

Copyright © 2009 Institute of Electrical and electronics Engineers,
Inc.
All Rights reserved.
Personal use of this material, including one hard copy
reproduction, is permitted.
Permission to reprint, republish and/or distribute this material in
whole or in part for any other purposes must be obtained from the
IEEE.
For information on obtaining permission, send an e-mail message
to stds-igr@ieee.org.
By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.
Individual documents posted on this site may carry slightly
different copyright restrictions.
For specific document information, check the copyright notice at
the beginning of each document.

mailto:stds-igr@ieee.org

Ubiquitous Multicore (UM) Methodology for Multimedia

Ashley Chonka, Member, IEEE, Wanlei Zhou, Member, IEEE and Leanne Ngo, Member, IEEE
School of Engineering and Information Technology,

Deakin University, Melbourne
{ashley, wanlei,mln}@deakin.edu.au

Yang Xiang, Member, IEEE

School of Management and Information Systems
Centre for Intelligent and Networked Systems

Central Queensland University
y.xiang@cqu.edu.au

Abstract

For at least a decade or more, multimedia
developers have taken for granted, that each
generation of microprocessors would lead them to
modify their application, in order make them run
substantially faster. This so-called ‘free’ ride seems to
be coming to an end, with results in increased clock
speeds, the widening of the gap in processor and
memory performance, and the tradeoffs that are
needed to meet the former two points. In this paper, we
propose a ubiquitous multicore (UM) design, in order
to speed up computations and allow real-time
multimedia. To accomplish this objective, we separate
out the different multimedia and place them on their
own separate core processors. For example, a
manager trains his/her staff on security, by utilizing
different multimedia. For example, showing a visual
documentary on security which asks staff members
questions, records their answers and updates the
manager in real-time. As our experiments show, our
UM system increases performance speeds at an
average of 100%, with the average execution cost of
1.4ms, which shows multimedia resources are being
used more efficiently and effectively.

Index Terms — Multicore, Multimedia, Ubiquitous
Multicore framework

1. Introduction

As systems become more complex, multimedia
designers are demanding more computational speed, in
order to complete multimedia tasks within a

“reasonable” time. This demand by multimedia
designers is not the only area in Computer Science
requiring greater processing speed. The information
industry, in general, is pushing forward towards
providing more computer systems that contain multi-
processors. For example Networks, Security, Web
Services etc [1][2][3] are among these areas. Multicore
can be defined as two or more core processors that are
connected to a single CPU. These core processors
incorporate into their design, microprocessors, which
in turn share computer resources. For example, L2
cache and front-side bus are shared resources[4][5].

With the push of these multicore systems, software
developers are confronted with increases in
complexity, such as multicore systems will roughly
double every 18 months, which is forcing programmers
to adopt from serialized to parallelized programs.
Further, communication efficiency will be more
essential, since cache resources will go down as more
cores are implemented. This means that cache
fragmentation and ‘stale’ cache will tend to get worse
[13].

In this paper, we build upon our previous framework
on multicore architectures [6], called ubiquitous
multicore (UM). Our UM framework was applied a
security system that we designed and implemented on
a multicore framework [6], in order to improve
performance and also deal with the issues confronting
security applications on multicore systems. In [6] we
separated out applications to run on their own separate
core processors and found that we had a +15% increase
in performance. We have found that this type of
framework can be expanded into other areas like
SPAM filtering [7] (currently under review) and can be

International Symposium on Computer Science and its Applications

978-0-7695-3428-2/08 $25.00 © 2008 IEEE

DOI 10.1109/CSA.2008.75

131

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

applied to many other areas that require parallel
processing, like multimedia. Hence, the reason of
calling this framework ubiquitous multicore, since our
framework can be applied as long as there is a multi-
core system. In [6][7] a number of advantages were
pointed out, in which could be applied to multimedia,
such as: different media applications running on
isolated environments, different media application
running in real-time with each other, multimedia
activities could be monitored and visualized in real-
time. Lastly, multimedia troubleshooting could be
greatly enhanced. The rest of this paper is organized as
follows. Section Two briefly covers the related work
done in multi-core and the UM framework. The
application of UM framework being applied to
multimedia design is discussed in Section Three.
Section Four presents the experiments and
performance evaluation that were conducted. Lastly,
Section Five covers the conclusion and future work.

