

Copyright © 2009 Institute of Electrical and electronics Engineers,
Inc.
All Rights reserved.
Personal use of this material, including one hard copy
reproduction, is permitted.
Permission to reprint, republish and/or distribute this material in
whole or in part for any other purposes must be obtained from the
IEEE.
For information on obtaining permission, send an e-mail message
to stds-igr@ieee.org.
By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.
Individual documents posted on this site may carry slightly
different copyright restrictions.
For specific document information, check the copyright notice at
the beginning of each document.

mailto:stds-igr@ieee.org

Over-Segmentation and Validation Strategy for Off-
line Cursive Handwriting Recognition

Hone Lee
Computing Science

CQUniversity
Bundaberg, Australia
h.lee1@cqu.edu.au

Brijesh Verma
Computing Science

CQUniversity
Rockhampton, Australia

b.verma@cqu.edu.au

Abstract— This paper presents an over-segmentation and
validation strategy for off-line cursive handwriting recognition.
Over-segmentation module is employed to find all the possible
character boundaries. Then, the incorrect segmentation points
from over-segmenting module are removed by validating
processes. The over-segmentation was performed based on the
vertical pixel density between upper and lower baselines.
Wherever the pixel density is less than threshold, an over-
segmentation point is assigned. After the over-segmentation is
done, validation starts removing over-segmentation points. The
first validation module checks if a segmentation point lies in hole
region. The second validation module compares total foreground
pixel between two neighbouring segmentation points to a
threshold value. The third validation module is neural network
voting by neural network classifier trained on pre-segmented
characters. Finally, the oversized segment validation process
checks if there is any missing segmentation point between
neighbouring characters. The proposed approach has been
implemented, and the experiments on CEDAR benchmark
database have been conducted. The results of the experiments are
very promising and the overall performance of the algorithm is
more effective than the other existing segmentation algorithms.

Keywords-off-line handwriting recognition; segmentation;
neural networks

I. INTRODUCTION
The ultimate goal of off-line cursive handwriting

recognition is machine simulation of human reading. The
useful applications have been found in many industrial sectors
like postal service, form processing, bank cheque processing,
and historical manuscript conversion into electronic format.
However, after more than four decades of efforts from many
researchers, the performance of off-line cursive handwriting
recognition is not good enough for real world application [1,
2].

A. Off-Line Handwriting Recognition
The typical internal process of off-line handwriting

recognition consists of preprocessing, segmentation, and
recognition. However, some of the stages are merged or
omitted, depending on the methods of recognition. In general,
the pre-processing and normalization algorithms are
independent of the recognition approach of the system, but
segmentation is tightly coupled with recognition algorithms

[3]. The general off-line handwriting recognition system is
shown below in Fig. 1.

1) Pre-processing
A series of document analysis tasks are required prior to

recognizing letters from scanned documents. Some common
processes are thresholding [4], noise removal [5], slant and
slope correction as normalization, and thinning. The main
objective of the pre-processing is to produce an image
containing the word to be recognized without any other
disturbing elements.

Pre-processing
Noise removal
Thresholding
Thinning
Slant/slope correction

Segmentation
Page-to-lines
Line-to-words
Word-to-characters
Segmentation validation

Recognition
Feature extraction
Classification
Lexicon check

Scanned
Handwritten

Image

Pre-processed
image

Character
segments

Recognized
texts

Fig. 1. Framework of off-line handwriting recognition

2) Segmentation

Segmentation of cursive words into characters is one of the
most difficult processes in handwriting recognition and it is
also defined as one of the most important processes because it
directly affects the result of recognition process [6-8]. As the
segmentation constraints, the main factors are the non-
separability of characters, the diversity of character patterns,
ambiguity and illegibility of characters, and the overlapping
nature of many characters in a word. Because of such factors,
the most existing segmentation algorithms confront major
problems, such as inaccurate character cuttings, missing
segmentation points, and over-segmentation of a same
character [9, 10]. Currently available segmentation techniques
are holistic [11, 12], dissection [13], recognition-based
segmentation [14], and over-segmentation approaches [15-17].

