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Abstract

Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical
step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on
species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such
information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and
unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the
utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt,
using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel
occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a least-
cost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built
with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in
precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values
attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation
and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a least-
cost approach to mapping ecological networks.
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Introduction

Effective biodiversity conservation within fragmented land-

scapes often requires the modelling of connectivity to define the

extent of the problem, target conservation activities and to

evaluate the impacts of landscape change [1]. Connectivity is

defined as the degree to which the landscape facilitates or impedes

species movement among resource patches [2]. A landscape

consists of a complex, often dynamic, heterogeneous mixture of

habitats and land uses which may impact on important ecological

processes, such as species movement, habitat selection and

survival, and influence behavioural and physiological responses

[2–5]. The study of the impacts of the matrix on species

movement, known as functional connectivity [6], is now the

subject of much research within modified and fragmented

landscapes [7]. Assessing functional connectivity is commonly

used to aid conservation strategies by identifying potential

movement pathways across fragmented landscapes for species of

conservation concern [8–10]. It has also been used to help predict

the potential dispersal and movement of invasive species to aid

species management by identifying areas to target resources

[11,12].

Geographical Information System (GIS), raster-based least-cost

analysis techniques are often used to assess functional connectivity

by modelling the impact of permeability of the surrounding

landscape matrix on species movement [10]. It has been used in

conservation [8–10] and invasive species management contexts

[11,12]. For example, the population expansion of the grey

squirrel (Sciurus carolinensis) in Britain, following its first

introduction in 1876 [13], has had negative effects upon the

forestry industry and native biodiversity [14–16]. In particular, it

has occurred simultaneously with the decline and replacement of

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e112119

http://creativecommons.org/licenses/by/4.0/
http://rsne.org.uk/sightings
http://www.cbdc.org.uk/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112119&domain=pdf


native red squirrel (Sciurus vulgaris) populations through resource

competition and disease [14–16]. Therefore, an understanding of

how grey squirrels utilise and move through the landscape is

essential for effective red squirrel conservation and grey squirrel

management. By using least-cost modelling it is possible to identify

the potential dispersal areas, in addition to the most probable

dispersal corridors, to assess the extent of spread [11]. Developing

these models involves defining a species’ ‘core’ or ‘source’ habitat

and assigning resistance values to the surrounding landscape

features, based on the actual or perceived impact to species

movement at a particular resolution [17]. A cell with a high

resistance value is used to represent an area that an individual is

unlikely to traverse under typical conditions because of high

energy, mortality, or other ecological costs [18]. Using information

on a species’ maximum dispersal distance, the area around a core

habitat patch that is accessible to a species can be mapped with a

simple Euclidean buffer. The permeability buffer zone is then

taken into account so that the buffer is compressed or stretched

according to the cumulative resistance scores assigned to the

underlying landscape features. Overlapping buffers therefore

signify connections where the species is assumed to be able to

move between core habitat patches, forming a functionally

connected habitat network.

It is widely acknowledged [4,18,19] that a critical step in least-

cost modelling is defining resistance values for each type of

landscape feature. Beier et al. [19] highlighted three ranked

choices for estimating landscape resistance values with the first

being the most highly ranked option: 1. empirical animal

movement data, genetic distance or rates of inter-patch move-

ments; 2. animal occurrence, density or fitness; 3. literature review

and expert opinion. Ideally, resistance values should be informed

and parameterised with independent field data, such as extensive

mark release recapture studies, actual movement data from radio-

telemetry or Global Positioning System (GPS) studies [11,20], data

from experimental studies to record movement through different

land cover types [21], or inferred movement data from landscape

genetics [9]. However, as these resistance values are species and

landscape specific, there is an understandable shortage of such

empirical data [22]. Zeller et al. [23] reviewed the different types

of data used to parameterize least-cost models and concluded that

expert-opinion and occurrence data are most often used.

However, they also suggest that comparative studies on the data

used to derive resistance values are needed.