2. Related Work

In this section, we discuss briefly our UM
framework, the use of multicore on multimedia
applications, and two other areas where our multicore
framework has been applied.

2.1 Ubiquitous Multicore (UM) Framework

 The Ubiquitous Multicore Framework is built from

a divide-and-conquer approach [9], by dividing our
applications and placing them on separate core
processors (Figure 1). For example, multi-media
applications are grouped together and ran on their own
separate core-processors along side group security
applications, which in turn run on their own core
processors. The application core assigner (ACA),
assigns the application either on behalf of the user, or
the user can

Figure 1. Ubiquitous Multicore Framework
select from the core(s) that are available. Once an
application is assigned to a core, depending on the

application program, a number of jobs or threads can
then be executed on this core processor, see figure 2.

2.2 Multicore systems used for multimedia
applications.

Multicore systems have two or more processing

cores integrated into a single chip [1][2][3]. In such a
design, processing cores have their own private cache
(L1) and a shared common cache (L2). The shared
cache and main memory share the bandwidth between
all the processing cores. Multimedia co-processor
interface was developed by [8], in which they used a
multicore system to offload task management jobs
from MPU or DSP. From their evaluations conducted
on a JPEG file, Ou et al. achieved an overall
performance increase of 57%, while they kept their
overhead to 1.56% of the DSP core. The UM
framework is very different from Ou et al., in which
UM is more abstract, by applying applications (not
separate sections of a file) to separate core processors.

2.3 UM Framework for a Security Application

In our first paper [6] on multicore systems, we

presented a multicore defence framework called
bodyguard. Using this framework, we developed a
bodyguard called Farmer (named after the Kevin
Costner character in the movie, bodyguard). The basic
hypothesis of the bodyguard framework, was to
separate all security processes from other processes
(email, browser, etc), and assign them to a set of cores.
The remaining cores within the system were assigned
to the applications that require security. The bodyguard
framework is made up of a Forward Bodyguard (FB)
and Side Bodyguard (SB). For example, in our Farmer
bodyguard, the SB is responsible for providing a fast
decision on whether to filter out any attack traffic.
From this paper, we then were able to see that this type
framework could be applied to other areas, like
multimedia and Spam filtering, which lead us to the
development of the Ubiquitous Multicore Framework.

Figure 2. Example of Thread Processes on Core 0

132

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

2.4 UM framework for Multi-classifier Spam
Filtering

To follow up on [6], we then applied our multicore

framework to a multi-classifier SPAM filter. We found
that if each classifier process is run in parallel with
each other, it greatly improved the performance of our
multi-classifier architecture, in the areas of false
positives reduction and increase accuracy. Further,
advantages that our multicore framework provided, are
as follows:
• Reduced computation burden of the overall mail

server.
• Reduced memory storage, email messages are

processed independently from other classifiers.
• When one of the classifiers becomes idle it will

directly go into training mode, thereby optimizing
resource usage.

• Is robust as the adaptive selection can still provide
accurate email classification if one of the core
fails.

2.4 UM framework for Bio-Inspired
Multimedia

In our most recent paper [19] we applied the UM
framework to Telemedicine. Our experiment show, our
UM system increases performance speeds at an
average of 30%, with the average execution cost of
1.4ms, which shows multimedia resources are being
used more efficiently and effectively. The benefits are
as follows:
• By partitioning each application and its sub-tasks

to separate cores, it will result in reducing the
computational burden of the overall multicore
system.

• Memory storage requirements will be reduced,
since each application is assigned its own L1
cache.

• If one of the applications is idle, then its core
processor can be assigned to assist the other
applications, this leads to a fully optimized usage
of resources.

• Lastly, if one of the applications fails, then the rest
of the doctor’s applications are still able to
function, while maintenance is completed.

