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Abstract— This paper presents an over-segmentation and 
validation strategy for off-line cursive handwriting recognition. 
Over-segmentation module is employed to find all the possible 
character boundaries. Then, the incorrect segmentation points 
from over-segmenting module are removed by validating 
processes. The over-segmentation was performed based on the 
vertical pixel density between upper and lower baselines. 
Wherever the pixel density is less than threshold, an over-
segmentation point is assigned. After the over-segmentation is 
done, validation starts removing over-segmentation points. The 
first validation module checks if a segmentation point lies in hole 
region. The second validation module compares total foreground 
pixel between two neighbouring segmentation points to a 
threshold value. The third validation module is neural network 
voting by neural network classifier trained on pre-segmented 
characters. Finally, the oversized segment validation process 
checks if there is any missing segmentation point between 
neighbouring characters. The proposed approach has been 
implemented, and the experiments on CEDAR benchmark 
database have been conducted. The results of the experiments are 
very promising and the overall performance of the algorithm is 
more effective than the other existing segmentation algorithms. 
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I.  INTRODUCTION 
The ultimate goal of off-line cursive handwriting 

recognition is machine simulation of human reading. The 
useful applications have been found in many industrial sectors 
like postal service, form processing, bank cheque processing, 
and historical manuscript conversion into electronic format. 
However, after more than four decades of efforts from many 
researchers, the performance of off-line cursive handwriting 
recognition is not good enough for real world application [1, 
2]. 

A.  Off-Line Handwriting Recognition 
The typical internal process of off-line handwriting 

recognition consists of preprocessing, segmentation, and 
recognition. However, some of the stages are merged or 
omitted, depending on the methods of recognition. In general, 
the pre-processing and normalization algorithms are 
independent of the recognition approach of the system, but 
segmentation is tightly coupled with recognition algorithms 

[3]. The general off-line handwriting recognition system is 
shown below in Fig. 1. 

1) Pre-processing 
A series of document analysis tasks are required prior to 

recognizing letters from scanned documents. Some common 
processes are thresholding [4], noise removal [5], slant and 
slope correction as normalization, and thinning. The main 
objective of the pre-processing is to produce an image 
containing the word to be recognized without any other 
disturbing elements. 
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Fig. 1. Framework of off-line handwriting recognition 

 
2) Segmentation 

Segmentation of cursive words into characters is one of the 
most difficult processes in handwriting recognition and it is 
also defined as one of the most important processes because it 
directly affects the result of recognition process [6-8]. As the 
segmentation constraints, the main factors are the non-
separability of characters, the diversity of character patterns, 
ambiguity and illegibility of characters, and the overlapping 
nature of many characters in a word. Because of such factors, 
the most existing segmentation algorithms confront major 
problems, such as inaccurate character cuttings, missing 
segmentation points, and over-segmentation of a same 
character [9, 10]. Currently available segmentation techniques 
are holistic [11, 12], dissection [13], recognition-based 
segmentation [14], and over-segmentation approaches [15-17]. 

3) Recognition 
During the recognition process, generally the shape features 

are extracted from the segmented images, and the appropriate 
class is assigned to the observed character. Various feature 
extraction techniques are incorporated with various intelligent 
classifiers in the literature. A black box model [18], contour 
profile [19], stroke direction [20], and global and local 
information [21] are fed to neural network classifiers. HMM 
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based classifiers are used with features of angle, distance, 
horizontal and vertical spans [22].   

The rest of this paper is organized into four sections. 
Section II describes the proposed over-segmentation and 
validation algorithms in detail. Section III presents the 
experimental results. An analysis of experimental results and a 
comparison are presented in Section IV. Finally, Section V 
concludes the paper. 

 

II. PROPOSED OVER-SEGMENTATION AND 
VALIDATION ALGORITHMS 

The overview of the proposed over-segmentation and 
validation approach is shown below in Fig. 2. 
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Fig. 2. Proposed over-segmentation and validation approach 

A.  Pre-Segmentation Process 
The pre-segmentation component prepares the handwritten 

image for the character segmentation process. Line and word 
segmentation processes are performed in this step. The 
outcome of this process is the word image tokens, and they are 
delivered to over-segmentation process for character 
segmentation. 

