
ABSTRACT

The principles of using mathematical models to describe processes involved in the
movement of water in soils are surveyed from the literature. Various models are
considered within a classification system based on the degree of empiricism or
mechanism of the approach. Empirical models are compared and contrasted with
mechanistic models and the role of these models in agricultural practice is discussed.
A new empirical mathematical model to describe the uptake of water by plant roots is
developed through a sink term and combined with well established models including the
Richards' equation to provide a paradigm for the movement of water throughout the
soil/plant system. Methods of solution of the model are considered and a finite
difference method is employed to provide a computer implementation of the solutions
under a range of initial and boundary conditions. The computer simulation was found
to be easily adapted to a variety of field situations. In particular, the introduction of
the 'evaporation front' concept and its embodiment in the new sink term, provide
insights into the criteria for scheduling irrigations, laying the basis for field verification
and investigation. The use of this mathematical model for determining an optimal
irrigation regime is discussed in relation to conventional scheduling methods.
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