3) Recognition
During the recognition process, generally the shape features

are extracted from the segmented images, and the appropriate
class is assigned to the observed character. Various feature
extraction techniques are incorporated with various intelligent
classifiers in the literature. A black box model [18], contour
profile [19], stroke direction [20], and global and local
information [21] are fed to neural network classifiers. HMM

978-1-4244-2957-8/08/$25.00 © 2008 IEEE ISSNIP 200891

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

based classifiers are used with features of angle, distance,
horizontal and vertical spans [22].

The rest of this paper is organized into four sections.
Section II describes the proposed over-segmentation and
validation algorithms in detail. Section III presents the
experimental results. An analysis of experimental results and a
comparison are presented in Section IV. Finally, Section V
concludes the paper.

II. PROPOSED OVER-SEGMENTATION AND
VALIDATION ALGORITHMS

The overview of the proposed over-segmentation and
validation approach is shown below in Fig. 2.

Validation

Over-
segmentation

Baseline
Measurement

Stroke Thickness
Measurement

Word
segments

Stroke
Thickness

Baselines (Upper, Lower),
Average character width

Hole
detection

Neural network
voting

Over-segmentation
points

Over-segmentation points
filtered by hole detection

Final
Segmentation

points

Pre-
segmentation

TFPC

Ambiguous
segmentation poins

Oversized
Segment Analysis

Validated
segmentation points

Over-Segmentation
Scanned

handwritten
image

Fig. 2. Proposed over-segmentation and validation approach

A. Pre-Segmentation Process
The pre-segmentation component prepares the handwritten

image for the character segmentation process. Line and word
segmentation processes are performed in this step. The
outcome of this process is the word image tokens, and they are
delivered to over-segmentation process for character
segmentation.

B. Over-Segmentation Process
The purpose of this module is to separate the text words

into characters. Firstly, parameters of stroke thickness and
baselines are calculated from each word image outputted
through pre-segmentation process. Based on the parameters,
over-segmentation between baselines is performed to produce
over-segmentation points. Those over-segmentation points will
be passed through multiple validation modules to decide the
final segmentation points.

1) Stroke Thickness Measurement
In the proposed approach, the stroke thickness is calculated

on each word to reflect the variation between words. To
prevent the over-measurement of the stroke thickness, the
maximum boundary has been set to a value, one fourth of word
image height. Through the horizontal and vertical scan of the
image for the transition distances of foregrounds, the most
occurring transition distance becomes the stroke thickness of
the word image.

2) Baseline Calculation
Measuring the baselines by the horizontal pixel density

histogram is one of the favorite methods among researchers.
However, the proposed approach uses a novel method to find

more accurate baselines. In the proposed strategy, the upper
baseline candidates are nominated by measuring the distance
from the upper-most pixel to the first foreground pixel.
Secondly, the number of vertical transitions is measured to
exclude the extensive horizontal line letters like ‘T’, ‘L’, etc.
After the calculation of the number of transitions and the
distances of every single column, a search algorithm for best
upper baseline is applied. Firstly, for each row a temporary
upper and lower boundary is set with the row in the middle and
the temporary boundaries height is set to the same as the stroke
thickness. Finally, summation of the occurrence of the
distances to the first foreground pixel decides the upper
baseline. Likewise, the lower baseline is measured. However,
this method is effective on words containing letters with holes
or partially closed area, such as ‘c’, ‘e’, etc. Fig. 3 displays the
examples of baseline measurement. The first example reflects
the intended outcome of the algorithm. However, the second
one draws the upper baseline too high because of extensive
ligature of the first letter, R.

good

bad
Fig. 3. Baseline comparison

3) Over-Segmentation between Baselines

Before proceeding to over-segmentation, there is a crucial
pre-task to be conducted, which is to decide a threshold. The
vertical pixel density between upper and lower baselines is
compared to the threshold, and the decision is made whether
the appointed points are appropriate as candidate segmentation
points. Finally, a continuous region of the candidate
segmentation points is divided into smaller sizes having the
same width as the stroke thickness to prevent under-
segmentation. However, this algorithm fails on touching points
bigger than (StrokeThickness × 2). Fig. 4 displays the different
results on different segmentation thresholds, and the
segmentation threshold in the example b) produces better
results because it prevents under-segmentation problems.

