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Summary 

This paper presents a wavelet approach to overcome the difficulties in the on-board 
monitoring and detection systems of rail wheel flats using vibration signals. Signal 
average techniques and wavelet local energy average concept are employed in this 
approach. A Matlab-Simulink based dynamic simulation system was also developed for 
the modelling of wheel flats and track irregularities. The analysis of the numerical 
simulation results demonstrated that the method proposed in this paper is effective for the 
on-board monitoring of wheel flats of sizes smaller than the condemning limits.       

Introduction 

Damage monitoring and detection of structures and components is critical to maintain 
safety and efficiency in the railway industry. This paper addresses wheel flats, a common 
form of damage that have the potential to generate serious impact forces sufficient to 
cause derailment due to failure of rails, axles, and/ or bearings. Currently wheels 
containing flats of 50mm are removed from service; the process of flat wheel 
condemnation being manual inspection.  Automated techniques such as the way-side 
detection and on-board monitoring are increasingly becoming popular. As on-board 
techniques continuously monitor digital signals in real-time, they have the advantage of 
being integrated into the whole-of-train monitoring systems.  Therefore we have 
addressed on-board system requirements in particular in this paper. 

Although vibration signals are broadly used for damage monitoring in the industrial 
fields, such methods are not yet popular in railway engineering due to complications 
arising from track irregularities, train bogie system damping and loading variation that 
produce complex vibration signatures of the wagons. This paper presents a wavelet 
approach to overcome the difficulties caused by the complexities of wagon dynamics 
vibration signatures. Signal average techniques [1] and wavelet local energy average 
concept developed by Jia [2] are employed in this method. A Matlab-Simulink based 
dynamic simulation system was specifically developed for the modeling of wheel flats 
and track irregularities. The results demonstrate that the wavelet approach has the 
potential to be incorporated into the on-board monitoring systems. 

A wavelet approach for the detection of rail wheel flats 

The wavelet transform uses narrow time windows at high frequencies and wide time 
windows at low frequencies. Therefore, it has the potential to effectively detect transient 
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signals generated by local damages of components provided the interval and range of 
wavelet scale factor and the mapped wavelet coefficient three-dimensional diagram 
suitable for detecting the local fault are available. To overcome difficulties caused by 
such requirements, Jia [2] proposed a wavelet local energy average (WLEA) concept, 
based on the continuous wavelet transform for gear tooth damage detection. In this paper, 
a wavelet method for detecting rail wheel flat damage is obtained by combining WLEA 
concept with the synchronous signal average technique (that is analogous to denoising of 
complex signatures). Assuming )(θx is the vehicle bogie average vibration signal in the 
wheel rotation angle domain and )(θψ is an analysing wavelet, the continuous wavelet 
transform (CWT) of )(θx  is given by, 
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where a  and b are the scale and angle parameter respectively. 

If the average vibration signal )(θx  is transformed in scale range al  ( al also 

indicates the scale range width here), the WLEA in scale width al is defined as, 
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For ( , )x n jW a b , the wavelet local energy average is defined as, 
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where na  is the discrete scale factor,  and jb is the discrete angle location. 

Based on equation (2) or (3), LEAW  versus b  (or jb ) can be displayed in a two-
dimensional diagram. In order to further emphasize the wheel flat impact contribution to 
the WELA, WELA variation along with wheel rotation angleθ  is defined here as,    
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Where wheel flats exist, LEAW remains larger around the location of damage; this is 
emphasized by squaring of the coefficient of the wavelet transform in Eq. (2), (3) and (4). 

Dynamic modelling of wheel flat vibration signature  
 

There are many wagon dynamics simulation systems reported in the literature;   here 
for simplicity, Lei’s 2D model [3] is modified (Fig. 1) to account for wheels flats.  A 2D 
10 degrees of freedom (DOF) system was used to represent the wagon. Track system is 
modelled using a four DOF track element as illustrated in Figure 1(b). The sleeper mass 
and the partial ballast mass are lumped to the two ends of the beam element.  The wagon 
and track system dynamics is expressed as, 

 twtwtwtwtwtwtw FuKuCuM /////// }{}{][}{][}{][ =++ &&&                                     (5)             

where twM /][ , twC /][ , twK /][ , twu /}{  and twF /}{ are the mass matrix, damping matrix, 
stiffness matrix, displacement vector and force vector respectively; the subscript w stands 
for wagon and t stands for track.        
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Figure 1. 2D model of wagon track system; Beam element & Wheel flat detail. 