Although the use of expert-opinion to parameterise least-cost

models is seen as subjective and out performed by values informed

by empirical data [24], many studies utilise this type of

information to parameterise models [3,12,25]. The use of

expert-opinion may be appropriate in some cases, such as where

there is a particular shortage of empirical data, an urgency to act,

or a focus on general principles, focal species or particular species

traits. However, in an attempt to make the setting of landscape

resistance values less biased and more data-driven, some

researchers [26–31] are starting to utilise species distribution

models, such as MaxEnt [32], to parameterise least-cost connec-

tivity models (defined as option 2 by Beier [19]). This study uses

MaxEnt, a species distribution model which utilises maximum

entropy principles to predict a species’ use of a landscape based

upon occurrence data and a selected set of environmental

predictors [32]. The habitat suitability indices provided by the

models can then be used in calculations [26–31] to create least-

cost connectivity models. Given that resistance values informed by

empirical data are ranked higher [19] and seen to outperform

expert-opinion values [24], it is hypothesised that the HSM-

informed values will produce a more accurate least-cost network

than expert-opinion data. The aim of this study is to investigate

how expert-derived resistance values compare against values

informed by habitat suitability modelling (HSM). The results of

this study provide guidance to researchers and practitioners on the

suitability of these approaches for informing management and

research objectives relating to both species of conservation concern

and invasive species spread.

Materials and Methods

Ethical statement
Ethical clearance for this study was approved by the University

of Cumbria Ethics Committee, ref 09/17. This was a desk based

study with no field work required. Therefore, research permits and

licences were not required.

Study site
To compare expert-derived resistance values against HSM-

informed values, grey squirrel within the county of Cumbria UK

(Figure 1), are used as the study species. Whilst six large

woodlands in Cumbria are designated red squirrel refuge reserves

(Figure 1), the grey squirrel remains throughout the county. A

number of previous studies have used expert-derived least-cost

models to define habitat connectivity for Britain’s native red

squirrels and invasive grey squirrels [33–36], providing expert-

opinion on land cover resistance. In addition, Cumbria has an

extensive collection of grey squirrel distribution records available

with which to create HSM-informed data for comparison.

Cumbria covers an area of 6,768 km2 and has a sparse population

of 490,000 people. The Lake District National Park is located in

the centre of Cumbria and has legislation and planning restrictions

to conserve the landscape. The National Park Authority are

responsible for implementing legislation and planning decisions

aimed at conserving the landscape and its species, which means

that little has changed regarding land use during the time frame

that the species presence data used within this study were recorded

(2000–2009). The topography is varied with the Cumbrian

Mountain range (#978 m a.s.l.) that runs approximately west to

east across the middle of the county. The majority of land at these

higher elevations is used for grazing with little woodland habitat.

However, at lower elevations there are numerous woodlands, and

other semi-natural habitats, scattered within an agricultural matrix

which may provide greater potential for squirrel movement.

Identifying least-cost networks
Land cover types from a highly accurate and up to date vector

land cover map (Ordnance Survey Master Map) were reclassified

into 21 broad land cover categories for Cumbria (Table 1). The

map was rasterised at 10 m resolution to ensure accurate

representation of narrow linear features, such as strips of

woodland. All woodland patches were classed as core habitat as

squirrels use these areas for nesting and breeding [37,38]. This

map was then parameterised with five alternative expert-derived

resistance sets from previous studies (Table 1). The resistance

values given in the different studies varied substantially. An

additional set of values was developed by the authors by refining

Stevenson’s [35] scores (referred to as new expert-derived),

following a review of the literature and the ecological underpin-

ning of the values that had been applied previously, as described

below.

Coniferous, mixed and broadleaved woodland were all assigned

the lowest resistance value of 1, as core habitat. Scrub, coppice,

orchard, and garden were given relatively low resistance values

because they often contain tree species and are commonly used by
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grey squirrels for commuting [11,20]. Path, track, road verge, road

and railway verge may also be used as commuting corridors, [13],

but their use may confer higher mortality risks and therefore they

were assigned a relatively high score. Improved/arable/amenity,

rough grassland and heath were all attributed higher values still, as

squirrel species tend to avoid open habitats [39]. Due to the threat

of railways and the difficulty of moving over marsh, water, urban

areas, buildings, and rocky areas like cliffs, the high scores assigned

in previous studies were maintained.