C. Multiple Validation Modules
This section describes the validation processes used in the

proposed methodology.

1) Hole Detection
Hole detection algorithm is applied to every single over-

segmentation point, and the detected points are immediately
removed from the candidate segmentation points. As shown in
Fig. 5, the segmentation points on the characters with holes like
‘L’, ‘e’, ‘o’, ‘d’, ‘o’, ‘o’, and ‘d’ from a word ‘Leonardwood’
have been removed by the algorithm.

2) Total Foreground Pixel Comparison (TFPC)
Based on an assumption that a legal character contains the

minimum amount of foreground pixels equal to a threshold,
(StrokeThickness × (LowerBaseline – UpperBaseline)), each

92

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

segment between two neighboring segmentation points is
checked for legality. If the total foreground pixel of a segment
is less than the threshold, its segmentation points are merged or
moved to a prospective new segmentation point within the
segment. This algorithm scans through all over-segmentation
points recursively from left end to the right end. An example of
the TFPC application is show in Fig. 6.

a) SC = SW + SW / 2 : fails to over-segment between w and o

b) SC = SW * 2 : w and o are correctly over-segmented
Fig. 4. Over-segmentation results depending on segment threshold (SC) and

stroke thickness (SW)

 b) after hole dection applied

a) over-segmentation points

Fig. 5. Examples of hole detection algorithm application

Fig. 6. TFPC application to example b) from Fig. 5

3) Validation by Neural Network Voting

Validation by neural network voting is a type of
knowledge-based validating process on over-segmentation
points. The neural network is trained on pre-segmented
character shapes. The neural classifier takes 100 transition
features of a character as an input and outputs one of 53
classes, which are 52 classes for lower and upper cases of
alphabets, and 1 for rubbish characters. In the neural voting
validation process, each segmentation point is tested and
validated from left to right order. Invalid segmentation points
are removed immediately and reset the segmentation point
status. Inside the neural voting system (Fig. 7), the left, right
and joined segment checkers get a left, right, joined segment
region (shown in Fig. 8) from the testing segmentation point.
The left and right checkers throws a positive vote on positive
result. On the other hand, the joined checker throws negative
vote on positive result.

Left segment
checker

Joined segment
checker

Right segment
checker votes > 1segmentation

point
Count
votes

Yes: 1

Yes: 1

Yes: -1

votes valid

Fig. 7. Architecture of the neural network voting module

Testing segmentation point
Right segment

Left segment
Joined segment

Fig. 8. Segment regions based on testing segmentation point

4) Oversized Segment Analysis
The oversized segment analysis is adapted to prevent

missing segmentation point between neighboring characters.
The detection of oversized segment is based on measuring the
width of the segment, and compares the width to pre-defined
threshold. In the proposed approach, the threshold is set to the
height of each testing word outputted through pre-segmentation
module. On detection, a new segmentation point is located on
middle of the segment.

III. EXPERIMENTAL RESULTS
This section describes the implementation platform, the

database, and the experimental results.

A. Implementation
The proposed approach used C++ programming language

to implement all the algorithms described in previous section.
The implementation strictly followed the object oriented
principles.

B. Database Preparation
The experiment is conducted on a CEDAR benchmark

database to perform the comparative analysis against the
segmentation results from the literature. For neural network
training, pre-segmented 5708 characters were used from
CEDAR\TRAIN\BINANUM\BD and BL directories. The
training data set was divided into two data sets for training and
testing in 9 to 1 ratios. The final segmentation was
experimented on 311 words from CEDAR\TEST\CITIES\BD
directory.

