cellular immunity in rats [74,75]. 

6. Anthropogenic Events Promote 
Human-Rodent Co-Habitation to Increase 
Prevalence of Infection 

From the above discussion it is apparent that 
anthropogenic events are responsible directly or indirectly 
for infectious disease outbreaks like hantaviruses. These 
may be considered as provoking rodent migration into 
areas of human dwelling while simultaneously causing 
suppression of rodent immunity to viruses to render them 
more suitable reservoir hosts. It is noteworthy that 
anthropogenic events not only play an important role in 
disease occurrences but, conversely, are thus a 
consideration for approaches to disease prevention. By 
restricting anthropogenic events it may be possible to 
reduce human-rodent co-habitation and thereby contribute 
to more effective disease control management.  

GCs are secreted by an animal when it detects a stressor 
and are responsible for initiation of a stress response. 
Acute stress, commonly known as the ‘flight-or-flight’ 
response, is characterized by induction of the 
catecholamine hormones epinephrine (adrenaline) and 
norepinephrine (noradrenaline), whereas chronic stress is 
distinguished by release of the GC hormones cortisol and 
corticosterone. Of the two, corticosterone is found more 
abundantly among rodents although some species appear 
to express both [76,77]. The mammalian immune system 
has two unique properties termed ‘resistance’ and 
‘tolerance’ whereby resistance mechanisms are directed 
specifically towards a pathogen to limit its burden while 
tolerance mechanisms are concerned with reducing the 
indirect impact of a given infection by neutralizing the 
effects of toxins and metabolic byproducts produced by 
the associated pathogen [78]. GCs are responsible for 
reducing resistance and elevating tolerance, thereby 
supporting viral persistence [14]. It is well known that the 
endocrine, nervous and immune systems all interact to 
regulate the fate of host-pathogen interactions [79,80]. 
Most hantavirus outbreaks occur in those areas where the 
environment is extensively disturbed due to anthropogenic 
changes and rodents experience chronic anthropogenic 
stresses [8]. Since chronic stress is responsible for 
increasing an animal’s susceptibility to infection [81], this 
is a likely reason why viral infections are more prevalent 
in urban animals than in their rural counterparts [52].  

We suggest that due to the immunosuppressive activity 
of GCs it is possible that urban rodents, exposed to 
considerable and varied stresses, have a greater prevalence 
of hantavirus infection than do rodents resident in a less 
stressful rural environment. Hence, the heightened 
susceptibility of urban rodents to virus transmission due to 
enforce dgreater contact with humans may be causally 
linked to increased hantavirus outbreaks in populated 
areas. A comparison of the microbial burden of rodents 
from wild and urban dwellings is justified. A recent study 
of urban-dwelling Norway rats identified the presence of 
novel viruses besides hantaviruses [82]. This is a possible 

indication of a difference in wild and urban rodents’ viral 
loads. 

7. Mechanism of Hantavirus Persistence 
in Rodents 

The mechanism by which rodents support hantavirus 
infection without showing any signs of disease is just 
starting to be revealed. The study of host-pathogen 
interactions is a recently established field of virology 
research with the potential to provide insight into how a 
host maintains viruses without clinical signs, which may 
inform future antiviral therapies. Generally, viruses are 
considered to follow one of two strategies for survival: 
‘hit and run’; ‘hit and stay’. Regarding infection of rodents, 
hantaviruses follow the hit and stay strategy. In order to 
establish persistent infection a hantavirus must not show 
any cytopathic effect towards its host and must escape 
from host immune defence. Although naturally hosts do 
not benefit from harbouring viral infection, depending on 
the environment a commensal state may be established 
[83]. 

The enzyme matrix metalloproteinase 9 (MMP-9), 
known to disrupt the endothelial membrane and 
extracellular matrix in normal physiological processes, is 
elevated by hantavirus infection of monocytes and 
macrophages. This enables hantaviruses to gain the access 
required to disseminate into tissue. This is necessary only 
to achieve a high viral load in rodent lungs and not for 
viral persistence; expression of MMP-9 is reduced when 
infection is established [84]. Expression of pattern 
recognition receptors in lungs [85] and antigen-presenting 
molecules, e.g. MHC class II, is reduced following 
hantavirus infection in rats, indicating their contribution to 
persistence of infection [86,87]. Clinical manifestations in 
hantavirus-infected humans are thought to be due to 
excessive pro-inflammatory and CD8+ T lymphocyte 
responses while rodents demonstrate reduced pro-
inflammatory and antiviral responses and increased 
regulatory responses in persistent hantavirus infection 
[44,88]. During chronic infection, expression of antiviral 
interferon (IFN)-β, IFN-γ and pro-inflammatory cytokines 
is reduced [85,88]. Expression in vitro of the Hantaan 
virus (HTNV) resistance protein Mx2 is also suppressed 
during Seoul virus (SEOV) infection [89,90]. Increased 
hantaviral load and mortality are both observed in CD8+ T 
lymphocyte-deficient rats, indicating that these immune 
cells play a crucial role in suppressing hantavirus 
replication and host infection; therefore, to establish a 
persistent infection hantaviruses must evade CD8+ T 
lymphocyte-mediate immunity [43,91,92]. 