Least-cost networks were created for each set of resistance

values (Table 1) using the least-cost network process outlined in

Watts et al. [10]. This network tool analysis utilises ArcView 9.1

and the Spatial Analyst extension (ESRI, Redlands, CA). The first

step defined suitable patches of woodland habitat and generated a

cost surface raster from the land cover map, by joining the

resistance values (Table 1) to the 21 land cover classes. Secondly,

the ‘cost-distance’ function in the Spatial Analyst toolbox was used

to create a cost-distance surface between woodland patches. The

resulting accumulated cost raster was then reclassified to a

standardised maximum dispersal distance of 8 km to ensure

comparability between the different resistance sets. The ‘region

group’ function was used to define each discrete network, using an

eight-cell rule so that touching cells, either adjacent and diagonally

opposite, within the minimum distance of any given patch were

considered part of the same network.

Deriving resistance scores from habitat suitability
modelling

Records of grey squirrel presence were obtained from Save Our

Squirrels (http://www.saveoursquirrels.org.uk/). These consisted

of 2,281 verified sightings recorded year-round between 2000 and

2009 given by members of the public from both within woodland

habitat (35%) and the wider landscape (65%). The grid references

and type of habitat the sightings were recorded and verified by

Save Our Squirrels. Sightings that were recorded outside of the

grey squirrels known distribution range were also verified by

contacting the recorder. The points outside of core woodland

habitat are believed to relate to landscape use and movement,

rather than indicating suitable foraging, breeding or nesting

resources [37,38]. It is these non-woodland records that are used

to infer the permeability of the landscape matrix using the habitat

suitability modelling software, MaxEnt [40,32]. MaxEnt assigns

each raster cell a Habitat Suitability Index (HSI) based on the

environmental conditions at locations where a species has been

recorded, using the maximum entropy method [41]. There are

three output formats given by the MaxEnt programme: raw,

cumulative and logistic; the most easily intuitive logistic HSI

scores, which indicate the probability of occupancy ranging

between 0–1 and assuming that this is 0.5 at an average site

[40,32], were used in this study.

Both the species records and environmental data were prepared

for modelling with MaxEnt. The squirrel data were filtered to

remove locations recorded at a resolution of .100 m. Of the

remaining 2,008 points, 842 squirrel presences recorded were

Figure 1. Map of red squirrel reserves in Cumbria and neighbouring counties with reference to its location in the UK. * 1. Whinlatter;
2. Thirlmere; 3. Greystoke; 4. Whinfell; 5. Garsdale/Mallerstang and 6. Kielder (Cumbria proportion of). Boundary lines were obtained through EDINA
Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/digimap/home.
doi:10.1371/journal.pone.0112119.g001
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within the matrix. A categorical land cover raster (gridded data

map) was created using the same Ordnance Survey Master Map

data and 21 broad land cover categories as previously described

(Table 1). However, a coarser resolution of 100 m was used to

match the spatial accuracy of the squirrel records. To ensure that

linear habitat features were not under-represented, each land

cover type was rasterised separately at a 10 m resolution and then

aggregated to 100 m using the ‘maximum’ rule. These rasters

were mosaicked using ranks that prioritised the classification of

each 100 m square containing more than one land cover type

(Table 1). All areas of woodland (core habitat), rocks and buildings

(highly impermeable) were removed from the land cover map to

prevent their incorporation in the model. In an effort to account

for sampling bias towards accessible areas, a well-known and

common characteristic of species data collected in an ad-hoc or

non-systematic way [42], all areas over 500 m from a road, track

or path were also removed from the map. This left a total of 665

squirrel records that fell within the remaining areas of the land

cover map which were used to train and test the habitat suitability

model. Each point (located in the south west of the 100 m grid

square) was adjusted by 50 m east and 50 m north to locate each

point in the centre of the grid square. This was to ensure that the

points matched the 100 m raster landscape i.e. were within one

cell, not potentially boarding four.

All models were run in MaxEnt Version 3.3.3k, using primarily

default settings (regularisation multiplier = 1; duplicate occur-

rences removed; maximum number of background points

= 10000, as used in Kramer-Schadt et al. [43]). Five-fold cross

validation was used to calculate mean Area Under Roc Curve

(AUC) and extrinsic omission rates (the average proportion of test

points that fall outside the area predicted to be suitable), following

use of the occupancy threshold rule that maximises the sum of test

sensitivity and specificity (as recommended by Liu et al., [44]).