The neural character classifier also needs rubbish character
database during training. However, there is no benchmark
database for rubbish characters. So, the rubbish characters were
generated by over-segmenting characters from training set. By
manual inspection of the over-segmented primitives, the most
dissimilar primitives to characters were selected as rubbish
characters.

C. Neural Network Training
An Error Back-Propagation (EBP) algorithm is used to

train the neural classifier. A 100 transition feature of a
character was taken as an input to the classifier. The output of
the classifier is one of 53 classes. 52 classes are for 52 English
alphabet characters (upper + lower cases), and 1 for the
representation of non-character, rubbish character. After
multiple attempts with different configurations of neural
network parameters, 61.4% of classification accuracy was

93

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

achieved. In future research, improving the accuracy of the
neural classifier should proceed over other improvements.

D. Final Segmentation Results
Segmentation results are measured by counting the

segmentation errors. The segmentation errors have three
categories, over-segmentation, under-segmentation, and bad-
segmentation as described in [8]. The over-segmentation error
occurs if a character is segmented into more than three
segments. Under-segmentation occurs if there is a missing
segmentation point between two neighboring characters.
Lastly, the bad-segmentation is defined as the rest of
inappropriate cuts that don’t belong to under-segmentation and
over-segmentation, and don’t separate two characters correctly.
The final segmentation performance result is shown in Table I.
The segmentation error rate was calculated by dividing the
number of error for each category by the total number of
character in testing database.

IV. ANALYSIS AND DISCUSSION
The final segmentation results shown in TABLE I are the

segmentation error rates for each segmentation category.
Firstly, the over-segmentation error was the highest as 6.58%,
followed by under-segmentation error of 6.47%. The bad-
segmentation error was the lowest as 3.49%. The average
segmentation error was 5.5%.

Under-segmentation error could be caused by following
reasons. Firstly, the over-segmentation module failed to locate
the segmentation point initially. But from the previous study,
the under-segmentation error from the over-segmenter was
close to zero. So, it is unlikely to have caused such higher
under-segmentation error in the experiment, but it is possible.
The second suspicious module is hole detection process. If two
neighboring characters are connected and the connected area
forms hole, then any segmentation points located in that region
will be removed by the hole detection. In cursive script, many
characters are connected by multiple points, and its common
example can be found when ‘tt’ is cursively handwritten. The
third reason is the poor performance of the neural classifier.
Even if a segmentation point is correctly located, failure to
classify left, right and joined segments correctly leads to
remove the segmentation point, which causes a missing
segmentation point. The final cause is the poor performance of
the oversized segment analysis module. The oversized segment
analysis module largely depends on the height of the
handwritten word image, and the oversized segment detection
occurs if a segment pixel width is bigger than the height. In
words in CEDAR database, the height of a character is much
bigger than the width. The factor would be one of the main
reasons to prevent triggering oversized segment detection.

In the experiment, the most segmentation error was over-
segmentation error. The over-segmentation points were
intentionally generated by over-segmenter to prevent under-
segmentation error, and those over-segmentation points were
supposed to be removed by the multiple validation experts.
Especially, the total foreground pixel comparison and neural
voting modules were intended to remove excessive over-
segmentation points. However, the total foreground pixel
comparison module only removes the over-segmentation point

by checking structural validity of a segment. So, the final
decision for a segmentation to be correct was up to the neural
voting validation module because the neural classifier has the
knowledge of the character shape. However, the accuracy of
the classifier used in the experiment was only 61.4%. The poor
classifier can misclassify rubbish characters into correct
characters. Therefore, the segmentation point is regarded as
correct, and the factor influences the over-segmentation error.
During manual inspection of the segmentation results, the
characters like ‘w’ and ‘m’ were highly over-segmented
comparing to other characters.