3. Applied UM Framework to multimedia
applications

In this paper, we used the case study from [14], with
the overall aim to help company staff members

Figure 3 E-Learning IT Security Multimedia Application

their IT security culture and awareness based on our IT
Security Culture Transition Model [15]. To
accomplish this task a case study was conducted, in
which a questionnaire was setup for staff members to
answer. In conjunction as to answering the questions,
the administrator was monitoring in real-time. Figure
3, displays an example of how to use the UM
framework to develop and build our E-learning IT
multimedia application

3.1 E-Learning IT Security Multimedia
Multicore Algorithm (ELITE MA)

From figure 3, we develop Figure 4 ELITE MA (E-
Learning IT Security Multimedia Algorithm). In order
to partition the application takes into consideration the
following the developmental algorithm equations of
[17][18]. Note: Our algorithm calculations are a little
different from Fosters and Wilkinson et. al., since they
deal with multiple processors on different machines,
our algorithm equations are based on multi-core
systems. The total communication time for the 4
partition applications in a multi-core environment is as
follows:

1
((*) 1)

(*)c o m m d
n c p t c pt t

c p t c p=
−

(1)

where mdt is the transmission time for a data message
sent over broadcasting, n is the power of 2, cp is each
core processor being used, and tcp is the number of
processor to be used. Computational time is
represented by counting the number of computational

(,) *c o m pt f n c p tc p= (2)

133

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

Figure 4. E-Learning IT Security multimedia
Algorithm (ELITE MA)

steps, usually if all processors are being used then just
one process computation is necessary: where n is the
number of computation and cp is the number of cores.
Communication Time is depended
upon the number of messages, size of the message,
communication infrastructure (communication and
network):

_com beg startup mdt t wt= +

(3)

_beg startupt is the message latency, which is the time it
takes for a message to be sent with no data. The data
messages sent via each partition is found in the
formula:

2 (l o g (*))c o m m dt c p t c p t= (4)

For the total communication time is as follows:

1 2
((*) 1)

(*)
(log(*))

ttc com com md

tc ttc md

n cp tcpt t t t
cp tcp

T T cp tcp t

−= + =

= +

(5)

(6)

The computation formula for the 4 partition
applications at the end of the partition phase (7) is as
follows:

(*)c o m p
nt

c p t c p
=

(7)

This gives us the Overall Execution Time for the 4
partition applications in the following formula:

1

((*) 1) log(*)
(*)

log(*)
(*)

p md

p p

n cp tcpt cp tcp t
cp tcp

nt t cp tcp
cp tcp

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

= + +

(8)

(9)

The very best speedup we could expect, when the 4
partitioned applications have completed their
computations, is as follows:

1
((/ *)((*) 1) log(*)

/(* log(*)

s

p md

t n
t n cp tcp cp tcp cp tcp t

n cp tcp cp tcp

−=
− +

+ +

(10)

The actually speedup will be less than this due to
partition phase; computation/communication (c/c) ratio
is as follows:

/(*) log(*)
((/(*))((*) 1) log(*))

tcom

comp md

t n cp tcp cp tcp
t n cp tcp cp tcp cp tcp t

+=
− +

(11)

For load balancing we use the Mandelbrot computation
[16], in which if the maximum performance (mp) is
reached for the processor, it will then search for
another core processor to continue the work.

*sT mp m≤ (12)

To partition the application correctly we use three
phases communication, computation and
communication.
Phase 1:

1 (1)()comm stup dt p t t= − + (13)

Phase 2:
*
1comp

mp nt
p

≤
−

(14)

Phase 3:

2 ()comm stup dt u t vt= + (15)

In order to maintain the highest speedup and
computation/communication ratio we use the Overall
Execution Time(16), Speedup factor (17), C/C ration
(18):

* (1)()
1p stup d

mp nt p t t k
p

≤ + − + +
−

(16)

*

* (1)()
1

s

p
stup d

t mp n
mp nt p t t k
p

=
+ − + +

−

(17)

*

(1)((1)())stup d

mp n
p p t t k− − + +

(18)

4. Performance Evaluation
We evaluate ELITE MA by simulating Figure 3, in

which we assigned 4 applications on a multicore
system.

134

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

4.1 ELITE MA Performance Analysis
To assess the performance of our multicore system,

we compared the two kernel benchmarks. The
hardware on the multicore system had Intel Core 2
Quad Q6600 2.4GHz Quad Core Processor, 2 GB of
RAM and 2 300GB SATA hard-drives. The kernel
under measurement was 2.6.22.14.72 fc6. To gather
computational data, we included timers with our
application, in order to record execution times.
Communication time is depended upon the number of
messages, the size of the message and the
interconnection speed. We have decided to set the
standard to 10ms, for each message sent by Text Based
and Audio Based Questionnaire, followed by 20ms
being applied to Database and Monitoring.