The Hertz interaction force between wheel and track is written as,  
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where  1057.4 8149.0 −− ×= RG  m/N 3/2  is the Hertz coefficient of contact between wheel and 
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track; R is wheel radius. ry  is relative displacement between wheel and track. When 
including wheel displacement wv , track displacement tv , reduction of wheel radius due 

to flat damage )(αffw =  (Figure 1(c)) and track irregularity tirv into the relative 

displacement,   ry  is calculated by,  

 )()( tirtwwr vvfvy +−+=                                                                                        (7) 

Typical measured data of track irregularity from an Australian rail track, illustrated in 
Figure 2, were used in the numerical simulation. All simulation cases were run by 
keeping the wagon speed constant at 30km/h.  
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Figure 2. Track irregularity  

In the numerical simulation, Eq. (5) was solved separately for the wagon and track. 
The interaction Eqs. (6) and (7) were used for coupling the two systems together. A 
MATLAB Simulink model, shown in Figure 3, was developed for this purpose.      

 
Figure 3. Simulink model of wagon and track coupling system 

Result analysis and discussion 

When using the wavelet transform to detect rail wheel flat damage, the wavelet 
function must be carefully chosen. The complex Morlet wavelet (Eq. (8)) was chosen for 
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the analysis here because the shape of the transient vibration signal resulted from wheel 
flat damage is similar in nature to the Morlet wavelet.  

bf
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where bf  and cf  are bandwidth parameter and wavelet center frequency respectively 
[4]. For the current analysis, bf  and cf were set as 1=bf , 8.0=cf  and the range of 
scale a  was set as [0.6, 76.8] with the interval aΔ =0.6.       

Figure 4 shows acceleration, 15 cycle acceleration average in wheel rotation angle 
domain and LEAW '  of the acceleration average of bogie. The first column (Fig. 4a, 4b & 
4c) contains results for the analysis without wheel flat damage. The second column (Figs 
4d, 4e & 4f) displays the results for 35mm wheel flat damage ( fL , Figure 1)  and the 
third column (Figs. 4g, 4h & 4i) shows the results for 50mm wheel flat damage  
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Figure 4. Bogie acceleration, acceleration average and  LEAW '  of the average. 

From the acceleration time series shown in Figs. 4a, 4d and 4g, the differences 
amongst the three cases of wheel flat damage could not be seen clearly. The signal 
averages displayed in Figure 4b, 4e and 4c, also do not distinctly differentiate the three 
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cases. From the LEAW ' distributions of the three cases illustrated in Figs. 4c, 4f and 4i, 
the difference could be seen very clearly. In Fig. 4c, there is no obvious peak (no wheel 
flat).   In Fig. 4f, there is a clear peak (35mm damage). In Fig. 4i, a larger peak is shown 
(50mm damage). These are reasonable results because the larger wheel flat produces the 
stronger impact leading to more energy to LEAW '  distribution. Figs. 5a, 5b and 5c are 
Polar drawing of LEAW ' distributions of the three wheel flat damage cases, which help 
with visually interpreting the effect of growing size of wheel defect damage easily. 
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Figure 5. Polar drawing of LEAW '  distribution.  

Conclusion 

This paper presents a wavelet transform method combined with signal average 
technique for monitoring progressive growth in rail wheel flat damage from bogie 
acceleration signatures that result from both the track defects and wheel flats. Therefore 
this method could be regarded as a practical wavelet method for rail wheel flat damage 
on-board monitoring system. The approach proposed in this paper could be extended for 
monitoring and detection of damages in bearings and axles.  Further research on vibration 
monitoring could greatly contribute to the integration of whole-of-train real time 
monitoring systems.   
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