The main contributor of the bad-segmentation error could
be the neural voting validator with the poor neural classifier.
Also, the oversized segment analysis could cause the bad-
segmentation error by locating a new segmentation point by
finding a middle point of the segment. The method finding a
new segmentation point causes a bad-segmentation error if the
widths of the characters are not the same.

TABLE I. FINAL SEGMENTATION PERFORMANCE RESULTS
ON CEDAR

Classifier
accuracy

(%)

Segmentation error rate (%)

Under Over Bad Average

61.4 6.47 6.58 3.49 5.50

A. Comparative Analysis
A comparison of results with other approaches and

algorithms in the literature is very difficult because many
authors do not list the segmentation results in their papers. We
have compared the proposed algorithm with two other
algorithms published in the literature and a comparative
analysis is provided to give a relative look of the effectiveness
of the proposed algorithm. In the proposed approach shown in
Table II, the average incorrect segmentation rate is 5.50%
which is lower than the ones in [10, 17]. Especially the bad
segmentation error has been remarkably improved. The over
segmentation ratio obtained by the proposed algorithm is fairly
close to the algorithm in [10] but much lower than the
algorithm in [17]. On the other hand, the under segmentation
error produced by the proposed algorithm has been
significantly unimproved and is much higher than the
published error in the literature.

Comparing to the literature, the experiments using the
proposed approach generated much higher under-segmentation
errors. One of the main reasons is that the proposed approach
does not have the mechanisms to correct slope angle of the
handwritten words. However, massive slope angles exist in
almost every testing word. Those big slope angles do impact on
calculating baselines in the proposed approach. The proposed
approach heavily depends on baselines for over-segmentation
processing, calculating average character width, and analyzing
oversized segments. Another possible reason of higher under-
segmentation error is that many characters are multi-connected
and the connectivity forms a hole-region, which are marked as
incorrect segmentation points by hole detection algorithm.

94

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

TABLE II. SEGMENTATION PERFORMANCE COMPARISON ON
CEDAR

Segmentation rate (%)

Over Under Bad Average

[10] 7.4 2.0 11.6 7.0
[17] 10.0 0.2 8.7 6.3

Proposed
approach 6.58 6.47 3.49 5.50

V. CONCLUSIONS
In this paper, an over-segmentation and validation strategy

for off-line cursive handwriting recognition has been proposed
and investigated. The over-segmentation was performed based
on pixel density between baselines. Multiple validation module
contains hole detection, foreground pixel comparison and
neural voting. Also, oversized segment analysis is performed
before producing final segmentation points. The new over-
segmentation and validation paradigm has been tested on
CEDAR benchmark database and on local cursive handwritten
text database. The proposed approach produced lowest errors
in comparison to existing approaches.

ACKNOWLEDGEMENT
This research was supported by ARC and ISSNIP

collaborative research scheme.

REFERENCES
[1] P. Zhang, T. D. Bui, and C. Y. Suen, “A novel cascade ensemble

classifier system with a high recognition performance on handwritten
digits,” Pattern Recognition, vol. 40, no. 12, pp. 3415-3429, 2007.

[2] F. Camastra, “A SVM-based cursive character recognizer,” Pattern
Recognition, vol. 40, no. 12, pp. 3721-3727, 2007.

[3] S. Alma'adeed, C. Higgins, and D. Elliman, “Off-line recognition of
handwritten Arabic words using multiple hidden Markov models,”
Knowledge-Based Systems, vol. 17, no. 2-4, pp. 75-79, 2004.

[4] R. Milewski, and V. Govindaraju, “Binarization and cleanup of
handwritten text from carbon copy medical form images,” Pattern
Recognition, vol. 41, no. 4, pp. 1308-1315, 2008.

[5] Z. Lin, R. Wang, and H.-Y. Shum, “Rule-based cleanup of on-line
English ink notes,” Pattern Recognition, vol. 39, no. 6, pp. 1074-1087,
2006.