4.2. Simulation Setup

4.2.1 Benchmark factors

Once we have the execution times ts, computational
time tcom, and communication time tcom, we can
establish what the speedup factor (19) and
computation/communication ratio (20) from a single
core to multicore system. The speedup is as follows:

s s

cp comp com

t t
t t t

=
+

(19)

Where ts will stand for execution time on a single core
processor (tcp), this includes computation time and
communication time.

c o m p

c o m

t
t

(20)

 Core 1 Core 2 Core 3 Core 4
Exe Time 1.5ms 1.4ms 1.3ms 1.4ms
Comp
Time

.5 ms .9ms .3ms .9ms

Comm
Time

1ms .5ms 1ms .5ms

Speed
Ratio

100% 100% 100% 100%

C/C 0.5 1.8 0.3 1.8
Time
Complex

7.5 7.5 7.5 7.5

Cost 1.5 1.4 1.3 1.4
Cost-
Optimal

3.7 3.7 3.7 3.7

Table 1. Results of speedup and the costs, which show
an average increase of 100% at the average cost of
1.4ms

84
86
88
90
92
94
96
98

100
102

1 2 3 4

cores

%

Max

Min

 Figure 5 Min(90%)-Max(100%) CPU usage that was
archived during our simulation

Apart from speedup and the
Computation/Communications ratios, we also evaluate
the ELITE MA algorithm, through the use of Time
Complexity or “big-oh”, also referred to as “order of
magnitude” [12]

() (())f x O g x=

[]0 () ()f x cg x≤ ≤ for all 0x ≥

(21)

Where f(x) and g(x) are functions of x. A positive
constant, c, has to exist for all 0x x≥ otherwise it is
zero. To evaluate Time complexity, we use the total
sum of computation and communication (11)

(/ 1) (2 (/ 1)cp com stup mdt t n cp t n cp t+ = + + + +
(22)

Where n is the number of threads on each core
processor. The last benchmark we will use is the cost
and cost-optimal.
Cost = (execution time) * (total number of processor
used)
Cost Optimal = time complexity * number of processor
= (n log n)

4.2.2 Simulated Program

To measure and evaluate the performance, we wrote
4 simple programs to simulate the media applications,
and assigned them to 4 cores within our multicore
system by using affinity methods. The multimedia
functions are simulated, by the 4 programs just to
demonstrate the model, though 4 actual multimedia
programs are planned in the future.

4.2. Evaluation

Based on our evaluations, displayed in table 1 and
figure 5, we see that a speed average of 100% was
archived at the average cost of 1.4ms. This is achieved
by separating out each application and allowing them
to run on their own separate cores. The 100% ratio, we
think is a bit optimistic; thereby computation time and

135

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

communication time do need to be tested in real-time,
to give more accurate account. The time complexity
results also show that the efficiency of our algorithm is
at 7.5. This means that for 13 computational steps
(estimate) we achieved 7.5 data items. So, the more
computations that are done the more data items we
complete. For example, 15 computational steps will
give us 8.5 data items. One of the results, the
Computation/Communication Ratio shows that it was
less then Time Complexity. This means, it will not
improve speedup or efficiency beyond the figures we
already have. Lastly, we see that the cost of running
our program was below the cost-optimal, and at the
same achieving an average of 95% CPU (see figure 5).
This means that our model/program was quite cost
efficient to run and resource usage (CPU) was almost
fully optimized. Also, due Time Complexity is higher
then Computation/Communication Ratio it would not
be worthwhile trying to send our costs up to reach the
optimal, since we would gain no performance benefit

5. Conclusion and Future Work

In this paper, we introduced a ubiquitous multicore

framework, which was generated from our previous
work on multicore. From this framework, we designed
and built a multimedia multicore system called ELITE
MA. The goal of such a system is to use the new
multicore machines that are coming out, in order to
fully utilise the power of the multicore system. We
show with our experimental results that a speedup
average of 100% with an average cost of 1.4ms, and a
CPU efficiency of +90% for multimedia programs. In
the future, we are plan to move our new multicore
system on to the enterprise grid system (a number of
machines with 4 cores each), at Deakin University, and
to improve upon our results.