B. Over-Segmentation Process 
The purpose of this module is to separate the text words 

into characters. Firstly, parameters of stroke thickness and 
baselines are calculated from each word image outputted 
through pre-segmentation process. Based on the parameters, 
over-segmentation between baselines is performed to produce 
over-segmentation points. Those over-segmentation points will 
be passed through multiple validation modules to decide the 
final segmentation points. 

1) Stroke Thickness Measurement 
In the proposed approach, the stroke thickness is calculated 

on each word to reflect the variation between words. To 
prevent the over-measurement of the stroke thickness, the 
maximum boundary has been set to a value, one fourth of word 
image height. Through the horizontal and vertical scan of the 
image for the transition distances of foregrounds, the most 
occurring transition distance becomes the stroke thickness of 
the word image. 

2) Baseline Calculation 
Measuring the baselines by the horizontal pixel density 

histogram is one of the favorite methods among researchers. 
However, the proposed approach uses a novel method to find 

more accurate baselines. In the proposed strategy, the upper 
baseline candidates are nominated by measuring the distance 
from the upper-most pixel to the first foreground pixel. 
Secondly, the number of vertical transitions is measured to 
exclude the extensive horizontal line letters like ‘T’, ‘L’, etc. 
After the calculation of the number of transitions and the 
distances of every single column, a search algorithm for best 
upper baseline is applied. Firstly, for each row a temporary 
upper and lower boundary is set with the row in the middle and 
the temporary boundaries height is set to the same as the stroke 
thickness. Finally, summation of the occurrence of the 
distances to the first foreground pixel decides the upper 
baseline. Likewise, the lower baseline is measured. However, 
this method is effective on words containing letters with holes 
or partially closed area, such as ‘c’, ‘e’, etc. Fig. 3 displays the 
examples of baseline measurement. The first example reflects 
the intended outcome of the algorithm. However, the second 
one draws the upper baseline too high because of extensive 
ligature of the first letter, R. 

good

bad  
Fig. 3. Baseline comparison  

 
3) Over-Segmentation between Baselines 

Before proceeding to over-segmentation, there is a crucial 
pre-task to be conducted, which is to decide a threshold. The 
vertical pixel density between upper and lower baselines is 
compared to the threshold, and the decision is made whether 
the appointed points are appropriate as candidate segmentation 
points. Finally, a continuous region of the candidate 
segmentation points is divided into smaller sizes having the 
same width as the stroke thickness to prevent under-
segmentation. However, this algorithm fails on touching points 
bigger than (StrokeThickness × 2). Fig. 4 displays the different 
results on different segmentation thresholds, and the 
segmentation threshold in the example b) produces better 
results because it prevents under-segmentation problems. 

C. Multiple Validation Modules 
This section describes the validation processes used in the 

proposed methodology.  

1) Hole Detection 
Hole detection algorithm is applied to every single over-

segmentation point, and the detected points are immediately 
removed from the candidate segmentation points. As shown in 
Fig. 5, the segmentation points on the characters with holes like 
‘L’, ‘e’, ‘o’, ‘d’, ‘o’, ‘o’, and ‘d’ from a word ‘Leonardwood’ 
have been removed by the algorithm. 

2) Total Foreground Pixel Comparison (TFPC) 
Based on an assumption that a legal character contains the 

minimum amount of foreground pixels equal to a threshold, 
(StrokeThickness × (LowerBaseline – UpperBaseline)), each 
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segment between two neighboring segmentation points is 
checked for legality. If the total foreground pixel of a segment 
is less than the threshold, its segmentation points are merged or 
moved to a prospective new segmentation point within the 
segment. This algorithm scans through all over-segmentation 
points recursively from left end to the right end. An example of 
the TFPC application is show in Fig. 6.  

 

a) SC = SW + SW / 2 : fails to over-segment between w and o

b) SC = SW * 2 : w and o are correctly over-segmented  
Fig. 4. Over-segmentation results depending on segment threshold (SC) and 

stroke thickness (SW) 
 

 b) after hole dection applied

a) over-segmentation points

 
Fig. 5. Examples of hole detection algorithm application 

  

 
Fig. 6. TFPC application to example b) from Fig. 5 

 
3)  Validation by Neural Network Voting 

Validation by neural network voting is a type of 
knowledge-based validating process on over-segmentation 
points. The neural network is trained on pre-segmented 
character shapes. The neural classifier takes 100 transition 
features of a character as an input and outputs one of 53 
classes, which are 52 classes for lower and upper cases of 
alphabets, and 1 for rubbish characters. In the neural voting 
validation process, each segmentation point is tested and 
validated from left to right order. Invalid segmentation points 
are removed immediately and reset the segmentation point 
status. Inside the neural voting system (Fig. 7), the left, right 
and joined segment checkers get a left, right, joined segment 
region (shown in Fig. 8) from the testing segmentation point. 
The left and right checkers throws a positive vote on positive 
result. On the other hand, the joined checker throws negative 
vote on positive result.  

