ABSTRACT

The principles of using mathematical models to describe processes involved in the movement of water in soils are surveyed from the literature. Various models are considered within a classification system based on the degree of empiricism or mechanism of the approach. Empirical models are compared and contrasted with mechanistic models and the role of these models in agricultural practice is discussed. A new empirical mathematical model to describe the uptake of water by plant roots is developed through a sink term and combined with well established models including the Richards' equation to provide a paradigm for the movement of water throughout the Methods of solution of the model are considered and a finite soil/plant system. difference method is employed to provide a computer implementation of the solutions under a range of initial and boundary conditions. The computer simulation was found to be easily adapted to a variety of field situations. In particular, the introduction of the 'evaporation front' concept and its embodiment in the new sink term, provide insights into the criteria for scheduling irrigations, laying the basis for field verification The use of this mathematical model for determining an optimal and investigation. irrigation regime is discussed in relation to conventional scheduling methods.

IRRIGATION SCHEDULING - A MATHEMATICAL MODEL FOR WATER MOVEMENT IN CROPPED SOILS INCORPORATING SINK TERM AND EVAPORATION FRONT

by

TERRY JANZ, B.App.Sc. (Maths and Computing).

A Thesis submitted for the degree of M.App.Sc. in the University of Central Queensland, Department of Mathematics and Computing, School of Science.

August, 1992.

TABLE OF CONTENTS

Page

LIST OF TABLES AND ILLUSTRATIONS				
ACKNOWLEDGMENTSix				
DECLARATION x				
Chapter				
I. IRRIGATION SCHEDULING 1				
1.1 Introduction				
1.2 Conventional Irrigation Scheduling 2				
1.2.1 Soil Water Availability 3				
1.3 Recent Contributions to Irrigation Management				
II. THE STATE OF WATER IN SOILS - SOME BACKGROUND 14				
2.1 An Overview of the Processes 14				
2.2 The Specific Processes 16				
2.2.1 Redistribution				
2.2.2 Infiltration and Runoff 22				
2.2.3 Water Uptake by Roots 27				
2.2.4 Evaporation, Transpiration and Drying				
III. WATER IN SOILS - MATHEMATICAL MODELS				
3.1 General Types of Mathematical Models 54				
3.2 Classifying Water Movement Models 56				
3.2.1 Mechanism vs Empiricism 57				
3.3 The Models in Detail 59				

IV.	METHODS OF SOLUTION OF ROOT-SOIL-WATER MODELS 69
	4.1 The General Model
	4.2 Methods of Solution for the Richards' Equation
	4.3 Parabolic Partial Differential Equations
	4.4 The Numerical Solution of Parabolic PDE's
	4.4.1 Finite Difference Method
	4.4.2 Explicit Methods
	4.4.3 Implicit Methods
	4.4.4 Crank-Nicolson Method 81
	4.4.5 Derivative Boundary Conditions
	4.4.6 The Tridiagonal Matrix 82
	4.5 More Simplifying Assumptions 83
V.	A NEW MODEL
	5.1 New Models From Old 86
	5.1.1 A Derivation of the Molz and Remson (1970) Uptake Term 87
	5.1.2 Extending the Molz and Remson Sink Term
	5.1.3 A Description of the Whole Model
VI.	THE COMPUTER SIMULATION - THE FINITE DIFFERENCE
	EQUATIONS
	6.1 Method of Finite Differences
	6.1.1 The Continuous Form of the Model
	6.1.2 The Finite Difference Grid 100
	6.1.3 The Finite Difference Form
	6.1.4 Boundary Conditions

Chapter Page
6.1.5 Forward Projection of Water Content in Time and Space 109
6.1.6 The Finite Difference Equations - a Summary
VII. THE COMPUTER SIMULATION - PROGRAM DEVELOPMENT
AND RESULTS
7.1 From Algorithm to Coding
7.2 The Full Simulation
7.3 Running the Simulation - Results
7.3.1 Uncropped Soils
7.3.2 Cropped Soil Simulations
7.3.3 Interrelatedness of Processes
7.4 Conclusions
7.4.1 Scope for Simulations
7.4.2 A Direct Application
7.4.3 Limitations of the Model
BIBLIOGRAPHY159
APPENDIXES
Appendix A: A Derivation of the Flow Equation
Appendix B: A Derivation of Penman's Equation
Appendix C: Full Simulation Pascal Program
Appendix D: Data Tables for Graphs of Simulations
Appendix E: Finite Difference Sink Terms