[6] A. Elnagar, and R. Alhajj, “Segmentation of connected handwritten
numeral strings,” Pattern Recognition, vol. 36, no. 3, pp. 625-634, 2003.

[7] X. Xiao, and G. Leedham, “Knowledge-based English cursive script
segmentation,” Pattern Recognition Letters, vol. 21, no. 10, pp. 945-954,
2000.

[8] B. Yanikoglu, and P. A. Sandon, “Segmentation of off-line cursive
handwriting using linear programming,” Pattern Recognition, vol. 31,
pp. 1825-1833, 1998.

[9] C.L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit
recognition: benchmarking of state-of-the-art techniques,” Pattern
Recognition, vol. 36, no. 10, pp. 2271-2285, 2003.

[10] M. Blumenstein and B. Verma, “Analysis of segmentation performance
on the CEDAR benchmark database,” Proceedings of the Sixth
International Conference on Document Analysis and Recognition
(ICDAR), Seattle, WA, USA, 2001, pp. 1142-1146.

[11] A. Broumandnia, J. Shanbehzadeh, and M. R. Varnoosfaderani,
“Persian/arabic handwritten word recognition using M-band packet

wavelet transform,” Image Vision Comput., vol. 26, no. 6, pp. 829-842,
2008.

[12] J. Ruiz-Pinales, R. Jaime-Rivas, and M. Castro-Bleda, “Holistic cursive
word recognition based on perceptual features,” Pattern Recognition
Letters, vol. 28, no. 13, pp. 1600-1609, 2007.

[13] K. K. Kim, J. H. Kim, and C. Suen, “Segmentation-based recognition of
handwritten touching pairs of digits using structural features,” Pattern
Recognition Letters, vol. 23, no. 1-3, pp. 13-24, 2002.

[14] C. Viard-Gaudin, P.-M. Lallican, and S. Knerr, “Recognition-directed
recovering of temporal information from handwriting images,” Pattern
Recognition Letters, vol. 26, no. 16, pp. 2537-2548, 2005.

[15] R. Nopsuwanchai, A. Biem, and W. F. Clocksin, “Maximization of
mutual information for offline Thai handwriting recognition,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no.
8, pp. 1347-1351, 2006.

[16] L. Prevost, L. c. Oudot, A. Moises, C. Michel-Sendis, and M. Milgram,
“Hybrid generative/discriminative classifier for unconstrained character
recognition,” Pattern Recognition Letters, vol. 26, no. 12, pp. 1840-
1848, 2005.

[17] B. Verma, “A contour code feature based segmentation for handwriting
recognition,” Proceedings of the Seventh International Conference on
Document Analysis and Recognition (ICDAR), Aug. 2003, pp. 1203.

[18] F. Lauer, C. Suen, and G. Bloch, “A trainable feature extractor for
handwritten digit recognition,” Pattern Recognition, vol. 40, no. 6, pp.
1816-1824, 2007.

[19] B. Verma, M. Blumenstein, and M. Ghosh, “A novel approach for
structural feature extraction: contour vs. direction,” Pattern Recognition
Letters, vol. 25, no. 9, pp. 975-988, 2004.

[20] M. Blumenstein, X. Y. Liu, and B. Verma, “An investigation of the
modified direction feature for cursive character recognition,” Pattern
Recognition, vol. 40, no. 2, pp. 376-388, 2007.

[21] C. O. Freitas, L. Oliveira, S. Aire, and F. Bortolozzi, "Zoning and
metaclasses for character recognition," Proceedings of ACM Symposium
on Applied Computing, Seoul, Korea, 2007, pp. 632-636.

[22] S. Mahmoud, “Recognition of writer-independent off-line handwritten
Arabic (Indian) numerals using hidden Markov models,” Signal
Process., vol. 88, no. 4, pp. 844-857, 2008.

95

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

96

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on May 21, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