Regulatory T (Treg) CD4+CD25+ lymphocytes act to 
suppress pro-inflammatory and CD8+ T cell activity to 
maintain host homeostasis and thereby enable hantaviral 
persistence (Figure 1) [93]. Inactivation of Treg 
lymphocytes reduced expression of SEOV RNA in rat 
lungs, which is a clear indication of Treg involvement in 
virus persistence [16,94].During chronic infection Treg 
lymphocytes suppress synthesis of tumour necrosis factor 
(TNF)-α and inflammatory responses and promote 
expression of transforming growth factor (TGF)-β, IL-10 
and FoxP3 [16,95]. T helper (Th) 1 CD4+ lymphocytes 
express IFN-γ, IL-2 and TNF-α and facilitate the cell-
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mediated immune activity of CD8+ T lymphocytes, natural 
killer (NK) cells and macrophages [96], while Th2 
lymphocytes express IL-4, IL-5, IL-10 and IL-13, and 
promote antibody-mediate immunity [97]. Treg 
lymphocytes, mediated by FoxP3, may initiate Th1-Th2 
lymphocyte pathway polarization [98] and could also 
suppress the activity of antigen-presenting cells, such as 
macrophages and dendritic cells (DC), and B lymphocytes 
[99,100]. DC, which secrete TNF-α and IFN-α, are also 
susceptible to hantavirus infection. However, immature or 
tolerogenic DC may activate Treg lymphocytes through the 
mediation of TGF-β to exert suppressive activity 
[7,100,101]. Antibodies specific for hantaviruses are not 
able to eliminate the virus, but after infection they remain 
detectable throughout life [84,102]. Infants acquire 
maternally-derived antibodies for the first two months 
following birth, which provide some protection [103,104]. 

GCs are capable of reducing host resistance to viruses 
and facilitate viral persistence by increasing tolerance to 
infection. When challenged by chronic anthropogenic 
stressors, immunologically suppressed rodents express 
elevated levels of GCs which mediate an organ-specific 
regulation that supports tolerance while removing 
resistance to hantavirus infection [15]. GCs block 
inflammatory pathways and induce apoptosis mediated by 
Treg lymphocytes [17,105,106,107]. GCs not only suppress 

differentiation of DC but also induce production of 
tolerogenic DC which express elevated IL-10 and TGF-β. 
Such tolerogenic DC are responsible for generation and 
activation of Treg lymphocytes to exert a regulatory control 
over CD8+ lymphocyte-mediated antiviral responses 
(Figure 1) [108,109,110,111]. GCs cause a polarization of 
CD4+ lymphocyte subsets from Th1 to Th2 and increase 
production of Th2 cytokines which further stimulate 
alternatively activated M2 macrophages [109,111,112,113]. 
M2 macrophages are characterized by excessive synthesis 
of IL-10 and TGF-β, which is triggered mainly by 
elevated levels of GCs which suppress activity of 
classically activated M1 macrophages [80,111,114,115]. 
High mortality rates attributable to an exaggerated pro-
inflammatory response and efficient virus clearance are 
both observed in the absence of GCs, as demonstrated 
experimentally for other viral infections [116,117].This 
clearly indicates the critical function of GCs to viral 
persistence and in establishing an equitable balance in the 
host-pathogen interaction. This suggests that such GC-
operated mechanisms as discussed above provide a 
regulatory feedback loop to protect the host against 
excessive immune response-associated pathology. 
Accordingly, we propose that GCs may playa pivotal 
regulatory role to support hantavirus persistence in rodents. 