Left segment
checker

Joined segment
checker

Right segment
checker votes > 1segmentation
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Fig. 7. Architecture of the neural network voting module 
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Fig. 8. Segment regions based on testing segmentation point 
 

4) Oversized Segment Analysis 
The oversized segment analysis is adapted to prevent 

missing segmentation point between neighboring characters. 
The detection of oversized segment is based on measuring the 
width of the segment, and compares the width to pre-defined 
threshold. In the proposed approach, the threshold is set to the 
height of each testing word outputted through pre-segmentation 
module. On detection, a new segmentation point is located on 
middle of the segment. 

 

III. EXPERIMENTAL RESULTS 
This section describes the implementation platform, the 

database, and the experimental results. 

A.  Implementation 
The proposed approach used C++ programming language 

to implement all the algorithms described in previous section. 
The implementation strictly followed the object oriented 
principles. 

B. Database Preparation 
The experiment is conducted on a CEDAR benchmark 

database to perform the comparative analysis against the 
segmentation results from the literature. For neural network 
training, pre-segmented 5708 characters were used from 
CEDAR\TRAIN\BINANUM\BD and BL directories. The 
training data set was divided into two data sets for training and 
testing in 9 to 1 ratios. The final segmentation was 
experimented on 311 words from CEDAR\TEST\CITIES\BD 
directory.  

The neural character classifier also needs rubbish character 
database during training. However, there is no benchmark 
database for rubbish characters. So, the rubbish characters were 
generated by over-segmenting characters from training set. By 
manual inspection of the over-segmented primitives, the most 
dissimilar primitives to characters were selected as rubbish 
characters.  

C.  Neural Network Training 
An Error Back-Propagation (EBP) algorithm is used to 

train the neural classifier. A 100 transition feature of a 
character was taken as an input to the classifier. The output of 
the classifier is one of 53 classes. 52 classes are for 52 English 
alphabet characters (upper + lower cases), and 1 for the 
representation of non-character, rubbish character. After 
multiple attempts with different configurations of neural 
network parameters, 61.4% of classification accuracy was 
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achieved. In future research, improving the accuracy of the 
neural classifier should proceed over other improvements.    

D. Final Segmentation Results 
Segmentation results are measured by counting the 

segmentation errors. The segmentation errors have three 
categories, over-segmentation, under-segmentation, and bad-
segmentation as described in [8]. The over-segmentation error 
occurs if a character is segmented into more than three 
segments. Under-segmentation occurs if there is a missing 
segmentation point between two neighboring characters. 
Lastly, the bad-segmentation is defined as the rest of 
inappropriate cuts that don’t belong to under-segmentation and 
over-segmentation, and don’t separate two characters correctly. 
The final segmentation performance result is shown in Table I. 
The segmentation error rate was calculated by dividing the 
number of error for each category by the total number of 
character in testing database.  

IV. ANALYSIS AND DISCUSSION 
The final segmentation results shown in TABLE I are the 

segmentation error rates for each segmentation category. 
Firstly, the over-segmentation error was the highest as 6.58%, 
followed by under-segmentation error of 6.47%.  The bad-
segmentation error was the lowest as 3.49%. The average 
segmentation error was 5.5%.  

Under-segmentation error could be caused by following 
reasons. Firstly, the over-segmentation module failed to locate 
the segmentation point initially. But from the previous study, 
the under-segmentation error from the over-segmenter was 
close to zero. So, it is unlikely to have caused such higher 
under-segmentation error in the experiment, but it is possible. 
The second suspicious module is hole detection process. If two 
neighboring characters are connected and the connected area 
forms hole, then any segmentation points located in that region 
will be removed by the hole detection. In cursive script, many 
characters are connected by multiple points, and its common 
example can be found when ‘tt’ is cursively handwritten. The 
third reason is the poor performance of the neural classifier. 
Even if a segmentation point is correctly located, failure to 
classify left, right and joined segments correctly leads to 
remove the segmentation point, which causes a missing 
segmentation point. The final cause is the poor performance of 
the oversized segment analysis module. The oversized segment 
analysis module largely depends on the height of the 
handwritten word image, and the oversized segment detection 
occurs if a segment pixel width is bigger than the height. In 
words in CEDAR database, the height of a character is much 
bigger than the width. The factor would be one of the main 
reasons to prevent triggering oversized segment detection.  