Residual spatial autocorrelation (rSAC) can inflate measures of

model performance [45–47] therefore Moran’s correlograms were

created (1 – predicted HSI for each species record; [48]) using the

Spatial Analysis in Macroecology software program (SAM; [49]).

Significance of Moran’s I was calculated using a randomisation

test with 9,999 Monte Carlo permutations, correcting for multiple

testing.

The response curves, which showed the mean predicted

probability of a species’ presence (p; 0–1 scale) within each land

cover type, were used to derive the resistance values for each land

cover type. For both the new expert-derived and the HSM-

informed values, woodland was given a value of 1, as permeable

core habitat, and rock and building given values of 1000, as

impermeable land cover types. The remaining land cover type

values were inverted and standardised to the same scale as the new

expert-derived values, (1–130; using 1-(p6130)). These values were

then used to identify least-cost networks using the same approach

as applied to the new expert-derived resistance scores.

Comparing resistance scores and resulting habitat
networks

An area-minimisation methodology was applied to select for the

smallest network that captures the majority ($90%) of the filtered

distribution point data (n = 842). This methodology, derived

during this study, was based on the principle that when managing

invasive species, areas for control must be defined and defensible

to provide successful management [50]. As the grey squirrel

population continues to expand in the Cumbria study site, it is

important that control efforts are targeted to provide effective

management. By identifying habitat networks management can be

targeted in these specific areas of the landscape. The larger the

habitat networks are the more widespread management would

have to be. Therefore, the resistance set which produced networks

that include a high proportion of distribution points but a small

network area are regarded as the better networks as management

can be targeted in these focused areas. In addition a chi square test

was used to test whether a significant number of distribution points

were within the networks when compared to random points.

The HSM-informed resistance scores and the resulting networks

were compared to those created with the new expert-derived set

selected by the area-minimisation criteria. A Wilcoxon signed

ranks test was used to assess the relative difference between scores.

The habitat networks produced were also measured and compared

visually and using the distribution points. Distribution points that

were within the new expert-derived networks but not within the

HSM-informed networks were identified along with the land cover

type they were in and vice versa.

Results

Habitat Suitability Model performance
The results from five-fold cross-validation test showed that the

models performed well (Training sample size = 532; Test sample

size = 133; Training AUC = 0.8060.001; Test

AUC = 0.7860.04; Test gain = 0.7060.19; Extrinsic omission

rate = 0.23, P,0.001), indicating that land cover type provides

useful information on the likelihood of grey squirrel presence. No

significant residual spatial autocorrelation was found at any

distance lag. Moran’s I values were ,0.05 and statistically

insignificant at each distance lag, indicating that the residuals

were not spatially autocorrelated.

Selecting an ‘optimal model’ from expert-derived
resistance sets

There was considerable variation between the previous studies

and new expert-derived resistance sets, with network area ranging

from 78% to 15% of the total landscape area, containing between

99% and 32% of the squirrel point data (Figure 2). However,

when the networks were tested against the occurrence data within

the matrix all resulting networks contained significantly more

distribution points than expected by chance (n = 842, Stevenson

2008, x2 = 623, df. = 1, p,0.001; Humphreys et al. 2007,

x2 = 238, df. = 1, p,0.001; Williams 2008, x2 = 357, df. = 1, p,

0.001; Verbeylen et al. 2003, x2 = 169, df. = 1, p,0.001; Gonzales

2000, x2 = 213, df. = 1, p,0.001; new expert-derived, x2 = 623,

df. = 1, p,0.001). Using the area-minimisation methodology, the

new expert-derived resistance set was shown to have above 90% of

sightings within the networks and the lowest networks area of 49%

of the total landscape (Figure 2). This was therefore selected and

used for further comparison with the HSM-informed networks.

Comparing expert-derived and HSM-informed networks
The HSM-informed network had significantly more grey

squirrel distribution points within it than expected by chance

(n = 842, x2 = 836, df. = 1, p,0.001). However, the new expert-

derived network contained significantly more points than the

HSM-informed network (n = 842, x2 = 185, df. = 1, p,0.001).