LIST OF TABLES AND ILLUSTRATIONS

Figure 1.1.	Summary of Methods of Assessing Water Availability to Plants		age . 7
Table 1.1	Monitoring Water Status for Irrigation Scheduling		10
Figure 2.1	Processes Affecting the State of Water in Soils	••••	16
Figure 2.2	The Dual Valued Suction/Water Content Curve Under Hysteresis	••••	17
Figure 2.3	The Moisture Profile in an Infiltration Event as Described by Bodman and Coleman (1944).	••••	24
Figure 3.1	Models of Water Movement in Soils on an Arbitrary Scale from Empirical Models to Mechanistic Models.		57
Figure 4.1	Grid Illustrating the Explicit Method of Solution of Finite Difference Equations		79
Figure 4.2	Grid Illustrating the Implicit Method of Solution of Finite Difference Equations		80
Figure 5.1	Graph Depicting the Relative Proportions of Uptake Rates in Successively Deeper Quarters of the Root Zone		88
Figure 5.2a	Extraction Patterns Immediately Following an Infiltration Event		92
Figure 5.2b	Depth vs Water Content Profile in the Corresponding Situation as Figure 5.2a		92
Figure 5.3a	Extraction Patterns for a Rooting System After Some Drying		93
Figure 5.3b	Depth vs Water Content Profile Corresponding to Figure 5.3a		93
Figure 5.4a	Extraction Pattern of a Root System After Substantial Evapotranspiration	••••	94
Figure 5.4b	Depth vs Water Content Profile Corresponding to Figure 5.4a		94
Figure 5.5	Graph Showing the Extraction Patterns of Roots in the Presence of an Evaporation Front		95

	Page
Figure 6.1	Adjusted Finite Difference Grid with Depth Points Shifted One-half a Step From the Boundaries
Figure 6.2	Grid Showing the Location of Water Content to be Evaluated
Diagram 7.1	Flow Chart Illustrating the Algorithm for the Solution of the Flow Equation Incorporating the Evaporative Flux Boundary Condition
Diagram 7.2	Flow Chart Indicating the Algorithm for the Full Simulation Including Switching on or off irrigation
Diagram 7.2	<i>Continued</i>
Figure 7.1a	Soil Water Profiles 3, 9 and 18 days From the Initial Profile (Day 0) for an Uncropped Soil with No Surface Flux
Figure 7.1b	Soil Water Profiles After 3, 9 and 18 Days From the Initial Profile (Day 0) for an Uncropped Soil with No Surface Flux. The Water Content Scale has been Enlarged to Show Greater Detail than Figure 7.1a
Figure 7.2	Soil Water Profiles After 3, 10 and 18 Days of Soil Surface Evaporation in an Uncropped Soil
Figure 7.3	Soil Water Profiles After 3, 6, 10 and 18 Days in a Cropped Soil with No Evaporation or Infiltration at the Surface
Figure 7.4a	Soil Water Profiles from the Initial Profile (Day 0) to Day 18, Under an Extended Evaporation Event in Cropped Soil, as Generated by the Full Simulation Program of Section 7.2
Figure 7.4b	Macroscopic View of the Top 60cms of the Drying Profiles in Figure 7.4a. The Evaporation Front Moves Down as the Profile Dries
Figure 7.5	Soil Water Profiles Comparing the Sink Term of Molz and Remson (1970) and the Sink Term Incorporating the Evaporation Front After 18 Days of Evapotranspiration
Figure 7.6a	Water Content Profile After One Day of Infiltration From the Initial Profile (Day 0)

	Page
	Profiles of the Second and Third Successive Days of Continued Maximum Infiltration
	Water Content Profiles of a Soil Subjected to Four Days Drying From an Initial Distribution (Day 0) to the Drier Day 4 Profile. The Day 5 Profile is a Result of Constant Maximum Infiltration for One Day
-	Soil Water Profiles of the Same Situation in Figure 7.7a but Showing the Profile on the Seventh Day, After Three Days of Maximum Infiltration
•	Soil Water Profiles of Day 7 (the Third and Final Day of Irrigation) and Day 8 which is after a Complete Day of Drying
	The Drying Sequence on Days 8, 13 and 18 which Represent One, Six and Eleven Days of Drying Respectively After Three Days of Maximum Infiltration 146
Figure 7.8	Soil Water Profiles Comparing the Effect of Surface Evaporation on Redistribution
Figure 7.9	Water Profiles Illustrating the Effect of the Sink Term
Figure 7.10	Comparison of the Olsson and Rose (1988) Profile with the Numerical Simulation After 18 Days of Drying. The same initial and boundary conditions were used
Figure 7.11a	Water Content Profile Day 7, Represents the Result of Seven Days Drying from the Initial Profile on Day 0. The Profile of Day 8 Resulted from Maximum Infiltration for One Full Day from the Day 7 Situation
Figure 7.11b	The Day 10 Profile Follows Three Days of Maximum Infiltration from the First Day of Infiltration on Day 8
Figure 7.11c	These Series of Profiles Represent Eight Days of Drying Following the Third and Final Day of Maximum Infiltration on Day 10

ACKNOWLEDGMENTS

I wish to thank my supervisor, Dr. Russel Stonier of the University of Central Queensland, Department of Mathematics and Computing, for his encouragement, direction and energetic support throughout the course of this study.

DECLARATION

This thesis contains no material which has been accepted for any award at any institution. Furthermore, to the best of my knowledge, these works do not contain any material previously published or written by another author except where duly referenced in the text of this thesis.

Х