In the experiment, the most segmentation error was over-
segmentation error. The over-segmentation points were 
intentionally generated by over-segmenter to prevent under-
segmentation error, and those over-segmentation points were 
supposed to be removed by the multiple validation experts. 
Especially, the total foreground pixel comparison and neural 
voting modules were intended to remove excessive over-
segmentation points. However, the total foreground pixel 
comparison module only removes the over-segmentation point 

by checking structural validity of a segment. So, the final 
decision for a segmentation to be correct was up to the neural 
voting validation module because the neural classifier has the 
knowledge of the character shape. However, the accuracy of 
the classifier used in the experiment was only 61.4%.  The poor 
classifier can misclassify rubbish characters into correct 
characters. Therefore, the segmentation point is regarded as 
correct, and the factor influences the over-segmentation error. 
During manual inspection of the segmentation results, the 
characters like ‘w’ and ‘m’ were highly over-segmented 
comparing to other characters.  

The main contributor of the bad-segmentation error could 
be the neural voting validator with the poor neural classifier. 
Also, the oversized segment analysis could cause the bad-
segmentation error by locating a new segmentation point by 
finding a middle point of the segment. The method finding a 
new segmentation point causes a bad-segmentation error if the 
widths of the characters are not the same.   

TABLE I.  FINAL SEGMENTATION PERFORMANCE RESULTS 
ON CEDAR 

Classifier 
accuracy 

(%) 

Segmentation error rate (%) 

Under Over Bad Average 

61.4 6.47 6.58 3.49 5.50 
 

A. Comparative Analysis 
A comparison of results with other approaches and 

algorithms in the literature is very difficult because many 
authors do not list the segmentation results in their papers. We 
have compared the proposed algorithm with two other 
algorithms published in the literature and a comparative 
analysis is provided to give a relative look of the effectiveness 
of the proposed algorithm. In the proposed approach shown in 
Table II, the average incorrect segmentation rate is 5.50% 
which is lower than the ones in [10, 17]. Especially the bad 
segmentation error has been remarkably improved. The over 
segmentation ratio obtained by the proposed algorithm is fairly 
close to the algorithm in [10] but much lower than the 
algorithm in [17]. On the other hand, the under segmentation 
error produced by the proposed algorithm has been 
significantly unimproved and is much higher than the 
published error in the literature.  

Comparing to the literature, the experiments using the 
proposed approach generated much higher under-segmentation 
errors. One of the main reasons is that the proposed approach 
does not have the mechanisms to correct slope angle of the 
handwritten words. However, massive slope angles exist in 
almost every testing word. Those big slope angles do impact on 
calculating baselines in the proposed approach. The proposed 
approach heavily depends on baselines for over-segmentation 
processing, calculating average character width, and analyzing 
oversized segments. Another possible reason of higher under-
segmentation error is that many characters are multi-connected 
and the connectivity forms a hole-region, which are marked as 
incorrect segmentation points by hole detection algorithm. 
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TABLE II.   SEGMENTATION PERFORMANCE COMPARISON ON 
CEDAR  

 
Segmentation rate (%) 

Over Under Bad Average 

[10] 7.4 2.0 11.6 7.0 
[17] 10.0 0.2 8.7 6.3 

Proposed 
approach 6.58 6.47 3.49 5.50 

  

V. CONCLUSIONS 
In this paper, an over-segmentation and validation strategy 

for off-line cursive handwriting recognition has been proposed 
and investigated. The over-segmentation was performed based 
on pixel density between baselines. Multiple validation module 
contains hole detection, foreground pixel comparison and 
neural voting. Also, oversized segment analysis is performed 
before producing final segmentation points. The new over-
segmentation and validation paradigm has been tested on 
CEDAR benchmark database and on local cursive handwritten 
text database. The proposed approach produced lowest errors 
in comparison to existing approaches. 
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