The majority of land cover types were given higher resistance

values using the HSM approach compared to those derived from

the new expert-derived values, with relative differences ranging

from 7–86% (Table 2). These differences were found to be

statistically significant (n = 16, Wilcoxon signed ranks test,

p = 0.002); water and coppice were the only habitats to be

assigned an HSM-informed lower resistance value compared to

those derived from the new expert-derived resistance set. The

Defining Landscape Resistance Values in Least-Cost Models
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largest differences in the resistance values assigned to habitats by

the two approaches were between scrub, tracks, railways and

railway verges (Table 2).

The least-cost model parameterised with the new expert-derived

resistance values identified 738 discrete networks, although two of

these cover substantial areas; habitat network 1 in the north and

habitat network 2 in the south (Figure 3). The mean network size

was 4.7 km2 (684.4). These networks accounted for 42% of the

Cumbrian land cover (3,518 km2) and appear to be separated by

the land cover types within the Cumbrian Mountains. The HSM-

informed resistance values generated comparatively smaller and

more fragmented networks, owing to the higher resistance scores

attributed to most habitat types. This network was 55% the size of

the new expert-derived network (1,953 km2; 34% of land cover)

and sat almost entirely inside it, with only 0.2% extending beyond

the expert-derived network, over areas of water. The mean

network size was 0.3 km2 (65.0) and 5,840 separate networks

were identified in Cumbria (Figure 3). Ten of these were relatively

large (.20 km2). The HSM-informed networks also indicated that

networks in the north and south of the county were separated by

the Cumbrian Mountains range. Both identified Grizdale Forest

and surrounding woodlands as a large, well connected grey

squirrel habitat network (Figure 3).

The smaller HSM-informed least-cost networks contained 592

(70%) of 842 species records within the habitat network (compared

to 772 (92%) using new expert-derived) (Figure 4). As the HSM-

informed scores were based upon the actual distribution data it

was expected that the resulting networks would include a

substantial amount of distribution points. The number of points

outside of the HSM-informed least-cost networks was 250; of these

points missed by the HSM-informed network 180 were included

within the new expert-derived networks. These 180 points were

located in improved/arable/amenity land (77%), gardens (8%),

rough grassland (6%), urban (3%), road (2%), road verge (1%),

tracks (1%), marshland (1%), scrub (1%) or water (1%). The

number of points outside of the new expert-derived networks was

70; of these points none were included within the HSM-informed

least-cost networks.

Discussion

When estimating resistance values Beier [19] highlighted three

ranked choices. Although using animal movement data, genetic

distance or rates of inter-patch movements (option 1) is the

preferable option to define resistance values, animal occurrence

data (option 2) and/or literature review and expert opinion (option

3) may be the only information available to many researchers and

conservationists trying to model functional connectivity in

fragmented landscapes. In this study resistance values derived

from expert-opinion have been compared to HSM-informed

values. Both techniques identified least-cost networks that

contained significantly more distribution points than would be

expected by chance. However, differences occur between the

degree of model assumptions and biases (based on the different

types of data), resistance values for certain land cover types and the

least-cost networks identified. This has implications for the

reliability of using such data in meeting conservation and

management objectives.

To derive a set of expert-opinion resistance values it is useful to

compare previous resistance values from multiple sources,

particularly if the studies have similar species and environmental

Figure 2. Comparison between expert-derived and Habitat Suitability Model-derived resistance values. Note: values that produce a
network with.90% sightings points and the lowest network area is considered the best model for management.
doi:10.1371/journal.pone.0112119.g002
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conditions. The resistance values given in previous studies were

highly variable, resulting in varied least-cost habitat network areas

and number of distribution points within networks. Although the

land cover resistance values given in these studies were for red or

grey squirrels, the studies took place in different countries with

different regional environmental conditions and large scale and

inevitable differences in landscape composition and structure. This

may account for the differences in values given and resulting

networks. Verbeylen et al [3] in particular was focused on red

squirrels and based in an urban area which is very different to the

largely-rural and sparsely populated Cumbria. However by

assessing the range of different resistance values given in these

studies and additional literature on land cover use, the new expert-

derived resistance set was created. The area-minimisation method

suggests that these values appear to be the best set for management

purposes in this area, capturing a high percentage of distribution

points within the smallest network area.