 

Figure 1. Cellular Immune Responses during Hantavirus Persistence in Rodents 

8. Approaches to Treatment and 
Prevention  

There is currently no drug that is approved by the US 
Food and Drug Administration for treatment of hantavirus 
infection. Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-
carboxamide) has shown anti-hantaviral activity both in 
vitro and, to a lesser extent, in vivo. In murine models, 

ribavirin-treated animals exhibited higher survival rates 
[118,119,120]. However, clinical trials on ribavirin do not 
corroborate sufficiently such promising results to justify 
commercial development as an anti-hantaviral drug 
[121,122]. 

The lack of specific treatment places an increased 
emphasis on preventative strategies aimed at minimizing 
rates of infection. Obviously, avoidance of contact with 
rodents and their excretions is the best way to prevent 
infection. Foodstuffs that are attractive to rodents should 
be kept in sealed containers and stored in small quantities 
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in a domestic setting. Farmers who work on land with 
abundant rodent populations are recommended to wear a 
face mask in order to avoid inhalation of infectious 
material and thereby to minimize the risk of infection [19]. 
Seasonal residences should be well ventilated with fresh 
air before occupancy [44,123].  

9. Current Developments in Vaccine 
Research 

Although considerable effort has been applied to 
vaccine development against hantaviruses at present there 
is no efficacious vaccine therapy available for humans. 
Traditional vaccine approaches have been followed in 
Asia, including rodent brain- and cell culture-derived 
inactivated vaccines [124]. In particular, a mouse brain-
derived vaccine, Hantavax®, was marketed commercially 
in Korea [125]. However, none of these vaccines has 
gained approval in the US for therapeutical use [126]. 
Studies with animal models show that these conventional 
inactivated vaccines derived from HTNV or SEOV would 
not protect against Puumala virus (PUUV) that is 
prevalent in Europe [127,128].  

Current strategies are focused on developing a DNA 
vaccine to elicit neutralizing antibodies against hantavirus 
glycoproteins [129]. One approach is to prepare a single 
vaccine that would protect against multiple pathogenic 
hantavirus species. A recent study shows that a 
combination of plasmids from four pathogenic hantavirus 
species, HTNV, PUUV, Andes virus (ANDV) and Sin 
Nombre virus (SNV), could elicit comparable levels of 
neutralizing antibody against each species [130]. A 
combination of either HTNV and PUUV or ANDV and 
SNV provided only partial success. These preliminary 
findings indicate that a quadravalent vaccine could be a 
promising option for future anti-hantaviral vaccine research.  

10. Call for a Multidisciplinary Systemic 
Approach 

The emergence and reemergence of infectious diseases 
highlight the urgent need for effective public health 
surveillance and management systems. Rodents have 
developed an organ-specific tolerance mechanism 
mediated by GCs to promote their own survival. However, 
unplanned and unorganized urbanization is continuously 
increasing the fragmentation of habitats and the unwanted 
interactions of humans with infected wild species, which 
is attributable for the increasing appearance of EIDs. 
Research continues with the aim of elucidating fully the 
mechanism of viral persistence and the role of GCs in its 
regulation in rodents. Humans develop up-regulated pro-
inflammatory responses against hantaviruses which, in 
rodents at least, are postulated to come under the control 
of GCs. There is some evidence to suggest that programmed 
cell death may be slow or absent from excessive immune 
responses in cases of human infection [7,131]. An in-depth 
understanding of hantavirus persistence may provide 
insights to inform the ongoing fight against hantavirus-
associated diseases. It may be reasonably assumed that 
some features of immune evasion mechanisms are shared 

by all viruses. Therefore, an effective management system 
against infection with one virus species may provide a 
model for wider implementation as well as to direct 
strategic development of low cost therapies for future use. 

11. Conclusion 
For hantavirus infections, understanding and alleviating 

pathogenesis in humans affords only a partial view of a 
complex biological system that involves the pathogen and, 
potentially, both human and rodent hosts. In recent years, 
the suppressive effect of a stress response in humans has 
been clearly established but the effect(s) of stressors on 
other animals is far less known. In this respect, it can be 
argued that human negligence and poor management are 
major factors in the increased incidence of most EIDs. 
Humans, animals and their shared environment are all 
interlinked in a complex networked system. Therefore, 
future research should focus simultaneously on systemic 
and holistic approaches that consider molecular 
pathogenesis, virulence, endocrine and immune activities, 
host-pathogen interactions, vaccine targets, ecology and 
biodiversity. Without recognition of the interdependence 
of contributing factors, partial and fragmented insights 
gained from conventional approaches to research will not 
achieve consistent success in the fight against EIDs. In 
such circumstances, further hantavirus species may 
emerge, possibly involving different geographical areas 
and novel animal hosts. 
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