6. Acknowledgements

This research was supported by the ARC Linkage
grant (Project number LP0562156).

7. References

[1] Multi-Core from Intel – Products and Platforms. http:
//www.intel.com/multi- core/products.htm, 2006.
[2]AMD, (2008), http://multicore.amd.com/en/Products/,
2006.
[3] Gorder, P.M, (2007), ‘Multicore processors for science
and engineering’, IEEE CS and the AIP, 1521-
9615/07/,March/April 2007
[4] Calandrino, J.M, Anderson, J.H., and Baumberger, D. P,
2007, ‘A Hybrid Real-Time Scheduling Approach for Large-

Scale Multicore Platforms’, 19th Euromicro Conference on
Real-Time Systems (ECRTS'07), IEEE, 2007
[5] Bader, D.A, Kanade, V and Madduri, K, (2007),
‘SWARM: A Parallel Programming Framework for
Multicore Processors’, Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International 26-30
March 2007 Page(s):1 – 8
[6] Chonka, A., Zhou, W., Knapp, K and Xiang, Y.,
(2008), "Protecting Information Systems from DDoS Attack
Using Multicore Methodology", IEEE 8th International
Conference on Computer and Information
Technology, IEEE, 2008.
[7] Islam, R. M.D, Singh, J, Zhou, W., and Chonka, A.,
(2008) , “Multi-Classifier Classification of Spam Email on a
Multicore Architecture”, Proceedings of IFIP International
Conference on Network and Parallel Computing, 2008
[8] Ou, S.H., Lin, T.J., Deng, X.S., Zhuo, Z.H., Liu, C.W.,
(2008), “Multithreaded coprocessor interface for multi-core
multimedia SoC’, Proceedings of the 2008 conference on
Asia and South Pacific design automation, Seoul, Korea
SESSION: University LSI design contest, Pages 115-116,
ISBN:978-1-4244-1922-7, 2008
[9] JaJa, J. (1992), ‘An Introduction to Parallel Algorithms”,
Addison Wesley, Reading, MA
[10] Pierucci, L, and Del Re, E, (200), "An Interactive
Multimedia Satellite Telemedicine Service," IEEE
MultiMedia, vol. 07, no. 2, pp. 76-83, Apr-Jun, 2000
[11] Sicurello, F, (2001), “Some aspects on telemedicine
and health network”, Image and Signal Processing and
Analysis, 2001. ISPA 2001. Proceedings of the 2nd
International Symposium on Volume , Issue , 2001
Page(s):651 – 654
[12] Knuth, D.E, (1976), “Big Omicron, Big Omega and Big
Theta”, SIGACT News (April-June), pp18-24
[13] Dongarra, J., Gannon, D., Fox, G., Kennedy, K. "The
Impact of Multicore on Computational Science Software ,"
CTWatch Quarterly, Volume 3, Number 1, February 2007.
http://www.ctwatch.org/quarterly/articles/2007/02/the-
impact-of-multicore-on-computational-science-software/
[14] Ngo, L, Lanham E., Zhou, W., Warren, M.,
(2007), ‘Using E-learning to improve to Improve IT
Security in a corporate environment: A Case Study’
[15] Ngo, L, (2008), ‘IT Security Culture Transition Process’
IGI Global encyclopedia, Encyclopedia of Information Ethics
and Security, edited by Dr. Quigley
[16] Wilson, G.V, (1995), ‘Practical Parallel Programming’,
MIT Press, Cambridge, MA
[17] Foster, I, (1994), “Designing and Building Parallel
Programs: concepts and tools for parallel software
engineering”, Addison-Wesley Publishing Company, (1994)
[18] Wilkson, B & Allen, M, (2005), “Parallel
Programming: Techniques and Applications using network
workstations and parallel computers”, Pearson Education,
Pearson Prentice Hall, (2005)
[19] Chonka, A., Zhou, W., and Xiang, Y., (2008), “Bio-
Inspired Multimedia using Ubiquitous Multicore
Methodolgy”

136

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on February 16, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

	1
	2
	3
	4
	5
	6
	7
	8