The resistance values for the new expert-derived and HSM-

informed least-cost models in this study were significantly different

from one another. The HSM-informed model provided higher

resistance values for most land cover types. The validity of HSM-

informed least-cost models may be limited as the probability of

occurrence in a particular land cover type does not always equate

to the resistance of that land cover type during species movement

[19]. In using distribution/occurrence data, certain land cover

types may be undervalued when in reality they are used by the

species. Conversely there will be land cover types that are

overvalued. A key assumption of presence only modelling is that

the data has come from random sampling or is representative of

the whole landscape [51]. It is questionable whether the degree of

bias in presence data can be truly known [51]. Squirrels are well

known to use scrub habitat and will use this and linear features to

aid dispersal [13,52–54], yet scrub and railway verge (a linear

feature) were given high HSM-informed resistance values due to a

low number of distribution points. Of the distribution points

missed by the HSM-informed networks but included within the

new expert-derived networks, 77% were within improved/arable/

amenity land cover type. This suggests that the inverted HSM

values for this land cover may be too high, and squirrels may be

able to cross these hostile areas quickly and undetected. The

dispersal distance used for both expert-derived model and the

HSM-informed model were set at 8 km. Therefore, it is the higher

resistance values given to certain land cover types using the

inverted-HSM that led to the identification of smaller and more

fragmented networks.

The HSM-informed networks were 45% smaller than the

expert-derived networks and were spatially nested inside these

networks. The smaller mean size of HSM-informed networks

suggests that grey squirrel occurs in a highly fragmented and

functionally unconnected landscape. Both models highlight the

land cover types of the Cumbrian Mountains as a barrier to

movement; the combination of relatively high elevation and

intense grazing result in a lack of woodland in the area. Although,

some individuals may attempt to cross the barrier, the lack of

available habitat will impede dispersal subjecting individuals to

high levels of predation and starvation. There are no recorded

introductions of the grey squirrel into Cumbria [55,56] and

therefore these animals have been able to spread to their present

Table 2. Average probability of grey squirrel presence according to land cover type.

Habitat type
HSM
p score

HSM-resistance
score

New expert-derived
resistance score

Difference between HSM and Expert-derived
resistance scores

Scrub 0.10 117 16 0.86

Track 0.16 109 27 0.75

Railway 0.17 108 27 0.75

Railway verge 0.17 108 27 0.75

Path 0.34 86 27 0.69

Heath 0.17 108 37 0.66

Garden 0.73 32 11 0.66

Road 0.41 77 27 0.65

Improved/arable/
amenity

0.13 113 40 0.65

Rough grassland 0.13 113 40 0.65

Road verge 0.43 74 27 0.64

Orchard 0.77 30 16 0.47

Urban 0.29 92 72 0.22

Marsh 0.17 108 91 0.16

Broadleaf N/A 1 1 0.00

Coniferous N/A 1 1 0.00

Mixed N/A 1 1 0.00

Building N/A 1000 1000 0.00

Rock N/A 1000 1000 0.00

Coppice 0.86 15 16 20.07

Water 0.18 107 130 20.21

p = mean predicted probability of presence according to habitat type.
doi:10.1371/journal.pone.0112119.t002
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distribution in the north and south of the county by natural means.

The expert-derived model identified two large networks, one in the

north and one in the south, suggesting a much more connected

landscape.

Studies have suggested that expert-opinion based models

perform less accurately than models informed by empirical data

[24,57,58]. Given that HSM-informed networks are derived from

known distribution data, these models could be interpreted as

identifying more precise areas in the landscape that are connected

for a species. In comparison, the expert-derived networks include

those areas where sighting have not been recorded but are judged

by experts as permeable to the species during dispersal. Experts

may overestimate the importance of certain land cover types

erring on the side of caution and therefore rendering the model

less accurate [24]. Where actions might require a more precise

approach, such as identifying possible protected areas or sites for

Figure 3. Grey squirrel least-cost habitat networks identified from expert-derived resistance values. Boundary lines were obtained
through EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/digimap/home.
doi:10.1371/journal.pone.0112119.g003
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an efficient and intensive control program, a HSM modelling

approach would be appropriate. However, when assessing invasive

species it is not just the most likely areas that a species will disperse

to, but the entire possible range that needs identified. In an

invasive species context, it may be more appropriate to apply a

conservative less precise model, such as the expert-derived model,

to enable all possible areas of dispersal to be included within the

network.

In the case of invasive species the assessment of potential

movement and impact is needed as soon as possible to aid

management planning. This method is not dependent upon

extensive species distribution data and can therefore be produced

relatively quickly. Clevenger et al. [24] found that expert only

derived resistance values had a weaker correlation with empirical-

derived values than literature-derived values. Systematically

collecting expert opinion, as promoted by Eycott et al [59], in

Figure 4. Highly fragmented grey squirrel least-cost habitat networks identified with Habitat Suitability Model-derived resistance
values. Boundary lines were obtained through EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/digimap/home.
doi:10.1371/journal.pone.0112119.g004
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combination with published data on land cover usage will enable

resistance values to be assigned in the initial stages to give an

indication of species movements whilst other empirical data is

collected where possible. Adriensen et al [18] suggested that once a

‘starter kit’ of resistance values has been identified, sensitivity

studies can be initiated and multiple alternative resistance sets can

be tested [60]. Once species distribution data is collected, HSM-

informed least-cost networks can be identified and used to aid the

selection of most likely used sites to focus monitoring or

eradication programs. It should not be assumed that using

distribution data (option 2 in Beier et al. [19]) to identify

resistance values is better or worse than using well developed

expert-opinion (option 3 in Beier et al. [19]) as the choice of which

method to use may depend upon the aims and objectives of the

user and the appropriate precision of the approach.

This paper describes the first step towards developing least-cost

habitat networks using ad hoc species records and a simple, land

cover-based habitat suitability model. It is acknowledged, howev-

er, that species respond to their surrounding environment over a

range of spatial scales and that both local and landscape features

will affect both the suitability of the core habitat and the

permeability of the surrounding matrix [5,61]. More complex

models incorporating multiscale information on the terrain, built

environment, and the composition, structure and arrangement of

habitat patches are likely to provide more accurate and useful

models [45], providing predictions at each location, rather than

assuming consistent levels of permeability for a particular land

cover type. This spatially explicit technique would enable

landscape level decision making, improving our ability to identify

important networks of habitat and enabling a targeted and

informed approach to both conservation and infrastructural

development.

Conclusion
Even though approaches to gather expert opinion are becoming

more systematic and robust, it should not be seen as a blanket

substitute for empirical data. Empirical data will continue to be

important for studies on single species, where there is considerable

uncertainty or where there is significant investment in time and

money on conservation activities. Conservation planners must be

aware of the subjectivity and pitfalls of the different types of data

used in least-cost models, without any further validation or

sensitivity testing of model values. If expert opinion is the only

option available it should be used as a first step by systematically

combining multiple expert opinions and published data, but with

the knowledge that further assessment of resistance values through

sensitivity analysis and empirical data will be needed. Where

distribution data is already available, the type of data collection

and the subjective translation issues of over and under valuing land

cover types must be assessed with expert knowledge or empirical

data and explicitly stated in methodologies [51,62].

This study successfully compared expert-derived and HSM-

informed resistance values used in least-cost modelling. Although

the results of the models differed, both identified equally useful

least-cost networks. For the grey squirrel in Cumbria, both expert-

derived and HSM-informed networks have shown that there is a

separation between north and south of Cumbria due to the land

cover types and lack of habitat of the Cumbrian Mountain range.

The expert-derived networks indicate a conservative less precise

least-cost network that indicates the potential dispersal range of the

grey squirrel and suggests that there may be multiple infiltration

routes into the county from the north and south. This conservative

expert-derived approach is useful when dealing with invasive or

generalist species to identify the potential extend of spread. When

assessing endangered or specialist species, or areas that are highly

likely to contain target species, the HSM-informed network

provides smaller precise networks. These precise networks should

be used to inform targeted conservation to increase connectivity

for species of conservation concern, or to inform targeted

management to prevent the incursion of invasive species. The

variable but acceptable precision of both expert-derived and

HSM-informed least-cost networks highlights the need to consider

data reliability and environmental context when deciding on the

most appropriate management of invasive species.
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